WorldWideScience

Sample records for high-elevation river system

  1. Factors affecting the occurrence of saugers in small, high-elevation rivers near the western edge of the species' natural distribution

    Science.gov (United States)

    Amadio, C.J.; Hubert, W.A.; Johnson, Kevin; Oberlie, D.; Dufek, D.

    2005-01-01

    Factors affecting the occurrence of saugers Sander canadensis were studied throughout the Wind River basin, a high-elevation watershed (> 1,440 m above mean sea level) on the western periphery of the species' natural distribution in central Wyoming. Adult saugers appeared to have a contiguous distribution over 170 km of streams among four rivers in the watershed. The upstream boundaries of sauger distribution were influenced by summer water temperatures and channel slopes in two rivers and by water diversion dams that created barriers to upstream movement in the other two rivers. Models that included summer water temperature, maximum water depth, habitat type (pool or run), dominant substrate, and alkalinity accounted for the variation in sauger occurrence across the watershed within the areas of sauger distribution. Water temperature was the most important basin-scale habitat feature associated with sauger occurrence, and maximum depth was the most important site-specific habitat feature. Saugers were found in a larger proportion of pools than runs in all segments of the watershed and occurred almost exclusively in pools in upstream segments of the watershed. Suitable summer water temperatures and deep, low-velocity habitat were available to support saugers over a large portion of the Wind River watershed. Future management of saugers in the Wind River watershed, as well as in other small river systems within the species' native range, should involve (1) preserving natural fluvial processes to maintain the summer water temperatures and physical habitat features needed by saugers and (2) assuring that barriers to movement do not reduce upstream boundaries of populations.

  2. Sediment mobility and bedload transport rates in a high-elevation glacier-fed stream (Saldur river, Eastern Italian Alps)

    Science.gov (United States)

    Dell'Agnese, A.; Mao, L.; Comiti, F.

    2012-04-01

    The assessment of bedload transport in high-gradient streams is necessary to evaluate and mitigate flood hazards and to understand morphological processes taking place in the whole river network. Bedload transport in steep channels is particularly difficult to predict due to the complex and varying types of flow resistance, the very coarse and heterogeneous sediments, and the activity and connections of sediment sources at the basin scale. Yet, bedload measurements in these environments are still relatively scarce, and long-term monitoring programs are highly valuable to explore spatial and temporal variability of bedload processes. Even fewer are investigations conducted in high-elevation glaciarized basins, despite their relevance in many regions worldwide. The poster will present bedload transport measurements in a newly established (spring 2011) monitoring station in the Saldur basin (Eastern Italian Alps), which presents a 3.3 km2 glacier in its upper part. At 2100 m a.s.l. (20 km2 drainage area), a pressure transducer measures flow stage and bedload transport is monitored continuously by means of a hydrophone (a cylindrical steel pipe with microphones registering particle collisions) and by 4 fixed antennas for tracing clasts equipped with PITs (Passive Integrated Transponders). At the same location bedload samples are collected by using both a "Bunte" bedload trap and a "Helley-Smith" sampler at 5 positions along a 5 m wide cross-section. Bedload was measured from June to August 2011 during daily discharge fluctuations due to snow- and ice- melt flows. Samples were taken at a large range of discharges (1.1 to 4.6 m3 s-1) and bedload rates (0.01 to 700 g s-1 m-1). As expected, samples taken using the two samplers are not directly comparable even if taken virtually at the same time and at the same location across the section. Results indicate that the grain size of the transported material increases with the shear stress acting on the channel bed and with the

  3. High-Elevation Evapotranspiration Estimates During Drought: Using Streamflow and NASA Airborne Snow Observatory SWE Observations to Close the Upper Tuolumne River Basin Water Balance

    Science.gov (United States)

    Henn, Brian; Painter, Thomas H.; Bormann, Kat J.; McGurk, Bruce; Flint, Alan L.; Flint, Lorraine E.; White, Vince; Lundquist, Jessica D.

    2018-02-01

    Hydrologic variables such as evapotranspiration (ET) and soil water storage are difficult to observe across spatial scales in complex terrain. Streamflow and lidar-derived snow observations provide information about distributed hydrologic processes such as snowmelt, infiltration, and storage. We use a distributed streamflow data set across eight basins in the upper Tuolumne River region of Yosemite National Park in the Sierra Nevada mountain range, and the NASA Airborne Snow Observatory (ASO) lidar-derived snow data set over 3 years (2013-2015) during a prolonged drought in California, to estimate basin-scale water balance components. We compare snowmelt and cumulative precipitation over periods from the ASO flight to the end of the water year against cumulative streamflow observations. The basin water balance residual term (snow melt plus precipitation minus streamflow) is calculated for each basin and year. Using soil moisture observations and hydrologic model simulations, we show that the residual term represents short-term changes in basin water storage over the snowmelt season, but that over the period from peak snow water equivalent (SWE) to the end of summer, it represents cumulative basin-mean ET. Warm-season ET estimated from this approach is 168 (85-252 at 95% confidence), 162 (0-326) and 191 (48-334) mm averaged across the basins in 2013, 2014, and 2015, respectively. These values are lower than previous full-year and point ET estimates in the Sierra Nevada, potentially reflecting reduced ET during drought, the effects of spatial variability, and the part-year time period. Using streamflow and ASO snow observations, we quantify spatially-distributed hydrologic processes otherwise difficult to observe.

  4. Using tracer-derived groundwater transit times to assess storage within a high-elevation watershed of the upper Colorado River Basin, USA

    Science.gov (United States)

    Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.

    2018-03-01

    Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.

  5. Operation of river systems. The Otra river

    International Nuclear Information System (INIS)

    Harby, A.; Vaskinn, K.A.; Wathne, M.; Heggenes, J.; Saltveit, S.J.

    1993-12-01

    The purpose of the project described in this report was to prepare an operative tool for making decisions about the operation of the power system on the river Otra (Norway) with regard to how this operation might affect the various users of the river system. Above all this affects fish, outdoor life and esthetic values. The connection between water quality and volume of discharge has been examined in a sub project. How suitable parts of the river are as habitats for trout has been simulated on a computer. From field investigation it is concluded that near the Steinfoss power station the physical conditions for trout depend on the operation of the river system. Outdoor life is not much affected downstream Vikeland. 11 refs., 22 figs., 2 tabs

  6. Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires

    International Nuclear Information System (INIS)

    Zhou, Jun; Wang, Zhangwei; Sun, Ting; Zhang, Huan; Zhang, Xiaoshan

    2016-01-01

    Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m"−"2. Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m"−"2 and about 99.4% of the mercury resides in soil layers (0–40 cm). The remaining 0.6% (0.50 mg m"−"2) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g"−"1, respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires. - Highlights: • Mercury in air, soil, biomass and insect were studied at a subtropical forest. • 99.4% of the total ecosystem mercury pools was resided in soil layers. • High mercury pools were large pulses to the atmosphere during potential wildfires. • High mercury deposition in forest pose an ecological stress to insect. - Large mercury pools in forest pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and ecological stress to insect.

  7. High elevation white pines educational website

    Science.gov (United States)

    Anna W. Schoettle; Michele Laskowski

    2011-01-01

    The high elevation five-needle white pines are facing numerous challenges ranging from climate change to invasion by a non-native pathogen to escalation of pest outbreaks. This website (http://www.fs.fed.us/rm/highelevationwhitepines/) serves as a primer for managers and the public on the high elevation North American five-needle pines. It presents information on each...

  8. Climate change impacts on high-elevation hydroelectricity in California

    Science.gov (United States)

    Madani, Kaveh; Guégan, Marion; Uvo, Cintia B.

    2014-03-01

    While only about 30% of California's usable water storage capacity lies at higher elevations, high-elevation (above 300 m) hydropower units generate, on average, 74% of California's in-state hydroelectricity. In general, high-elevation plants have small man-made reservoirs and rely mainly on snowpack. Their low built-in storage capacity is a concern with regard to climate warming. Snowmelt is expected to shift to earlier in the year, and the system may not be able to store sufficient water for release in high-demand periods. Previous studies have explored the climate warming effects on California's high-elevation hydropower by focusing on the supply side (exploring the effects of hydrological changes on generation and revenues) ignoring the warming effects on hydroelectricity demand and pricing. This study extends the previous work by simultaneous consideration of climate change effects on high-elevation hydropower supply and pricing in California. The California's Energy-Based Hydropower Optimization Model (EBHOM 2.0) is applied to evaluate the adaptability of California's high-elevation hydropower system to climate warming, considering the warming effects on hydroelectricity supply and pricing. The model's results relative to energy generation, energy spills, reservoir energy storage, and average shadow prices of energy generation and storage capacity expansion are examined and discussed. These results are compared with previous studies to emphasize the need to consider climate change effects on hydroelectricity demand and pricing when exploring the effects of climate change on hydropower operations.

  9. The radionuclide migration model in river system

    International Nuclear Information System (INIS)

    Zhukova, O.M.; Shiryaeva, N.M.; Myshkina, M.K.; Shagalova, Eh.D.; Denisova, V.V.; Skurat, V.V.

    2001-01-01

    It was propose the model of radionuclide migration in river system based on principle of the compartmental model at hydraulically stationary and chemically equilibrium conditions of interaction of radionuclides in system water-dredge, water-sediments. Different conditions of radioactive contamination entry in river system were considered. The model was verified on the data of radiation monitoring of Iput' river

  10. The Columbia River System Inside Story

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-04-01

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  11. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  12. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    CERTA PJ

    2008-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  13. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    Certa, P.J.; Kirkbride, R.A.; Hohl, T.M.; Empey, P.A.; Wells, M.N.

    2009-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal

  14. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and

  15. The Columbia River System : the Inside Story.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

  16. Flood Forecasting in River System Using ANFIS

    International Nuclear Information System (INIS)

    Ullah, Nazrin; Choudhury, P.

    2010-01-01

    The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.

  17. Savannah River Plant remote environmental monitoring system

    International Nuclear Information System (INIS)

    Schubert, J.F.

    1987-01-01

    The SRP remote environmental monitoring system consists of separations facilities stack monitors, production reactor stack monitors, twelve site perimeter monitors, river and stream monitors, a geostationary operational environmental satellite (GOES) data link, reactor cooling lake thermal monitors, meteorological tower system, Weather Information and Display (WIND) system computer, and the VANTAGE data base management system. The remote environmental monitoring system when fully implemented will provide automatic monitoring of key stack releases and automatic inclusion of these source terms in the emergency response codes

  18. Colorado River Sewer System Joint Venture to Upgrade Wastewater System

    Science.gov (United States)

    SAN FRANCISCO -Today, the Colorado River Sewer System Joint Venture, located in Parker, Ariz. entered into an agreement with the EPA to upgrade their wastewater treatment system to meet stringent water quality standards. The cost of the upgrade is ap

  19. RiverHeath: Neighborhood Loop Geothermal Exchange System

    Energy Technology Data Exchange (ETDEWEB)

    Geall, Mark [RiverHeath LLC, Appleton, WI (United States)

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  20. Erosive forms in rivers systems

    International Nuclear Information System (INIS)

    Una Alvarez, E. de; Vidal Romani, J. R.; Rodriguez Martinez-Conde, R.

    2009-01-01

    The purpose of this work is to analyze the geomorphological meaning of the concepts of stability/change and to study its influence on a fluvial erosion system. Different cases of fluvial potholes in Galicia (NW of the Iberian Peninsula) are considered. The work conclusions refer to the nature of the process and its morphological evolution in order to advance towards later contributions with respect of this type of systems. (Author) 14 refs.

  1. Evidence of high-elevation amplification versus Arctic amplification.

    Science.gov (United States)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-12

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  2. Air temperature variability in a high-elevation Himalayan catchment

    NARCIS (Netherlands)

    Heynen, Martin; Miles, Evan; Ragettli, Silvan; Buri, Pascal; Immerzeel, Walter W.; Pellicciotti, Francesca

    2016-01-01

    Air temperature is a key control of processes affecting snow and glaciers in high-elevation catchments, including melt, snowfall and sublimation. It is therefore a key input variable to models of land-surface-atmosphere interaction. Despite this importance, its spatial variability is poorly

  3. Lowland river systems - processes, form and function

    DEFF Research Database (Denmark)

    Pedersen, M. L.; Kronvang, B.; Sand-Jensen, K.

    2006-01-01

    Present day river valleys and rivers are not as dynamic and variable as they used to be. We will here describe the development and characteristics of rivers and their valleys and explain the background to the physical changes in river networks and channel forms from spring to the sea. We seek...... to answer two fundamental questions: How has anthropogenic disturbance of rivers changed the fundamental form and physical processes in river valleys? Can we use our understanding of fl uvial patterns to restore the dynamic nature of channelised rivers and drained fl oodplains in river valleys?...

  4. Host-pathogen metapopulation dynamics suggest high elevation refugia for boreal toads

    Science.gov (United States)

    Mosher, Brittany A.; Bailey, Larissa L.; Muths, Erin L.; Huyvaert, Kathryn P

    2018-01-01

    Emerging infectious diseases are an increasingly common threat to wildlife. Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease that has been linked to amphibian declines around the world. Few studies exist that explore amphibian-Bd dynamics at the landscape scale, limiting our ability to identify which factors are associated with variation in population susceptibility and to develop effective in situdisease management. Declines of boreal toads (Anaxyrus boreas boreas) in the Southern Rocky Mountains are largely attributed to chytridiomycosis but variation exists in local extinction of boreal toads across this metapopulation. Using a large-scale historic dataset, we explored several potential factors influencing disease dynamics in the boreal toad-Bd system: geographic isolation of populations, amphibian community richness, elevational differences, and habitat permanence. We found evidence that boreal toad extinction risk was lowest at high elevations where temperatures may be sub-optimal for Bd growth and where small boreal toad populations may be below the threshold needed for efficient pathogen transmission. In addition, boreal toads were more likely to recolonize high elevation sites after local extinction, again suggesting that high elevations may provide refuge from disease for boreal toads. We illustrate a modeling framework that will be useful to natural resource managers striving to make decisions in amphibian-Bdsystems. Our data suggest that in the southern Rocky Mountains high elevation sites should be prioritized for conservation initiatives like reintroductions.

  5. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    Science.gov (United States)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  6. River Protection Project information systems assessment

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, A.L.

    1999-07-28

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

  7. River Protection Project information systems assessment

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    1999-01-01

    The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report

  8. Mechanical Constraints on Flight at High Elevation Decrease Maneuvering Performance of Hummingbirds.

    Science.gov (United States)

    Segre, Paolo S; Dakin, Roslyn; Read, Tyson J G; Straw, Andrew D; Altshuler, Douglas L

    2016-12-19

    High-elevation habitats offer ecological advantages including reduced competition, predation, and parasitism [1]. However, flying organisms at high elevation also face physiological challenges due to lower air density and oxygen availability [2]. These constraints are expected to affect the flight maneuvers that are required to compete with rivals, capture prey, and evade threats [3-5]. To test how individual maneuvering performance is affected by elevation, we measured the free-flight maneuvers of male Anna's hummingbirds in a large chamber translocated to a high-elevation site and then measured their performance at low elevation. We used a multi-camera tracking system to identify thousands of maneuvers based on body position and orientation [6]. At high elevation, the birds' translational velocities, accelerations, and rotational velocities were reduced, and they used less demanding turns. To determine how mechanical and metabolic constraints independently affect performance, we performed a second experiment to evaluate flight maneuvers in an airtight chamber infused with either normoxic heliox, to lower air density, or nitrogen, to lower oxygen availability. The hypodense treatment caused the birds to reduce their accelerations and rotational velocities, whereas the hypoxic treatment had no significant effect on maneuvering performance. Collectively, these experiments reveal how aerial maneuvering performance changes with elevation, demonstrating that as birds move up in elevation, air density constrains their maneuverability prior to any influence of oxygen availability. Our results support the hypothesis that changes in competitive ability at high elevations are the result of mechanical limits to flight performance [7]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    Science.gov (United States)

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management

  10. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-11-01

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  11. Columbia River System Operation Review final environmental impact statement. Appendix A: River Operation Simulation (ROSE)

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The River Operation Simulation Experts (ROSE) work group is comprised of representatives of the Corps, BPA, Reclamation, NMFS, Pacific Northwest Utilities Conference Committee (PNUCC), and Northwest Power Planning Council (NPPC). ROSE was responsible for using computer hydroregulation models to simulate the operation of the river system for all of the alternatives evaluated in screening and full scale analysis in SOR. These models are complex computer programs which sequentially route streamflows through each dam in the system, calculating the streamflows, reservoir elevations, spill, power generation and other information at each project and pertinent locations on the river system. ROSE first reviewed specifications of proposed alternatives to determine whether such alternatives were formulated adequately to be run on hydroregulation models

  12. Cytophotometric differentiation of high elevation spruces: physiological and ecological implications

    International Nuclear Information System (INIS)

    Berlyn, G.P.; Royte, J.L.; Anoruo, A.O.

    1990-01-01

    Red and black spruce and their hybrids can be determined by morphological indices; however, the criteria are somewhat subjective and increasingly difficult to use at higher elevations. Although the chromosome number is identical (2n = 24), red spruce has twice as much nuclear DNA (48 pg) than black spruce (24 pg) and thus the species and their hybrids can also be separated by cytophotometry. This is relevant to spruce decline studies because black spruce is much more resistant to high elevation environmental stresses, both natural and anthropogenic. It also has implications for the effect of climatic changes on the composition of high elevation spruce-fir forests because red spruce can outcompete black spruce under more mesic conditions. Four elevation transects sampling spruce on the east and west sides of Mount Washington (New Hampshire) and Camels Hump (Vermont) and a single transect on the southwest side of Whiteface Mountain (New York) were made to investigate the degree of hybridization and introgression between these two species. A positive correlation was found between increased elevation and increased black spruce genes on Mount Washington and Camels Hump. Pure black spruce was found on Mount Washington from 1356 m to 1582 m. No pure black or red spruce was found on Camels Hump although the proportion of red spruce alleles was significantly greater on Camels Hump. All trees sampled at all elevations on Whiteface Mountain were pure red spruce. Thus the proportion of black spruce alleles in high elevation spruce populations decreases from east to west. This closely parallels the increase in spruce decline which increases from east to west. (author)

  13. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    Science.gov (United States)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  14. An Optimization Waste Load Allocation Model in River Systems

    Science.gov (United States)

    Amirpoor Daylami, A.; jarihani, A. A.; Aminisola, K.

    2012-04-01

    In many river systems, increasing of the waste discharge leads to increasing pollution of these water bodies. While the capacity of the river flow for pollution acceptance is limited and the ability of river to clean itself is restricted, the dischargers have to release their waste into the river after a primary pollution treatment process. Waste Load Allocation as a well-known water quality control strategy is used to determine the optimal pollutant removal at a number of point sources along the river. This paper aim at developing a new approach for treatment and management of wastewater inputs into the river systems, such that water quality standards in these receiving waters are met. In this study, inspired by the fact that cooperation among some single point source waste dischargers can lead to a more waste acceptance capacity and/or more optimum quality control in a river, an efficient approach was implemented to determine both primary waste water treatment levels and/or the best releasing points of the waste into the river. In this methodology, a genetic algorithm is used as an optimization tool to calculate optimal fraction removal levels of each one of single or shared discharger. Besides, a sub-model embedded to optimization model was used to simulate water quality of the river in each one of discharging scenarios based on the modified Streeter and Phelps quality equations. The practical application of the model is illustrated with a case study of the Gharesoo river system in west of Iran.

  15. Scales of snow depth variability in high elevation rangeland sagebrush

    Science.gov (United States)

    Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.

    2017-09-01

    In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.

  16. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    history in many regions of the world. The glacial buzzsaw concept suggests that intense glacial erosion focused at the equilibrium-line altitude (ELA) leads to a concentration in surface area close to the ELA. However, even in predominantly glacial landscapes, such as the Scandinavian Mountains, the high...... as a function of mean annual air temperature and sediment thickness. This allows us to incorporate periglacial processes into a long-term landscape evolution model where surface elevation, sediment thickness, and climate evolve over time. With this model we are able to explore the slow feedbacks between...... evolution model can be used for obtaining more insight into the conditions needed for formation of low-relief surfaces at high elevation. Anderson, R. S. Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology, 46, 35...

  17. Using Satellites to Investigate the Sensitivity of Longwave Downward Radiation to Water Vapor at High Elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-01-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  18. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    Science.gov (United States)

    Diego Galván, J.; Büntgen, Ulf; Ginzler, Christian; Grudd, Håkan; Gutiérrez, Emilia; Labuhn, Inga; Julio Camarero, J.

    2015-01-01

    The growth/climate relationship of theoretically temperature-controlled high-elevation forests has been demonstrated to weaken over recent decades. This is likely due to new tree growth limiting factors, such as an increasing drought risk for ecosystem functioning and productivity across the Mediterranean Basin. In addition, declining tree growth sensitivity to spring temperature may emerge in response to increasing drought stress. Here, we evaluate these ideas by assessing the growth/climate sensitivity of 1500 tree-ring width (TRW) and 102 maximum density (MXD) measurement series from 711 and 74 Pinus uncinata trees, respectively, sampled at 28 high-elevation forest sites across the Pyrenees and two relict populations of the Iberian System. Different dendroclimatological standardization and split period approaches were used to assess the high- to low-frequency behavior of 20th century tree growth in response to temperature means, precipitation totals and drought indices. Long-term variations in TRW track summer temperatures until about 1970 but diverge afterwards, whereas MXD captures the recent temperature increase in the low-frequency domain fairly well. On the other hand summer drought has increasingly driven TRW along the 20th century. Our results suggest fading temperature sensitivity of Iberian high-elevation P. uncinata forest growth, and reveal the importance of summer drought that is becoming the emergent limiting factor of tree ring width formation in many parts of the Mediterranean Basin.

  19. Assessment of nitrate export from a high elevation watershed

    International Nuclear Information System (INIS)

    Williams, E.M.; Nodvin, S.C.

    1991-01-01

    Nitrate leaching from forest soils can be detrimental to both the forest ecosystems and stream water quality. Nitrate moving through the soil transports plant nutrients and acidifying agents, hydrogen and aluminum, and can export them to streams. In the high elevation spruce-fir forests in the Great Smoky Mountains National Park (GRSM) nitrate has been found to be leaching from the rooting zone. Streams associated with these ecosystems are poorly buffered. Therefore rapid export of nitrate from the soils to the streams could lead to episodic acidification. The purpose of the Noland Divide watershed study is to assess the levels of nitrate export from the watershed to the streams and the potential impacts of the export to the ecosystem

  20. Radium and barium in the Amazon River system

    International Nuclear Information System (INIS)

    Moore, W.S.; Edmond, J.M.

    1984-01-01

    Data for 226 Ra and 228 Ra in the Amazon River system show that the activity of each radium isotope is strongly correlated with barium concentrations. Two trends are apparent, one for rivers which drain shield areas and another for all other rivers. These data suggest that there has been extensive fractionation of U, Th, and Ba during weathering in the Amazon basin. The 226 Ra data fit a flux model for the major ions indicating that 226 Ra behaves conservatively along the main channel of the Amazon River

  1. A geomorphological characterisation of river systems in South Africa: A case study of the Sabie River

    Science.gov (United States)

    Eze, Peter N.; Knight, Jasper

    2018-06-01

    Fluvial geomorphology affects river character, behaviour, evolution, trajectory of change and recovery potential, and as such affects biophysical interactions within a catchment. Water bodies in South Africa, in common with many other water-stressed parts of the world, are generally under threat due to increasing natural and anthropogenic influences including aridity, siltation and pollution, as well as climate and environmental change. This study reports on a case study to characterise the geomorphology of different river systems in South Africa, with the aim of better understanding their properties, controls, and implications for biophysical interactions including water quality, biodiversity (aquatic and riparian), and human activity within the catchment. The approach adopted is based on the River Styles® framework (RSF), a geomorphology-based approach developed for rivers in New Zealand and Australia, but applied here for the first time to South Africa. Based on analysis of remote sensing imagery, SRTM-2 digital topographic data and field observations on sites through the entire river system, six geomorphic elements were identified along the Sabie River, northeast South Africa (gorge, bedrock-forced meander, low-moderate sinuosity planform controlled sand bed, meandering sand bed, low sinuosity fine grained sand bed, and floodouts), using the RSF classification scheme and based on the RSF procedural tree of Brierley and Fryirs (2005). Previous geomorphological studies along the Sabie River have shown that different reaches respond differently to episodic floods; we use these data to link river geomorphological character (as defined by the RSF) to the hydrodynamic conditions and processes giving rise to such character. This RSF approach can be used to develop a new management approach for river systems that considers their functional biophysical behaviour within individual reaches, rather than considering them as homogeneous and uniform systems.

