WorldWideScience

Sample records for high-energy mev electrons

  1. High efficiency charge recuperation for electron beams of MeV energies

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1996-05-01

    Electron cooling of ion beams with energies of some GeV per nucleon requires high-quality electron beams of MeV energies and currents as high as several amperes. The enormous beam power dictates that the beam current be returned to the high voltage terminal which provides the accelerating potential. The beam is returned to a carefully designed collector within the terminal and biased a few kV positive with respect to it. Thus the load on the HV supply is only the accelerating potential times the sum of the beam current loss and the current used to maintain a graded potential on the accelerating structure. If one employs an electrostatic HV supply like a Van de Graaff with maximum charging current of a few hundred microA, the permissible fractional loss is ∼ 10 -4 . During the 15 years or so the concept of medium energy electron cooling has been evolving, the need to demonstrate the practicability of such high efficiency beam recovery has been recognized. This paper will review some experimental tests and further experiments which have been proposed. The design and status are presented for a new re-circulation experiment at 2 MV being carried out by Fermilab at National Electrostatics Corp

  2. Investigation of transversal nuclear excitation in 208Pb at excitation energies between 6 MeV and 8 MeV using inelastic electron scattering

    International Nuclear Information System (INIS)

    Frey, R.W.

    1978-01-01

    Using high resolution inelastic electron scattering magnitic dipole and quadrupole excitations in 208 Pb were investigated in the energy range between 6 MeV and 8 MeV. The electron energy was 50 MeV and 63.5 MeV. With a mean absolute energy resolution of 33 kev. 44 excited states were found in the above energy range. The measured angular distributions were compared with DWBA-calculations using random phase approximated wave functions. (FKS)

  3. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV

    Science.gov (United States)

    Krauss, A.; Kapsch, R.-P.

    2018-02-01

    For the ionometric determination of the absorbed dose to water, D w, in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q, are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  4. Direct determination of k Q factors for cylindrical and plane-parallel ionization chambers in high-energy electron beams from 6 MeV to 20 MeV.

    Science.gov (United States)

    Krauss, A; Kapsch, R-P

    2018-02-06

    For the ionometric determination of the absorbed dose to water, D w , in high-energy electron beams from a clinical accelerator, beam quality dependent correction factors, k Q , are required. By using a water calorimeter, these factors can be determined experimentally and potentially with lower standard uncertainties than those of the calculated k Q factors, which are tabulated in various dosimetry protocols. However, one of the challenges of water calorimetry in electron beams is the small measurement depths in water, together with the steep dose gradients present especially at lower energies. In this investigation, water calorimetry was implemented in electron beams to determine k Q factors for different types of cylindrical and plane-parallel ionization chambers (NE2561, NE2571, FC65-G, TM34001) in 10 cm  ×  10 cm electron beams from 6 MeV to 20 MeV (corresponding beam quality index R 50 ranging from 1.9 cm to 7.5 cm). The measurements were carried out using the linear accelerator facility of the Physikalisch-Technische Bundesanstalt. Relative standard uncertainties for the k Q factors between 0.50% for the 20 MeV beam and 0.75% for the 6 MeV beam were achieved. For electron energies above 8 MeV, general agreement was found between the relative electron energy dependencies of the k Q factors measured and those derived from the AAPM TG-51 protocol and recent Monte Carlo-based studies, as well as those from other experimental investigations. However, towards lower energies, discrepancies of up to 2.0% occurred for the k Q factors of the TM34001 and the NE2571 chamber.

  5. Energy monitoring device for 1.5-2.4 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Lavalle, M.; Martelli, A. [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O.Box 77, H-1525 Budapest (Hungary); Mehta, K. [Arbeiterstrandbad Strasse 72, Vienna, A-1210 (Austria); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France)

    2010-03-11

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  6. Energy monitoring device for 1.5-2.4 MeV electron beams

    Science.gov (United States)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  7. Shielding for high energy, high intensity electron accelerator installation

    International Nuclear Information System (INIS)

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  8. Energy spectra variations of high energy electrons in magnetic storms observed by ARASE and HIMAWARI

    Science.gov (United States)

    Takashima, T.; Higashio, N.; Mitani, T.; Nagatsuma, T.; Yoshizumi, M.

    2017-12-01

    The ARASE spacecraft was launched in December 20, 2016 to investigate mechanisms for acceleration and loss of relativistic electrons in the radiation belts during space storms. The six particle instruments with wide energy range (a few eV to 10MeV) are onboard the ARASE spacecraft. Especially, two particle instruments, HEP and XEP observe high energy electron with energy range from 70keV to over 10Mev. Those instruments observed several geomagnetic storms caused by coronal hole high speed streams or coronal mass ejections from March in 2017. The relativistic electrons in the outer radiation belt were disappeared/increased and their energy spectra were changed dynamically in some storms observed by XEP/HEP onboard the ARASE spacecraft. In the same time, SEDA-e with energy range 200keV-4.5MeV for electron on board the HIMAWARI-8, Japanese weather satellite on GEO, observed increase of relativistic electron in different local time. We will report on energy spectra variations of high energy electrons including calibrations of differential flux between XEP and HEP and discuss comparisons with energy spectra between ARAE and HIMAWARI that observed each storm in different local time.

  9. Energy spectrum measurement of high power and high energy(6 and 9 MeV) pulsed x-ray source for industrial use

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Hiroyuki [Hitachi, Ltd. Power Systems Company, Ibaraki (Japan); Murata, Isao [Graduate School of Engineering, Osaka University, Osaka (Japan)

    2016-06-15

    Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

  10. Observation of high energy electrons and protons in the South Atlantic geomagnetic anomaly by Ohzora Satellite

    International Nuclear Information System (INIS)

    Nagata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuche, J.; Doke, T.

    1988-01-01

    Observed results of the high energy electrons (0.19 - 3.2 MeV) and protons (0.58 - 35 MeV) of the South Atlantic Geomagnetic Anomaly are presented. Two silicon Δ E-E telescopes on the ohzora satellite (EXOS-C, 1984-15A) were used to observe the high energy particle and the maximum intensity of electrons and protons. The powers of energy spectra above 1 MeV have different values from energy region below 1 MeV. The electron and proton intensities are greatest at pitch angle maximized at 90 0 . (author) [pt

  11. Numerical simulation on range of high-energy electron moving in accelerator target

    International Nuclear Information System (INIS)

    Shao Wencheng; Sun Punan; Dai Wenjiang

    2008-01-01

    In order to determine the range of high-energy electron moving in accelerator target, the range of electron with the energy range of 1 to 100 MeV moving in common target material of accelerator was calculated by Monte-Carlo method. Comparison between the calculated result and the published data were performed. The results of Monte-Carlo calculation are in good agreement with the published data. Empirical formulas were obtained for the range of high-energy electron with the energy range of 1 to 100 MeV in common target material by curve fitting, offering a series of referenced data for the design of targets in electron accelerator. (authors)

  12. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  13. Temporal and spatial distribution of high energy electrons at Jupiter

    Science.gov (United States)

    Jun, I.; Garrett, H. B.; Ratliff, J. M.

    2003-04-01

    Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to study the high energy electron environment in the Jovian magnetosphere, especially in the region between 8 to 18 Rj (1 Rj = 1 Jovian radius = 71,400 km). 10-minute averages of the EPD data collected between Jupiter orbit insertion (JOI) in 1995 and the orbit number 33 (I33) in 2002 form an extensive dataset, which has been extremely useful to observe temporal and spatial variability of the Jovian high energy electron environment. The count rates of the EPD electron channels (0.174, 0.304, 0.527, 1.5, 2.0, and 11 MeV) were grouped into 0.5 Rj or 0.5 L bins and analyzed statistically. The results indicate that: (1) a log-normal Gaussian distribution well describes the statistics of the high energy electron environment (for example, electron differential fluxes) in the Jovian magnetosphere, in the region studied here; (2) the high energy electron environments inferred by the Galileo EPD measurements are in a close agreement with the data obtained using the Divine model, which was developed more than 30 years ago from Pioneer 10, 11 and Voyager 1, 2 data; (3) the data are better organized when plotted against magnetic radial parameter L than Rj; (4) the standard deviations of the 0.174, 0.304, 0.527 MeV channel count rates are larger than those of the 1.5, 2.0, 11 MeV count rates in 12 Rj. These observations are very helpful to understand short- and long-term, and local variability of the Jovian high energy electron environment, and are discussed in detail.

  14. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Manaila, E.; Craciun, G.; Calinescu, I.

    2009-01-01

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO 2 , NOx and VOCs

  15. Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV

    DEFF Research Database (Denmark)

    Miller, A.; Kovacs, A.; Kuntz, F.

    2002-01-01

    Polystyrene (PS) calorimeters developed at Riso National Laboratory for use below 4 MeV have been modified due to irradiation technology requirements concerning both design principles and dimensions. The temperature-time relationship after irradiation was measured, and two ways of dose measurement...... the average and the surface dose and to prove the applicability of the new low energy calorimeter for calibration purposes at 1.5 and 2 MeV electron energy. Alanine dosimeters of 2 mm thickness were used to calibrate the calorimeters and their use for nominal dose measurements was demonstrated in a series...... of intercomparisons. The use as routine dosimeters at electron accelerators operating in the energy range of 1.5-4 MeV was also demonstrated. (C) 2002 Elsevier Science Ltd. All rights reserved....

  16. High energy electron acceleration with PW-class laser system

    International Nuclear Information System (INIS)

    Nakanii, N.; Kondo, K.; Yabuuchi, T.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Kodama, R.; Mima, K.; Tanaka, K. A.; Mori, Y.; Miura, E.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.

    2008-01-01

    We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ∼10 19 cm -3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment

  17. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  18. Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies

    Science.gov (United States)

    Longfellow, Brenden

    2014-09-01

    Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles

  19. On the absorbed dose determination method in high energy electrons beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co 60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  20. Upper limit on the inner radiation belt MeV electron intensity

    Science.gov (United States)

    Li, X; Selesnick, RS; Baker, DN; Jaynes, AN; Kanekal, SG; Schiller, Q; Blum, L; Fennell, J; Blake, JB

    2015-01-01

    No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (tens of MeV to GeV). The inner belt proton flux level, however, is relatively stable; thus, for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment on board Colorado Student Space Weather Experiment CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because their flux level is orders of magnitude higher than the background, while higher-energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from the Relativistic Electron and Proton Telescope on board Van Allen Probes, in a geo-transfer-like orbit, provides, for the first time, quantified upper limits on MeV electron fluxes in various energy ranges in the inner belt. These upper limits are rather different from flux levels in the AE8 and AE9 models, which were developed based on older data sources. For 1.7, 2.5, and 3.3 MeV electrons, the upper limits are about 1 order of magnitude lower than predicted model fluxes. The implication of this difference is profound in that unless there are extreme solar wind conditions, which have not happened yet since the launch of Van Allen Probes, significant enhancements of MeV electrons do not occur in the inner belt even though such enhancements are commonly seen in the outer belt. Key Points Quantified upper limit of MeV electrons in the inner belt Actual MeV electron intensity likely much lower than the upper limit More detailed understanding of relativistic electrons in the magnetosphere PMID:26167446

  1. Electron Linacs for High Energy Physics

    International Nuclear Information System (INIS)

    Wilson, Perry B.

    2011-01-01

    The purpose of this article is to introduce some of the basic physical principles underlying the operation of electron linear accelerators (electron linacs). Electron linacs have applications ranging from linacs with an energy of a few MeV, such that the electrons are approximately relativistic, to future electron-positron linear colliders having a collision energy in the several-TeV energy range. For the most part, only the main accelerating linac is treated in this article.

  2. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  3. Analytic formula of stopping power for high energy electrons in liquid media

    International Nuclear Information System (INIS)

    Scarlat, F.; Niculescu, V.I.R.

    1994-01-01

    This article is part of a series on the calculation of high energy electron dose using multiple scattering theory. In the current article we present an analytic formula obtained for the collision stopping power (S/ρ) c and the radiative stopping power (S/ρ) r for electrons with energy within 1 MeV - 35 MeV range. For that purpose we used data given for electrons in water in NBS-IR-2550A. The analytical formulae are approximating the data calculated by Berger and Seltzer within 1-2% limit. (Author)

  4. High-energy electron beams for ceramic joining

    Science.gov (United States)

    Turman, Bob N.; Glass, S. J.; Halbleib, J. A.; Helmich, D. R.; Loehman, Ron E.; Clifford, Jerome R.

    1995-03-01

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride (Si3N4) to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si3N4 - Si3N4 with gold-nickel braze. The bonding mechanism appears to be formation of a thin silicide layer. Beam damage to the Si3N4 was also assessed.

  5. Characterization of a power bipolar transistor as high-dose dosimeter for 1.9-2.2 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Lavalle, M.; Corda, U. [ISOF-CNR Institute, Via P. Gobetti 101, I-40129, Bologna (Italy); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France); Gombia, E. [IMEM-CNR Institute, Viale delle Scienze 37 A, Loc. Fontanini, 43010 Parma (Italy)

    2010-04-15

    Results of the characterization studies on a power bipolar transistor investigated as a possible radiation dosimeter under laboratory condition using electron beams of energies from 2.2 to 8.6 MeV and gamma rays from a {sup 60}Co source and tested in industrial irradiation plants having high-activity {sup 60}Co gamma-source and high-energy, high-power electron beam have previously been reported. The present paper describes recent studies performed on this type of bipolar transistor irradiated with 1.9 and 2.2 MeV electron beams in the dose range 5-50 kGy. Dose response, post-irradiation heat treatment and stability, effects of temperature during irradiation in the range from -104 to +22 deg. C, dependence on temperature during reading in the range 20-50 deg. C, and the difference in response of the transistors irradiated from the plastic side and the copper side are reported. DLTS measurements performed on the irradiated devices to identify the recombination centres introduced by radiation and their dependence on dose and energy of the electron beam are also reported.

  6. MeV energy electron beam induced damage in isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Mathakari, N.L.; Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune 411007 (India); Dhole, S.D. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Pune 411007 (India)], E-mail: sanjay@physics.unipune.ernet.in

    2008-06-15

    A few thin films of isotactic polypropylene were irradiated with 6 MeV energy electrons, in the fluence range from 5 x 10{sup 14} to 2 x 10{sup 15} electrons/cm{sup 2}. The structural, optical and mechanical properties were characterized by techniques such as FTIR, UV-vis, XRD, SEM, hardness and contact angle measurements. The FTIR spectra indicate that C-H and C-C bonds are scissioned and an isotactic arrangement of chains is partially destroyed. Moreover, the new carbonyl groups (C=O) are observed, which signifies oxidation. The UV-vis spectra shows a red shift in the absorption edge from pristine value of 240 to 380 nm, which corresponds to decrease in the optical band gap from 5.17 to 3.27 eV. This is because of the formation of conjugated double bonds as well as carbonization. The crystalline properties were analysed using XRD and it shows no profound change. This result may attribute that the radiation-induced changes have probably occurred to a large extent in amorphous regions. However, surface morphology by SEM and contact angle measurements showed considerable surface roughening, which indicates an uneven evolution of gases from the surface. Interestingly, the surface hardness of the films was found to increase with fluence and it may be due to crosslinking and carbonization on the surface. Overall, in conclusion this study shows considerable modifications in the physicochemical properties of isotactic polypropylene irradiated by 6 MeV energy pulsed electrons.

  7. High-energy electron experiments (HEP) aboard the ERG (Arase) satellite

    Science.gov (United States)

    Mitani, Takefumi; Takashima, Takeshi; Kasahara, Satoshi; Miyake, Wataru; Hirahara, Masafumi

    2018-05-01

    This paper reports the design, calibration, and operation of high-energy electron experiments (HEP) aboard the exploration of energization and radiation in geospace (ERG) satellite. HEP detects 70 keV-2 MeV electrons and generates a three-dimensional velocity distribution for these electrons in every period of the satellite's rotation. Electrons are detected by two instruments, namely HEP-L and HEP-H, which differ in their geometric factor (G-factor) and range of energies they detect. HEP-L detects 70 keV-1 MeV electrons and its G-factor is 9.3 × 10-4 cm2 sr at maximum, while HEP-H observes 0.7-2 MeV electrons and its G-factor is 9.3 × 10-3 cm2 sr at maximum. The instruments utilize silicon strip detectors and application-specific integrated circuits to readout the incident charge signal from each strip. Before the launch, we calibrated the detectors by measuring the energy spectra of all strips using γ-ray sources. To evaluate the overall performance of the HEP instruments, we measured the energy spectra and angular responses with electron beams. After HEP was first put into operation, on February 2, 2017, it was demonstrated that the instruments performed normally. HEP began its exploratory observations with regard to energization and radiation in geospace in late March 2017. The initial results of the in-orbit observations are introduced briefly in this paper.[Figure not available: see fulltext.

  8. Production and aging of paramagnetic point defects in P-doped floating zone silicon irradiated with high fluence 27 MeV electrons

    Science.gov (United States)

    Joita, A. C.; Nistor, S. V.

    2018-04-01

    Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm-2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

  9. Radiation defects in InN irradiated with high-energy electrons

    International Nuclear Information System (INIS)

    Zhivul'ko, V.D.; Mudryj, A.V.; Yakushev, M.V.; Martin, R.; Shaff, V.; Lu, Kh.; Gurskij, A.L.

    2013-01-01

    The influence of high energy (6 MeV, fluencies 10 15 – 10 18 cm -2 ) electron irradiation on the fundamental absorption and luminescence properties of InN thin films which were grown on sapphire substrates by molecular bean epitaxial has been studied. It is found that electron irradiation increases the electron concentration and band gap energy E g of InN. The shift of the band gap energy E g is a manifestation of the Burshtein-Mossa effect. (authors)

  10. Characterization and optimization of laser-driven electron and photon sources in keV and MeV energy ranges

    International Nuclear Information System (INIS)

    Bonnet, Thomas

    2013-01-01

    This work takes place in the framework of the characterization and the optimization of laser-driven electron and photon sources. With the goal of using these sources for nuclear physics experiments, we focused on 2 energy ranges: one around a few MeV and the other around a few tens of keV. The first part of this work is thus dedicated to the study of detectors routinely used for the characterization of laser-driven particle sources: Imaging Plates. A model has been developed and is fitted to experimental data. Response functions to electrons, photons, protons and alpha particles are established for SR, MS and TR Fuji Imaging Plates for energies ranging from a few keV to several MeV. The second part of this work present a study of ultrashort and intense electron and photon sources produced in the interaction of a laser with a solid or liquid target. An experiment was conducted at the ELFIE facility at LULI where beams of electrons and photons were accelerated up to several MeV. Energy and angular distributions of the electron and photons beams were characterized. The sources were optimized by varying the spatial extension of the plasma at both the front and the back end of the initial target position. In the optimal configuration of the laser-plasma coupling, more than 1011 electrons were accelerated. In the case of liquid target, a photon source was produced at a high repetition rate on an energy range of tens of keV by the interaction of the AURORE Laser at CELIA (10 16 W.cm -2 ) and a melted gallium target. It was shown that both the mean energy and the photon number can be increased by creating gallium jets at the surface of the liquid target with a pre-pulse. A physical interpretation supported by numerical simulations is proposed. (author)

  11. Neutron yield from thick lead target by the action of high-energy electrons

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Sorokin, P.V.

    1978-01-01

    The results are presented of studying the complete neutron yield from a lead target bombarded by high-energy electrons. Neutrons were recorded by the method of radio-active indicators. The dependence of the neutron yield on the target thickness varying from 0.2 to 8 cm was obtained at the energies of electrons of 230 and 1200 MeV. The neutron yield for the given energies with the target of 6 cm in thickness is in the range of saturation and is 0.1 +-0.03 and 0.65+-0.22 (neutr./MeV.el.), respectively. The neutron angular distributions were measured for different thicknesses of targets at the 201, 230 and 1200 MeV electrons. Within the error limits the angular distributions are isotropic. The dependence of neutron yield on the electron energy was examined for a 3 cm thick target. In the energy range of 100-1200 MeV these values are related by a linear dependence with the proportionality coefficient C=3x10 -4 (neutr./MeV.el.)

  12. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    International Nuclear Information System (INIS)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-01-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D 10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation. - Highlights: • 10 MeV eBeam energy was attenuated to 2.9±0.22 MeV using HDPE sheets. • Attenuation of eBeam energy does not affect the inactivation kinetics of Salmonella. • Microbial inactivation is independent of eBeam energy in the range of 3–10 MeV

  13. A sub-picosecond pulsed 5 MeV electron beam system

    International Nuclear Information System (INIS)

    Farrell, J. Paul; Batchelor, K.; Meshkovsky, I.; Pavlishin, I.; Lekomtsev, V.; Dyublov, A.; Inochkin, M.; Srinivasan-Rao, T.

    2001-01-01

    Laser excited pulsed, electron beam systems that operate at energies from 1 MeV up to 5 MeV and pulse width from 0.1 to 100 ps are described. The systems consist of a high voltage pulser and a coaxial laser triggered gas or liquid spark gap. The spark gap discharges into a pulse forming line designed to produce and maintain a flat voltage pulse for 1 ns duration on the cathode of a photodiode. A synchronized laser is used to illuminate the photocathode with a laser pulse to produce an electron beam with very high brightness, short duration, and current at or near the space charge limit. Operation of the system is described and preliminary test measurements of voltages, synchronization, and jitter are presented for a 5 MeV system. Applications in chemistry, and accelerator research are briefly discussed

  14. ``High energy Electron exPeriment (HEP)'' onboard the ERG satellite

    Science.gov (United States)

    Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.

    2017-12-01

    The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.

  15. High Energy Electron Dosimetry by Alanine/ESR Spectroscopy

    International Nuclear Information System (INIS)

    Chu, Sung Sil

    1989-01-01

    Dosimetry based on electron spin resonance(ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to l Gy. In a water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies (6-21 MeV) and therapeutic dose levels(1-60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by 2-5% than those calculated by nominal energy CE factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator

  16. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    Science.gov (United States)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  17. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C 61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C 60 ). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan 3 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E.; Clifford, J.R.

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si 3 N 4 -Mo-Si 3 N 4 . These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si 3 N 4 -Si 3 N 4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  19. Energy dependence of ulrathin LiF-dosemeters for high energy electrons and high energy X-radiation

    International Nuclear Information System (INIS)

    Kupfer, T.

    1977-02-01

    The energy dependence of ultrathin LiF-dosemeters for high energy electrons (5-40 MeV) and high energy X-radiation (6 MV, 42 MV) is experimentally determined. The experimental values are compared to values calculted earlier by other authors. The influence of the thickness of the dosemeters have been considered by comparison of experimental values for 0.03 mm thick dosemeters and theoretical values for 0.13 mm and 0.38 mm thick ones. Also different commersially available dosemeters have been compared by experiments. It is difficult to draw any other conclutions about the energy dependence than that the variation of the relative responce is within +- 3 percent (2S). However the results seems to be sulficient for clinical applications

  20. A Monte Carlo simulation code for calculating damage and particle transport in solids: The case for electron-bombarded solids for electron energies up to 900 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-03-15

    Current popular Monte Carlo simulation codes for simulating electron bombardment in solids focus primarily on electron trajectories, instead of electron-induced displacements. Here we report a Monte Carol simulation code, DEEPER (damage creation and particle transport in matter), developed for calculating 3-D distributions of displacements produced by electrons of incident energies up to 900 MeV. Electron elastic scattering is calculated by using full-Mott cross sections for high accuracy, and primary-knock-on-atoms (PKAs)-induced damage cascades are modeled using ZBL potential. We compare and show large differences in 3-D distributions of displacements and electrons in electron-irradiated Fe. The distributions of total displacements are similar to that of PKAs at low electron energies. But they are substantially different for higher energy electrons due to the shifting of PKA energy spectra towards higher energies. The study is important to evaluate electron-induced radiation damage, for the applications using high flux electron beams to intentionally introduce defects and using an electron analysis beam for microstructural characterization of nuclear materials.

  1. The electron beam characteristics of energies up to 20 MeV and comparison of electron parameters of linear accelerators

    International Nuclear Information System (INIS)

    Awada, M.; Elleithy, M.A.; ElWihady, G.F.; Mostafa, K.A.

    2005-01-01

    The electron beams characteristics studded for the energies 4-20 MeV of Varian 23 EX ,experimental results are presented and compared with the published data. The CADD curves are measured for all energies and carried out the PDD of different applicator sizes ,that compared with the PDD of in the BJR. The quality beam parameters are determined from the CADD curves and calculated the yielded parameters of the corresponding electron energies which compared with the published data of other accelerators and theoretical Monte-Carlo calculation. The beam profiles are measured at different depths to construct the isodose distribution

  2. An improved energy-range relationship for high-energy electron beams based on multiple accurate experimental and Monte Carlo data sets

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Andreo, P.; Hyoedynmaa, S.; Brahme, A.; Bielajew, A.F.

    1995-01-01

    A theoretically based analytical energy-range relationship has been developed and calibrated against well established experimental and Monte Carlo calculated energy-range data. Only published experimental data with a clear statement of accuracy and method of evaluation have been used. Besides published experimental range data for different uniform media, new accurate experimental data on the practical range of high-energy electron beams in water for the energy range 10-50 MeV from accurately calibrated racetrack microtrons have been used. Largely due to the simultaneous pooling of accurate experimental and Monte Carlo data for different materials, the fit has resulted in an increased accuracy of the resultant energy-range relationship, particularly at high energies. Up to date Monte Carlo data from the latest versions of the codes ITS3 and EGS4 for absorbers of atomic numbers between four and 92 (Be, C, H 2 O, PMMA, Al, Cu, Ag, Pb and U) and incident electron energies between 1 and 100 MeV have been used as a complement where experimental data are sparse or missing. The standard deviation of the experimental data relative to the new relation is slightly larger than that of the Monte Carlo data. This is partly due to the fact that theoretically based stopping and scattering cross-sections are used both to account for the material dependence of the analytical energy-range formula and to calculate ranges with the Monte Carlo programs. For water the deviation from the traditional energy-range relation of ICRU Report 35 is only 0.5% at 20 MeV but as high as - 2.2% at 50 MeV. An improved method for divergence and ionization correction in high-energy electron beams has also been developed to enable use of a wider range of experimental results. (Author)

  3. Evaluation of BPW-34 photodiode answer for 10 MeV electron dosimetry

    International Nuclear Information System (INIS)

    Khoury, H.J.; Melo, F.A.; Hazin, C.A.

    1992-01-01

    The viability of commercial photodiodes used for dosimetry of high energy electron beams was studied. The measures were made in a linear accelerators of 10 MeV, using the BPW-34 photodiode. The average energy of electrons on phantom surface and their average range were determined with the photodiode, and the results were compared with the obtained with a ionization chamber of parallel plate. (C.G.C.)

  4. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  5. Effect of the energy of recoil atoms on conductivity compensation in moderately doped n-Si and n-SiC under irradiation with MeV electrons and protons

    Energy Technology Data Exchange (ETDEWEB)

    Kozlovski, V.V. [St. Petersburg State Polytechnic University, St. Petersburg 195251 (Russian Federation); Lebedev, A.A., E-mail: shura.lebe@mail.ioffe.ru [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); National Research University of Information Technologies, Mechanics, and Optics, St. Petersburg 197101 (Russian Federation); Emtsev, V.V.; Oganesyan, G.A. [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)

    2016-10-01

    Processes of radiation defect formation and conductivity compensation in silicon and silicon carbide irradiated with 0.9 MeV electrons are considered in comparison with the electron irradiation at higher energies. The experimental values of the carrier removal rate at the electron energy of 0.9 MeV are nearly an order of magnitude smaller than the similar values of the parameter for higher energy electrons (6–9 MeV). At the same time, the formation cross-section of primary radiation defects (Frenkel pairs, FPs) is nearly energy-independent in this range. It is assumed that these differences are due to the influence exerted by the energy of primary knocked-on atoms (PKAs). As the PKA energy increases, the average distance between the genetically related FPs grows and, as a consequence, the fraction of FPs unrecombined under irradiation becomes larger. The FP recombination radius is estimated (∼1.1 nm), which makes it possible to ascertain the charge state of the recombining components. Second, the increase in the PKA energy enables formation of new, more complex secondary radiation defects. At electron energies exceeding 15 MeV, the average PKA energies are closer to the values obtained under irradiation with 1 MeV protons, compared with an electron irradiation at the same energy. As for the radiation-induced defect formation, the irradiation of silicon with MeV protons can be, in principle, regarded as a superposition of the irradiation with 1 MeV electrons and that with silicon ions having energy of ∼1 keV, with the “source” of silicon ions generating these ions uniformly across the sample thickness.

  6. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  7. Beam dynamics study of a 30 MeV electron linear accelerator to drive a neutron source

    Science.gov (United States)

    Kumar, Sandeep; Yang, Haeryong; Kang, Heung-Sik

    2014-02-01

    An experimental neutron facility based on 32 MeV/18.47 kW electron linac has been studied by means of PARMELA simulation code. Beam dynamics study for a traveling wave constant gradient electron accelerator is carried out to reach the preferential operation parameters (E = 30 MeV, P = 18 kW, dE/E E-gun, pre-buncher, buncher, and 2 accelerating columns. A disk-loaded, on-axis-coupled, 2π/3-mode type accelerating rf cavity is considered for this linac. After numerous optimizations of linac parameters, 32 MeV beam energy is obtained at the end of the linac. As high electron energy is required to produce acceptable neutron flux. The final neutron flux is estimated to be 5 × 1011 n/cm2/s/mA. Future development will be the real design of a 30 MeV electron linac based on S band traveling wave.

  8. Possibility of some radionuclides production using high energy electron Bremsstrahlung

    International Nuclear Information System (INIS)

    Balzhinnyam, N.; Belov, A.G.; Gehrbish, Sh; Maslov, O.D.; Shvetsov, V.N.; Ganbold, G.

    2008-01-01

    The method of some radionuclides production using high energy Bremsstrahlung of electron accelerators and determination of photonuclear reaction yield and specific activities for some radionuclides is described. Photonuclear reaction yield and specific activities for some radionuclides are determined for 117m Sn, 111 In and 195m Pt. Based on the experimental data obtained at low energy (E e- e- = 75 MeV) of the IREN facility (FLNR, JINR) at irradiation of high purity platinum and tin metals

  9. Energy distribution of 0. 279 MeV gamma rays Compton scattered from bound electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B; Singh, P; Singh, G; Ghumman, B S

    1984-11-01

    Energy and intensity distribution of 0.279 MeV gamma rays Compton scattered from K-shell electrons of tantalum is measured at scattering angle of 70deg. The experimental results are compared with the available theoretical data. Spectral distribution is also obtained as a function of scatterer thickness to account for the contribution of false events. 13 refs.

  10. Laser-Driven Very High Energy Electron/Photon Beam Radiation Therapy in Conjunction with a Robotic System

    Directory of Open Access Journals (Sweden)

    Kazuhisa Nakajima

    2014-12-01

    Full Text Available We present a new external-beam radiation therapy system using very-high-energy (VHE electron/photon beams generated by a centimeter-scale laser plasma accelerator built in a robotic system. Most types of external-beam radiation therapy are delivered using a machine called a medical linear accelerator driven by radio frequency (RF power amplifiers, producing electron beams with an energy range of 6–20 MeV, in conjunction with modern radiation therapy technologies for effective shaping of three-dimensional dose distributions and spatially accurate dose delivery with imaging verification. However, the limited penetration depth and low quality of the transverse penumbra at such electron beams delivered from the present RF linear accelerators prevent the implementation of advanced modalities in current cancer treatments. These drawbacks can be overcome if the electron energy is increased to above 50 MeV. To overcome the disadvantages of the present RF-based medical accelerators, harnessing recent advancement of laser-driven plasma accelerators capable of producing 1-GeV electron beams in a 1-cm gas cell, we propose a new embodiment of the external-beam radiation therapy robotic system delivering very high-energy electron/photon beams with an energy of 50–250 MeV; it is more compact, less expensive, and has a simpler operation and higher performance in comparison with the current radiation therapy system.

  11. Low energy spread 100 MeV-1 GeV electron bunches from laser wakefield acceleration at LOASIS

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Esarey, E.; Michel, P.; Nagler, B.; Nakamura, K.; Plateau, G.R.; Schroeder, C.B.; Shadwick, B.A.; Toth, Cs.; Van Tilborg, J.; Leemans, W.P.; Hooker, S.M.; Gonsalves, A.J.; Michel, E.; Cary, J.R.; Bruhwiler, D.

    2006-01-01

    Experiments at the LOASIS laboratory of LBNL recently demonstrated production of 100 MeV electron beams with low energy spread and low divergence from laser wakefield acceleration. The radiation pressure of a 10 TW laser pulse guided over 10 diffraction ranges by a plasma density channel was used to drive an intense plasma wave (wakefield), producing acceleration gradients on the order of 100 GV/m in a mm-scale channel. Beam energy has now been increased from 100 to 1000 MeV by using a cm-scale guiding channel at lower density, driven by a 40TW laser, demonstrating the anticipated scaling to higher beam energies. Particle simulations indicate that the low energy spread beams were produced from self trapped electrons through the interplay of trapping, loading, and dephasing. Other experiments and simulations are also underway to control injection of particles into the wake, and hence improve beam quality and stability further

  12. Estimation of the measurement effective point in cylindrical ionization chamber used in electron beams with energies between 6 and 20 MeV

    International Nuclear Information System (INIS)

    Araujo, M.M. de.

    1984-01-01

    The radial displacement was determined in a water phantom for electrons beams at energies from 6 to 20 MeV for three commercial cylindrical ionization chambers of internal diameters varying from 3.5 to 9.0 mm. The chambers were irradiated with the main axis perpendicular to the direction of the beam. A 300 V bias voltage was applied and readings were taken with both polarities. It was observed that, with increasing depth in the water phantom, the radial displacement remains constant for the 8.9 MeV beam, it increases for the 12.6 MeV electrons and decreases for those of 16.8 and 19.7 MeV. A theoretical model was built in order to calculate the displacement of the effective point of measurement. The Fermi-Eyges multiple scattering theory and a retangular beam normalism developed by Jette (1983) for therapeutic electron beam are used. It was found that the radial displacement stays constant with increasing depth and it decreases with increasing average energy of the incident beam. The model also predicts that the displacement is dependent on the chamber radius. The experimental and theoretical results are compared. They show good agreement for 8.9 and 12.6 MeV electrons, while for 16.8 and 19.7 MeV electrons they indicate that modifications in the theoretical model are necessary. (Author) [pt

  13. HIGH ENERGY RADIOGRAPHY-1-30 Mev

    Energy Technology Data Exchange (ETDEWEB)

    Bly, James H.

    1963-10-15

    From 1963 American Society of Metals/Materials Show, Cleveland, Oct. 1963. A survey of the field of radiographic inspection of thick sections, at one million volts energy or more, shows that this field has become a major branch of radiographic testing. More than a dozen models of x-ray generators are now commercially available in this field, over the range from 1 to 31 Mev, with outputs up to more than two orders of magnitude greater than can be obtained from radiographic isotope sources, and with smaller spot size. A study of the radiographic characteristics of x rays in this region shows that energies available cover the range of minimum absorption and scattering for most materials and approach this range for solid propellant; at higher energies severe coverage restrictions are imposed; output powers on small spots are near the limits of present target technology. It would appear that some degree of technological maturity'' has been achieved. Radiographic technique at 1 to 30 Mev is straightforward, following the same basic principles as in conventional radiography. Specialized aspects of technique are individually discussed. The wellknown 1 and 2 million volt equlpments are supplemented by a wide variety of higher-energy machines, with energy and output ratings to satisfy almost any radiographic need. Some examples are epitomized, and a brief discussion of possible future developments is presented. (auth)

  14. 50 MeV Run of the IOTA / FAST Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom Jr., D.; et al.

    2017-02-02

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.

  15. Construction of 100 MeV electron linac in Kyoto University

    International Nuclear Information System (INIS)

    Shirai, Toshiyuki; Sugimura, Takeshi; Kando, Masaki

    1995-01-01

    An electron linear accelerator and a compact storage ring have been constructed at Kyoto University. The beam energy of the storage ring is 300 MeV and will be utilized as a synchrotron radiation source. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the pulse width of 1 μsec. The construction of the linac had been finished and the test is under going. The electron beam of 300 mA is extracted from the electron gun and the peak RF power of 20 MW is successfully fed to the accelerating structures at the pulse width of 2 μsec. (author)

  16. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  17. Inter-comparison of High Energy Files (neutron-induced, from 20 to 150 MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    Recent new applications using accelerator-driven system require well-tested nuclear data when modeling the interaction of neutrons above 20 MeV. This work is aimed to review evaluation methods applied in currently available neutron high energy files above 20 to 150 MeV, to inter-compare their evaluated cross sections on some important isotopes, and to analyze resulting discrepancies. Through out these, integrities and consistencies of the high energy files are checked, applicability of physics models and evaluation methodologies are assessed, and some directions are derived to improve and expand current JENDL High Energy File. (author)

  18. High-resolution electron-energy-loss spectroscopy studies of clean and hydrogen-covered tungsten (100) surfaces

    International Nuclear Information System (INIS)

    Woods, J.P.

    1986-01-01

    High-resolution (10-meV FWHM) low-energy (≤ 100eV) electrons are scattered from the tungsten (100) surface. Electron-energy-loss spectroscopy (EELS) selection rules are utilized to identify vibrational modes of the surface tungsten atoms. A 36-meV mode is measured on the c(2 X 2) thermally reconstructed surface and is modeled as an overtone of the 18-meV mode at M in the surface Brillouin zone. The superstructure of the reconstructed surface allows this mode to be observed in specular scattering. The surface tungsten atoms return to their bulk lateral positions with saturated hydrogen (β 1 phase) adsorption; and a 26-meV mode identified is due to the perpendicular vibration of the surface tungsten layers. The clean-room temperature surface does not display either low-energy vibrations and the surface is modeled as disordered. The three β 1 phase hydrogen vibrations are observed and a new vibration at 118 meV is identified. The 118-meV cross section displays characteristics of a parallel mode, but calculations show this assignment to be erroneous. There are two hydrogen atoms for each surface tungsten atom in the β 1 phase, and lattice-dynamical calculations show that the 118-meV mode is due to a hydrogen-zone edge vibration. The predicted breakdown of the parallel hydrogen vibration selection rule was not observed

  19. Prognoz 4 observations of electrons accelerated up to energies <=2 MeV and of the cold plasma between the magnetopause and the bow shock

    International Nuclear Information System (INIS)

    Mineev, Yu.V.; Spir'kova, E.S.

    1980-05-01

    The experimental data from Prognoz 4 satellite obtained on a layer of electrons with energies <=2 MeV in the magnetosheath adjacent to magnetopause at different latitudes are given. At moderate latitudes the data are in favour of the leakage of electrons from the outer radiation belt as a source of the layer considered. At high latitudes these electrons apparently arrive along magnetosheath magnetic field lines trapping the magnetopause. (author)

  20. Study of interactions of a electron beam of 10 MeV energy and matter

    International Nuclear Information System (INIS)

    Askri, Boubaker

    2002-01-01

    In this work, we tried to extend the algorithm of the Monte Carlo method to the case of relativistic electrons of energy 10 MeV through the material, after appropriate to the simple case of non-relativistic electrons of energy 20 keV. It was determined the coefficients of reflection, transmission and absorption of electrons through the middle in both cases. As the energy and angular distributions of electrons transmitted. The results show a fairly good precision on the determination of the three coefficients. For the non-relativistic case, it was in 1000 simulations of 1000 lots electrons for gold and aluminum, it has reached an accuracy of about 0.5 pour cent. For the relativistic case, it was 20 lots of simulations for 500 electrons carbon and aluminum. we reached an accuracy of about 2, 5 pour cent determining the coefficients. The energy and angular distributions of electrons transmitted, are close those derived from the program GEANT, taken as a reference and as comparison tool. It hopes to increase the accuracy by increasing the number of lots and the size of each batch of electrons. However, the process took six days to simulate ten miles electrons under normal conditions on the HP9000 machine calculation takes a greatest time of execution for a statistical sample of smaller great. Several criteria are necessary to optimize the study. About improving the theoretical model and the algorithm, and implementation the procedure on a machine more powerful computing. (Author)

  1. MeV electron acceleration at 1kHz with <10 mJ laser pulses

    Science.gov (United States)

    Salehi, Fatholah; Goers, Andy; Hine, George; Feder, Linus; Kuk, Donghoon; Kim, Ki-Yong; Milchberg, Howard

    2016-10-01

    We demonstrate laser driven acceleration of electrons at 1 kHz repetition rate with pC charge above 1MeV per shot using required for relativistic self-focusing low enough for mJ scale laser pulses to self- focus and drive strong wakefields. Experiments and particle-in-cell simulations show that optimal drive pulse duration and chirp for maximum electron bunch charge and energy depends on the target gas species. High repetition rate, high charge, and short duration electron bunches driven by very modest pulse energies constitutes an ideal portable electron source for applications such as ultrafast electron diffraction experiments and high rep. rate γ-ray production. This work is supported by the US Department of Energy, the National Science Foundation, and the Air Force Office of Scientific Research.

  2. Measurement of charge composition of electron flows with an energy above hundreds MeV in inner radiaion belt

    International Nuclear Information System (INIS)

    Gusev, A.A.; Pugacheva, G.I.

    1990-01-01

    A detector for studying the charge composition of a high-energy electron component of an internal radiation belt when measuring the precipitation of charged particles in the region of Brazil magnetic anomaly is suggested. The detector is a telescope consisting of two semiconductors and CsI crystal housed into a protection detector in the form of a cup made of plastic scintillator. An absorber of plastic scintillator is placed between semiconductive detections. The detector may record positrons with energy up to 5 MeV in the composition of precipitating particles from the belt in definite detector signal combination and specific energy release 511 keV in CsI crystal. 16 refs.; 3 figs

  3. Defects in CdSe thin films, induced by high energy electron irradiation

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, S.; Tutuc, D.; Antohe, V.A.; Tazlaoanu, C.

    2004-01-01

    Defects induced in CdSe thin films by high energy electron irradiation are investigated by means of thermally stimulated currents (TSC) spectroscopy. Films were obtained by vacuum deposition from a single source and irradiated with a 5 x 10 13 electrons/cm 2 s -1 beam of 6-MeV energy. It was found that electrical properties of the films are controlled by a deep donor state, located at 0.38 eV below the bottom edge of the conduction band. Parameters of the traps responsible for the recorded TSC peaks were determined. (authors)

  4. High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state

    International Nuclear Information System (INIS)

    Park, S.K.; Lee, S.Y.; Lee, C.S.; Kim, H.M.; Joo, J.; Beag, Y.W.; Koh, S.K.

    2004-01-01

    High energy (MeV) C 2+ , F 2+ , and Cl 2+ ions were irradiated onto π-conjugated polyaniline emeraldine base (PAN-EB) samples. The energy of an ion beam was controlled to a range of 3-4.5 MeV, with the ion dosage varying from 1x10 12 to 1x10 16 ions/cm 2 . The highest dc conductivity (σ dc ) at room temperature was measured to be ∼60 S/cm for 4.5 MeV Cl 2+ ion-irradiated PAN-EB samples with a dose of 1x10 16 ions/cm 2 . We observed the transition of high energy ion-irradiated PAN-EB samples from insulating state to conducting state as a function of ion dosage based on σ dc and its temperature dependence. The characteristic peaks of the Raman spectrum of the PAN-EB samples were reduced, while the D-peak (disordered peak) and the G peak (graphitic peak) appeared as the ion dose increased. From the analysis of the D and G peaks of the Raman spectra of the systems compared to multiwalled carbon nanotubes, ion-irradiated graphites, and annealed carbon films, the number of the clusters of hexagon rings with conducting sp 2 -bonded carbons increased with ion dosage. We also observed the increase in the size of the nanocrystalline graphitic domain of the systems with increasing ion dosage. The intensity of normalized electron paramagnelic resonance signal also increased in correlation with ion dose. The results of this study demonstrate that π-conjugated pristine PAN-EB systems changed from insulating state to carbonized conducting state through high energy ion irradiation with high ion dosage

  5. The source of multi spectral energy of solar energetic electron

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani [Astronomy Division and Bosscha Observatory, Faculty Mathematics and Natural Sciences, Intitute Technology of Bandung, Ganesha 10, Bandung, Indonesia 40132 dhani@as.itb.ac.id (Indonesia)

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  6. A sub-50meV spectrometer and energy filter for use in combination with 200kV monochromated (S)TEMs.

    Science.gov (United States)

    Brink, H A; Barfels, M M G; Burgner, R P; Edwards, B N

    2003-09-01

    A high-energy resolution post-column spectrometer for the purpose of electron energy loss spectroscopy (EELS) and energy-filtered TEM in combination with a monochromated (S)TEM is presented. The prism aberrations were corrected up to fourth order using multipole elements improving the electron optical energy resolution and increasing the acceptance of the spectrometer for a combination of object area and collection angles. Electronics supplying the prism, drift tube, high-tension reference and critical lenses have been newly designed such that, in combination with the new electron optics, a sub-50 meV energy resolution has been realized, a 10-fold improvement over past post-column spectrometer designs. The first system has been installed on a 200 kV monochromated TEM at the Delft University of Technology. Total system energy resolution of sub-100 meV has been demonstrated. For a 1s exposure the resolution degraded to 110 meV as a result of noise. No further degradation in energy resolution was measured for exposures up to 1 min at 120 kV. Spectral resolution measurements, performed on the pi* peak of the BN K-edge, demonstrated a 350 meV (FWHM) peak width at 200 kV. This measure is predominantly determined by the natural line width of the BN K-edge.

  7. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction.

    Science.gov (United States)

    Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J

    2017-09-01

    We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.

  8. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    International Nuclear Information System (INIS)

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm 3 thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm 3 active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response

  9. 5 MeV 300 kW electron accelerator project

    International Nuclear Information System (INIS)

    Auslender, V.L.; Cheskidov, V.G.; Gornakov, I.V.

    2004-01-01

    The paper presents a project of a high power linear accelerator for industrial applications. The accelerator has a modular structure and consists of the chain of accelerating cavities connected by the axis-located coupling cavities with coupling slots in the common walls. Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The required RF pulse power can be supplied by the TH628 diacrode

  10. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  11. Characterisation of a compton suppressed clover detector for high energy gamma rays (5 MeV ≤ E ≤ 11 MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Goswami, A.; Ray, S.; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.; Sinha, Mandira; Ray, Maitreyee

    2004-01-01

    The Clover detectors in their add back mode have been seen to be excellent tools for detecting high energy gamma rays (≥ 2 MeV). Recently studies were carried out on the characteristics of a Compton suppressed Clover germanium detector up to 5 MeV using a radioactive 66 Ga (T 1/2 =9.41 h) source for the first time

  12. Number transmission of 0.6 and 0.8MeV electrons in elemental materials

    International Nuclear Information System (INIS)

    Harami, Taikan; Takagaki, Torao; Matsuda, Koji; Nakai, Yohta.

    1975-01-01

    The number transmissions of electrons in Be, Al, Cu and Ag were obtained experimentally for well collimated electron beams of 0.6 and 0.8 MeV. Experimental results of the present work join smoothly to the previous ones of 1.0 MeV to 2.0 MeV electrons. The ratios of extrapolated range Rsub(ex) to true range R 0 give generally minimum values near 1 MeV (approximately 2mc 2 ) as well as the stopping power. An investigation was done for empirical equation of the form eta=exp(-xP/CEsup(m)), where E is the incident electron energy, x, penetration depth, and p, C and m are the parameters determined from experimental data. (author)

  13. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    International Nuclear Information System (INIS)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M.; Brambrink, E.; Vogt, K.; Bagnoud, V.

    2011-01-01

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  14. A novel nuclear pyrometry for the characterization of high-energy bremsstrahlung and electrons produced in relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, M. M.; Sonnabend, K.; Harres, K.; Roth, M. [Institut fuer Kernphysik, Schlossgartenstr. 9, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Brambrink, E. [Laboratoire pour l' Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-Ecole Polytechnique-Universite Paris VI, F-91128 Palaiseau (France); Vogt, K.; Bagnoud, V. [GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt (Germany)

    2011-08-15

    We present a novel nuclear activation-based method for the investigation of high-energy bremsstrahlung produced by electrons above 7 MeV generated by a high-power laser. The main component is a novel high-density activation target that is a pseudo alloy of several selected isotopes with different photo-disintegration reaction thresholds. The gamma spectrum emitted by the activated targets is used for the reconstruction of the bremsstrahlung spectrum using an analysis method based on Penfold and Leiss. This nuclear activation-based technique allows for the determination of the number of bremsstrahlung photons per energy bin in a wide range energy without any anticipated fit procedures. Furthermore, the analysis method also allows for the determination of the absolute yield, the energy distribution, and the temperature of high-energy electrons at the relativistic laser-plasma interaction region. The pyrometry is sensitive to energies above 7 MeV only, i.e., this diagnostic is insensitive to any low-energy processes.