  2. Trace element assessment in water of river kassa system, jos ...

    African Journals Online (AJOL)

    The value of index of geoaccumulation (Igeo) is approximately 2; for Zn and Pb which indicates, moderate contamination. Areas of the river system with anomalous value of trace element concentrations are those where mine tailings have been deposited close to the river channel or places where run off from adjoining ...

  3. Diazotrophy in alluvial meadows of subarctic river systems.

    Directory of Open Access Journals (Sweden)

    Thomas H DeLuca

    Full Text Available There is currently limited understanding of the contribution of biological N2 fixation (diazotrophy to the N budget of large river systems. This natural source of N in boreal river systems may partially explain the sustained productivity of river floodplains in Northern Europe where winter fodder was harvested for centuries without fertilizer amendments. In much of the world, anthropogenic pollution and river regulation have nearly eliminated opportunities to study natural processes that shaped early nutrient dynamics of large river systems; however, pristine conditions in northern Fennoscandia allow for the retrospective evaluation of key biochemical processes of historical significance. We investigated biological N2 fixation (diazotrophy as a potential source of nitrogen fertility at 71 independent floodplain sites along 10 rivers and conducted seasonal and intensive analyses at a subset of these sites. Biological N2 fixation occurred in all floodplains, averaged 24.5 kg N ha(-1 yr(-1 and was down regulated from over 60 kg N ha(-1 yr(-1 to 0 kg N ha(-1 yr(-1 by river N pollution. A diversity of N2-fixing cyanobacteria was found to colonize surface detritus in the floodplains. The data provide evidence for N2 fixation to be a fundamental source of new N that may have sustained fertility at alluvial sites along subarctic rivers. Such data may have implications for the interpretation of ancient agricultural development and the design of contemporary low-input agroecosystems.

  4. Preliminary checklists for applying SERCON (System for Evaluating Rivers for Conservation to rivers in Serbia

    Directory of Open Access Journals (Sweden)

    Teodorović Ivana

    2012-01-01

    Full Text Available This paper describes the first steps in gathering biological data to assess the conservation value of rivers in Serbia, using SERCON (System for Evaluating Rivers for Conservation. SERCON was developed in the UK to improve consistency in assessments of river ‘quality’ by using a scoring system to evaluate habitat features and species groups, catchment characteristics, and the potential impacts to which river systems may be subjected. This paper provides checklists for aquatic, semiaquatic and marginal plants, macroinvertebrates, fish and birds associated with rivers in Serbia, collated from a wide range of published and unpublished sources. These lists should be regarded as provisional because few wide-ranging biological surveys have been carried out specifically on Serbian rivers; further revisions are likely as more information becomes available in future. Ultimately, the work will benefit regulators and decision-makers with responsibility for river management under the new Water Law, and contribute to river protection and conservation in Serbia. [Acknowledgments. The hydromorphology dataset was prepared for the project ‘Biosensing Technologies and Global System for Long-Term Research and Integrated Management of Ecosystems’ (Biosensing tehnologije i globalni sistem za kontinuirana istraživanja i integrisano upravljanje ekosistema III 043002 grant, while the biodiversity dataset was prepared the project Plant biodiversity of Serbia and the Balkans – assessment, sustainable use and protection (Biodiverzitet biljnog sveta Srbije i Balkanskog poluostrva – procena, održivo korišćenje i zaštita 173030 Grant, supported by Ministry of Education and Science, Republic of Serbia

  5. Migration of radionuclides through a river system

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-03-01

    Migration behavior of several atmospherically-derived radionuclides in a river watershed was studied. A main interest was in their relocation from the ground soil of the watershed to a downstream region through a river. Studied radionuclides are: {sup 137}Cs generated by weapon tests in the atmosphere; {sup 210}Pb and {sup 7}Be of naturally occurring radionuclides; {sup 137}Cs, {sup 90}Sr, {sup 239,240}Pu and {sup 241}Am released by the Chernobyl nuclear power plant accident. Dominance of the form in suspended solid in river water (particulate form) was qualified for the radionuclides in the Kuji river watershed. An importance of discharge in flooding was also confirmed. A historical budget analysis for weapon test derived {sup 137}Cs was presented for the Hi-i river watershed and its accompanied lake sediment (Lake Shinji). The work afforded a scheme of a fate of {sup 137}Cs after falling on the ground soil and on the lake surface. Several controlling factors, which can influence on the chemical form of radionuclides discharged to a river, were also investigated in the vicinity of the Chernobyl nuclear power plant. A special attention was paid on the association of the radionuclides with dissolved species in water. Preferential association of Pu and Am isotopes to a large molecular size of dissolved matrices, probably of humic substances, was suggested. (author)

  6. Benchmarking wide swath altimetry-based river discharge estimation algorithms for the Ganges river system

    Science.gov (United States)

    Bonnema, Matthew G.; Sikder, Safat; Hossain, Faisal; Durand, Michael; Gleason, Colin J.; Bjerklie, David M.

    2016-04-01

    The objective of this study is to compare the effectiveness of three algorithms that estimate discharge from remotely sensed observables (river width, water surface height, and water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, and the river discharge algorithms included here are designed to work with these data. Two algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG) method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS) was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm provides a more practical alternative over a region that is lacking in historical observations as the algorithm requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%, respectively, across all rivers studied. This poor

  7. IDENTIFICATION SYSTEM, TRACKING AND SUPPORT FOR VESSELS ON RIVERS

    Directory of Open Access Journals (Sweden)

    SAMOILESCU Gheorghe

    2015-05-01

    Full Text Available According to the program COMPRIS (Consortium Operational Management Platform River Information Services, AIS (Automatic Identification System, RIS (River Information Services have compiled a reference model based on the perspective of navigation on the river with related information services. This paper presents a tracking and monitoring surveillance system necessary for assistance of each ship sailing in an area of interest. It shows the operating principle of the composition and role of each equipment. Transferring data to traffic monitoring authority is part of this work.

  8. Kyiv Small Rivers in Metropolis Water Objects System

    Science.gov (United States)

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  9. A High Elevation Climate Monitoring Network: Strategy and Progress

    Science.gov (United States)

    Redmond, K. T.

    2004-12-01

    Populations living at low elevations are critically dependent on processes and resources at higher elevations. Most western U.S. streamflow begins as mountain snowmelt. Observational evidence and theoretical considerations indicate that climate variations in a given geographic domain can and do exhibit different characteristics and temporal behavior at different elevations. Subtleties in the interplay between topography and airflow can significantly affect precipitation patterns. However, there are very few systematic, long-term, in-situ, climate quality, high-altitude observational time series with hourly resolution for the western North American mountains to investigate these issues at the proper scales. Climate at high elevations is severely undersampled, a consequence of the harsh physical environment, and demands on sensors, maintenance, access, communications, time, and budgets. Costs are higher, human presence is limited, AC power is often not available, and there are permitting and aesthetic constraints. The observational strategy should include these main elements: 1) All major mountain ranges should be sampled. 2) Along-axis and cross-axis sampling for major mountain chains. 3) Approximately 5-10 sites per state (1 per 56000 sq km to 1 per 28000 sq km). 4) Highest sites as high as possible within each state, but at both high relative and absolute elevations. 5) Free air exposures at higher sites. 6) Utilize existing measurements and networks, and extend existing records, when possible. 7) AC power to prevent ice/rime when practical. 8) Temperature, relative humidity, wind speed and direction, solar radiation as main elements, others as feasible. 9) Hourly readings, and real time communication whenever possible. 10) Absence of local artificial influences, site stable for next 5-10 decades. 11) Current and historical measurements accessible via World Wide Web when possible. 12) Hydro measurements (precipitation, snow water content and depth) are not

  10. Long-term changes in river system hydrology in Texas

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2018-06-01

    Full Text Available Climate change and human actives are recognized as a topical issue that change long-term water budget, flow-frequency, and storage-frequency characteristics of different river systems. Texas is characterized by extreme hydrologic variability both spatially and temporally. Meanwhile, population and economic growth and accompanying water resources development projects have greatly impacted river flows throughout Texas. The relative effects of climate change, water resources development, water use, and other factors on long-term changes in river flow, reservoir storage, evaporation, water use, and other components of the water budgets of different river basins of Texas have been simulated in this research using the monthly version of the Water Rights Analysis Package (WRAP modelling system with input databases sets from the Texas Commission on Environmental Quality (TCEQ and Texas Water Development Board (TWDB. The results show that long-term changes are minimal from analysis monthly precipitation depths. Evaporation rates vary greatly seasonally and for much of the state appear to have a gradually upward trend. River/reservoir system water budgets and river flow characteristics have changed significantly during the past 75 years in response to water resources development and use.

  11. Evaluation of HIV Surveillance System in Rivers State, Nigeria ...

    African Journals Online (AJOL)

    Background: Rivers State has been reported to have the highest HIV prevalence of all the thirty-six states in Nigeria. HIV surveillance system generates information for timely and appropriate public health action. Evaluation of the surveillance system is vital in ensuring that the purpose of the surveillance system is being met.

  12. Assessment of denitrification process in lower Ishikari river system, Japan.

    Science.gov (United States)

    Jha, Pawan Kumar; Minagawa, Masao

    2013-11-01

    Sediment denitrification rate and its role in removal of dissolved nitrate load in lower Ishikari river system were examined. Denitrification rate were measured using acetylene inhibition technique on the sediment samples collected during August 2009-July 2010. The denitrification rate varied from 0.001 to 1.9 μg Ng(-1) DM h(-1) with an average value of 0.21 μg Ng(-1) DM h(-1) in lower Ishikari river system. Denitrification rate showed positive correlation with dissolved nitrate concentration in the river basin, indicating overlying water column supplied nitrate for the sediment denitrification processes. Nutrient enrichment experiments result showed that denitrification rate increased significantly with addition of nitrate in case of samples collected from Barato Lake however no such increase was observed in the samples collected from Ishikari river main channel and its major tributaries indicating that factors other than substrate concentration such as population of denitrifier and hydrological properties of stream channel including channel depth and flow velocity may affects the denitrification rate in lower Ishikari river system. Denitrification rate showed no significant increase with the addition of labile carbon (glucose), indicating that sediment samples had sufficient organic matter to sustain denitrification activity. The result of nutrient spiraling model indicates that in- stream denitrification process removes on an average 5%d(-1) of dissolve nitrate load in Ishikari river. This study was carried out to fill the gap present in the availability of riverine denitrification rate measurement and its role in nitrogen budget from Japanese rivers characterize by small river length and high flow rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930's, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D'Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation

  14. An advanced modelling tool for simulating complex river systems.

    Science.gov (United States)

    Trancoso, Ana Rosa; Braunschweig, Frank; Chambel Leitão, Pedro; Obermann, Matthias; Neves, Ramiro

    2009-04-01

    The present paper describes MOHID River Network (MRN), a 1D hydrodynamic model for river networks as part of MOHID Water Modelling System, which is a modular system for the simulation of water bodies (hydrodynamics and water constituents). MRN is capable of simulating water quality in the aquatic and benthic phase and its development was especially focused on the reproduction of processes occurring in temporary river networks (flush events, pools formation, and transmission losses). Further, unlike many other models, it allows the quantification of settled materials at the channel bed also over periods when the river falls dry. These features are very important to secure mass conservation in highly varying flows of temporary rivers. The water quality models existing in MOHID are base on well-known ecological models, such as WASP and ERSEM, the latter allowing explicit parameterization of C, N, P, Si, and O cycles. MRN can be coupled to the basin model, MOHID Land, with computes runoff and porous media transport, allowing for the dynamic exchange of water and materials between the river and surroundings, or it can be used as a standalone model, receiving discharges at any specified nodes (ASCII files of time series with arbitrary time step). These features account for spatial gradients in precipitation which can be significant in Mediterranean-like basins. An interface has been already developed for SWAT basin model.

  15. Water isotope composition as a tracer for study of mixing processes in rivers. Part II. Determination of mixing degrees in the tributary-main river systems

    International Nuclear Information System (INIS)

    Owczarczyk, A.; Wierzchnicki, R.; Zimnicki, R.; Ptaszek, S.; Palige, J.; Dobrowolski, A.

    2006-01-01

    Two river-tributary systems have been chosen for the investigation of mixing processes: the Narew River-the Bug River-Zegrzynski Reservoir and the Bugo-Narew River-the Vistula River. In both river systems, several profiles for the water sampling have been selected down to the tributary confluent line. Each sample position has been precisely determined by means of GPS. Then, the δDi have been measured in IRMS (isotope ratio mass spectroscopy). The δD distributions in selected profiles have been presented for both investigated river systems. Presented results will be applied for the verification of the mathematical model for transport and mixing in river systems

  16. From academic to applied: Operationalising resilience in river systems

    Science.gov (United States)

    Parsons, Melissa; Thoms, Martin C.

    2018-03-01

    The concept of resilience acknowledges the ability of societies to live and develop with dynamic environments. Given the recognition of the need to prepare for anticipated and unanticipated shocks, applications of resilience are increasing as the guiding principle of public policy and programs in areas such as disaster management, urban planning, natural resource management, and climate change adaptation. River science is an area in which the adoption of resilience is increasing, leading to the proposition that resilience may become a guiding principle of river policy and programs. Debate about the role of resilience in rivers is part of the scientific method, but disciplinary disunity about the ways to approach resilience application in policy and programs may leave river science out of the policy process. We propose six elements that need to be considered in the design and implementation of resilience-based river policy and programs: rivers as social-ecological systems; the science-policy interface; principles, capacities, and characteristics of resilience; cogeneration of knowledge; adaptive management; and the state of the science of resilience.

  17. River Debris Management System using Off-Grid Photovoltaic Module

    Directory of Open Access Journals (Sweden)

    Saadon Intan Mastura

    2017-01-01

    Full Text Available In Malaysia, Malacca River has long been the tourism attraction in Malacca. However, due to negligence, the river has been polluted by the litters thrown by tourists and even local residents, thus reflects a negative perception on Malacca. Therefore, this paper discusses about a fully automated river debris management system development using a stand-alone photovoltaic system. The concept design is to be stand alone in the river and automatically pull debris towards it for disposal. An off-grid stand-alone photovoltaic solar panel is used as renewable energy source connected to water pump and Arduino Uno microcontroller. The water pump rotates a water wheel and at the same time moves a conveyor belt; which is connected to the water wheel by a gear for debris collection. The solar system sizing suitable for the whole system is shown in this paper. The dumpster barge is equipped with an infrared sensor to monitor maximum height for debris, and instruct Arduino Uno to turn off the water pump. This system is able to power up using solar energy on sunny days and using battery otherwise.

  18. Understanding Socio-Hydrology System in the Kissimmee River Basin

    Science.gov (United States)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  19. Downstream flow top width prediction in a river system | Choudhury ...

    African Journals Online (AJOL)

    ANFIS, ARIMA and Hybrid Multiple Inflows Muskingum models (HMIM) were applied to simulate and forecast downstream discharge and flow top widths in a river system. The ANFIS model works on a set of linguistic rules while the ARIMA model uses a set of past values to predict the next value in a time series. The HMIM ...

  20. Clinch River Breeder Reactor secondary control rod system

    International Nuclear Information System (INIS)

    McKeehan, E.R.; Sim, R.G.

    1977-01-01

    The shutdown system for the Clinch River Breeder Reactor (CRBR) includes two independent systems--a primary and a secondary system. The Secondary Control Rod System (SCRS) is a new design which is being developed by General Electric to be independent from the primary system in order to improve overall shutdown reliability by eliminating potential common-mode failures. The paper describes the status of the SCRS design and fabrication and testing activities. Design verification testing on the component level is largely complete. These component tests are covered with emphasis on design impact results. A prototype unit has been manufactured and system level tests in sodium have been initiated

  1. Nonnative Fishes in the Upper Mississippi River System

    Science.gov (United States)

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for

  2. Synergetic Development Assessment of Urban River System Landscapes

    Directory of Open Access Journals (Sweden)

    Jingya Qiao

    2017-11-01

    Full Text Available This paper presents Synergetic Development Assessment (SDA as a methodology to evaluate the environmental, economic, and social performance of an urban river system landscape from the perspective of sustainability. SDA is based on synergetics and its “order parameters” theory, proposed as a science to study the self-organization of complex systems. A case study of river system landscapes in China was carried out by, first, simplifying the composite system into three subsystems: environmental, economic, and social; then, going on to construct a hierarchical structure to explore the order parameters as the evaluation index. The Analytic Hierarchy Process was used to get the weight of the evaluation index to complete the assessment index system. At the same time, a Sequential Synergy Degree Model was built to accomplish the SDA. We find that from 2005 to 2015, the order degree of the environmental subsystem developed slowly, with fluctuations, and that river pattern is the key factor. Meanwhile, the order degree of the economic subsystem fluctuated widely, which significantly depended on the changing value of water resources, and the order degree of social subsystem improved continuously, with social culture lagging far behind. As a whole, the synergy degree of the composite system developed orderly at a corresponding low level, which was in low synergy from 2005 to 2009 and then in general synergy up to 2015.

  3. Management Options for a High Elevation Forest in the Alps

    Science.gov (United States)

    Jandl, R.; Jandl, N.; Schindlbacher, A.

    2013-12-01

    We explored different management strategies for a Cembran pine forest close to the timber line with respect to maintenance of the stand structure, the sequestration of carbon in the biomass and the soil, and the economical relevance of timber production. We used the forest growth simulation model Caldis for the implementation of three management intensities (zero managment, thinning every 30 years, thinning every 50 years) under two climate scenarios (IPCC A1B and B1). The soil carbon dynamics were analyzed with the simulation model Yasso07. The ecological evaluation of our simulation data showed that the extensive management with cutting interventions every 50 years allows the maintenance of the ecosystem carbon pool. Zero managment leads to the build-up of the carbon pool because the forest stand is rather unvulnerable to disturbances (bark beetle, storm). The more intensive mangement causes a decline in the ecosystem carbon pool. The economical evaluation showed the marginal relevance of the income generated by timber production. The main challenge is the compensation for the high harvesting costs (long-distance cable logging system). Even at extremely favorable market prices for timber from Cembran pine it is impossible to extract an appropriate amount of timber to justify the temporary instalment of the harvesting system and to maintain a stand density expected for a protection forest. We conclude that timber production is not a feasible object for mountain forests close to the timber line. Even in a warmer climate the productivity situation of forests close to the timberline will not change sufficiently. Therefore it will require public subsidies and personal efforts to maintain the silvicultural intensity at a level that is required for the sustainable maintenance of protection forests.

  4. Reliability modeling of Clinch River breeder reactor electrical shutdown systems

    International Nuclear Information System (INIS)

    Schatz, R.A.; Duetsch, K.L.

    1974-01-01

    The initial simulation of the probabilistic properties of the Clinch River Breeder Reactor Plant (CRBRP) electrical shutdown systems is described. A model of the reliability (and availability) of the systems is presented utilizing Success State and continuous-time, discrete state Markov modeling techniques as significant elements of an overall reliability assessment process capable of demonstrating the achievement of program goals. This model is examined for its sensitivity to safe/unsafe failure rates, sybsystem redundant configurations, test and repair intervals, monitoring by reactor operators; and the control exercised over system reliability by design modifications and the selection of system operating characteristics. (U.S.)

  5. An intelligent agent for optimal river-reservoir system management

    Science.gov (United States)

    Rieker, Jeffrey D.; Labadie, John W.

    2012-09-01

    A generalized software package is presented for developing an intelligent agent for stochastic optimization of complex river-reservoir system management and operations. Reinforcement learning is an approach to artificial intelligence for developing a decision-making agent that learns the best operational policies without the need for explicit probabilistic models of hydrologic system behavior. The agent learns these strategies experientially in a Markov decision process through observational interaction with the environment and simulation of the river-reservoir system using well-calibrated models. The graphical user interface for the reinforcement learning process controller includes numerous learning method options and dynamic displays for visualizing the adaptive behavior of the agent. As a case study, the generalized reinforcement learning software is applied to developing an intelligent agent for optimal management of water stored in the Truckee river-reservoir system of California and Nevada for the purpose of streamflow augmentation for water quality enhancement. The intelligent agent successfully learns long-term reservoir operational policies that specifically focus on mitigating water temperature extremes during persistent drought periods that jeopardize the survival of threatened and endangered fish species.

  6. Plant diversity on high elevation islands – drivers of species richness and endemism

    Directory of Open Access Journals (Sweden)

    Severin D.H. Irl

    2016-10-01

    Full Text Available High elevation islands elicit fascination because of their large array of endemic species and strong environmental gradients. First, I define a high elevation island according to geographic and environmental characteristics. Then, within this high elevation island framework, I address local disturbance effects on plant distribution, drivers of diversity and endemism on the island scale, and global patterns of treeline elevation and climate change. Locally, introduced herbivores have strong negative effects on the summit scrub of my model island La Palma (Canary Islands, while roads have unexpected positive effects on endemics. On the island scale, topography and climate drive diversity and endemism. Hotspots of endemicity are found in summit regions – a general pattern on high elevation islands. The global pattern of treeline elevation behaves quite differently on islands than on the mainland. A thorough literature review and climate projections suggest that climate change will profoundly affect oceanic island floras.

  7. A Computed River Flow-Based Turbine Controller on a Programmable Logic Controller for Run-Off River Hydroelectric Systems

    Directory of Open Access Journals (Sweden)

    Razali Jidin

    2017-10-01

    Full Text Available The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.

  8. Evolution of biomolecular loadings along a major river system

    Science.gov (United States)

    Freymond, Chantal V.; Kündig, Nicole; Stark, Courcelle; Peterse, Francien; Buggle, Björn; Lupker, Maarten; Plötze, Michael; Blattmann, Thomas M.; Filip, Florin; Giosan, Liviu; Eglinton, Timothy I.

    2018-02-01

    Understanding the transport history and fate of organic carbon (OC) within river systems is crucial in order to constrain the dynamics and significance of land-ocean interactions as a component of the global carbon cycle. Fluvial export and burial of terrestrial OC in marine sediments influences atmospheric CO2 over a range of timescales, while river-dominated sedimentary sequences can provide valuable archives of paleoenvironmental information. While there is abundant evidence that the association of organic matter (OM) with minerals exerts an important influence on its stability as well as hydrodynamic behavior in aquatic systems, there is a paucity of information on where such associations form and how they evolve during fluvial transport. Here, we track total organic carbon (TOC) and terrestrial biomarker concentrations (plant wax-derived long-chain fatty acids (FA), branched glycerol dialkyl glycerol tetraethers (brGDGTs) and lignin-derived phenols) in sediments collected along the entire course of the Danube River system in the context of sedimentological parameters. Mineral-specific surface area-normalized biomarker and TOC concentrations show a systematic decrease from the upper to the lower Danube basin. Changes in OM loading of the available mineral phase correspond to a net decrease of 70-80% of different biomolecular components. Ranges for biomarker loadings on Danube River sediments, corresponding to 0.4-1.5 μgFA/m2 for long-chain (n-C24-32) fatty acids and 17-71 ngbrGDGT/m2 for brGDGTs, are proposed as a benchmark for comparison with other systems. We propose that normalizing TOC as well as biomarker concentrations to mineral surface area provides valuable quantitative constraints on OM dynamics and organo-mineral interactions during fluvial transport from terrigenous source to oceanic sink.

  9. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings

  10. LEVELS OF SOME ANIONS IN SOKOTO-RIMA RIVER SYSTEM IN ...

    African Journals Online (AJOL)

    user

    obtained in this work, the river water is safe for the aquatic life therein. ... environmental issue in developing countries. ... of these ions to enhance water quality of this ... IN SOKOTO-RIMA RIVER SYSTEM IN NORTH IN WESTERN NIGERIA.

  11. Laboratory robotics systems at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Dyches, G.M.; Burkett, S.D.

    1983-01-01

    Many analytical chemistry methods normally used at the Savannah River site require repetitive procedures and handling of radioactive and other hazardous solutions. Robotics is being investigated as a method of reducing personnel fatigue and radiation exposure and also increasing product quality. Several applications of various commercially available robot systems are discussed involving cold (nonradioactive) and hot (radioactive) sample preparations and glovebox waste removal. Problems encountered in robot programming, parts fixturing, design of special robot hands and other support equipment, glovebox operation, and operator-system interaction are discussed. A typical robot system cost analysis for one application is given

  12. Environmental and ecological water requirement of river system: a case study of Haihe-Luanhe river system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108m3 for sediment transfer and 4×l08m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.

  13. Columbia River System Operation Review final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River System Operation Review (SOR) is being conducted jointly by the US Army Corps of Engineers, the Bureau of Reclamation, and the Bonneville Power Administration. This summary of the SOR story begins where the Draft EIS summary left off. It is divided into seven parts, each of which reports some aspect of the study's outcome: Part 1 is a history. The SOR was not a simple study on any level, and to understand the EIS alternatives, some background is necessary. Part 2 reports the major findings of the technical analysis of alternative system operating strategies, and presents the agencies' Preferred Alternative. Part 3 explains actions the agencies may take with respect to the Columbia River Regional Forum, the Pacific Northwest Coordination Agreement, and the Canadian Entitlement Allocation Agreements. Part 4 presents the Purpose and Need, elements at the core of any Federal EIS. It includes a map showing the Columbia River Basin and information on the affected Federal projects. Part 5 describes the substantial public participation and outreach that occurred during the SOR, and Part 6 summarizes efforts to incorporate the Tribal perspective into the study. Part 7 describes other activities that will be taking place in the next few years, which are related to and build upon the SOR

  14. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    Science.gov (United States)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  15. Role of high-elevation groundwater flows in the hydrogeology of the Cimino volcano (central Italy) and possibilities to capture drinking water in a geogenically contaminated environment

    Science.gov (United States)

    Piscopo, V.; Armiento, G.; Baiocchi, A.; Mazzuoli, M.; Nardi, E.; Piacentini, S. M.; Proposito, M.; Spaziani, F.

    2018-01-01

    Origin, yield and quality of the groundwater flows at high elevation in the Cimino volcano (central Italy) were examined. In this area, groundwater is geogenically contaminated by arsenic and fluoride, yet supplies drinking water for approximately 170,000 inhabitants. The origin of the high-elevation groundwater flows is strictly related to vertical and horizontal variability of the rock types (lava flows, lava domes and ignimbrite) in an area of limited size. In some cases, groundwater circuits are related to perched aquifers above noncontinuous aquitards; in other cases, they are due to flows in the highly fractured dome carapace, limited at the bottom by a low-permeability dome core. The high-elevation groundwater outflow represents about 30% of the total recharge of Cimino's hydrogeological system, which has been estimated at 9.8 L/s/km2. Bicarbonate alkaline-earth, cold, neutral waters with low salinity, and notably with low arsenic and fluoride content, distinguish the high-elevation groundwaters from those of the basal aquifer. Given the quantity and quality of these resources, approaches in the capture and management of groundwater in this hydrogeological environment should be reconsidered. Appropriate tapping methods such as horizontal drains, could more efficiently capture the high-elevation groundwater resources, as opposed to the waters currently pumped from the basal aquifer which often require dearsenification treatments.

  16. Role of high-elevation groundwater flows in the hydrogeology of the Cimino volcano (central Italy) and possibilities to capture drinking water in a geogenically contaminated environment

    Science.gov (United States)

    Piscopo, V.; Armiento, G.; Baiocchi, A.; Mazzuoli, M.; Nardi, E.; Piacentini, S. M.; Proposito, M.; Spaziani, F.

    2018-06-01

    Origin, yield and quality of the groundwater flows at high elevation in the Cimino volcano (central Italy) were examined. In this area, groundwater is geogenically contaminated by arsenic and fluoride, yet supplies drinking water for approximately 170,000 inhabitants. The origin of the high-elevation groundwater flows is strictly related to vertical and horizontal variability of the rock types (lava flows, lava domes and ignimbrite) in an area of limited size. In some cases, groundwater circuits are related to perched aquifers above noncontinuous aquitards; in other cases, they are due to flows in the highly fractured dome carapace, limited at the bottom by a low-permeability dome core. The high-elevation groundwater outflow represents about 30% of the total recharge of Cimino's hydrogeological system, which has been estimated at 9.8 L/s/km2. Bicarbonate alkaline-earth, cold, neutral waters with low salinity, and notably with low arsenic and fluoride content, distinguish the high-elevation groundwaters from those of the basal aquifer. Given the quantity and quality of these resources, approaches in the capture and management of groundwater in this hydrogeological environment should be reconsidered. Appropriate tapping methods such as horizontal drains, could more efficiently capture the high-elevation groundwater resources, as opposed to the waters currently pumped from the basal aquifer which often require dearsenification treatments.

  17. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    Since the 1930's, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M ampersand I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M ampersand I studies; Irrigation/M ampersand I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M ampersand I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement

  18. Andean contributions to the biogeochemistry of the amazon river system

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Atlántico. Un nuevo programa colaborativo de investigación se inició en 1994 con el propósito de caracterizar de una manera más completa la biogeoquímica de los ríos andinos. Contributions from Andean rivers may play a significant role in determining the basin-wide biogeochemistry integrated into the mainstem Amazon River of Brazil. Concentration data for organic C, NO3-, and PO43- in Andean rivers are highly variable and reveal no clear spatial or altitudinal patterns. Concentrations measured in Andean rivers are similar to those reported in the mainstem Amazon river and its major tributaries. Explanations of processes which alter Andean-derived particulates and solutes as they exit the Cordillera are only speculative at this time, but their net effect is to diminish Andean signals through decomposition and dilution by lowland inputs. The 13C of particulate and dissolved organic matter in the mainstem Amazon provides evidence that some fraction of Andean derived material persists within the river system, ultimately to be discharged to the Atlantic Ocean. In 1994 a new collaborative research program was launched to further characterize the biogeochemistry of Andean rivers.

  19. Improvements MOIRA system for application to nuclear sites Spanish river

    International Nuclear Information System (INIS)

    Gallego Diaz, E.; Iglesias Ferrer, R.; Dvorzhak, A.; Hofman, D.

    2011-01-01

    Possible consequences of a nuclear accident must have radioactive contamination in the medium and long-term freshwater aquatic systems. Faced with this problem, it is essential to have a realistic assessment of the radiological impact, ecological, social and economic potential management strategies, to take the best decisions rationally. MOIRA is a system of decision support developed in the course of the European Framework Programmes with participation of the UPM, which has been improved and adapted to Spanish nuclear sites in recent years in the context ISIDRO Project, sponsored by the Council Nuclear, with the participation of CIEMAT and UPM. The paper focuses on these advances, primarily related to complex hydraulic systems such as rivers Tajo, Ebro and Jucar, which are located several Spanish plants.

  20. Hydrogeologic data for the Big River-Mishnock River stream-aquifer system, central Rhode Island

    Science.gov (United States)

    Craft, P.A.

    2001-01-01

    Hydrogeology, ground-water development alternatives, and water quality in the BigMishnock stream-aquifer system in central Rhode Island are being investigated as part of a long-term cooperative program between the Rhode Island Water Resources Board and the U.S. Geological Survey to evaluate the ground-water resources throughout Rhode Island. The study area includes the Big River drainage basin and that portion of the Mishnock River drainage basin upstream from the Mishnock River at State Route 3. This report presents geologic data and hydrologic and water-quality data for ground and surface water. Ground-water data were collected from July 1996 through September 1998 from a network of observation wells consisting of existing wells and wells installed for this study, which provided a broad distribution of data-collection sites throughout the study area. Streambed piezometers were used to obtain differences in head data between surface-water levels and ground-water levels to help evaluate stream-aquifer interactions throughout the study area. The types of data presented include monthly ground-water levels, average daily ground-water withdrawals, drawdown data from aquifer tests, and water-quality data. Historical water-level data from other wells within the study area also are presented in this report. Surface-water data were obtained from a network consisting of surface-water impoundments, such as ponds and reservoirs, existing and newly established partial-record stream-discharge sites, and synoptic surface-water-quality sites. Water levels were collected monthly from the surface-water impoundments. Stream-discharge measurements were made at partial-record sites to provide measurements of inflow, outflow, and internal flow throughout the study area. Specific conductance was measured monthly at partial-record sites during the study, and also during the fall and spring of 1997 and 1998 at 41 synoptic sites throughout the study area. General geologic data, such as

  1. Fluvial River Regime in Disturbed River Systems: A Case Study of Evolution of the Middle Yangtze River in Post-TGD (Three Gorges Dam), China

    NARCIS (Netherlands)

    Zhao, G.; Lu, J; Visser, P.J.

    2015-01-01

    The fluvial river is a kind of open system that can interact with its outside environments and give response to disturbance from outside on the earth. It can adjust itself to the disturbances outside the system and reflects new characteristics in the process of reaching a new equilibrium. The TGD

  2. Flood forecasting and early warning system for Dungun River Basin

    International Nuclear Information System (INIS)

    Hafiz, I; Sidek, L M; Basri, H; Fukami, K; Hanapi, M N; Livia, L; Nor, M D

    2013-01-01

    Floods can bring such disasters to the affected dweller due to loss of properties, crops and even deaths. The damages to properties and crops by the severe flooding are occurred due to the increase in the economic value of the properties as well as the extent of the flood. Flood forecasting and warning system is one of the examples of the non-structural measures which can give early warning to the affected people. People who live near the flood-prone areas will be warned so that they can evacuate themselves and their belongings before the arrival of the flood. This can considerably reduce flood loss and damage and above all, the loss of human lives. Integrated Flood Analysis System (IFAS) model is a runoff analysis model converting rainfall into runoff for a given river basin. The simulation can be done using either ground or satellite-based rainfall to produce calculated discharge within the river. The calculated discharge is used to generate the flood inundation map within the catchment area for the selected flood event using Infowork RS.

  3. Environmental state of aquatic systems in the Selenga River basin

    Science.gov (United States)

    Shinkareva, Galina; Lychagin, Mikhail

    2013-04-01

    The transboundary river system of Selenga is the biggest tributary of Lake Baikal (about 50 % of the total inflow) which is the largest freshwater reservoir in the world. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the environmental state of the river aquatic system. The main source of industrial waste in the Republic of Buryatia (Russia) is mining and in Mongolia it is mainly gold mining. Our study aimed to determine the present pollutant levels and main features of their spatial distribution in water, suspended matter, bottom sediments and water plants in the Selenga basin. The results are based on materials of the 2011 (July-August) field campaign carried out both in Russian and Mongolian part of the basin. The study revealed rather high levels of dissolved Fe, Al, Mn, Zn, Cu and Mo in the Selenga River water which often are higher than maximum permissible concentrations for water fishery in Russia. In Russian part of the basin most contrast distribution is found for W and Mo, which is caused by mineral deposits in this area. The study showed that Mo and Zn migrate mainly in dissolved form, since more than 70% of Fe, Al, and Mn are bound to the suspended solids. Suspended sediments in general are enriched by As, Cd and Pb in relation to the lithosphere averages. Compared to the background values rather high contents of Mo, Cd, and Mn were found in suspended matter of Selenga lower Ulan-Ude town. Transboundary transport of heavy metals from Mongolia is going both in dissolved and suspended forms. From Mongolia in diluted form Selenga brings a significant amount of Al, Fe, Mn, Zn, Cu and Mo. Suspended solids are slightly enriched with Pb, Cu, and Mn, in higher concentration - Mo. The study of the Selenga River delta allowed determining biogeochemical specialization of the region: aquatic plants accumulate Mn, Fe, Cu, Cd, and to

  4. Temporal Analyses of Select Macroinvertebrates in the Upper Mississippi River System, 1992-1995

    National Research Council Canada - National Science Library

    Sauer, Jennifer

    1998-01-01

    The annual variability in mayflies (Ephemeroptera), fingernail clams (Sphaeriidae), and midges (chironomidae) in six study areas of the Upper Mississippi River System from 1992 to 1995 was examined...

  5. Reestablishing natural succession on acidic mine spoils at high elevations: long-term ecological restoration

    Science.gov (United States)

    Ray W. Brown; Michael C. Amacher; Walter F. Mueggler; Janice Kotuby-Amacher

    2003-01-01

    Methods for restoring native plant communities on acidic mine spoils at high elevations were evaluated in a "demonstration area" in the New World Mining District of southern Montana. Research plots installed in 1976 were assessed for 22 years and compared with adjacent native reference plant communities. A 1.5-acre (0.61-ha) area of mine spoils was shaped and...

  6. Illustrating harvest effects on site microclimate in a high-elevation forest stand.

    Science.gov (United States)

    W.B. Fowler; T.D. Anderson

    1987-01-01

    Three-dimensional contour surfaces were drawn for physiologically active radiation (PAR) and air and soil temperatures from measurements taken at a high-elevation site (1450 m) near the crest of the Cascade Range in central Washington. Measurements in a clearcut were compared with measurements from an adjacent uncut stand. Data for 31 days in July and August 1985...

  7. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    Science.gov (United States)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  8. Transport of plutonium by the Mississippi River system and other rivers in the southern United States

    International Nuclear Information System (INIS)

    Scott, M.R.; Salter, P.F.

    1987-01-01

    The distribution of fallout Pu has been studied in the sediments and water of the Mississippi River and eight other rivers. Plutonium content of the sediments is related to grain size and Fe and Mn content. Rivers in human climates show relatively high organic carbon (3 to 4%) and high /sup 239,240)Pu content (36 to 131 dpm/kg) in their suspended sediments. Dissolved Pu is very low in all the rivers; distribution coefficients vary from 10 4 to 10 5 . The 238 Pu//sup 239,240/Pu ratios are low in all the river sediments (∼.06) except the Miami River in Ohio, where ratios as high as 99 were measured. The high ratios originate from the Mound Laboratory Pu processing plant at Miamisburg, Ohio, and can be traced downstream to the junction with the Ohio River. Mississippi River suspended sediment shows a continual decrease of /sup 239,240/Pu content over a 7 year time period. An exponential curve best-fit through the data predicts a half time of decrease equal to 4.3 years. The decrease in Pu content of river sediment results from several factors: cessation of atmospheric weapons testing; transport of Pu to deeper levels of soil profiles; storage of sediment in flood plains and behind dams; and dilution by erosion by older, prebomb soil material. The amount of fallout Pu now removed from the Mississippi River drainage basin to the ocean is 11% as a maximum estimate. Most the fallout Pu in the Mississippi drainage basin will remain on the continent unless there are major changes in erosion and sediment transport patterns in the basin itself. 56 references, 7 figures, 2 tables

  9. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps

    Science.gov (United States)

    Nigrelli, Guido; Fratianni, Simona; Zampollo, Arianna; Turconi, Laura; Chiarle, Marta

    2018-02-01

    Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.

  10. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    Science.gov (United States)

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  11. Responses of high-elevation herbaceous plant assemblages to low glacial CO₂ concentrations revealed by fossil marmot (Marmota) teeth.

    Science.gov (United States)

    McLean, Bryan S; Ward, Joy K; Polito, Michael J; Emslie, Steven D

    2014-08-01

    Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy-fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)-which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (Δ) of alpine plants was nearly 2 ‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with the onset of the late Pleistocene bipolar temperature "seesaw" rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.

  12. Pike River Mine Disaster: Systems-Engineering and Organisational Contributions

    Directory of Open Access Journals (Sweden)

    Dirk J. Pons

    2016-10-01

    Full Text Available The Pike River mine (PRM, an underground coal mine in New Zealand (NZ, exploded in 2010. This paper analyses the causes of the disaster, with a particular focus on the systems engineering and organisational contributions. Poor systems-engineering contributed via poorly designed ventilation, use of power-electronics underground, and placement of the main ventilation fan underground. Management rushed prematurely into production even though the technology development in the mine was incomplete. Investment in non-productive infrastructure was deprioritised resulting in inadequate ventilation, and the lack of a viable second emergency egress. The risk assessments were deficient, incomplete, or not actioned. Warnings and feedback from staff were ignored. Risk arises as a consequence of the complex interactions between the components of the sociotechnical system. Organisations will need to strengthen the integrity of their risk management processes at engineering, management, and board levels. The systems engineering perspective shows the interacting causality between the engineering challenges (ventilation, mining method, electrical power, project deliverables, management priorities, organisational culture, and workers’ behaviour. Use of the barrier method provides a new way to examine the risk-management strategies of the mine. The breakdowns in organisational safety management systems are explicitly identified.

  13. Columbia River Hatchery Reform System-Wide Report.

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Dan [Hatchery Scientific Review Group

    2009-04-16

    for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to

  14. Potential Influence of Climate Change on the Acid-Sensitivity of High-Elevation Lakes in the Georgia Basin, British Columbia

    Directory of Open Access Journals (Sweden)

    Donna Strang

    2015-01-01

    Full Text Available Global climate models predict increased temperature and precipitation in the Georgia Basin, British Colmbia; however, little is known about the impacts on high-elevation regions. In the current study, fifty-four high-elevation lakes (754–2005 m a.s.l. were studied to investigate the potential influence of climate change on surface water acid-sensitivity. Redundancy analysis indicated that the concentration of nitrate, dissolved organic carbon, and associated metals was significantly influenced by climate parameters. Furthermore, these components differed significantly between biogeoclimatic zones. Modelled soil base cation weathering for a subset of the study lakes (n=11 was predicted to increase by 9% per 1°C increase in temperature. Changes in temperature and precipitation may potentially decrease the pH of surface waters owing to changes in anthropogenic deposition and organic acid production. In contrast, increased soil base cation weathering may increase the critical load (of acidity of high-elevation lakes. Ultimately, the determining factor will be whether enhanced base cation weathering is sufficient to buffer changes in natural and anthropogenic acidity. Mountain and high-elevation regions are considered early warning systems to climate change; as such, future monitoring is imperative to assess the potential ramifications of climate change on the hydrochemistry and acid-sensitivity of these surface waters.

  15. 77 FR 51733 - Special Regulations; Areas of the National Park System, New River Gorge National River, Bicycle...

    Science.gov (United States)

    2012-08-27

    ... important segment of the New River in West Virginia for the benefit and enjoyment of present and future... multiple uses, including hiking and bicycling. Both of these plans can be viewed by going to the NERI park... for ``Environmental Assessment: Design and Build Two Stacked Loop Hiking and Biking Trail Systems...

  16. Reliability evaluation of the Savannah River reactor leak detection system

    International Nuclear Information System (INIS)

    Daugherty, W.L.; Sindelar, R.L.; Wallace, I.T.

    1991-01-01

    The Savannah River Reactors have been in operation since the mid-1950's. The primary degradation mode for the primary coolant loop piping is intergranular stress corrosion cracking. The leak-before-break (LBB) capability of the primary system piping has been demonstrated as part of an overall structural integrity evaluation. One element of the LBB analyses is a reliability evaluation of the leak detection system. The most sensitive element of the leak detection system is the airborne tritium monitors. The presence of small amounts of tritium in the heavy water coolant provide the basis for a very sensitive system of leak detection. The reliability of the tritium monitors to properly identify a crack leaking at a rate of either 50 or 300 lb/day (0.004 or 0.023 gpm, respectively) has been characterized. These leak rates correspond to action points for which specific operator actions are required. High reliability has been demonstrated using standard fault tree techniques. The probability of not detecting a leak within an assumed mission time of 24 hours is estimated to be approximately 5 x 10 -5 per demand. This result is obtained for both leak rates considered. The methodology and assumptions used to obtain this result are described in this paper. 3 refs., 1 fig., 1 tab

  17. The Water Quality of the River Enborne, UK: Observations from High-Frequency Monitoring in a Rural, Lowland River System

    Directory of Open Access Journals (Sweden)

    Sarah J. Halliday

    2014-01-01

    Full Text Available This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly, using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  18. Columbia River System Operation Review final environmental impact statement. Appendix E: Flood control

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The Corps of Engineers, Bonneville Power Administration, and Bureau of Reclamation conducted a scoping process consisting of a series of regionwide public meetings and solicitation of written comments in the summer of 1990. Comments on flood control issues were received from all parts of the Columbia river basin. This appendix includes issues raised in the public scoping process, as well as those brought for consideration by members of the Flood Control Work Group

  19. Columbia River System Operation Review final environmental impact statement. Appendix M: Water quality

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. Analysis of water quality begins with an account of the planning and evaluation process, and continues with a description of existing water quality conditions in the Columbia River Basin. This is followed by an explanation how the analysis was conducted. The analysis concludes with an assessment of the effects of SOR alternatives on water quality and a comparison of alternatives

  20. Managing water and riparian habitats on the Bill Williams River with scientific benefit for other desert river systems

    Science.gov (United States)

    John Hickey,; Woodrow Fields,; Andrew Hautzinger,; Steven Sesnie,; Shafroth, Patrick B.; Dick Gilbert,

    2016-01-01

    This report details modeling to: 1) codify flow-ecology relationships for riparian species of the Bill Williams River as operational guidance for water managers, 2) test the guidance under different climate scenarios, and 3) revise the operational guidance as needed to address the effects of climate change. Model applications detailed herein include the River Analysis System  (HEC-RAS) and the Ecosystem Functions Model  (HEC-EFM), which was used to generate more than three million estimates of local seedling recruitment areas. Areas were aggregated and compared to determine which scenarios generated the most seedling area per unit volume of water. Scenarios that maximized seedling area were grouped into a family of curves that serve as guidance for water managers. This work has direct connections to water management decision-making and builds upon and adds to the rich history of science-based management for the Bill Williams River, Arizona, USA. 

  1. Drought-induced weakening of growth-temperature associations in high-elevation Iberian pines

    Czech Academy of Sciences Publication Activity Database

    Diego Galvan, J.; Büntgen, Ulf; Ginzler, Ch.; Grudd, H.; Gutierrez, E.; Labuhn, I.; Julio Camarero, J.

    2015-01-01

    Roč. 124, JAN (2015), s. 95-106 ISSN 0921-8181 Institutional support: RVO:67179843 Keywords : tree-ring chronologies * regional curve standardization * pinus-uncinata * european alps * spatial variability * summer temperatures * divergence problem * spanish pyrenees * fagus-sylvatica * large-scale * Climate change * Drought * Growth response * High-elevation forest * Pyrenees * Summer temperature Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.548, year: 2015

  2. Seismic evaluation of safety systems at the Savannah River reactors

    International Nuclear Information System (INIS)

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.M.; Ketcham, D.R.

    1989-01-01

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table testing which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its ''Generic Safety Evaluation Report'' approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the United States and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluating program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  3. Seismic evaluation of safety systems at the Savannah River reactors

    International Nuclear Information System (INIS)

    Hardy, G.S.; Johnson, J.J.; Eder, S.J.; Monahon, T.; Ketcham, D.

    1989-01-01

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table tested which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its Generic Safety Evaluation Report approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the US and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective approach developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluation program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  4. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This document is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.