  15. Design and performance of a spin-polarized electron energy loss spectrometer with high momentum resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, D.; Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany)

    2016-08-15

    We describe a new “complete” spin-polarized electron energy loss spectrometer comprising a spin-polarized primary electron source, an imaging electron analyzer, and a spin analyzer of the “spin-polarizing mirror” type. Unlike previous instruments, we have a high momentum resolution of less than 0.04 Å{sup −1}, at an energy resolution of 90-130 meV. Unlike all previous studies which reported rather broad featureless data in both energy and angle dependence, we find richly structured spectra depending sensitively on small changes of the primary energy, the kinetic energy after scattering, and of the angle of incidence. The key factor is the momentum resolution.

  16. Electron-positron collision physics: 1 MeV to 2 TeV

    International Nuclear Information System (INIS)

    Perl, M.L.

    1988-07-01

    An overview of electron-positron collision physics is presented. It begins at 1 MeV, the energy region of positronium formation, and extends to 2 TeV, the energy region which requires an electron- positron linear collider. In addition, the concept of searching for a lepton-specific forces is discussed. 18 refs., 15 figs., 1 tab

  17. Studies on the high electronic energy deposition in polyaniline thin films

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Gudage, Y.G.; Vyas, J.C.; Singh, F.; Sharma, Ramphal

    2008-01-01

    We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au 7+ ion of 100 MeV energy at different fluences, namely, 5 x 10 11 ions/cm 2 and 5 x 10 12 ions/cm 2 , respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique

  18. Disinfection of wastewaters: high-energy electron vs gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, S [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Civil Engineering; Kurucz, C N; Waite, T D [Miami Univ., Coral Gables, FL (United States); Cooper, W J [Florida International Univ., Miami, FL (United States). Drinking Water Research Center

    1993-07-01

    A study was undertaken to examine the sensitivity of a wastewater population of coliphage, total coliforms and total flora present in raw sewage and secondary effluent after irradiating with similar doses delivered by a high-energy electron beam and [gamma]-radiation. The electron beam study was conducted on a large scale at the Virginia Key Wastewater Treatment Plant, Miami, Florida. The facility is equipped with a 1.5 MeV, 50 mA electron accelerator, with a wastewater flow rate of 8ls[sup -1]. Concurrent [gamma]-radiation studies were conducted at laboratory scale using a 5000 Ci, [sup 60]Co [gamma]-source. Three logs reduction of all three test organisms were observed at an electron beam dose of 500 krads, while at least four logs reduction were observed at the same dose utilizing the [gamma]'source. (Author).

  19. 26-Day Variations of 7 MeV Electrons at high Latitudes and their Implications on the Heliospheric Magnetic Field

    Science.gov (United States)

    Sternal, Oliver; Engelbrecht, Eugene; Burger, Renier; Dunzlaff, Phillip; Ferreira, Stefan; Fichtner, Horst; Heber, Bernd; Kopp, Andreas; Potgieter, Marius; Scherer, Klaus

    The transport of energetic particles in the heliosphere is usually described by the Parker trans-port equation including the physical processes of diffusion, drift, convection and adiabatic energy changes. The Ulysses spacecraft provides unique insight into the flux of MeV electrons at high latitudes. In this contribution, we compare our model results for the Parker HMF model and the Fisk-type Schwadron-Parker HMF model to Ulysses measurements. The elec-tron flux at high latitudes has been used as a remote sensing method to investigate the imprint of a Fisk-type HMF. We show here for the first time that such an imprint exists and deduce a limitation on the Fisk HMF angle β.

  20. A high intensity beam line of γ-rays up to 22MeV energy based on Compton backscattering

    International Nuclear Information System (INIS)

    Guo, W.; Xu, W.; Chen, J.G.; Ma, Y.G.; Cai, X.Z.; Wang, H.W.; Xu, Y.; Wang, C.B.; Lu, G.C.; Tian, W.D.; Yuan, R.Y.; Xu, J.Q.; Wei, Z.Y.; Yan, Z.; Shen, W.Q.

    2007-01-01

    Shanghai Laser Electron Gamma Source, a high intensity beam line of γ-ray, has been proposed recently. The beam line is expected to generate γ-rays up to the maximum energy of 22MeV by Compton backscattering between a CO 2 laser and electrons in the 3.5 GeV storage ring of the Shanghai Synchrotron Radiation Facility. The flux of non-collimated γ-rays is estimated to be 10 9 -10 10 s -1 when a CO 2 laser of several hundred Watt power is employed. We will discuss physics issues in the design and optimization of the beam line

  1. Studies on the dose distribution and treatment technique of high energy electron beams

    International Nuclear Information System (INIS)

    Lee, D.H.; Chu, S.S.

    1978-01-01

    Some important properties of high energy electron beams from the linear accelerator, LMR-13, installed in the Yonsei Cancer Center were studied. The results of experimental studies on the problems associated with the 8, 10, and 12 MeV electron beam therapy were as followings; The ionization type dosemeters calibrated by 90 Sr standard source were suitable to the measurements of the outputs and the obsorbed doses in accuracy point of view, and dose measurements using ionization chambers were difficult when measuring doses in small field size and the regions of rapid fall off. The electron energies were measured precisely with an energy spectrometer, and the practical electron energy was calculated within 5% error in the maximum range of the high energy electron beam in water. The correcting factors of perturbated dose distributions owing to radiation field, energy, and materials of the treatment cone were checked and described systematically and thus the variation of dose distributions due to the non-homogeneities of tissues and slopping skin surfaces were completely compensated. The electron beams were adequately diffused using the scatterers, and minimized the bremsstrahlung, irradiation field size, and materials of scatterers. Thus, the therapeutic capacity with the limited electron energy could be extended by improving the dose distributions. (author)

  2. Calorimetry for absorbed dose measurement at 1-4 MeV electron accelerators

    International Nuclear Information System (INIS)

    Miller, A.

    2000-01-01

    Calorimeters are used for dose measurement, calibration and intercomparisons at industrial electron accelerators, and their use at 10 MeV electron accelerators is well documented. The work under this research agreement concerns development of calorimeters for use at electron accelerators with energies in the range of 2-4 MeV. The dose range of the calorimeters is 3-40 kGy, and their temperature stability after irradiation was found to be sufficient for practical use in an industrial environment. Measurement uncertainties were determined to be 5% at k = 2. (author)

  3. s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies

    Science.gov (United States)

    Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.

    1984-01-01

    Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.

  4. Microwave system of the 7-10 MeV electron linear accelerator ALIN for medical applications

    International Nuclear Information System (INIS)

    Martin, D.; Iliescu, E.; Stirbet, M.; Oproiu, C.; Vintan, I.

    1978-01-01

    A detailed description of the Central Institute of Physics 10 MeV linear microwave system and its associated subsystems are presented. Methods of impedance matching to obtain maximum power transfer are described along with broadband design methods for transmission-line impedance transformers. Experimental results for such microwave devices are included. With respect to microwave device performances, simultaneous high efficiency and high power capability with reliability and long life at relatively low unit cost have only recently been achieved as typical device characteristics. Industrial, medical and scientific application of microwave electron accelerators have markedly influenced microwave research progress. Radiographic linear accelerators have grown substantially mainly during the past few years. Following this, the improvements of microwave device performances solicit our attention. The first electron therapy Linear Accelerator ALIN 10 marks a new stage in the development of such instrumentation. Its subsequent ALIN 15 is designed to produce a maximum energy of 18 MeV to widen its applicability in radiotherapy. In addition, a new electron linear accelerator of 8 MeV for nondestructive testing has been started. (author)

  5. Performance of the electron energy-loss spectrometer

    International Nuclear Information System (INIS)

    Tanaka, H.; Huebner, R.H.

    1977-01-01

    Performance characteristics of the electron energy-loss spectrometer incorporating a new high-resolution hemispherical monochromator are reported. The apparatus achieved an energy-resolution of 25 meV in the elastic scattering mode, and angular distributions of elastically scattered electrons were in excellent agreement with previous workers. Preliminary energy-loss spectra for several atmospheric gases demonstrate the excellent versatility and stable operation of the improved system. 12 references

  6. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  7. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  8. Effect of MeV Electron Radiation on Europa’s Surface Ice Analogs

    Science.gov (United States)

    Gudipati, Murthy; Henderson, Bryana; Bateman, Fred

    2017-10-01

    MeV electrons that impact Europa’s trailing hemisphere and cause both physical and chemical alteration of the surface and near-surface. The trailing hemisphere receives far lower fluxes above 25 MeV as compared with lower energy particles, but can cause significant chemical and physical modifications at these energies. With NASA's planned Europa Clipper mission and a Europa Lander Concept on the horizon, it is critical to understand and quantify the effect of Europa’s radiation environment on the surface and near surface.Electrons penetrate through ice by far the deepest at any given energy compared to protons and ions, making the role of electrons very important to understand. In addition, secondary radiation - Bremsstrahlung, in X-ray wavelengths - is generated during high-energy particle penetration through solids. Secondary X-rays are equally lethal to life and penetrate even deeper than electrons, making the cumulative effect of radiation on damaging organic matter on the near surface of Europa a complex process that could have effects several meters below Europa’s surface. Other physical properties such as coloration could be caused by radiation.In order to quantify this effect under realistic Europa trailing hemisphere conditions, we devised, built, tested, and obtained preliminary results using our ICE-HEART instrument prototype totally funded by JPL’s internal competition funding for Research and Technology Development. Our Ice Chamber for Europa High-Energy Electron And Radiation-Environment Testing (ICE-HEART) operates at ~100 K. We have also implemented a magnet that is used to remove primary electrons subsequent to passing through an ice column, in order to determine the flux of secondary X-radiation and its penetration through ice.Some of the first results from these studies will be presented and their relevance to understand physical and chemical properties of Europa’s trailing hemisphere surface.This work has been carried out at Jet

  9. Prediction of high-energy (> 0.3 MeV) substorm-related magnetospheric particles

    International Nuclear Information System (INIS)

    Baker, D.N.; Belian, R.D.; Higbie, P.R.; Hones, E.W. Jr.

    1979-01-01

    Measurements both at 6.6 R/sub E/ and in the plasma sheet (greater than or equal to 18 R/sub E/) show that high energy substorm-accelerated particles occur preferentially when the solar wind speed (V/sub sw/) is high. Virtually no > 0.3 MeV protons, for example, are observed in association with substorms that occur when V/sub sw/ is 700 km/sec. These results suggest that realtime monitoring of interplanetary conditions could allow simple, effective prediction of high energy magnetospheric particle disturbances. 7 references

  10. Investigation of ionization losses of shower electrons in electron-photon shower developed in liquid xenon by gamma quanta in the energy range 1600-3400 MeV

    International Nuclear Information System (INIS)

    Okhrymenko, L.S.; Slowinski, B.; Strugalski, Z.; Sredniawa, B.

    1975-01-01

    Results of the investigation of differential distributions of ionization losses and the corresponding fluctuations for shower electrons in the longitudinal development of electron-photon showers produced by gamma-quanta of energies Esub(γ)=1600-3400 MeV in liquid xenon are given. A simple and convenient from the methodical point of view two-parametric function, approximating the observed distribution has been obtained. The independence of the fluctuations of ionization losses of shower electrons on the energy of gamma-quanta in the investigated interval of Esub(γ) values has been found

  11. Survey on neutron production by electron beam from high power CW electron linear accelerator

    International Nuclear Information System (INIS)

    Toyama, S.

    1999-04-01

    In Japan Nuclear Cycle Development Institute, the development of high current CW electron linear accelerator is in progress. It is possible for an accelerator to produce neutrons by means of a spallation and photo nuclear reactions. Application of neutron beam produced by bremsstrahlung is one of ways of the utilization for high current electron accelerator. It is actual that many electron linear accelerators which maximum energy is higher than a few hundreds MeV are used as neutron sources. In this report, an estimate of neutron production is evaluated for high current CW electron linear accelerator. The estimate is carried out by 10 MeV beam which is maximum energy limited from the regulation and rather low for neutron production. Therefore, the estimate is also done by 17 and 35 MeV beam which is possible to be accelerated. Beryllium is considered as a target for lower electron energy in addition to Lead target for higher energy, because Beryllium has low threshold energy for neutron production. The evaluation is carried out in account of the target thickness optimized by the radiation length and neutron cross section reducing the energy loss for both of electron and neutron, so as to get the maximum number of neutrons. The result of the calculations shows neutron numbers 1.9 x 10 10 , 6.1 x 10 13 and 4.8 x 10 13 (n/s), respectively, for 10, 17, and 35 MeV with low duty. The thermal removal from the target is one of critical points. The additional shielding and cooling system is necessary in order to endure radiation. A comparison with other facilities are also carried out. The estimate of neutron numbers suggests the possibility to be applied for neutron radiography and measurement of nuclear data by means of Lead spectrometer, for example. (author)

  12. Study of the yield of the Fricke dosimetry for electron energies from 2 to 90 MeV

    International Nuclear Information System (INIS)

    Berkvens, I.P.

    1988-01-01

    The chemical yield for the ferrous sulphate dosimeters was determined for 60 Co-γ radiation and for electron beams of mean energies in the points of measurements, between 2.7 and about 9 MeV. As references, absolute determinations of absorbed dose based on calorimetric measurements, were used. The irradiation geometry for the ferrous sulphate dosimeter differ always due to technical reasons somewhat from that for the absorber of the calorimeter. The investigators took this difference into account. Perturbation correction factors that correct for the difference in electron scattering in the air gaps around the absorber of the calorimeter and in the graphite, were computed with the Monte Carlo method. Also the ''reference volume method'' recently introduced by the ICRU (report No.35), was applied to correct for the introduction of a ferrous sulphate dosimeter in a graphite phantom. This correction is necessary as the electrons are stopped and scattered in a different way in graphite and water. The results indicated that there is no energy dependence of the chemical yield (G-value) of the dosimeter in the energy range 2.7 to about 9 MeV. A mean G-value of 1,584 (± 0.006) μ mol/J was obtained. For 60 Co-γ a G-value of 1.601 μ mol/J was determined. However, this difference might not be real but due to the present uncertainty in the stopping-power ratios graphite to water. These ratios are thus made use of to determine the G-value from measurements of the absorbed dose to graphite. Previous investigations, by the group from Gent, indicated a small increase of the G-value with the electron energy. These more accurate determinations thus instead indicate a constant G-value. Refs, figs, tabs

  13. Dosimetry of Al2O3 optically stimulated luminescent dosimeter at high energy photons and electrons

    Science.gov (United States)

    Yusof, M. F. Mohd; Joohari, N. A.; Abdullah, R.; Shukor, N. S. Abd; Kadir, A. B. Abd; Isa, N. Mohd

    2018-01-01

    The linearity of Al2O3 OSL dosimeters (OSLD) were evaluated for dosimetry works in clinical photons and electrons. The measurements were made at a reference depth of Zref according to IAEA TRS 398:2000 codes of practice at 6 and 10 MV photons and 6 and 9 MeV electrons. The measured dose was compared to the thermoluminescence dosimeters (TLD) and ionization chamber commonly used for dosimetry works for higher energy photons and electrons. The results showed that the measured dose in OSL dosimeters were in good agreement with the reported by the ionization chamber in both high energy photons and electrons. A reproducibility test also reported excellent consistency of readings with the OSL at similar energy levels. The overall results confirmed the suitability of OSL dosimeters for dosimetry works involving high energy photons and electrons in radiotherapy.

  14. Effect of high energy electrons on the skin and on the underlying tissues of the rabbit. A clinical and histological study; Effets des electrons de haute energie sur la peau et les tissus sous-jacents du lapin. Etude clinique et histologique

    Energy Technology Data Exchange (ETDEWEB)

    Legeay, G; Vialettes, H; Adnet, J J; Court, L; Masse, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The authors consider in this report the effects of high-energy electrons on rabbit teguments and on the underlying tissues after a single high dose irradiation. After briefly considering the mechanism of interaction between the electrons and matter as a function of their energy, the authors describe the dosimetry carried out, as a function of the irradiation device. The animal received surface doses of 5700 to 22100 rads in the thigh; the electron energy varied from 21 to 30 MeV. A clinical study was carried out over a period of nine months with a view to following the evolution of the damage and the functional degradation of the underlying tissues. A histological study of the induced damage was made after a second irradiation using 30 MeV electrons to produce doses of 16400 rads. Interesting observations were made concerning the damage caused to muscular and nerve tissues. (authors) [French] Les auteurs etudient, dans ce rapport, les effets des electrons de haute energie sur les teguments du lapin et les tissus sous-jacents apres une irradiation unique a dose elevee. Apres un rappel du mecanisme de l'interaction des electrons avec la matiere en fonction de leur energie, la dosimetrie realisee est exposee en fonction du dispositif d'irradiation. Les animaux ont recu, au niveau de la cuisse, des doses en surface de 5700 a 22100 rads; les energies des electrons vont de 21 a 30 MeV. Une etude clinique des lesions, observees pendant 9 mois, decrit leur evolution ainsi que les alterations fonctionnelles des tissus sous-jacents. Une etude histologique des lesions induites a ete realisee au cours d'une seconde experience pour des doses de 16400 rads avec des electrons de 30 MeV. D'interessantes observations ont ete faites concernant les lesions des tissus musculaires et nerveux. (auteurs)

  15. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    International Nuclear Information System (INIS)

    Jayamani, J; Aziz, M Z Abdul; Termizi, N A S Mohd; Kamarulzaman, F N Mohd

    2017-01-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 10 7 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 10 7 to 20 × 10 7 . In this study, 5 MeV electron cut-off with 10 × 10 7 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy. (paper)

  16. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  17. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  18. A direct electron detector for time-resolved MeV electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vecchione, T.; Denes, P.; Jobe, R. K.; Johnson, I. J.; Joseph, J. M.; Li, R. K.; Perazzo, A.; Shen, X.; Wang, X. J.; Weathersby, S. P.; Yang, J.; Zhang, D.

    2017-03-01

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.

  19. The Efficiency of the BC-720 Scintillator in a High-Energy (20--800 MeV) Accelerator Neutron Field

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Leslie H. [Univ. of Missouri, Columbia, MO (United States)

    2005-12-01

    High-energy neutron doses (>20 MeV) are of little importance to most radiation workers. However, space and flight crews, and people working around medical and scientific accelerators receive over half of their radiation dose from high-energy neutrons. Unfortunately, neutrons are difficult to measure, and no suitable dosimetry has yet been developed to measure this radiation. In this paper, basic high-energy neutron interactions, characteristics of high-energy neutron environments, present neutron dosimetry, and quantities used in neutron dosimetry are discussed before looking into the potential of the BC-720 scintillator to improve dosimetry. This research utilized 800 MeV protons impinging upon the WNR Facility spallation neutron source at Los Alamos National Laboratory. Time-of-flight methods and a U-238 Fission Chamber were used to aid evaluation of the efficiency of the BC-720. Results showed that the efficiency is finite over the 20–650 MeV energy region studied, although it decreases by a factor of ten between 40 and 100 MeV. This limits the use of this dosimeter to measure doses at sitespecific locations. It also encourages modifications to use this dosimeter for any unknown neutron field. As such, this dosimeter has the potential for a small, lightweight, real-time dose measurement, which could impact neutron dosimetry in all high-energy neutron environments.

  20. Utilization of 5 MeV electron accelerator center and perspective

    International Nuclear Information System (INIS)

    Tanaka, Hiromi

    1990-01-01

    Electron beam process gives instantaneous effect as compared with heating process, and has such merits that energy consumption is very small, objects can be treated from outside, harmful chemicals are not used and treatment can be done as packed. The spread of electron beam process is largely due to the results of the development of highly reliable accelerators and utilization technologies, but as observed from all industrial fields, it is limited to only a part. In order to contribute to the solution of problems and the spread of electron beam process, Sumitomo Heavy Industries, Ltd. installed a 5 MeV, 200 kW large power accelerator developed by RDI in USA in the Electron Irradiation Application and Development Center opened in Tsukuba City. The Center was completed in June, 1989, and has carried out the activities of the development of irradiation utilization technologies, test irradiation and entrusted irradiation service. The features of electron beam process are high dose rate, the possibility of on and off as occasion demands, the preparation of radiation sources and the disposal of wastes being unnecessary, and no environmental problem. The industrialized processes, the types, energy and use of electron accelerators, the Tsukuba irradiation facilities and others are reported. (K.I.)

  1. Simulation of energy deposit distribution in water for 10 and 25 MeV electron beams

    International Nuclear Information System (INIS)

    Borrell Carbonell, Maria de los Angeles.

    1977-01-01

    The Monte Carlo method was applied to transport simulation of electron beams from the exit window of a linear accelerator till the absorption by a water phantom. The distribution of energy deposit is calculated for ideal apparatus and experimental conditions. Calculations are made for a distance window-water surface of one meter, for 10 and 25 MeV monoenergetic incident electrons, and for different fields (15x15 cm 2 to 4x4 cm 2 ). Comparisons with experimental measurements obtained in comparable conditions with a Sagittaire accelerator (C.G.R.-MeV), show a good agreement concerning radial distribution and depth distribution around isodose 100%. However a certain disagreement appears in the end of depth penetration [fr

  2. Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Matteson, S.; Nicolet, M.A.

    1979-01-01

    The magnitude and characteristics of the currents which flow in the target and the chamber of an MeV ion backscattering spectrometer are examined. Measured energy distributions and the magnitude of high-energy secondary electron currents are reported. An empirical universal curve is shown to fit the energy distribution of secondary electrons for several combinations of ion energy, targets and ion species. The magnitude of tertiary electron currents which arise at the vacuum vessel walls is determined for various experimental situations and is shown to be non-negligible in many cases. An experimental arrangement is described which permits charge integrations to 1% arruracy without restricting access to the target as a Faraday cage does. (Auth.)

  3. POSITRON-ELECTRON DECAY OF SI-28, AT AN EXCITATION-ENERGY OF 50-MEV

    NARCIS (Netherlands)

    BUDA, A; BACELAR, JC; BALANDA, A; VANDERPLOEG, H; SUJKOWSKI, Z; VANDERWOUDE, A

    1993-01-01

    The electron-positron pair decay of Si-28 at 50 MeV excitation produced by the isospin T=0 (alpha + Mg-24) and the mixed isospin T=0,1 (He-3 + Mg-25) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.

  4. Effect of high energy electrons on the skin and on the underlying tissues of the rabbit. A clinical and histological study

    International Nuclear Information System (INIS)

    Legeay, G.; Vialettes, H.; Adnet, J.J.; Court, L.; Masse, R.

    1967-01-01

    The authors consider in this report the effects of high-energy electrons on rabbit teguments and on the underlying tissues after a single high dose irradiation. After briefly considering the mechanism of interaction between the electrons and matter as a function of their energy, the authors describe the dosimetry carried out, as a function of the irradiation device. The animal received surface doses of 5700 to 22100 rads in the thigh; the electron energy varied from 21 to 30 MeV. A clinical study was carried out over a period of nine months with a view to following the evolution of the damage and the functional degradation of the underlying tissues. A histological study of the induced damage was made after a second irradiation using 30 MeV electrons to produce doses of 16400 rads. Interesting observations were made concerning the damage caused to muscular and nerve tissues. (authors) [fr

  5. CESAR, 2 MeV electron storage ring.

    CERN Multimedia

    CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  6. High energy (MeV) ion beam modifications of sputtered MoS2 coatings on sapphire

    International Nuclear Information System (INIS)

    Bhattacharya, R.S.; Rai, A.K.; Erdemir, A.

    1991-01-01

    The present article reports on the results of our investigations of high-energy (MeV) ion irradiation on the microstructural and tribological properties of dc magnetron sputtered MoS 2 films. Films of thicknesses 500-7500 A were deposited on NaCl, Si and sapphire substrates and subsequently ion irradiated by 2 MeV Ag + ions at a dose of 5x10 15 cm -2 . Scanning and transmission electron microscopy. Rutherford backscattering and X-ray diffraction techniques were utilized to study the structural, morphological and compositional changes of the film due to ion irradiation. The friction coefficient and sliding life were determined by pin-on-disc tests. Both as-deposited and ion-irradiated films were found to be amorphous having a stoichiometry of MoS 1.8 . A low friction coefficient in the range 0.03-0.04 was measured for both as-deposited and ion-irradiated films. However, the sliding life of ion-irradiated film was found to increase more than tenfold compared to as-deposited films indicating improved bonding at the interface. (orig.)

  7. High-resolution inelastic electron scattering on 208Pb at 50 and 63.5 MeV and fragmentation of the magnetic quadrupole strength

    International Nuclear Information System (INIS)

    Knuepfer, W.; Frey, R.; Richter, A.; Schwierczinski, A.; Spamer, E.; Titze, O.

    1977-12-01

    High-resolution inelastic electron scattering (FWHM approximately equal to 33 keV) with 50 MeV and 63.5 MeV electrons on 208 Pb has been used to study magnetic excitations between Esub(x) = 6 MeV and 8 MeV. Angular distributions were analyzed in terms of the DWBA with RPA wave functions. Eight Isup(π) = 2- states carrying a total strength ΣB(M2) = 8500 μ 2 sub(K) fm 2 have been found. The strong fragmentation is in qualitative agreement with theoretical predictions. (orig.) [de

  8. Measurement of photon showers in lead produced by electrons of 150 MeV

    International Nuclear Information System (INIS)

    Goeringer, H.; Eyss, H.J. von; Schoch, B.

    1976-01-01

    The photon energy spectra induced by 150 MeV electrons in lead were measured in the energy range from 40 MeV up to the primary electron energy. The target thickness was varied between 0.1 and 2.5 radiation lengths X 0 . The photons were analyzed by use of a technique based on deuteron photodisintegration. Differential and integral shower spectra are presented and compared with Monte Carlo calculations of Nagel and Messel et al., both interpolated to our primary energy of 150 MeV. The measured spectra show good agreement with these Monte Carlo calculations for the thickest target of 2.5X 0 and with calculated bremsstrahlung spectra for the thinnest target of 0.1X 0 . Considerable discrepancies, however, are found for medium target thicknesses in the range 0 . Around the shower maxima, the shower spectra are narrower and the maxima are shifted about 0.3-0.4X 0 to lower target thicknesses, furthermore the number of photons at the shower maxima are up to 50% higher than calculated. (Auth.)

  9. Production of iodine-123 radiobiological specimen on 25 MeV electron beam

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Starodub, G.Ya.; Buklanov, G.V.; Korotkin, Yu.S.; Belov, A.G.

    1988-01-01

    The technique is described and experimental results are presented for production of radioactive specimen-iodine-123 for medical biological investigations. It is shown that in ten hour irradiation of 124 Xe enriched target of 10 g weight by the 25 MeV electron beam at MT-25 microtron short lived 123 I with activity of about 200 mCl can be accumulated. The procedure was developed for extraction of radioactive atoms and preparing the solution that permits to obtain during 1-1.5 h after the end of irradiation the specimen which satisfies all pharmacopeia requirements. It follows from the results that using small-size electron accelerators with the beam energy up to 25 MeV permits to organize economical and large-scale production of high quality radioactive specimen of 123 I for servicing a large region of this country. 14 refs.; 4 figs.; 1 tab

  10. Stability of amorphous Ge-As(Sb)-Se films to high-energy electron irradiation

    International Nuclear Information System (INIS)

    Savchenko, N.D.

    1999-01-01

    The results of the investigation of high-energy electron (6.5 MeV) irradiation effect on structure, optical, electrical and mechanical properties for thin films obtained by thermal evaporation of Ge-As-Se and Ge-Sb-Se glasses have been presented. The electron-induced changes in film properties versus average coordination number and relative free volume for bulk glasses have been discussed. It has been found that the higher radiation stability is characteristic to the films deposited from the glasses with the lower relative free volume

  11. 6 MeV pulsed electron beam induced surface and structural changes in polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Mathakari, Narendra L.; Bhoraskar, Vasant N. [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Ganeshkhind, Pune 411007, Maharashtra (India); Dhole, Sanjay D., E-mail: sanjay@physics.unipune.ernet.i [Microtron Accelerator Laboratory, Department of Physics, University of Pune, Ganeshkhind, Pune 411007, Maharashtra (India)

    2010-04-15

    Thin films of polyimide (PMDA-ODA, Kapton) having 50 mum thickness were irradiated with 6 MeV pulsed electron beam. The bulk and surface properties of pristine and irradiated samples were characterized by several techniques such as stress-strain measurements, Fourier Transform Infrared (FTIR), UV-vis spectroscopy, contact angle, atomic force microscopy (AFM) and profilometry. The tensile strength, percentage elongation and strain energy show an enhancement from pristine value of 73-89 MPa, 10-22% and 4.75-14.2 MJ/m{sup 3} respectively at the maximum fluence of 4 x 10{sup 15} electrons/cm{sup 2}. This signifies that polyimide being an excessively aromatic polymer is crosslinked due to high-energy electron irradiation. In surface properties, the contact angle shows a significant decrease from 59 deg. to 32 deg. indicating enhancement in hydrophilicity. This mainly attributes to surface roughening, which is due to the electron beam induced sputtering. The surface roughening is confirmed in AFM and profilometry measurements. The AFM images clearly show that surface roughness increases after electron irradiation. Moreover, the roughness average (R{sub a}) as measured from surface profilograms is found to increase from 0.06 to 0.1. The FTIR and UV-vis spectra do not show noticeable changes as regards to scissioning of bonds and the oxidation. This work leads to a definite conclusion that 6 MeV pulsed electron beam can be used to bring about desired changes in surface as well as bulk properties of polyimide, which is considered to be a high performance space quality polymer.

  12. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    Science.gov (United States)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-03-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  13. A parametric model to describe neutron spectra around high-energy electron accelerators and its application in neutron spectrometry with Bonner Spheres

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Pelliccioni, Maurizio; Esposito, Adolfo

    2010-01-01

    Due to the increased interest of the scientific community in the applications of synchrotron light, there is an increasing demand of high-energy electron facilities, testified by the construction of several new facilities worldwide. The radiation protection around such facilities requires accurate experimental methods to determine the dose due to prompt radiation fields. Neutron fields, in particular, are the most complex to measure, because they extend in energy from thermal (10 -8 MeV) up to hundreds MeV and because the responses of dosemeters and survey meters usually have large energy dependence. The Bonner Spheres Spectrometer (BSS) is in practice the only instrument able to respond over the whole energy range of interest, and for this reason it is frequently used to derive neutron spectra and dosimetric quantities in accelerator workplaces. Nevertheless, complex unfolding algorithms are needed to derive the neutron spectra from the experimental BSS data. This paper presents a parametric model specially developed for the unfolding of the experimental data measured with BSS around high-energy electron accelerators. The work consists of the following stages: (1) Generation with the FLUKA code, of a set of neutron spectra representing the radiation environment around accelerators with different electron energies; (2) formulation of a parametric model able to describe these spectra, with particular attention to the high-energy component (>10 MeV), which may be responsible for a large part of the dose in workplaces; and (3) implementation of this model in an existing unfolding code.

  14. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  15. RBE comparison between rapid electrons of 20 MeV and 45 MeV with survival rate, DNA synthesis, DNA reparation and nucleoid sedimentation

    International Nuclear Information System (INIS)

    Alth, G.; Weniger, P.; Turtzer, K.; Klein, W.; Kocsis, F.; Krankenhaus der Stadt Wien-Lainz; Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie)

    1982-01-01

    In order to find out possible differences of the biologic efficacy of rapid electrons of different energies, the authors examined the influence of rapid electrons of 20 MeV and 45 MeV upon the survival rate of Hela cells S3, their cell growth, DNA synthesis, DNA reparation, and sedimentation of nucleoids. The results show a difference only for the nucleoid sedimentation, i.e. there are more fractured DNA cords after 45 MeV irradiation. No significant differences could be demonstrated for the parameters of the survival curve, DNA synthesis and DNA reparation. Four double tests were carried out corresponding to the indicated types of examination. (orig.) [de

  16. Microdosimetry of 0.5 to 2.0 MeV electron beams

    International Nuclear Information System (INIS)

    Braby, L.A.; Roesch, W.C.

    1980-08-01

    The energy imparted in microscopic volumes by electron beams with initial energies from 0.5 to 2.0 MeV has been measured at various depths in plastic. The problems associated with measuring energy deposition spectra of low LET radiations are serious, but the potential importance of these measurements in radiation biophysics justifies the effort required to obtain them. Recent results obtained by Goodhead et al. indicate an RBE greater than 2 for 0.3 keV x-rays compared to 250 kV x-rays, and our results with Chlamydomonas reinhardi indicate an RBE of 1.6 for a 1.5 MeV electron beam at a depth of 400 gm/cm 2 in lucite compared to the same beam at the surface. Development of a theory which appears to explain these results in terms of the microscopic distribution of energy deposition has motivated a detailed study of energy deposition spectra for an electron beam attenuated by various thicknesses of lucite. Simulated sites from 0.5 to 1.9 μm in diameter were studied. The values of anti y determined in these single event measurements compare favorably with those calculated from direct measurements of z reported previously. As expected, the means of the distributions increase significantly with increasing depth in an absorber

  17. The 600 MeV Saclay electron linac: 40000 hour operation

    International Nuclear Information System (INIS)

    Netter, F.

    1977-01-01

    After 40000 hours of operation, the 600 MeV Saclay's electron linac (ALS) does appear as an efficient and versatile tool, for high resolution work (20 μA in ΔE = 40 keV at E = 200MeV), for high power pion production (300 μA in 20 μs pulses at 1000 Hz and 400 MeV or 240 μA in 4 μs pulses at 3000 Hz and 390 MeV), for highly reliable positron beams acceleration, a.s.o. Main improvements made in the recent years are described in particular the automatic beam switching between any two ways among the beam handling system; and the computer newly installed in the control room with a powerful visual display allowing an easy and flexible dialogue of the operators with the computer [fr

  18. Characterization of the PTW 34031 ionization chamber (PMI) at RCNP with high energy neutrons ranging from 100 - 392 MeV

    Science.gov (United States)

    Theis, C.; Carbonez, P.; Feldbaumer, E.; Forkel-Wirth, D.; Jaegerhofer, L.; Pangallo, M.; Perrin, D.; Urscheler, C.; Roesler, S.; Vincke, H.; Widorski, M.; Iwamoto, Y.; Hagiwara, M.; Satoh, D.; Iwase, H.; Yashima, H.; Matsumoto, T.; Masuda, A.; Nishiyama, J.; Harano, H.; Itoga, T.; Nakamura, T.; Sato, T.; Nakane, Y.; Nakashima, H.; Sakamoto, Y.; Taniguchi, S.; Nakao, N.; Tamii, A.; Shima, T.; Hatanaka, K.

    2017-09-01

    Radiation monitoring at high energy proton accelerators poses a considerable challenge due to the complexity of the encountered stray radiation fields. These environments comprise a wide variety of different particle types and span from fractions of electron-volts up to several terra electron-volts. As a consequence the use of Monte Carlo simulation programs like FLUKA is indispensable to obtain appropriate field-specific calibration factors. At many locations of the LHC a large contribution to the particle fluence is expected to originate from high-energy neutrons and thus, benchmark experiments with mono-energetic neutron beams are of high importance to verify the aforementioned detector response calculations. This paper summarizes the results of a series of benchmark experiments with quasi mono-energetic neutrons of 100, 140, 200, 250 and 392 MeV that have been carried out at RCNP - Osaka University, during several campaigns between 2006 and 2014.

  19. Interpretation of recent positron-electron measurements between 20 and 800 MeV

    International Nuclear Information System (INIS)

    Pellerin, C.J.; Hartman, R.C.

    1975-01-01

    The recent positron and negatron spectra measured by Hartman and Pellerin (see pages 402-407) are discussed with regard to the problem of solar modulation. At energies above 180 MeV, the spherically symmetric Fokker-Planck equation with a diffusion coefficient proportional to particle rigidity provides reasonable fits to both the positron and total electron data. At energies below 180 MeV the data are consistent with a continuation of the same diffusion coefficient and local source of negatrons, or a change in the diffusion coefficient to a constant value. (orig.) [de

  20. Design of cavities of a standing wave accelerating tube for a 6 MeV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Zarei

    2017-08-01

    Full Text Available Side-coupled standing wave tubes in  mode are widely used in the low-energy electron linear accelerator, due to high accelerating gradient and low sensitivity to construction tolerances. The use of various simulation software for designing these kinds of tubes is very common nowadays. In this paper, SUPERFISH code and COMSOL are used for designing the accelerating and coupling cavities for a 6 MeV electron linear accelerator. Finite difference method in SUPERFISH code and Finite element method in COMSOL are used to solve the equations. Besides, dimension of accelerating and coupling cavities and also coupling iris dimension are optimized to achieve resonance frequency of 2.9985 MHz and coupling constant of 0.0112. Considering the results of this study and designing of the RF energy injection port subsequently, the construction of 6 MeV electron tube will be provided

  1. Optimization of beam parameters of electron gun for 2.5 MeV/100 kW high power industrial accelerator

    International Nuclear Information System (INIS)

    Pramod, R.; Petwal, V.C.

    2009-01-01

    A 2.5 MeV/100 kW transformer type industrial accelerator is being developed at RRCAT. A Pierce type electron gun consisting of 10 mm diameter LaB 6 disc (indirectly heated) is used as a source of electron beam. The cathode assembly is put on the top of the accelerating structure, which consists of many electrostatic lenses of which the first lens acts as anode of the gun. The quality of the beam injected into the accelerating structure depends on the anode voltage, shape and size of anode and its distance from the cathode. The anode is subjected to variable voltage during the operation of accelerator from energy 1 MeV to 2.5 MeV, which results in variable emittance at the exit of the electron gun. The electron beam from the gun should provide parallel or slightly convergent beam with long focal length and the emittance of the beam at the exit of electron gun should match the beam acceptance limit of the accelerating structure. The EGUN code is used to optimize the shape and size of the anode, its distance from the cathode to achieve above objectives. Our study suggests that the desired beam parameters at the exit of the anode can be obtained by reducing the aperture size of the anode and by applying suitable voltage gradient to the anode. (author)

  2. November 2013 Analysis of High Energy Electrons on the Japan Experimental Module (JEM: Kibo)

    Science.gov (United States)

    Badavi, Francis F.; Matsumoto, Haruhisa; Koga, Kiyokazu; Mertens, Christopher J.; Slaba, Tony C.; Norbury, John W.

    2015-01-01

    Albedo (precipitating/splash) electrons, created by galactic cosmic rays (GCR) interaction with the upper atmosphere move upwards away from the surface of the earth. In the past validation work these particles were often considered to have negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Estimates of astronaut exposure based on the available Computer Aided Design (CAD) models of ISS consistently underestimated measurements onboard ISS when the contribution of albedo particles to exposure were neglected. Recent measurements of high energy electrons outside ISS Japan Experimental Module (JEM) using Exposed Facility (EF), Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP) and Standard DOse Monitor (SDOM), indicates the presence of high energy electrons at ISS altitude. In this presentation the status of these energetic electrons is reviewed and mechanism for the creation of these particles inside/outside South Atlantic Anomaly (SAA) region explained. In addition, limited dosimetric evaluation of these electrons at 600 MeV and 10 GeV is presented.

  3. The relative biological effectiveness (RBE) of high-energy electrons, x-rays and Co-60 gamma-rays

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro

    1974-01-01

    Linac (Mitsubishi-Shimizu 15 MeV medical linear accelerator) electron beams with actual generated energies of 8, 10, 12 and 15 MeV were compared with X-ray beams having energies of 8 and 10 MV. The RBE values were calculated from 50 percent hatch-ability (LD 50 ) in silk-worm embryos, 30-days lethality (LDsub(50/30)) in ddY mice, and mean lethal dose (Do) in cultured mouse YL cells or human FL cells. To estimate the RBE in clinical experiments, LRD (leukocyte reduction dose) value was calculated for each patient irradiated on the chest or lumbar vertebrae. It was concluded that there is little difference in practical significance between 8 to 10 MV X-rays and 8 to 15 MeV electrons, and that the biological effects of Linac radiations are about 90 to 100 percent of the effect of 60 Co gamma rays. The RBE values gradually decreased, contrary to the elevation of energy between 8 and 15 MeV for electrons and between 8 and 10 MV for X-rays. These values were compared with those of earlier reviews of work in this field, and were briefly discussed. (Evans, J.)

  4. Positron-electron decay of 28Si at an excitation energy of 50 MeV

    International Nuclear Information System (INIS)

    Buda, A.; Bacelar, J.C.; Balanda, A.; Ploeg, H. van der; Sujkowski, Z.; Woude, A. van der

    1993-01-01

    The electron-positron pair decay of 28 Si at 50 MeV excitation produced by the isospin T=0 (α+ 24 Mg) and the mixed isospin T=0, 1 ( 3 He+ 25 Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI. (orig.)

  5. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    Science.gov (United States)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  6. Radiation damage of silicon structures with electrons of 900 MeV

    CERN Document Server

    Rachevskaia, I; Bosisio, L; Dittongo, S; Quai, E; Rizzo, G

    2002-01-01

    We present first results on the irradiation of double-sided silicon microstrip detectors and test structures performed at the Elettra synchrotron radiation facility at Trieste, Italy. The devices were irradiated with 900 MeV electrons. The test structures we used for studying bulk, surface and oxide irradiation damage were guard ring diodes, gated diodes and MOS capacitors. The test structures and the double-sided microstrip detectors were produced by Micron Semiconductor Ltd. (England) and IRST (Trento, Italy). For the first time, bulk-type inversion is observed to occur after high-energy electron irradiation. Current and inter-strip resistance measurements performed on the microstrip detectors show that the devices are still usable after type inversion.

  7. Evaluation of induced radioactivity in 10 MeV electron-irradiated spices

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Masakazu; Ito, Norio; Mizohata, Akira; Matsunami, Tadao; Katayama, Tadashi; Toratani, Hirokazu (Osaka Prefectural Univ., Sakai (Japan). Research Inst. for Advanced Science and Technology); Takeda, Atsuhiko

    1993-10-01

    In order to make clear appreciation to induced radioactivity in the irradiated foods, photonuclear reactions which could produce radioactivity at energies up to 10 MeV were listed up from elemental compositions of black pepper, white pepper, red pepper, ginger and turmeric. The samples were irradiated with 10 MeV electron from a linear accelerator to a dose of 100 kGy and radioactivity was measured. Induced radioactivity could not be detected significantly by gamma-ray spectrometry and beta-ray counting in the irradiated samples except for spiked samples which contain some photonuclear target nuclides in the list. From the amount of observed radioactivities of short-lived photonuclear products in the spiked samples and calculation of H[sub 50] according to ICRP Publication 30, it was concluded that the induced radioactivity and its biological effects in the 10 MeV electron-irradiated natural samples were negligible in comparison with natural radioactivity from [sup 40]K contained in the samples. (J.P.N.).

  8. Coherent bremsstrahlung and channeling radiation from electrons of one to three MeV in silicon and gold

    International Nuclear Information System (INIS)

    Watson, J.E.

    1981-01-01

    The observation of sharp peaks in the x-ray spectrum from 1 to 3 MeV electrons striking thin single crystals of silicon and gold is reported. These peaks were observed in the range 1 to 25 keV. The peaks are of two different origins, both direct results of the periodic nature of the target crystals. The first kind of radiation is caused by the interference of incoming and scattered electron wave functions. Because of the periodicity of the target material there is a coherence effect for certain bremsstrahlung wave vectors. This coherent bremsstrahlung, though well known at very high electron energies, has never been adequately studied at electron energies below several hundred MeV. Detailed agreement between theoretical prediction and observation in silicon is shown. The second kind of radiation is caused by electrons channeled along major crystal axes. The electrons enter certain quantized orbits as they channel and may emit photons as a consequence of transitions between the various orbits. Observations of channeling radiation for various crystal axes in silicon are presented. Both phenomena were observed in gold, the first such observation for any metallic target

  9. Shielding Calculations for Industrial 5/7.5MeV Electron Accelerators Using the MCNP Monte Carlo Code

    International Nuclear Information System (INIS)

    Peri, E.; Orion, I.

    2014-01-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, in order to extend the shelf life of products. High energy photons can cause food activation due to (D 3 ,n) reactions. Until 2004, to eliminate the possibility of food activation, the electron energy was limited to 5 MeV X-rays for food irradiation. In 2004, the FDA approved the usage of up to 7.5 MeV, but only with tantalum and gold targets (1). Higher X-ray energy results an increased flux of X-rays in the forward direction, increased penetration, and higher photon dose rate due to better electron-to-photon conversion. These improvements could decrease the irradiation time and allow irradiation of larger packages, thereby providing higher production rates with lower treatment cost. Medical accelerators usually work with 6-18 MV electron energy with tungsten target to convert the electron beam to X-rays. In order to protect the patients, the accelerator head is protected with a heavy lead shielding; therefore, the bremsstrahlung is emitted only in the forward direction. There are many publications and standards that guide how to design optimal shielding for medical accelerator rooms. The shielding data for medical accelerators is not applicable for industrial accelerators, since the data is for different conversion targets, different X-Ray energies, and only for the forward direction. Collimators are not always in use in industrial accelerators, and therefore bremsstrahlung photons can be emitted in all directions. The bremsstrahlung spectrum and dose rate change as a function of the emission angle. The dose rate decreases from maximum in the forward direction (0°) to minimum at 180° by 1-2 orders of magnitude. In order to design and calculate optimal shielding for food accelerator rooms, there is a need to have the bremsstrahlung spectrum data, dose rates and concrete attenuation data in all emission directions

  10. Coupled-Sturmian and perturbative treatments of electron transfer and ionization in high-energy p-He+ collisions

    Science.gov (United States)

    Winter, Thomas G.; Alston, Steven G.

    1992-02-01

    Cross sections have been determined for electron transfer and ionization in collisions between protons and He+ ions at proton energies from several hundred kilo-electron-volts to 2 MeV. A coupled-Sturmian approach is taken, extending the work of Winter [Phys. Rev. A 35, 3799 (1987)] and Stodden et al. [Phys. Rev. A 41, 1281 (1990)] to high energies where perturbative approaches are expected to be valid. An explicit connection is made with the first-order Born approximation for ionization and the impulse version of the distorted, strong-potential Born approximation for electron transfer. The capture cross section is shown to be affected by the presence of target basis functions of positive energy near v2/2, corresponding to the Thomas mechanism.

  11. Coupled-Sturmian and perturbative treatments of electron transfer and ionization in high-energy p-He+ collisions

    International Nuclear Information System (INIS)

    Winter, T.G.; Alston, S.G.

    1992-01-01

    Cross sections have been determined for electron transfer and ionization in collisions between protons and He + ions at proton energies from several hundred kilo-electron-volts to 2 MeV. A coupled-Sturmian approach is taken, extending the work of Winter [Phys. Rev. A 35, 3799 (1987)] and Stodden et al. [Phys. Rev. A 41, 1281 (1990)] to high energies where perturbative approaches are expected to be valid. An explicit connection is made with the first-order Born approximation for ionization and the impulse version of the distorted, strong-potential Born approximation for electron transfer. The capture cross section is shown to be affected by the presence of target basis functions of positive energy near v 2 /2, corresponding to the Thomas mechanism

  12. Three-fold increase of M1 strength in 40Ar at 10 MeV excitation energy

    Science.gov (United States)

    Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Tonchev, Anton

    2017-09-01

    We reexamined the excitation energy region of 40Ar around 9.8 MeV with the goal of determining the known M1 strength located at 9.76 MeV more accurately. The physics motivation was based on the fact that i) the neutrino-nucleus interaction cross section is proportional to the M1 strength of a nucleus, ii) DUNE, the Deep Underground Neutrino Experiment at SURF will be using liquid argon as detector medium, iii) the energy spectrum of supernova neutrinos is peaked at approximately 10 MeV. Mono-energetic and linearly polarized photons of 9.88 MeV were produced via Compton backscattering of 548 nm FEL photons from 543 MeV electrons at the High-Intensity γ-ray Source (HI γS) facility at TUNL. The 1.25 cm diameter photon beam with energy spread of 300 keV (FWHM) interacted with argon gas contained in a high-pressure cell. The cell was viewed with HPGe detectors placed at 90o relative to the incident photon beam in the horizontal and vertical planes to distinguish between E1 and M1 de-excitation γ-rays. Our re-measurement provided an increase in M1 strength by a factor of approximately 3, mostly due to the discovery that the known level in 40Ar at 9.84 MeV is of M1 character and not of E1 character, as previously thought. In addition to the already known M1 state at 9.76 MeV, we observed weaker M1 states at 9.70, 9.81, 9.87, and 9.89 MeV.

  13. New initiatives for producing high current electron accelerators

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1996-01-01

    New classes of compact electron accelerators able to deliver multi-kiloamperes of pulsed 10-50 MeV electron beams are being studied. One class is based upon rf linac technology with dielectric-filled cavities. For materials with ε/ε o >>1, the greatly increased energy storage permits high current operation. The second type is a high energy injected betatron. Circulating current limits scale as Β 2 γ 3

  14. An accurate energy-range relationship for high-energy electron beams in arbitrary materials

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Brahme, A.

    1994-01-01

    A general analytical energy-range relationship has been derived to relate the practical range, R p to the most probable energy, E p , of incident electron beams in the range 1 to 50 MeV and above, for absorbers of any atomic number. In the present study only Monte Carlo data determined with the new ITS.3 code have been employed. The standard deviations of the mean deviation from the Monte Carlo data at any energy are about 0.10, 0.12, 0.04, 0.11, 0.04, 0.03, 0.02 mm for Be, C, H 2 O, Al, Cu, Ag and U, respectively, and the relative standard deviation of the mean is about 0.5% for all materials. The fitting program gives some priority to water-equivalent materials, which explains the low standard deviation for water. A small error in the fall-off slope can give a different value for R p . We describe a new method which reduces the uncertainty in the R p determination, by fitting an odd function to the descending portion of the depth-dose curve in order to accurately determine the tangent at the inflection point, and thereby the practical range. An approximate inverse relation is given expressing the most probable energy of an electron beam as a function of the practical range. The resultant relative standard error of the energy is less than 0.7%, and the maximum energy error ΔE p is less than 0.3 MeV. (author)

  15. Calculation of energy and angular distributions of the bremsstrahlung of 10 MeV electrons bombarding a thick tungsten target

    International Nuclear Information System (INIS)

    Tsovbun, V.I.

    1977-01-01

    Computer calculations have been performed to extend the data available on energy and angular distribution of the 10 MeV electron bremsrahlung into a higher angle region. The ETRAN-16D program developed by R.G.Berger for calculation of electron-photon cascades passing through matter using computers IBM-360 and UNIVAC-1108 was modified to operate with the CDC-6500 computer. A brief summary of the program is provided. An angular distribution of the bremsstrahlung dose absorbed in the air has been also calculated. The results extended into the 90-180 deg region can be used to calculate the biological shield of electron accelerators

  16. [Study of the influence of uniform transverse magnetic field on the dose distribution of high energy electron beam using Monte Carlo method].

    Science.gov (United States)

    You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun

    2014-12-01

    In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.

  17. Shielding considerations for an electron linear accelerator complex for high energy physics and photonics research

    International Nuclear Information System (INIS)

    Holmes, J.A.; Huntzinger, C.J.

    1987-01-01

    Radiation shielding considerations for a major high-energy physics and photonics research complex which comprise a 50 MeV electron linear accelerator injector, a 1.0 GeV electron linear accelerator and a 1.3 GeV storage ring are discussed. The facilities will be unique because of the close proximity of personnel to the accelerator beam lines, the need to adapt existing facilities and shielding materials and the application of strict ALARA dose guidelines while providing maximum access and flexibility during a phased construction program

  18. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Baharin, R; Hobson, P R; Smith, D R, E-mail: ruzalina.baharin@brunel.ac.u [Centre for Sensors and Instrumentation, School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)

    2010-09-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  19. Simulation of MeV electron energy deposition in CdS quantum dots absorbed in silicate glass for radiation dosimetry

    International Nuclear Information System (INIS)

    Baharin, R; Hobson, P R; Smith, D R

    2010-01-01

    We are currently developing 2D dosimeters with optical readout based on CdS or CdS/CdSe core-shell quantum-dots using commercially available materials. In order to understand the limitations on the measurement of a 2D radiation profile the 3D deposited energy profile of MeV energy electrons in CdS quantum-dot-doped silica glass have been studied by Monte Carlo simulation using the CASINO and PENELOPE codes. Profiles for silica glass and CdS quantum-dot-doped silica glass were then compared.

  20. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  1. Calculation of the energy spectrum of atmospheric gamma-rays between 1 and 1000 MeV

    International Nuclear Information System (INIS)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    The energy spectrum of atmospheric gamma-rays at 4 g/cm 2 has been calculated for cut-off rigidities of 4.5, 10 and 16 GV. The considered processes for the production of these gamma-rays were the π 0 decay plus the bremsstrahlung from primary, secondary like splash and re-entrant albedo electrons. The calculations indicated that the spectrum could be fitted to a power law in energy, with the exponential index varying from 1.1 in the energy range 1 - 10 MeV, to 1.4 in the energy range 10 - 200 MeV and 1.8 in the energy range 200 - 1000 MeV. These results are discussed [pt

  2. Observations of visual sensations produced by Cerenkov radiation from high-energy electrons

    International Nuclear Information System (INIS)

    Steidley, K.D.; Eastman, R.M.; Stabile, R.J.

    1989-01-01

    Ten cancer patients whose eyes were therapeutically irradiated with 6-18 MeV electrons reported visual light sensations. Nine reported seeing blue light and one reported seeing white light. Controls reported seeing no light. Additionally, tests with patients ruled out the x-ray contamination of the electron beam as being important. The photon yield due to Cerenkov radiation produced by radium and its daughters for both electrons and gamma rays was calculated; it was found to account for a turn-of-the-century human observation of the radium phosphene. We conclude that the dominant mechanism of this phosphene is Cerenkov radiation, primarily from betas. From our own patient data, based on the color seen and the Cerenkov production rates, we conclude that the dominant mechanism is Cerenkov radiation and that high-energy electrons are an example of particle induced visual sensations

  3. MeV Mott polarimetry at Jefferson Lab

    International Nuclear Information System (INIS)

    Steigerwald, M.

    2001-01-01

    In the recent past, Mott polarimetry has been employed only at low electron beam energies (≅100 keV). Shortly after J. Sromicki demonstrated the first Mott scattering experiment on lead foils at 14 MeV (MAMI, 1994), a high energy Mott scattering polarimeter was developed at Thomas Jefferson National Accelerator Facility (5 MeV, 1995). An instrumental precision of 0.5% was achieved due to dramatic improvement in eliminating the background signal by means of collimation, shielding, time of flight and coincidence methods. Measurements for gold targets between 0.05 μm and 5 μm for electron energies between 2 and 8 MeV are presented. A model was developed to explain the depolarization effects in the target foils due to double scattering. The instrumental helicity correlated asymmetries were measured to smaller than 0.1%

  4. Operation of the APEX photoinjector accelerator at 40 MeV

    International Nuclear Information System (INIS)

    Feldman, D.W.; Bender, S.C.; Byrd, D.A.; Carlsten, B.E.; Early, J.W.; Feldman, R.B.; Goldstein, J.C.; Martineau, R.L.; O'Shea, P.G.; Pitcher, E.J.; Schmitt, M.J.; Stein, W.E.; Wilke, M.D.; Zaugg, T.J.

    1992-01-01

    We have successfully operated the photoinjector and rf linear accelerator for the Los Alamos APEX free electron laser (FEL) at design energy, average macropulse current, and emittance. The accelerator, which operates at 1.3 GHz, consists of a 6 MeV photoinjector and three standing-wave structures with a total beam energy of 40 MeV. This paper presents performance characteristics of the APEX system. The results show that this technology is capable of providing reliable, high-peak current, ultra-high brightness electron beams

  5. Nuclear models to 200 MeV for high-energy data evaluations. Vol.12

    International Nuclear Information System (INIS)

    Chadwick, M.; Reffo, G.; Dunford, C.L.; Oblozinsky, P.

    1998-01-01

    The work of the Nuclear Energy Agency's Subgroup 12 is described, which represents a collaborative effort to summarize the current status of nuclear reaction modelling codes and prioritize desired future model improvements. Nuclear reaction modelling codes that use appropriate physics in the energy region up to 200 MeV are the focus of this study, particularly those that have proved useful in nuclear data evaluation work. This study is relevant to developing needs in accelerator-driven technology programs, which require accurate nuclear data to high energies for enhanced radiation transport simulations to guide engineering design. (author)

  6. Effect of fission fragment on thermal conductivity via electrons with an energy about 0.5 MeV in fuel rod gap

    Directory of Open Access Journals (Sweden)

    F Golian

    2017-02-01

    Full Text Available The heat transfer process from pellet to coolant is one of the important issues in nuclear reactor. In this regard, the fuel to clad gap and its physical and chemical properties are effective factors on heat transfer in nuclear fuel rod discussion. So, the energy distribution function of electrons with an energy about 0.5 MeV in fuel rod gap in Busherhr’s VVER-1000 nuclear reactor was investigated in this paper. Also, the effect of fission fragments such as Krypton, Bromine, Xenon, Rubidium and Cesium on the electron energy distribution function as well as the heat conduction via electrons in the fuel rod gap have been studied. For this purpose, the Fokker- Planck equation governing the stochastic behavior of electrons in absorbing gap element has been applied in order to obtain the energy distribution function of electrons. This equation was solved via Runge-Kutta numerical method. On the other hand, the electron energy distribution function was determined by using Monte Carlo GEANT4 code. It was concluded that these fission fragments have virtually insignificant effect on energy distribution of electrons and therefore, on thermal conductivity via electrons in the fuel to clad gap. It is worth noting that this result is consistent with the results of other experiments. Also, it is shown that electron relaxation in gap leads to decrease in thermal conductivity via electrons

  7. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X., E-mail: kxliu@pku.edu.cn [Institute of Heavy Ion Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  8. High power pulsed/microwave technologies for electron accelerators vis a vis 10MeV, 10kW electron LINAC for food irradiation at CAT

    International Nuclear Information System (INIS)

    Shrivastava, Purushottam; Mulchandani, J.; Mohania, P.; Baxy, D.; Wanmode, Y.; Hannurkar, P.R.

    2005-01-01

    Use of electron accelerators for irradiation of food items is gathering momentum in India. The various technologies for powering the electron LINAC were needed to be developed in the country due to embargo situations as well as reservations of the developers worldwide to share the information related to this development. Centre for Advanced Technology, CAT, Indore, is engaged in the development of particle accelerators for medical industrial and scientific applications. Amongst other electron accelerators developed in CAT, a 10MeV, 10kW LINAC for irradiation of food items has been commissioned and tested for full rated 10kW beam power. The high power pulsed microwave driver for the LINAC was designed, developed and commissioned with full indigenous efforts, and is right now operational at CAT. It consists of a 6MW, 25kW S-band pulsed klystron, 15MW peak power pulse modulator system for the klystron, microwave driver amplifier chain, stabilized generator, protection and control electronics, waveguide system to handle the high peak and average power, gun modulator electronics, grid electronics etc. The present paper highlights various technologies like the pulsed power systems and components, microwave circuits and systems etc. Also the performance results of the high power microwave driver for the 10MeV LINAC at CAT are discussed. Future strategies for developing the state of art technologies are highlighted. (author)

  9. The drive system of 100 MeV electron linear accelerator

    International Nuclear Information System (INIS)

    Sun Yuzhen; Su Guoping; Wang Xiulong; Tianlu

    1988-06-01

    The principle, structure, measurement results and technical performances of microwave drive system for 100MeV electron linear accelerator are presented. In this system the peak power of 15 kW is produced by the S bank middle power klystron. The output power of the klystron is divided into six subdrive lines that drive six high power klystrons respectively. The results show the system with simple structure and good characteristics completely meets the requirements of 100 MeV Linac

  10. CESAR, 2 MeV electron storage ring; general view.

    CERN Multimedia

    CERN PhotoLab

    1964-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  11. CGR MeV program for water and liquid sludges treatment with high-energy electron beams. Pt. 1

    International Nuclear Information System (INIS)

    Gallien, C.L.; Icre, P.; Levaillant, C.; Montiel, A.

    1976-01-01

    Research on the application of high-energy electron beams treatment to water and liquid sludges is described. Topics discussed include limitations of conventional methods of water treatment, dosimetry, biological assays with Pleurodeles waltlii, radioactivity measurement, chemical and bacteriological analysis. (author)

  12. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  13. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  14. Calibration of a large multi-element neutron counter in the energy range 85-430 MeV

    CERN Document Server

    Strong, J A; Esterling, R J; Garvey, J; Green, M G; Harnew, N; Jane, M R; Jobes, M; Mawson, J; McMahon, T; Robertson, A W; Thomas, D H

    1978-01-01

    Describes the calibration of a large 60 element neutron counter with a threshold of 2.7 MeV equivalent electron energy. The performance of the counter has been measured in the neutron kinetic energy range 8.5-430 MeV using a neutron beam at the CERN Synchrocyclotron. The results obtained for the efficiency as a function of energy are in reasonable agreement with a Monte Carlo calculation. (7 refs).

  15. High-resolution Auger spectroscopy on 79 MeV Ar5+, 89 MeV Ar6+, and 136 MeV Ar7+ ions after excitation by helium

    International Nuclear Information System (INIS)

    Schneider, T.

    1988-01-01

    In this thesis the atomic structure of highly excited Ar 6+ and Ar 7+ ions was studied. For this 79 MeV Ar 5+ , 89 MeV Ar 6+ , and 136 MeV Ar 7+ ions of a heavy ion accelerator were excited by a He gas target to autoionizing states and the Auger electrons emitted in the decay were measured in highly-resolving state. The spectra were taken under an observational angle of zero degree relative to the beam axis in order to minimize the kinematical broadening of the Auger lines. (orig./HSI) [de

  16. Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length

    Science.gov (United States)

    Lee, Jonathan; Flitsiyan, Elena; Chernyak, Leonid; Yang, Jiancheng; Ren, Fan; Pearton, Stephen J.; Meyler, Boris; Salzman, Y. Joseph

    2018-02-01

    The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped β-Ga2O3 vertical Schottky rectifiers was observed for fluences up to 1.43 × 1016 cm-2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.

  17. Physical design of 9 MeV travelling wave electron linac accelerating tube

    International Nuclear Information System (INIS)

    Chen Huaibi; Ding Xiaodong; Lin Yuzheng

    2000-01-01

    An accelerating tube is described. It is a part of an accelerator used for inspection of vehicle cargoes in rail cars, trucks, shipping containers, or airplanes in customs. A klystron with power of 4 MW and frequency of 2856 MHz will be applied to supply microwave power. The electrons can be accelerated by a travelling wave in the accelerating tube about 220 cm long, with a buncher whose capture efficiency is more than 80%. Energy of electrons after travelling through the tube can reach 9 MeV (pulse current intensity 170 mA) or 6 MeV (pulse current intensity 300 mA). Physical design of the accelerating tube, including the calculations of longitudinal particle dynamics, structure parameter and working character is carried out

  18. Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV.

    Science.gov (United States)

    Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V

    2011-02-07

    The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.

  19. An 8 MeV H- cyclotron to charge the electron cooling system for HESR

    International Nuclear Information System (INIS)

    Pakhomchuk, V.; Papash, A.

    2006-01-01

    A compact cyclotron to accelerate negative hydrogen ions up to 8 MeV is considered as optimal solution to the problem of charging the high-voltage terminal of the electron cooling system for High Energy Storage Ring at GSI (HESR Project, Darmstadt). Physical as well as technical parameters of the accelerator are estimated. Different types of commercially available cyclotrons are compared as a possible source of a 1 mA H - beam for the HESR. An original design based on the application of well-established technical solutions for commercial accelerators is proposed

  20. Electron polarimetry at low energies in Hall C at JLab

    International Nuclear Information System (INIS)

    Gaskell, D.

    2013-01-01

    Although the majority of Jefferson Lab experiments require multi-GeV electron beams, there have been a few opportunities to make electron beam polarization measurements at rather low energies. This proceedings will discuss some of the practical difficulties encountered in performing electron polarimetry via Mo/ller scattering at energies on the order of a few hundred MeV. Prospects for Compton polarimetry at very low energies will also be discussed. While Mo/ller scattering is likely the preferred method for electron polarimetry at energies below 500 MeV, there are certain aspects of the polarimeter and experiment design that must be carefully considered

  1. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R., E-mail: hogstrom@lsu.edu; Carver, Robert L.; Gibbons, John P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Clarke, Taylor; Henderson, Alexander; Liang, Edison P. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, Texas 77005-1827 (United States)

    2015-09-15

    energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7–13 MeV) and the 1.0-cm (13–20 MeV) R{sub 90} spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R{sub 80–20} decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. Conclusions: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6–20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.

  2. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    Science.gov (United States)

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.

  3. Out-of-ecliptic quiet time MeV electron increases: Ulysses COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Ferreira, S.E.S.; Potgieter, M.S.; Henize, V.K.; Moeketsi, D.M.; Fichtner, H.; Kissmann, R.

    2004-01-01

    The propagation of cosmic rays in turbulent magnetic fields can be studied in detail by way of in-situ measurements of energetic particles in the three-dimensional heliosphere. Measurements of 3-20 MeV electrons from 1990 to 2003 have been made by the Kiel Electron Telescope (KET) onboard the Ulysses spacecraft during varying solar conditions. In order to interpret these measurements, it is necessary to distinguish between solar, galactic and Jovian electrons and to investigate their propagation, by using sophisticated particle propagation models. The solar contribution to the MeV electron intensities can be excluded by analyzing the electron energy spectra and the nuclei time histories. The residual electron intensities can be reasonably described by modulation models taking into account galactic cosmic rays as well as Jovian electrons using different diffusion coefficients for solar minimum and maximum. The way in which the relative contribution of Jovian (point source in the ecliptic) and galactic electrons (isotropic source) varies along the Ulysses orbit is strongly dependent on the choice of these coefficients. Since the 1970's quiet time electron increases have been observed in the ecliptic and interpreted as Jovian electron increases. Therefore, the occurrence of such quiet time electron increases is an indicator for a dominant Jovian contribution to the measured MeV electron intensities. At solar minimum and maximum such events have been observed up to ∼30 deg. and ∼45 deg. These observations are crucial for a determination of the diffusion parameters. At solar maximum a more efficient latitude transport is needed to account for the electron intensity variations

  4. The propagation of high power CW scanning electron beam in air

    International Nuclear Information System (INIS)

    Korenev, Sergey; Korenev, Ivan

    2002-01-01

    The question of propagation of high power electron beam in air presents the scientific and applied interests. The high power (80 kW) CW electron accelerator 'Rhodotron' with kinetic energy of electrons 5 and 10 MeV was used in the experiments. The experimental results for propagation of scanning electron beams in air are presented and discussed

  5. 12 MeV, 4.3 kW electron linear accelerator irradiation application

    International Nuclear Information System (INIS)

    Hang Desheng; Lai Qiji

    2000-01-01

    Characteristics of an electron linear accelerator, which has 6-12 MeV energy, 4.2 kW average beam power is introduced. Results show that it has advantages on improving the characteristics of semiconductor devices such as diodes, triodes, SCR, preventing garlic from sprout, preservation of food, and so on

  6. Tests of an electron monitor for routine quality control measurements of electron energies

    International Nuclear Information System (INIS)

    Ramsay, E.B.; Reinstein, L.E.; Meek, A.G.

    1991-01-01

    The depth dose for electrons is sensitive to energy and the AAPM Task Group 24 has recommended that tests be performed at monthly intervals to assure electron beam energy constancy by verifying the depth for the 80% dose to within ±3 mm. Typically, this is accomplished by using a two-depth dose ratio technique. Recently, a new device, the Geske monitor, has been introduced that is designed for verifying energy constancy in a single reading. The monitor consists of nine parallel plate detectors that alternate with 5-mm-thick absorbers made of an aluminum alloy. An evaluation of the clinical usefulness of this monitor for the electron beams available on a Varian Clinac 20 has been undertaken with respect to energy discrimination. Beam energy changes of 3 mm of the 80% dose give rise to measurable output changes ranging from 1.7% for 20-MeV electron beams to 15% for 6-MeV electron beams

  7. THE ERL HIGH-ENERGY COOLER FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2006-01-01

    Electron cooling [1] entered a new era with the July 2005 cooling of the Tevatron recycler ring [2] at Fermilab, using γ = 9.5. Considering that the cooling rate decreases as faster than γ 2 and the electron energy forces higher electron currents, new acceleration techniques, high-energy electron cooling presents special challenges to the accelerator scientists and engineers. For example, electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode

  8. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2005-01-01

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R and D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC

  9. Number distribution of emitted electrons by MeV H+ impact on carbon

    Science.gov (United States)

    Ogawa, H.; Koyanagi, Y.; Hongo, N.; Ishii, K.; Kaneko, T.

    2017-09-01

    The statistical distributions of the number of the forward- and backward-emitted secondary electrons (SE's) from a thin carbon foil have been measured in coincidence with foil-transmitted H+ ions of 0.5-3.0 MeV in every 0.5 MeV step. The measured SE energy spectra were fitted by assuming a Pólya distribution for the simultaneous n-SE emission probabilities. For our previous data with a couple of the carbon foils with different thicknesses, a similar analysis has been carried out. As a result, it was found that the measured spectra could be reproduced as well as by an analysis without placing any restriction on the emission probabilities both for the forward and backward SE emission. The obtained b-parameter of the Pólya distribution, which is a measure of the deviation from a Poisson distribution due to the cascade multiplication by high energy internal SE's, increases monotonically with the incident energy of proton beams. On the other hand, a clear foil-thickness dependence is not observed for the b-parameter. A theoretical model which could reproduced the magnitude of the b-parameter for the SE energy spectra obtained with thick Au, Cu and Al targets is found to overestimates our values for thin carbon foils significantly. Another model calculation is found to reproduce our b-values very well.

  10. s-wave threshold in electron attachment - Observations and cross sections in CCl4 and SF6 at ultralow electron energies

    Science.gov (United States)

    Chutjian, A.; Alajajian, S. H.

    1985-01-01

    The threshold photoionization method was used to study low-energy electron attachment phenomena in and cross sections of CCl4 and SF6 compounds, which have applications in the design of gaseous dielectrics and diffuse discharge opening switches. Measurements were made at electron energies from below threshold to 140 meV at resolutions of 6 and 8 meV. A narrow resolution-limited structure was observed in electron attachment to CCl4 and SF6 at electron energies below 10 meV, which is attributed to the divergence of the attachment cross section in the limit epsilon, l approaches zero. The results are compared with experimental collisional-ionization results, electron-swarm unfolded cross sections, and earlier threshold photoionization data.

  11. Long-term preservation of bacon by high energy electrons

    International Nuclear Information System (INIS)

    Hannah, K.W.; Simic, M.G.

    1985-01-01

    Extra long-term storage of frozen, vacuum packed, cured bacon can be achieved by electronation, using 3 MeV electrons generated by an electron accelerator. A combination process consisting of low nitrite curing (40 ppm), smoking, vacuum packaging in Saran plastic, electronation (1 to 3 Mrad), and freezing (-10 C) allows storage for at least 2 1/2 years without any noticeable loss in quality, e.g. color, appearance, smell, or taste. This process also eliminates microbiological hazards associated with Salmonella and C. botulinum. Six Mrad tons/hour throughput of a 3 MeV 50 kw electron beam accelerator for standard sliced bacon packaging indicates a practical and economic commercial use for this combination process. (author)

  12. Radiation spectra of high-energy electrons in monocrystals of various thickness and orientation

    International Nuclear Information System (INIS)

    Avakyan, R.O.; Agan'yants, A.O.; Akopov, N.Z.; Vartanov, Yu.A.; Vartapetyan, G.A.; Lebedev, A.N.; Mirzoyan, R.M.; Taroyan, S.P.; Danagulyan, S.S.

    1982-01-01

    Yield of photons with energies 20-200 MeV at motion of the 4.7 GeV electron beam in parallel to the axis of a diamond crystal exceeds substantially the corresponding yield from a disoriented target. A similarity is observed in the radiation spectra within the crystal thickness range of 100- 610 mkm. The radiation yield is suppressed at certain energies of the γ quanta [ru

  13. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  14. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  15. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  16. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  17. Design and development of 3 MeV, 30 kW DC industrial electron accelerator at Electron Beam Centre, Kharghar

    International Nuclear Information System (INIS)

    Mittal, K.C.; Nanu, K.; Jain, A.

    2006-01-01

    High power electron beam accelerators are becoming an important tool for industrial radiation process applications. Keeping this in mind, a 3 MeV, 10 mA, 30 kW DC industrial electron accelerator has been designed and is in advanced stage of development at Electron Beam Center, Kharghar, Navi Mumbai. The operating range of this accelerator is 1 MeV to 3 MeV with maximum beam current of 10 mA. Electron beam at 5 keV is generated in electron gun with LaB 6 cathode and is injected into accelerating column at a vacuum of 10 -7 torr. After acceleration the beam is scanned and taken out in air through a 100 cm X 7 cm titanium window for radiation processing applications. The high voltage accelerating power supply is based on a capacitive coupled parallel fed voltage multiplier scheme operating at 120 kHz. A 50 kW oscillator feeds power to high voltage multiplier column. The electron gun, accelerating column and high voltage multiplier column are housed in accelerator tank filled with SF 6 gas insulation at 6 kg/cm 2 . The accelerator is located in a RCC building with product conveyor for handling products. A central computerized control system is adopted for operation of the accelerator. Accelerator is in the advance stage of commissioning. Many of the subsystems have been commissioned and tested. This paper describes the design details and current status of the accelerator and various subsystems. (author)

  18. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Sinha, Mandira; Ray, Maitreyi; Goswami, A.; Roy, Subinit; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.

    2006-01-01

    Gamma ray spectra of two (p,γ) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV

  19. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Sinha, Mandira [Gurudas College, Narkeldanga, Kolkata-700054 (India); Ray, Maitreyi [Behala College, Parnashree, Kolkata-700060 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Roy, Subinit [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Basu, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Majumder, H. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2006-01-01

    Gamma ray spectra of two (p,{gamma}) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV.

  20. Design for a 1.3 MW, 13 MeV Beam Dump for an Energy Recovery Linac

    CERN Document Server

    Sinclair, Charles K; Smith, Colin H

    2005-01-01

    The electron beam exiting an Energy Recovery Linac (ERL) is dumped close to the injection energy. This energy is chosen as low as possible while allowing the beam quality specifications to be met. As ERLs are designed for high average beam current, beam dumps are required to handle high beam power at low energy. Low energy electrons have a short range in practical dump materials, requiring the beam size at the dump face be enlarged to give acceptable power densities and heat fluxes. Cornell University is developing a 100 mA average current ERL as a synchrotron radiation source. The 13 MeV optimum injection energy requires a 1.3 MW beam dump. We present a mature design for this dump, using an array of water-cooled extruded copper tubes. This array is mounted in the accelerator vacuum normal to the beam. Fatigue failure resulting from abrupt thermal cycles associated with beam trips is a potential failure mechanism. We report on designs for a 75 kW, 750 keV tube-cooled beryllium plate dump for electron gun test...

  1. Polarized electrons from GaAs for parity nonconservation studies and Moeller scattering at 250 MeV

    International Nuclear Information System (INIS)

    Cates, G.D. Jr.

    1987-01-01

    A description is given of a polarized electron source based on photoemission from GaAs with circularly polarized light, which was developed for use in the study of parity nonconservation (PNC) in e- 12 C scattering at 250 MeV at the MIT Bates Linear Accelerator Center. A multi-chamber vacuum system houses up to four GaAs crystals simultaneously, and is contained in a Faraday cage to provide 365 KeV in electrostatic acceleration. Stable operation is achieved through the use of a modulated cw laser. The PNC experiment is discussed, particularly with regards to its requirements on the source. The peak current from the source is 20 mA, resulting in a current in excess of 6 mA at high energy. The electron beam polarization has been measured to be 0.36 ± 0.004 using Moeller scattering at 250 MeV

  2. Identification of very low energy projectile autoionizing transitions in high velocity collisions using zero-degree Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Liao, C.; Montenegro, E.C.; Hagmann, S.; Richard, P.; Grabbe, S.; Bhalla, C.P.; Wong, K.L.

    1995-01-01

    The unusual looking ''mesa''-shaped cusp observed in O 3+ collisions with He [N. Stolterfoht et al., Proc. 2nd US-Mexico Symp. on Atomic and Molecular Phy. eds. A. Cisneros and T. Morgan (Instituto de Fysica, Cuernavaca, Mexico, 1986) p. 51.], has been investigated using zero-degree electron spectroscopy, in both high resolution singles measurements and lower resolution electron-projectile coincidence measurements at 10, 15 and 23 MeV. The high resolution studies indicate the ''mesa'' peak to be actually composed of primarily two (other than the cusp) very strong autoionizing peaks corresponding to energies of 60 and 100 meV in the emitter frame. The coincidence studies, indicate these lines to originate from excitation of the O 3+ ion followed by autoionization. Ongoing Hartree-Fock-Slater calculations, severely tested at these extremely small transition energies, indicate that these lines can indeed result from the autoionization of t he O 3+ (1s 2 2s2p5l) Rydberg states produced during the collision. Furthermore, the unusually sharp edges of these lines giving rise to the characteristic ''mesa''-shape look, can be explained in terms of the kinematic constraints imposed by the energy and angular acceptance range of the spectrometer. (orig.)

  3. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculations - results

    Science.gov (United States)

    Esposito, A.; Frasciello, O.; Pelliccioni, M.

    2017-09-01

    ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays' source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV) beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV) beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps' placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  4. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    International Nuclear Information System (INIS)

    Stucki, G.; Muench, W.; Quintel, H.

    2002-01-01

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60 Co γ radiation, ten X-ray beam qualities between TPR 20,10 =0.639 and 0.802 and ten electron beam qualities between R 50 =1.75 gcm -2 and 8.54 gcm -2 . A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60 Co to TPR 20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60 Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated k Q factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60 Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given

  5. The CALorimetric Electron Telescope (CALET for high-energy astroparticle physics on the International Space Station

    Directory of Open Access Journals (Sweden)

    Adriani O.

    2015-01-01

    Full Text Available The CALorimetric Electron Telescope (CALET is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015 to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF.

  6. Experimental assessment of out-of-field dose components in high energy electron beams used in external beam radiotherapy.

    Science.gov (United States)

    Alabdoaburas, Mohamad M; Mege, Jean-Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Atilla; de Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2015-11-08

    The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects.

  7. Analytical expression for the phantom generated bremsstrahlung background in high energy electron beams

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Hyoedynmaa, S; Brahme, A.

    1995-01-01

    Qualification of the bremsstrahlung photon background generated by an electron beam in a phantom is important for accurate high energy electron beam dosimetry in radiation therapy. An analytical expression has been derived for the background of phantom generated bremsstrahlung photons in plane parallel electron beams normally incident on phantoms of any atomic number between 4 and 92 (Be, C, H 2 O, Al, Cu, Ag, Pb and U). The expression can be used with fairly good accuracy in the energy range between 1 and 50 MeV. The expression is globally based on known scattering power and radiation and collision stopping power data for the phantom material at the mean energy of the incident electrons. The depth dose distribution due to the bremsstrahlung generated in the phantom is derived by folding the bremsstrahlung energy fluence with a simple analytical one-dimensional photon energy deposition kernel. The energy loss of the primary electrons and the generation, attenuation and absorption of bremsstrahlung photons are taken into account in the analytical formula. The photon energy deposition kernel is used to account for the bremsstrahlung produced at one depth that will contribute to the down stream dose. A simple analytical expression for photon energy deposition kernel is consistent with the classical analytical relation describing the photon depth dose distribution. From the surface to the practical range the photon dose increases almost linearly due to accumulation and buildup of the photon produced at different phantom layers. At depths beyond the practical range a simple exponential function can be use to describe the bremsstrahlung attenuation in the phantom. For comparison Monte Carlo calculated distributions using ITS3 Monte Carlo Code were used. Good agreement is found between the analytical expression and Monte Carlo calculation. Deviations of 5% from Monte Carlo calculated bremmstrahlung background are observed for high atomic number materials. The method can

  8. Performance of the 100 MeV injector linac for the electron storage ring at Kyoto University

    International Nuclear Information System (INIS)

    Shirai, T.; Sugimura, T.; Iwashita, Y.; Kakigi, S.; Fujita, H.; Tonguu, H.; Noda, A.; Inoue, M.

    1996-01-01

    An electron linear accelerator has been constructed as an injector of a 300 MeV electron storage ring (Kaken Storage Ring, KSR) at Institute for Chemical Research, Kyoto University. The output beam energy of the linac is 100 MeV and the designed beam current is 100 mA at the 1 μsec long pulse mode. The transverse and longitudinal emittance are measured to evaluate the beam quality for the beam injection into the KSR. They are observed by the profile monitors combined with quadrupole magnets or an RF accelerator. The results are that the normalized transverse emittance is 120 π.mm.mrad. The longitudinal emittance is 15 π.deg.MeV and the energy spread is ±2.2 %. (author)

  9. Influence of high energy electrons on ECRH in LHD

    Directory of Open Access Journals (Sweden)

    Ogasawara S.

    2012-09-01

    Full Text Available The central bulk electron temperature of more than 20 keV is achieved in LHD as a result of increasing the injection power and the lowering the electron density near 2 × 1018 m−3. Such collision-less regime is important from the aspect of the neoclassical transport and also the potential structure formation. The presences of appreciable amount of high energy electrons are indicated from hard X-ray PHA, and the discrepancy between the stored energy and kinetic energy estimated from Thomson scattering. ECE spectrum are also sensitive to the presence of high energy electrons and discussed by solving the radiation transfer equation. The ECRH power absorption to the bulk and the high energy electrons are dramatically affected by the acceleration and the confinement of high energy electrons. The heating mechanisms and the acceleration process of high energy electrons are discussed by comparing the experimental results and the ray tracing calculation under assumed various density and mean energy of high energy electrons.

  10. Product conveying system for 10 MeV electron beam accelerator for electron beam centre, Kharghar, Navi Mumbai

    International Nuclear Information System (INIS)

    Bandi, L.N.; Lavale, D.S.; Sarma, K.S.S.; Khader, S.A.; Assadullah, M.; Sabharwal, S.

    2003-01-01

    In industrial radiation processing applications using accelerators, product conveying system plays a vital role in exposing the product to high energy electron beam for imparting specified dose to the product and delivering required through puts. The speed of the conveyor corresponds to a definite time of exposure of the product in the radiation zone. Design of suitable conveyor system for a variety of products with differing dose requirements call for a conveyor with wide speed range. This paper discusses the design features of a suitable under beam conveyor system for 10 MeV, 10 kW accelerator for processing a range of products including medical and food products

  11. 10 MeV RF electron linac for industrial applications

    International Nuclear Information System (INIS)

    2017-01-01

    Electron linacs have found numerous applications in the field of radiation processing on an industrial scale. High power RF electron linacs are commonly used for food irradiation, medical sterilization, cross-linking of polymers, etc. For this purpose, the 10 MeV RF linac has been indigenously designed, developed, commissioned and is being used regularly at 3 kW beam power. This paper gives a brief description of the linac and its utilization for various applications. Safety considerations and regulatory aspects of the linac are also discussed

  12. Application of clear polymethylmethacrylate dosimeter Radix W to a few MeV electron in radiation processing

    International Nuclear Information System (INIS)

    Seito, Hajime; Ichikawa, Tatsuya; Hanaya, Hiroaki; Sato, Yoshishige; Kaneko, Hirohisa; Haruyama, Yasuyuki; Watanabe, Hiroshi; Kojima, Takuji

    2009-01-01

    Characteristics of clear PMMA dosimeter (Radix W) were studied for electron irradiation and compared with the response for gamma irradiation. The dose-response curves were nearly linear up to 30 kGy and become sublinear at higher doses. The radiation-induced absorbance was reduced with 6% within 4 h after irradiation. Dose comparisons were performed for 2, 3, 4 and 5 MeV electron irradiation using cellulose triacetate dosimeter (CTA) (FTR-125) and Radix W dosimeters which were independently calibrated for 2 MeV electrons and 60 Co gamma-rays using calorimeter and ionizing chamber, respectively. The doses estimated by CTA and Radix W were different by about 20%. The magnitude of this difference was, however, independent of electron energy.

  13. Low energy and high energy dumps for ELI-NP accelerator facility: rational and Monte-Carlo calculationsș results

    Directory of Open Access Journals (Sweden)

    Esposito A.

    2017-01-01

    Full Text Available ELI-NP will be a new international research infrastructure facility for laser-based Nuclear Physics to be built in Magurele, south west of Bucharest, Romania. For the machine to operate as an intense γ rays’ source based on Compton back-scattering, electron beams are employed, undergoing a two stage acceleration to 320 MeV and 740 MeV (and, with an eventual energy upgrade, also to 840 MeV beam energies. In order to assess the radiation safety issues, concerning the effectiveness of the dumps in absorbing the primary electron beams, the generated prompt radiation field and the residual dose rates coming from the activation of constituent materials, as well as the shielding of the adjacent environments against both prompt and residual radiation fields, an extensive design study by means of Monte Carlo simulations with FLUKA code was performed, for both low energy 320 MeV and high energy 720 MeV (840 MeV beam dumps. For the low energy dump we discuss also the rational of the choice to place it in the building basement, instead of installing it in one of the shielding wall at the machine level, as it was originally conceived. Ambient dose equivalent rate constraints, according to the Rumenian law in force in radiation protection matter were 0.1 /iSv/h everywhere outside the shielding walls and 1.4 μiSv/h outside the high energy dump area. The dumps’ placements and layouts are shown to be fully compliant with the dose constraints and environmental impact.

  14. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, N G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Gudage, Y G [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Ghosh, A [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India); Vyas, J C [Technical and Prototype Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai (MS) (India); Singh, F [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Tripathi, A [Inter-University Accelerator Center, Aruna Asaf Ali Marg, Post Box 10502, New Delhi 110067 (India); Sharma, Ramphal [Thin Film and Nanotechnology Laboratory, Department of Physics, Dr Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (MS) (India)

    2008-02-07

    We have examined the effect of swift heavy ions using 100 MeV Au{sup 8+} ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10{sup -4} {omega} cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.

  15. Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films

    International Nuclear Information System (INIS)

    Deshpande, N G; Gudage, Y G; Ghosh, A; Vyas, J C; Singh, F; Tripathi, A; Sharma, Ramphal

    2008-01-01

    We have examined the effect of swift heavy ions using 100 MeV Au 8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 x 10 -4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications

  16. High electron beam dosimetry using ZrO2

    International Nuclear Information System (INIS)

    Lueza M, F.; Rivera M, T.; Azorin N, J.; Garcia H, M.

    2009-10-01

    This paper reports the experimental results of studying the thermoluminescent (Tl) properties of ZrO 2 powder embedded in polytetrafluorethylene (PTFE) exposed to high energy electron beam from linear accelerators (Linac). Structural and morphological characteristics were also reported. Irradiations were conducted using high energy electrons beams in the range from 2 to 18 MeV. Pellets of ZrO 2 +PTFE were produced using polycrystalline powder grown by the precipitation method. These pellets presented a Tl glow curve exhibiting an intense glow peak centered at around 235 C. Tl response as a function of high electron absorbed dose was linear in the range from 2 to 30 Gy. Repeatability determined by exposing a set of pellets repeatedly to the same electron absorbed dose was 0.5%. Fading along 30 days was about 50%. Then, results obtained in this study suggest than ZrO 2 +PTFE pellets could be used for high energy electron beam dosimetry provided fading correction is accounted for. (Author)

  17. A comparison of MCNP4C electron transport with ITS 3.0 and experiment at incident energies between 100 keV and 20 MeV: influence of voxel size, substeps and energy indexing algorithm

    International Nuclear Information System (INIS)

    Schaart, Dennis R.; Jansen, Jan Th.M.; Zoetelief, Johannes; Leege, Piet F.A. de

    2002-01-01

    The condensed-history electron transport algorithms in the Monte Carlo code MCNP4C are derived from ITS 3.0, which is a well-validated code for coupled electron-photon simulations. This, combined with its user-friendliness and versatility, makes MCNP4C a promising code for medical physics applications. Such applications, however, require a high degree of accuracy. In this work, MCNP4C electron depth-dose distributions in water are compared with published ITS 3.0 results. The influences of voxel size, substeps and choice of electron energy indexing algorithm are investigated at incident energies between 100 keV and 20 MeV. Furthermore, previously published dose measurements for seven beta emitters are simulated. Since MCNP4C does not allow tally segmentation with the *F8 energy deposition tally, even a homogeneous phantom must be subdivided in cells to calculate the distribution of dose. The repeated interruption of the electron tracks at the cell boundaries significantly affects the electron transport. An electron track length estimator of absorbed dose is described which allows tally segmentation. In combination with the ITS electron energy indexing algorithm, this estimator appears to reproduce ITS 3.0 and experimental results well. If, however, cell boundaries are used instead of segments, or if the MCNP indexing algorithm is applied, the agreement is considerably worse. (author)

  18. Fusion with projectiles from carbon to argon at energies between 20A MeV and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-01-01

    Fusion reactions are known to be the dominant reaction channel at low bombarding energies and can now be investigated with a large variety of projectiles at several tens of MeV per nucleon. The gross characteristics of the fusion process can be studied by measuring global quantities, such as the linear momentum transferred from projectile to target and the dissipated energy of the reaction. The strong correlation between these two quantities is demonstrated at moderate bombarding energies, with a Ne projectile on a U target. It is expected that light particle (charged or neutron) multiplicity measurements can be extended to this higher energy domain and be used to selectively filter these collisions, according to their degree of violence. A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MeV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behavior. Finally, the decay of highly excited (E* similarly ordered 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  19. Photodetachment of O{sup -} from threshold to 1.2 eV electron kinetic energy using velocity-map imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, S J; Gibson, S T; Lewis, B R, E-mail: Steven.Cavanagh@anu.edu.a [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2010-02-01

    High-resolution photoelectron imaging from O{sup -} with excess energies between 0.5 meV and 1.2 eV is reported. With electron energy resolutions ranging from 266 {mu}eV to 3 meV, branching ratios and angular-distribution asymmetry parameters for each of the fine-structure transitions were measured. Preliminary data for a subset of these measurements showing possible effects due to electron correlation at low excess energy are presented, in the hope of stimulating further theoretical calculations for this species.

  20. Liquid argon as an electron/photon detector in the energy range of 50 MeV to 2 GeV: a Monte Carlo investigation

    International Nuclear Information System (INIS)

    Goodman, M.S.; Denis, G.; Hall, M.; Karpovsky, A.; Wilson, R.; Gabriel, T.A.; Bishop, B.L.

    1980-12-01

    Monte Carlo techniques which have been used to study the characteristics of a proposed electron/photon detector based on the total absorption of electromagnetic showers in liquid argon have been investigated. The energy range studied was 50 MeV to 2 GeV. Results are presented on the energy and angular resolution predicted for the device, along with the detailed predictions of the transverse and longitudinal shower distributions. Comparisons are made with other photon detectors, and possible applications are discussed

  1. Investigation of the added value of high-energy electrons in intensity-modulated radiotherapy: four clinical cases

    International Nuclear Information System (INIS)

    Korevaar, Erik W.; Huizenga, Henk; Loef, Johan; Stroom, Joep C.; Leer, Jan Willem H.; Brahme, Anders

    2002-01-01

    Purpose: Intensity-modulated radiotherapy (IMRT) with photon beams is currently pursued in many clinics. Theoretically, inclusion of intensity- and energy-modulated high-energy electron beams (15-50 MeV) offers additional possibilities to improve radiotherapy treatments of deep-seated tumors. In this study the added value of high-energy electron beams in IMRT treatments was investigated. Methods and Materials: In a comparative treatment planning study, conventional treatment plans and various types of IMRT plans were constructed for four clinical cases (cancer of the bladder, pancreas, chordoma of the sacrum, and breast). The conventional plans were used for the actual treatment of the patients. The IMRT plans were optimized using the Orbit optimization code (Loef et al., 2000) with a radiobiologic objective function. The IMRT plans were either photon or combined electron and photon beam plans, with or without dose homogeneity constraints assuming standard or increased radiosensitivities of organs at risk. Results: Large improvements in expected treatment outcome are found using IMRT plans compared to conventional plans, but differences in tumor control probability (TCP) and normal tissue complication probabilities (NTCP) values between IMRT plans with and without electrons are small. However, the use of electrons improves the dose-volume histograms for organs at risk, especially at lower dose levels (e.g., 0-40 Gy). Conclusions: This preliminary study indicates that addition of higher energy electrons to IMRT can only marginally improve treatment outcome for the selected cases. The dose-volume histograms of organs at risk show improvements for IMRT with higher energy electrons, which may reduce tumor induction but does not substantially reduce NTCP

  2. NSRL 200 MeV linac beam energy stabilization system

    International Nuclear Information System (INIS)

    Huang Guirong; Pei Yuanji; Dong Sai

    2001-01-01

    By using the computer image processing technology and RF phase auto-shifting system, the ESS (Energy Stabilization System) was applied to 200 MeV Linac. the ESS adjusts beam energy automatically in a range of +-4 MeV. After adjustment beam energy stability is improved to +-6%

  3. Imaging nanoscale spatial modulation of a relativistic electron beam with a MeV ultrafast electron microscope

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Liu, Yaqi; Xu, Jun; Yu, Dapeng; Wan, Weishi; Zhu, Yimei; Xiang, Dao; Zhang, Jie

    2018-03-01

    An accelerator-based MeV ultrafast electron microscope (MUEM) has been proposed as a promising tool to the study structural dynamics at the nanometer spatial scale and the picosecond temporal scale. Here, we report experimental tests of a prototype MUEM where high quality images with nanoscale fine structures were recorded with a pulsed ˜3 MeV picosecond electron beam. The temporal and spatial resolutions of the MUEM operating in the single-shot mode are about 4 ps (FWHM) and 100 nm (FWHM), corresponding to a temporal-spatial resolution of 4 × 10-19 s m, about 2 orders of magnitude higher than that achieved with state-of-the-art single-shot keV UEM. Using this instrument, we offer the demonstration of visualizing the nanoscale periodic spatial modulation of an electron beam, which may be converted into longitudinal density modulation through emittance exchange to enable production of high-power coherent radiation at short wavelengths. Our results mark a great step towards single-shot nanometer-resolution MUEMs and compact intense x-ray sources that may have widespread applications in many areas of science.

  4. Low-energy magnetic dipole response in 56Fe from high-resolution electron scattering

    International Nuclear Information System (INIS)

    Fearick, R.W.; Hartung, G.; Langanke, K.; Martinez-Pinedo, G.; Neumann-Cosel, P. von; Richter, A.

    2003-01-01

    The 56 Fe(e, e') reaction has been studied for excitation energies up to about 8 MeV and momentum transfers q≅0.4-0.55 fm -1 at the Darmstadt electron linear accelerator (DALINAC) with kinematics emphasizing M1 transitions. Additional data have been taken for q≅0.8-1.7 fm -1 at the electron accelerator NIKHEF, Amsterdam. A PWBA analysis allows spin and parity determination of the excited states. For M1 excitations, transition strengths are derived with a DWBA analysis using shell-model form factors. The resulting B(M1) strength distribution is compared to shell-model calculations employing different effective interactions. The form factor of the prominent low-lying M1 transition at 3.449 MeV demonstrates its dominant orbital nature. It represents a major part of the scissors mode in 56 Fe

  5. Golden mean energy equals highest atomic electron orbital energy

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Leonard J. [Interdisciplinary Research Club, P.O. Box 371, Monroeville, PA 15146 (United States)], E-mail: LJMalinowski@gmail.com

    2009-12-15

    The golden mean numerical value {phi} = 0.5({radical}5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  6. Golden mean energy equals highest atomic electron orbital energy

    International Nuclear Information System (INIS)

    Malinowski, Leonard J.