  5. Columbia River system operation review: Final environmental impact statement. Appendix N, wildlife

    International Nuclear Information System (INIS)

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This document is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included

  6. Columbia River System Operation Review final environmental impact statement. Appendix G: Land use and development

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. The SOR began in early 1990, prior to the filing of petitions for endangered status for several salmon species under the Endangered Species Act. The comprehensive review of Columbia River operations encompassed by the SOR was prompted by the need for Federal decisions to (1) develop a coordinated system operating strategy (SOS) for managing the multiple uses of the system into the 21st century; (2) provide interested parties with a continuing and increased long-term role in system planning (Columbia River Regional Forum); (3) renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA), a contractual arrangement among the region's major hydroelectric-generating utilities and affected Federal agencies to provide for coordinated power generation on the Columbia River system; and (4) renew or develop new Canadian Entitlement Allocation Agreements. The review provides the environmental analysis required by the National Environmental Policy Act (NEPA). This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR

  7. Heavy metal transport in large river systems: heavy metal emissions and loads in the Rhine and Elbe river basins

    Science.gov (United States)

    Vink, Rona; Behrendt, Horst

    2002-11-01

    Pollutant transport and management in the Rhine and Elbe basins is still of international concern, since certain target levels set by the international committees for protection of both rivers have not been reached. The analysis of the chain of emissions of point and diffuse sources to river loads will provide policy makers with a tool for effective management of river basins. The analysis of large river basins such as the Elbe and Rhine requires information on the spatial and temporal characteristics of both emissions and physical information of the entire river basin. In this paper, an analysis has been made of heavy metal emissions from various point and diffuse sources in the Rhine and Elbe drainage areas. Different point and diffuse pathways are considered in the model, such as inputs from industry, wastewater treatment plants, urban areas, erosion, groundwater, atmospheric deposition, tile drainage, and runoff. In most cases the measured heavy metal loads at monitoring stations are lower than the sum of the heavy metal emissions. This behaviour in large river systems can largely be explained by retention processes (e.g. sedimentation) and is dependent on the specific runoff of a catchment. Independent of the method used to estimate emissions, the source apportionment analysis of observed loads was used to determine the share of point and diffuse sources in the heavy metal load at a monitoring station by establishing a discharge dependency. The results from both the emission analysis and the source apportionment analysis of observed loads were compared and gave similar results. Between 51% (for Hg) and 74% (for Pb) of the total transport in the Elbe basin is supplied by inputs from diffuse sources. In the Rhine basin diffuse source inputs dominate the total transport and deliver more than 70% of the total transport. The diffuse hydrological pathways with the highest share are erosion and urban areas.

  8. The Paradox of Restoring Native River Landscapes and Restoring Native Ecosystems in the Colorado River System

    Science.gov (United States)

    Schmidt, J. C.

    2014-12-01

    Throughout the Colorado River basin (CRb), scientists and river managers collaborate to improve native ecosystems. Native ecosystems have deteriorated due to construction of dams and diversions that alter natural flow, sediment supply, and temperature regimes, trans-basin diversions that extract large amounts of water from some segments of the channel network, and invasion of non-native animals and plants. These scientist/manager collaborations occur in large, multi-stakeholder, adaptive management programs that include the Lower Colorado River Multi-Species Conservation Program, the Glen Canyon Dam Adaptive Management Program, and the Upper Colorado River Endangered Species Recovery Program. Although a fundamental premise of native species recovery is that restoration of predam flow regimes inevitably leads to native species recovery, such is not the case in many parts of the CRb. For example, populations of the endangered humpback chub (Gila cypha) are largest in the sediment deficit, thermally altered conditions of the Colorado River downstream from Glen Canyon Dam, but these species occur in much smaller numbers in the upper CRb even though the flow regime, sediment supply, and sediment mass balance are less perturbed. Similar contrasts in the physical and biological response of restoration of predam flow regimes occurs in floodplains dominated by nonnative tamarisk (Tamarix spp.) where reestablishment of floods has the potential to exacerbate vertical accretion processes that disconnect the floodplain from the modern flow regime. A significant challenge in restoring segments of the CRb is to describe this paradox of physical and biological response to reestablishment of pre-dam flow regimes, and to clearly identify objectives of environmentally oriented river management. In many cases, understanding the nature of the perturbation to sediment mass balance caused by dams and diversions and understanding the constraints imposed by societal commitments to provide

  9. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  10. Environmental data management system at the Savannah River Site

    International Nuclear Information System (INIS)

    Story, C.H.; Gordon, D.E.

    1989-01-01

    The volume and complexity of data associated with escalating environmental regulations has prompted professionals at the Savannah River Site to begin taking steps necessary to better manage environmental information. This paper describes a plan to implement an integrated environmental information system at the site. Nine topic areas have been identified. They are: administrative, air, audit ampersand QA, chemical information/inventory, ecology, environmental education, groundwater, solid/hazardous waste, and surface water. Identification of environmental databases that currently exist, integration into a ''friendly environment,'' and development of new applications will all take place as a result of this effort. New applications recently completed include Groundwater Well Construction, NPDES (Surface Water) Discharge Monitoring, RCRA Quarterly Reporting, and Material Safety Data Sheet Information. Database applications are relational (Oracle RDBMS) and reside largely in DEC VMS environments. In today's regulatory and litigation climate, the site recognizes they must have knowledge of accurate environmental data at the earliest possible time. Implementation of this system will help ensure this

  11. The Chalk River helium jet and skimmer system

    International Nuclear Information System (INIS)

    Schmeing, H.; Koslowsky, V.; Wightman, M.; Hardy, J.C.; MacDonald, J.A.; Faestermann, T.; Andrews, H.R.; Geiger, J.S.; Graham, R.L.

    1976-01-01

    A helium jet and skimmer system intended as an interface between a target location at the Chalk River tandem accelerator and the ion source of an on-line separator presently under construction has been developed. The system consists of a target chamber, a 125 cm long capillary, and a one stage skimmer chamber. The designs of the target and skimmer chambers allow one to vary a large number of independent flow and geometrical parameters with accurate reproducibility. Experiments with the β-delayed proton emitter 25 Si (tsub(1/2)=218 ms) produced in the reaction 24 Mg( 3 He,2n) 25 Si show that under optimized conditions about 75% of the reaction products leaving the target are transported to the skimmer. Of those, more than 90% pass through the skimmer orifice, which separates off 97.5% of the transport gas, helium. By introducing an additional helium flow across the skimming orifice the amount of helium separated off the transport jet can be increased to beyond 99.85%, leaving the high throughput of recoils unaffected. (Auth.)

  12. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  13. Columbia River system operation review: Final environmental impact statement. Appendix O, economic and social impact

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included

  14. Digital Elevation Model Correction for the thalweg values of Obion River system, TN

    Science.gov (United States)

    Dullo, T. T.; Bhuyian, M. N. M.; Hawkins, S. A.; Kalyanapu, A. J.

    2016-12-01

    Obion River system is located in North-West Tennessee and discharges into the Mississippi River. To facilitate US Department of Agriculture (USDA) to estimate water availability for agricultural consumption a one-dimensional HEC-RAS model has been proposed. The model incorporates the major tributaries (north and south), main stem of Obion River along with a segment of the Mississippi River. A one-meter spatial resolution Light Detection and Ranging (LiDAR) derived Digital Elevation Model (DEM) was used as the primary source of topographic data. LiDAR provides fine-resolution terrain data over given extent. However, it lacks in accurate representation of river bathymetry due to limited penetration beyond a certain water depth. This reduces the conveyance along river channel as represented by the DEM and affects the hydrodynamic modeling performance. This research focused on proposing a method to overcome this issue and test the qualitative improvement by the proposed method over an existing technique. Therefore, objective of this research is to compare effectiveness of a HEC-RAS based bathymetry optimization method with an existing hydraulic based DEM correction technique (Bhuyian et al., 2014) for Obion River system in Tennessee. Accuracy of hydrodynamic simulations (upon employing bathymetry from respective sources) would be regarded as the indicator of performance. The aforementioned river system includes nine major reaches with a total river length of 310 km. The bathymetry of the river was represented via 315 cross sections equally spaced at about one km. This study targeted to selecting best practice for treating LiDAR based terrain data over complex river system at a sub-watershed scale.

  15. Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system

    DEFF Research Database (Denmark)

    Wang, Chao; Li, Xinhui; Wang, Xiangxiu

    2016-01-01

    Spatial and seasonal sampling within a subtropical river delta system, the Pearl River Delta (China), provided data to determine seasonal phytoplankton patterns and develop prediction models. The high nutrient levels and frequent water exchanges resulted in a phytoplankton community with greatest...

  16. Columbia River system operation review. Final environmental impact statement. Appendix J, recreation

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts

  17. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix J: Recreation.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts.

  18. Development of a GIS-Based Decision Support System for Diagnosis of River System Health and Restoration

    Directory of Open Access Journals (Sweden)

    Jihong Xia

    2014-10-01

    Full Text Available The development of a decision support system (DSS to inform policy making has been progressing rapidly. This paper presents a generic framework and the development steps of a decision tool prototype of geographic information systems (GIS-based decision support system of river health diagnosis (RHD-DSS. This system integrates data, calculation models, and human knowledge of river health status assessment, causal factors diagnosis, and restoration decision making to assist decision makers during river restoration and management in Zhejiang Province, China. Our RHD-DSS is composed of four main elements: the graphical user interface (GUI, the database, the model base, and the knowledge base. It has five functional components: the input module, the database management, the diagnostic indicators management, the assessment and diagnosis, and the visual result module. The system design is illustrated with particular emphasis on the development of the database, model schemas, diagnosis and analytical processing techniques, and map management design. Finally, the application of the prototype RHD-DSS is presented and implemented for Xinjiangtang River of Haining County in Zhejiang Province, China. This case study is used to demonstrate the advantages gained by the application of this system. We conclude that there is great potential for using the RHD-DSS to systematically manage river basins in order to effectively mitigate environmental issues. The proposed approach will provide river managers and designers with improved insight into river degradation conditions, thereby strengthening the assessment process and the administration of human activities in river management.

  19. Strategies, tools, and challenges for sustaining and restoring high elevation five-needle white pine forests in western North America

    Science.gov (United States)

    Robert E. Keane; Anna W. Schoettle

    2011-01-01

    Many ecologically important, five-needle white pine forests that historically dominated the high elevation landscapes of western North America are now being heavily impacted by mountain pine beetle (Dendroctonus spp.) outbreaks, the exotic disease white pine blister rust (WPBR), and altered high elevation fire regimes. Management intervention using specially designed...

  20. Sr isotope tracing of multiple water sources in a complex river system, Noteć River, central Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zieliński, Mateusz, E-mail: mateusz.zielinski@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Dopieralska, Jolanta, E-mail: dopieralska@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Belka, Zdzislaw, E-mail: zbelka@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Walczak, Aleksandra, E-mail: awalczak@amu.edu.pl [Isotope Laboratory, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland); Siepak, Marcin, E-mail: siep@amu.edu.pl [Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań (Poland); Jakubowicz, Michal, E-mail: mjakub@amu.edu.pl [Institute of Geoecology and Geoinformation, Adam Mickiewicz University, Dzięgielowa 27, 61-680 Poznań (Poland)

    2016-04-01

    Anthropogenic impact on surface waters and other elements in the environment was investigated in the Noteć River basin in central Poland. The approach was to trace changes in the Sr isotope composition ({sup 87}Sr/{sup 86}Sr) and concentration in space and time. Systematic sampling of the river water shows a very wide range of {sup 87}Sr/{sup 86}Sr ratios, from 0.7089 to 0.7127. This strong variation, however, is restricted to the upper course of the river, whereas the water in the lower course typically shows {sup 87}Sr/{sup 86}Sr values around 0.7104–0.7105. Variations in {sup 87}Sr/{sup 86}Sr are associated with a wide range of Sr concentrations, from 0.14 to 1.32 mg/L. We find that strong variations in {sup 87}Sr/{sup 86}Sr and Sr concentrations can be accounted for by mixing of two end-members: 1) atmospheric waters charged with Sr from the near-surface weathering and wash-out of Quaternary glaciogenic deposits, and 2) waters introduced into the river from an open pit lignite mine. The first reservoir is characterized by a low Sr content and high {sup 87}Sr/{sup 86}Sr ratios, whereas mine waters display opposite characteristics. Anthropogenic pollution is also induced by extensive use of fertilizers which constitute the third source of Sr in the environment. The study has an important implication for future archeological studies in the region. It shows that the present-day Sr isotope signatures of river water, flora and fauna cannot be used unambiguously to determine the “baseline” for bioavailable {sup 87}Sr/{sup 86}Sr in the past. - Highlights: • Sr isotopes fingerprint water sources and their interactions in a complex river system. • Mine waters and fertilizers are critical anthropogenic additions in the river water. • Limited usage of environmental isotopic data in archeological studies. • Sr budget of the river is dynamic and temporary.

  1. Columbia River System Operation Review final environmental impact statement. Appendix L: Soils, geology and groundwater

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix addresses the study of geology, soils, and groundwater concerns relative to the System Operation Review (SOR). Chapter 1 provides an overview of the study, scope, and process for this resource area. In order, the respective sections of this chapter discuss the relevant issues for the study, and the means by which the SOR team carried out the study

  2. Paleodrainage of the Columbia River system on the Columbia Plateau of Washington State: a summary

    International Nuclear Information System (INIS)

    Fecht, K.R.; Reidel, S.P.; Tallman, A.M.

    1985-12-01

    The evolution of the Columbia River drainage system on the Columbia Plateau of Washington in the last 17 My reflects the geologic history of the plateau. We have updated an interpretation of the evolution of the Columbia River system and defined the geomorphic and structural features that have controlled the position of ancestral streams. The sequence of geologic events and the resulting drainage system for various time intervals in the last 17 My are summarized below. 121 refs., 14 figs

  3. Microbiological studies in the Mandovi-Zuari river system

    Digital Repository Service at National Institute of Oceanography (India)

    Row, A.

    Total heterotrophic and coliform bacteria were surveyed during October 1977 to September 1978 from 9 stations each along the rivers Mandovi and Zuari and 3 along the coast of Goa. Total heterotrophic population showed wide temporal and spatial...

  4. Hydromorphological control of nutrient cycling in complex river floodplain systems

    Science.gov (United States)

    Hein, T.; Bondar-Kunze, E.; Felkl, M.; Habersack, H.; Mair, M.; Pinay, G.; Tritthart, M.; Welti, N.

    2009-04-01

    Riparian zones and floodplains are key components within river ecosystems controlling nutrient cycling by promoting transformation processes and thus, act as biogeochemical hot spots. The intensity of these processes depends on the exchange conditions (the connectivity) with the main channel and the morphological setting of the water bodies. At the landscape scale, three interrelated principles of hydromorphological dynamics can be formulated regarding the cycling and transfer of carbon and nutrients in large rivers ecosystems: a) The mode of carbon and nutrient delivery affects ecosystem functioning; b) Increasing residence time and contact area impact nutrient transformation; c) Floods and droughts are natural events that strongly influence pathways of carbon and nutrient cycling. These three principles of hydromorphological dynamics control the nutrient uptake and retention and are linked over different temporal and spatial scales. All three factors can be strongly affected by natural disturbances or anthropogenic impacts, through a change in either the water regime or the geomorphologic setting of the river valley. Any change in natural water regimes will affect the biogeochemistry of riparian zones and floodplains as well as their ability to cycle and mitigate nutrient fluxes originating from upstream and/or upslope. Especially these areas have been altered by river regulation and land use changes over the last 200 years leading to the deterioration of the functioning of these compartments within the riverine landscape. The resulting deficits have prompted rehabilitation and restoration measures aiming to increase the spatial heterogeneity, the complexity, of these ecosystems. Yet, a more integrated approach is needed considering the present status of nutrient dynamics and the effects of restoration measures at different scales. The present paper analyses the effects of river side-arm restoration on ecosystem functions within the side-arm and highlights

  5. Tissue contaminants and associated transcriptional response in trout liver from high elevation lakes of Washington

    Science.gov (United States)

    Moran, P.W.; Aluru, N.; Black, R.W.; Vijayan, M.M.

    2007-01-01

    The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to enhance atmospheric deposition of contaminants. However, little is known about contaminant levels in organisms residing in these remote high elevation lakes. We measured total mercury and 28 organochlorine compounds in trout collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in trout from all lakes sampled (15 to 262 ??g/kg ww), while two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were also detected in these fish tissues (<25 ??g/kg ww). In sediments, organochlorine levels were below detection, while median total and methyl mercury were 30.4 and 0.34 ??g/ kg dry weight (ww), respectively. Using fish from two lakes, representing different contaminant loading levels (Wilcox lake: high; Skymo lake: low), we examined transcriptional response in the liver using a custom-made low-density targeted rainbow trout cDNA microarray. We detected significant differences in liver transcriptional response, including significant changes in metabolic, endocrine, and immune-related genes, in fish collected from Wilcox Lake compared to Skymo Lake. Overall, our results suggest that local urban areas contribute to the observed contaminant patterns in these high elevation lakes, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. ?? 2007 American Chemical Society.

  6. Carbon dioxide and methane emissions from the Yukon River system

    Science.gov (United States)

    Striegl, Robert G.; Dornblaser, Mark M.; McDonald, Cory P.; Rover, Jennifer R.; Stets, Edward G.

    2012-01-01

    Carbon dioxide (CO2) and methane (CH4) emissions are important, but poorly quantified, components of riverine carbon (C) budgets. This is largely because the data needed for gas flux calculations are sparse and are spatially and temporally variable. Additionally, the importance of C gas emissions relative to lateral C exports is not well known because gaseous and aqueous fluxes are not commonly measured on the same rivers. We couple measurements of aqueous CO2 and CH4 partial pressures (pCO2, pCH4) and flux across the water-air interface with gas transfer models to calculate subbasin distributions of gas flux density. We then combine those flux densities with remote and direct observations of stream and river water surface area and ice duration, to calculate C gas emissions from flowing waters throughout the Yukon River basin. CO2emissions were 7.68 Tg C yr−1 (95% CI: 5.84 −10.46), averaging 750 g C m−2 yr−1 normalized to water surface area, and 9.0 g C m−2 yr−1 normalized to river basin area. River CH4 emissions totaled 55 Gg C yr−1 or 0.7% of the total mass of C emitted as CO2 plus CH4 and ∼6.4% of their combined radiative forcing. When combined with lateral inorganic plus organic C exports to below head of tide, C gas emissions comprised 50% of total C exported by the Yukon River and its tributaries. River CO2 and CH4 derive from multiple sources, including groundwater, surface water runoff, carbonate equilibrium reactions, and benthic and water column microbial processing of organic C. The exact role of each of these processes is not yet quantified in the overall river C budget.

  7. Columbia River System Operation Review final environmental impact statement. Appendix P: Canadian Entitlement Allocation Agreements (CEAA)

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The purpose of this technical appendix is to provide the environmental review necessary to enter into agreements regarding the distribution between Federal and non-Federal project owners with respect to delivery of the Canadian Entitlement obligation to Canada for the period 1998 through 2024

  8. Columbia River System Operation Review final environmental impact statement. Appendix T: Comments and responses

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix documents the public and agency review of the SOR Draft EIS and how the SOR agencies used the review to formulate the FINAL EIS. The appendix includes a summary of the review process, a discussion of the nature of the comments, a list of all commentors, reproductions of comment letters, and responses to all comments. Changes in the EIS text in response to comments are noted in the responses

  9. Columbia River System Operation Review final environmental impact statement. Appendix I: Power

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix discusses the work performed by the SOR Power Work Group. The Power Work Group (PWG) had several major responsibilities: first, to determine the effects of each of the various system operating strategies (SOS) on the Northwest regional power system; second, given these effects, to determine what, if any, actions are required to meet forecasted regional energy consumption; and finally, to estimate the cost for serving the forecasted regional energy consumption. The Northwest regional power system consists of Federal and non-Federal hydroelectric power projects (hydropower or hydro projects) on the main stem of the Columbia and Snake Rivers, numerous smaller hydro projects on other river reaches, and a number of thermal plants (coal, nuclear and combustion turbines)

  10. Reproductive success and habitat characteristics of Golden-winged Warblers in high-elevation pasturelands

    Science.gov (United States)

    Wood, Petra; Aldinger, Kyle R.

    2016-01-01

    The Golden-winged Warbler (Vermivora chrysoptera) is one of the most rapidly declining vertebrate species in the Appalachian Mountains. It is the subject of extensive range-wide research and conservation action. However, little is known about this species' breeding ecology in high-elevation pasturelands, a breeding habitat with conservation potential considering the U.S. Natural Resource Conservation Service's Working Lands for Wildlife program targeting private lands in the Appalachian Mountains. We located 100 nests of Golden-winged Warblers in pastures in and around the Monongahela National Forest in West Virginia during 2008–2012. Daily nest survival rate (mean ± SE  =  0.962 ± 0.006), clutch size (4.5 ± 0.1), and number of young fledged per nest attempt (2.0 ± 0.2) and successful nest (4.0 ± 0.1) fell within the range of values reported in other parts of the species' range and were not significantly affected by year or the presence/absence of cattle grazing. Classification tree analysis revealed that nests were in denser vegetation (≥52%) and closer to forest edges (Golden-winged Warblers. High-elevation pasturelands may provide a refuge for remaining populations of Golden-winged Warblers in this region.

  11. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    Science.gov (United States)

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  12. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    Science.gov (United States)

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  13. High frequency and large deposition of acid fog on high elevation forest.

    Science.gov (United States)

    Igawa, Manabu; Matsumura, Ko; Okochi, Hiroshi

    2002-01-01

    We have collected and analyzed fogwater on the mountainside of Mt. Oyama (1252 m) in the Tanzawa Mountains of Japan and observed the fog event frequency from the base of the mountain with a video camera. The fog event frequency increased with elevation and was observed to be present 46% of the year at the summit. The water deposition via throughfall increased with elevation because of the increase in fogwater interception and was about twice that via rain at the summit, where the air pollutant deposition via throughfall was several times that via rainwater. The dry deposition and the deposition via fogwater were dominant factors in the total ion deposition at high elevation sites. In a fog event, nitric acid, the major acid component on the mountain, is formed during the transport of the air mass from the base of the mountain along the mountainside, where gases including nitric acid deposit and are scavenged by fogwater. Therefore, high acidity caused by nitric acid and relatively low ion strength are observed in the fogwater at high elevation sites.

  14. A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 1,994 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1993...

  15. A study of bromide in the Mandovi-Zuari river system of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    De; Dalal, V.N

    Bromide was the subject of detailed investigation in the Mandovi Zuari river system and information was compiled on its spatial and temporal distribution. A simple mixture relation of Carpenter et. al. was applied and seawater percentage and bromide...

  16. Application of optimization technique for flood damage modeling in river system

    Science.gov (United States)

    Barman, Sangita Deb; Choudhury, Parthasarathi

    2018-04-01

    A river system is defined as a network of channels that drains different parts of a basin uniting downstream to form a common outflow. An application of various models found in literatures, to a river system having multiple upstream flows is not always straight forward, involves a lengthy procedure; and with non-availability of data sets model calibration and applications may become difficult. In the case of a river system the flow modeling can be simplified to a large extent if the channel network is replaced by an equivalent single channel. In the present work optimization model formulations based on equivalent flow and applications of the mixed integer programming based pre-emptive goal programming model in evaluating flood control alternatives for a real life river system in India are proposed to be covered in the study.

  17. Terrace system of the middle and lower Sázava River

    Czech Academy of Sciences Publication Activity Database

    Balatka, B.; Štěpančíková, Petra

    2006-01-01

    Roč. 6, č. 1 (2006), s. 69-81 ISSN 1335-9541 Institutional research plan: CEZ:AV0Z30460519 Keywords : fluvial terrace system * geomorphological evolution * Sázava River Subject RIV: DB - Geology ; Mineralogy

  18. Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem

    Science.gov (United States)

    Mosquera, Giovanny M; Celleri, Rolando; Lazo, Patricio X; Vache, Kellie B; Perakis, Steven; Crespo, Patricio

    2016-01-01

    Few high-elevation tropical catchments worldwide are gauged and even fewer are studied using combined hydrometric and isotopic data. Consequently, we lack information needed to understand processes governing rainfall-runoff dynamics and to predict their influence on downstream ecosystem functioning. To address this need, we present a combination of hydrometric and water stable isotopic observations in the wet Andean páramo ecosystem of the Zhurucay Ecohydrological Observatory (7.53 km2). The catchment is located in the Andes of south Ecuador between 3400 and 3900 m a.s.l. Water samples for stable isotopic analysis were collected during 2 years (May 2011 – May 2013), while rainfall and runoff measurements were continuously recorded since late 2010. The isotopic data reveal that Andosol soils predominantly situated on hillslopes drain laterally to Histosols (Andean páramo wetlands) mainly located at the valley bottom. Histosols, in turn, feed water to creeks and small rivers throughout the year, establishing hydrologic connectivity between wetlands and the drainage network. Runoff is primarily comprised of pre-event water stored in the Histosols, which is replenished by rainfall that infiltrates through the Andosols. Contributions from the mineral horizon and the top of the fractured bedrock are small and only seem to influence discharge in small catchments during low flow generation (non-exceedance flows hydrological process and 2) (Histosols) wetlands are the major source of stream runoff. Our study highlights that detailed isotopic characterization during short time periods provides valuable information about ecohydrological processes in regions where very few basins are gauged.