    2009-01-01

    The golden mean numerical value φ = 0.5(√5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  7. On the influence of high energy (250MeV) electron irradiation on the structure and properties of aluminium

    International Nuclear Information System (INIS)

    Gindin, I.A.; Neklyudov, I.M.; Okovit, V.S.; Starolat, M.P.; Dyatlov, V.P.

    1974-01-01

    The results of studies on the amplitude dependence of internal friction and structural changes in technically pure aluminium in the initial state and after irradiation with high-energy electrons are presented. Three stages are observed in the internal friction curves from the amplitude of the waves. If the values of the internal friction remain the same, irradiation considerably widens the amplitude-independent region and shifts the second and third regions toward the high-amplitude direction at first. Starting with the Granate-Luke model, changes in the length of the free dislocation segments in irradiated aluminium were determined. Electron microscope studies showed the presence of numerous radiation defects and changes in the configuration with dislocation lines in irradiated aluminum

  8. A high-energy (35-500 MeV) proton monitor for the Gravity Probe-B Mission

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S. E-mail: stil@may.ie; Rusznyak, Peter; Buchman, Sasha; Shestople, Paul; Thatcher, John

    2003-02-11

    An innovative fault tolerant, high-energy particle monitor designed to record protons in the range 35-500 MeV when in polar orbit aboard NASA's Gravity Probe B spacecraft, is described. This device, which is configured to provide continuous, reliable operation in the hostile particle environment traversed by the spacecraft, can potentially be used either as an onboard monitor or as a scientific experiment.

  9. CESAR, 2 MeV electron storage ring; general view from above.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  10. An electron cooling device in the one MeV energy region

    International Nuclear Information System (INIS)

    Busso, L.; Tecchio, L.; Tosello, F.

    1987-01-01

    The project of an electron cooling device at 700 KeV electron energy is reported. The single parts of the device is described in detail. Electron beam diagnostics and technical problems is discussed. The electron gun, the accelerating/decelerating column and the collector have been studied by menas of the Herrmannsfeldt's program and at present are under construction. The high voltage system and the electron cooling magnet are also under construction. Vacuum tests with both hot and cold cathodes have demonstrated that the vacuum requirements can be attained by the use of non-evaporable getter (NEG) pumps between gun, collector and the cooling region. Both kinds of diagnostic for longitudinal and transversal electron temperature measurements are in progress. A first prototype of the synchronous picj-up was successfully tested at CERN SPS. At present the diagnostic with laser beam is in preparation. During the next year the device will be assembled and the laboratory test will be started

  11. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    Science.gov (United States)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  12. Effects of high-energy (MeV) ion implantation of polyester films

    International Nuclear Information System (INIS)

    Ueno, Keiji; Matsumoto, Yasuyo; Nishimiya, Nobuyuki; Noshiro, Mitsuru; Satou, Mamoru

    1991-01-01

    The effects of high-energy ion beam irradiation on polyester (PET) films using a 3 MeV tandem-type ion beam accelerator were studied. O, Ni, Pt, and Au as ion species were irradiated at 10 14 -10 15 ions/cm 2 on 50 μm thick PET films. Physical properties and molecular structure changes were studied by the surface resistivity measurements and RBS. The surface resistivity decreases with an increase in irradiation dose. At 10 15 ions/cm 2 irradiation, the surface resistivity is 10 8 Ω/□. According to RBS and XPS analyses, some carbon and oxygen atoms in the PET are replaced by implanted ions and the -C=O bonds are destroyed easily by the ion beam. (orig.)

  13. Construction of 35 MeV DSM at Nihon University

    International Nuclear Information System (INIS)

    Hayakawa, K.; Sato, K.; Tanaka, T.; Takeda, O.

    1988-01-01

    High quality electron beam is needed for the excitation of the free electron laser(FEL). Construction of the 35 MeV double-sided microtron for the FEL has been started at 1984. This accelerator will feed a electron beam which has narrow energy width and low emittance. A first one turn beam line has been completed. Beam accelerating experiments and high power microwave tests are performed. (author)

  14. Calibration of a silicon semiconductor detecter using a 2 MeV electron accelerator beam

    International Nuclear Information System (INIS)

    Fleurot, N.; Gouard, P.; Mazataud, E.; Nail, M.; Savy, C.; Bayer, C.; Cauchois, Y.; Kherouf, R.; Mathieu, D.

    1981-01-01

    This paper describes the current mode calibration, carried out on a 2 MeV electron accelerator, of PIN detectors involved in electron spectrum measurements for laser-matter interaction experiments. A theoretical analysis simulating the interaction between the incident electrons and the irradiated medium has been carried out using the FOTELEC code. It accounts well for the experimental results giving a reasonable value for the mean electron-hole pair formation energy when back-scattering corrections are included. This work provides the transfer function data required for a plasma diagnostic spectrometer. (orig.)

  15. A comparison of the microbicidal effectiveness of gamma rays and high and low energy electron radiations

    International Nuclear Information System (INIS)

    Tallentire, Alan; Miller, Arne; Helt-Hansen, Jakob

    2010-01-01

    The radiation response of spores of Bacillus pumilus were examined for irradiation with cobalt 60 photons, 10 MeV electrons and low energy electrons at 100 and 80 keV. The responses were found to be the same for all types of radiation within the measurement uncertainties and were also in agreement with a previously published value.

  16. A comparison of the microbicidal effectiveness of gamma rays and high and low energy electron radiations

    DEFF Research Database (Denmark)

    Tallentire, A.; Miller, Arne; Helt-Hansen, Jakob

    2010-01-01

    The radiation response of spores of Bacillus pumilus were examined for irradiation with cobalt 60 photons, 10 MeV electrons and low energy electrons at 100 and 80 keV. The responses were found to be the same for all types of radiation within the measurement uncertainties and were also in agreement...... with a previously published value....

  17. Dislocation Climb Sources Activated by 1 MeV Electron Irradiation of Copper-Nickel Alloys

    DEFF Research Database (Denmark)

    Barlow, P.; Leffers, Torben

    1977-01-01

    Climb sources emitting dislocation loops are observed in Cu-Ni alloys during irradiation with 1 MeV electrons in a high voltage electron microscope. High source densities are found in alloys containing 5, 10 and 20% Ni, but sources are also observed in alloys containing 1 and 2% Ni. The range of ...

  18. Andromede project: Surface analysis and modification with probes from hydrogen to nano-particles in the MeV energy range

    International Nuclear Information System (INIS)

    Eller, Michael J.; Cottereau, Evelyne; Rasser, Bernard; Verzeroli, Elodie; Agnus, Benoit; Gaubert, Gabriel; Donzel, Xavier; Delobbe, Anne; Della-Negra, Serge

    2015-01-01

    The Andromede project is the center of a multi-disciplinary team which will build a new instrument for surface modification and analysis using the impact of probes from hydrogen to nano-particles (Au 400 +4 ) in the MeV range. For this new instrument a series of atomic, polyatomic, molecular and nano-particle ion beams will be delivered using two ion sources in tandem, a liquid metal ion source and an electron cyclotron resonance source. The delivered ion beams will be accelerated to high energy with a 4 MeV van de Graaff type accelerator. By using a suite of probes in the MeV energy range, ion beam analysis techniques, MeV atomic and cluster secondary ion mass spectrometry can all be performed in one location. A key feature of the instrument is its ability to produce an intense beam for injection into the accelerator. The commissioning of the two sources shows that intense beams from atomic ions to nano-particles can be delivered for subsequent acceleration. The calculations and measurements for the two sources are presented.

  19. Conceptual design of a high luminosity 510 MeV collider

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.; Cornacchia, M.

    1991-01-01

    The authors discuss the magnetic lattice design of a high luminosity 510 MeV electron-positron collider, based on high field superconduction bending dipoles. The design criteria are flexibility in the choice of the tune and beta functions at the interaction point, horizontal emittance larger than 1 mm mrad to produce a luminosity larger than 10 32 cm -2 s -1 , large synchrotron radiation damping rate, and large momentum compaction. The RF system parameter are chosen to provide a short bunch length also when the beam energy spread is determined by the microwave instability. A satisfactory ring dynamic aperature, and a simultaneous small value of the horizontal and vertical beta function at the interaction point, the authors expect will be achieved by using Cornacchia-Halbach modified sextupoles

  20. Exploring ultrashort high-energy electron-induced damage in human carcinoma cells

    International Nuclear Information System (INIS)

    Rigaud, O.; Fortunel, N.O.; Vaigot, P.; Cadio, E.; Martin, M.T.; Lundh, O.; Faure, J.; Rechatin, C.; Malka, V.; Gauduel, Y.A.

    2010-01-01

    In conventional cancer therapy or fundamental radiobiology research, the accumulated knowledge on the complex responses of healthy or diseased cells to ionizing radiation is generally obtained with low-dose rates. Under these radiation conditions, the time spent for energy deposition is very long compared with the dynamics of early molecular and cellular responses. The use of ultrashort pulsed radiation would offer new perspectives for exploring the 'black box' aspects of long irradiation profiles and favouring the selective control of early damage in living targets. Several attempts were previously performed using nanosecond or picosecond pulsed irradiations on various mammalian cells and radiosensitive mutants at high dose rate. The effects of single or multi-pulsed radiations on cell populations were generally analyzed in the framework of dose survival curves or characterized by 2D imaging of γ-H2AX foci and no increase in cytotoxicity was shown compared with a delivery at a conventional dose rate. Moreover, when multi-shot irradiations were performed, the overall time needed to obtain an integrated dose of several Grays again overlapped with the multi-scale dynamics of bio-molecular damage-repair sequences and cell signalling steps. Ideally, a single-shot irradiation delivering a well-defined energy profile, via a very short temporal window, would permit the approach of a real-time investigation of early radiation induced molecular damage within the confined spaces of cell compartments. Owing to the potential applications of intense ultrashort laser for radiation therapy, the model of the A431 carcinoma cell line was chosen. An ultrafast single-shot irradiation strategy was carried out with these radio-resistant human skin carcinoma cells, using the capacity of an innovating laser-plasma accelerator to generate quasi mono-energetic femtosecond electron bunches in the MeV domain and to deliver a very high dose rate of 10 13 Gy s -1 per pulse. The alkaline comet

  1. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom.

    Science.gov (United States)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Koong, Albert C; Tantawi, Sami; Dolgashev, Valery; Maxim, Peter G; Loo, Billy W

    2015-04-01

    To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0-6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4-6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0-4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. The authors demonstrate that relative dose distributions for VHEE beams of 50-70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  2. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  3. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  4. Korea-China Joint R and D on High Energy Density Sciences using High Power Laser

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Nam, S. M.; Park, S. K.; Rhee, Y. J.; Lim, C. H.

    2009-02-01

    As to the high energy pico-second Peta Watt laser technology for fast ignition, the design of front-end and pre/main amplifier were pursued and the OPCPA technology to increase the aspect ratio by reducing the pre-pulse were developed. Furthermore, the tiled-grating technology to replace a large grating were obtained. As to the fast electron generation and propagation, a solid target was used to generate MeV class electron with TW femto-second laser and a gas cluster was also used to generate MeV class electron with PW femto-second laser at SIOM

  5. A high power, tunable free electron maser for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Urbanus, W.H.; Bratman, V.L.; Bongers, W.A.; Caplan, M.; Denisov, G.G.; Geer, C.A.J. van der; Manintveld, P.; Militsyn, B.; Oomens, A.A.M.; Poelman, A.J.; Plomp, J.; Pluygers, J.; Savilov, A.V.; Smeets, P.H.M.; Sterk, A.B.; Verhoeven, A.G.A

    2001-01-01

    The Fusion-FEM experiment, a high-power, electrostatic free-electron maser being built at the FOM-Institute for Plasma Physics 'Rijnhuizen', is operated at various frequencies. So far, experiments were done without a depressed collector, and the pulse length was limited to 12 {mu}s. Nevertheless, many aspects of generation of mm-wave power have been explored, such as the dependency on the electron beam energy and beam current, and cavity settings such as the feedback coefficient. An output power of 730 kW at 206 GHz is generated with a 7.2 A, 1.77 MeV electron beam, and 360 kW at 167 GHz is generated with a 7.4 A, 1.61 MeV electron beam. It is shown experimentally and by simulations that, depending on the electron beam energy, the FEM can operate in single-frequency regime. The next step of the FEM experiment is to reach a pulse length of 100 ms. The major part of the beam line, the high voltage systems, and the collector have been completed. The undulator and mm-wave cavity are now at high voltage (2 MV). The new mm-wave transmission line, which transports the mm-wave output power from the high-voltage terminal to ground and outside the pressure tank, has been tested at low power.

  6. Features micro plastic deformation auxetic beryllium irradiated with high-energy electrons

    International Nuclear Information System (INIS)

    Rarans'kij, M.D.; Olyijnich-Lisyuk, A.V.; Tashchuk, O.Yu.

    2016-01-01

    By low-frequency internal friction (LFIF) (1...3 Hz) method, the study of the behavior of the dynamic modulus of torsion (Gef) and by mathematical modeling of dislocation motion studied micro plastic deformation in naturally aged and irradiated with high-energy (18 MeV) electrons auxetic beryllium. With increasing doses of radiation found an increase in IF and speed of movement of dislocations in 2-3 times. Installed stage character micro strain auxetic Be. By mathematical modeling showed that in the irradiated material the deformation occurs due to the accelerated movement of the twin dislocations in the early stages, and anomalous dynamic deceleration of complete dislocations with an increase in the degree of deformation in the second stage. It is shown that theoretically estimated values are in good agreement with the experimentally determined.

  7. FLARE VERSUS SHOCK ACCELERATION OF HIGH-ENERGY PROTONS IN SOLAR ENERGETIC PARTICLE EVENTS

    International Nuclear Information System (INIS)

    Cliver, E. W.

    2016-01-01

    Recent studies have presented evidence for a significant to dominant role for a flare-resident acceleration process for high-energy protons in large (“gradual”) solar energetic particle (SEP) events, contrary to the more generally held view that such protons are primarily accelerated at shock waves driven by coronal mass ejections (CMEs). The new support for this flare-centric view is provided by correlations between the sizes of X-ray and/or microwave bursts and associated SEP events. For one such study that considered >100 MeV proton events, we present evidence based on CME speeds and widths, shock associations, and electron-to-proton ratios that indicates that events omitted from that investigation’s analysis should have been included. Inclusion of these outlying events reverses the study’s qualitative result and supports shock acceleration of >100 MeV protons. Examination of the ratios of 0.5 MeV electron intensities to >100 MeV proton intensities for the Grechnev et al. event sample provides additional support for shock acceleration of high-energy protons. Simply scaling up a classic “impulsive” SEP event to produce a large >100 MeV proton event implies the existence of prompt 0.5 MeV electron events that are approximately two orders of magnitude larger than are observed. While classic “impulsive” SEP events attributed to flares have high electron-to-proton ratios (≳5 × 10 5 ) due to a near absence of >100 MeV protons, large poorly connected (≥W120) gradual SEP events, attributed to widespread shock acceleration, have electron-to-proton ratios of ∼2 × 10 3 , similar to those of comparably sized well-connected (W20–W90) SEP events.

  8. A study on the influence of High-energy Electron Beam Irradiation on Stabilities of IGZO Based TTFT

    International Nuclear Information System (INIS)

    Moon, Hye Ji; Oh, Hye Ran; Jung, So Hyun; Bae, Byung Seong; Yun, Eui Jung; Ryu, Min Ki; Cho, Kyoung Ik

    2011-01-01

    Recently, Ionizing has been used as an active layer in applications of transparent thin film transistors and the stabilities of TTFTs become the curricula issue. High-performance, stable IGZO-based TTFTsare also required in a high radiation environment, such as X-rays, gamma-rays, electron beams, etc., which suggests that studies on the variations in the electrical properties in a radiation environment are of critical importance for space applications of IGZO-based materials and devices. Hence, in this study we investigated the influence of high-energy electron beam irradiation on optical and gate-bias stabilities of IGZO-based TTFTs. The TTFTs has a top gate structure, which used IGZO and Al 2 O 3 films for the active layer and the gate dielectric, respectively. The W/L of the TTFTs was 10μm/10μm. The TTFTs were treated with Hubbub in air at room temperature at an electron beam energy of 0.8 MeV and a dose for 1 Χ 10 14 electrons/cm 2 . We developed TTFTs with excellent device properties and conclude that the Hubbub can improve the stabilities of IGZO-based TTFTs

  9. Detection of electrons in the 10 MeV range by plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Beaudoin, G; Champagne, A; Jeremie, H; Lessard, L

    1986-09-10

    Response functions for electrons from 1 to 12 MeV have been measured with a plastic scintillator telescope. A parametrization model for these response functions has been found to give good results at all energies. Furthermore it was established that the type of reflector used for the scintillator has a considerable influence on the response functions. A mechanism for this influence has been proposed and tested by Monte Carlo calculations.

  10. Radiation processing of polymers with high energy electron beams: novel materials and processes

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Sabharwal, Sunil

    2002-01-01

    High-energy ionizing radiation available from electron beam (EB) accelerators has the ability to create extremely reactive species like free radicals or ions at room temperature or even at low temperature in any phase and in a variety of substrates without addition of external additives. This unique advantage of high energy has been utilized in the recent years to produce better quality materials in an environment friendly and cost-effective manner. The availability of high power and reliable EB accelerators has provided new tools to modify the materials and/or processes for a variety of applications. At BARC, a 2 MeV, 20 kW electron beam accelerator has been the nucleus of developing industrial applications of radiation processing in India for last 10 years. The focus has been on developing technologies that are of relevance to Indian socio-economic conditions and also provide economic benefits to the industry. In the areas of polymer processing industry, commercial success has already been achieved while for exploring its applications in the areas of food and agriculture and environment, technology demonstration plants are being set up. The current status of the programme, the new developments and future direction of radiation processing technology shall be presented in this paper. (author)

  11. Bias dependent charge trapping in MOSFETs during 1 and 6 MeV electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S. [Department of Chemical Engineering, Mie University, 5148507 (Japan); Kulkarni, V.R.; Mathakari, N.L.; Bhoraskar, V.N. [Department of Physics, Univeristy of Pune, Pune 411007 (India); Dhole, S.D. [Department of Physics, Univeristy of Pune, Pune 411007 (India)], E-mail: sanjay@physics.unipune.ernet.in

    2008-06-15

    To study irradiation-induced charge trapping in SiO{sub 2} and around the SiO{sub 2}-Si interface, depletion n-MOSFETs (metal-oxide-semiconductor field effect transistor) were used. The devices were gate biased during 1 and 6 MeV pulsed electron irradiation. The I{sub D}-V{sub DS} (drain current versus drain voltage) and I{sub D}-V{sub GS} (drain current versus gate voltage) characteristics were measured before and after irradiation. The shift in threshold voltage {delta}V{sub T} (difference in threshold voltage V{sub T} before and after irradiation) exhibited trends depending on the applied gate bias during 1 MeV electron irradiation. This behavior can be associated to the contribution of irradiation-induced negative charge {delta}N{sub IT} buildup around the SiO{sub 2}-Si interface to {delta}V{sub T}, which is sensitive to the electron tunneling from the substrates. However, only weak gate bias dependence was observed in 6 MeV electron irradiated devices. Independent of the energy loss and applied bias, the positive oxide trapped charge {delta}N{sub OT} is marginal and can be associated to thin and good quality of SiO{sub 2}. These results are explained using screening of free and acceptor states by the applied bias during irradiation, thereby reducing the total irradiation-induced charges.

  12. Comparison of LiF and FeSO4 dosimetry with cavity theory for high-energy electrons

    International Nuclear Information System (INIS)

    Fregene, A.O.

    1976-01-01

    Using FeSO 4 dosimetry in a comparative study, the response of LiF dosimeter rods 1 mm in diameter by 6 mm in length to electron beams of initial energies in the range 5 to 39 MeV was investigated. The electron beam cavity theories of T. E. Burlin, R. J. Shelling, and B. Owen (1969), P. R. Almond and K. McCray (1970), and L. H. Bragg-Gray (1937) were employed in the estimation of absorbed doses. The LiF dosimeter was found energy independent over the range of electron energies covered. Bragg-Gray's and Almond's electron beam theories confirm this finding within 2 percent. The overall experimental error in the work is within 2 percent. Burlin's electron beam theory gave values that were considerably out, especially at the lower end of the range of energy covered

  13. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator

    International Nuclear Information System (INIS)

    Lundh, O.; Rechatin, C.; Faure, J.; Ben-Ismaïl, A.; Lim, J.; De Wagter, C.; De Neve, W.; Malka, V.

    2012-01-01

    Purpose: To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. Methods: In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. Results: It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. Conclusions: The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research.

  14. Study of electron beam energy conversion at gyrocon-linear accelerator facility

    International Nuclear Information System (INIS)

    Karliner, M.M.; Makarov, I.G.; Ostreiko, G.N.

    2004-01-01

    A gyrocon together with the high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. The achieved energy conversion efficiency is about 55%

  15. Photoresponse of {sup 94}Mo at energies up to 8.6 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Romig, Christopher; Fritzsche, M.; Lindenberg, K.; Pietralla, N.; Savran, D.; Sonnabend, K. [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Rusev, G.; Tonchev, A.P.; Tornow, W.; Weller, H.R. [Triangle Universities Nuclear Laboratory, Duke University, Durham, NC (United States); Zilges, A. [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2009-07-01

    The isotope {sup 94}Mo was investigated in nuclear resonance fluorescence experiments at the High Intensity Photon Setup (HIPS) at the S-DALINAC in Darmstadt using bremsstrahlung photons with energies of 7.65 and 8.6 MeV, respectively, and at the High Intensity {gamma}-ray Source (HI{gamma}S) at Duke University using photons from Laser Compton backscattering. Thereby over 60 excitations were found which could be assigned to {sup 94}Mo due to the highly enriched sample. In the energy region between 5.4 and 8 MeV many transitions could be classified as dipole transitions and cross sections, angular momentum quantum numbers, half-lifes and transition strengths were determined. At HI{gamma}S the parity quantum numbers of 40 excitations between 5.5 and 7.0 MeV could be determined. The methods and results are presented.

  16. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  17. Angular distributions for the charged components in a cascade shower induced by 350 MeV electrons

    International Nuclear Information System (INIS)

    Kobayashi, S.; Itoh, H.; Murakami, A.; Muto, T.

    1978-01-01

    The angular distributions of secondary electrons contained in a cascade shower are studied by using a streamer chamber. The primary electrons with energy of about 350 MeV are incident on a lead converter of various thickness. The angular data are analyzed for the number of electrons in a shower, and for the converter thickness. The obtained distributions show a systematic agreement with the Monte Carlo calculations presented by Messel and Crawford. (Auth.)

  18. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  19. Development of High Energy Particle Detector for the Study of Space Radiation Storm

    Directory of Open Access Journals (Sweden)

    Gyeong-Bok Jo

    2014-09-01

    Full Text Available Next Generation Small Satellite-1 (NEXTSat-1 is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of 33.4° was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of 0°,45°,90° against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.

  20. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    Science.gov (United States)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  1. Energy loss of carbon transmitted 1-MeV H2+ ions

    International Nuclear Information System (INIS)

    Fritz, M.; Kimura, K.; Susuki, Y.; Mannami, M.

    1994-01-01

    Energy losses of 1-MeV H 2 + ions passing through carbon foils of 2-8 μg/cm 2 thickness have been measured and show besides the linear increase with target thickness a 0.4 keV offset. The stopping power derived from the observed energy losses is 1.15 times as large as the sum of the stopping powers for two single H + of the same velocity. Calculations of the stopping powers for H 2 + ions and diprotons, using first Born approximation, indicate that the H 2 + ions lose the binding electron upon entrance into the foil, traverse the target as diprotons and recapture target electrons at the exit surface, a scenario also supported by the 0.4 keV offset at zero thickness. (author)

  2. Some energy and angular characteristics of electrons in electromagnetic cascades in air

    Science.gov (United States)

    Stanev, T.; Vankov, Kh.; Petrov, S.; Elbert, J. W.

    The angular distribution of electrons with threshold energies of 20 MeV (the lowest energy at which electrons radiate Cerenkov photons in the air) are considered. The results are based on Monte Carlo calculations of the development of electromagnetic cascades. A set of showers with energy thresholds equals 20 MeV and primary photon energies equals 10, 20, 30, and 100 GeV is simulated. Information about the particle properties (energy, angle, and radial displacement) is provided at each radiation length of depth. The electrons are at much smaller angles to the shower axis than were those of Messel and Crawford (1970); this explains the discrepancy in angular distribution of Cerenkov light in air between the two.

  3. Crosslinking of commercial polyethylenes by 10 MeV electrons

    International Nuclear Information System (INIS)

    Singh, A.; Lopata, V.J.; Kremers, W.; Sze, Yu-keung

    1995-08-01

    Commercial polyethylenes were irradiated with 10 MeV electrons to induce crosslinking. The gel fraction data measured as a function of total dose suggests that crosslinking proceeds on irradiation, as expected. A number of the properties of the irradiated polyethylenes, such as the degree of oxidation, crystallinity and thermal degradation, were studied by Fourier transform infrared/photo acoustic spectroscopy, X-ray diffraction, and a pyrolysis technique coupled with gas chromatography and mass spectrometry. The results of this study suggest that commercial polyethylenes can be crosslinked to a gel fraction of ∼70%, required for wire and cable applications, by 10 MeV electrons. (author). 35 refs., 6 figs

  4. Structural and electrical properties of polycrystalline CdSe thin films, before and after irradiation with 6 MeV accelerated electrons

    International Nuclear Information System (INIS)

    Ion, L.; Antohe, V.A.; Tazlaoanu, C.; Antohe, S.; Scarlat, F.

    2004-01-01

    Structural and electrical properties of polycrystalline CdSe thin films irradiated with high-energy electrons are analyzed. The samples were prepared by vacuum deposition of CdSe powder onto optical glass substrate. Their structure and the temperature dependence of the electrical resistance were determined, both before and after irradiation with 6 MeV electrons at fluencies up to 10 16 electrons/cm 2 . There were no measurable changes in the crystalline structure of the films after irradiation. Electrical properties are controlled by the defect level of donor type, possibly a selenium vacancy, with two ionizing states having ionization energies of about 0.40 eV and 0.22 eV, respectively. The major effect of the irradiation is to increase significantly the concentration of these defects. (authors)

  5. Temperature and 8 MeV electron irradiation effects on GaAs solar cells

    Indian Academy of Sciences (India)

    1Department of Physics, Mangalore Institute of Technology and Engineering, ... strate were irradiated with 1 MeV electrons, they showed high radiation tolerance ... under both forward and reverse bias in the temperature range of 270–315 K ...

  6. Phonon spectrum of single-crystalline FeSe probed by high-resolution electron energy-loss spectroscopy

    Science.gov (United States)

    Zakeri, Khalil; Engelhardt, Tobias; Le Tacon, Matthieu; Wolf, Thomas

    2018-06-01

    Utilizing high-resolution electron energy-loss spectroscopy (HREELS) we measure the phonon frequencies of β-FeSe(001), cleaved under ultra-high vacuum conditions. At the zone center (Γ bar-point) three prominent loss features are observed at loss energies of about ≃ 20.5 and 25.6 and 40 meV. Based on the scattering selection rules we assign the observed loss features to the A1g, B1g, and A2u phonon modes of β-FeSe(001). The experimentally measured phonon frequencies do not agree with the results of density functional based calculations in which a nonmagnetic, a checkerboard or a strip antiferromagnetic order is assumed for β-FeSe(001). Our measurements suggest that, similar to the other Fe-based materials, magnetism has a profound impact on the lattice dynamics of β-FeSe(001).

  7. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    Science.gov (United States)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  8. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  9. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-01

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting

  10. Study on dynamics of beams of high luminosity in electron linacs

    International Nuclear Information System (INIS)

    Polyakov, V.A.; Shchedrin, I.S.

    1981-01-01

    To increase the electron beam luminosity in electron linacs (ELA), designed for electron microscopy, a numerical analysis of the electron dynamics in the ELA is carried out. Insufficiency of the available data on longitudinal beam motion in the 10 -4 -10 -5 relative energy spread on radial motion, as well as inadequacy of the data on aberrations of the second order introduced by the accelerating structure are shown. The necessary accountancy of the longitudinal Coulomb field is also shown. For the 1-10 MeV electron energies, 10 9 and 5x10 9 cm -3 bunch density, 5 deg-0.5 deg phase extension the beam current varies within the 0.2-10 mA. The bunch moves in the drift space of the 2.5 m length. The energy spread is 8x10 -8 (1 MeV) to 10 -4 (10 MeV) at the 2 mA beam current [ru

  11. Comparison of measured with calculated dose distribution from a 120-MeV electron beam from a laser-plasma accelerator.

    Science.gov (United States)

    Lundh, O; Rechatin, C; Faure, J; Ben-Ismaïl, A; Lim, J; De Wagter, C; De Neve, W; Malka, V

    2012-06-01

    To evaluate the dose distribution of a 120-MeV laser-plasma accelerated electron beam which may be of potential interest for high-energy electron radiation therapy. In the interaction between an intense laser pulse and a helium gas jet, a well collimated electron beam with very high energy is produced. A secondary laser beam is used to optically control and to tune the electron beam energy and charge. The potential use of this beam for radiation treatment is evaluated experimentally by measurements of dose deposition in a polystyrene phantom. The results are compared to Monte Carlo simulations using the geant4 code. It has been shown that the laser-plasma accelerated electron beam can deliver a peak dose of more than 1 Gy at the entrance of the phantom in a single laser shot by direct irradiation, without the use of intermediate magnetic transport or focusing. The dose distribution is peaked on axis, with narrow lateral penumbra. Monte Carlo simulations of electron beam propagation and dose deposition indicate that the propagation of the intense electron beam (with large self-fields) can be described by standard models that exclude collective effects in the response of the material. The measurements show that the high-energy electron beams produced by an optically injected laser-plasma accelerator can deliver high enough dose at penetration depths of interest for electron beam radiotherapy of deep-seated tumors. Many engineering issues must be resolved before laser-accelerated electrons can be used for cancer therapy, but they also represent exciting challenges for future research. © 2012 American Association of Physicists in Medicine.

  12. Effect of high-energy electron beam irradiation on the transmittance of ZnO thin films on transparent substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Han, Young-Hwan; Kim, Min-Wan; Lee, Byung Cheol

    2010-01-01

    We investigated in this study the effects of high-energy electron beam irradiation (HEEBI) on the optical transmittance of undoped ZnO films grown on transparent substrates, such as corning glass and polyethersulfone (PES) plastic substrates, with a radio frequency (rf) magnetron sputtering technique. The ZnO thin films were treated with HEEBI in air at RT with an electron beam energy of 1 MeV and doses of 4.7 x 10 14 - 4.7 x 10 16 electrons/cm 2 . The optical transmittance of the ZnO films was measured using an ultraviolet visible near-infrared spectrophotometer. The detailed estimation process for separating the transmittance of HEEBI-treated ZnO films from the total transmittance of ZnO films on transparent substrates treated with HEEBI is given in this paper. We concluded that HEEBI causes a slight suppression in the optical transmittance of ZnO thin films. We also concluded that HEEBI treatment with a high dose shifted the optical band gap (E g ) toward the lower energy region from 3.29 to 3.28 eV whereas that with a low dose unchanged E g at 3.25 eV. This shift suggested that HEEBI at RT at a high dose acts like an annealing treatment at high temperature.

  13. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  14. The operational procedure of an electron beam accelerator

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-01

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator

  15. The operational procedure of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Choi, Hwa Lim; Yang, Ki Ho; Han, Young Hwan; Kim, Sung Chan

    2008-12-15

    The KAERI(Korea Atomic Energy of Research Institute) high-power electron beam irradiation facility, operating at the energies between 0.3 MeV and 10 MeV, has provided irradiation services to users in industries, universities, and institute in various fields. This manual is for the operation of an electron beam which is established in KAERI, and describes elementary operation procedures of electron beam between 0.3 Mev and 10 MeV. KAERI Electron Accelerator facility(Daejeon, Korea) consists of two irradiators: one is a low-energy electron beam irradiator operated by normal conducting RF accelerator, the other is medium-energy irradiator operated by superconducting RF accelerator. We explain the check points of prior to operation, operation procedure of this facility and the essential parts of electron beam accelerator.

  16. Carbon K-shell excitation in small molecules by high-resolution electron impact

    International Nuclear Information System (INIS)

    Tronc, M.; King, G.C.; Read, F.H.

    1979-01-01

    The excitation of 1s carbon electrons has been observed in C0, CH 4 , CF4, C0 2 , COS, C 2 H 2 and C 2 H 4 by means of the electron energy-loss technique with high resolution (70 meV in the 300 eV excitation energy range) and at an incident electron energy of 1.5 keV. The energies, widths and vibrational structures of excited states corresponding to the promotion of 1s carbon electrons to unoccupied valence and Rydberg orbitals have been obtained. The validity of the equivalent-core model, and the role of resonances caused by potential barriers, are discussed. (author)

  17. Measurement of activation yields for platinum group elements using Bremsstrahlung radiation with end-point energies in the range 11-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tickner, James, E-mail: james.tickner@csiro.a [CSIRO Process Science and Engineering, PMB 5, Menai, NSW 2234 (Australia); Bencardino, Raffaele; Roach, Greg [CSIRO Process Science and Engineering, PMB 5, Menai, NSW 2234 (Australia)

    2010-01-15

    Activation yields have been measured for (gamma,n) reactions of the elements Ru, Rh, Pd, Ir and Pt. Metallic foils of natural isotopic composition were irradiated using Bremsstrahlung radiation produced from an electron linear accelerator operated with electron beam energies in the range 11-14 MeV. Activation products, including both unstable ground states and metastates were measured using a high-purity germanium detector. Cross-sections were estimated from the yield data by assuming a simple two-parameter model for the shape of the cross-section with energy.

  18. Measurement of activation yields for platinum group elements using Bremsstrahlung radiation with end-point energies in the range 11-14 MeV

    International Nuclear Information System (INIS)

    Tickner, James; Bencardino, Raffaele; Roach, Greg

    2010-01-01

    Activation yields have been measured for (γ,n) reactions of the elements Ru, Rh, Pd, Ir and Pt. Metallic foils of natural isotopic composition were irradiated using Bremsstrahlung radiation produced from an electron linear accelerator operated with electron beam energies in the range 11-14 MeV. Activation products, including both unstable ground states and metastates were measured using a high-purity germanium detector. Cross-sections were estimated from the yield data by assuming a simple two-parameter model for the shape of the cross-section with energy.

  19. Photonuclear and Radiation Effects Testing with a Refurbished 20 MeV Medical Electron Linac

    CERN Document Server

    Webb, Timothy; Beezhold, Wendland; De Veaux, Linda C; Harmon, Frank; Petrisko, Jill E; Spaulding, Randy

    2005-01-01

    An S-band 20 MeV electron linear accelerator formerly used for medical applications has been recommissioned to provide a wide range of photonuclear activation studies as well as various radiation effects on biological and microelectronic systems. Four radiation effect applications involving the electron/photon beams are described. Photonuclear activation of a stable isotope of oxygen provides an active means of characterizing polymer degradation. Biological irradiations of microorganisms including bacteria were used to study total dose and dose rate effects on survivability and the adaptation of these organisms to repeated exposures. Microelectronic devices including bipolar junction transistors (BJTs) and diodes were irradiated to study photocurrent from these devices as a function of peak dose rate with comparisons to computer modeling results. In addition, the 20 MeV linac may easily be converted to a medium energy neutron source which has been used to study neutron damage effects on transistors.

  20. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets.

    Science.gov (United States)

    Parsons, David; Robar, James L

    2012-07-01

    Recent work has demonstrated improvement of image quality with low-Z linear accelerator targets and energies as low as 3.5 MV. In this paper, the authors lower the incident electron beam energy between 1.90 and 2.35 MeV and assess the improvement of megavoltage planar image quality with the use of carbon and aluminum linear accelerator targets. The bending magnet shunt current was adjusted in a Varian linear accelerator to allow selection of mean electron energy between 1.90 and 2.35 MeV. Linac set points were altered to increase beam current to allow experimental imaging in a practical time frame. Electron energy was determined through comparison of measured and Monte Carlo modeled depth dose curves. Planar image CNR and spatial resolution measurements were performed to quantify the improvement of image quality. Magnitudes of improvement are explained with reference to Monte Carlo generated energy spectra. After modifications to the linac, beam current was increased by a factor greater than four and incident electron energy was determined to have an adjustable range from 1.90 MeV to 2.35 MeV. CNR of cortical bone was increased by a factor ranging from 6.2 to 7.4 and 3.7 to 4.3 for thin and thick phantoms, respectively, compared to a 6 MV therapeutic beam for both aluminum and carbon targets. Spatial resolution was degraded slightly, with a relative change of 3% and 10% at 0.20 lp∕mm and 0.40 lp∕mm, respectively, when reducing energy from 2.35 to 1.90 MV. The percentage of diagnostic x-rays for the beams examined here, ranges from 46% to 54%. It is possible to produce a large fraction of diagnostic energy x-rays by lowering the beam energy below 2.35 MV. By lowering the beam energy to 1.90 MV or 2.35 MV, CNR improves by factors ranging from 3.7 to 7.4 compared to a 6 MV therapy beam, with only a slight degradation of spatial resolution when lowering the energy from 2.35 MV to 1.90 MV.

  1. 7.5 MeV High Average Power Linear Accelerator System for Food Irradiation Applications

    International Nuclear Information System (INIS)

    Eichenberger, Carl; Palmer, Dennis; Wong, Sik-Lam; Robison, Greg; Miller, Bruce; Shimer, Daniel

    2005-09-01

    In December 2004 the US Food and Drug Administration (FDA) approved the use of 7.5 MeV X-rays for irradiation of food products. The increased efficiency for treatment at 7.5 MeV (versus the previous maximum allowable X-ray energy of 5 MeV) will have a significant impact on processing rates and, therefore, reduce the per-package cost of irradiation using X-rays. Titan Pulse Sciences Division is developing a new food irradiation system based on this ruling. The irradiation system incorporates a 7.5 MeV electron linear accelerator (linac) that is capable of 100 kW average power. A tantalum converter is positioned close to the exit window of the scan horn. The linac is an RF standing waveguide structure based on a 5 MeV accelerator that is used for X-ray processing of food products. The linac is powered by a 1300 MHz (L-Band) klystron tube. The electrical drive for the klystron is a solid state modulator that uses inductive energy store and solid-state opening switches. The system is designed to operate 7000 hours per year. Keywords: Rf Accelerator, Solid state modulator, X-ray processing

  2. High power electron accelerators for flue gas treatment

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Flue gas treatment process based on electron beam application for SO 2 and NO x removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  3. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  4. Determination of displacement threshold energies in pure Ti and in γ-TiAl alloys by electron irradiation

    International Nuclear Information System (INIS)

    Sattonnay, G.; Dimitrov, O.

    1999-01-01

    Resistivity damage rates, determined during low-temperature electron irradiations in the energy range 0.3-2.5 MeV, were used for evaluating displacement threshold energies of titanium in high purity hcp titanium, and of titanium and aluminium in γ-TiAl intermetallic compounds. These parameters were deduced from a comparison of experimental displacement cross-section variations as a function of electron energy, with theoretical curves based on a displacement model for diatomic materials. The displacement energy of titanium in hcp titanium appears to depend on the electron energy. A threshold value of 21±1 eV was obtained in the range 0.3-0.5 MeV, and a larger value of 30±2 eV is determined in the range 0.5-2.5 MeV. In γ-TiAl, aluminium atoms are displaced first, with a threshold displacement energy (34±2 eV) larger than the one of titanium atoms, and much higher than the value in pure aluminium. The displacement energy of Ti atoms is 28±2 eV, close to the one obtained in pure titanium under similar conditions. These results were used for re-evaluating the Frenkel-pair resistivity of the stoichiometric TiAl compound. (orig.)

  5. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Physics design of a 10 MeV, 6 kW travelling wave electron linac for ...

    Indian Academy of Sciences (India)

    2016-10-11

    Oct 11, 2016 ... We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear ... linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Three- ... structures are preferred for relatively higher energy ... klystron in a TW linac, which results in cost reduction.

  7. Bond formation in hafnium atom implantation into SiC induced by high-energy electron irradiation

    International Nuclear Information System (INIS)

    Yasuda, H.; Mori, H.; Sakata, T.; Naka, M.; Fujita, H.

    1992-01-01

    Bilayer films of Hf (target atoms)/α-SiC (substrate) were irradiated with 2 MeV electrons in an ultra-high voltage electron microscope (UHVEM), with the electron beam incident on the hafnium layer. As a result of the irradiation, hafnium atoms were implanted into the SiC substrate. Changes in the microstructure and valence electronic states associated with the implantation were studied by a combination of UHVEM and Auger valence electron spectroscopy. The implantation process is summarized as follows. (1) Irradiation with 2 MeV electrons first induces a crystalline-to-amorphous transition in α-SiC. (2) Hafnium atoms which have been knocked-off from the hafnium layer by collision with the 2 MeV electrons are implanted into the resultant amorphous SiC. (3) The implanted hafnium atoms make preferential bonding to carbon atoms. (4) With continued irradiation, the hafnium atoms repeat the displacement along the beam direction and the subsequent bonding with the dangling hybrids of carbon and silicon. The repetition of the displacement and subsequent bonding lead to the deep implantation of hafnium atoms into the SiC substrate. It is concluded that implantation successfully occurs when the bond strength between a constituent atom of a substrate and an injected atom is stronger than that between constituent atoms of a substrate. (Author)

  8. Lateral propagation of MeV electrons generated by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Seely, J. F.; Szabo, C. I.; Audebert, P.; Brambrink, E.; Tabakhoff, E.; Hudson, L. T.

    2010-01-01

    The propagation of MeV electrons generated by intense (≅10 20 W/cm 2 ) femtosecond laser irradiation, in the lateral direction perpendicular to the incident laser beam, was studied using targets consisting of irradiated metal wires and neighboring spectator wires embedded in electrically conductive (aluminum) or resistive (Teflon) substrates. The K shell spectra in the energy range 40-60 keV from wires of Gd, Dy, Hf, and W were recorded by a transmission crystal spectrometer. The spectra were produced by 1s electron ionization in the irradiated wire and by energetic electron propagation through the substrate material to the spectator wire of a different metal. The electron range and energy were determined from the relative K shell emissions from the irradiated and spectator wires separated by varying substrate lateral distances of up to 1 mm. It was found that electron propagation through Teflon was inhibited, compared to aluminum, implying a relatively weak return current and incomplete space-charge neutralization. The energetic electron propagation in the direction parallel to the electric field of the laser beam was larger than perpendicular to the electric field. Energetic electron production was lower when directly irradiating aluminum or Teflon compared to irradiating the heavy metal wires. These experiments are important for the determination of the energetic electron production mechanism and for understanding lateral electron propagation that can be detrimental to fast-ignition fusion and hard x-ray backlighter radiography.

  9. Calibration of imaging plates to electrons between 40 and 180 MeV

    International Nuclear Information System (INIS)

    Rabhi, N.; Batani, D.; Boutoux, G.; Ducret, J.-E.; Bohacek, K.; Guillaume, E.; Thaury, C.; Jakubowska, K.; Thfoin, I.

    2016-01-01

    This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d’Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate charge calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.

  10. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-01

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  11. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    International Nuclear Information System (INIS)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  12. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  13. Responses of conventional and extended-range neutron detectors in mixed radiation fields around a 150-MeV electron LINAC

    International Nuclear Information System (INIS)

    Lin, Yu-Chi; Sheu, Rong-Jiun; Chen, Ang-Yu

    2015-01-01

    This study analyzed the responses of two types of neutron detector in mixed gamma-ray and neutron radiation fields around a 150-MeV electron linear accelerator (LINAC). The detectors were self-assembled, high efficiency, and designed in two configurations: (1) a conventional moderated-type neutron detector based on a large cylindrical He-3 proportional counter; and (2) an extended-range version with an embedded layer of lead in the moderator to increase the detector’s sensitivity to high-energy neutrons. Two sets of the detectors were used to measure neutrons at the downstream and lateral locations simultaneously, where the radiation fields differed considerably in intensities and spectra of gamma rays and neutrons. Analyzing the detector responses through a comparison between calculations and measurements indicated that not only neutrons but also high-energy gamma rays (>5 MeV) triggered the detectors because of photoneutrons produced in the detector materials. In the lateral direction, the contribution of photoneutrons to both detectors was negligible. Downstream of the LINAC, where high-energy photons were abundant, photoneutrons contributed approximately 6% of the response of the conventional neutron detector; however, almost 50% of the registered counts of the extended-range neutron detector were from photoneutrons because of the presence of the detector rather than the effect of the neutron field. Dose readings delivered by extended-range neutron detectors should be interpreted cautiously when used in radiation fields containing a mixture of neutrons and high-energy gamma rays

  14. Food processing using electrons and X-rays

    International Nuclear Information System (INIS)

    Clouston, J.G.

    1985-01-01

    The ionizing radiation which will be used as process energy for the preservation of food, will be limited to high energy electrons (less than 10 MeV), X-rays (less than 5 MeV) and gamma rays emitted by cobalt-60 (1.17;1.33 MeV) and cesium -137 (0.663 MeV). When a foodstuff is irradiated with any of these radiations absorption of the radiant energy will initiate a variety of reactions between its atomic and molecular constituents causing permanent chemical, physical and biological changes. This paper focusses on radiation processing using electron or X-ray generators in the range 2 to 10 MeV

  15. Modifications in the structural and optical properties of nanocrystalline CaWO4 induced by 8 MeV electron beam irradiation

    International Nuclear Information System (INIS)

    Aloysius Sabu, N.; Priyanka, K.P.; Ganesh, Sanjeev; Varghese, Thomas

    2016-01-01

    In this article we report the post irradiation effects in the structural and optical properties of nanocrystalline calcium tungstate synthesized by chemical precipitation and heat treatment. The samples were subjected to different doses of high-energy electron beam obtained from an 8 MeV Microton. Investigations using X-ray diffraction, scanning electron microscopy and Raman spectra confirmed changes in particle size and structural parameters. However, no phase change was detected for irradiated samples. The stretching/compressive strain caused by high energy electrons is responsible for the slight shift in the XRD peaks of irradiated samples. Modifications in the morphology of different samples were confirmed by scanning electron microscopy. Ultraviolet-visible absorption studies showed variations in the optical band gap (4.08–4.25 eV) upon electron-beam irradiation. New photoluminescence behaviour in electron beam irradiated nanocrystalline CaWO 4 was evidenced. A blue shift of the PL peak with increase in intensity was observed in all the irradiated samples. - Highlights: • Calcium tungstate nanocrystals are synthesized by simple chemical precipitation method. • Electron beam induced modifications in the structural and optical properties are investigated. • New photoluminescence behaviour is evidenced due to beam irradiation.

  16. High energy electron beams characterization using CaSO{sub 4}:Dy+PTFE Phosphors for clinical therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, T., E-mail: trivera@ipn.mx [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, Col. Irrigacion. 11500 Mexico DF (Mexico); Espinoza, A.; Von, S.M. [Centro Estatal de Cancerologia de los Servicios de Salud de Nayarit, Enfermeria S/n, Fracc, Fray Junipero Serra, 63169 Tepic Nay (Mexico); Alvarez, R.; Jimenez, Y. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria, IPN. Av. Legaria 694, Col. Irrigacion. 11500 Mexico DF (Mexico)

    2012-07-15

    In the present work high energy electron beam dosimetry from linear accelerator (LINACs) for clinical applications using dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO{sub 4}:Dy+PTFE) was studied. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator (LINAC) Varian, CLINAC 2300C/D, for clinical practice purpose. The electron irradiations were obtained using the water solid in order to guarantee electronic equilibrium conditions (EEC). Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO{sub 4}:Dy+PTFE were conducted under high electrons beams irradiations. The TL response of the pellets showed an intensity peak centered at around 215 Degree-Sign C. TL response of CaSO{sub 4}:Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO{sub 4}:Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. - Highlights: Black-Right-Pointing-Pointer Developing of CaSO{sub 4}:Dy to electron beams dosimetry. Black-Right-Pointing-Pointer Characterization of caSO{sub 4}:Dy to radiation safety in LINACs. Black-Right-Pointing-Pointer TL characteristics of CaSO{sub 4}:Dy for electron beams quality control.

  17. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  18. Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns

    Science.gov (United States)

    Ozur, G. E.; Proskurovsky, D. I.