  19. Columbia River System Operation Review final environmental impact statement. Appendix H: Navigation

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The Navigation Technical Appendix presents the analysis of the various SOR alternatives in terms of their potential affects on the congressionally authorized navigation system within the Columbia and Snake river waterways. The focus of the study, impacts to the authorized navigation, improvements/developments, reflects on one of the continuing historical missions of the US Army Corps of Engineers: to promote safe commercial navigation of the nation's waterways benefiting the development of commerce within the US. The study and evaluation process involved Scoping, Screening and Full Scale Evaluation. During screening two models were developed; one was used to evaluate the effects of the various alternatives on navigation through the Snake River Projects and the other the effects on the Dworshak Pool. Full Scale Analysis was expanded to included a study of effects throughout the system

  20. Game theory and risk-based leveed river system planning with noncooperation

    Science.gov (United States)

    Hui, Rui; Lund, Jay R.; Madani, Kaveh

    2016-01-01

    Optimal risk-based levee designs are usually developed for economic efficiency. However, in river systems with multiple levees, the planning and maintenance of different levees are controlled by different agencies or groups. For example, along many rivers, levees on opposite riverbanks constitute a simple leveed river system with each levee designed and controlled separately. Collaborative planning of the two levees can be economically optimal for the whole system. Independent and self-interested landholders on opposite riversides often are willing to separately determine their individual optimal levee plans, resulting in a less efficient leveed river system from an overall society-wide perspective (the tragedy of commons). We apply game theory to simple leveed river system planning where landholders on each riverside independently determine their optimal risk-based levee plans. Outcomes from noncooperative games are analyzed and compared with the overall economically optimal outcome, which minimizes net flood cost system-wide. The system-wide economically optimal solution generally transfers residual flood risk to the lower-valued side of the river, but is often impractical without compensating for flood risk transfer to improve outcomes for all individuals involved. Such compensation can be determined and implemented with landholders' agreements on collaboration to develop an economically optimal plan. By examining iterative multiple-shot noncooperative games with reversible and irreversible decisions, the costs of myopia for the future in making levee planning decisions show the significance of considering the externalities and evolution path of dynamic water resource problems to improve decision-making.

  1. Design of river height and speed monitoring system by using Arduino

    Science.gov (United States)

    Nasution, T. H.; Siagian, E. C.; Tanjung, K.; Soeharwinto

    2018-02-01

    River is one part of the hydrologic cycle. Water in rivers is generally collected from precipitation, such as rain, dew, springs, underground runoff, and in certain countries also comes from melt ice/snow. The height and speed of water in a river is always changing. Changes in altitude and speed of water can affect the surrounding environment. In this paper, we will design a system to measure the altitude and speed of the river. In this work we use Arduino Uno, ultrasonic sensors and flow rate sensors. Ultrasonic sensor HC-SR04 is used as a river height meter. Based on the test results, this sensor has an accuracy of 96.6%.

  2. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  3. Tracking Polychlorinated Biphenyls (PCB) after an incident along a river system - Case study Elbe River

    Science.gov (United States)

    Kleisinger, Carmen; Dietrich, Stephan; Kehl, Nora; Claus, Evelyn; Schubert, Birgit

    2017-04-01

    In spring 2015, extremely high concentrations of Polychlorinated Biphenyls (PCB) well above the long-term average were detected in suspended particulate matter (SPM) within the River Elbe. They were released due to abrasive blasting of the old coating from a bridge in the upper part of the River, approximately 50 km upstream of the first measurement site. PCBs are persistent organic pollutants, preferentially bound to fine-grained fractions of the SPM. Results from monitoring of contaminants in SPM along the Elbe indicate the further dispersal of the PCB-contaminated sediments. These measurements include yearly investigations on PCB concentrations in sediments in the inner reaches of the Elbe, an additional longitudinal survey in 2015 and monthly monitoring of PCBs in SPM at stations along the river including the Elbe estuary (Germany). The Elbe estuary is of major economic importance since Hamburg harbour, one of the largest harbours in Europe, is located there. Maintaining the harbour includes dredging and, i.a., relocating large amounts of the dredged material within the water body. High PCB concentrations in sediments could lead to restrictions on the relocation of these sediments. This study aims at tracking the fate of PCB contaminated material released from the point source of the incident site along the whole river stretch and at estimating its impact on the quality of sediments and consequently on dredging activities in the estuary. The ratio of high (PCB 138, 152 and 180) versus low (PCB 28, 52, 101) chlorinated PCB congeners proved to be a suitable tracer to distinguish the PCB load released by the incident from the long-term background signals. As Delor 106/Clophen A60, which contains approx. 90% hexa- to decachloric congeners, was an additive in the coating of the bridge, the pattern of PCBs released by the incident is dominated by the highly chlorinated PCB-congeners PCB 138, 153 and 180. At the tidal weir Geesthacht, the entrance to the estuary, an

  4. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is

  5. Study on measuring social cost of water pollution: concentrated on Han River water system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Im; Min, Dong Gee; Chung, Hoe Seong; Lim, Hyun Jeong; Kim, Mee Sook [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following the economic development and the progress of urbanization, the damage on water pollution has been more serious but a social cost caused by water pollution cannot be measured. Although the need of water quality preservation is emphasized, a base material for public investment on enhancing water quality preservation is not equipped yet due to the absence of economic values of water resource. Therefore it measured a cost generated by leaving pollution not treated water quality in this study. To measure the usable value of water resource or the cost of water pollution all over the country should include a national water system, but this study is limited on the mainstream of Han River water system from North Han River through Paldang to Chamsil sluice gates. Further study on Nakdong River and Keum River water systems should be done. 74 refs., 4 figs., 51 tabs.

  6. Columbia River System Operation Review final environmental impact statement. Appendix K: Resident fish

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. In this appendix the Resident Fish Work Group (RFWG) has attempted to characterize and evaluate impacts of dam operation on an extremely complex and diverse integrated resource. Not only is this required under the National Environmental Policy Act (NEPA) for SOR, there are resident fish populations that have status under the Federal Endangered Species Act (ESA) or equivalent state regulations (Kootenai River white sturgeon, Snake River white sturgeon, sandroller, shorthead and torrent sculpins, bull trout, westslope cutthroat trout, redband trout, and burbot). The RFWG has also attempted to develop operating alternatives that benefit not only resident fish, but anadromous fish, wildlife, and other human interests as well. The authors have recognized the co-evolution of resident fish, anadromous fish, and other integrated resources in the basin

  7. Depths to Ice-cemented Soils in High-elevation Quartermain Mountains, Dry Valleys, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is comprised of four surveyed valleys focusing on the depth to ground ice in the high-elevation Quartermain Mountains in the Beacon Valley area:...

  8. The ESA River & Lake System: Current Capabilities and Future Potential

    DEFF Research Database (Denmark)

    Smith, Richard G.; Salloway, Mark; Berry, Philippa A. M.

    Measuring the earth's river and lake resources using satellite radar altimetry offers a unique global monitoring capability, which complements the detailed measurements made by the steadily decreasing number of in-situ gauges. To exploit this unique remote monitoring capability, a global pilot...

  9. Variability in the hydrology of the Ikpoba River system | Iloba ...

    African Journals Online (AJOL)

    The variability in some physico-chemical parameters was studied in Ikpoba River from June to November, 2009, in three stations. The study shows high variability in transparency, flow velocity, BOD, alkalinity, chloride, nitrate, phosphate with over 40% variability coefficient which is an indication that these parameters ...

  10. River system recovery following the Novat-Rosu tailings dam failure, Maramures County, Romania

    International Nuclear Information System (INIS)

    Bird, Graham; Brewer, Paul A.; Macklin, Mark G.; Balteanu, Dan; Serban, Mihaela; Driga, Basarab; Zaharia, Sorin

    2008-01-01

    The River Viseu catchment in Maramures County, northwestern Romania, has a long history of base and precious metal mining. Between 1994 and 2003 waste from mining activity at Baia Borsa was stored in the Novat-Rosu tailings pond in the upper Viseu catchment. However, in March 2000, the tailings dam failed releasing approximately 100,000 m 3 of contaminated water and 20,000 t of mineral-rich solid waste, which was routed downstream through the Rivers Novat, Vaser and Viseu into the River Tisa. Following the accident metal (Cd, Cu, Pb, Zn) concentrations in river water and river channel sediment were assessed in samples collected annually (July 2000, 2001, 2002 and 2003) from 29 sites in the Viseu catchment, downstream of the tailings pond. Additionally, the speciation of sediment-associated metals was established using a 4-stage sequential extraction procedure (SEP) and Pb isotope analysis ( 206/204 Pb and 207/204 Pb) was carried out to establish the provenance of contaminated sediments. Metal concentrations in river water were found to comply with EU directive 'target' values within four months of the failure. However, the impact of the spill upon river channel sediments was found to be much longer-lasting, with evidence of the delayed downstream remobilization of tailings stored within the narrow Novat valley following the dam failure, as well as continued inputs of contaminated sediment to the River Viseu from the River Tisla, another mining-affected tributary. Comparison with data from other recent tailings dam failures, indicates that river system recovery rates depend upon local geomorphological conditions, hydrological regimes, and the nature and scale of post-spill clean-up operations

  11. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey

    Directory of Open Access Journals (Sweden)

    Vahdettin Demir

    2016-01-01

    Full Text Available In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS. In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1 digitization of topographical data and preparation of digital elevation model using ArcGIS, (2 simulation of flood lows of different return periods using a hydraulic model (HEC-RAS, and (3 preparation of flood risk maps by integrating the results of (1 and (2.

  12. Geographic Information System and Geoportal «River basins of the European Russia»

    Science.gov (United States)

    Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.

    2018-01-01

    Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.

  13. Exploration of High elevation liana colonies on Mt. Slamet, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    WS Hoover

    2009-12-01

    Full Text Available One hundred forty–five individual lianas were distributed on 2 East facing ridges on the second highest mountain on Java, Mt. Slamet (3418 m., Central Java, Indonesia. Twenty one colonies were observed on small flat areas on ridges. The liana species observed include: Embelia pergamacea, Toddalia asiatica, Elaeagnus latifolia, Schefflera lucida, Vaccinium laurifolium and Lonicera javanica. Diameter of each liana was measured and liana density/flat area calculated. Floristic collecting was under- taken within the elevational gradient of liana distribution. Data suggest an ecotone transition from lower to upper mon- tane forest is observed between 2200 and 2300 m, though forest types are difficult to determine due to disturbance caused by fire at the upper elevations. Observing lianas at these unusuall high elevations with near pluvial rainfall, con- tradict established scientific theory concerning global distribution and abundance of lianas.  

  14. Plastic responses to elevated temperature in low and high elevation populations of three grassland species.

    Science.gov (United States)

    Frei, Esther R; Ghazoul, Jaboury; Pluess, Andrea R

    2014-01-01

    Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate.

  15. TRMM-3B43 Bias Correction over the High Elevations of the Contiguous United States

    Science.gov (United States)

    Hashemi, H.; Nordin, K. M.; Lakshmi, V.; Knight, R. J.

    2016-12-01

    Precipitation can be quantified using a rain gauge network, or a remotely sensed precipitation product. Ultimately, the choice of dataset depends on the particular application, the catchment size, climate and the time period of study. In a region with a long record and a dense rain gauge network, the elevation-modified ground-based precipitation product, PRISM, has been found to work well. However, in poorly gauged regions the use of remotely sensed precipitation products is an absolute necessity. The Tropical Rainfall Measuring Mission (TRMM) has provided valuable precipitation datasets for hydrometeorological studies over the past two decades (1998-2015). One concern regarding the usage of TRMM data is the accuracy of the precipitation estimates, when compared to those obtained using PRISM. The reason for this concern is that TRMM and PRISM do not always agree and, typically, TRMM underestimates PRISM over the mountainous regions of the United States. In this study, we develop a correction function to improve the accuracy of the TRMM monthly product (TRMM-3B43) by estimating and removing the bias in the satellite data using the ground-based precipitation product, PRISM. We observe a strong relationship between the bias and land surface elevation; TRMM-3B43 tends to underestimate the PRISM product at altitudes greater than 1500 m above mean sea level (m.amsl) in the contiguous United States. A relationship is developed between TRMM-PRISM bias and elevation. The correction function is used to adjust the TRMM monthly precipitation using PRISM and elevation data. The model is calibrated using 25% of the available time period and the remaining 75% of the time period is used for validation. The corrected TRMM-3B43 product is verified for the high elevations over the contiguous United States and two local regions in the mountainous areas of the western United States. The results show a significant improvement in the accuracy of the TRMM product in the high elevations of

  16. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  17. Reproductive success and habitat characteristics of Golden-winged Warblers in high-elevation pasturelands

    Science.gov (United States)

    Wood, Petra; Aldinger, Kyle R.

    2016-01-01

    The Golden-winged Warbler (Vermivora chrysoptera) is one of the most rapidly declining vertebrate species in the Appalachian Mountains. It is the subject of extensive range-wide research and conservation action. However, little is known about this species' breeding ecology in high-elevation pasturelands, a breeding habitat with conservation potential considering the U.S. Natural Resource Conservation Service's Working Lands for Wildlife program targeting private lands in the Appalachian Mountains. We located 100 nests of Golden-winged Warblers in pastures in and around the Monongahela National Forest in West Virginia during 2008–2012. Daily nest survival rate (mean ± SE  =  0.962 ± 0.006), clutch size (4.5 ± 0.1), and number of young fledged per nest attempt (2.0 ± 0.2) and successful nest (4.0 ± 0.1) fell within the range of values reported in other parts of the species' range and were not significantly affected by year or the presence/absence of cattle grazing. Classification tree analysis revealed that nests were in denser vegetation (≥52%) and closer to forest edges (the male's territory. Successful nests had significantly more woody cover (≥9%) within 1 m than failed nests. Our results suggest that cattle grazing at 1.2–2.4 ha of forage/animal unit with periodic mowing can create and maintain these characteristics without interfering with the nesting of Golden-winged Warblers. High-elevation pasturelands may provide a refuge for remaining populations of Golden-winged Warblers in this region.

  18. Model-Aided Altimeter-Based Water Level Forecasting System in Mekong River

    Science.gov (United States)

    Chang, C. H.; Lee, H.; Hossain, F.; Okeowo, M. A.; Basnayake, S. B.; Jayasinghe, S.; Saah, D. S.; Anderson, E.; Hwang, E.

    2017-12-01

    Mekong River, one of the massive river systems in the world, has drainage area of about 795,000 km2 covering six countries. People living in its drainage area highly rely on resources given by the river in terms of agriculture, fishery, and hydropower. Monitoring and forecasting the water level in a timely manner, is urgently needed over the Mekong River. Recently, using TOPEX/Poseidon (T/P) altimetry water level measurements in India, Biancamaria et al. [2011] has demonstrated the capability of an altimeter-based flood forecasting system in Bangladesh, with RMSE from 0.6 - 0.8 m for lead times up to 5 days on 10-day basis due to T/P's repeat period. Hossain et al. [2013] further established a daily water level forecasting system in Bangladesh using observations from Jason-2 in India and HEC-RAS hydraulic model, with RMSE from 0.5 - 1.5 m and an underestimating mean bias of 0.25 - 1.25 m. However, such daily forecasting system relies on a collection of Jason-2 virtual stations (VSs) to ensure frequent sampling and data availability. Since the Mekong River is a meridional river with few number of VSs, the direct application of this system to the Mekong River becomes challenging. To address this problem, we propose a model-aided altimeter-based forecasting system. The discharge output by Variable Infiltration Capacity hydrologic model is used to reconstruct a daily water level product at upstream Jason-2 VSs based on the discharge-to-level rating curve. The reconstructed daily water level is then used to perform regression analysis with downstream in-situ water level to build regression models, which are used to forecast a daily water level. In the middle reach of the Mekong River from Nakhon Phanom to Kratie, a 3-day lead time forecasting can reach RMSE about 0.7 - 1.3 m with correlation coefficient around 0.95. For the lower reach of the Mekong River, the water flow becomes more complicated due to the reversal flow between the Tonle Sap Lake and the Mekong River

  19. A system-theory-based model for monthly river runoff forecasting: model calibration and optimization

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2014-03-01

    Full Text Available River runoff is not only a crucial part of the global water cycle, but it is also an important source for hydropower and an essential element of water balance. This study presents a system-theory-based model for river runoff forecasting taking the Hailiutu River as a case study. The forecasting model, designed for the Hailiutu watershed, was calibrated and verified by long-term precipitation observation data and groundwater exploitation data from the study area. Additionally, frequency analysis, taken as an optimization technique, was applied to improve prediction accuracy. Following model optimization, the overall relative prediction errors are below 10%. The system-theory-based prediction model is applicable to river runoff forecasting, and following optimization by frequency analysis, the prediction error is acceptable.

  20. Hydrodynamic modeling of hydrologic surface connectivity within a coastal river-floodplain system

    Science.gov (United States)

    Castillo, C. R.; Guneralp, I.

    2017-12-01

    Hydrologic surface connectivity (HSC) within river-floodplain environments is a useful indicator of the overall health of riparian habitats because it allows connections amongst components/landforms of the riverine landscape system to be quantified. Overbank flows have traditionally been the focus for analyses concerned with river-floodplain connectivity, but recent works have identified the large significance from sub-bankfull streamflows. Through the use of morphometric analysis and a digital elevation model that is relative to the river water surface, we previously determined that >50% of the floodplain for Mission River on the Coastal Bend of Texas becomes connected to the river at streamflows well-below bankfull conditions. Guided by streamflow records, field-based inundation data, and morphometric analysis; we develop a two-dimensional hydrodynamic model for lower portions of Mission River Floodplain system. This model not only allows us to analyze connections induced by surface water inundation, but also other aspects of the hydrologic connectivity concept such as exchanges of sediment and energy between the river and its floodplain. We also aggregate hydrodynamic model outputs to an object/landform level in order to analyze HSC and associated attributes using measures from graph/network theory. Combining physically-based hydrodynamic models with object-based and graph theoretical analyses allow river-floodplain connectivity to be quantified in a consistent manner with measures/indicators commonly used in landscape analysis. Analyzes similar to ours build towards the establishment of a formal framework for analyzing river-floodplain interaction that will ultimately serve to inform the management of riverine/floodplain environments.

  1. Floodplain Impact on Riverine Dissolved Carbon Cycling in the Mississippi-Atchafalaya River System

    Science.gov (United States)

    DelDuco, E.; Xu, Y. J.

    2017-12-01

    Studies have shown substantial increases in the export of terrestrial carbon by rivers over the past several decades, and have linked these increases to human activity such as changes in land use, urbanization, and intensive agriculture. The Mississippi River (MR) is the largest river in North America, and is among the largest in the world, making its carbon export globally significant. The Atchafalaya River (AR) receives 25% of the Mississippi River's flow before traveling 189 kilometers through the largest bottomland swamp in North America, providing a unique opportunity to study floodplain impacts on dissolved carbon in a large river. The aim of this study was to determine how dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the AR change spatially and seasonally, and to elucidate which processes control carbon cycling in this intricate swamp river system. From May 2015 -May 2016, we conducted monthly river sampling from the river's inflow to its outflow, analyzing samples for DOC and DIC concentrations and δ 13C stable isotope composition. During the study period, the river discharged a total of 5.35 Tg DIC and a total of 2.34 Tg DOC into the Gulf of Mexico. Based on the mass inflow-outflow balance, approximately 0.53 Tg ( 10%) of the total DIC exported was produced within the floodplain, while 0.24 Tg ( 10%) of DOC entering the basin was removed. The AR was consistently saturated with pCO2 above atmospheric pressure, indicating that this swamp-river system acts a large source of DIC to the atmosphere as well as to coastal margins. Largest changes in carbon constituents occurred during periods of greatest inundation of the basin, and corresponded with shifts in isotopic composition that indicated large inputs of DIC from floodplains. This effect was particularly pronounced during initial flood stages. This study demonstrates that a major river with extensive floodplains in its coastal margin can act as an important source of DIC as well

  2. Columbia River System Operation Review final environmental impact statement. Appendix Q: Regional forum

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The SOR is currently developing a System Operating Strategy (SOS) that will guide the physical operations of the Columbia River system. The SOR is also addressing the institutional arrangements that must be in place to make needed changes to the SOS in the future, or make interpretations of the strategy in the light of changing water conditions or river needs. For convenience, this future institutional arrangement is referred to as ''The Columbia River Regional Forum,'' or simply ''the Forum,'' even though the nature of this institution is still to be determined. This appendix and the Final Environmental Impact Statement (EIS) identify the Forum as an administrative process that will not result in impacts to the environment and will not require analysis in a NEPA context. The composition of and procedures followed by a decision making body cannot--in and of themselves--be used to predict a particular decision with definable impacts on the environment. Nevertheless, because of the relationship to the other SOR actions, the SOR lead agencies have prepared this Technical Appendix to provide opportunities for review and comment on the Forum alternatives

  3. Fish assemblage structure and habitat associations in a large western river system

    Science.gov (United States)

    Smith, C.D.; Quist, Michael C.; Hardy, R. S.

    2016-01-01

    Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.

  4. Application of the target fish community model to an urban river system.

    Science.gov (United States)

    Meixler, Marcia S

    2011-04-01

    Several models have been developed to assess the biological integrity of aquatic systems using fish community data. One of these, the target fish community (TFC) model, has been used primarily to assess the biological integrity of larger, mainstem rivers in southern New England with basins characterized by dispersed human activities. We tested the efficacy of the TFC approach to specify the fish community in the highly urbanized Charles River watershed in eastern Massachusetts. To create a TFC for the Charles River we assembled a list of fish species that historically inhabited the Charles River watershed, identified geomorphically and zoogeographically similar reference rivers regarded as being in high quality condition, amassed fish survey data for the reference rivers, and extracted from the collections the information needed to define a TFC. We used a similarity measurement method to assess the extent to which the study river community complies with the TFC and an inference approach to summarize the manner in which the existing fish community differed from target conditions. The five most abundant species in the TFC were common shiners (34%), fallfish (17%) redbreast sunfish (11%), white suckers (8%), and American eel (7%). Three of the five species predicted to be most abundant in the TFC were scarce or absent in the existing river community. Further, the river was dominated by macrohabitat generalists (99%) while the TFC was predicted to contain 19% fluvial specialist species, 43% fluvial dependent species, and 38% macrohabitat generalist species. In addition, while the target community was dominated by fish intolerant (37%) and moderately tolerant (39%) of water quality degradation, the existing community was dominated by tolerant individuals (59%) and lacked intolerant species expected in the TFC. Similarity scores for species, habitat use specialization, and water quality degradation tolerance categories were 28%, 35% and 66%, respectively. The clear

  5. Loss of the CNA I secured river water system: analysis and effect evaluation

    International Nuclear Information System (INIS)

    Berra, Sandra; Guala, Mariana I.; Lorenzo, Andrea T.; Raffo Calderon, Maria C.; Urrutia, Guillermo

    1999-01-01

    In this work the evolution of the plant parameters is evaluated in the case of a loss of the secured circuit of river water (system UK). In particular the systems which are affected for this loss were studied. It was evaluated the functional degradation of these systems. (author)

  6. Remote video radioactive systems evaluation, Savannah River Site

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.

    1991-01-01

    Specialized miniature low cost video equipment has been effectively used in a number of remote, radioactive, and contaminated environments at the Savannah River Site (SRS). The equipment and related techniques have reduced the potential for personnel exposure to both radiation and physical hazards. The valuable process information thus provided would not have otherwise been available for use in improving the quality of operation at SRS

  7. Environmental evaluation of Turkey's transboundary rivers' hydropower systems

    International Nuclear Information System (INIS)

    Berkun, M.

    2010-01-01

    The hydroelectric power and potential environmental impacts of hydroelectric projects in 2 transboundary rivers in Turkey were assessed. The southeastern Anatolia project (GAP) is expected to encompass 27 dams and 19 hydroelectric power plants. The large-scale project will increase domestic electricity production and help to provide irrigation for large agricultural schemes. The Coruh project will consist of 27 dams and hydroelectric power plants, which are expected to have serious environmental impacts in both upstream Turkey and downstream Georgia. A slowing down of each river's velocity will cause changes in sediment transport, while the storage of water in large reservoirs will alter water quality and cause changes in local micro-climates. Irrigation methods may cause soil erosion and salinization. The construction of 2 GAP dams on the Tigris and Euphrates rivers has caused protest from Syria and Iraq. Economic development in the regions caused by the proposed hydroelectric projects is expected to have significant environmental impacts on woodland and grassland areas. The projects are expected to adversely affect threatened plant, mammal, and fish species. More detailed cumulative impact and environmental impact assessments are needed to evaluate the economic, environmental, and social problems that are likely to arise as a result of the projects. 17 refs., 3 tabs., 6 figs.

  8. [Tritium in the Water System of the Techa River].

    Science.gov (United States)

    Chebotina, M Ja; Nikolin, O A

    2016-01-01

    The aim of the paper is to study modern tritium levels in various sources of the drinking water supply in the settlements situated in the riverside zone of the Techa. Almost everywhere the water entering water-conduit wells from deep slits (100-180 m) contains averagely 2-3 times higher tritium concentrations than the water from less deep personal wells, slits and springs. Tritium levels in the drinking water supply decrease with the distance from the dam; while in wells, springs and personal wells they are constant all along the river. The observed phenomenon can be explained by the fact that the river bed of the Techa is situated at a break zone of the earth crust, where the contaminated deep water penetrates from the reservoirs of the "Mayak" enterprise situated in the upper part of the regulated river bed. Less deep water sources (personal wells, slits and springs) receive predominantly flood, atmospheric and subsoil waters and are not connected with the reservoirs.

  9. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

    International Nuclear Information System (INIS)

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs

  10. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix D: Exhibits.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    The Columbia River and its tributaries are the primary water system in the Pacific Northwest, draining some 219,000 square miles in seven states and another 39,500 square miles in British Columbia. Beginning in the 1930`s, the Columbia River has been significantly modified by construction of 30 major dams on the river and its tributaries, along with dozens of non-Federal projects. Construction and subsequent operation of these water development projects have contributed to eight primary uses of the river system, including navigation, flood control, irrigation, electric power generation, fish migration, fish and wildlife habitat, recreation, and water supply and quality considerations. Increasing stress on the water development of the Columbia River and its tributaries has led primary Federal agencies to undertake intensive analysis and evaluation of the operation of these projects. These agencies are the U.S. Army Corps of Engineers and the Bureau of Reclamation, who operate the large Federal dams on the river, and the Bonneville Power Administration who sells the power generated at the dams. This review, termed the System Operation Review (SOR), has as its ultimate goal to define a strategy for future operation of the major Columbia River projects which effectively considers the needs of all river uses. This volume, Appendix D: Cultural resources appendix, Technical imput includes the following: Development of geomorphology based framework for cultural resources management, Dworshak Reservoir, Idaho; Impact profiles for SOR reservoirs; comments from the following Native American tribes: Burns Paiute Tribe; Coville Confederated Tribes; Confederated Tribes of the Warm Springs Indian Reservation; Confederated Tribes and bands of the Yakama Indian Nation (comments); Nez Perce Tribe; Coeur D`Alene Tribe; Spokane Tribe of Indians; The confederated Tribes of the Umatilla Indian Reservation.

  11. Controls on anastomosis in lowland river systems: Towards process-based solutions to habitat conservation.

    Science.gov (United States)

    Marcinkowski, Paweł; Grabowski, Robert C; Okruszko, Tomasz

    2017-12-31

    Anastomosing rivers were historically common around the world before extensive agricultural and industrial development in river valleys. Few lowland anastomosing rivers remain in temperate zones, and the protection of these river-floodplain systems is an international conservation priority. However, the mechanisms that drive the creation and maintenance of multiple channels, i.e. anabranches, are not well understood, particularly for lowland rivers, making it challenging to identify effective management strategies. This study uses a novel multi-scale, process-based hydro-geomorphological approach to investigate the natural and anthropogenic controls on anastomosis in lowland river reaches. Using a wide range of data (hydrologic, cartographic, remote-sensing, historical), the study (i) quantifies changes in the planform of the River Narew, Poland over the last 100years, (ii) documents changes in the natural and anthropogenic factors that could be driving the geomorphic change, and (iii) develops a conceptual model of the controls of anastomosis. The results show that 110km of anabranches have been lost from the Narew National Park (6810ha), a 42% reduction in total anabranch length since 1900. The rates of anabranch loss have increased as the number of pressures inhibiting anabranch creation and maintenance has multiplied. The cessation of localized water level and channel management (fishing dams, water mills and timber rafting), the loss of traditional floodplain activities (seasonal mowing) and infrastructure construction (embanked roads and an upstream dam) are contributing to low water levels and flows, the deposition of sediment at anabranch inlets, the encroachment of common reed (Phragmites australis), and the eventual loss of anabranches. By identifying the processes driving the loss of anabranches, this study provides transferable insights into the controls of anastomosis in lowland rivers and the management solutions needed to preserve the unique

  12. How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers

    International Nuclear Information System (INIS)

    Lair, G.J.; Zehetner, F.; Fiebig, M.; Gerzabek, M.H.; Gestel, C.A.M. van; Hein, T.; Hohensinner, S.; Hsu, P.; Jones, K.C.; Jordan, G.; Koelmans, A.A.

    2009-01-01

    In many densely populated areas, riverine floodplains have been strongly impacted and degraded by river channelization and flood protection dikes. Floodplains act as buffers for flood water and as filters for nutrients and pollutants carried with river water and sediment from upstream source areas. Based on results of the EU-funded 'AquaTerra' project (2004-2009), we analyze changes in the dynamics of European river-floodplain systems over different temporal scales and assess their effects on contaminant behaviour and ecosystem functioning. We find that human-induced changes in the hydrologic regime of rivers have direct and severe consequences on nutrient cycling and contaminant retention in adjacent floodplains. We point out the complex interactions of contaminants with nutrient availability and other physico-chemical characteristics (pH, organic matter) in determining ecotoxicity and habitat quality, and draw conclusions for improved floodplain management. - Human activities have changed the hydraulics and contaminant fate in river-floodplain ecosystems.

  13. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1998-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  14. Geographical Information Systems for International River Basin Management in the Third World

    Energy Technology Data Exchange (ETDEWEB)

    Kammerud, Terje Andre

    1997-12-31

    This thesis discusses implementation and application of Geographical Information systems (GIS) in international River Basin Organizations (RBOs) in the Third World. Third World countries sharing the same river basin are increasingly experiencing conflicts because they exploit the same water resource. Empirical knowledge is derived from two case studies. (1) The Mekong River Commission Secretariat`s experiences in applying GIS are investigated. The conditions assessed are related to institutional, funding, expertise, training and technology issues for successful application of GIS. (2) The prospects for the implementation of GIS at a future WATERNET Centre in Amman are investigated. Israel, Jordan and the Palestinian Authority have decided to establish a regional GIS Centre in the lower Jordan River Basin. The study assesses political, legal and institutional conditions for the successful implementation of GIS. It is concluded that implementing and applying GIS successfully in RBOs in the Third World is challenging, although not for technological reasons. 265 refs., 28 figs., 13 tabs.

  15. Ozone concentrations at a selected high-elevation forest site downwind Mexico City

    Science.gov (United States)

    Torres-JArdon, R.

    2013-05-01

    Torres-Jardón, R.*, Rosas-Pérez, I., Granada-Macías, L. M., Ruiz-Suárez, L. G. Centro de Ciencias de la Atmósfera, UNAM, México D. F. México * rtorres@unam.mx For many years, the vegetation of forest species such as Abies religiosa in natural parks located in the southwest mountains of Mexico City has attracted much attention since these parks have been experiencing a severe decline of unclear etiology. The high ozone levels in the area and the observed naked eye macroscopic, histological and cytological injuries on these species, strongly suggest an important contribution of tropospheric ozone to this deterioration process. Apart of historical short monitoring campaigns for measuring ozone levels in these mountains, it is known just a little is known about the present exposure levels at which the local vegetation is exposed. A continuous ozone analyzer has been in operation since 2011 at a high-elevation forest site (Parque Nacional Miguel Hidalgo, PNMH; 3110 m above mean sea level) located downwind of Mexico City Metropolitan Area (MCMA), in order to characterize the local ozone diel amplitude and its seasonal trend, as well as the influence of MCMA on the local O3 concentrations. Hourly average ozone data in PNMH shows that in general, the diel of ozone concentrations in the forest site has a statistical significant correlation with the pattern of ozone levels observed in several monitoring sites (smog receptor sites) within the MCMA, although the high elevation O3 levels are relatively lower than those in the urban area (around 2200 m above mean sea level). It is possible that a part of the oxidants in the air masses are removed by sink deposition processes during the air mass transport across the hills. The diel amplitude of ozone concentrations is small in the cold season, increasing as the seasons advance to June. As in the city, the highest ozone concentrations occur in April or May and the lowest levels during the rainy season, which extends from

  16. Preliminary Characterization of Organic Geochemistry in the Fly-Strickland River System, Papua New Guinea

    Science.gov (United States)

    Alin, S. R.; Aalto, R.; Remington, S. M.; Richey, J. E.

    2003-12-01

    The Fly-Strickland fluvial dispersal system comprises one of the largest river basins in tropical Oceania, ranking among the top 20 rivers in the world for water and sediment discharge. From the New Guinea highlands, these rivers flow >1000 km across lowland tropical floodplains to the Gulf of Papua, with an average annual depth of runoff 100 times that of the Amazon. Within the system, the Strickland has greater sediment discharge and a steeper gradient than the Fly, providing an opportunity to investigate biogeochemical differences associated with particulate flux. For eight lowland sites across the Fly-Strickland river system, we analyzed water and suspended sediment (SS) samples for an initial survey of various carbon cycle parameters. Both the Fly and Strickland Rivers were strongly supersaturated with carbon dioxide (2008-10,479 uatm CO2) and undersaturated with oxygen (1.10-5.48 mg/l O2), with the Fly having higher CO2 and lower O2 concentrations than the Strickland River. These pCO2 and O2 concentrations are comparable to and lower than (respectively) typical values in the Amazon. Measured Fly-Strickland alkalinity values fell in the range of 0.893-1.888 meq, and pH measurements were neutral to slightly alkaline (6.916-7.852). In a sample from a sediment-impoverished tributary from Lake Murray to the Strickland (Herbert R.), pH was neutral (7.060), and alkalinity and pCO2 had their lowest observed values at 0.234 meq and 1407 uatm, respectively. Nutrient concentrations were generally higher in the Strickland ([NO3]=3.36+/-0.69 uM, [PO4]=0.09+/-0.10 uM, and [Si(OH)4]=176.6+/-41.7 uM) than in the Fly River ([NO3]=1.09+/-0.04 uM, [PO4]=0.01+/-0.01 uM, and [Si(OH)4]=110.6+/-4.8 uM). NO3 and PO4 concentrations in the Fly-Strickland river system were lower than in the Amazon, and silicate was comparable. SS concentrations were higher in the Strickland than in the Fly (49.4-231.1 mg/l vs. 19.5-59.6 mg/l). Coarse particulates were organic-poor in the Fly and

  17. Geospatial Modelling Approach for Interlinking of Rivers: A Case Study of Vamsadhara and Nagavali River Systems in Srikakulam, Andhra Pradesh

    Science.gov (United States)

    Swathi Lakshmi, A.; Saran, S.; Srivastav, S. K.; Krishna Murthy, Y. V. N.

    2014-11-01

    India is prone to several natural disasters such as floods, droughts, cyclones, landslides and earthquakes on account of its geoclimatic conditions. But the most frequent and prominent disasters are floods and droughts. So to reduce the impact of floods and droughts in India, interlinking of rivers is one of the best solutions to transfer the surplus flood waters to deficit/drought prone areas. Geospatial modelling provides a holistic approach to generate probable interlinking routes of rivers based on existing geoinformatics tools and technologies. In the present study, SRTM DEM and AWiFS datasets coupled with land-use/land -cover, geomorphology, soil and interpolated rainfall surface maps have been used to identify the potential routes in geospatial domain for interlinking of Vamsadhara and Nagavali River Systems in Srikakulam district, Andhra Pradesh. The first order derivatives are derived from DEM and road, railway and drainage networks have been delineated using the satellite data. The inundation map has been prepared using AWiFS derived Normalized Difference Water Index (NDWI). The Drought prone areas were delineated on the satellite image as per the records declared by Revenue Department, Srikakulam. Majority Rule Based (MRB) aggregation technique is performed to optimize the resolution of obtained data in order to retain the spatial variability of the classes. Analytical Hierarchy Process (AHP) based Multi-Criteria Decision Making (MCDM) is implemented to obtain the prioritization of parameters like geomorphology, soil, DEM, slope, and land use/land-cover. A likelihood grid has been generated and all the thematic layers are overlaid to identify the potential grids for routing optimization. To give a better routing map, impedance map has been generated and several other constraints are considered. The implementation of canal construction needs extra cost in some areas. The developed routing map is published into OGC WMS services using open source Geo

  18. Adult Kawasaki's disease with myocarditis, splenomegaly, and highly elevated serum ferritin levels.

    Science.gov (United States)

    Cunha, Burke A; Pherez, Francisco M; Alexiadis, Varvara; Gagos, Marios; Strollo, Stephanie

    2010-01-01

    erythema. We present a case of adult Kawasaki's disease with myocarditis and splenomegaly. The patient's myocarditis rapidly resolved, and he did not develop coronary artery aneurysms. In addition to splenomegaly, this case of adult Kawasaki's disease is remarkable because the patient had highly elevated serum ferritin levels of 944-1303 ng/mL; (normalfever for> or =5 days with conjunctival suffusion, cervical adenopathy, swelling of the dorsum of the hands/feet, thrombocytosis and otherwise unexplained highly elevated ferritin levels. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Investigations of some regional river systems by INAA and X-ray fluorescence

    International Nuclear Information System (INIS)

    Drazhkovich, R.J.; Kukoch, A.

    1985-01-01

    Distribution of Zn, Hg, Sb, Cr, Fe, Sc and Co has been investigated in materials dissolved and suspended in the rivers Ibar, Zapadna Morava and Kamenica by means of INAA and X-ray fluorescence. Irradiation was made in VKG-channels of RA-nuclear reactor Vincha. Distribution coefficients were calculated, as well as contamination factors for investigated river regional systems in comparison to the uncontaminated water system. Data obtained indicate the possibility of utilization of these two analytical methods for investigation and control of biogeochemical and contamination processes in small regional water systems, especially important for modern studies in life sciences

  20. Non–invasive sampling of endangered neotropical river otters reveals high levels of dispersion in the Lacantun River System of Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Ortega, J.

    2012-01-01

    Full Text Available Patterns of genetic dispersion, levels of population genetic structure, and movement of the neotropical river otter (Lontra longicaudis were investigated by screening eight polymorphic microsatellites from DNA extracted from fecal samples, collected in a hydrologic system of the Lacandon rainforest in Chiapas, Mexico. A total of 34 unique genotypes were detected from our surveys along six different rivers, and the effect of landscape genetic structure was studied. We recovered 16 of the 34 individuals in multiple rivers at multiple times. We found high levels of dispersion and low levels of genetic differentiation among otters from the six surveyed rivers (P > 0.05, except for the pairwise comparison among the Lacantún and José rivers (P < 0.05. We recommend that conservation management plans for the species consider the entire Lacantún River System and its tributaries as a single management unit to ensure the maintenance of current levels of population genetic diversity, because the population analyzed seems to follow a source–sink dynamic mainly determined by the existence of the major river.

  1. Brook trout movement within a high-elevation watershed: Consequences for watershed restoration

    Science.gov (United States)

    Jeff L. Hansbarger; J. Todd Petty; Patricia M. Mazik

    2010-01-01

    We used radio-telemetry to quantify brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) movements in the Shavers Fork of the Cheat River, West Virginia, and an adjacent second-order tributary (Rocky Run). Our objectives were to quantify the overall rate of trout movement, assess spatial and temporal variation in...

  2. Clinical analysis of modified trabeculectomy in glaucoma surgery with high elevated intraocular pressure

    Directory of Open Access Journals (Sweden)

    Cang-Xia Zhang

    2013-10-01

    Full Text Available AIM: To make a retrospective analysis of the clinical data of modified trabeculectomy in treating glaucoma surgery with high elevated intraocular pressure retrospectively and evaluate the effect of modified trabeculectomy.METHODS:One hundred acute angle-closure glaucoma patients(100 eyeswith persistent high intraocular pressure were divided into treatment group(45 eyesand control group(55 eyes. Patients in treatment group was treated with by trabeculectomy, while those in control group received modified trabeculectomy. The modified measures include stellate ganglion block preoperative, topical anesthesia and local anesthesia with 20g/L lidocaine cotton-piece, to make scleral flap with sclerotome, to release aqueous humor outflow slowly after paracentesis of anterior chamber, and using mydriatic and cycloplegic during and after surgery.RESULTS: The incidence of operation complicationin control group was lower than that in treatment group. The differences were statistically significant(Pt=9.1535, Pt=39.8010, Pt=11.3219, PCONCLUSION: The modified trabeculectomy applied in the treatment of glaucoma with persistent high intraocular pressure can not only save the visual function of connection part to a certain extent, but also reduce the incidence of serious complications. It can obtain better intraocular pressure, shorten the average hospitalization days, decrease the expenses and increase patients satisfaction.

  3. Machine site preparation improves seedling performance on a high-elevation site in southwest Oregon

    International Nuclear Information System (INIS)

    McNabb, D.H.; Baker-Katz, K.; Tesch, S.D.

    1993-01-01

    Douglas-fir (Pseudotsuga menziesii) seedlings planted on areas receiving one of four site-preparation treatments (scarify, scarify/till, soil removal, and soil removal/till) and on unprepared control areas were compared for 5 yr at a high-elevation, nutrient-poor site in the western Siskiyou Mountains of southwest Oregon. Fifth-year survival of seedlings was at least 85% among machine-prepared plots, compared to 42% on control plots. Cover of competing vegetation remained less than 25% during the period for all machine treatments. In contrast, vegetation cover on control plots was 30% at the time of planting and increased to nearly 75% after 5 yr. Competing vegetation clearly impeded seedling performance. The effects of unusually droughty conditions at the time of planting in 1982 were examined further by interplanting additional seedlings in the soil-removal treatment in 1985. The interplanting was followed by more normal spring precipitation, and seedlings grew better over 5 yr than those planted in 1982. The slow recovery of competing vegetation and generally poor seedling growth on all treatments during both planting years are attributed to low soil fertility

  4. High-Elevation Sierra Nevada Conifers Reveal Increasing Reliance on Snow Water with Changing Climate

    Science.gov (United States)

    Lepley, K. S.; Meko, D. M.; Touchan, R.; Shamir, E.; Graham, R.

    2017-12-01

    Snowpack in the Sierra Nevada Mountains accounts for around one third of California's water supply. Melting snow can provide water into dry summer months characteristic of the region's Mediterranean climate. As climate changes, understanding patterns of snowpack, snowmelt, and biological response are critical in this region of agricultural, recreational, and ecological value. Tree rings can act as proxy records to inform scientists and resource managers of past climate variability where instrumental data is unavailable. Here we investigate relationships between tree rings of high-elevation, snow-adapted conifer trees (Tsuga mertensiana, Abies magnifica) and April 1st snow-water equivalent (SWE) in the northern Sierra Nevada Mountains. The 1st principal component of 29 highly correlated regional SWE time series was modeled using multiple linear regression of four tree-ring chronologies including two lagged chronologies. Split-period verification analysis of this model revealed poor predictive skill in the early half (1929 - 1966) of the calibration period (1929 - 2003). Further analysis revealed a significant (p time. Snow water is becoming a more limiting resource to tree growth as average temperatures rise and the hydrologic regime shifts. These results highlight the need for resource managers and policy makers to consider that biological response to climate is not static.

  5. Input of trace substances to coniferous forests by fog interception at high elevations of Black Forest

    International Nuclear Information System (INIS)

    Winkler, P.; Pahl, S.

    1993-10-01

    The deposition of trace substances to a coniferous forest has been estimated by means of a one-dimensional cloud droplet deposition model. For a period of 21 months the liquid water content has been measured and 89 samples of cloud water from the weather station Feldberg have been analysed for chemical composition. These data and meteorological routine observations have been used as input parameters for the deposition model. Deposition calculations to a 40 years old coniferous forest for the period 1982-1991 showed that the cloud water deposition amounts to 33% of the precipitation amount on the average and varies between 23 and 43% in single years. The highest cloud water deposition rates occur during fall and winter. The trace substance concentration in cloud water has been found to be higher than in precipitation, by a factor between 6 and 12, depending on the type of ions. Typically seasonal variations of normalized ion concentrations could be shown to exist as well as dependencies on wind direction. Air mass transport from the industries of the Stuttgart area resulted in higher trace substance concentrations in cloud water. The deposition of trace substances via fog interception during the summer months is as high and in the winter months higher than that by wet deposition. The forests at high elevations of Black Forest are charged appreciably by fog interception. (orig.). 31 figs., 5 tabs., 39 refs [de

  6. Variation in turbidity with precipitation and flow in a regulated river systemriver Göta Älv, SW Sweden

    Directory of Open Access Journals (Sweden)

    G. Göransson

    2013-07-01

    Full Text Available The turbidity variation in time and space is investigated in the downstream stretch of the river Göta Älv in Sweden. The river is heavily regulated and carries the discharge from the largest fresh water lake in Sweden, Lake Vänern, to the outflow point in Göteborg Harbour on the Swedish west coast. The river is an important waterway and serves as a fresh-water supply for 700 000 users. Turbidity is utilised as a water quality indicator to ensure sufficient quality of the intake water to the treatment plant. The overall objective of the study was to investigate the influence of rainfall, surface runoff, and river water flow on the temporal and spatial variability of the turbidity in the regulated river system by employing statistical analysis of an extensive data set. A six year long time series of daily mean values on precipitation, discharge, and turbidity from six stations along the river were examined primarily through linear correlation and regression analysis, combined with nonparametric tests and analysis of variance. The analyses were performed on annual, monthly, and daily bases, establishing temporal patterns and dependences, including; seasonal changes, impacts from extreme events, influences from tributaries, and the spatial variation along the river. The results showed that there is no simple relationship between discharge, precipitation, and turbidity, mainly due to the complexity of the runoff process, the regulation of the river, and the effects of Lake Vänern and its large catchment area. For the river Göta Älv, significant, positive correlations between turbidity, discharge, and precipitation could only be found during periods with high flow combined with heavy rainfall. Local precipitation does not seem to have any significant impact on the discharge in the main river, which is primarily governed by precipitation at catchment scale. The discharge from Lake Vänern determines the base level for the turbidity in the river

  7. Water quality dynamics in the Boro-Thamalakane-Boteti river system ...

    African Journals Online (AJOL)

    The quality of water in aquatic systems is subject to temporal and spatial variations due to varying effects of natural and anthropogenic factors. This study assessed the dynamics of water quality in the Boro-Thamalakane-Boteti river system along an upstream–downstream gradient above and below Maun during February, ...

  8. Transmission of climate, sea-level, and tectonic singals across river systems

    NARCIS (Netherlands)

    Forzoni, A.

    2015-01-01

    This thesis investigates the impact of climatic, tectonic, and sea-level changes (external forcing) on river systems (source-to-sink) and how these changes are recorded in the stratigraphic record. It describes a newly developed numerical tool (PaCMod) to simulate the complex fluvial system sediment

  9. Exploring earth system governance: A case study of floodplain management along the Tisza river in Hungary

    NARCIS (Netherlands)

    Werners, S.E.; Fachner, Z.; Matczak, P.; Falaleeva, M.; Leemans, R.