    2018-01-01

    This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.

  19. A technique for determining electron losses for a 20 MeV microtron

    International Nuclear Information System (INIS)

    Harisha, P.; Nayak, A.R.; Mehta, S.K.; Soni, H.C.; Siddappa, K.

    1999-01-01

    A 22 orbit, 20 MeV electron microtron is used as a preaccelerator for the 700 MeV booster synchrotron at INDUS-1, CAT, Indore. Estimation of electron losses at the RF cavity from each orbit is important in obtaining the radiation doses from the body of the microtron. Radiation mapping of the microtron can be used to estimate these loss terms as an alternate to actual measurement by using a measuring probe. (author)

  20. Ultra high vacuum system of the 3 MeV electron beam accelerator

    International Nuclear Information System (INIS)

    Puthran, G.P.; Jayaprakash, D.; Mishra, R.L.; Ghodke, S.R.; Majumder, R.; Mittal, K.C.; Sethi, R.C.

    2003-01-01

    Full text: A 3 MeV electron beam accelerator is coming up at the electron beam centre, Kharghar, Navi Mumbai. A vacuum of the order of 1x10 -7 mbar is desired in the beam line of the accelerator. The UHV system is spread over a height of 6 meters. The total surface area exposed to vacuum is 65,000 cm 2 and the volume is 200 litres. Distributed pumping is planned, to avoid undesirable vacuum gradient between any two sections of the beam-line. The electron beam is scanned in an area of 6 cms x 100 cms and it comes out of the scan-horn through a titanium foil of 50 micron thick. Hence the vacuum system is designed in such a way that, in the event of foil rupture during beam extraction, the electron gun, accelerating column and the pumps can be protected from sudden air rush. The vacuum in the beam-line can also be maintained in this condition. After changing the foil, scan-horn area can be separately pumped to bring the vacuum level as desired and can be opened to the beam-line. The design, vacuum pumping scheme and the safety aspects are discussed in this paper

  1. Optimization calculations for slow neutron production with the 136 MeV Harwell electron linac

    International Nuclear Information System (INIS)

    Needham, J.; Sinclair, R.N.

    1978-10-01

    The new 136 MeV Harwell electron linac is to be used to produce pulsed beams of slow neutrons for condensed matter research. Design details and performance of the two types of moderator which will be available have been optimised using a Monte Carlo neutronics code (TIMOC). The choice of reflector, the necessary decoupling energy to prevent pulse broadening and the influence of γ shields and moderator shape have been investigated. The predicted yield of leakage neutrons of energy 1 eV is compared to published values for comparable facilities. (author)

  2. Intermediate energy electron cooling for antiproton sources using a Pelletron accelerator

    International Nuclear Information System (INIS)

    Cline, D.B.; Adney, J.; Ferry, J.; Kells, W.; Larson, D.J.; Mills, F.E.; Sundquist, M.

    1983-01-01

    It has been shown at FNAL that the electron cooling of protons is a very efficient method for reaching high luminosity in a proton beam. The emittance of the 120 KeV electron beam used at Fermilab corresponds to a cathode temperature of 0.1 eV. In order to apply cooling techniques to GeV proton beams the electron energies required are in the MeV range. In the experiment reported in this paper the emittance of a 3-MeV Pelletron electron accelerator was measured to determine that its emittance scaled to a value appropriate for electron cooling. The machine tested was jointly owned and operated by the University of California at Santa Barbara and National Electrostatics Corporation for research into free-electron lasers which also require low emittance beams for operation. This paper describes the thermal emittance of the beam to be the area in phase space in which 90% of the beam trajectories lie and goes on to describe the emittance-measurement method both in theory and application

  3. Monte Carlo simulation of channeled and random profiles of heavy ions implanted in silicon at high energy (1.2 MeV)

    International Nuclear Information System (INIS)

    Mazzone, A.M.

    1987-01-01

    In order to study channeling effects and implants of heavy ions with energy of few MeV in silicon, ion distributions are calculated with a Monte Carlo method for axial [(001) axis], planar, and nominally random directions for As + and P + ions implanted into silicon with energies in the range 100 keV to 2 MeV. The calculation indicates an appreciable channeling at the higher energy only for the (001) axis and the (110) planes. For heavy ions with energy in the MeV range the subsidence of channeling into major channels and the disappearance of minor channels are shown

  4. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Goosman, D.R.

    1984-08-14

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table.

  5. Monte Carlo 20 and 45 MeV Bremsstrahlung and dose-reduction calculations

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1984-01-01

    The SANDYL electron-photon coupled Monte Carlo code has been compared with previously published experimental bremsstrahlung data at 20.9 MeV electron energy. The code was then used to calculate forward-directed spectra, angular distributions and dose-reduction factors for three practical configurations. These are: 20 MeV electrons incident on 1 mm of W + 59 mm of Be, 45 MeV electrons of 1 mm of W and 45 MeV electrons on 1 mm of W + 147 mm of Be. The application of these results to flash radiography is discussed. 7 references, 12 figures, 1 table

  6. High power electron accelerators for flue gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Flue gas treatment process based on electron beam application for SO{sub 2} and NO{sub x} removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  7. Absorbed Dose Distributions in Small Copper Wire Insulation due to Multiple-Sided Irradiations by 0.4 MeV Electrons

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.; Pedersen, Walther Batsberg

    1979-01-01

    When scanned electron beams are used to crosslink polymeric insulation of wire and cable, an important goal is to achieve optimum uniformity of absorbed dose distributions. Accurate measurements of dose distributions in a plastic dosimeter simulating a typical insulating material (polyethylene......) surrounding a copper wire core show that equal irradiations from as few as four sides give approximately isotropy and satisfactorily uniform energy depositions around the wire circumference. Electron beams of 0.4 MeV maximum energy were used to irradiate wires having a copper core of 1.0 mm dia....... and insulation thicknesses between 0.4 and 0.8 mm. The plastic dosimeter simulating polyethylene insulations was a thin radiochromic polyvinyl butyral film wrapped several times around the copper wire, such that when unwrapped and analyzed optically on a scanning microspectrophotometer, high-resolution radial...

  8. High voltage high brightness electron accelerator with MITL voltage adder coupled to foilless diode

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poulkey, J.W.; Rovang, D.

    1995-01-01

    The design and analysis of a high brightness electron beam experiment under construction at Sandia National Laboratory is presented. The beam energy is 12 MeV, the current 35-40 kA, the rms radius 0.5 mm, and the pulse duration FWHM 40 ns. The accelerator is SABRE a pulsed inductive voltage adder, and the electron source is a magnetically immersed foilless diode. This experiment has as its goal to stretch the technology to the edge and produce the highest possible electron current in a submillimeter radius beam

  9. The influence of defects produced by high energy electrons on the electrical characteristics of p-n junctions

    International Nuclear Information System (INIS)

    Koch, L.; Van Dong, N.

    1961-01-01

    The life-time of minority carriers in semi-conductors is very sensitive to the presence of defects introduced by high-energy electrons. The formation of defects thus affects the short-circuiting current and the open circuit voltage of a p-n junction, these being dependent on the life-time. In the work presented, we have bombarded several types of germanium and silicon junctions with 2 MeV electrons from a Van der Graaff, and with β-particles from radioactive sources. The experiments were carried out both at ordinary temperatures and that of liquid air. In this latter case an anomaly in the electron-volt effect was found: the short-circuiting current and the voltage in vacuo, after an initial decrease, increase again and exceed their initial maximum value before once more decreasing. A qualitative interpretation of this abnormal effect is given. (author) [fr

  10. A method for unfolding high-energy scintillation gamma-ray spectra up to 8 MeV

    International Nuclear Information System (INIS)

    Dymke, N.; Hofmann, B.

    1982-01-01

    In unfolding a high-energy scintillation gamma-ray spectrum up to 8 MeV with the help of a response matrix, the means of linear algebra fail if the matrix is ill conditioned. In such cases, unfolding could be accomplished by means of a mathematical method based on a priori knowledge of the photon spectrum to be expected. The method which belongs to the class of regularization techniques was tested on in-situ gamma-ray spectra of 16 N recorded in a nuclear power plant near the primary circuit, using an 1.5 x 1.5 in. NaI(Tl) scintillation detector. For one regularized unfolding the results were presented in the form of an energy and a dose-rate spectrum. (author)

  11. Thermoluminescence response of Ge-, Al- and Nd- doped optical fibers by 6 MeV - electron and 6 MeV - photon irradiations

    International Nuclear Information System (INIS)

    Hossain, I.; Moburak, A. A.; Saeed, M.A.; Wagiran, H.; Hida, N.; Yaakob, H.N.

    2015-01-01

    In this paper, we report the prediction of thermoluminescence responses of Neodymium-doped SiO 2 optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MeV - electron irradiations without requirement for experimental measurements. A technique has been developed to calculate prediction of 6 MeV - electron response of Neodymium-doped SiO 2 optical fibre by observing the measured TL response of 6 MV - photon and the ratio of known measured photon/electron yield ratio distribution for Ge-doped, Al-doped optical fibre and standard TLD 100 dosimeter. The samples were kept in gelatin capsule an irradiated with 6 MV - photon at the dose range from 0.5 Gy to 4.0 Gy. Siemens model Primus 3368 linear accelerator located at Hospital Sultan Ismail, Johor Bahru has been used to deliver the photon beam to the samples. We found the average response ratio of 6 MV - photon and 6 MeV - electron in Ge-doped, Al-doped optical fibre and standard TLD-100 dosimeter are 0.83(3). Observing the measured value of 6 MV - photon irradiation this average ratio is useful to find the prediction of thermoluminescence responses by 6 MeV - electron irradiation of Neodymium-doped SiO 2 optical fibre by the requirement for experimental measurements with various dose ranges from 0.5 Gy to 4.0 Gy by 6 MV - photon irradiations.

  12. A high-energy electron beam ion trap for production of high-charge high-Z ions

    International Nuclear Information System (INIS)

    Knapp, D.A.; Marrs, R.E.; Elliott, S.R.; Magee, E.W.; Zasadzinski, R.

    1993-01-01

    We have developed a new high-energy electron beam ion trap, the first laboratory source of low-energy, few-electron, high-Z ions. We describe the device and report measurements of its performance, including the electron beam diameter, current density and energy, and measurements of the ionization balance for several high-Z elements in the trap. This device opens up a wide range of possible experiments in atomic physics, plasma physics, and nuclear physics. (orig.)

  13. Simultaneous application of high energy electron and photon beams in the radiotherapy of malignant tumours: problems of clinical irradiation-planning

    International Nuclear Information System (INIS)

    Petranyi, J.

    1980-01-01

    The aim of the work was to elaborate a new procedure of radiotherapy of neoplasms of the head and neck, fulfilling the following requirements: 1. the dose-maximum should be 1-6 cm below the skin, 2. in the tumour-volume the dose-decrease should not exceed 10%, 3. towards the environment the dose should sharply decrease so that the radiation burden of the healthy tissues should not exceed their tolerance. These criteria were met by the simultaneous application of 5-25 MeV energy electron beam (produced by B5M25 Betatron) and 29 MeV Bremsstrahlung or by the latter plus 60 Co gamma-radiation. In the case of irradiation of inhomogeneous tissues only the combination of the high energy photon radiations was successfull. The alteration of the ratio and/or the energy of the components results in the change of the maximal dose point. The thesis provides irradiation-plans for radiotherapy of unilateral cerebral, oral and sinus maxillaris tumours and cervical, supra- and infraclavicular and axillary lymph nodes. (L.E.)

  14. On the absorbed dose determination method in high energy photon beams

    International Nuclear Information System (INIS)

    Scarlat, F.; Scarisoreanu, A.; Oane, M.; Mitru, E.; Avadanei, C.

    2008-01-01

    The absorbed dose determination method in water, based on standards of air kerma or exposure in high energy photon beams generated by electron with energies in the range of 1 MeV to 50 MeV is presented herein. The method is based on IAEA-398, AAPM TG-51, DIN 6800-2, IAEA-381, IAEA-277 and NACP-80 recommendations. The dosimetry equipment is composed of UNIDOS T 10005 electrometer and different ionization chambers calibrated in air kerma method in a Co 60 beam. Starting from the general formalism showed in IAEA-381, the determination of absorbed dose in water, under reference conditions in high energy photon beams, is given. This method was adopted for the secondary standard dosimetry laboratory (SSDL) in NILPRP-Bucharest

  15. Recoil proton polarization of neutral pion photoproduction from proton in the energy range between 400 MeV and 1142 MeV

    International Nuclear Information System (INIS)

    Kato, S.; Miyachi, T.; Sugano, K.; Toshioka, K.; Ukai, K.

    1979-08-01

    The recoil proton polarization of the reaction γp → π 0 p were measured at a C.M. angle of 100 0 for incident photon energies between 451 and 1106 MeV, and at an angle of 130 0 for energies from 400 MeV to 1142 MeV. One photon decayed from a π 0 -meson and a recoil proton were detected in coincidence. Two kinds of polarization scatterers were employed. In the range of proton kinetic energy less than 420 MeV and higher than 346 MeV, carbon plates and liquid hydrogen were used for determining the polarization. Results are compared with recent phenomenological analyses. From the Comparison between the present data and the asymmetry data given by the polarized target, the contribution of the invariant amplitudes A 3 can be estimated to be small at 100 0 . (author)

  16. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  17. Electromagnetic design and beam dynamics studies for a 10 MeV, 10 kW electron linac

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2013-01-01

    Bi-periodic on-axis coupled standing wave linac is seen as an attractive choice for low energy (∼10 MeV) electron accelerators for industrial applications. In this paper, we present the physics design of an S-band bi-periodic on-axis coupled standing wave structure operating in π/2 mode. The structure operates at 2856 MHz and can accelerate electrons to 10 MeV. The 2D optimization of structure cells carried out using SUPERFISH is reported. Magnetic coupling is achieved through bean shaped coupling slots. Analytical calculations have been carried out to fix the dimensions of coupling slots. The paper discusses the complete 3D design of accelerating structure with coupling slots carried out using CST-MWS. The approach used to achieve confluence is outlined. Finally, the beam dynamics studies carried out using PARMELA are also discussed. (author)

  18. NSLS 3: Conceptual design report: 750 MeV e+ or e- injector

    International Nuclear Information System (INIS)

    1986-05-01

    The 750 MeV positron or electron injector is comprised of an electron linear accelerator which accelerates an intense beam of electrons to an energy of about 250 MeV, a positron converter, a second linear accelerator that boosts the final positron energy to 750 MeV, and a damping ring in which radiation damping is used to reduce the emittance of the positron beam for injection into the storage rings. The reasons for the need of a new injector are enumerated. The conceptual design of the system and its component systems are described, as well as project cost, schedule, and manpower requirements

  19. Ultra high energy electrons powered by pulsar rotation.

    Science.gov (United States)

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons.

  20. High-current electron accelerator for gas-laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Badaliants, G R; Mamikonian, V A; Nersisian, G Ts; Papanian, V O

    1978-11-26

    A high-current source of pulsed electron beams has been developed for the pumping of UV gas lasers. The parameters of the device are: energy of 0.3-0.7 MeV pulse duration of 30 ns and current density (in a high-pressure laser chamber) of 40-100 A/sq cm. The principal feature of the device is the use of a rectangular cold cathode with incomplete discharge along the surface of the high-permittivity dielectric. Cathodes made of stainless steel, copper, and graphite were investigated.

  1. Study of imaging plate detector sensitivity to 5-18 MeV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Boutoux, G., E-mail: boutoux@celia.u-bordeaux1.fr; Rabhi, N.; Batani, D.; Ducret, J.-E. [Univ. de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Binet, A.; Nègre, J.-P.; Reverdin, C.; Thfoin, I. [CEA DAM DIF, F-91297 Arpajon (France); Jakubowska, K. [Institute of Plasma Physics and Laser Microfusion, Hery Street 23, 01-497 Warsaw (Poland)

    2015-11-15

    Imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. We calibrated at the ELSA electron beam facility (CEA DIF) the five different available types of IPs (namely, MS-SR-TR-MP-ND) to electrons from 5 to 18 MeV. In the context of diagnostic development for the PETawatt Aquitaine Laser (PETAL), we investigated the use of stacks of IP in order to increase the detection efficiency and get detection response independent from the neighboring materials such as X-ray shielding and detector supports. We also measured fading functions in the time range from a few minutes up to a few days. Finally, our results are systematically compared to GEANT4 simulations in order to provide a complete study of the IP response to electrons over the energy range relevant for PETAL experiments.

  2. Estimation of deep, eye lens and skin doses for high energy electron beams for dosimetry and protection purpose

    International Nuclear Information System (INIS)

    Reena Kumari; Rakesh, R.B.

    2018-01-01

    In the radiological protection especially for individual as well as area monitoring, it is generally considered that beta sources deposit skin and eye lens doses only as they do not have enough energy for depositing doses at 10 mm depth. Also, the skin and eye lens doses differ substantially due to attenuation of beta particles at 0.07 mm (skin) and 3 mm (eye lens) depths and the surface doses are always greater than eye lens doses even for the highest energy beta source used in brachytherapy applications. However, worldwide increase in the use of high energy electron accelerators, new challenges are being posed for radiological protection and the operational quantities defined previously by ICRU are being reviewed. In view of these developments, studies have been performed for different electron beams in the energy range from (4 - 20) MeV generated using a medical linear accelerator. The aim of the study is to measure doses deposited at various depths as defined by ICRU 39 for individual and area monitoring purposes

  3. Nanoporous gold synthesized by plasma-assisted inert gas condensation: room temperature sintering, nanoscale mechanical properties and stability against high energy electron irradiation

    Science.gov (United States)

    Weyrauch, S.; Wagner, C.; Suckfuell, C.; Lotnyk, A.; Knolle, W.; Gerlach, J. W.; Mayr, S. G.

    2018-02-01

    With a plasma assisted gas condensation system it is possible to achieve high-purity nanoporous Au (np-Au) structures with minimal contaminations and impurities. The structures consist of single Au-nanoparticles, which partially sintered together due to their high surface to volume ratio. Through electron microscopy investigations a porosity  >50% with ligament sizes between 20-30 nm was revealed. The elastic modulus of the np-Au was determined via peak force quantitative nanomechanical mapping and resulted in values of 7.5  ±  1.5 GPa. The presented structures partially sintered at room temperature, but proved to be stable to electron irradiation with energies of 7 MeV up to doses of 100 MGy. The electron irradiation stability opens the venue for electron assisted functionalization with biomolecules.

  4. Physics design of a 70 MeV high intensity cyclotron, CYCIAE-70

    International Nuclear Information System (INIS)

    Zhang Tianjue; An Shizhong; Wang Chuan; Yin Zhiguo; Wei Sumin; Li Ming; Yang Jianjun; Ji Bin; Jia Xianlu; Zhong Junqing; Yang Fang

    2011-01-01

    This paper introduces the physics design of a 70 MeV high intensity cyclotron at China Institute of Atomic Energy (CIAE), which is aimed for multiple uses including radioactive ion-beam (RIB) production. The machine adopts a compact structure of four straight sectors, capable of accelerating two kinds of beams, i.e. H − and D − . The proton and deuteron beam will be extracted in dual opposite directions by charge exchange stripping devices. The energy of the extracted proton beam is in the range 35–70 MeV with an intensity up to 700 μA. The corresponding values for the deuteron beam are 18–33 MeV and 40 μA. This paper will present the main characteristics and parameters in the design of the 70 MeV cyclotron, the results of the basic beam dynamics study, as well as the physics in the design of the different systems, including the main magnet, RF, injection and extraction systems, etc.

  5. Fusion with projectiles form carbon to argon at energies between 20A and 60A MeV

    International Nuclear Information System (INIS)

    Galin, J.

    1986-03-01

    A review of the linear momentum transfer is made, considering essentially heavy targets and two important parameters in the entrance channel: the projectile energy and its mass. Over a broad mass range, and for energies up to 30A MeV, the momentum transfer scales with the mass of the projectile. At 30A MeV, the most probable value of projectile momentum transferred to the fused system is 80%, and this represents roughly 180 MEV/c per projectile nucleon. At higher bombarding energies, the momentum distribution in the fused systems, as observed from binary fission events, seems to depend on the mass of the projectile. Further studies are still needed to understand this behaviour. Finally, the decay of highly excited (E* approximately 500-800 MeV) fused systems, with masses close to 270 amu, is studied from the characteristics of both fusion fragments and light charged particles. It is shown that thermal equilibrium is reached before fission, even for such high energy deposition. However, the decay sequence is sensitive to dynamical effects and does not depend only on available phase space

  6. Influence of high-energy electron irradiation on field emission properties of multi-walled carbon nanotubes (MWCNTs) films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Sandip S. [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506 (Japan); Dhole, Sanjay D. [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); More, Mahendra A., E-mail: mam@physics.unipune.ac.i [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.j [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506 (Japan)

    2011-04-15

    The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1x10{sup 15}, 2x10{sup 15} and 3x10{sup 15} electrons/cm{sup 2}. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of {approx}1x10{sup -8} mbar. The values of the threshold field, required to draw an emission current density of {approx}1 {mu}A/cm{sup 2}, are found to be {approx}0.52, 1.9, 1.3 and 0.8 V/{mu}m for untreated, irradiated with fluence of 1x10{sup 15}, 2x10{sup 15} and 3x10{sup 15} electrons/cm{sup 2}. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.

  7. Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma

    Directory of Open Access Journals (Sweden)

    L. Nikzad

    2012-02-01

    Full Text Available Simulation of x-ray generation from bombardment of various solid targets by quasimonoenergetic electrons is considered. The electron bunches are accelerated in a plasma produced by interaction of 500 mJ, 30 femtosecond laser pulses with a helium gas jet. These relativistic electrons propagate in the ion channel generated in the wake of the laser pulse. A beam of MeV electrons can interact with targets to generate x-ray radiation with keV energy. The MCNP-4C code based on Monte Carlo simulation is employed to compare the production of bremsstrahlung and characteristic x rays between 10 and 100 keV by using two quasi-Maxwellian and quasimonoenergetic energy distributions of electrons. For a specific electron spectrum and a definite sample, the maximum x-ray flux varies with the target thickness. Besides, by increasing the target atomic number, the maximum x-ray flux is increased and shifted towards a higher energy level. It is shown that by using the quasimonoenergetic electron profile, a more intense x ray can be produced relative to the quasi-Maxwellian profile (with the same total energy, representing up to 77% flux enhancement at K_{α} energy.

  8. Radiolytic preparation of thin Au film directly on resin substrate using high-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@upst.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd., 5-3 Ozushima, Izumiohtsu, Osaka 595-0074 (Japan); Yamamoto, Takao A. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-04-01

    A novel method for preparing thin Au films directly on resin substrates using an electron beam was developed. The thin Au films were prepared on a resin substrate by the reduction of Au ions in an aqueous solution via irradiation with a high-energy electron beam (4.8 MeV). This reduction method required 7 s of the irradiation time of the electron beam. Furthermore, no reductant or catalyst was needed. As the concentration of Au ions in the precursor solution was increased, the amount of Au deposited on the resin substrate increased, too, and the structure of the prepared Au film changed. As a result, the film color changed as well. Cross-sectional scanning electron microscope images of the thus-prepared Au film indicated that the Au films were consisted of two layers: a particle layer and a bottom bulk layer. There was strong adhesion between the Au films and the underlying resin substrates. This was confirmed by the tape-peeling test and through ultrasonic cleaning. After both processes, Au remained on the resin substrates, while most of the particle-like moieties were removed. This indicated that the thin Au films prepared via irradiation with a high-energy electron beam adhered strongly to the resin substrates. - Highlights: • A thin gold (Au) film was formed by EBIRM for the first time. • The irradiation time of the electron beam was less than 10 s. • Thin Au films were obtained without reductant or catalyst. • Au films were consisted of two layers: a particle layer and a bottom bulk layer. • There was strong adhesion between the bottom bulk layer and the underlying resin substrates.

  9. Beam dosimetry in high-power electron accelerators

    International Nuclear Information System (INIS)

    Popov, V.N.; Zhitomirskii, B.M.; Ermakov, A.N.; Terebilin, A.V.; Stryukov, V.A.

    1987-01-01

    In order to evaluate beam utilization efficiency, measure the radiation yield, and determine the cost effectiveness of the new technologies, it is necessary to know the radiation power of the electron beam absorbed by the reacting medium. To measure the electron-beam power the authors designed, built, and tested a radiation detector combining a Faraday cylinder with a continuous-flow calorimeter. The construction of the detector is shown. The radiation detector was tested on a number of electron accelerators. The beam-power and mean-electron-energy measurement results for the LUE-8M accelerator with 8 MeV maximum electron energy are given

  10. Measurement of Ay(θ) for n+208Pb from 6 to 10 MeV and the neutron-nucleus interaction over the energy range from bound states at -17 MeV up to scattering at 40 MeV

    International Nuclear Information System (INIS)

    Roberts, M.L.; Felsher, P.D.; Weisel, G.J.; Chen, Z.; Howell, C.R.; Tornow, W.; Walter, R.L.; Horen, D.J.

    1991-01-01

    High-accuracy measurements of A y (θ) data for elastic scattering and inelastic scattering to the first excited state for n+ 208 Pb have been performed at 6, 7, 8, 9, and 10 MeV. In addition, σ(θ) was measured at 8 MeV. These data provide an important subset for the growing database for the n+ 208 Pb system from bound-state energies to energies above 40 MeV, the limit of the range of interest here. This database has been interpreted via several approaches. First, a conventional Woods-Saxon spherical optical was used to obtain three potential representations for the energy range from 4 to 40 MeV: ''best fits'' at each energy, constant-geometry global fit with linear energy dependences for the potential strengths for the range 4.0--40 MeV, and an extension of the latter model to allow a linear energy dependence on the radii and diffuseness. A preference for a complex spin-orbit interaction was observed in all cases. Second, the dispersion relation was introduced into the spherical optical model to obtain a more ''realistic'' representation. In our approach, the strength and shape of the real potential was modified by calculating the dispersion-relation contributions that originate from the presence of the surface and volume imaginary terms. Two potentials were developed, one based only on the scattering data (from 4.0 to 40 MeV) and another based additionally on single-particle and single-hole information down to a binding energy of 17 MeV. In addition, the σ(θ) and A y (θ) measurements were compared to earlier conventional and dispersion-relation models. One of the latter of these included an l dependence in the absorptive surface term, and we applied this model in the 6- to 10-MeV region to describe all the σ(θ) and the new A y (θ)

  11. Experimental study of high-energy resolution lead/scintillating fiber calorimetry in the 600-1200 MeV energy region

    International Nuclear Information System (INIS)

    Bellini, V.; Bianco, S.; Capogni, M.; Casano, L.; D'Angelo, A.; Fabbri, F.L.; Ghio, F.; Giardoni, M.; Girolami, B.; Hu, L.; Levi Sandri, P.; Moricciani, D.; Nobili, G.; Passamonti, L.; Russo, V.; Sarwar, S.; Schaerf, C.

    1997-01-01

    An experimental investigation has been carried out on the properties of electromagnetic shower detectors, composed of a uniform array of plastic scintillating fibers and lead (50:35 by volume ratio) for photons in the energy range 600-1200 MeV. When the photon's incidence angle to the fiber axis is within ±2 circle an energy resolution of σ E /E(%)=5.12/√(E[GeV])+1.71 has been observed. (orig.)

  12. Thermoluminescent response of LiF: Mg, Cu, P (GR-200) below an electron beam of 6 MeV

    International Nuclear Information System (INIS)

    Torijano C, E.F.S.; Azorin N, J.; Villasenor N, I.; Lujan C, P.J.; Rivera M, T.

    2007-01-01

    Full text: In this work the experimental results of studying the thermoluminescent response (TL) of LiF:Mg,Cu,P (GR-200) previously irradiated with 6 MeV electrons are presented. The electrons beam was generated by a Lineal Accelerator VARIAN I for medical use. The lineal accelerator is installed in the General Hospital of Mexico (HGM). A lot of 25 thermoluminescent dosemeters (DTL) was used. The mass and volume of each one of them were determined. Obtaining a variation of 14% in standard deviation (SD). The DTLs were irradiated to an energy of 6 MeV. The dose given to the DTL was of 50 c Gy. The linearity of the response of the GR-200 also was determined. (Author)

  13. Measurement of omega, the energy required to create an ion pair, for 150-MeV protons in nitrogen and argon

    International Nuclear Information System (INIS)

    Petti, P.L.

    1985-01-01

    The purpose of this thesis is to provide a 1% measurement of omega, the energy required to produce an ion pair, for 150 MeV protons in various gases. Such a measurement should improve the accuracy of proton ionization chamber dosimetry at the Harvard Cyclotron Laboratory. Currently, no measurements of omega exist in the energy range of 30 to 150 MeV, and present ionization chamber dosimetry at the Cyclotron relies on average values of measurements at lower and higher energies (i.e. for E < 3 MeV and E = 340 MeV). Contrary to theoretical expectations, these low and high energy data differ by as much as 9% in some gases. The results of this investigation demonstrate that the existing high energy data is probably in error, and current proton ionization chamber dosimetry underestimates omega, and hence the proton dose, by 5%

  14. Measurement of electron- and ion beam energies and currents in a plasma focus discharge

    International Nuclear Information System (INIS)

    Yamamoto, Toshikazu; Kondoh, Yoshiomi; Shimoda, Katsuji; Hirano, Katsumi

    1982-01-01

    Measurements of energetic particle beams in a plsma focus with a Mather type device are presented. Rogowski coils are used for time-resolved measurement, and solid-state nuclear track detectors for time-integrated measurement of the beams. In the upstream direction with respect to the discharge current, only the electron beam with the maximum current of several kA was detected, which was approximately one percent of the discharge current. The electron energies of the beam were spread from 0.1 to 1 MeV. In the downstream direction, two successive emissions of ions were observed. The first emission had an extremely high energy of the order of some MeV and a low beam current of less than 10 A. The second emission, the main part of the ion beam, with energies of 100 - 800 keV, followed the first one with a time lag of several tens of nanoseconds, and the beam current reached several tens of amperes. (author)

  15. Precision electron polarimetry

    International Nuclear Information System (INIS)

    Chudakov, E.

    2013-01-01

    A new generation of precise Parity-Violating experiments will require a sub-percent accuracy of electron beam polarimetry. Compton polarimetry can provide such accuracy at high energies, but at a few hundred MeV the small analyzing power limits the sensitivity. Mo/ller polarimetry provides a high analyzing power independent on the beam energy, but is limited by the properties of the polarized targets commonly used. Options for precision polarimetry at 300 MeV will be discussed, in particular a proposal to use ultra-cold atomic hydrogen traps to provide a 100%-polarized electron target for Mo/ller polarimetry

  16. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  17. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  18. Response of Inorganic Scintillators to Neutrons of 3 and 15 MeV Energy

    CERN Document Server

    Lucchini, M; Pizzichemi, M; Chipaux, R; Jacquot, F; Mazue, H; Wolff, H; Lecoq, P; Auffray, E

    2014-01-01

    In the perspective of the development of future high energy physics experiments, homogeneous calorimeters based on inorganic scintillators can be considered for the detection of hadrons (e.g., calorimeter based on dual-readout technique). Although of high importance in the high energy physics framework as well as for homeland security applications, the response of these inorganic scintillators to neutrons has been only scarcely investigated. This paper presents results obtained using five common scintillating crystals (of size around 2x2x2 cm 3), namely lead tungstate (PbWO4), bismuth germanate (BGO), cerium fluoride (CeF3), Ce-doped lutetium-yttrium orthosilicate (LYSO:Ce) and lutetium aluminum garnet (LuAG:Ce) in a pulsed flux of almost mono-energetic (similar to 3 MeV and similar to 15 MeV) neutrons provided by the Van de Graff accelerator SAMES of CEA Valduc. Energy spectra have been recorded, calibrated and compared with Geant4 simulations computed with different physics models. The neutron detection eff...

  19. The effect of magnetic field strength on the time evolution of high energy bremsstrahlung radiation created by an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Jones, P.; Peura, P.; Kalvas, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); Suominen, P. [Prizztech Ltd/Magnet Technology Centre, Tiedepuisto 4, FI-28600 Pori (Finland); Koivisto, H.; Arje, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2009-03-11

    An electron cyclotron resonance (ECR) ion source is one of the most used ion source types for high charge state heavy ion production. In ECR plasma the electrons are heated by radio frequency microwaves in order to provide ionization of neutral gases. As a consequence, ECR heating also generates very high electron energies (up to MeV region) which can produce a vast amount of bremsstrahlung radiation causing problems with radiation shielding and heating superconducting cryostat of an ECR ion source. To gain information about the time evolution of the electron energies in ECR plasma radial bremsstrahlung measurements were performed. JYFL 14 GHz ECR ion source was operated in pulsed mode and time evolution measurements were done with different axial magnetic field strengths with oxygen and argon plasmas. Bremsstrahlung data were analyzed with a time interval of 2 ms yielding information at unprecedented detail about the time evolution of high energy bremsstrahlung radiation from an ECR ion source. It was observed, for example, that reaching the steady state phase of the plasma bremsstrahlung requires several hundred milliseconds and the steady state time can be different with different gases.

  20. Numerical simulation of electrons dynamics in a microtron on 6 - 10 MeV

    Science.gov (United States)

    Bashmakov, Y. A.; Dyubkov, V. S.; Lozeev, Y. Y.

    2017-12-01

    Electron dynamics in 6.5 MeV classic microtron of the Lebedev Physics Institute (LPI) is investigated by means of numerical methods. Particular emphasis is placed on the formation mechanism of electron bunches at the first circular orbits. An effect of microtron main parameters such as accelerating RF field amplitude, DC magnetic field, as well as a geometry and a position of a thermal emitter on characteristics of electron beam extracted from the microtron are studied. In the space of mentioned parameters a region corresponding an optimal microtron operation mode is found. It is noted that the unique geometric and energy characteristics of accelerated beam makes use of microtron attractive not only as injector into a synchrotron, but also as a driver in experiments on generation of coherent terahertz electromagnetic radiation.

  1. Analysis of the proton-induced reactions at 150 MeV - 24 GeV by high energy nuclear reaction code JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Nara, Yasushi; Takada, Hiroshi; Nakashima, Hiroshi; Chiba, Satoshi; Ikeda, Yujiro

    1999-09-01

    We are developing a nucleon-meson transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI. NMTC/JAM implements the high energy nuclear reaction code JAM for the infra-nuclear cascade part. By using JAM, the upper limits of the incident energies in NMTC/JAERI, 3.5 GeV for nucleons and 2.5 GeV for mesons, are increased drastically up to several hundreds GeV. We have modified the original JAM code in order to estimate the residual nucleus and its excitation energy for nucleon or pion induced reactions by assuming a simple model for target nucleus. As a result, we have succeeded in lowering the applicable energies of JAM down to about 150 MeV. In this report, we describe the main components of JAM code, which should be implemented in NMTC/JAM, and compare the results calculated by JAM code with the experimental data and with those by LAHET2.7 code for proton induced reactions from 150 MeV to several 10 GeV. It has been found that the results of JAM can reproduce quite well the experimental double differential cross sections of neutrons and pions emitted from the proton induced reactions from 150 MeV to several 10 GeV. On the other hand, the results of LAHET2.7 show the strange behavior of the angular distribution of nucleons and pions from the reactions above 4 GeV. (author)

  2. The application analysis of high energy electron accelerator in food irradiation processing

    International Nuclear Information System (INIS)

    Deng Wenmin; Chen Hao; Feng Lei; Zhang Yaqun; Chen Xun; Li Wenjun; Xiang Chengfen; Pei Ying; Wang Zhidong

    2012-01-01

    Irradiation technology of high energy electron accelerator has been highly concerned in food processing industry with its fast development, especially in the field of food irradiation processing. In this paper, equipment and research situation of high energy electron accelerator were collected, meanwhile, the similarities and differences between high energy electron beam and 60 Co γ-rays were discussed. In order to provide more references of high energy electron beam irradiation, the usages of high energy electron in food irradiation processing was prospected. These information would promote the development of domestic food irradiation industry and give a useful message to irradiation enterprises and researchers. (authors)

  3. Non-Proportionality of Electron Response and Energy Resolution of Compton Electrons in Scintillators

    Science.gov (United States)

    Swiderski, L.; Marcinkowski, R.; Szawlowski, M.; Moszynski, M.; Czarnacki, W.; Syntfeld-Kazuch, A.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-02-01

    Non-proportionality of light yield and energy resolution of Compton electrons in three scintillators (LaBr3:Ce, LYSO:Ce and CsI:Tl) were studied in a wide energy range from 10 keV up to 1 MeV. The experimental setup was comprised of a High Purity Germanium detector and tested scintillators coupled to a photomultiplier. Probing the non-proportionality and energy resolution curves at different energies was obtained by changing the position of various radioactive sources with respect to both detectors. The distance between both detectors and source was kept small to make use of Wide Angle Compton Coincidence (WACC) technique, which allowed us to scan large range of scattering angles simultaneously and obtain relatively high coincidence rate of 100 cps using weak sources of about 10 μCi activity. The results are compared with those obtained by direct irradiation of the tested scintillators with gamma-ray sources and fitting the full-energy peaks.

  4. The role of phantom and treatment head generated bremsstrahlung in high-energy electron beam dosimetry

    International Nuclear Information System (INIS)

    Sorcini, B.B.; Hyoedynmaa, S.; Brahme, A.

    1996-01-01

    An analytical expression has been derived for the phantom generated bremsstrahlung photons in plane-parallel monoenergetic electron beams normally incident on material of any atomic number (Be, H 2 O, Al, Cu and U). The expression is suitable for the energy range from 1 to 50 MeV and it is solely based on known scattering power and radiative and collision stopping power data for the material at the incident electron energy. The depth dose distribution due to the bremsstrahlung generated by the electrons in the phantom is derived by convolving the bremsstrahlung energy fluence produced in the phantom with a simple analytical energy deposition kernel. The kernel accounts for both electrons and photons set in motion by the bremsstrahlung photons. The energy loss by the primary electrons, the build-up of the electron fluence and the generation, attenuation and absorption of bremsstrahlung photons are all taken into account in the analytical formula. The longitudinal energy deposition kernel is derived analytically and it is consistent with both the classical biexponential relation describing the photon depth dose distribution and the exponential attenuation of the primary photons. For comparison Monte Carlo calculated energy deposition distributions using ITS3 code were used. Good agreement was found between the results with the analytical expression and the Monte Carlo calculation. For tissue equivalent materials, the maximum total energy deposition differs by less than 0.2% from Monte Carlo calculated dose distributions. The result can be used to estimate the depth dependence of phantom generated bremsstrahlung in different materials in therapeutic electron beams and the bremsstrahlung production in different electron absorbers such as scattering foils, transmission monitors and photon and electron collimators. By subtracting the phantom generated bremsstrahlung from the total bremsstrahlung background the photon contamination generated in the treatment head can be

  5. Effects produced in GaAs by MeV ion bombardment

    International Nuclear Information System (INIS)

    Wie, C.R.

    1985-01-01

    The first part of this thesis presents work performed on the ionizing energy beam induced adhesion enhancement of thin (approx.500 A) Au films on GaAs substrates. The ionizing beam, employed in the present thesis, is the MeV ions (i.e., 16 O, 19 F, and 35 Cl), with energies between 1 and 20 MeV. Using the Scratch test for adhesion measurement, and ESCA for chemical analysis of the film substrate interface, the native oxide layer at the interface is shown to play an important role in the adhesion enhancement by the ionizing radiation. A model is discussed that explains the experimental data on the dependence of adhesion enhancement on the energy which was deposited into electronic processes at the interface. The second part of the thesis presents research results on the radiation damage in GaAs crystals produced by MeV ions. Lattice parameter dilatation in the surface layers of the GaAs crystals becomes saturated after a high dose bombardment at room temperature. The strain produced by nuclear collisions is shown to relax partially due to electronic excitation (with a functional dependence on the nuclear and electronic stopping power of bombarding ions. Data on the GaAs and GaP crystals suggest that low temperature recovery stage defects produce major crystal distortion

  6. Irradiation of electron with high energy induced micro-crystallization of amorphous silicon

    International Nuclear Information System (INIS)

    Zhong Yule; Huang Junkai; Liu Weiping; Li Jingna

    2001-01-01

    Amorphous silicon is amorphous alloy of Si-H. It is random network of silicon with some hydrogen. And its structure has many unstable bonds as weak bonds of Si-Si and distortion bonds of all kinds. The bonds was broken or was out of shape by light and electrical ageing. It induced increase of defective state that causes character of material going to bad. This drawback will be overcome after micro-crystallization of amorphous silicon. It was discovered that a-Si:H was micro-crystallized by irradiated of electrons with energy of 0.3-0.5 MeV, density of electronic beam of 1.3 x 10 19 cm -1 s -1 and irradiated time of 10-600 s. Size of grain is 10-20 nm. Thick of microcrystalline lager is 25-250 nm

  7. Geant4 simulations of the absorption of photons in CsI and NaI produced by electrons with energies up to 4 MeV and their application to precision measurements of the β-energy spectrum with a calorimetric technique

    Science.gov (United States)

    Huyan, X.; Naviliat-Cuncic, O.; Voytas, P.; Chandavar, S.; Hughes, M.; Minamisono, K.; Paulauskas, S. V.

    2018-01-01

    The yield of photons produced by electrons slowing down in CsI and NaI was studied with four electromagnetic physics constructors included in the Geant4 toolkit. The subsequent absorption of photons in detector geometries used for measurements of the β spectrum shape was also studied with a focus on the determination of the absorption fraction. For electrons with energies in the range 0.5-4 MeV, the relative photon yields determined with the four Geant4 constructors differ at the level of 10-2 in amplitude and the relative absorption fractions differ at the level of 10-4 in amplitude. The differences among constructors enabled the estimation of the sensitivity to Geant4 simulations for the measurement of the β energy spectrum shape in 6He decay using a calorimetric technique with ions implanted in the active volume of detectors. The size of the effect associated with photons escaping the detectors was quantified in terms of a slope which, on average, is respectively - 5 . 4 %/MeV and - 4 . 8 %/MeV for the CsI and NaI geometries. The corresponding relative uncertainties as determined from the spread of results obtained with the four Geant4 constructors are 0.0067 and 0.0058.

  8. Scattering of 14. 0 MeV electrons. Fundamental study of the scattering foil. [Angular distribution, 14. 0 MeV, gaussian distribution

    Energy Technology Data Exchange (ETDEWEB)

    Takei, C [Kyushu Univ., Fukuoka (Japan). School of Health Sciences; Yoshimoto, S

    1977-07-01

    The angular distribution of 14.0 MeV electrons scattered by thin Al and Pb foils has been measured, since the beam flatness is important on the high energy electron therapy. These distributions measured were almost completely Gaussian. The root mean square scattering angles were obtained and were compared with the theories of Williams and Rossi. In our experiments the root mean square scattering angles obtained have the experimental errors of about 4% and 1% for 5/sup 0/ and 10/sup 0/, respectively. For Al foils of 0.5 mm to 3.0 mm the experimental values of the root mean square scattering angles are 5.49/sup 0/ and 12.43/sup 0/ and are 30% to 10% higher than those predicted by Williams. Although, these values are 4% to 9% lower than those calculated from the theory of Rossi. The root mean square scattering angles obtained with Pb foils of 0.1 mm to 0.3 mm are 9.62/sup 0/ to 18.05/sup 0/ and are 14% to 18% higher than Williams, and are 14% to 7% lower than those theoretically calculated by Rossi.

  9. High-energy electron beam irradiation of Al-doped ZnO thin films deposited at room temperature

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Hwang, Jong-Ha; Lee, Byung-Cheol; Jung, Myung-Hee

    2011-01-01

    In this research, we demonstrated the effects of high-energy electron beam irradiation (HEEBI) on the optical and structural properties of Al-doped ZnO (AZO) films grown on transparent corning glass substrates at room temperature (RT) by using a radio-frequency magnetron sputtering technique. The AZO thin films were treated with HEEBI in air at RT at an electron beam energy of 0.8 MeV and doses of 1 x 10 14 - 1 x 10 16 electrons/cm 2 . The photoluminescence (PL) measurements revealed that the dominant peak at 2.77 eV was a blue emission originating from donor-like defects, oxygen vacancies (V o ), suggesting that the n-type conductivity was preserved in HEEBI-treated films. On the basis of PL, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy results, we suggest that the density of V o donor defects is decreased due to in-diffusion of oxygen from the ambient into the films after HEEBI treatment at low doses up to 10 15 electrons/cm 2 while the opposite phenomenon can occur with further increase in the dose. We also found from the XRD analysis that the worse crystallinity with a smaller grain size was observed in HEEBI-treated AZO films at a higher dose, corresponding to a higher oxygen fraction in the films. We believe that our results will contribute to developing high-quality AZO-based materials and devices for space applications.

  10. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    International Nuclear Information System (INIS)

    Moiseev, Alexander; Ormes, J.F.; Funk, Stefan

    2007-01-01

    The LAT science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to ∼1.5 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30%, the residual hadron contamination does not exceed 2-3% of the electron flux. It is expected to collect ∼ ten million of electrons with the energy above 20 GeV for one year of observation. Precise spectrum reconstruction with collected electron statistics opens the unique opportunity to investigate several important problems such as models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and search for KKDM particles decay through their contribution to the electron spectrum

  11. Effective atomic numbers, electron densities and kinetic energy released in matter of vitamins for photon interaction

    Science.gov (United States)

    Shantappa, A.; Hanagodimath, S. M.

    2014-01-01

    Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.

  12. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  13. High energy electron irradiation effects on Ga-doped ZnO thin films for optoelectronic space applications

    Science.gov (United States)

    Serrao, Felcy Jyothi; Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2018-03-01

    Gallium-doped ZnO (GZO) thin films of thickness 394 nm were prepared by a simple, cost-effective sol-gel spin coating method. The effect of 8 MeV electron beam irradiation with different irradiation doses ranging from 0 to 10 kGy on the structural, optical and electrical properties was investigated. Electron irradiation influences the changes in the structural properties and surface morphology of GZO thin films. X-ray diffraction analysis showed that the polycrystalline nature of the GZO films is unaffected by the high energy electron irradiation. The grain size and the surface roughness were found maximum for the GZO film irradiated with 10 kGy electron dosage. The average transmittance of GZO thin films decreased after electron irradiation. The optical band gap of Ga-doped ZnO films was decreased with the increase in the electron dosage. The electrical resistivity of GZO films decreased from 4.83 × 10-3 to 8.725 × 10-4 Ω cm, when the electron dosage was increased from 0 to 10 kGy. The variation in the optical and electrical properties in the Ga-doped ZnO thin films due to electron beam irradiation in the present study is useful in deciding their compatibility in optoelectronic device applications in electron radiation environment.

  14. On possibility of high energy electron irradiation usage for material alloying

    International Nuclear Information System (INIS)

    Vladimirskij, R.A.; Livshits, V.B.; Payuk, V.A.; Plotnikov, S.V.; Kuz'minykh, V.A.

    1988-01-01

    Review of papers concerning over 2.5 MeV fast electron beam (FEB) irradiation of metals and semiconductors is made. It makes possible to transform physical and mechanical properties ofsurface layers due to their alloyage with different elements or due to redistribution of alloy impurities at the essential depth. It is shown, that electron beam irradiation of materials results in the formation of essential temperature gradient in the sample near the surface and defect nonequilibrium concentration. Along with the increase of diffusion effective ratio the heterogeneous distribution of temperature and defects results in the formation of atom nucompensated fluxes within the sample, which result in element redistribution. Drift of one element through the layer of the second one occurs as a result. Gradient of temperature and defects, amfient temperature and correlation of migration activation energies of element atoms are considered as determining factors at anomalous mass transfer

  15. Generation and application of 15 to 30 MeV parametric X-ray by linac

    CERN Document Server

    Akimoto, T

    2002-01-01

    15 to 30 MeV parametric X-ray (PXR) was generated using Si single crystal by 45 MeV electron LINAC. To obtain good monochromatic hard X-ray field, the appropriate conditions were determined by theoretical analysis and experiments. The intensity of PXR was increased with increasing electron energy and crystal rotation angle. However, PXR energy is independent of electron energy. By increasing measurement angle, energy of PXR decreased, but its intensity increased. 15 to 30 keV PXR energy and about 10 sup - sup 5 to 10 sup - sup 6 photon/electron of intensity were observed at 15 to 22 deg detection angle under the operation conditions of 45 MeV electron energy and 4 to 8 nA of beam current. The mass attenuation coefficient of photon of Zr, Nb and Mo, in K absorption edge was measured. Application to determine lattice distortion of target sample and off-angle of crystal was investigated. Generation and detection of PXR, measurement of characteristic properties: crystal rotation angle, detection angle, electron e...

  16. Electronic energy distribution function at high electron swarm energies in neon

    International Nuclear Information System (INIS)

    Brown, K.L.; Fletcher, J.

    1995-01-01

    Electron swarms moving through a gas under the influence of an applied electric field have been extensively investigated. Swarms at high energies, as measured by the ratio of the applied field to the gas number density, E/N, which are predominant in many applications have, in general, been neglected. Discharges at E/N in the range 300 0 < 133 Pa using a differentially pumped vacuum system in which the swarm electrons are extracted from the discharge and energy analysed in both a parallel plate retarded potential analyser and a cylindrical electrostatic analyser. Both pre-breakdown and post-breakdown discharges have been studied. Initial results indicate that as the discharge traverses breakdown no sudden change in the nature of the discharge occurs and that the discharge can be described by both a Monte Carlo simulation and by a Boltzmann treatment given by Phelps et al. (1987). 18 refs., 8 figs

  17. Two-section linear direct-current accelerator of 1.2 MeV electrons. Mean beam current of 50 mA

    International Nuclear Information System (INIS)

    Alimov, A.S.; Ermakov, D.I.; Ishkhanov, B.S.; Shvedunov, V.I.; Sakharov, V.P.; Trower, W.P.

    2002-01-01

    The theoretical and experimental results, obtained by simulation, creation and start-up of the two-section linear electron accelerator, are presented. The following beam parameters: beam current of 49 mA, mean energy of 1.2 MeV, of 59 kV, normalized emittance of 11 mm mrad are determined on the basis of the data on the beam dynamics simulation and the accelerating structure optimization. Special attention is paid to the choice of the version of the SHF-supply system of the two-section accelerator. The version of the SHF-supply system, based on the sections phasing, operating in the auto-oscillation model by means of the synchronizing signal from the feedback chain of the first section into the feedback chain of the second section, is considered. The electron beam parameters on the accelerator outlet (beam current - 44 mA, beam energy - 1.15 MeV, beam efficiency - 50.6 kW) proved to be close to the simulation results [ru

  18. Electron energy and charge albedos - calorimetric measurement vs Monte Carlo theory

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Ruggles, L.E.; Miller, G.H.; Halbleib, J.A.

    1981-11-01

    A new calorimetric method has been employed to obtain saturated electron energy albedos for Be, C, Al, Ti, Mo, Ta, U, and UO 2 over the range of incident energies from 0.1 to 1.0 MeV. The technique was so designed to permit the simultaneous measurement of saturated charge albedos. In the cases of C, Al, Ta, and U the measurements were extended down to about 0.025 MeV. The angle of incidence was varied from 0 0 (normal) to 75 0 in steps of 15 0 , with selected measurements at 82.5 0 in Be and C. In each case, state-of-the-art predictions were obtained from a Monte Carlo model. The generally good agreement between theory and experiment over this extensive parameter space represents a strong validation of both the theoretical model and the new experimental method. Nevertheless, certain discrepancies at low incident energies, especially in high-atomic-number materials, and at all energies in the case of the U energy albedos are not completely understood

  19. High energy electron multibeam diffraction and imaging

    International Nuclear Information System (INIS)

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  20. Production of low energy gamma rays by neutron interactions with fluorine for incident neutron energies between 0.1 and 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.; Dickens, J.K.

    1975-06-01

    Differential cross sections for the production of low-energy gamma rays (less than 240 keV) by neutron interactions in fluorine have been measured for neutron energies between 0.1 and 20 MeV. The Oak Ridge Electron Linear Accelerator was used as the neutron source. Gamma rays were detected at 92 0 using an intrinsic germanium detector. Incident neutron energies were determined by time-of-flight techniques. Tables are presented for the production cross sections of three gamma rays having energies of 96, 110, and 197 keV. (14 figures, 3 tables) (U.S.)

  1. Confinement of 2,4 MeV deuterons by plasmoids and focalization of electron beams in plasma focus discharges

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.; Prior, W.; Feugeas, J.; Bortolotti, A.

    1982-01-01

    A detailed analysis has been completed on the internal structure of ions and electron beams which are efected, along the system axis, in opposite directions (0 0 and 180 0 ). An image (contact print) of plasmoids which emit MeV deuterons is formed by the deuteron emission and it is revealed by etching deuteron tracks in a target of plastic material (CR-39). Ion-imaging with different energy filters discriminates between tracks of plasmoid ions and tracks of charged products of D-D fusion reactions. Ions-imaging can also discriminate plasmoid deuterons from MeV deuterons of a directed beam. (L.C.) [pt

  2. Thermoluminescent characteristics of CaSO4:Dy+PTFE irradiated with high energy electron beams

    International Nuclear Information System (INIS)

    Alvarez, R.; Rivera, T.; Calderon, J. A.; Jimenez, Y.; Rodriguez, J.; Oviedo, O.; Azorin, J.

    2011-10-01

    In the present work thermoluminescent response of dysprosium doped calcium sulfate embedded in polytetrafluorethylene (CaSO 4 :Dy+PTFE) under high electron beam irradiations from linear accelerator for clinical applications was investigated. The irradiations were carried out using high electron beams (6 to 18 MeV) from a linear accelerator Varian, C linac 2300C/D, for clinical practice purpose. The electron irradiations were obtained by using the water solid in order to guarantee electronic equilibrium conditions. Field shaping for electron beams was obtained with electron cones. Glow curve and other thermoluminescent characteristics of CaSO 4 :Dy+PTFE were conducted under high electron beams irradiations. The thermoluminescent response of the pellets showed and intensity peak centered at around 235 C. Thermoluminescent response of CaSO 4 :Dy+PTFE as a function of high electron absorbed dose showed a linearity in a wide range. To obtain reproducibility characteristic, a set of pellets were exposed repeatedly for the same electron absorbed dose. The results obtained in this study can suggest the applicability of CaSO 4 :Dy+PTFE pellets for high electron beam dosimetry, provided fading is correctly accounted for. (Author)

  3. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  4. Plasma Photonic Devices for High Energy Density Science

    International Nuclear Information System (INIS)

    Kodama, R.

    2005-01-01

    High power laser technologies are opening a variety of attractive fields of science and technology using high energy density plasmas such as plasma physics, laboratory astrophysics, material science, nuclear science including medical applications and laser fusion. The critical issues in the applications are attributed to the control of intense light and enormous density of charged particles including efficient generation of the particles such as MeV electrons and protons with a current density of TA/cm2. Now these application possibilities are limited only by the laser technology. These applications have been limited in the control of the high power laser technologies and their optics. However, if we have another device consisted of the 4th material, i.e. plasma, we will obtain a higher energy density condition and explore the application possibilities, which could be called high energy plasma device. One of the most attractive devices has been demonstrated in the fast ignition scheme of the laser fusion, which is cone-guiding of ultra-intense laser light in to high density regions1. This is one of the applications of the plasma device to control the ultra-intense laser light. The other role of the devices consisted of transient plasmas is control of enormous energy-density particles in a fashion analogous to light control with a conventional optical device. A plasma fibre (5?m/1mm), as one example of the devices, has guided and deflected the high-density MeV electrons generated by ultra-intense laser light 2. The electrons have been well collimated with either a lens-like plasma device or a fibre-like plasma, resulting in isochoric heating and creation of ultra-high pressures such as Giga bar with an order of 100J. Plasmas would be uniquely a device to easily control the higher energy density particles like a conventional optical device as well as the ultra-intense laser light, which could be called plasma photonic device. (Author)

  5. HIGH-ENERGY PARTICLES FLUX ORIGIN IN THE CLOUDS, DARK LIGHTNING

    Directory of Open Access Journals (Sweden)

    Kuznetsov, V.V.

    2016-11-01

    Full Text Available Problem of high-energy particles flux origin in clouds is discussed. Conditions in which dark lightning preceding the ordinary one and creating additional ionization, fluxes of fast electrons with MeV energy prior to the earthquake detected among lightning initiating ball-lightning, glow, sprites are considered. All above phenomena appear to be of general nature founded on quantum entanglement of hydrogen bonds protons in water clasters inside clouds.

  6. Electromagnetic cascades produced by gamma-quanta with the energy Eγ=100-3500 MeV

    International Nuclear Information System (INIS)

    Slowinski, B.

    1990-01-01

    Fluctuations of the electron ionization loss (IL) in electromagnetic showers produced by gamma-quanta of energy E γ between 100 and 3500 MeV have been studied using pictures of the 180 l xenon bubble chamber of ITEP (Moscow). The distribution of the standard deviation σ A of the part A of the IL released along the shower axis and in its lateral direction was obtained and found to be approximately independent of Eγ at Eγ≥500 MeV when expressed as a fuction of A and normalized to maximum value of the σ A in the case of the lateral shower development. The relative spread of the average longitudinal and lateral e.m. shower dimensions are discussed too. 18 refs.; 4 figs

  7. Accurate transport simulation of electron tracks in the energy range 1 keV-4 MeV

    International Nuclear Information System (INIS)

    Cobut, V.; Cirioni, L.; Patau, J.P.

    2004-01-01

    Multipurpose electron transport simulation codes are widely used in the fields of radiation protection and dosimetry. Broadly based on multiple scattering theories and continuous energy loss stopping powers with some mechanism taking straggling into account, they give reliable answers to many problems. However they may be unsuitable in some specific situations. In fact, many of them are not able to accurately describe particle transport through very thin slabs and/or in high atomic number materials, or also when knowledge of high-resolution depth dose distributions is required. To circumvent these deficiencies, we developed a Monte Carlo code simulating each interaction along electron tracks. Gas phase elastic cross sections are corrected to take into account solid state effects. Inelastic interactions are described within the framework of the Martinez et al. [J. Appl. Phys. 67 (1990) 2955] theory intended to deal with energy deposition in both condensed insulators and conductors. The model described in this paper is validated for some materials as aluminium and silicon, encountered in spectrometric and dosimetric devices. Comparisons with experimental, theoretical and other simulation results are made for angular distributions and energy spectra of transmitted electrons through slabs of different thicknesses and for depth energy distributions in semi-infinite media. These comparisons are quite satisfactory

  8. On the possibility of obtaining high-energy polarized electrons on Yerevan synchrotron

    International Nuclear Information System (INIS)

    Melikyan, R.A.

    1975-01-01

    A possibility of producing high-energy polarized electrons on the Yerevan synchrotron is discussed. A review of a number of low-energy polarized electron sources and of some of experiments with high-energy polarized electrons is given

  9. A common origin of all the species of high energy cosmic rays?

    CERN Document Server

    Dar, Arnon; Antoniou, Nikos; Dar, Arnon; Antoniou, Nikos

    2000-01-01

    The cosmic ray nuclei with energy above a few GeV, the cosmic ray electrons of energy above a few MeV and the diffuse gamma-ray background above a few MeV, could all predominantly originate from our galaxy {\\it and its halo}. The mechanism accelerating hadrons and electrons is the same, the electron spectrum is modulated by inverse Compton scattering on the microwave background radiation, and the $\\gamma$-rays are the resulting recoiling photons. The spectra calculated on this basis agree with observations.

  10. Radiation protection of the operation of accelerator facilities. On high energy proton and electron accelerators

    International Nuclear Information System (INIS)

    Kondo, Kenjiro

    1997-01-01

    Problems in the radiation protection raised by accelerated particles with energy higher than several hundreds MeV in strong accelerator facilities were discussed in comparison with those with lower energy in middle- and small-scale facilities. The characteristics in the protection in such strong accelerator facilities are derived from the qualitative changes in the interaction between the high energy particles and materials and from quantitative one due to the beam strength. In the former which is dependent on the emitting mechanism of the radiation, neutron with broad energy spectrum and muon are important in the protection, and in the latter, levels of radiation and radioactivity which are proportional to the beam strength are important. The author described details of the interaction between high energy particles and materials: leading to the conclusion that in the electron accelerator facilities, shielding against high energy-blemsstrahlung radiation and -neutron is important and in the proton acceleration, shielding against neutron is important. The characteristics of the radiation field in the strong accelerator facilities: among neutron, ionized particles and electromagnetic wave, neutron is most important in shielding since it has small cross sections relative to other two. Considerations for neutron are necessary in the management of exposure. Multiplicity of radionuclides produced: which is a result of nuclear spallation reaction due to high energy particles, especially to proton. Radioactivation of the accelerator equipment is a serious problem. Other problems: the interlock systems, radiation protection for experimenters and maintenance of the equipment by remote systems. (K.H.). 11 refs

  11. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    Science.gov (United States)

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  12. Properties of the electron cloud in a high-energy positron and electron storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Rosenberg, R.A.

    2003-01-01

    Low-energy, background electrons are ubiquitous in high-energy particle accelerators. Under certain conditions, interactions between this electron cloud and the high-energy beam can give rise to numerous effects that can seriously degrade the accelerator performance. These effects range from vacuum degradation to collective beam instabilities and emittance blowup. Although electron-cloud effects were first observed two decades ago in a few proton storage rings, they have in recent years been widely observed and intensely studied in positron and proton rings. Electron-cloud diagnostics developed at the Advanced Photon Source enabled for the first time detailed, direct characterization of the electron-cloud properties in a positron and electron storage ring. From in situ measurements of the electron flux and energy distribution at the vacuum chamber wall, electron-cloud production mechanisms and details of the beam-cloud interaction can be inferred. A significant longitudinal variation of the electron cloud is also observed, due primarily to geometrical details of the vacuum chamber. Such experimental data can be used to provide realistic limits on key input parameters in modeling efforts, leading ultimately to greater confidence in predicting electron-cloud effects in future accelerators.

  13. Study of the thermal oxidation of titanium and zirconium under argon ion irradiation in the low MeV range (E = 15 MeV)

    International Nuclear Information System (INIS)

    Do, N.-L.

    2012-01-01

    We have shown that argon ion irradiation between 1 and 15 MeV produces damage on both titanium and zirconium surfaces, taking the form of accelerated oxidation and/or craterization effects, varying as a function of the projectile energy and the annealing atmosphere (temperature and pressure) simulating the environmental conditions of the fuel/cladding interface of PWR fuel rods. Using AFM, we have shown that the titanium and zirconium surface is attacked under light argon ion bombardment at high temperature (up to 500 C) in weakly oxidizing medium (under rarefied dry air pressure ranging from 5,7 10 -5 Pa to 5 10 -3 Pa) for a fixed fluence of about 5 10 14 ions.cm -2 . We observed the formation of nano-metric craters over the whole titanium surface irradiated between 2 and 9 MeV and the whole zirconium surface irradiated at 4 MeV, the characteristics of which vary depending on the temperature and the pressure. In the case of the Ar/Ti couple, the superficial damage efficiency increases when the projectile energy decreases from 9 to 2 MeV. Moreover, whereas the titanium surface seems to be transparent under the 15-MeV ion beam, the zirconium surface exhibits numerous micrometric craters surrounded by a wide halo. The crater characteristics (size and superficial density) differ significantly from that observed both in the low energy range (keV) where the energy losses are controlled by ballistic collisions (Sn) and in the high energy range (MeV - GeV) where the energy losses are controlled by electronic excitations (Se), which was not completely unexpected in this intermediate energy range for which combined Sn - Se stopping power effects are possibly foreseen. Using XPS associated to ionic sputtering, we have shown that there is an irradiation effect on thermal oxidation of titanium, enhanced under the argon ion beam between 2 and 9 MeV, and that there is also an energy effect on the oxide thickness and stoichiometry. The study conducted using Spectroscopic

  14. Neutron dosimetry at a high-energy electron-positron collider

    Science.gov (United States)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  15. Extension of the calibration of an NE-213 liquid scintillator based pulse height response spectrometer up to 18 MeV neutron energy and leakage spectrum measurements on bismuth at 8 MeV and 18 MeV neutron energies

    International Nuclear Information System (INIS)

    Fenyvesi, A.; Valastyan, I.; Olah, L.; Csikai, J.; Plompen, A.; Jaime, R.; Loevestam, G.; Semkova, V.

    2011-01-01

    Monoenergetic neutrons were produced at the Van de Graaff accelerator of the EC-JRC-Institute for Reference Materials and Measurements (IRMM, Geel, Belgium). An air-jet cooled D_2-gas target (1.2 bar, ΔE_d = 448 keV) was bombarded with E_d =4976 keV deuterons to produce neutrons up to E_n = 8 MeV energy via the D(d,n)"3He reaction. Higher energy neutrons up to E_n = 18 MeV were produced via the T(d,n)"4He reaction by bombarding a TiT target with E_d =1968 keV deuterons. Pulse height spectra were measured at different neutron energies from E_n = 8 MeV up to E_n = 18 MeV with the NE-213 liquid scintillator based Pulse Height Response Spectrometer (PHRS) of UD-IEP. The energy calibration of the PHRS system has been extended up to E_n = 18 MeV. Pulse height spectra induced by gamma photons have been simulated by the GRESP7 code. Neutron induced pulse height spectra have been simulated by the NRESP7 and MCNP-POLIMI codes. Comparison of the results of measurements and simulations enables the improvement of the parameter set of the function used by us to describe the light output dependence of the resolution of the PHRS system at light outputs of L > 2 light units. Also, it has been shown that the derivation method for unfolding neutron spectra from measured pulse height spectra performs well when relative measurements are done up to E_n = 18 MeV neutron energy. For matrix unfolding purposes, the NRESP7 code has to be preferred to calculate the pulse height response matrix of the PHRS system. Leakage spectra of neutrons behind bismuth slabs of different thicknesses have been measured with the PHRS system by using monoenergetic neutrons. The maximum slab thickness was d = 14 cm. Simulations of the measurements have been carried out with the MCNP-4c code. The necessary nuclear cross-sections were taken from the from the ENDF/B-VII and JEFF.3.1 data libraries. For both libraries, the agreement of measured and simulated neutron spectra is good for the 5 MeV ≤ En ≤ 18 MeV

  16. Some energy and angular characteristics of electrons in electromagnetic cascades in air

    International Nuclear Information System (INIS)

    Stanev, T.; Vankov, C.; Petrov, S.; Elbert, J.W.

    1981-01-01

    We discuss the angular distribution of the electrons with threshold energy 20 MeV in electromagnetic showers. Our electrons are at much smaller angles to the shower axis compared with these of Messel and Crawford. This fact will have a serious impact on the angular distribution of the Cerenkov light in air. We also present approximations for the shower profiles of electrons with the same threshold and the lateral distribution of the electron energy flux

  17. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    Howard Bender; Dave Schwellenbach; Ron Sturges; Rusty Trainham

    2008-01-01

    We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials

  18. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    International Nuclear Information System (INIS)

    H. Bender; D. Schwellenbach; R. Sturges; R. Trainham

    2008-01-01

    This paper describes the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as x-ray and electron beam diagnostic development, and recently, electron diffraction studies of phase transitions in shocked materials

  19. Assembly for the measurement of the most probable energy of directed electron radiation

    International Nuclear Information System (INIS)

    Geske, G.

    1987-01-01

    This invention relates to a setup for the measurement of the most probable energy of directed electron radiation up to 50 MeV. The known energy-range relationship with regard to the absorption of electron radiation in matter is utilized by an absorber with two groups of interconnected radiation detectors embedded in it. The most probable electron beam energy is derived from the quotient of both groups' signals

  20. The response of Kodak EDR2 film in high-energy electron beams.

    Science.gov (United States)

    Gerbi, Bruce J; Dimitroyannis, Dimitri A

    2003-10-01

    Kodak XV2 film has been a key dosimeter in radiation therapy for many years. The advantages of the recently introduced Kodak EDR2 film for photon beam dosimetry have been the focus of several IMRT verification dosimetry publications. However, no description of this film's response to electron beams exists in the literature. We initiated a study to characterize the response and utility of this film for electron beam dosimetry. We exposed a series of EDR2 films to 6, 9, 12, 16, and 20 MeV electrons in addition to 6 and 18 MV x rays to develop standard characteristic curves. The linac was first calibrated to ensure that the delivered dose was known accurately. All irradiations were done at dmax in polystyrene for both photons and electrons, all films were from the same batch, and were developed at the same time. We also exposed the EDR2 films in a solid water phantom to produce central axis depth dose curves. These data were compared against percent depth dose curves measured in a water phantom using an IC-10 ion chamber, Kodak XV2 film, and a PTW electron diode. The response of this film was the same for both 6 and 18 MV x rays, but showed an apparent energy-dependent enhancement for electron beams. The response of the film also increased with increasing electron energy. This caused the percent depth dose curves using film to be shifted toward the surface compared to the ion chamber data.

  1. Synthesis of microparticles with complex compositions in a xenon high-pressure chamber (550 bar) under irradiation by braking radiation with a maximum energy of 10 MeV

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Gul'bekyan, G.G.; Myshinskiy, G.V.; Sabel'nikov, A.V.

    2016-01-01

    Natural xenon at a pressure of 550 bar in a high pressure chamber (XeHPC) was irradiated during 2,59 · 10 5 s by bremsstrahlung with a maximum energy of 10 MeV at the electron accelerator MT-25 microtron with an electron beam intensity of 20–22μA. The final electron fluence was 4.74 · 10 19 electrons. The growth of pressure versus temperature during the stationary exposure mode grew at first up to 620 bar and then dropped to 550 bar. After opening of the XeHPC both of the internal chambers with all the structures, but without gas, were measured using a γ-germanium detector (Canberra) during 15 h each for measurement of the background and short-lived isotopes. During a visual inspection of the interior surfaces of the XeHPC inner assembly, a visible coating of substantial thickness and greenish-yellowish color was observed. The research carried out by scanning electron microscopy (SEM) and X-ray micro-probe analysis (XMPA) allowed us to determine the elemental composition of synthesized particles. [ru

  2. Influence of high energy β-radiation on thermoelectric performance of filled skutterudites compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun, E-mail: jikunchen@seas.harvard.edu [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zha, Hao [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Xia, Xugui; Qiu, Pengfei; Li, Yulong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Chuanjing; Han, Yunsheng [Nuctech Company Limited, Beijing (China); Shi, Xun; Chen, Lidong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jin, Qingxiu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); Chen, Huaibi, E-mail: chenhb@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2015-08-15

    Highlights: • Impact by MeV β-rays irradiation on skutterudite TE material was investigated. • Monte-Carlo simulation is used to simulate the deposited energy irradiations. • The high deposited energy does not change the TE performance. • The light irradiation does not show a significant impact on TE materials. - Abstract: The influence of MeV β-rays irradiation on the thermoelectric performance of n-type filled skutterudite material has been investigated using an electron accelerator. Using a Monte-Carlo simulation base on Fluka code, the deposited energy in the sample material from the irradiation is estimated, which shows a large power deposited around 50 W/mm. Nevertheless, the thermoelectric performances of the filled skutterudite samples are compared before and after irradiations. It indicates that the thermoelectric material will not be easily jeopardized by ‘light’ irradiations with energy lower than MeV range.

  3. Influence of high energy β-radiation on thermoelectric performance of filled skutterudites compounds

    International Nuclear Information System (INIS)

    Chen, Jikun; Zha, Hao; Xia, Xugui; Qiu, Pengfei; Li, Yulong; Wang, Chuanjing; Han, Yunsheng; Shi, Xun; Chen, Lidong; Jin, Qingxiu; Chen, Huaibi

    2015-01-01

    Highlights: • Impact by MeV β-rays irradiation on skutterudite TE material was investigated. • Monte-Carlo simulation is used to simulate the deposited energy irradiations. • The high deposited energy does not change the TE performance. • The light irradiation does not show a significant impact on TE materials. - Abstract: The influence of MeV β-rays irradiation on the thermoelectric performance of n-type filled skutterudite material has been investigated using an electron accelerator. Using a Monte-Carlo simulation base on Fluka code, the deposited energy in the sample material from the irradiation is estimated, which shows a large power deposited around 50 W/mm. Nevertheless, the thermoelectric performances of the filled skutterudite samples are compared before and after irradiations. It indicates that the thermoelectric material will not be easily jeopardized by ‘light’ irradiations with energy lower than MeV range

  4. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    International Nuclear Information System (INIS)

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-01-01

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10 7 photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 (micro)m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials

  5. Electron energy device for LINAC based Pulse Radiolysis Facility of RPCD

    International Nuclear Information System (INIS)

    Toley, M.A.; Shinde, S.J.; Chaudhari, B.B.; Sarkar, S.K.

    2015-07-01

    The pulse radiolysis facility is the experimental centerpiece of the radiation chemistry activities of the Radiation and Photochemistry Division (RPCD) of Bhabha Atomic Research Centre. This facility was created in 1986 which is based on a 7 MeV Linear Electron Accelerator (LINAC) procured from M/s Radiation Dynamics Ltd., UK. The electron energy is one of the principal parameters that influence the dose distribution within the sample irradiated with a beam of energetic electrons. An easy-to-use and robust device has been developed that can reliably detect day-today small variations in the beam energy. It consists of two identical aluminum plates except for their thickness, which are electrically insulated from each other. The thickness of each plate is carefully selected depending on the electron beam energy. The charge (or current) collected by each plate, under irradiation is measured. The ratio of the charge (or current) signal from the front plate to the sum of the signals from the front and rear plates is very sensitive to the beam energy. The high sensitivity and robustness make this device quite suitable for Electron energy measurement for Pulse radiolysis Facility at RPCD. (author)

  6. Neutron scattering investigation of magnetic excitations at high energy transfers

    International Nuclear Information System (INIS)

    Loong, C.K.

    1984-01-01

    With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures

  7. Dislocation Loops with a Burgers Vector Produced by 1 MeV Electron Irradiation in FCC Copper-Nickel

    DEFF Research Database (Denmark)

    Leffers, Torben; Barlow, P.

    1975-01-01

    Dislocation loops with Burgers vector a are formed in Cu-Ni alloys during 1 MeV electron irradiation in a high-voltage electron microscope at 350°-400°C. The dislocation loops are of interstitial type and pure edge in character with line vectors. Some of the loops are seen to dissociate into loop...

  8. Neutron radiative capture by the 241Am nucleus in the energy range 1 keV-20 MeV

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Ignatyuk, A.V.; Tolstikov, V.A.; Tertychnyj, G.Ya.

    1998-01-01

    Production of high actinides leads to many technological problems in the nuclear power. The 241 Am(n,γ) 242 Am reaction is one of the sources of high actinide buildup. So a knowledge of the radiative capture cross-section of 241 Am for neutron energies up to 20 MeV is of considerable important for present day fission reactors and future advanced reactors. The main goal of this paper is the evaluation of the excitation function for the reaction 241 Am(n,γ) 242 Am in the energy range 1 keV-20 MeV. The evaluation was done on the basis of analysed experimental data, data from theoretical model calculations and systematic predictions for 14.5 MeV and 20 MeV. Data from the present evaluation are compared with the cross-section values given in the evaluations carried out earlier. (author)

  9. High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies

    International Nuclear Information System (INIS)

    Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.

    1989-02-01

    Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)

  10. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Science.gov (United States)

    Itoga, Toshiro; Nakashima, Hiroshi; Sanami, Toshiya; Namito, Yoshihito; Kirihara, Yoichi; Miyamoto, Shuji; Takemoto, Akinori; Yamaguchi, Masashi; Asano, Yoshihiro

    2017-09-01

    Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn) reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  11. Vacancy supersaturations produced by high-energy ion implantation

    International Nuclear Information System (INIS)

    Venezia, V.C.; Eaglesham, D.J.; Jacobson, D.C.; Gossmann, H.J.

    1998-01-01

    A new technique for detecting the vacancy clusters produced by high-energy ion implantation into silicon is proposed and tested. This technique takes advantage of the fact that metal impurities, such as Au, are gettered near one-half of the projected range (1/2 R p ) of MeV implants. The vacancy clustered region produced by a 2 MeV Si + implant into silicon has been labeled with Au diffused in from the front surface. The trapped Au was detected by Rutherford backscattering spectrometry (RBS) to profile the vacancy clusters. Cross section transmission electron microscopy (XTEM) analysis shows that the Au in the region of vacancy clusters is in the form of precipitates. By annealing MeV implanted samples prior to introduction of the Au, changes in the defect concentration within the vacancy clustered region were monitored as a function of annealing conditions

  12. Intercomparison of high energy neutron personnel dosimeters

    International Nuclear Information System (INIS)

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  13. Development of neutron-monitor detectors applicable for energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Kim, Eunjoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Takashi [Tohoku Univ., Sendai, Miyagi (Japan)

    2003-03-01

    For the purpose of monitoring of neutron doses in high energy accelerator facilities, we have been developing neutron detectors which are applicable for neutron energies up to 100 MeV. The present paper reports characteristics of a phoswitch-type neutron detector which is composed of a liquid organic scintillator and {sup 6}Li+ZnS(Ag) sheets. (author)

  14. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Science.gov (United States)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  15. Gamma-ray astronomy in the medium energy (10-50 MeV) range

    International Nuclear Information System (INIS)

    Kniffen, D.A.; Bertsch, D.L.; Palmeira, R.A.R.; Rao, K.R.

    1977-01-01

    Gamma-ray astronomy in the medium energy (10-50 MeV) range can provide unique information with which to study many astrophysical problems. Observations in the 10-50 MeV range provide the cleanest window with which to view the isotropic diffuse component of the radiation and to study the possible cosmological implications of the spectrum. For the study of compact sources, this is the important region between the X-ray sky and the vastly different γ-ray sky seen by SAS-2 and COS-B. To understand the implications of medium energy γ-ray astronomy to the study of the galactic diffuse γ-radiation, the model developed to explain the high energy γ-ray observations of SAS-2 is extended to the medium energy range. This work illustrates the importance of medium energy γ-ray astronomy for studying the electromagnetic component of the galactic cosmic rays. To observe the medium energy component of the intense galactic center γ-ray emission, two balloon flights of a medium energy γ-ray spark chamber telescope were flown in Brazil in 1975. These results indicate the emission is higher than previously thought and above the predictions of the theoretical model

  16. Dose distribution considerations of medium energy electron beams at extended source-to-surface distance

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Ayyangar, Komanduri M.; Pawlicki, Todd; Korb, Leroy J.

    1995-01-01

    Purpose: To determine the effects of extended source-to-surface distance (SSD) on dose distributions for a range of medium energy electron beams and cone sizes. Methods and Materials: The depth-dose curves and isodose distributions of 6 MeV, 10 MeV, and 14 MeV electron beams from a dual photon and multielectron energies linear accelerator were studied. To examine the influence of cone size, the smallest and the largest cone sizes available were used. Measurements were carried out in a water phantom with the water surface set at three different SSDs from 101 to 116 cm. Results: In the region between the phantom surface and the depth of maximum dose, the depth-dose decreases as the SSD increases for all electron beam energies. The effects of extended SSD in the region beyond the depth of maximum dose are unobservable and, hence, considered minimal. Extended SSD effects are apparent for higher electron beam energy with small cone size causing the depth of maximum dose and the rapid dose fall-off region to shift deeper into the phantom. However, the change in the depth-dose curve is small. On the other hand, the rapid dose fall-off region is essentially unaltered when the large cone is used. The penumbra enlarges and electron beam flatness deteriorates with increasing SSD

  17. Momentum transfer with light ions at energies from 70 MeV to 1000 MeV

    International Nuclear Information System (INIS)

    Saint Laurent, F.; Conjeaud, M.; Dayras, R.; Harar, S.; Oeschler, H.; Volant, C.

    1982-01-01

    Angular correlations of fission fragments induced by bombarding a 232 Th target with protons, deuterons and alpha particles of energies from 70 MeV to 1000 MeV have been measured. They give information about the forward momentum imparted to the fissioning nuclei. We present the average values of the transferred linear momentum ([p vertical stroke vertical stroke ]) as a function of the incident energy and propose a classification into three regimes of dominating processes leading to fission: (I) low-energy behaviour, for E/A less than 10 MeV/u [p vertical stroke vertical stroke ]/psub(i) approx. equal to 1. (II) Between 10 MeV/u and about 70 MeV/u, [p vertical stroke vertical stroke ]/psub(i) decreases progressively down to 0.5 but remains proportional to the projectile mass. (III) The region between 70 MeV/u and about 1000 MeV/u corresponds to a transition region where the projectiles, whatever their masses, tend to transfer the same momentum. (orig.)

  18. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    CERN Document Server

    Yang, X; Reboredo Gil, David; Welsh, Gregor H; Li, Y.F; Cipiccia, Silvia; Ersfeld, Bernhard; Grant, D. W; Grant, P. A; Islam, Muhammad; Tooley, M.B; Vieux, Gregory; Wiggins, Sally; Sheng, Zheng-Ming; Jaroszynski, Dino

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lowerenergy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wake...

  19. Calibration of personnel monitors by exposure to gamma radiation with energies up to 9 MeV

    International Nuclear Information System (INIS)

    Leao, J.L.B.; Cunha, P.G. da; Diz, R.; Oberhofer, M.

    Occupational exposure with photons of high energy (higher than those from 60 Co) might occur from nuclear reactors and accelerators. Radiation monitors for absorbed dose determination, however, often do not have a wall thickness sufficient to establish electronical equilibrium in that energy range. Using calibration factors determined for lower energies (calibration factors for 60 Co radiation) might cause a significant underestimation of the soft tissue absorbed dose. The calibration factor of the personnel monitors of the Eberline Instrument Co.based on TL dosimeters of LiF is reported. This monitor was calibrated with 9 MeV photons produced by thermal neutrons capture in a Nitarget, at an absorbed dose rate of 125 rads/h at the C.E.N. in France. The results are compared with the corresponding calibration factors for different energies up to 60 Co radiation determined in the IRD (Instituto de Radioprotecao e Dosimetria Rio de Janeiro). (Author) [pt

  20. Design and modelling of a 5 MeV radio frequency electron gun

    International Nuclear Information System (INIS)

    Batchelor, K.; Sheehan, J.; Woodle, M.

    1988-01-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory is a linac-laser complex for research into laser acceleration and for the generation of coherent radiation from electron beams. In order to achieve the design 50 MeV output emittance (γσ/sub x/σ/sub x/') of less than 3 /times/ 10/sup /minus/5/ m rad a high brightness electron gun is required. This paper describes computations and measurements made on a full scale brass model of a 1-1/2 cell, π-mode, resonant, disc loaded, radiofrequency gun structure which has been designed for this purpose. 7 refs., 9 figs., 6 tabs

  1. The Eindhoven High-Brightness Electron Programme

    NARCIS (Netherlands)

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    The Eindhoven High-Brightness programme is aimed at producing ultra-short intense electron bunches from compact accelerators. The RF electron gun is capable of producing 100 fs electron bunches at 7.5 MeV and 10 pC bunch charge. The DC/RF hybrid gun under development will produce bunches <75 fs at

  2. Monte Carlo electron-transport calculations for clinical beams using energy grouping

    Energy Technology Data Exchange (ETDEWEB)

    Teng, S P; Anderson, D W; Lindstrom, D G

    1986-01-01

    A Monte Carlo program has been utilized to study the penetration of broad electron beams into a water phantom. The MORSE-E code, originally developed for neutron and photon transport, was chosen for adaptation to electrons because of its versatility. The electron energy degradation model employed logarithmic spacing of electron energy groups and included effects of elastic scattering, inelastic-moderate-energy-loss-processes and inelastic-large-energy-loss-processes (catastrophic). Energy straggling and angular deflections were modeled from group to group, using the Moeller cross section for energy loss, and Goudsmit-Saunderson theory to describe angular deflections. The resulting energy- and electron-deposition distributions in depth were obtained at 10 and 20 MeV and are compared with ETRAN results and broad beam experimental data from clinical accelerators.

  3. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  4. SU-D-19A-06: The Effect of Beam Parameters On Very High-Energy Electron Radiotherapy: A Planning Study

    Energy Technology Data Exchange (ETDEWEB)

    Palma, B; Bazalova, M; Qu, B; Loo, B; Maxim, P [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Hardemark, B; Hynning, E [RaySearch Laboratories AB, Stockholm (Sweden)

    2014-06-01

    Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization was performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, Ray

  5. SU-D-19A-06: The Effect of Beam Parameters On Very High-Energy Electron Radiotherapy: A Planning Study

    International Nuclear Information System (INIS)

    Palma, B; Bazalova, M; Qu, B; Loo, B; Maxim, P; Hardemark, B; Hynning, E

    2014-01-01

    Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization was performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, Ray

  6. K-shell x-ray production cross sections of selected elements Al to Ni for 4. 0 to 38. 0 MeV /sup 10/B ions. [Cross sections, 4. 0 to 38 MeV, binding energy, electron capture decay, PWBA, energy shifts, multiple ionization

    Energy Technology Data Exchange (ETDEWEB)

    Monigold, G.; McDaniel, F.D.; Duggan, J.L.; Mehta, R.; Rice, R.; Miller, P.D.

    1976-01-01

    K-Shell x-ray production cross sections for the target elements Sc, Ti, V, Mn, Fe, Co, and Ni were measured for incident /sup 10/B ions over the energy range 4.0 to 38.0 MeV. The cross section data were compared to the theoretical predictions of the binary encounter approximation (BEA); the plane wave born approximation (PWBA); and the PWBA modified to include corrections for increased binding energy (B), Coulomb deflection of the incident ion (C), orbital perturbation due to polarization (P), and relativistic effects (R). In addition, fluorescence yield variations (W/sub K/) and contributions to the cross sections from electron capture (EC) were included. It was found that the predictions of the fully modified PWBA with contributions from electron capture and fluorescence yield variations included provided the best fit to the experimental data over the entire energy range for each target element. The K..beta../K..cap alpha.. x-ray intensity ratios were compared to theoretical values that assume single hole ionization, and the x-ray energy shifts presented as a function of the energy of the incident ion. These two measurements provided confirmation of the occurrence of multiple ionization for /sup 10/B bombardment of target elements in the range 21 less than or equal to Z/sub 2/ less than or equal to 28.

  7. Initial results of the new high intensity electron gun at the Argonne Wakefield Accelerator

    International Nuclear Information System (INIS)

    Conde, M. E.; Gai, W.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.

    2000-01-01

    The authors report on the status of the new short bunch, high intensity electron gun at the Argonne Wakefield Accelerator. The 1-1/2 cell L-band photocathode RF gun is expected to produce 10--100 nC bunches with 2--5 ps rms pulse length and normalized emittance less than 100 mm mrad. The beam energy at the exit of the gun cavity will be in the range 7.5--10 MeV. A standing-wave linac structure operating at the same frequency (1.3 GHz) will increase the beam energy to about 15 MeV. This beam will be used in wakefield acceleration experiments with dielectric loaded structures. These travelling-wave dielectric loaded structures, operating at 7.8 and 15.6 GHz, will be excited by the propagation of single bunches or by trains of up to 32 electron bunches

  8. Secondary electron emission from metals irradiated by 0.4-3 MeV gamma-quanta

    International Nuclear Information System (INIS)

    Grudskij, M.Ya.; Malyshenkov, A.V.; Smirnov, V.V.

    1975-01-01

    Experimental and calculational data were considered on the secondary electron emission outgoing from metal targets of an equilibrium thickness irradiated by gamma-quanta fluxes with the energies from 0.4 to 3 MeV. New experimental data are presented. Characteristics of emission were measured by two methods: by magnetic spectrometers with a transverse magnetic field, and by means of an electrometric device with using radioisotopic gamma-sources of 198 Au, 137 Cs, 60 Co and 24 Na. The dependence of the electron emission on the atomic number of the target material was studied. For this purpose the parameters of emissions outgoing from Al-, Cu-, Cd-, Pb- and Au-targets were measured. The advantages and shortcomings of the known methods of calculating the second electron emission were discussed. The obtained experimental and calculational results on studying electrons were compared with those known from literature, and possible sources of systematic errors were discussed

  9. Color centers of a borosilicate glass induced by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray

    Science.gov (United States)

    Du, Jishi; Wu, Jiehua; Zhao, Lili; Song, Lixin

    2013-05-01

    Optical absorption spectra, electron paramagnetic resonance (EPR) spectra, Raman spectra of a borosilicate glass after irradiation by 10 MeV proton, 1.85 MeV electron and 60Co-γ ray were studied. The process of irradiation inducing color centers in the glass was discussed. The band gap of the glass before and after 60Co-γ ray irradiation was studied using Mott and Davis's theory, and it was found that calculated change of the band gap introduced a paradox, because Mott and Davis's theory on the band gap cannot be adopted in the study on the irradiated glass.

  10. First H- beam accelerated at Linac4: 3MeV done, 157 MeV to go!

    CERN Multimedia

    Linac4 Project Team

    2013-01-01

    On 14 November, the first H- (one proton surrounded by two electrons) beam was accelerated to the energy of 3 MeV in the Linac4 - the new linear accelerator that will replace Linac2 as low-energy injector in the LHC accelerator chain.      A view of the Linac4 taken during the recent tests (top image) and the current measured by the instruments at the end of the acceleration line on 14 November (bottom image). Images: Linac4 collaboration. Using the recently installed Radio Frequency Quadrupole (RFQ) accelerator, 13 mA of current were accelerated to the energy of 3 MeV. After the successful commissioning of the Linac4 RFQ at the 3 MeV test stand completed during the first months of 2013, the whole equipment (composed of the RFQ itself, the following Medium Energy Beam Transport line and its diagnostic line) were moved to the Linac4 tunnel during summer and installed in their final position. In the meantime, a new ion source was assembled, installed and successfu...

  11. Study on the behaviour of high energy electrons in REPUTE-1 ULQ plasmas

    International Nuclear Information System (INIS)

    Ogawa, Y.; Morikawa, J.; Nihei, H.; Nakajima, T.; Ozawa, D.; Ohno, M.; Suzuki, T.; Himura, H.; Yoshida, Z.; Morita, S.; Shirai, Y.

    2001-01-01

    In REPUTE-1 Ultra-Low-q (ULQ) plasmas, behaviors of high energy electrons have been studied through a low-Z pellet injection experiment, in addition to the measurements of soft-X ray PHA and Electron Energy Analyzer (EEA). The high energy tail has been measured in the soft-X ray spectrum, and EEA signal has shown a strong anisotropy of the electron distribution function (i.e., the electron flux to the electron drift side is dominant). To study temporal and spatial information on these high energy electrons, a low-Z pellet injection experiment has been conducted. A small piece of plastic pellet is injected from the top of the REPUTE-1 device, and the trajectory of the pellet inside the plasma is measured by CCD camera. We have observed a large deflection of the pellet trajectory to the toroidal direction opposite to the plasma current (i.e., the electron drift side). This suggests that a pellet is ablated selectively only from one side due to the high energy electrons with a large heat flux. We have calculated the heat flux carried by high energy electrons. Since the repulsion force to the pellet can be calculated with the 2 nd derivative of the pellet trajectory, we have estimated the heat flux of high energy electrons to be a few tens MW/m 2 around the plasma center. Experimental data by EEA measurement and low-Z pellet ablation show the large population of the high energy electrons at the core region in comparison with the edge region, suggesting a MHD dynamo mechanism for the production of the high energy electrons. (author)

  12. MO-H-19A-01: FEATURED PRESENTATION - Treatment Planning Tool for Radiotherapy with Very High-Energy Electron Beams

    International Nuclear Information System (INIS)

    Bazalova, M; Qu, B; Palma, B; Loo, B; Maxim, P; Hynning, E; Hardemark, B

    2014-01-01

    Purpose: To develop a tool for treatment planning optimization for fast radiotherapy delivered with very high-energy electron beams (VHEE) and to compare VHEE plans to state-of-the-art plans for challenging pelvis and H'N cases. Methods: Treatment planning for radiotherapy delivered with VHEE scanning pencil beams was performed by integrating EGSnrc Monte Carlo (MC) dose calculations with spot scanning optimization run in a research version of RayStation. A Matlab GUI for MC beamlet generation was developed, in which treatment parameters such as the pencil beam size and spacing, energy and number of beams can be selected. Treatment planning study for H'N and pelvis cases was performed and the effect of treatment parameters on the delivered dose distributions was evaluated and compared to the clinical treatment plans. The pelvis case with a 691cm3 PTV was treated with 2-arc 15MV VMAT and the H'N case with four PTVs with total volume of 531cm3 was treated with 4-arc 6MV VMAT. Results: Most studied VHEE plans outperformed VMAT plans. The best pelvis 80MeV VHEE plan with 25 beams resulted in 12% body dose sparing and 8% sparing to the bowel and right femur compared to the VMAT plan. The 100MeV plan was superior to the 150MeV plan. Mixing 100 and 150MeV improved dose sparing to the bladder by 7% compared to either plan. Plans with 16 and 36 beams did not significantly affect the dose distributions compared to 25 beam plans. The best H'N 100MeV VHEE plan decreased mean doses to the brainstem, chiasm, and both globes by 10-42% compared to the VMAT plan. Conclusion: The pelvis and H'N cases suggested that sixteen 100MeV beams might be sufficient specifications of a novel VHEE treatment machine. However, optimum machine parameters will be determined with the presented VHEE treatment-planning tool for a large number of clinical cases. BW Loo and P Maxim received research support from RaySearch Laboratories. E Hynning and B Hardemark are employees of

  13. Laser-induced electron--ion recombination used to study enhanced spontaneous recombination during electron cooling

    International Nuclear Information System (INIS)

    Schramm, U.; Wolf, A.; Schuess ler, T.; Habs, D.; Schwalm, D.; Uwira, O.; Linkemann, J.; Mueller, A.

    1997-01-01

    Spontaneous recombination of highly charged ions with free electrons in merged velocity matched electron and ion beams has been observed in earlier experiments to occur at rates significantly higher than predicted by theoretical estimates. To study this enhanced spontaneous recombination, laser induced recombination spectra were measured both in velocity matched beams and in beams with well defined relative velocities, corresponding to relative electron-ion detuning energies ranging from 1 meV up to 6.5 meV where the spontaneous recombination enhancement was found to be strongly reduced. Based on a comparison with simplified calculations, the development of the recombination spectra for decreasing detuning energies indicates additional contributions at matched velocities which could be related to the energy distribution of electrons causing the spontaneous recombination rate enhancement

  14. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    Science.gov (United States)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  15. High-energy high-luminosity electron-ion collider eRHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Ben-Zvi, I.; Hammons, L.; Hao, Y.; Webb, S.

    2011-01-01

    In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 10 33 -10 34 cm -2 sec -1 range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it

  16. Pulse compression system for the ANL 20 MeV linac

    International Nuclear Information System (INIS)

    Mavrogenes, G.; Norem, J.; Simpson, J.

    1986-01-01

    This paper describes the pulse compression system being built on the Argonne 20 MeV electron linac. The system is designed to rotate the bunch from the present measured pulse length of 38 psec FWHM, to pulse lengths of 5 to 6 ps with the large instantaneous currents (1 to 4 kA) possible instantaneous current. This system was necessary to extend the study of reactive fragments of molecules to the time scale of a few picoseconds, in particular to examine the chemistry of electrons and ions before and during relaxation of the surrounding media. These experiments are not sensitive to the beam energy spread, High Energy Physics experiments studying wake fields have also been proposed using the short bunches and the facility was designed so that the wake field experiment could share the beam bunching system. The 20 MeV electron linac uses a double gap, 12th subharmonic prebuncher together with a one wavelength 1.3 Ghz prebuncher to produce a single pulse of 38 ps from one occupied rf bucket. Beam emittances of 15.7 mmmr have been measured for 40 nC of accelerated charge and 8 mmmr at 10 nC. The energy spread of dE/E = 1% (FWHM) has been measured at 40 nC. Thus the accelerated beam has excellent time structure, high current, and good emittance

  17. Gafchromic EBT3 film dosimetry in electron beams — energy dependence and improved film read‐out

    Science.gov (United States)

    Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in  60Co gamma ray beam with addition of experimental and Monte Carlo (MC)‐simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read‐out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose‐dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ±50 pixel values (PVs). To improve the read‐out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scanner glass can be detected and eliminated. Responses from red and green channels were averaged for read‐out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k=2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC‐simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV–16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read

  18. Novel digital K-edge imaging system with transition radiation from an 855-MeV electron beam

    CERN Document Server

    Hagenbuck, F; Clawiter, N; Euteneuer, H; Görgen, F; Holl, P; Johann, K; Kiser, K H; Kemmer, J; Kerschner, T; Kettig, O; Koch, H; Kube, G; Lauth, W; Mauhay, H; Schütrumpf, M; Stotter, R; Strüder, L; Walcher, T; Wilms, A; von Zanthier, C; Zemter, M

    2001-01-01

    A novel K-edge imaging method has been developed at the Mainz Microtron MAMI aiming at a very efficient use of the transition radiation (TR) flux generated by the external 855-MeV electron beam in a foil stack. A fan-like quasi-monochromatic hard X-ray beam is produced from the +or-1-mrad-wide TR cone with a highly oriented pyrolytic graphite (HOPG) crystal. The absorption of the object in front of a 30 mm*10 mm pn charge-coupled device (pn-CCD) photon detector is measured at every pixel by a broad-band energy scan around the K-absorption edge. This is accomplished by a synchronous variation of the lateral crystal position and the electron beam direction which defines also the direction of the TR cone. The system has been checked with a phantom consisting of a 2.5- mu m thick molybdenum sample embedded in a 136- or 272- mu m-thick copper bulk foil. A numerical analysis of the energy spectrum for every pixel demonstrates that data as far as +or-0.75 keV away from the K edge of molybdenum at 20 keV still improv...