    2009-01-01

    This paper discusses a recently proposed conceptualisation of ‘earth system governance’ by applying it to floodplain management in the Hungarian Tisza river basin. By doing so it aims to improve our understanding of governance systems facilitating adaptation to a changing world. The

  10. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    Science.gov (United States)

    Zhao, T. H.; Yin, Z.; Song, Y. Z.

    2012-11-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  11. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A.; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J.; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-01-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams. PMID:28508078

  12. Research on monitoring system of water resources in Shiyang River Basin based on Multi-agent

    International Nuclear Information System (INIS)

    Zhao, T h; Yin, Z; Song, Y Z

    2012-01-01

    The Shiyang River Basin is the most populous, economy relatively develop, the highest degree of development and utilization of water resources, water conflicts the most prominent, ecological environment problems of the worst hit areas in Hexi inland river basin in Gansu province. the contradiction between people and water is aggravated constantly in the basin. This text combines multi-Agent technology with monitoring system of water resource, the establishment of a management center, telemetry Agent Federation, as well as the communication network between the composition of the Shiyang River Basin water resources monitoring system. By taking advantage of multi-agent system intelligence and communications coordination to improve the timeliness of the basin water resources monitoring.

  13. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China.

    Science.gov (United States)

    Ma, Hongbo; Nittrouer, Jeffrey A; Naito, Kensuke; Fu, Xudong; Zhang, Yuanfeng; Moodie, Andrew J; Wang, Yuanjian; Wu, Baosheng; Parker, Gary

    2017-05-01

    Sedimentary dispersal systems with fine-grained beds are common, yet the physics of sediment movement within them remains poorly constrained. We analyze sediment transport data for the best-documented, fine-grained river worldwide, the Huanghe (Yellow River) of China, where sediment flux is underpredicted by an order of magnitude according to well-accepted sediment transport relations. Our theoretical framework, bolstered by field observations, demonstrates that the Huanghe tends toward upper-stage plane bed, yielding minimal form drag, thus markedly enhancing sediment transport efficiency. We present a sediment transport formulation applicable to all river systems with silt to coarse-sand beds. This formulation demonstrates a remarkably sensitive dependence on grain size within a certain narrow range and therefore has special relevance to silt-sand fluvial systems, particularly those affected by dams.

  14. Biogeochemistry of mercury in a river-reservoir system: impact of an inactive chloralkali plant on the Holston River-Cherokee Reservoir, Virginia and Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, S. G.; Lindberg, S. E.; Turner, R. R.; Huckabee, J. W.; Strand, R. H.; Lund, J. R.; Andren, A. W.

    1980-08-01

    Elevated mercury concentrations in fish species from the North Fork of the Holston River were observed in the early 1970's. The source of the mercury was a chloralkali plant which had ceased operation in 1972. Mercury continues to be released to the river from two large (approx. 40-ha) waste disposal ponds at the plant site. This report presents results of a study of the emission of mercury to the environment from the abandoned waste ponds and of the distribution of mercury in water, sediment, and biota of the Holston River-Cherokee Reservoir System in Virginia and eastern Tennessee.

  15. Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems.

    Science.gov (United States)

    Winkler, M; Lawrence, J R; Neu, T R

    2001-09-01

    A field survey indicated that the Elbe and Saale Rivers were contaminated with both clofibric acid and ibuprofen. In Elbe River water we could detect the metabolite hydroxy-ibuprofen. Analyses of the city of Saskatoon sewage effluent discharged to the South Saskatchewan river detected clofibric acid but neither ibuprofen nor any metabolite. Laboratory studies indicated that the pharmaceutical ibuprofen was readily degraded in a river biofilm reactor. Two metabolites were detected and identified as hydroxy- and carboxy-ibuprofen. Both metabolites were observed to degrade in the biofilm reactors. However, in human metabolism the metabolite carboxy-ibuprofen appears and degrades second whereas the opposite occurs in biofilm systems. In biofilms the pharmacologically inactive stereoisomere of ibuprofen is degraded predominantly. In contrast, clofibric acid was not biologically degraded during the experimental period of 21 days. Similar results were obtained using biofilms developed using waters from either the South Saskatchewan or Elbe River. In a sterile reactor no losses of ibuprofen were observed. These results suggested that abiotic losses and adsorption played only a minimal role in the fate of the pharmaceuticals in the river biofilm reactors.

  16. ECOLOGICAL ASSESSMENT OF THE HUMAN -TRANSFORMED SYSTEMS OF THE IRPIN RIVER

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2017-07-01

    Full Text Available Purpose: to learn the interaction of natural and anthropogenic factors and their consequences in the system “Natural environment (Irpin river – human-transformed environment (Nyvka river”. Methods: To assess the structural and functional changes of hydroecosystems, transformed under technogenic impact, hydrochemical, toxicological and biological techniques, as well as the methods of mathematical statistics for experimental data processing and summarization of obtained results, were applied. Results: it is proposed to determine the dynamics of the biotic self-regulation mechanism change under impact of the modifying (anthropogenic factors, by the example of the two-component system – “Natural environment (Irpin River – environment, transformed under technogenic impact (Nyvka River, the right-hand tributary of the Irpin River”. It is proposed to extend additionally the opportunities of the ecological assessment due to application of the integrating index – the index of ecological conformity. Discussion: obtained results stipulate necessity of the further investigation of structural and functional patterns of the Irpin River ecosystem in space and time. Assessment of anthropogenic factors impact on hydroecosystem condition will make it possible to correct the nature guard activity concerning the improvement of the fishery object ecological condition and recreation essence of the Irpin River. Integration of the Nyvka and Irpin Rivers into a single system “Natural environment – environment, transformed under technogenic impact” will make it possible to obtain the objective assessment of technogenic changes in hydroecosystems. Implementation of the index of ecological conformity will make it possible to estimate completely the inner processes in the rivers.

  17. Status and trends of selected resources in the Upper Mississippi River System

    Science.gov (United States)

    Johnson, Barry L.; Hagerty, Karen H.

    2010-01-01

    Like other large rivers, the Upper Mississippi River System (UMRS) serves a diversity of roles. The UMRS provides commercial and recreational fishing, floodplain agriculture, drinking water for many communities, an important bird migration pathway, a variety of recreational activities, and a navigation system that transports much of the country's agricultural exports. These multiple roles present significant management challenges. Regular assessment of the condition of the river is needed to improve management plans and evaluate their effectiveness. This report provides a summary of the recent status (mean and range of conditions) and trends (change in direction over time) for 24 indicators of the ecological condition of the Upper Mississippi and Illinois Rivers using data collected through the Long Term Resource Monitoring Program (LTRMP). The 24 indicators were grouped into seven categories: hydrology, sedimentation, water quality, land cover, aquatic vegetation, invertebrates, and fish. Most of the data used in the report were collected between about 1993 and 2004, although some older data were also used to compare to recent conditions.Historical observations and current LTRMP data clearly indicate that the UMRS has been changed by human activity in ways that have diminished the ecological health of the river. The data indicate that status and trends differ among regions, and we expect that regional responses to various ecological rehabilitation techniques will differ as well. The continuing role of the LTRMP will be to provide the data needed to assess changes in river conditions and to determine how those changes relate to management actions, natural variation, and the overall ecological integrity of the river system.

  18. A passive collection system for whole size fractions in river suspended solids

    International Nuclear Information System (INIS)

    Takeshi Matsunaga; Takahiro Nakanishi; Mariko Atarashi-Andoh; Erina Takeuchi; Katsunori Tsuduki; Syusaku Nishimura; Jun Koarashi; Shigeyoshi Otosaka; Tsutomu Sato; Seiya Nagao

    2015-01-01

    In order to solve difficulties in collection of river suspended solids (SS) such as frequent observations during stochastic rainfall events, a simple passive collection system of SS has been developed. It is composed of sequentially connected two large-scale filter vessels. A portion of river water flows down into the filter vessels utilizing a natural drop of streambed. The system enable us to carry out long-term, unmanned SS collection. It is also compatible with dissolved component collection. Its performance was validated in a forested catchment by applying to radiocesium and stable carbon transport. (author)

  19. Nitrogen Leaching in Intensive Cropping Systems in Tam Duong District, Red River Delta of Vietnam

    OpenAIRE

    Trinh, M.V.; Keulen, van, H.; Roetter, R.P.

    2010-01-01

    The environmental and economic consequences of nitrogen (N) lost in rice-based systems in Vietnam is important but has not been extensively studied. The objective of this study was to quantify the amount of N lost in major cropping systems in the Red River Delta. An experiment was conducted in the Red River Delta of Vietnam, on five different crops including rose, daisy, cabbage, chili, and a rice–rice–maize rotation during 2004 and 2005. Core soil samples were taken periodically in 20-cm inc...

  20. A Novel Hydro-information System for Improving National Weather Service River Forecast System

    Science.gov (United States)

    Nan, Z.; Wang, S.; Liang, X.; Adams, T. E.; Teng, W. L.; Liang, Y.

    2009-12-01

    A novel hydro-information system has been developed to improve the forecast accuracy of the NOAA National Weather Service River Forecast System (NWSRFS). An MKF-based (Multiscale Kalman Filter) spatial data assimilation framework, together with the NOAH land surface model, is employed in our system to assimilate satellite surface soil moisture data to yield improved evapotranspiration. The latter are then integrated into the distributed version of the NWSRFS to improve its forecasting skills, especially for droughts, but also for disaster management in general. Our system supports an automated flow into the NWSRFS of daily satellite surface soil moisture data, derived from the TRMM Microwave Imager (TMI) and Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), and the forcing information of the North American Land Data Assimilation System (NLDAS). All data are custom processed, archived, and supported by the NASA Goddard Earth Sciences Data Information and Services Center (GES DISC). An optional data fusing component is available in our system, which fuses NEXRAD Stage III precipitation data with the NLDAS precipitation data, using the MKF-based framework, to provide improved precipitation inputs. Our system employs a plug-in, structured framework and has a user-friendly, graphical interface, which can display, in real-time, the spatial distributions of assimilated state variables and other model-simulated information, as well as their behaviors in time series. The interface can also display watershed maps, as a result of the integration of the QGIS library into our system. Extendibility and flexibility of our system are achieved through the plug-in design and by an extensive use of XML-based configuration files. Furthermore, our system can be extended to support multiple land surface models and multiple data assimilation schemes, which would further increase its capabilities. Testing of the integration of the current system into the NWSRFS is

  1. Hydrologic Engineering Center River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement

    Science.gov (United States)

    2017-09-18

    ER D C/ EL T R- 17 -1 8 Missouri River Recovery Program (MRRP) Hydrologic Engineering Center-River Analysis System (HEC-RAS) Water...Zhonglong Zhang and Billy E. Johnson September 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research...and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and

  2. Organic fuels for respiration in tropical river systems

    Science.gov (United States)

    Ward, N.; Keil, R. G.; Richey, J. E.; Krusche, A. V.; Medeiros, P. M.

    2011-12-01

    Watershed-derived organic matter is thought to provide anywhere from 30-90% of the organic matter in rivers (e.g. Hernes et al 2008; Spencer et al 2010). The most abundant biochemicals on land are cellulose, hemicelluloses, and lignin. Combined, they represent as much as 80% of the biomass in a typical forest and as much as 60% of the biomass in a typical field (natural or crop)(Bose et al 2009; Bridgeman et al., 2007; Hu and Zu 2006; Martens et al 2004). They are often assumed to be refractory and hard to degrade, but this assumption is at odds with virtually all observations: soils and marine sediments are not accumulating vast amounts of these compounds (Hedges and Oades, 1997), and degradation experiments suggest that cellulose, hemicelluloses and lignin are reactive and likely to be important fuels for respiration (Benner, 1991; Haddad et al, 1992; Dittmar et al, 2001; Otto and Simpson, 2006). During several trips to the lower Amazon River, incubation experiments were performed in which the biological degradation of lignin phenols was observed in order to assess the contribution of microbial respiration of terrestrially-derived macromolecules to gross respiration and CO2 gas evasion rates. Both particulate and dissolved lignin concentrations decreased by ~40% after being incubated in the dark for 5-7 days, indicating a turnover time of the entire lignin pool of 12-18 days. These results shift the paradigm that lignocellulose derived OM is highly recalcitrant, and indicate that microbial respiration of lignocellulose may play a larger role in total respiration rates/CO2 outgassing than previously thought. A simple mass balance calculation was done to test whether microbial degradation alone could explain the lignin data observed in the field. First, a theoretical particulate lignin concentration for Macapa was calculated based on the observed data at Obidos. The measured rate of particulate lignin degradation was multiplied by the transit time of water from

  3. Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain

    Science.gov (United States)

    Nelson, C.H.; Lamothe, P.J.

    1993-01-01

    The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (??g g-1): As 3,000 to TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21-0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate. ?? 1993 Estuarine Research Federation.

  4. Glacial erosion of high-elevation low-relief summits on passive continental margins constrained by cosmogenic nuclides

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, David Lundbek; Knudsen, Mads Faurschou

    We present a new, extensive in-situ cosmogenic 10Be and 26Al dataset from high-elevation low-relief summits along Sognefjorden in Norway. Contrary to previous studies of high-elevation low-relief summits in cold regions, we find only limited cosmogenic nuclide inheritance in bedrock surfaces......, indicating that warm-based ice eroded the summits during the last glacial period. From the isotope concentrations we model denudation histories using a recently developed Monte Carlo Markov Chain inversion model (Knudsen et al, 2015). The model relies on the benthic d18O curve (Lisiecki and Raymo, 2005...

  5. Protected River. A new concept for conservation management of fluvial systems in Colombia

    International Nuclear Information System (INIS)

    Andrade; German I

    2011-01-01

    Based upon the concept of Ecological Integrity, relevant geophysical, bio- ecological and social attributes for river systems area identified. It is argued that current conservation and environmental management instruments in Colombia, do not take into account the identified IE attributes simultaneously. The concept of Protected River, PR, is then presented, as a necessary complement for conservation strategies. The PR concept would be defined for the maintenance of the attributes of EI in some representative river systems, as a part of the biodiversity conservation objectives within the Convention of Biological Diversity. Some attributes and indicators, and thresholds of undesired change are discussed. A typology for PR is proposed, following the international protected area management categories.

  6. A Basin Approach to a Hydrological Service Delivery System in the Amur River Basin

    Directory of Open Access Journals (Sweden)

    Sergei Borsch

    2018-03-01

    Full Text Available This paper presents the basin approach to the design, development, and operation of a hydrological forecasting and early warning system in a large transboundary river basin of high flood potential, where accurate, reliable, and timely available daily water-level and reservoir-inflow forecasts are essential for water-related economic and social activities (the Amur River basin case study. Key aspects of basin-scale system planning and implementation are considered, from choosing efficient forecast models and techniques, to developing and operating data-management procedures, to disseminating operational forecasts using web-GIS. The latter, making the relevant forecast data available in real time (via Internet, visual, and well interpretable, serves as a good tool for raising awareness of possible floods in a large region with transport and industrial hubs located alongside the Amur River (Khabarovsk, Komsomolsk-on-Amur.

  7. Real Time Monitoring System of Pollution Waste on Musi River Using Support Vector Machine (SVM) Method

    Science.gov (United States)

    Fachrurrozi, Muhammad; Saparudin; Erwin

    2017-04-01

    Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.

  8. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Science.gov (United States)

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  9. Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah.

    Science.gov (United States)

    Helmig, D; Thompson, C R; Evans, J; Boylan, P; Hueber, J; Park, J-H

    2014-05-06

    Oil and natural gas production in the Western United States has grown rapidly in recent years, and with this industrial expansion, growing environmental concerns have arisen regarding impacts on water supplies and air quality. Recent studies have revealed highly enhanced atmospheric levels of volatile organic compounds (VOCs) from primary emissions in regions of heavy oil and gas development and associated rapid photochemical production of ozone during winter. Here, we present surface and vertical profile observations of VOC from the Uintah Basin Winter Ozone Studies conducted in January-February of 2012 and 2013. These measurements identify highly elevated levels of atmospheric alkane hydrocarbons with enhanced rates of C2-C5 nonmethane hydrocarbon (NMHC) mean mole fractions during temperature inversion events in 2013 at 200-300 times above the regional and seasonal background. Elevated atmospheric NMHC mole fractions coincided with build-up of ambient 1-h ozone to levels exceeding 150 ppbv (parts per billion by volume). The total annual mass flux of C2-C7 VOC was estimated at 194 ± 56 × 10(6) kg yr(-1), equivalent to the annual VOC emissions of a fleet of ∼100 million automobiles. Total annual fugitive emission of the aromatic compounds benzene and toluene, considered air toxics, were estimated at 1.6 ± 0.4 × 10(6) and 2.0 ± 0.5 × 10(6) kg yr(-1), respectively. These observations reveal a strong causal link between oil and gas emissions, accumulation of air toxics, and significant production of ozone in the atmospheric surface layer.

  10. Mapping the depth to ice-cemented ground in the high elevation Dry Valleys, Antarctica

    Science.gov (United States)

    Marinova, M.; McKay, C. P.; Heldmann, J. L.; Davila, A. F.; Andersen, D. T.; Jackson, A.; Lacelle, D.; Paulsen, G.; Pollard, W. H.; Zacny, K.

    2011-12-01

    The high elevation Dry Valleys of Antarctica provide a unique location for the study of permafrost distribution and stability. In particular, the extremely arid and cold conditions preclude the presence of liquid water, and the exchange of water between the ice-cemented ground and the atmosphere is through vapour transport (diffusion). In addition, the low atmospheric humidity results in the desiccation of the subsurface, forming a dry permafrost layer (i.e., cryotic soils which are dry and not ice-cemented). Weather data suggests that subsurface ice is unstable under current climatic conditions. Yet we do find ice-cemented ground in these valleys. This contradiction provides insight into energy balance modeling, vapour transport, and additional climate effects which stabilize subsurface ice. To study the driving factors in the stability and distribution of ice-cemented ground, we have extensively mapped the depth to ice-cemented ground in University Valley (1730 m; 77°S 51.8', 160°E 43'), and three neighbouring valleys in the Beacon Valley area. We measured the depth to ice-cemented ground at 15-40 locations per valley by digging soil pits and drilling until ice was reached; for each location 3-5 measurements within a ~1 m2 area were averaged (see figure). This high-resolution mapping of the depth to ice-cemented ground provides new insight on the distribution and stability of subsurface ice, and shows significant variability in the depth to ground ice within each valley. We are combining data from mapping the depth to ice-cemented ground with year-round, in situ measurements of the atmospheric and subsurface conditions, such as temperature, humidity, wind, and light, to model the local stability of ice-cemented ground. We are using this dataset to examine the effects of slopes, shading, and soil properties, as well as the suggested importance of snow recurrence, to better understand diffusion-controlled subsurface ice stability.

  11. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  12. The Effects of Timing of Grazing on Plant and Arthropod Communities in High-Elevation Grasslands

    Science.gov (United States)

    Davis, Stacy C.; Burkle, Laura A.; Cross, Wyatt F.; Cutting, Kyle A.

    2014-01-01

    Livestock grazing can be used as a key management tool for maintaining healthy ecosystems. However, the effectiveness of using grazing to modify habitat for species of conservation concern depends on how the grazing regime is implemented. Timing of grazing is one grazing regime component that is less understood than grazing intensity and grazer identity, but is predicted to have important implications for plant and higher trophic level responses. We experimentally assessed how timing of cattle grazing affected plant and arthropod communities in high-elevation grasslands of southwest Montana to better evaluate its use as a tool for multi-trophic level management. We manipulated timing of grazing, with one grazing treatment beginning in mid-June and the other in mid-July, in two experiments conducted in different grassland habitat types (i.e., wet meadow and upland) in 2011 and 2012. In the upland grassland experiment, we found that both early and late grazing treatments reduced forb biomass, whereas graminoid biomass was only reduced with late grazing. Grazing earlier in the growing season versus later did not result in greater recovery of graminoid or forb biomass as expected. In addition, the density of the most ubiquitous grassland arthropod order (Hemiptera) was reduced by both grazing treatments in upland grasslands. A comparison of end-of-season plant responses to grazing in upland versus wet meadow grasslands revealed that grazing reduced graminoid biomass in the wet meadow and forb biomass in the upland, irrespective of timing of grazing. Both grazing treatments also reduced end-of-season total arthropod and Hemiptera densities and Hemiptera biomass in both grassland habitat types. Our results indicate that both early and late season herbivory affect many plant and arthropod characteristics in a similar manner, but grazing earlier may negatively impact species of conservation concern requiring forage earlier in the growing season. PMID:25338008

  13. Transpacific Transport of Dust to North American High-Elevation Sites: Integrated Dataset and Model Outputs

    Science.gov (United States)

    Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Beranek, J.; Zelenyuk, A.; Zhao, C.; Leung, L. R.; Ma, P. L.; Riihimaki, L.; Fast, J. D.; Barnard, J.; Hallar, G. G.; McCubbin, I.; Eloranta, E. W.; McComiskey, A. C.; Rasch, P. J.

    2017-12-01

    Understanding the effects of dust on the regional and global climate requires detailed information on particle size distributions and their changes with distance from the source. Awareness is now growing about the tendency of the dust coarse mode with moderate ( 3.5 µm) volume median diameter (VMD) to be rather insensitive to complex removal processes associated with long-range transport of dust from the main sources. Our study, with a focus on the transpacific transport of dust, demonstrates that the impact of coarse mode aerosol (VMD 3µm) is well defined at the high-elevation mountain-top Storm Peak Laboratory (SPL, about 3.2 km MSL) and nearby Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF) during March 2011. Significant amounts of coarse mode aerosol are also found at the nearest Aerosol Robotic Network (AERONET) site. Outputs from the high-resolution Weather Research and Forecasting (WRF) Model coupled with chemistry (WRF-Chem) show that the major dust event is likely associated with transpacific transport of Asian and African plumes. Satellite data, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) aerosol optical depth (AOD) and plume height from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar data provide the observational support of the WRF-Chem simulations. Our study complements previous findings by indicating that the quasi-static nature of the coarse mode appears to be a reasonable approximation for Asian and African dust despite expected frequent orographic precipitation over mountainous regions in the western United States.

  14. Does seasonal snowpacks enhance or decrease mercury contamination of high elevation ecosystems?

    Science.gov (United States)

    Pierce, A.; Fain, X.; Obrist, D.; Helmig, D.; Barth, C.; Jacques, H.; Chowanski, K.; Boyle, D.; William, M.

    2009-12-01

    Mercury (Hg) is an extremely toxic pollutant globally dispersed in the environment. Natural and anthropogenic sources emit Hg to the atmosphere, either as gaseous elemental mercury (GEM; Hg0) or as divalent mercury species. Due to the long lifetime of GEM mercury contamination is not limited to industrialized sites, but also a concern in remote areas such as high elevation mountain environments. During winter and spring 2009, we investigated the fate of atmospheric mercury deposited to mountain ecosystems in the Sierra Nevada (Sagehen station, California, USA) and the Rocky Mountains (Niwot Ridge station, Colorado, USA). At Sagehen, we monitored mercury in snow (surface snow sampling and snow pits), wet deposition, and stream water during the snow-dominated season. Comparison of Hg stream discharge to snow Hg wet deposition showed that only a small fraction of Hg wet deposition reached stream in the melt water. Furthermore, Hg concentration in soil transects (25 different locations) showed no correlations to wet deposition Hg loads due to pronounced altitudinal precipitation gradient suggesting that Hg deposited to the snowpack was not transferred to ecosystems. At Niwot Ridge, further characterization of the chemical transformation involving mercury species within snowpacks was achieved by 3-months of continuous monitoring of GEM and ozone concentrations in the snow air at eight depths from the soil-snow interface to the top of the up to 2 meter deep snowpack. Divalent mercury concentrations were monitored as well (surface snow sampling and snow pits). GEM levels in snow air exhibited strong diurnal pattern indicative of both oxidation and reduction processes. Low levels of divalent mercury concentrations in snow pack suggest that large fractions of Hg originally deposited as wet deposition was reemitted back to the atmosphere after reduction. Hence, these results suggest that the presence of a seasonal snowpack may decrease effective wet deposition of mercury and

  15. Challenges in Unmanned Aerial Vehicle Photogrammetry for Archaeological Mapping at High Elevations

    Science.gov (United States)

    Adams, J. A.; Wernke, S.