  19. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the 15N(p,n) reaction as neutron source

    International Nuclear Information System (INIS)

    Poenitz, Erik

    2010-01-01

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The 15 N(p,n) 15 O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the 15 N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure 209 Bi and 181 Ta samples at 4 MeV incident neutron energy. Results are compared with other

  20. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  1. Medium Energy Industrial Electron Beam Accelerator (ILU-EBA) at Navi Mumbai for technology demonstration and commercial operations

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2017-01-01

    BARC in early nineties installed a unique high pulse-powered electron beam accelerator of energy 2 MeV, (for the first time in India), in Trombay for developing industrial applications. The accelerator was capable of delivering powered electron beams up to 20kW average beam power (with 1200kW peak pulse power) with energy range from 1 to 2 MeV. Several applications have been developed and commercially exploited in the field of polymer cross linking, degradation, crystalline alterations etc. In addition, applications pertaining to the environmental remediation using electron beams were also worked out. The facility has been relocated at Navi Mumbai a decade ago operated under BARC safety regulatory body and was developed into a technology demonstration cum commercial plant with several product handling gadgets to evaluate the feasibility of different EB treatment processes for the industry viz. waste water treatment, polymer modifications, recycling to name a few

  2. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  3. Applications of the Los Alamos High Energy Transport code

    International Nuclear Information System (INIS)

    Waters, L.; Gavron, A.; Prael, R.E.

    1992-01-01

    Simulation codes reliable through a large range of energies are essential to analyze the environment of vehicles and habitats proposed for space exploration. The LAHET monte carlo code has recently been expanded to track high energy hadrons with FLUKA, while retaining the original Los Alamos version of HETC at lower energies. Electrons and photons are transported with EGS4, and an interface to the MCNP monte carlo code is provided to analyze neutrons with kinetic energies less than 20 MeV. These codes are benchmarked by comparison of LAHET/MCNP calculations to data from the Brookhaven experiment E814 participant calorimeter

  4. An energy monitor for electron accelerators

    International Nuclear Information System (INIS)

    Geske, G.

    1990-01-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S r , if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S m . A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R p , R 50 and R 80 in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R 50 . Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R 50 with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP) [de

  5. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  6. Can Low Energy Electrons Affect High Energy Physics Accelerators?

    International Nuclear Information System (INIS)

    Cimino, Roberto

    2004-01-01

    The properties of the electrons participating in the build up of an electron cloud (EC) inside the beam-pipe have become an increasingly important issue for present and future accelerators whose performance may be limited by this effect. The EC formation and evolution are determined by the wall-surface properties of the accelerator vacuum chamber. Thus, the accurate modeling of these surface properties is an indispensible input to simulation codes aimed at the correct prediction of build-up thresholds, electron-induced instability or EC heat load. In this letter, we present the results of surface measurements performed on a prototype of the beam screen adopted for the Large Hadron Collider (LHC), which presently is under construction at CERN. We have measured the total secondary electron yield (SEY) as well as the related energy distribution curves (EDC) of the secondary electrons as a function of incident electron energy. Attention has been paid, for the first time in this context, to the probability at which low-energy electrons (<∼ 20 eV) impacting on the wall create secondaries or are elastically reflected. It is shown that the ratio of reflected to true-secondary electrons increases for decreasing energy and that the SEY approaches unity in the limit of zero primary electron energy

  7. Challenges in designing a very compact 130 MeV Moeller polarimeter for the S-DALINAC

    Energy Technology Data Exchange (ETDEWEB)

    Bahlo, Thore; Enders, Joachim; Kuerzeder, Thorsten; Pietralla, Norbert; Wissmann, Jan [Institut fuer Kernphysik, TU Darmstadt, Darmstadt (Germany)

    2016-07-01

    The Superconducting Darmstadt Linear Accelerator is capable of accelerating polarized electron beams produced by the S-DALINAC Polarized Injector (SPIN). For electron energies of up to 14 MeV it is possible to measure the absolute polarization of the electrons with two Mott polarimeters that are already mounted in the injector beamline. Until now it is not possible to measure the absolute electron beam polarization after the passage of the main accelerator. Therefore a Moeller polarimeter for energies between 50 MeV and 130 MeV is currently being developed. The rather low incident beam energy, the variability of the incident beam energy, and spatial restrictions necessitate a compact set-up with large acceptance. The very restrictive boundary conditions introduce technical and geometrical challenges. We will present the design of the target chamber, of the separation dipole magnet as well as the beam dump.

  8. Energy loss and straggling of MeV ions through biological samples

    International Nuclear Information System (INIS)

    Ma Lei; Wang Yugang; Xue Jianming; Chen Qizhong; Zhang Weiming; Zhang Yanwen

    2007-01-01

    Energy loss and energy straggling of energetic ions through natural dehydrated biological samples were investigated using transmission technique. Biological samples (onion membrane, egg coat, and tomato coat) with different mass thickness were studied, together with Mylar for comparison. The energy loss and energy straggling of MeV H and He ions after penetrating the biological and Mylar samples were measured. The experimental results show that the average energy losses of MeV ions through the biological samples are consistent with SRIM predictions; however, large deviation in energy straggling is observed between the measured results and the SRIM predictions. Taking into account inhomogeneity in mass density and structure of the biological sample, an energy straggling formula is suggested, and the experimental energy straggling values are well predicted by the proposed formula

  9. An analytical expression for electron elastic scattering cross section from atoms and molecules in 1.0 keV to 1.0 MeV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey)]. E-mail: yalcin@gazi.edu.tr; Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gultekin, A. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Gundogdu, O. [School of Engineering, University of Surrey, Guildford, GU2 7XH (United Kingdom)]. E-mail: o.gundogdu@surrey.ac.uk

    2006-07-31

    In this Letter, an expression is presented to calculate elastic scattering cross sections for incident electrons as a function of both energy and atomic number in the energy range between 1 keV and 1 MeV for materials with effective atomic number between 3 and 18. The expression we present has a rather simple analytical form which gives accurate results that are in very good agreement with the results calculated by a relativistic partial-wave expansion method. Hence, this equation can be employed accurately and efficiently in a continuous manner, without the need to go through rather large look-up tables, thus making the whole process quick, efficient and removing possible computational errors that may arise from the efforts of interpolation.

  10. An analytical expression for electron elastic scattering cross section from atoms and molecules in 1.0 keV to 1.0 MeV energy range

    International Nuclear Information System (INIS)

    Yalcin, S.; Gurler, O.; Gultekin, A.; Gundogdu, O.

    2006-01-01

    In this Letter, an expression is presented to calculate elastic scattering cross sections for incident electrons as a function of both energy and atomic number in the energy range between 1 keV and 1 MeV for materials with effective atomic number between 3 and 18. The expression we present has a rather simple analytical form which gives accurate results that are in very good agreement with the results calculated by a relativistic partial-wave expansion method. Hence, this equation can be employed accurately and efficiently in a continuous manner, without the need to go through rather large look-up tables, thus making the whole process quick, efficient and removing possible computational errors that may arise from the efforts of interpolation

  11. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  12. Measurement of neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photon induced reaction on natC using laser electron photon beam at NewSUBARU

    Directory of Open Access Journals (Sweden)

    Itoga Toshiro

    2017-01-01

    Full Text Available Photo-neutron energy spectra for Eg=23.1 and 26.6 MeV mono-energetic photons on natC were measured using laser Compton scattering facility at NewSUBARU BL01. The photon energy spectra were evaluated through measurements and simulations with collimator sizes and arrangements for the laser electron photon. The neutron energy spectra for the natC(g,xn reaction were measured at 60 degrees in horizontal and 90 degrees in horizontal and vertical with respect to incident photon. The spectra show almost isotropic angular distribution and flat energy distribution from detection threshold to upper limit defined by reaction Q-value.

  13. Evolution of magnetic and superconducting fluctuations with doping of high-Tc superconductors. An electronic Raman scattering study

    International Nuclear Information System (INIS)

    Blumberg, G.

    1998-01-01

    For YBa 2 Cu 3 O 6+δ and Bi 2 Sr 2 CaCu 2 O 3±δ superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T c the system exhibits a sharp Raman resonance of B 1g symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T c produces a global SC state

  14. Monte Carlo benchmark calculations of energy deposition by electron/photon showers up to 1 GeV

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Halbleib, J.A.

    1983-01-01

    Over the past several years the TIGER series of coupled electron/photon Monte Carlo transport codes has been applied to a variety of problems involving nuclear and space radiations, electron accelerators, and radioactive sources. In particular, they have been used at Sandia to simulate the interaction of electron beams, generated by pulsed-power accelerators, with various target materials for weapons effect simulation, and electron beam fusion. These codes are based on the ETRAN system which was developed for an energy range from about 10 keV up to a few tens of MeV. In this paper we will discuss the modifications that were made to the TIGER series of codes in order to extend their applicability to energies of interest to the high energy physics community (up to 1 GeV). We report the results of a series of benchmark calculations of the energy deposition by high energy electron beams in various materials using the modified codes. These results are then compared with the published results of various experimental measurements and other computational models

  15. Longitudinal phase-space matching between microtrons at 185 MeV

    International Nuclear Information System (INIS)

    Takeda, H.

    1983-01-01

    Electrons are accelerated to 185 MeV by a microtron. Then, they are injected into another microtron to boost the net energy up to a few GeV. Between the two microtrons both longitudinal and transverse phase-space matching are required. In this paper, we consider a longitudinal phase-ellipse matching which utilizes triple left-right-left sector dipoles to induce a negative phase-angle shear. This is accomplished because a high-energy particle travels a shorter distance through the dipole system than a low-energy particle

  16. MEV Energy Electrostatic Accelerator Ion Beam Emittance Measurement

    OpenAIRE

    I.G. Ignat’ev; M.I. Zakharets; S.V. Kolinko; D.P. Shulha

    2014-01-01

    The testing equipment was designed, manufactured and tried out permitting measurements of total current, current profile and emittance of an ion beam extracted from the ion beam. MeV energy electrostatic accelerator ion H + beam emittance measurement results are presented.

  17. Uranium, thorium and bismuth photofission cross sections at high energies

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1973-01-01

    The U 238 , Th 232 and Bi 209 photofission using nuclear emulsion technique for fission fragments detection is presented. The photofission cross sections were measured using Bremsstrahlung photon which were produced irradiating thin tungsten radiators with electrons accelerated at the energy range from 1,0 to 5,5 GeV in the ''Deutsches Elektronen Synchrotron'' (Hamburg), and aluminium radiator with electrons accelarated at 16,0 GeV in Stanford Linear Accelerator Center. A special revelation technique for nuclear emulsion pellicles loaded with uranium and thorium, allowed the discrimination between alpha particles tracks and fission fragments tracks. The results show a decrease in the cross sections, which is in good agreement, within experimental errors, with the conclusions of other authors. The estimations from the two-step mechanism for high energy nuclear reactions (intranuclear cascade followed by fission-evaporation competition) show that, the primary interaction according to the photomesonic model and the quasi-deuteron photon interaction are sufficient to explain the general behavior exhibited by photofission cross sections for investigated nuclei. The calculations show a resonant structure around 300 MeV, with a width at half maximum of 200 MeV, and another not so pronounced, near to 700 MeV. (Author) [pt

  18. The low energy (140 MeV) chemistry facility at the 500 MeV electron accelerator MEA at Amsterdam

    International Nuclear Information System (INIS)

    Brinkman, G.A.; Kapteyn, J.C.; Louwrier, P.W.F.; Lindner, L.; Peelen, B.; Polak, P.; Schimmel, A.; Stock, F.R.; Veenboer, J.T.; Visser, J.

    1980-01-01

    The facility includes the Low Energy Chemistry (LECH) hall equipped with a beam-line for pulse-radiolysis and a second one for the production of radioisotopes and for experiments with electron-free photon beams. It also includes the Low Energy Laboratory (LELAB) containing two chemistry laboratories and a control room. These facilities are also available to outside research groups. (orig./HP)

  19. Dose characteristics of high-energy electrons, muons and photons

    International Nuclear Information System (INIS)

    Britvich, G.I.; Krupnyj, G.I.; Peleshko, V.N.; Rastsvetalov, Ya.N.

    1980-01-01

    Differential distribution of energy release at different depth of tissue-equivalent phantoms (plexiglas, polystyrene, polyethylene) at the energy of incident electrons, muons of 0.2-40 GeV and photons with the mean energy of 3.6 GeV are measured. The error of experimental results does not exceed 7%. On the basis of the data obtained dose characteristics of electrons, muons and photons for standard geometry are estimated. For all types of irradiation the maximum value of specific equivalent dose, nremxcm 2 /part. is presented. It is shown that published values of specific equivalent dose of electron radiation are higher in all the investigated energy range from 0.2 to 40 GeV, and for muon radiation a good agreement with the present experiment is observed. The highly precise results obtained which cover the wide dynamic range according to the energy of incident particles can serve as the basis for reconsidering the existing recommendations for dose characteristics of electron radiation [ru

  20. Measurements of fission product yield in the neutron-induced fission of {sup 238}U with average energies of 9.35 MeV and 12.52 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, Sadhana; Krishnani, Pritam Das; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok [Bhabha Atomic Research Centre, Mumbai (India); Shivashankar, Byrapura Siddaramaiah [Manipal University, Manipal (India); Mulik, Vikas Kaluram [University of Pune, Pune (India)

    2014-07-15

    The yields of various fission products in the neutron-induced fission of {sup 238}U with the flux-weighted averaged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gamma ray spectroscopic technique. The neutrons were generated using the {sup 7}Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  1. 207,208Pb(n,xnγ) reactions for neutron energies from 3 to 200 MeV

    International Nuclear Information System (INIS)

    Vonach, H.; Pavlik, A.; Chadwick, M.B.; Haight, R.C.; Nelson, R.O.; Wender, S.A.; Young, P.G.

    1994-01-01

    High-resolution γ-ray spectra from the interaction of neutrons in the energy range from 3 to 200 MeV with 207,208 Pb were measured with the white neutron source at the weapons neutron research (WNR) facility at Los Alamos National Laboratory. From these data, excitation functions for prominent γ transitions in 200,202,204,206,207,208 Pb were derived from threshold to 200 MeV incident neutron energy. These γ-production cross sections reflect the excitation cross sections for the respective residual nuclei. The results are compared with the predictions of nuclear reaction calculations based on the exciton model for precompound emission, the Hauser-Feshbach theory for compound nucleus decay, and coupled channels calculations to account for direct excitation of collective levels. Good agreement was obtained over the entire energy range covered in the experiment with reasonable model parameters. The results of this work clearly demonstrate that multiple preequilibrium emission has to be taken into account above about 40 MeV, and that the level density model of Ignatyuk, which accounts for the gradual disappearance of shell effects with increasing excitation energy, should be used instead of the Gilbert-Cameron and backshifted Fermi-gas models if excitation energies exceed about 30 MeV. No indication for a reduction of the nuclear moment of inertia below the rigid body value was found

  2. Ultra-low energy electrons from fast heavy-ion helium collisions: the `target Cusp`

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, W. [Freiburg Univ. (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Moshammer, R.; Kollmus, H.; Ullrich, J. [Freiburg Univ. (Germany); O`Rourke, F.S.C. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom); Sarkadi, L. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Mann, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hagmann, S. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1998-09-01

    Doubly differential cross sections d{sup 2}{sigma}/dv {sub parallel} dv {sub perpendicular} {sub to} have been obtained by mapping the 3-dimensional velocity space of ultra-low and low-energy electrons (1.5 meV{<=} E{sub e}{<=}100 eV) emitted in singly ionizing 3.6 MeV/u Au{sup 53+} on helium collisions. A sharp ({Delta}E{sub e} {sub perpendicular} {sub to} {sup FWHM} {<=} 22 meV) asymmetric peak centered at vertical stroke anti {nu} vertical stroke =0 is observed to emerge at ultra-low energies from the strongly forward shifted low-energy electron velocity distribution. The shape of this ``target cusp``, which is very sensitive on the details of the two-center potential, is in excellent accord with theoretical CTMC and CDW-EIS predictions. (orig.)

  3. Photon mass energy absorption coefficients from 0.4 MeV to 10 MeV for silicon, carbon, copper and sodium iodide

    International Nuclear Information System (INIS)

    Oz, H.; Gurler, O.; Gultekin, A.; Yalcin, S.; Gundogdu, O.

    2006-01-01

    The absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy absorption coefficients for gamma rays with an incident energy range between 0.4 MeV and 10 MeV in silicon, carbon, copper and sodium iodide. The mass energy absorption coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  4. Photon mass energy absorption coefficients from 0.4 MeV to 10 MeV for silicon, carbon, copper and sodium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Oz, H.; Gurler, O.; Gultekin, A. [Uludag University, Bursa (Turkmenistan); Yalcin, S. [Kastamonu University, Kastamonu (Turkmenistan); Gundogdu, O. [University of Surrey, Guildford (United Kingdom)

    2006-07-15

    The absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy absorption coefficients for gamma rays with an incident energy range between 0.4 MeV and 10 MeV in silicon, carbon, copper and sodium iodide. The mass energy absorption coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.

  5. Neutron Energy Spectra from Neutron Induced Fission of 235U at 0.95 MeV and of 238U at 1.35 and 2.02 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Almen, E; Holmqvist, B; Wiedling, T

    1971-09-15

    The shapes of fission neutron spectra are of interest for power reactor calculations. Recently it has been suggested that the neutron induced fission spectrum of 235U may be harder than was earlier assumed. For this reason measurements of the neutron spectra of some fissile isotopes are in progress at our laboratory. This report will present results from studies of the energy spectra of the neutrons emitted in the neutron induced fission of 235U and 238U. The measurements were performed at an incident neutron energy of 0.95 MeV for 235U and at energies of 1.35 and 2.02 MeV for 238U using time-of-flight techniques. The time-of-flight spectra were only analysed at energies higher than those of the incident neutrons and up to about 10 MeV. Corrections for neutron attenuation in the uranium samples were calculated using a Monte Carlo program. The corrected fission neutron spectra were fitted to Maxwellian temperature distributions. For 235U a temperature of 1.27 +- 0.01 MeV gives the best fit to the experimental data and for 238U the corresponding values are 1.29 +- 0.03 MeV at 1.35 MeV and 1.29 +- 0.02 MeV at 2.02 MeV

  6. Monte-Carlo calculations of forward directed bremsstrahlung produced by 20 and 45 MeV electrons on tungsten

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1983-01-01

    The SANDYL Monte-Carlo code has been used to calculate the Bremsstrahlung photon production from beams of parallel electrons incident upon three target geometries. These are 20 MeV electrons onto 1 mm of tungsten + 59 mm of Be, which simulates the operating parameters of the FXR electron accelerator at LLNL Bldg. 801, 45 MeV electrons onto 1 mm of tungsten, and finally 45 MeV electrons onto 1 mm of tungsten and 147 mm of Be. The latter two situations simulate possible future modifications to the FXR accelerator. Graphs of the spectral shape of the Bremsstrahlung photons emitted with angles between 0 0 and 1 0 to the electron direction, the angular distribution of photon-MeV, and the dose reduction curves for each of the three geometries are given. The latter dose reduction curves allow one to calculate forward-directed photon fluxes in real-life situations where the electron beam has non-zero angular divergence

  7. Electron-energy deposition in skin and thermoluminescence dosimeters

    International Nuclear Information System (INIS)

    Mei, G.T.Y.

    1986-01-01

    The primary object of this study was to investigate the relations between dosimeter response and skin dose resulting from beta-particle irradiation. This object was achieved by combining evaluation of beta-source energy spectra, calculation of flux energy spectra, and employment of a Monte-Carlo electron-transport computer program for determination of depth-dose distribution in multislab geometries. Intermediate results from three steps of evaluation were compared individually with experimental data or with other theoretical results and showed excellent agreement. The combined method is applicable for the electron agreement. The combined method is applicable for the electron energy range of 1 keV to 5 MeV for both monoenergetic electrons and energy-distributed electrons. Determination of dosimeter response - skin dose relationships for homogeneous atmospheric beta-particle sources and for two specific configurations of LiF TLD's have been carried out in this study. Information based on these calculations is of value in designing beta-particle dosimeters as well as in assessing potential occupational and public health risks associated with the nuclear power industry

  8. Potential ceramics processing applications with high-energy electron beams

    International Nuclear Information System (INIS)

    Struve, K.W.; Turman, B.N.

    1993-01-01

    High-energy, high-current electron beams may offer unique features for processing of ceramics that are not available with any other heat source. These include the capability to instantaneously heat to several centimeters in depth, to preferentially deposit energy in dense, high-z materials, to process at atmospheric pressures in air or other gases, to have large control over heating volume and heating rate, and to have efficient energy conversion. At a recent workshop organized by the authors to explore opportunities for electron beam processing of ceramics, several applications were identified for further development. These were ceramic joining, fabrication of ceramic powders, and surface processing of ceramics. It may be possible to join ceramics by either electron-beam brazing or welding. Brazing with refractory metals might also be feasible. The primary concern for brazing is whether the braze material can wet to the ceramic when rapidly heated by an electron beam. Raw ceramic powders, such as silicon nitride and aluminum nitride, which are difficult to produce by conventional techniques, could possibly be produced by vaporizing metals in a nitrogen atmosphere. Experiments need to be done to verify that the vaporized metal can fully react with the nitrogen. By adjusting beam parameters, high-energy beams can be used to remove surface flaws which are often sites of fracture initiation. They can also be used for surface cleaning. The advantage of electron beams rather than ion beams for this application is that the heat deposition can be graded into the material. The authors will discuss the capabilities of beams from existing machines for these applications and discuss planned experiments

  9. High quality electron beams from a plasma channel guided laser wakefield accelerator

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2004-01-01

    Laser driven accelerators, in which particles are accelerated by the electric field of a plasma wave driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV/m. These fields are thousands of times those achievable in conventional radiofrequency (RF) accelerators, spurring interest in laser accelerators as compact next generation sources of energetic electrons and radiation. To date however, acceleration distances have been severely limited by lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low energy beams with 100% electron energy spread, limiting applications. Here we demonstrate that a relativistically intense laser can be guided by a preformed plasma density channel and that the longer propagation distance can result in electron beams of percent energy spread with low emittance and increased energy, containing >10 9 electrons above 80 MeV. The preformed plasma channel technique forms the basis of a new class of accelerators, combining beam quality comparable to RF accelerators with the high gradients of laser accelerators to produce compact tunable high brightness electron and radiation sources

  10. Discussion of electron capture theories for ion-atom collisions at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Miraglia, J E [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Piacentini, R D [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Rivarola, R D [Rosario Univ. Nacional (Argentina). Dept. de Fisica; Salin, A [Bordeaux-1 Univ., 33 - Talence (France)

    1981-03-14

    Different theories of charge exchange processes in ion-atom collisions at high energies for the H/sup +/-H system are considered. Large discrepancies are found in the differential cross sections obtained from the various models. The validity of Dettmann's peaking approximation is analysed by comparison with exact values for the first- and second-order Oppenheimer-Brinkman-Kramers (OBK 1 and OBK 2) theories. It is also shown that for energies up to a few MeV the OBK 2 differential cross sections are higher than the corresponding OBK 1 ones. Total cross sections in the OBK 2 approximation are given.

  11. Study of the giant multipole resonances, especially the isoscalar giant E2 resonance in 208Pb by inelastic electron scattering with medium and high energy resolution

    International Nuclear Information System (INIS)

    Kuehner, E.G.F.

    1982-01-01

    In the nucleus 208 Pb giant multipole resonances were looked for by inelastic electron scattering up to excitation energies of Esub(x) = 35 MeV. Twelve spectra were taken up at incident energies of Esub(o) = 45-65 MeV under scattering angles from upsilon = 93 0 to 165 0 . The cross sections extracted from this were analyzed by means of DWBA calculations using RPA amplitudes from a model with separable residual interaction. Basing on this analysis for the first time it could be shown that the maximum in the electron scattering cross section at Esub(x) approx.= 14 MeV can be consistently described as a superposition of the Jsup(π) = 1 - , ΔT = 1 with a Jsup(π) = 0 + , ΔT = 0 giant resonance. Furthermore the spectra under backward scattering angles indicate the existence of a magnetic excitation at Esub(x) approx.= 15 MeV which is interpreted as Jsup(π) = 3 + giant resonance. Besides under forwards angles a further weak excitation appears at Esub(x) approx.= 14.6 MeV which is very well compatible with Jsup(π) = 2 + . At Esub(x) = 17.5 MeV a Jsup(π) = 3 - resonance was found which recently is also observed in (α,α') scattering experiments and therefore gets a ΔT = 0 assignment. A further resonance at Esub(x) approx.= 21 MeV has also Jsup(π) = 3 - character but has partly to be assigned to a Jsup(π) = 1 - , ΔT = 0 excitation. At Esub(x) = 23.8 MeV a Jsup(π) = 2 + excitation was found which gels because of model predictions a ΔT = 1 assignment. (orig./HSI) [de

  12. Study of the giant multipole resonances especially of the isoscalar giant E2 resonance in 208Pb by medium and high energy resolution inelastic electron scattering

    International Nuclear Information System (INIS)

    Kuehner, G.

    1982-01-01

    In the nucleus 208 Pb giant multipole resonances up to excitation energies of Esub(x) = 35 MeV were looked for by medium resolution inelastic electron scattering. Twelve spectra were taken up at incident energies of E 0 = 45-65 MeV under scattering angles from upsilon = 93 0 to 165 0 . The cross sections extracted from this were analyzed by means of DWBA calculations using RPA amplitudes from a model with separable residual interaction. On the base of this analysis for the first time it could be shown that the maximum in the electron scattering cross section at Esub(x) approx.= 14 MeV can be consistently described as superposition of the Jsup(π) = 1 - , ΔT = 1 with a Jsup(π) = 0 + , ΔT = 0 giant resonance. Furthermore the spectra under backward scattering angles indicate the existence of a magnetic excitation at Esub(x) approx.= 15 MeV which is interpreted as Jsup(π) = 3 + giant resonance. Besides under forward angles a further weak excitation at Esub(x) approx.= 14.6 MeV appears which is very well compatible with Jsup(π) = 2 + . At Esub(x) = 17.5 MeV a Jsup(π) = 3 - resonance was found which recently is observed also in (α, α') experiments and therefore gets a ΔT = 0 assignment. A further resonance at Esub(x) approx.= 21 MeV has also a Jsup(π) = 3 - character but has to be partly assigned to a Jsup(π) = 1 - , ΔT = 0 excitation. At Esub(x) = 23.8 MeV a Jsup(π) = 2 + excitation was found which gets because of model predictions a ΔT = 1 assignment. (orig./HSI) [de

  13. Competition Between Radial Loss and EMIC Wave Scattering of MeV Electrons During Strong CME-shock Driven Storms

    Science.gov (United States)

    Hudson, M. K.; Jaynes, A. N.; Li, Z.; Malaspina, D.; Millan, R. M.; Patel, M.; Qin, M.; Shen, X.; Wiltberger, M. J.

    2017-12-01

    The two strongest storms of Solar Cycle 24, 17 March and 22 June 2015, provide a contrast between magnetospheric response to CME-shocks at equinox and solstice. The 17 March CME-shock initiated storm produced a stronger ring current response with Dst = - 223 nT, while the 22 June CME-shock initiated storm reached a minimum Dst = - 204 nT. The Van Allen Probes ECT instrument measured a dropout in flux for both events which can be characterized by magnetopause loss at higher L values prior to strong recovery1. However, rapid loss is seen at L 3 for the June storm at high energies with maximum drop in the 5.2 MeV channel of the REPT instrument coincident with the observation of EMIC waves in the H+ band by the EMFISIS wave instrument. The rapid time scale of loss can be determined from the 65 minute delay in passage of the Probe A relative to the Probe B spacecraft. The distinct behavior of lower energy electrons at higher L values has been modeled with MHD-test particle simulations, while the rapid loss of higher energy electrons is examined in terms of the minimum resonant energy criterion for EMIC wave scattering, and compared with the timescale for loss due to EMIC wave scattering which has been modeled for other storm events.2 1Baker, D. N., et al. (2016), Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res. Space Physics, 121, 6647-6660, doi:10.1002/2016JA022502. 2Li, Z., et al. (2014), Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett., 41, 8722-8729, doi:10.1002/2014GL062273.

  14. Ion induced high energy electron emission from copper

    International Nuclear Information System (INIS)

    Ruano, G.; Ferron, J.

    2008-01-01

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He + , Ne + and Ar + ) and Li + ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  15. Theoretical detection limit of PIXE analysis using 20 MeV proton beams

    Science.gov (United States)

    Ishii, Keizo; Hitomi, Keitaro

    2018-02-01

    Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.

  16. Computational simulation of electron and ion beams interaction with solid high-molecular dielectrics and inorganic glasses

    International Nuclear Information System (INIS)

    Milyavskiy, V.V.

    1998-01-01

    Numerical investigation of interaction of electron beams (with the energy within the limits 100 keV--20 MeV) and ion beams (with the energy over the range 1 keV--50 MeV) with solid high-molecular dielectrics and inorganic glasses is performed. Note that the problem of interaction of electron beams with glass optical covers is especially interesting in connection with the problem of radiation protection of solar power elements on cosmic satellites and stations. For computational simulation of the above-mentioned processes a mathematical model was developed, describing the propagation of particle beams through the sample thickness, the accumulation and relaxation of volume charge and shock-wave processes, as well as the evolution of electric field in the sample. The calculation of energy deposition by electron beam in a target in the presence of nonuniform electric field was calculated with the assistance of the semiempirical procedure, formerly proposed by author of this work. Propagation of the low energy ions through the sample thickness was simulated using Pearson IV distribution. Damage distribution, ionization distribution and range distribution was taken into account. Propagation of high energy ions was calculated in the approximation of continuous deceleration. For description of hydrodynamic processes the system of equations of continuum mechanics in elastic-plastic approximation and the wide-range equation of state were used

  17. Generation and transportation of low-energy, high-current electron beams

    International Nuclear Information System (INIS)

    Ozur, G.E.; Proskurovskij, D.I.; Nazarov, D.S.

    1996-01-01

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm 2 , which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs

  18. Ion Beam Materials Analysis and Modifications at keV to MeV Energies at the University of North Texas

    Science.gov (United States)

    Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Lakshantha, Wickramaarachchige J.; Manuel, Jack E.; Bohara, Gyanendra; Szilasi, Szabolcs Z.; Glass, Gary A.; McDaniel, Floyd D.

    2014-02-01

    The University of North Texas (UNT) Ion Beam Modification and Analysis Laboratory (IBMAL) has four particle accelerators including a National Electrostatics Corporation (NEC) 9SDH-2 3 MV tandem Pelletron, a NEC 9SH 3 MV single-ended Pelletron, and a 200 kV Cockcroft-Walton. A fourth HVEC AK 2.5 MV Van de Graaff accelerator is presently being refurbished as an educational training facility. These accelerators can produce and accelerate almost any ion in the periodic table at energies from a few keV to tens of MeV. They are used to modify materials by ion implantation and to analyze materials by numerous atomic and nuclear physics techniques. The NEC 9SH accelerator was recently installed in the IBMAL and subsequently upgraded with the addition of a capacitive-liner and terminal potential stabilization system to reduce ion energy spread and therefore improve spatial resolution of the probing ion beam to hundreds of nanometers. Research involves materials modification and synthesis by ion implantation for photonic, electronic, and magnetic applications, micro-fabrication by high energy (MeV) ion beam lithography, microanalysis of biomedical and semiconductor materials, development of highenergy ion nanoprobe focusing systems, and educational and outreach activities. An overview of the IBMAL facilities and some of the current research projects are discussed.

  19. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2005-01-01

    High-quality electron beams, with a few 10 9 electrons within a few percent of the same energy above 80 MeV, were produced in a laser wakefield accelerator by matching the acceleration length to the length over which electrons were accelerated and outran (dephased from) the wake. A plasma channel guided the drive laser over long distances, resulting in production of the high-energy, high-quality beams. Unchanneled experiments varying the length of the target plasma indicated that the high-quality bunches are produced near the dephasing length and demonstrated that channel guiding was more stable and efficient than relativistic self-guiding. Consistent with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping of an initial bunch of electrons suppresses further injection by loading the wake. The injected electron bunch is then compressed in energy by dephasing, when the front of the bunch begins to decelerate while the tail is still accelerated

  20. Design of a 120 MeV $H^{-}$ Linac for CERN High-Intensity Applications

    CERN Document Server

    Gerigk, F

    2002-01-01

    The SPL (Superconducting Proton Linac) study at CERN foresees the construction of a 2.2 GeV linac as a high beam-power driver for applications such as a second-generation radioactive ion beam facility or a neutrino superbeam. At the same time such a high-performance injector would both modernize and improve the LHC injection chain. The 120 MeV normal-conducting section of the SPL could be used directly in a preliminary stage for H- charge-exchange injection into the PS Booster. This would increase the proton flux to the CERN experiments while also improving the quality and reliability of the beams for the LHC. The 120 MeV linac consists of a front-end, a conventional Drift Tube Linac (DTL) to 40 MeV and a Cell Coupled Drift Tube Linac (CCDTL) to the full energy. All the RF structures will operate at 352 MHz, using klystrons and RF equipment recovered from the LEP collider. This paper concentrates on the design of the 3 to 120 MeV section. It introduces the design criteria for high-stability beam optics and th...

  1. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    Science.gov (United States)

    Van Lancker, Marc; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-05-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat à l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production.

  2. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    International Nuclear Information System (INIS)

    Lancker, Marc van; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-01-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat a l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production

  3. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  4. Scalability of the LEU-Modified Cintichem Process: 3-MeV Van de Graaff and 35-MeV Electron Linear Accelerator Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brossard, Tom [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Roussin, Ethan [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jonah, Charles [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hafenrichter, Lohman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krebs, John [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-31

    Molybdenum-99, the mother of Tc-99m, can be produced from fission of U-235 in nuclear reactors and purified from fission products by the Cintichem process, later modified for low-enriched uranium (LEU) targets. The key step in this process is the precipitation of Mo with α-benzoin oxime (ABO). The stability of this complex to radiation has been examined. Molybdenum-ABO was irradiated with 3 MeV electrons produced by a Van de Graaff generator and 35 MeV electrons produced by a 50 MeV/25 kW electron linear accelerator. Dose equivalents of 1.7–31.2 kCi of Mo-99 were administered to freshly prepared Mo-ABO. Irradiated samples of Mo-ABO were processed according to the LEU Modified-Cintichem process. The Van de Graaff data indicated good radiation stability of the Mo-ABO complex up to ~15 kCi dose equivalents of Mo-99 and nearly complete destruction at doses >24 kCi Mo-99. The linear accelerator data indicate that even at 6.2 kCi of Mo-99 equivalence of dose, the sample lost ~20% of Mo-99. The 20% loss of Mo-99 at this low dose may be attributed to thermal decomposition of the product from the heat deposited in the sample during irradiation.

  5. STIM with energy loss contrast: An imaging modality unique to MeV ions

    International Nuclear Information System (INIS)

    Lefevre, H.W.; Schofield, R.M.S.; Bench, G.S.; Legge, G.J.F.

    1991-01-01

    Scanning transmission ion microscopy (STIM) through measurement of energy loss of individual ions is a quantitative imaging technique with several unique capabilities. The uniqueness derives conjointly from the large penetration with small scattering of MeV ions in low-Z specimens, from the simple relationship between energy loss and projected or areal density, and from the almost 100% efficiency with which one obtains pixel data from individual ions. Since contrast is in energy loss and not in numbers of events, the statistics of energy loss straggling affects the image but the statistics of counting does not. Small scattering makes it possible to observe details within transparent specimens. High efficiency makes it possible to collect large data sets for computed tomography, stereo, or high-definition imaging with a small radiation dose. High efficiency allows one to minimize aberrations by use of small apertures, to achieve good precision in the determination of areal density, or even to image live biological specimens in air since only one or a few ions per pixel are required. This paper includes a bibliography on STIM with MeV ions, it discusses the accuracy that one can achieve in the areal density coloring of a pixel with data from one or a few ions, and it supplements that review with recent examples from the Melbourne and the Eugene microprobes. (orig.)

  6. Photo-neutron reaction cross-section for 93Nb in the end-point bremsstrahlung energies of 12–16 and 45–70 MeV

    International Nuclear Information System (INIS)

    Naik, H.; Kim, G.N.; Schwengner, R.; Kim, K.; Zaman, M.; Tatari, M.; Sahid, M.; Yang, S.C.; John, R.; Massarczyk, R.; Junghans, A.; Shin, S.G.; Key, Y.; Wagner, A.; Lee, M.W.; Goswami, A.; Cho, M.-H.

    2013-01-01

    The photo-neutron cross-sections of 93 Nb at the end-point bremsstrahlung energies of 12, 14 and 16 MeV as well as 45, 50, 55, 60 and 70 MeV have been determined by the activation and the off-line γ-ray spectrometric techniques using the 20 MeV electron linac (ELBE) at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany, and 100 MeV electron linac at Pohang Accelerator Laboratory (PAL), Pohang, Korea. The 93 Nb(γ, xn, x=1–4) reaction cross-sections as a function of photon energy were also calculated using computer code TALYS 1.4. The flux-weighted average values were obtained from the experimental and the theoretical (TALYS) values based on mono-energetic photons. The experimental values of present work are in good agreement with the flux-weighted theoretical values of TALYS 1.4 but are slightly higher than the flux-weighted experimental data of mono-energetic photons. It was also found that the theoretical and the experimental values of present work and literature data for the 93 Nb(γ, xn) reaction cross-sections increase from the threshold values to a certain energy, where other reaction channels opens. However, the increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections are sharper compared to 93 Nb(γ, 3n) and 93 Nb(γ, 4n) reaction cross-sections. The sharp increase of 93 Nb(γ, n) and 93 Nb(γ, 2n) reaction cross-sections from the threshold value up to 17–22 MeV is due to the Giant Dipole Resonance (GDR) effect besides the role of excitation energy. After a certain values, the individual 93 Nb(γ, xn) reaction cross-sections decrease with increase of bremsstrahlung energy due to opening of other reaction channels

  7. Treatment of basal cell epithelioma with high energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y. (Hyogo-ken Cancer Center, Kobe (Japan)); Kumano, M.; Kumano, K.

    1981-11-01

    Thirty patients with basal cell epithelioma received high energy electron beam therapy. They were irradiated with a dose ranging from 4,800 rad (24 fractions, 35 days) to 12,000 rad (40 fractions, 57 days). Tumors disappeared in all cases. These were no disease-related deaths; in one patient there was recurrence after 2 years. We conclude that radiotherapy with high energy electron beam is very effective in the treatment of basal cell epithelioma.

  8. High energy ion implantation for IC processing

    International Nuclear Information System (INIS)

    Oosterhoff, S.

    1986-01-01

    In this thesis the results of fundamental research on high energy ion implantation in silicon are presented and discussed. The implantations have been carried out with the 500 kV HVEE ion implantation machine, that was acquired in 1981 by the IC technology and Electronics group at Twente University of Technology. The damage and anneal behaviour of 1 MeV boron implantations to a dose of 10 13 /cm 2 have been investigated as a function of anneal temperature by sheet resistance, Hall and noise measurements. (Auth.)

  9. A gamma-ray burst with a high-energy spectral component inconsistent with the synchrotron shock model.

    Science.gov (United States)

    González, M M; Dingus, B L; Kaneko, Y; Preece, R D; Dermer, C D; Briggs, M S

    2003-08-14

    Gamma-ray bursts are among the most powerful events in nature. These events release most of their energy as photons with energies in the range from 30 keV to a few MeV, with a smaller fraction of the energy radiated in radio, optical, and soft X-ray afterglows. The data are in general agreement with a relativistic shock model, where the prompt and afterglow emissions correspond to synchrotron radiation from shock-accelerated electrons. Here we report an observation of a high-energy (multi-MeV) spectral component in the burst of 17 October 1994 that is distinct from the previously observed lower-energy gamma-ray component. The flux of the high-energy component decays more slowly and its fluence is greater than the lower-energy component; it is described by a power law of differential photon number index approximately -1 up to about 200 MeV. This observation is difficult to explain with the standard synchrotron shock model, suggesting the presence of new phenomena such as a different non-thermal electron process, or the interaction of relativistic protons with photons at the source.

  10. High-quality electron pulse generation from a laser photocathode RF gun

    International Nuclear Information System (INIS)

    Yang, Jinfeng; Sakai, Fumio; Aoki, Yasushi

    1999-01-01

    A laser photocathode RF gun system was developed for ultra short X-ray pulse generation via the inverse Compton scattering. The gun is a BNL-type S-band RF gun and the performance test of the gun was performed at the Linear Accelerator Facility in the Institute of Scientific and Industries Research, Osaka University. The gun system produced 115 pC electron bunches with the energy of 1.6 MeV under the condition of RF peak power of 1.5 MW and laser pulse energy of 65 μJ. The quantum efficiency and dark current were obtained to be 10 -5 and 0.6 nA at the repetition rate of 10 Hz, respectively. The energy and charge of the electron bunch were measured as a function of laser injection phase. Furthermore, the electron bunches were accelerated up to 117 MeV by three s-band TW linacs and the energy monochromaticity (ΔE/E) of the beam was 1.2%. The transverse emittance was also experimentally investigated at the end of the linacs. (author)

  11. An energy monitor for electron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Geske, G. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Klinik und Poliklinik des Bereiches Medizin)

    1990-09-01

    A monitor useful for checks of the energy selector scale of medical electron accelerators was developed and tested. It consists of a linear array of flat ionization chambers sandwiched between absorber plates of low-Z material. The first chamber at the electron beam entrance may be used to produce a reference signal S{sub r}, if not another suitable reference signal is taken. The following chambers are electrically connected and deliver the measuring signal S{sub m}. A clinical dosimeter can be used for recording current or charge. The energy-dependent electron range parameters R{sub p}, R{sub 50} and R{sub 80} in water vary as linear functions of the ratio reference singal/measuring signal. The best linear fit was obtained for the half value layer R{sub 50}. Three types of the energy monitor are described, and experimental results obtained with a linear accelerator and a betatron between 5 and 25 MeV are reported. Uncertainties for checks of R{sub 50} with a calibrated energy monitor were not larger than 1 to 2 mm. Theoretical considerations by a computer model support these results. (orig./HP).

  12. High frequency free-electron laser results

    International Nuclear Information System (INIS)

    Boyer, K.; Brau, C.A.; Newman, B.E.; Stein, W.E.; Warren, R.W.; Winston, J.G.; Young, L.M.

    1983-01-01

    By looking at the free-electron laser as a particle accelerator working backwards, Morton realized that the techniques used to accelerate particles could be used to improve the performance of free-electron lasers. In particular, he predicted the capture of electrons in ''stable-phase'' regions, or ''buckets'' in the electron phase space, and proposed that by decelerating the buckets, the trapped electrons could be decelerated to extract significant amounts of their energy as optical radiation. In fact, since electrons not trapped in the stable regions are forever excluded from them--at least in the adiabatic approximation--displacement techniques could also be used to accelerate or decelerate electrons in a free-electron laser. This paper explains the principle behind ''phase-displacement'' acceleration and details an experiment carried out with a 20-MeV electron beam to test these predictions. Results obtained with a tapered-wiggler free-electron laser demonstrate the concepts proposed by Morton for enhanced efficiency. They show deceleration of electrons by as much as 7% and extraction of more than 3% of the total electron-beam energy as laser energy when the laser is operated as an amplifier. The experiment is presently being reconfigured to examine its performance as a laser oscillator

  13. Ion induced high energy electron emission from copper

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, G. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)], E-mail: gdruano@ceride.gov.ar; Ferron, J. [Instituto de Desarrollo Tecnologico para la Industria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina); Departamento de Ingenieria de Materiales, Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional del Litoral Gueemes 3450 CC 91, 3000 Santa Fe (Argentina)

    2008-11-15

    We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He{sup +}, Ne{sup +} and Ar{sup +}) and Li{sup +} ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.

  14. Sustained >100 MeV Gamma-Ray Emission: A Monitor for >300 MeV SEP Protons at the Sun

    Science.gov (United States)

    Share, G. H.; Murphy, R. J.

    2017-12-01

    Solar γ radiation is the product of proton and ion interactions in the solar atmosphere. The spectrum and temporal characteristics of the emission provides fundamental information on the ions at the Sun. Until the launch of the Fermi satellite, with its Large Area Telescope (LAT) sensitive to radiation above 100 MeV, most of the γ-ray observations were made in the nuclear energy range with radiation arising from interaction of one to tens of MeV ions produced in solar flares. Since 2008 the LAT has detected 30 high-energy γ-ray events with temporal and spectral characteristics that are distinct from the associated solar flare. We call this radiation Sustained Gamma-Ray Emission (SGRE) and briefly summarize its characteristics reported in a recent paper. The γ-ray spectra are consistent with pion decay radiation produced by protons above 300 MeV. The onset of the radiation most often occurs after the impulsive flare and the emission can last several hours. We find that the number of protons responsible for the SGRE is typically more than 10 times the number of flare-accelerated protons. These characteristics require that there be an additional source of energy to accelerate the protons to hundreds of MeV to produce the SGRE. As 28 of the 30 SGRE events are accompanied by fast CMEs, it is likely that these protons are accelerated by the same shock that produces gradual SEPs. We find that the number of protons >500 MeV in the accompanying SEPs is typically about 50-100 times the number of protons that return to the Sun to produce the SGRE. There also appear to be correlations between the numbers of SEP and SGRE protons and durations of >100 MeV SEP proton and SGRE events. We find that for all SGRE events where there were flare observations, the accompanying impulsive X-radiation reached energies >100 keV. In a limited study of 18 solar events with CME speeds >800 km/s we also find that the median SEP proton flux is 25 times higher when flare hard X-rays exceed 100

  15. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  16. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    International Nuclear Information System (INIS)

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey; Jensen, Christopher; Maxim, Peter G.; Loo, Billy W.; Hårdemark, Björn; Hynning, Elin

    2015-01-01

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric

  17. Determination of the threshold-energy surface for copper using in-situ electrical-resistivity measurements in the high-voltage electron microscope

    International Nuclear Information System (INIS)

    King, W.E.; Merkle, K.L.; Meshii, M.

    1981-01-01

    A detailed study of the anisotropy of the threshold energy for Frenkel-pair production in copper was carried out experimentally, using in-situ electrical-resistivity measurements in the high-voltage electron microscope. These electrical-resistivity measurements, which are sensitive to small changes in point-defect concentration, were used to determine the damage or defect production rate. Damage-rate measurements in copper single crystals were carried out for approx.40 incident electron-beam directions and six electron energies from 0.4 to 1.1 MeV. The total cross section for Frenkel-pair production is proportional to the measured damage rate and can be theoretically calculated if the form of the threshold-energy surface is known. Trial threshold-energy surfaces were systematically altered until a ''best fit'' of the calculated to the measured total cross sections for Frenkel-pair production was obtained. The average threshold energy of this surface is 28.5 eV. The minimum threshold energy is 18 +- 2 eV and is located near . A ring of very high threshold energy (>50 eV) surrounds the direction. A damage function for single-defect production was derived from this surface and was applied to defect-production calculations at higher recoil energies. This function rises rather sharply from a value of zero at 17 eV to 0.8 at 42 eV. It has the value of 0.5 at 24.5 eV. Above 30 eV the slope of the curve begins to decrease, reflecting the presence of the high-energy regions of the threshold-energy surface. Both topographical and quantitative comparisons of the present surface with those in the literature were presented. Based on a chi 2 goodness-of-fit test, the present surface was found to predict the experimentally observed total cross sections for Frenkel-pair production significantly better than the other available surfaces. Also, the goodness of fit varied substantially less with energy and direction for the present surface

  18. Cross section ratio and angular distributions of the reaction p + d → 3He + η at 48.8 MeV and 59.8 MeV excess energy

    International Nuclear Information System (INIS)

    Adlarson, P.; Calen, H.; Fransson, K.; Gullstroem, C.O.; Heijkenskjoeld, L.; Hoeistad, B.; Johansson, T.; Marciniewski, P.; Redmer, C.F.; Wolke, M.; Zlomanczuk, J.; Augustyniak, W.; Marianski, B.; Morsch, H.P.; Trzcinski, A.; Zupranski, P.; Bardan, W.; Ciepal, I.; Czerwinski, E.; Hodana, M.; Jany, A.; Jany, B.R.; Jarczyk, L.; Kamys, B.; Kistryn, S.; Krzemien, W.; Magiera, A.; Moskal, P.; Ozerianska, I.; Podkopal, P.; Rudy, Z.; Skurzok, M.; Smyrski, J.; Wronska, A.; Zielinski, M.J.; Bashkanov, M.; Clement, H.; Doroshkevich, E.; Perez del Rio, E.; Pricking, A.; Skorodko, T.; Wagner, G.J.; Bergmann, F.S.; Demmich, K.; Goslawski, P.; Huesken, N.; Khoukaz, A.; Passfeld, A.; Taeschner, A.; Berlowski, M.; Stepaniak, J.; Bhatt, H.; Lalwani, K.; Varma, R.; Buescher, M.; Engels, R.; Goldenbaum, F.; Hejny, V.; Khan, F.A.; Lersch, D.; Lorentz, B.; Maier, R.; Ohm, H.; Prasuhn, D.; Schadmand, S.; Sefzick, T.; Stassen, R.; Sterzenbach, G.; Stockhorst, H.; Stroeher, H.; Wurm, P.; Zurek, M.; Coderre, D.; Ritman, J.; Erven, A.; Erven, W.; Kemmerling, G.; Kleines, H.; Wuestner, P.; Eyrich, W.; Hauenstein, F.; Krapp, M.; Zink, A.; Fedorets, P.; Foehl, K.; Goswami, A.; Grigoryev, K.; Kirillov, D.A.; Piskunov, N.M.; Klos, B.; Stephan, E.; Weglorz, W.; Kulessa, P.; Pysz, K.; Siudak, R.; Szczurek, A.; Kupsc, A.; Pszczel, D.; Mikirtychiants, M.; Pyszniak, A.; Roy, A.; Sawant, S.; Serdyuk, V.; Sopov, V.; Yamamoto, A.; Yurev, L.; Zabierowski, J.

    2014-01-01

    We present new data for angular distributions and on the cross section ratio of the p+d → 3 He + η reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum Juelich) using a proton beam and a deuterium pellet target. While the shape of obtained angular distributions show only a slow variation with the energy, the new results indicate a distinct and unexpected total cross section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the variation of the production mechanism within this energy interval. (orig.)

  19. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Lawrence Livermore National Laboratory, Livermore, California 94440 (United States); McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K. [Lawrence Livermore National Laboratory, Livermore, California 94440 (United States); Petrov, G. M.; Davis, J. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States); Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Jarrott, L. C.; Tynan, G.; Beg, F. N. [Mechanical and Aerospace Engineering, University of California-San Diego, La Jolla, California 92093 (United States); Kodama, R.; Nakamura, H. [Institute of Laser Engineering, Osaka University, 2-5 Yamada-oka, Suita, Osaka 454-0871 (Japan); Lancaster, K. L. [STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11OQX (United Kingdom)

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  20. High resolution 14 MeV neutron spectrometer

    International Nuclear Information System (INIS)

    Pillon, M.

    1986-01-01

    A neutron spectrometer, based both on the track position identification and the energy measurement of recoiling protons from a hydrogenous radiator is proposed. The expected performance limits of this spectrometer with regard to energy resolution (deltaE/E), efficiency (epsilon) and counting rate are evaluated in five different configurations. The results show the possibility of deriving an optimized spectrometer design for applications on large fusion devices such as JET and NET with an energy resolution up 1% at 14 MeV

  1. Lactose and sucrose aqueous solutions for high-dose dosimetry with 10-MeV electron beam irradiation

    International Nuclear Information System (INIS)

    Amraei, R.; Kheirkhah, M.; Raisali, G.

    2012-01-01

    In the present study, dosimetric characterisation of aqueous solutions of lactose and sucrose was analysed by UV spectrometry following irradiation using 10-MeV electron beam at doses between 0.5 and 10.5 kGy. As a dosimetric index, absorbance is selected at 256 and 264 nm for lactose and sucrose aqueous solutions, respectively. The intensity of absorbance for irradiated solutions depends on the pre-irradiation concentration of lactose and sucrose. The post-irradiation stability of both solutions was investigated at room temperature for a measurement period of 22 d. (authors)

  2. TU-H-BRC-03: Evaluation of Very High-Energy Electron (VHEE) Beams in Comparison to VMAT and PBS Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, E; Loo, B; Maxim, P [Stanford University School of Medicine, Palo Alto, California (United States); Eriksson, K; Hynning, E [RaySearch Laboratories, Stockholm (Sweden)

    2016-06-15

    Purpose: The aim of this study was to evaluate the performance of very high-energy electron (VHEE) beams in comparison to clinically delivered treatment plans generated with volumetric modulated arc therapy (VMAT) and proton pencil beam scanning (PBS) technology. Methods: Three clinical cases were selected (prostate, lung, and pediatric CNS). The VHEE plans were calculated in the Monte Carlo EGSnrc code and pencil beam doses were calculated using the DOSxyznrc MC code for 100 and 200 MeV beams. Treatment plans with VHEE, VMAT, and PBS were optimized in a research version of RayStation using an in house build script in order to minimize operator bias between the different techniques. Results: For the prostate cancer case, the PBS plan showed lower mean organ at risk (OAR) doses compared to the other modalities. An exception was the femoral heads, due to the lateral beam arrangements. The VMAT plan showed lower mean doses to the rectum and the bladder compared to the 100 MeV VHEE plan. The lung cancer case showed minor differences between the three modalities. However, the PBS plan showed a lower contralateral lung dose. The pediatric CNS case showed a better conformity and lower spinal cord dose for the 100 MeV VHEE plan. For all cases, the 200 MeV VHEE plans were found to be similar to or better than the 100 MeV VHEE plans. Conclusion: The present study showed that VHEE plans are similar or superior to VMAT plans with reduced mean OAR dose and increased target conformity for a variety of clinical cases. With increased VHEE energy, better conformity and even higher reductions in mean OAR doses can be achieved. Funding: DoD, Award#:W81XWH-13-1-0165, Weston Havens Foundation, Bio-X (Stanford University), the Office of the Dean of the Medical School, the Office of the Provost (Stanford University), and the Swedish Childhood Cancer Foundation. BL and PM are founders of TibaRay,Inc. BL and PM have received research grants from Varian and RaySearch Laboratory.

  3. Evaluation of energy response of neutron rem monitor applied to high-energy accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Harada, Yasunori; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    A neutron rem monitor was newly developed for applying to the high-intensity proton accelerator facility (J-PARC) that is under construction as a joint project between the Japan Atomic Energy Research Institute and the High Energy Accelerator Research Organization. To measure the dose rate accurately for wide energy range of neutrons from thermal to high-energy region, the neutron rem monitor was fabricated by adding a lead breeder layer to a conventional neutron rem monitor. The energy response of the monitor was evaluated by using neutron transport calculations for the energy range from thermal to 150 MeV. For verifying the results, the response was measured at neutron fields for the energy range from thermal to 65 MeV. The comparisons between the energy response and dose conversion coefficients show that the newly developed neutron rem monitor has a good performance in energy response up to 150 MeV, suggesting that the present study offered prospects of a practical fabrication of the rem monitor applicable to the high intensity proton accelerator facility. (author)

  4. Generation and transportation of low-energy, high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ozur, G E; Proskurovskij, D I; Nazarov, D S [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of High Current Electronics

    1997-12-31

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm{sup 2}, which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs.

  5. Spectra of gamma-ray bursts at high energies

    International Nuclear Information System (INIS)

    Matz, S.M.

    1986-01-01

    Between 1980 February and 1983 August the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite (SMM) observed 71 gamma-ray bursts. These events form a representative subset of the class of classical gamma-ray bursts. Since their discovery more than 15 years ago, hundreds of gamma-ray bursts have been detected; however, most observations have been limited to an energy range of roughly 30 keV-1 MeV. The large sensitive area and spectral range of the GRS allow, for the first time, an investigation of the high energy (>1 MeV) behavior of a substantial number of gamma-ray bursts. It is found that high-energy emission is seen in a large fraction of all events and that the data are consistent with all bursts emitting to at least 5 MeV with no cut-offs. Further, no burst spectrum measured by GRS has a clear high-energy cut-off. The high-energy emission can be a significant part of the total burst energy on the average about 30% of the observed energy above 30 keV is contained in the >1 MeV photons. The fact that the observations are consistent with the presence of high-energy emission in all events implies a limit on the preferential beaming of high-energy photons, from any mechanism. Single-photon pair-production in a strong magnetic field produces such beaming; assuming that the low-energy emission is isotropic, the data imply an upper limit of 1 x 10 12 G on the typical magnetic field at burst radiation sites

  6. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    Energy Technology Data Exchange (ETDEWEB)

    Bizen, Teruhiko [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)]. E-mail: bizen@spring8.or.jp; Asano, Yoshihiro [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Marechal, Xavier-Marie [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Seike, Takamitsu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Aoki, Tsuyoshi [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Fukami, Kenji [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoda, Naoyasu [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Yonehara, Hiroto [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Takagi, Tetsuya [JASRI SPring-8, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Toru [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Tanaka, Takashi [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Kitamura, Hideo [RIKEN SPring-8 Center, 1-1-1 Kouto Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2007-05-11

    High-energy electron-beam bombardment of Nd{sub 2}Fe{sub 14}B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small.

  7. High-energy electron irradiation of NdFeB permanent magnets: Dependence of radiation damage on the electron energy

    International Nuclear Information System (INIS)

    Bizen, Teruhiko; Asano, Yoshihiro; Marechal, Xavier-Marie; Seike, Takamitsu; Aoki, Tsuyoshi; Fukami, Kenji; Hosoda, Naoyasu; Yonehara, Hiroto; Takagi, Tetsuya; Hara, Toru; Tanaka, Takashi; Kitamura, Hideo

    2007-01-01

    High-energy electron-beam bombardment of Nd 2 Fe 14 B-type permanent magnets induces radiation damage characterized by a drop in the magnetic field. Experiments carried out at the SPring-8 booster synchrotron, with 4, 6, and 8 GeV electrons, show that the drop in magnetic field is energy dependent. Electromagnetic shower simulations suggest that most of the radiation damage happens in a small region around the irradiation axis, and that the contribution of neutrons with large scattering angles or with low energies to the magnetic field change is small

  8. Secondary electron emission from 0.5--2.5-MeV protons and deuterons

    International Nuclear Information System (INIS)

    Thornton, T.A.; Anno, J.N.

    1977-01-01

    Measurement of the secondary electron currents leaving Al, V, Fe, 316 stainless steel, Nb, and Mo foils undergoing 0.5--2.5-MeV proton and deuteron bombardment were made to determine the secondary electron emission ratios for these ions. The measured secondary electron yields were of the order of 1.0, with the deuterons producing generally higher yields than the protons

  9. Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system

    Science.gov (United States)

    Shin, Seung-wook; Lee, Seung-Hyun; Lee, Jong-Chul; Kim, Huisu; Ha, Donghyup; Ghergherehchi, Mitra; Chai, Jongseo; Lee, Byung-no; Chae, Moonsik

    2017-12-01

    A compact 6 MeV electron linac is being developed at Sungkyunkwan University, in collaboration with the Korea atomic energy research institute (KAERI). The linac will be used as an X-ray source for a dual-head gantry radiotherapy system. X-band technology has been employed to satisfy the size requirement of the dual-head gantry radiotherapy machine. Among the several options available, we selected a pi/2-mode, standing-wave, side-coupled cavity. This choice of radiofrequency (RF) cavity design is intended to enhance the shunt impedance of each cavity in the linac. An optimum structure of the RF cavity with a high-performance design was determined by applying a genetic algorithm during the optimization procedure. This paper describes the detailed design process for a single normal RF cavity and the entire structure, including the RF power coupler and coupling cavity, as well as the beam dynamics results.

  10. Tailoring of structural and electron emission properties of CNT walls and graphene layers using high-energy irradiation

    International Nuclear Information System (INIS)

    Sharma, Himani; Shukla, A K; Vankar, V D; Agarwal, Dinesh C; Avasthi, D K; Sharma, M

    2013-01-01

    Structural and electron emission properties of carbon nanotubes (CNTs) and multilayer graphene (MLG) are tailored using high-energy irradiation by controlling the wall thickness and number of layers. Ion irradiation by 100 MeV Ag + ions at different fluences is used as an effective tool for optimizing defect formation in CNTs and MLGs, as analysed by micro-Raman spectroscopy. It is found that the cross section for defect formation (η) is 3.5 × 10 −11 for thin-walled CNTs, 2.8 × 10 −11 for thick-walled CNTs and 3.1 × 10 −11 for MLGs. High-resolution transmission electron microscopy results also show that thin-walled CNTs and MLGs are more defective in comparison with thick-walled CNTs. Carbon atoms rearrange at a fluence of 1 × 10 12 ions cm −2 in thick-walled CNTs to heal up the damage, which aggravates at higher fluences. The observed electron emission parameters of the modified thin-walled CNTs and MLGs are confirmed with the changes in the structures and are optimized at a fluence of 1 × 10 11 ions cm −2 . However, the electron emission properties of thick-walled CNTs are modified at a fluence of 1 × 10 12 ions cm −2 . The enhancement in the electron emission properties is due to the rearrangement of bonds and hence modified tips due to irradiation. (paper)

  11. Generation of 300 MeV Quasi-Monochromatic Electron Beams from Laser Wakefield and Initiation of Photonuclear Reactions

    Science.gov (United States)

    Maksimchuk, A.; Beene, J. R.

    2005-10-01

    In the interaction of 30 fs, 40 TW Ti:sapphire Hercules laser at the University of Michigan, which is focused to the intensity of 10^19 W/cm^2 onto a supersonic He gas jet with electron density close to the resonant density, we observed quasi-monoenergetic electron beams with energy up to 300 MeV and angular divergence of about 10 mrad. The results on characterization of relativistic electron beam in terms of energy spread, its charge, divergence and pointing stability will be presented. 2D PIC simulations performed for the parameters close to the experimental conditions show the evolution of the laser pulse in plasma, electron injection, and the specifics of electron acceleration observed in experiments. Resulted relativistic electron beams have been used to perform gamma-neutron activation of ^12C and ^63Cu and photo-fission of ^238U. We demonstrated that approximately 10^6 reaction per shot has been produced in each case. This work was supported by the NSF through the Physics Frontier Center FOCUS. JRB, DRS, DWS, and CRV acknowledge support by the DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  12. SU-E-T-274: Radiation Therapy with Very High-Energy Electron (VHEE) Beams in the Presence of Metal Implants

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C; Palma, B; Qu, B; Maxim, P; Loo, B; Bazalova, M [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Hardemark, B; Hynning, E [RaySearch Laboratories, Stockholm (Sweden)

    2014-06-01

    Purpose: To evaluate the effect of metal implants on treatment plans for radiation therapy with very high-energy electron (VHEE) beams. Methods: The DOSXYZnrc/BEAMnrc Monte Carlo (MC) codes were used to simulate 50–150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a water phantom. Heterogeneities of thicknesses ranging from 0.5cm to 2cm were placed at 10cm depth. MC was also used to calculate electron and photon spectra generated by the VHEE beams' interaction with metal heterogeneities. The original VMAT patient dose calculation was planned in Eclipse. Patient dose calculations with MC-generated beamlets were planned using a Matlab GUI and research version of RayStation. VHEE MC treatment planning was performed on water-only geometry and water with segmented prostheses (steel and Ti) geometries with 100MeV and 150MeV beams. Results: 100MeV PDD 5cm behind steel/Ti heterogeneity was 51% less than in the water-only phantom. For some cases, dose enhancement lateral to the borders of the phantom increased the dose by up to 22% in steel and 18% in Ti heterogeneities. The dose immediately behind steel heterogeneity decreased by an average of 6%, although for 150MeV, the steel heterogeneity created a 23% increase in dose directly behind it. The average dose immediately behind Ti heterogeneities increased 10%. The prostate VHEE plans resulted in mean dose decrease to the bowel (20%), bladder (7%), and the urethra (5%) compared to the 15MV VMAT plan. The average dose to the body with prosthetic implants was 5% higher than to the body without implants. Conclusion: Based on MC simulations, metallic implants introduce dose perturbations to VHEE beams from lateral scatter and backscatter. However, when performing clinical planning on a prostate case, the use of multiple beams and inverse planning still produces VHEE plans that are dosimetrically superior to photon VMAT plans. BW Loo and P Maxim received research support from

  13. SU-E-T-274: Radiation Therapy with Very High-Energy Electron (VHEE) Beams in the Presence of Metal Implants

    International Nuclear Information System (INIS)

    Jensen, C; Palma, B; Qu, B; Maxim, P; Loo, B; Bazalova, M; Hardemark, B; Hynning, E

    2014-01-01

    Purpose: To evaluate the effect of metal implants on treatment plans for radiation therapy with very high-energy electron (VHEE) beams. Methods: The DOSXYZnrc/BEAMnrc Monte Carlo (MC) codes were used to simulate 50–150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a water phantom. Heterogeneities of thicknesses ranging from 0.5cm to 2cm were placed at 10cm depth. MC was also used to calculate electron and photon spectra generated by the VHEE beams' interaction with metal heterogeneities. The original VMAT patient dose calculation was planned in Eclipse. Patient dose calculations with MC-generated beamlets were planned using a Matlab GUI and research version of RayStation. VHEE MC treatment planning was performed on water-only geometry and water with segmented prostheses (steel and Ti) geometries with 100MeV and 150MeV beams. Results: 100MeV PDD 5cm behind steel/Ti heterogeneity was 51% less than in the water-only phantom. For some cases, dose enhancement lateral to the borders of the phantom increased the dose by up to 22% in steel and 18% in Ti heterogeneities. The dose immediately behind steel heterogeneity decreased by an average of 6%, although for 150MeV, the steel heterogeneity created a 23% increase in dose directly behind it. The average dose immediately behind Ti heterogeneities increased 10%. The prostate VHEE plans resulted in mean dose decrease to the bowel (20%), bladder (7%), and the urethra (5%) compared to the 15MV VMAT plan. The average dose to the body with prosthetic implants was 5% higher than to the body without implants. Conclusion: Based on MC simulations, metallic implants introduce dose perturbations to VHEE beams from lateral scatter and backscatter. However, when performing clinical planning on a prostate case, the use of multiple beams and inverse planning still produces VHEE plans that are dosimetrically superior to photon VMAT plans. BW Loo and P Maxim received research support from

  14. Photon and electron collimator effects on electron output and abutting segments in energy modulated electron therapy

    International Nuclear Information System (INIS)

    Olofsson, Lennart; Karlsson, Magnus G.; Karlsson, Mikael

    2005-01-01

    In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage. Two add-on electron collimator geometries have been analyzed using Monte Carlo simulations: One isocentric eMLC geometry with an isocentric clearance of 35 cm and air or helium in the treatment head, and one conventional proximity geometry with a clearance of 5 cm and air in the treatment head. The electron fluence output for 22.5 MeV electrons is not significantly affected by the xMLC if the shielding margins are larger than 2-3 cm. For small field sizes and 9.6 MeV electrons, the isocentric design with helium in the treatment head or shielding margins larger than 3 cm is needed to avoid a reduced electron output. Dose inhomogeneity in the matching region of electron segments is, in general, small when collimator positions are adjusted to account for divergence in the field. The effect of xMLC tracking on the electron output can be made negligible while still obtaining a substantially reduced x-ray leakage contribution. Collimator scattering effects do not interfere significantly when abutting beam techniques are properly applied

  15. Void formation in pure aluminium irradiated with high-energetic electron beams and gamma-quanta

    DEFF Research Database (Denmark)

    Gan, V. V.; Ozhigou, L. S.; Yamnitsky, V. A.

    1983-01-01

    The spatial distribution of displaced atoms and helium atoms and also the spectra of damaging energies of primary displaced atoms in a thick aluminium target irradiated with electrons of 225 MeV energy were calculated. Pure aluminium (99.9999%) irradiated up to 0.04 dose was studied by electron...

  16. Silicon photomultipliers in scintillation detectors used for gamma ray energies up to 6.1 MeV

    Science.gov (United States)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Swiderski, L.; Szawłowski, M.

    2017-12-01

    Majority of papers concerning scintillation detectors with light readout by means of silicon photomultipliers refer to nuclear medicine or radiation monitoring devices where energy of detected gamma rays do not exceed 2 MeV. Detection of gamma radiation with higher energies is of interest to e.g. high energy physics and plasma diagnostics. The aim of this paper is to study applicability (usefulness) of SiPM light readout in detection of gamma rays up to 6.1 MeV in combination with various scintillators. The reported measurements were made with 3 samples of one type of Hamamatsu TSV (Through-Silicon Via technology) MPPC arrays. These 4x4 channel arrays have a 50 × 50 μm2 cell size and 12 × 12 mm2 effective active area. The following scintillators were used: CeBr3, NaI:Tl, CsI:Tl. During all the tests detectors were located in a climatic chamber. The studies are focused on optimization of the MPPC performance for practical use in detection of high energy gamma rays. The optimization includes selection of the optimum operating voltage in respect to the required energy resolution, dynamic range, linearity and pulse amplitude. The presented temperature tests show breakdown voltage dependence on the temperature change and define requirements for a power supply and gain stabilization method. The energy spectra for energies between 511 keV and 6.1 MeV are also presented and compared with data acquired with a classic photomultiplier XP5212B readout. Such a comparison allowed study of nonlinearity of the tested MPPCs, correction of the energy spectra and proper analysis of the energy resolution.

  17. Electron attachment in F2 - Conclusive demonstration of nonresonant, s-wave coupling in the limit of zero electron energy

    Science.gov (United States)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.

  18. Intensity maps of MeV electrons and protons below the radiation belt

    International Nuclear Information System (INIS)

    Kohno, T.; Munakata, K.; Murakami, H.; Nakamoto, A.; Hasebe, N.; Kikuchi, J.; Doke, T.

    1988-01-01

    The global distributions of energetic electrons (0.19 - 3.2 MeV) and protons (0.64 - 35 MeV) are shown in the form of contour maps. The data were obtained by two sets of energetic particle telescopes on board the satellite OHZORA. The observed altitude range is 350 - 850 Km. Ten degress meshes in longitude and latitude were used to obtain the intensity contours. A pitch angle distribution of J(α) = J(90). sin n α with n = 5 A is assumed to get the average intensity in each mesh. (author) [pt

  19. Measures of gamma rays between 0,3 MeV and 3,0 MeV and of the 0,511 MeV annihilation line coming from Galactic Center Region

    International Nuclear Information System (INIS)

    Jardim, M.V.A.

    1982-04-01

    The detection of the flux of the electron-positron annihilation line coming from the Galactic Center direction allows one to estimate the rate of positrons production and the corresponding luminosity. The results of measurements of the annihilation line flux intensity at 0.511 MeV, obtained with a balloon borne experiment to measure gamma rays in the energy interval 0.3 to 3 MeV are presented. The detector looked at the galactic disk in the longitude interval -31 0 0 and observed a flux intensity of (6.70 +- 0.85) x 10 -3 photons cm -2 s -1 , which is in good agreement with the flux value estimated assuming that the Galactic Center is a line source emitting uniformly. Some likely sources of positrons and annhilation regions are also discussed. The results for the continuum spectrum emitted from the Galactic Center in the energy interval 0.3 to 0.67 MeV are presented and compared with measurements had already made. (Author) [pt

  20. EELOSS: the program for calculation of electron energy loss data

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1980-10-01

    A computer code EELOSS has been developed to obtain the electron energy loss data required for shielding and dosimetry of beta- and gamma-rays in nuclear plants. With this code, the following data are obtainable for any energy from 0.01 to 15 MeV in any medium (metal, insulator, gas, compound, or mixture) composed of any choice of 69 elements with atomic number 1 -- 94: a) Collision stopping power, b) Restricted collision stopping power, c) Radiative stopping power, and d) Bremsstrahlung production cross section. The availability of bremsstrahlung production cross section data obtained by the EELOSS code is demonstrated by the comparison of calculated gamma-ray spectrum with measured one in Pb layer, where electron-photon cascade is included implicitly. As a result, it is concluded that the uncertainty in the bremsstrahlung production cross sections is negligible in the practical shielding calculations of gamma rays of energy less than 15 MeV, since the bremsstrahlung production cross sections increase with the gamma-ray energy and the uncertainty for them decreases with increasing the gamma-ray energy. Furthermore, the accuracy of output data of the EELOSS code is evaluated in comparison with experimental data, and satisfactory agreements are observed concerning the stopping power. (J.P.N.)

  1. THE HIGH-ENERGY EMISSION OF THE CRAB NEBULA FROM 20 keV TO 6 MeV WITH INTEGRAL SPI

    International Nuclear Information System (INIS)

    Jourdain, E.; Roques, J. P.

    2009-01-01

    The SPI spectrometer aboard the International Gamma-Ray Astrophysics Laboratory mission regularly observes the Crab Nebula since 2003. We report on observations distributed over 5.5 years and investigate the variability of the intensity and spectral shape of this remarkable source in the hard X-rays domain up to a few MeV. While single power-law models give a good description in the X-ray domain (mean photon index ∼ 2.05) and MeV domain (photon index ∼ 2.23), crucial information is contained in the evolution of the slope with energy between these two values. This study has been carried out through individual observations and long duration (∼ 400 ks) averaged spectra. The stability of the emission is remarkable and excludes a single power-law model. The slopes measured below and above 100 keV agree perfectly with the last values reported in the X-ray and MeV regions, respectively, but without indication of a localized break point. This suggests a gradual softening in the emission around 100 keV and thus a continuous evolution rather than an actual change in the mechanism parameters. In the MeV region, no significant deviation from the proposed power-law model is visible up to 5-6 MeV. Finally, we take advantage of the spectroscopic capability of the instrument to seek for previously reported spectral features in the covered energy range with negative results for any significant cyclotron or annihilation emission on 400 ks timescales. Beyond the scientific results, the performance and reliability of the SPI instrument is explicitly demonstrated, with some details about the most appropriate analysis method.

  2. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    International Nuclear Information System (INIS)

    Azadegan, B.

    2007-01-01

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 μm. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 μm thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 μm thick

  3. Investigation of planar channeling radiation on diamond and quartz crystals at electron energies between 14 and 34 MeV and probing the influence of ultrasonic waves on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Azadegan, B.

    2007-11-15

    Measurements of planar channeling radiation (CR) have been performed at the electron beam of ELBE within an energy range between 14 and 34 MeV and for thicknesses of the diamond crystals between 42.5 and 500 {mu}m. Absolute CR photon yields have for the first time been obtained for the above given ranges of electron energy and crystal thickness. The square-root dependence of the planar CR photon yield on the thickness of diamond crystals has been confirmed. A systematic quantitative investigation of the influence of the crystal thickness on the CR line shape has for the first time been performed. The mean-squared multiple-scattering angle effective for planar CR observed in forward direction has been found to be weaker as assumed from scattering in amorphous targets. Scaling laws deduced from the measured CR data are of advantage for the operation of a CR source. The second part of this thesis deals with the possibility of stimulation of CR emission by means of ultrasonic vibrations excited in a piezoelectric single crystal. Since the knowledge of the CR spectra generated on undisturbed quartz crystals is a necessary precondition for some investigation of the influence of US, planar CR has for the first time been measured at medium electron energies for a variety of planes in quartz. As a consequence of the hexagonal structure of this crystal, relative intense CR could be registered even out of planes with indices larger than one. On the base of the non-linear optics method, occupation functions and spectral distributions of planar CR have been calculated for channeling of 20 MeV electrons in the (01 anti 15) plane of a 20 {mu}m thick quartz crystal at resonant influence of ultrasound (US). The resonance frequencies have been deduced from the measurements of CR spectra performed on quartz. First experimental investigations of the influence of US on CR started at ELBE aimed at the study of the effect of non-resonant ultrasonic vibrations excited in a 500 {mu}m thick

  4. High power electron beam accelerators for gas laser excitation

    International Nuclear Information System (INIS)

    Kelly, J.G.; Martin, T.H.; Halbleib, J.A.

    1976-06-01

    A preliminary parameter investigation has been used to determine a possible design of a high-power, relativistic electron beam, transversely excited laser. Based on considerations of present and developing pulsed power technology, broad area diode physics and projected laser requirements, an exciter is proposed consisting of a Marx generator, pulse shaping transmission lines, radially converging ring diodes and a laser chamber. The accelerator should be able to deliver approximately 20 kJ of electron energy at 1 MeV to the 10 4 cm 2 cylindrical surface of a laser chamber 1 m long and 0.3 m in diameter in 24 ns with very small azimuthal asymmetry and uniform radial deposition

  5. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    Science.gov (United States)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    One of the major goals of developing laser wakefiled accelerators (LWFAs) is to produce compact high-energy electron beam (e-beam) sources, which are expected to be applied in developing compact x-ray free-electron lasers and monoenergetic gamma-ray sources. Although LWFAs have been demonstrated to generate multi-GeV e-beams, to date they are still failed to produce high quality e beams with several essential properties (narrow energy spread, small transverse emittance and high beam charge) achieved simultaneously. Here we report on the demonstration of a high-quality cascaded LWFA experimentally via manipulating electron injection, seeding in different periods of the wakefield, as well as controlling energy chirp for the compression of energy spread. The cascaded LWFA was powered by a 1-Hz 200-TW femtosecond laser facility at SIOM. High-brightness e beams with peak energies in the range of 200-600 MeV, 0.4-1.2% rms energy spread, 10-80 pC charge, and 0.2 mrad rms divergence are experimentally obtained. Unprecedentedly high 6-dimensional (6-D) brightness B6D,n in units of A/m2/0.1% was estimated at the level of 1015-16, which is very close to the typical brightness of e beams from state-of-the-art linac drivers and several-fold higher than those of previously reported LWFAs. Furthermore, we propose a scheme to minimize the energy spread of an e beam in a cascaded LWFA to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution via velocity bunching. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge. Based on the high-quality e beams generated in the LWFA, we have experimentally realized a new scheme to enhance the

  6. High-stable secondary-emission monitor for accelerated electron beam current

    International Nuclear Information System (INIS)

    Prudnikov, I.A.; Saksaganskij, G.L.; Bazhanov, E.B.; Zabrodin, B.V.

    1977-01-01

    A secondary-emission monitor for a 10 to 30 MeV electron beam (beam current is 10 -4 to 10 -2 A) is described. The monitor comprises a measuring electrode unit, titanium discharge-type pump, getter made of porous titanium, all enclosed in a metal casing. The measuring unit comprises three electrodes made of 20 μm aluminium foil. The secondary emission coefficient (5.19%+-0.06% for the electron energy of 20 MeV) is maintained stable for a long time. The monitor detects pulses of up to some nanoseconds duration. It is reliable in operation, and is recommended for a wide practical application

  7. Effect of electron degeneracy on fast-particles energy deposition in dense plasma systems

    International Nuclear Information System (INIS)

    Johzaki, T.; Nakao, Y.; Nakashima, H.; Kudo, K.

    1997-01-01

    The effects of electron degeneracy on fast-particles energy deposition in dense plasmas are investigated by making transport calculations for the fast particles. It is found that the degeneracy substantially affects the profiles of energy deposition of 3.52-MeV α-particles. On the other hand, the effect on the energy deposition of 14.1-MeV neutrons is negligibly small because the recoil ions, which transfer the neutron energy to the plasma constituents, are produced in a whole plasma volume due to the long mean-free-path of neutrons. The coupled transport-hydrodynamic calculations show that these effects of degeneracy are negligible in the ignition and burn characteristics of central ignition D-T targets. (author)

  8. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the {sup 15}N(p,n) reaction as neutron source; Messung von Wirkungsquerschnitten fuer die Streuung von Neutronen im Energiebereich von 2 MeV bis 4 MeV mit der {sup 15}N(p,n)-Reaktion als Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, Erik

    2010-04-26

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The {sup 15}N(p,n){sup 15}O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the {sup 15}N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure {sup 209}Bi and {sup 181}Ta samples at 4 MeV incident neutron energy

  9. Electron energy deposition in a multilayered carbon--uranium--carbon configuration and in semi-infinite uranium

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Miller, G.H.; Halbleib, J.A. Sr.

    1977-10-01

    Absolute measurements of electron energy deposition profiles are reported here for electrons incident on the multilayer configuration of carbon-uranium-carbon. These measurements were for normally incident source electrons at an energy of 1.0 MeV. To complement these measurements, electron energy deposition profiles were also obtained for electrons incident on semi-infinite uranium as a function of energy and angle of incidence. The results are compared with the predictions of a coupled electron/photon Monte Carlo transport model. In general, the agreement between theory and experiment is good. This work was in support of the Reactor Safety Research Equation-of-State Program

  10. Cross section ratio and angular distributions of the reaction p + d → {sup 3}He + η at 48.8 MeV and 59.8 MeV excess energy

    Energy Technology Data Exchange (ETDEWEB)

    Adlarson, P.; Calen, H.; Fransson, K.; Gullstroem, C.O.; Heijkenskjoeld, L.; Hoeistad, B.; Johansson, T.; Marciniewski, P.; Redmer, C.F.; Wolke, M.; Zlomanczuk, J. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Augustyniak, W.; Marianski, B.; Morsch, H.P.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Department of Nuclear Physics, Warsaw (Poland); Bardan, W.; Ciepal, I.; Czerwinski, E.; Hodana, M.; Jany, A.; Jany, B.R.; Jarczyk, L.; Kamys, B.; Kistryn, S.; Krzemien, W.; Magiera, A.; Moskal, P.; Ozerianska, I.; Podkopal, P.; Rudy, Z.; Skurzok, M.; Smyrski, J.; Wronska, A.; Zielinski, M.J. [Jagiellonian University, Institute of Physics, Krakow (Poland); Bashkanov, M.; Clement, H.; Doroshkevich, E.; Perez del Rio, E.; Pricking, A.; Skorodko, T.; Wagner, G.J. [Eberhard-Karls-Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Physikalisches Institut der Universitaet Tuebingen, Kepler Center fuer Astro- und Teilchenphysik, Tuebingen (Germany); Bergmann, F.S.; Demmich, K.; Goslawski, P.; Huesken, N.; Khoukaz, A.; Passfeld, A.; Taeschner, A. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Kernphysik, Muenster (Germany); Berlowski, M.; Stepaniak, J. [National Centre for Nuclear Research, High Energy Physics Department, Warsaw (Poland); Bhatt, H.; Lalwani, K.; Varma, R. [Indian Institute of Technology Bombay, Department of Physics, Mumbai, Maharashtra (India); Buescher, M.; Engels, R.; Goldenbaum, F.; Hejny, V.; Khan, F.A.; Lersch, D.; Lorentz, B.; Maier, R.; Ohm, H.; Prasuhn, D.; Schadmand, S.; Sefzick, T.; Stassen, R.; Sterzenbach, G.; Stockhorst, H.; Stroeher, H.; Wurm, P.; Zurek, M. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Coderre, D.; Ritman, J. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (Germany); Erven, A.; Erven, W.; Kemmerling, G.; Kleines, H.; Wuestner, P. [Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Forschungszentrum Juelich, Zentralinstitut fuer Engineering, Elektronik und Analytik, Juelich (Germany); Eyrich, W.; Hauenstein, F.; Krapp, M.; Zink, A. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Fedorets, P. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Foehl, K. [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Giessen (Germany); Goswami, A. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); Indian Institute of Technology Indore, Department of Physics, Indore, Madhya Pradesh (India); Grigoryev, K. [Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (Germany); RWTH Aachen, III. Physikalisches Institut B, Physikzentrum, Aachen (Germany); Petersburg Nuclear Physics Institute, High Energy Physics Division, Leningrad district (Russian Federation); Kirillov, D.A.; Piskunov, N.M. [Joint Institute for Nuclear Physics, Veksler and Baldin Laboratory of High Energiy Physics, Moscow region (Russian Federation); Klos, B.; Stephan, E.; Weglorz, W. [University of Silesia, August Chelkowski Institute of Physics, Katowice (Poland); Kulessa, P.; Pysz, K.; Siudak, R.; Szczurek, A. [Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Kupsc, A.; Pszczel, D. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); National Centre for Nuclear Research, High Energy Physics Department, Warsaw (Poland); Mikirtychiants, M. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Ruhr-Universitaet Bochum, Institut fuer Experimentalphysik I, Bochum (DE); Petersburg Nuclear Physics Institute, High Energy Physics Division, Leningrad district (RU); Pyszniak, A. [Uppsala University, Division of Nuclear Physics, Department of Physics and Astronomy, Box 516, Uppsala (SE); Jagiellonian University, Institute of Physics, Krakow (PL); Roy, A. [Indian Institute of Technology Indore, Department of Physics, Indore, Madhya Pradesh (IN); Sawant, S. [Indian Institute of Technology Bombay, Department of Physics, Mumbai, Maharashtra (IN); Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (DE); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Serdyuk, V. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (DE); Forschungszentrum Juelich, Juelich Center for Hadron Physics, Juelich (DE); Joint Institute for Nuclear Physics, Dzhelepov Laboratory of Nuclear Problems, Moscow region (RU); Sopov, V. [State Scientific Center of the Russian Federation, Institute for Theoretical and Experimental Physics, Moscow (RU); Yamamoto, A. [High Energy Accelerator Research Organization KEK, Tsukuba, Ibaraki (JP); Yurev, L. [Joint Institute for Nuclear Physics, Dzhelepov Laboratory of Nuclear Problems, Moscow region (RU); Zabierowski, J. [National Centre for Nuclear Research, Department of Cosmic Ray Physics, Lodz (PL); Collaboration: WASA-at-COSY Collaboration

    2014-06-15

    We present new data for angular distributions and on the cross section ratio of the p+d → {sup 3}He + η reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum Juelich) using a proton beam and a deuterium pellet target. While the shape of obtained angular distributions show only a slow variation with the energy, the new results indicate a distinct and unexpected total cross section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the variation of the production mechanism within this energy interval. (orig.)

  11. Effect of High Energy Radiation on Mechanical Properties of Graphite Fiber Reinforced Composites. M.S. Thesis

    Science.gov (United States)

    Naranong, N.

    1980-01-01

    The flexural strength and average modulus of graphite fiber reinforced composites were tested before and after exposure to 0.5 Mev electron radiation and 1.33 Mev gamma radiation by using a three point bending test (ASTM D-790). The irradiation was conducted on vacuum treated samples. Graphite fiber/epoxy (T300/5208), graphite fiber/polyimide (C6000/PMR 15) and graphite fiber/polysulfone (C6000/P1700) composites after being irradiated with 0.5 Mev electron radiation in vacuum up to 5000 Mrad, show increases in stress and modulus of approximately 12% compared with the controls. Graphite fiber/epoxy (T300/5208 and AS/3501-6), after being irradiated with 1.33 Mev gamma radiation up to 360 Mrads, show increases in stress and modulus of approximately 6% at 167 Mrad compared with the controls. Results suggest that the graphite fiber composites studied should withstand the high energy radiation in a space environment for a considerable time, e.g., over 30 years.

  12. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    Science.gov (United States)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting

  13. Radiation Shielding Analyses of A 10 MeV, 15kW LINAC for Electron Beam and X-ray at KACST

    Energy Technology Data Exchange (ETDEWEB)

    Kang, W. G.; Pyo, S. H.; Han, B. S.; Kang, C. M. [EB Tech Co., Daejeon (Korea, Republic of); Alkhuraiji, T. S. [King AbdulAziz City for Science and Technology, Riyadh (Saudi Arabia)

    2016-10-15

    The King AbdulAziz City for Science and Technology (KACST) in the Kingdom of Saudi Arabia has a plan to build a 10 MeV, 15kW linear accelerator (LINAC) for electron beam and X-ray, which is to be supplied by EB Tech in Republic of Korea. The design and construction of the accelerator building will be carried out jointly between EB Tech and KACST. Recommendations for the design and installation of radiation shielding for x-ray and gamma-ray can be found in NCRP No. 49(1976) and for accelerators with energies over 10 MeV in NCRP No. 151 (2005). Monte Carlo calculations were conducted using the MCNP6 code to determine photon fluxes and doses at the point detectors locations around the accelerator building. The problem was run as an electron, photon and neutron transport problem to account for all reactions including the (γ,n) reaction. The detectors where the DXTRAN spheres were used are indicated in the table. The computation was continued until electrons reached a total of 1x10{sup +8} histories.

  14. Sudden Intensity Increases and Radial Gradient Changes of Cosmic Ray Mev Electrons and Protons Observed at Voyager 1 Beyond 111 AU in the Heliosheath

    Science.gov (United States)

    Webber, W. R.; Mcdonald, F. B.; Cummings, A. C.; Stone, E. C.; Heikkila, B.; Lal, N.

    2012-01-01

    Voyager 1 has entered regions of different propagation conditions for energetic cosmic rays in the outer heliosheathat a distance of about 111 AU from the Sun. The low energy 614 MeV galactic electron intensity increased by 20over a time period 10 days and the electron radial intensity gradient abruptly decreased from 19AU to 8AU at2009.7 at a radial distance of 111.2 AU. At about 2011.2 at a distance of 116.6 AU a second abrupt intensity increase of25 was observed for electrons. After the second sudden electron increase the radial intensity gradient increased to18AU. This large positive gradient and the 13 day periodic variations of 200 MeV particles observed near theend of 2011 indicate that V1 is still within the overall heliospheric modulating region. The implications of these resultsregarding the proximity of the heliopause are discussed.

  15. High electron mobility InN

    International Nuclear Information System (INIS)

    Jones, R. E.; Li, S. X.; Haller, E. E.; van Genuchten, H. C. M.; Yu, K. M.; Ager, J. W. III; Liliental-Weber, Z.; Walukiewicz, W.; Lu, H.; Schaff, W. J.

    2007-01-01

    Irradiation of InN films with 2 MeV He + ions followed by thermal annealing below 500 deg. C creates films with high electron concentrations and mobilities, as well as strong photoluminescence. Calculations show that electron mobility in irradiated samples is limited by triply charged donor defects. Subsequent thermal annealing removes a fraction of the defects, decreasing the electron concentration. There is a large increase in electron mobility upon annealing; the mobilities approach those of the as-grown films, which have 10 to 100 times smaller electron concentrations. Spatial ordering of the triply charged defects is suggested to cause the unusual increase in electron mobility

  16. High energy electron beam inactivation of lactate dehydrogenase suspended in different aqueous media

    International Nuclear Information System (INIS)

    Hategan, A.; Popescu, A.; Butan, C.; Oproiu, C.; Hategan, D.; Morariu, V.V.

    1999-01-01

    The direct and indirect effects of 5 MeV electron beam irradiation in the range (0-400 Gy) at 20 degC, 0 degC, -3 degC and -196 degC, as well as the influence of the aqueous suspending medium (ultrapure water and heavy water) on the total enzymatic activity of lactate dehydrogenase (LDH) have been studied. Our results showed an exponential decrease on the enzymatic activity of irradiated LDH, at all irradiation temperatures, independently of the direct or indirect action of radiation. The temperature gradient used to lower the temperature of the samples to -196 degC drastically influences the results. Freeze-thawing in two steps down to -196 degC protects LDH to radiation, in the dose range used. The data obtained here inform on the high energy electrons effects on the enzymatic activity loss during irradiation and during thawing, when the subsequent growth of the water crystals influences the three dimensional structure of the enzyme. A 99.98% concentration of D 2 O in the suspending medium of the enzyme decreases the global enzymatic activity, but reduces the rate of radiation inactivation of the enzyme. The rate of radiation inactivation of the enzyme suspended in ultrapure water is reduced when compared to the enzyme suspended in bidistilled water, but compared to the D 2 O suspended enzyme is lightly increased. (author)

  17. Electron beam irradiation effect on GaN HEMT

    International Nuclear Information System (INIS)

    Lou Yinhong; Guo Hongxia; Zhang Keying; Wang Yuanming; Zhang Fengqi

    2011-01-01

    In this work, GaN HEMTs (High Electron Mobility Transistor) were irradiated by 0.8 and 1.2 MeV electron beams, and the irradiation effects were investigated. The results show that the device damage caused by 0.8 MeV electrons is more serious than that by 1.2 MeV electrons. Saturation drain current increase and threshold voltage negative shift are due to trapped positive charge from ionization in the AlGaN layer and N, Ga vacancy from non-ionizing energy loss in the GaN layer. Electron traps and trapped positive charges from non-ionizing in the AlGaN layer act as trap-assisted-tunneling centers that increase the gate leakage current.(authors)

  18. Neutron-photon multigroup cross sections for neutron energies up to 400 MeV: HILO86R

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Nakane, Yoshihiro; Hasegawa, Akira; Tanaka, Shun-ichi

    1993-02-01

    A macroscopic multigroup cross section library of 66 neutron and 22 photon groups for neutron energies up to 400 MeV: HILO86R is prepared for 10 typical shielding materials; water, concrete, iron, air, graphite, polyethylene, heavy concrete, lead, aluminum and soil. The library is a revision of the DLC-119/HILO86, in which only the cross sections below 19.6 MeV have been exchanged with a group cross section processed from the JENDL-3 microscopic cross section library. In the HILO86R library, self shielding factors are used to produce effective cross sections for neutrons less than 19.6 MeV considering rather coarse energy meshes. Energy spectra and dose attenuation in water, concrete and iron have been compared among the HILO, HILO86 and HILO86R libraries for different energy neutron sources. Significant discrepancy has been observed in the energy spectra less than a couple of MeV energy in iron among the libraries, resulting large difference in the dose attenuation. The difference was attributed to the effect of self-shielding factor, namely to the difference between infinite dilution and effective cross sections. Even for 400 MeV neutron source the influence of the self-shielding factor is significant, nevertheless only the cross sections below 19.6 MeV are exchanged. (author)

  19. Why do Electrons with "Anomalous Energies" appear in High-Pressure Gas Discharges?

    Science.gov (United States)

    Kozyrev, Andrey; Kozhevnikov, Vasily; Semeniuk, Natalia

    2018-01-01

    Experimental studies connected with runaway electron beams generation convincingly shows the existence of electrons with energies above the maximum voltage applied to the discharge gap. Such electrons are also known as electrons with "anomalous energies". We explain the presence of runaway electrons having so-called "anomalous energies" according to physical kinetics principles, namely, we describe the total ensemble of electrons with the distribution function. Its evolution obeys Boltzmann kinetic equation. The dynamics of self-consistent electromagnetic field is taken into the account by adding complete Maxwell's equation set to the resulting system of equations. The electrodynamic mechanism of the interaction of electrons with a travelling-wave electric field is analyzed in details. It is responsible for the appearance of electrons with high energies in real discharges.

  20. Defect production and annihilation in metals through electronic excitation by energetic heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Defect production, radiation annealing and defect recovery are studied in Ni and Cu irradiated with low-energy ({approx}1-MeV) and high-energy ({approx}100-MeV) ions. Irradiation of Ni with {approx}100-MeV ions causes an anomalous reduction, or even a complete disappearance of the stage-I recovery. This result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of the stage-I interstitials. This effect is also observed in Ni as a large radiation annealing during 100-MeV heavy ion irradiation. On the other hand, in Cu thin foils, we find the defect production process strongly associated with electron excitation, where the defect production cross section is nearly proportional to S{sub e}{sup 2}. (author)