    2015-12-01

    Unmanned Aerial Vehicles (UAVs), especially multi-rotor vehicles, are becoming ubiquitous and their appeal for generating photogrammetry-based maps has grown. The options are many and costs have plummeted in last five years; however, many challenges persist with their deployment. We mapped the archaeological site Maw­chu Llacta, a settlement in the southern highlands of Peru (Figure 1). Mawchu Llacta is a planned colonial town built over a major Inka-era center in the high-elevation grasslands at ~4,000m asl. The "general resettlement of Indians" was a massive forced resettlement program, for which very little local-level documentation exists. Mawachu Llacta's excellently preserved architecture includes >500 buildings and hundreds of walls spread across ~13h posed significant mapping challenges. Many environmental factors impact UAV deployment. The air pressure at 4,100 m asl is dramatically lower than at sea level. The dry season diurnal temperature differentials can vary from 7°C to 22°C daily. High and hot conditions frequently occur from late morning to early afternoon. Reaching Mawchu Llacta requires hiking 4km with 400m of vertical gain over steep and rocky terrain. There is also no on-site power or secure storage. Thus, the UAV must be packable. FAA regulations govern US UAV deployments, but regulations were less stringent in Peru. However, ITAR exemptions and Peruvian customs requirements were required. The Peruvian government has established an importation and approval process that entails leaving the UAV at customs, while obtaining the necessary government approvals, both of which can be problematic. We have deployed the Aurora Flight Sciences Skate fixed wing ßUAV, an in-house fixed wing UAV based on the Skywalker X-5 flying wing, and a tethered 9 m3 capacity latex meteorological weather balloon. Development of an autonomous blimp/balloon has been ruled-out. A 3DR Solo is being assessed for excavation mapping.

  16. Identifying Adolescents at Highly Elevated Risk for Suicidal Behavior in the Emergency Department

    Science.gov (United States)

    Berona, Johnny; Czyz, Ewa; Horwitz, Adam G.; Gipson, Polly Y.

    2015-01-01

    Abstract Objective: The feasibility and concurrent validity of adolescent suicide risk screening in medical emergency departments (EDs) has been documented. The objectives of this short-term prospective study of adolescents who screened positive for suicide risk in the ED were: 1) to examine adolescents' rate of suicidal behavior during the 2 months following their ED visits and compare it with reported rates for psychiatric samples; and 2) to identify possible predictors of acute risk for suicidal behavior in this at-risk sample. Method: Participants were 81 adolescents, ages 14–19 years, seeking services for psychiatric and nonpsychiatric chief complaints, who screened positive for suicide risk because of recent suicidal ideation, a suicide attempt, and/or depression plus alcohol or substance misuse. A comprehensive assessment of suicidal behavior, using the Columbia-Suicide Severity Rating Scale, was conducted at baseline and 2 month follow-up. Results: Six adolescents (7.4%) reported a suicide attempt and 15 (18.5%) engaged in some type of suicidal behavior (actual, aborted, or interrupted suicide attempt; preparatory behavior) during the 2 months following their ED visit. These rates suggest that this screen identified a high-risk sample. Furthermore, adolescents who screened positive for suicidal ideation and/or attempt plus depression and alcohol/substance misuse were most likely to engage in future suicidal behavior (38.9%). Conclusions: In this study, use of a higher screen threshold (multiple suicide risk factors) showed promise for identifying highly elevated acute risk for suicidal behavior. PMID:25746114

  17. The influence of snowmobile trails on coyote movements during winter in high-elevation landscapes.

    Directory of Open Access Journals (Sweden)

    Eric M Gese

    Full Text Available Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis remains controversial due to the concern of coyote (Canis latrans use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep, radio-collared coyotes persisted at high elevations (>2,500 m year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13% for a mean distance of 149 m (random: 59 m. Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced

  18. The influence of snowmobile trails on coyote movements during winter in high-elevation landscapes.

    Science.gov (United States)

    Gese, Eric M; Dowd, Jennifer L B; Aubry, Lise M

    2013-01-01

    Competition between sympatric carnivores has long been of interest to ecologists. Increased understanding of these interactions can be useful for conservation planning. Increased snowmobile traffic on public lands and in habitats used by Canada lynx (Lynx canadensis) remains controversial due to the concern of coyote (Canis latrans) use of snowmobile trails and potential competition with lynx. Determining the variables influencing coyote use of snowmobile trails has been a priority for managers attempting to conserve lynx and their critical habitat. During 2 winters in northwest Wyoming, we backtracked coyotes for 265 km to determine how varying snow characteristics influenced coyote movements; 278 km of random backtracking was conducted simultaneously for comparison. Despite deep snow (>1 m deep), radio-collared coyotes persisted at high elevations (>2,500 m) year-round. All coyotes used snowmobile trails for some portion of their travel. Coyotes used snowmobile trails for 35% of their travel distance (random: 13%) for a mean distance of 149 m (random: 59 m). Coyote use of snowmobile trails increased as snow depth and penetrability off trails increased. Essentially, snow characteristics were most influential on how much time coyotes spent on snowmobile trails. In the early months of winter, snow depth was low, yet the snow column remained dry and the coyotes traveled off trails. As winter progressed and snow depth increased and snow penetrability increased, coyotes spent more travel distance on snowmobile trails. As spring approached, the snow depth remained high but penetrability decreased, hence coyotes traveled less on snowmobile trails because the snow column off trail was more supportive. Additionally, coyotes traveled closer to snowmobile trails than randomly expected and selected shallower snow when traveling off trails. Coyotes also preferred using snowmobile trails to access ungulate kills. Snow compaction from winter recreation influenced coyote

  19. Application of science-based restoration planning to a desert river system

    Science.gov (United States)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-01-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  20. Application of Science-Based Restoration Planning to a Desert River System

    Science.gov (United States)

    Laub, Brian G.; Jimenez, Justin; Budy, Phaedra

    2015-06-01

    Persistence of many desert river species is threatened by a suite of impacts linked to water infrastructure projects that provide human water security where water is scarce. Many desert rivers have undergone regime shifts from spatially and temporally dynamic ecosystems to more stable systems dominated by homogenous physical habitat. Restoration of desert river systems could aid in biodiversity conservation, but poses formidable challenges due to multiple threats and the infeasibility of recovery to pre-development conditions. The challenges faced in restoring desert rivers can be addressed by incorporating scientific recommendations into restoration planning efforts at multiple stages, as demonstrated here through an example restoration project. In particular, use of a watershed-scale planning process can identify data gaps and irreversible constraints, which aid in developing achievable restoration goals and objectives. Site-prioritization focuses limited the resources for restoration on areas with the greatest potential to improve populations of target organisms. Investment in research to understand causes of degradation, coupled with adoption of a guiding vision is critical for identifying feasible restoration actions that can enhance river processes. Setting monitoring as a project goal, developing hypotheses for expected outcomes, and implementing restoration as an experimental design will facilitate adaptive management and learning from project implementation. Involvement of scientists and managers during all planning stages is critical for developing process-based restoration actions and an implementation plan to maximize learning. The planning process developed here provides a roadmap for use of scientific recommendations in future efforts to recover dynamic processes in imperiled riverine ecosystems.

  1. Developing an Approach to Prioritize River Restoration using Data Extracted from Flood Risk Information System Databases.

    Science.gov (United States)

    Vimal, S.; Tarboton, D. G.; Band, L. E.; Duncan, J. M.; Lovette, J. P.; Corzo, G.; Miles, B.

    2015-12-01

    Prioritizing river restoration requires information on river geometry. In many states in the US detailed river geometry has been collected for floodplain mapping and is available in Flood Risk Information Systems (FRIS). In particular, North Carolina has, for its 100 Counties, developed a database of numerous HEC-RAS models which are available through its Flood Risk Information System (FRIS). These models that include over 260 variables were developed and updated by numerous contractors. They contain detailed surveyed or LiDAR derived cross-sections and modeled flood extents for different extreme event return periods. In this work, over 4700 HEC-RAS models' data was integrated and upscaled to utilize detailed cross-section information and 100-year modelled flood extent information to enable river restoration prioritization for the entire state of North Carolina. We developed procedures to extract geomorphic properties such as entrenchment ratio, incision ratio, etc. from these models. Entrenchment ratio quantifies the vertical containment of rivers and thereby their vulnerability to flooding and incision ratio quantifies the depth per unit width. A map of entrenchment ratio for the whole state was derived by linking these model results to a geodatabase. A ranking of highly entrenched counties enabling prioritization for flood allowance and mitigation was obtained. The results were shared through HydroShare and web maps developed for their visualization using Google Maps Engine API.

  2. Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system.

    Science.gov (United States)

    Tanaka, Kazuhiko; Shi, Chao-Hong; Nakagoshi, Nobukazu

    2012-04-01

    The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy. In this study, the novel, simple and convenient water quality monitoring of Jialing-River in Chongqing, China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO4(2-), Cl(-), and NO3(-) and the cations such as Na+, NH4+, K+, Mg2+, and Ca2+, the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions, and the IEC with the enhanced conductivity detection using a post column of K+-form cation-exchange resin for determining HCO3(-)-alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions. According to the ionic balance theory between the total equivalent concentrations of anions and cations, the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system. As a result, the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.

  3. Consideration upon the River system in the north of the Suceava tableland

    Directory of Open Access Journals (Sweden)

    Dinu OPREA-GANCEVICI

    2010-04-01

    Full Text Available The paleoevolution of the river system in the Moldavian Tableland has undergone at a theoretical level two successive hypothetical directions. The former direction, formulated in the first half of the XXth century, alleges the existence of a river system, with a transverse character, that prolonged to the east the Carpathian river systems. Specialists of this theory, Tufescu V. (1932, M. David (1933, quoted by V. Bacauanu - 1973 and Gheorghe Nastase (1946, quoted by V. Bacauanu - 1973 based their design on the presence of horizons of gravels with Carpathian elements on some interfluves to the east of the Siret valley, and the existence of some saddles, Loznica, Bucecea and Ruginoasa, located on the left side of the same river. The latter direction, diametrically opposite, supports the idea of evolution of the river system consecutively with the Sarmato-Pliocene Sea pulling back to the south. The hypothesis is supported and substantiated by I. Sîrcu (1955, C. Martiniuc and V. Bacauanu (1960, V. Bacauanu (1968, 1973. In this context it is considered that the Prut and Siret rivers carved the oldest valleys in the tableland. The authors explain the erosional genesis of the saddles arguing their inability to create transversal rivers on the basis of continuity upstream and downstream the saddles of terrace levels with relatively high altitudes, which proves the flow continuity on consequent valleys. The research carried out along the Suceava river valley and the immediate interstream area in order to create a scenario of the valley paleoevolution highlighted the presence of crystalline lithotopes in the petrographic structure of the accumulation deposits. The presence of such petrographic elements contradicts the present-day alluvia sources of the rivers that could have transported them:  Suceava or its tributaries Solonet, Ilisasca, Scheia. The rivers spring either from the Carpathian flysch or from the former area of platform sedimentation. We

  4. Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System

    Directory of Open Access Journals (Sweden)

    Yihan Chen

    2018-01-01

    Full Text Available Antibiotic pollutions in the aquatic environment have attracted widespread attention due to their ubiquitous distribution and antibacterial properties. The occurrence, distribution, and ecological risk assessment of 17 common antibiotics in this study were preformed in a vital drinking water source represented as a river-reservoir system in South China. In general, 15 antibiotics were detected at least once in the watershed, with the total concentrations of antibiotics in the water samples ranging from 193.6 to 863.3 ng/L and 115.1 to 278.2 μg/kg in the sediment samples. For the water samples, higher rain runoff may contribute to the levels of total concentration in the river system, while perennial anthropic activity associated with the usage pattern of antibiotics may be an important factor determining similar sources and release mechanisms of antibiotics in the riparian environment. Meanwhile, the reservoir system could act as a stable reactor to influence the level and composition of antibiotics exported from the river system. For the sediment samples, hydrological factor in the reservoir may influence the antibiotic distributions along with seasonal variation. Ecological risk assessment revealed that tetracycline and ciprofloxacin could pose high risks in the aquatic environment. Taken together, further investigations should be performed to elaborate the environmental behaviors of antibiotics in the river-reservoir system, especially in drinking water sources.

  5. Tracking suspended particle transport via radium isotopes (226Ra and 228Ra) through the Apalachicola–Chattahoochee–Flint River system

    International Nuclear Information System (INIS)

    Peterson, Richard N.; Burnett, William C.; Opsahl, Stephen P.; Santos, Isaac R.; Misra, Sambuddha; Froelich, Philip N.

    2013-01-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola–Chattahoochee–Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ( 228 Ra and 226 Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ( 40 K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  6. Linking the distribution of an invasive amphibian (Rana catesbeiana) to habitat conditions in a managed river system in northern California.

    Science.gov (United States)

    Terra Fuller; Karen Pope; Donald Ashton; Hartwell Welsh

    2010-01-01

    Extensive modifications of river systems have left floodplains some of the most endangered ecosystems in the world and made restoration of these systems a priority. Modified river ecosystems frequently support invasive species to the detriment of native species. Rana catesbeiana (American bullfrog) is an invasive amphibian that thrives in modified...

  7. A study of radionuclide dispersion by river systems, using GIS and remote sensing techniques

    International Nuclear Information System (INIS)

    Borghuis, Sander; Brown, Justin; Steenhuisen, Frits; Skorve, Johnny

    2000-01-01

    The Krasnoyarsk Mining and Chemical Combine in Zheleznogorsk, Russia, is situated on the banks of the Yenisey river. The combine consists of three RBMK-type graphite moderate reactors, a reprocessing plant for the production of weapons-grade plutonium and storage facilities for nuclear waste. Discharges of radionuclides into the Yenisey river were either part of normal operation procedures or caused by accidental releases (Strand et al., 1997). So far, little is known about the transport and fate of the radioactive contaminants in the areas downstream of the Krasnoyarsk CC that are influenced by the Yenisey river system. Aim is to comprehend the dispersion of radionuclides through the river system. Remotely sensed and field study information are combined in a geographical information system (GIS) to study the processes leading to the dispersion of sediment-bound radionuclides carried by the river system. Since the extent of the study area is several thousands or kilometres of river and adjacent flood plains, use is made of a record of remotely sensed (satellite) images that are handled by the GIS. Panchromatic, high resolution satellite images as well as multispectral Landsat MSS and TM images were compiled for the area of interest. The panchromatic images were taken in a period during which the facility was in operation (1960-1972) and obtained for intervals of circa 6 months. A time series of satellite images enables the identification of erosion and sedimentation zones. The behaviour and fate of particle-reactive radionuclides, e.g. 239,240 Pu and to large extent 137 Cs, will be closely related to the movement of sediment. With respect to the behaviour and fate of more conservative radionuclides as 90 Sr, information is required accounting for fractionation between the particulate and aqueous phases. Stereo images are used to comprehend the geomorphology of the Yenisey river systems, focused on classification of sedimentary deposits. Landsat MSS and TM with five

  8. Bacterial communities hitching a hike - a guide to the river system of the Red river, Disko Island, West Greenland

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N.; Stibal, Marek

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on Disko Island, West Greenland (69°N). We describe the bacterial community through a river into the estuary......Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact......, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while...

  9. Thermal insulation system design and fabrication specification (nuclear) for the Clinch River Breeder Reactor plant

    International Nuclear Information System (INIS)

    1978-01-01

    This specification defines the design, analysis, fabrication, testing, shipping, and quality requirements of the Insulation System for the Clinch River Breeder Reactor Plant (CRBRP), near Oak Ridge, Tennessee. The Insulation System includes all supports, convection barriers, jacketing, insulation, penetrations, fasteners, or other insulation support material or devices required to insulate the piping and equipment cryogenic and other special applications excluded. Site storage, handling and installation of the Insulation System are under the cognizance of the Purchaser

  10. Social System of River City High School Senior Class: Socio-economic Status (SES).

    Science.gov (United States)

    Daly, Richard F.

    The goal of this study was to investigate the relationship between an adolescent's socioeconomic status (SES) and selected variables of the sub-subsystems of the River City High School senior class social system during the 1974-75 academic year. Variables for study were selected from each of the three sub-subsystems of the senior class social…

  11. Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of Western Himalaya.

    Czech Academy of Sciences Publication Activity Database

    Čapková, K.; Hauer, T.; Řeháková, Klára; Doležal, J.

    2016-01-01

    Roč. 71, č. 1 (2016), s. 113-123 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : soil crusts * cyanobacterial diversity * Western Himalayas * high-elevation * desert * phosphorus Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  12. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Science.gov (United States)

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  13. Mediating water temperature increases due to livestock and global change in high elevation meadow streams of the Golden Trout Wilderness

    Science.gov (United States)

    Sebastien Nussle; Kathleen R. Matthews; Stephanie M. Carlson

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout...

  14. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change

    DEFF Research Database (Denmark)

    Pauchard, Aníbal; Milbau, Ann; Albihn, Ann

    2016-01-01

    Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key di...

  15. Mountain birdwatch: developing a coordinated monitoring program for high-elevation birds in the Atlantic northern forest

    Science.gov (United States)

    John D. Lloyd; Julie Hart; J. Dan Lambert

    2010-01-01

    Birds occupying high-elevation forests in the northeast are perceived to be at risk from a variety of external forces, most notably the potential loss and alteration of habitat associated with global climate change and the increased deployment of wind-energy facilities. However, the Breeding Bird Survey (BBS), a standardized national monitoring scheme widely used to...

  16. Classification of nutrient emission sources in the Vistula River system

    International Nuclear Information System (INIS)

    Kowalkowski, Tomasz

    2009-01-01

    Eutrophication of the Baltic sea still remains one of the biggest problems in the north-eastern area of Europe. Recognizing the sources of nutrient emission, classification of their importance and finding the way towards reduction of pollution are the most important tasks for scientists researching this area. This article presents the chemometric approach to the classification of nutrient emission with respect to the regionalisation of emission sources within the Vistula River basin (Poland). Modelled data for mean yearly emission of nitrogen and phosphorus in 1991-2000 has been used for the classification. Seventeen subcatchements in the Vistula basin have been classified according to cluster and factor analyses. The results of this analysis allowed determination of groups of areas with similar pollution characteristics and indicate the need for spatial differentiation of policies and strategies. Three major factors indicating urban, erosion and agricultural sources have been identified as major discriminants of the groups. - Two classification methods applied to evaluate the results of nutrient emission allow definition of major sources of the emissions and classification of catchments with similar pollution.

  17. Salt fluxes in a complex river mouth system of Portugal.

    Directory of Open Access Journals (Sweden)

    Nuno Vaz

    Full Text Available Measurements of velocity and salinity near the mouth and head of the Espinheiro channel (Ria de Aveiro lagoon, Portugal are used to study the local variation of physical water properties and to assess the balance, under steady conditions, between the seaward salt transport induced by river discharge and the landward dispersion induced by various mixing mechanisms. This assessment is made using data sampled during complete tidal cycles. Under the assumption that the estuarine tidal channel is laterally homogeneous and during moderate tidal periods (except for one survey, currents and salinity data were decomposed into various spatial and temporal means and their deviations. Near the channel's mouth, the main contributions to the salt transport are the terms due to freshwater discharge and the tidal correlation. Near the channel's head, this last term is less important than the density driven circulation, which is enhanced by the increase in freshwater discharge. The remaining terms, which are dependent on the deviations from the mean depth have a smaller role in the results of salt transport. The computed salt transport per unit width of a section perpendicular to the mean flow is in close agreement to the sum of the advective and dispersive terms (within or very close to 12%. An imbalance of the salt budget across the sections is observed for all the surveys. Considerations are made on how this approach can inform the management of hazardous contamination and how to use these results to best time the release of environmental flows during dry months.

  18. Investigating the Performance of One- and Two-dimensional Flood Models in a Channelized River Network: A Case Study of the Obion River System

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.

    2015-12-01

    Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.

  19. Ichtyocoenosis of a section of the Jihlava river influenced by the Dukovany-Dalesice power system

    International Nuclear Information System (INIS)

    Penaz, M.; Wohlgemuth, E.

    1990-01-01

    The impact was investigated of the construction and operation of a hydropower station with two deep valley reservoirs and subsequently of a nuclear power station whose water management is closely associated with the river ecosystem, upon the ichthyocoenosis of the downstream river section. The initial quantitative and species composition of the ichthyocoenosis, being descriptive for the barbel zone community, changed into the community of the salmonid type, characteristic of the trout and grayling zones. This process was spontaneous as well as caused by the activity of fish management. The development of fishery catches in the past 30 years and their changes due to the operation of the power system are also analyzed in detail. After a temporary decrease, the annual mean fishery yields improved significantly in the affected river section, not only in their absolute weights but also in terms of the sport and market value of the fish caught. (author). 3 figs., 2 tabs., 22 refs

  20. Bioaccumulation of polonium-210 in fish of the Kaveri river system

    International Nuclear Information System (INIS)

    Shaheed, K.; Shahul Hameed, P.; Iyengar, M.A.R.

    1997-01-01

    Concentration of naturally occurring radioactive nuclide polonium-210 was determined in selected species of fish from the Kaveri river system at Tiruchirappalli. It is shown that 210 Po is non-uniformly distributed within these fishes. Concentrations of 210 Po in the muscle of fish ranged from 3.3 to 8.2 Bq/kg (wet weight). Concentration factors of Po 210 in edible portion of fish from river water worked out to be 2.5 x 10 3 to 6.3 x 10 3 . Radiation dose to public due to consumption of fish from the Kaveri river varied from 5.1 to 27.3 μSv/y. The results have implications that fish represents an important source of supply of 210 Po to humans. (author). 16 refs., 2 tabs

  1. Refractory black carbon at the Whistler Peak High Elevation Research Site - Measurements and simulations

    Science.gov (United States)

    Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.

    2018-05-01

    Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the

  2. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  3. A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran.

    Science.gov (United States)

    Noroozi, Jalil; Körner, Christian

    2018-01-01

    The Alborz mountains in N-Iran at 36° N rise from the Caspian Sea to 5671 m a.s.l., with warm-temperate, winter-deciduous forests in the lower montane belt in northern slopes, and vast treeless terrain at higher elevation. A lack of rainfall (ca. 550 mm at high elevations) cannot explain the absence of trees. Hence, it is an open question, which parts of these mountains belong to the alpine belt. Here we use bioclimatic data to estimate the position of the potential climatic treeline, and thus, define bioclimatologically, what is alpine and what is not. We employed the same miniature data loggers and protocol that had been applied in a Europe-wide assessment of alpine climates and a global survey of treeline temperatures. The data suggest a potential treeline position at ca. 3300 m a.s.l., that is ca. 900 m above the upper edge of the current oak forest, or 450 m above its highest outposts. The alpine terrain above the climatic treeline position shows a temperature regime comparable to sites in the European Alps. At the upper limit of angiosperm life, at 4850 m a.s.l., the growing season lasted 63 days with a seasonal mean root zone temperature of 4.5 °C. We conclude that (1) the absence of trees below 2850 m a.s.l. is clearly due to millennia of land use. The absence of trees between 2850 and 3300 m a.s.l. is either due to the absence of suitable tree taxa, or the only potential regional taxon for those elevations, Juniperus excelsa , had been eradicated by land use as well. (2) These continental mountains provide thermal life conditions in the alpine belt similar to other temperate mountains. (3) Topography and snow melt regimes play a significant role for the structure of the alpine vegetation mosaics.

  4. Functional role of long-lived flowers in preventing pollen limitation in a high elevation outcrossing species.

    Science.gov (United States)

    Arroyo, Mary T K; Pacheco, Diego Andrés; Dudley, Leah S

    2017-11-01

    Low pollinator visitation in harsh environments may lead to pollen limitation which can threaten population persistence. Consequently, avoidance of pollen limitation is expected in outcrossing species subjected to habitually low pollinator service. The elevational decline in visitation rates on many high mountains provides an outstanding opportunity for addressing this question. According to a recent meta-analysis, levels of pollen limitation in alpine and lowland species do not differ. If parallel trends are manifested among populations of alpine species with wide elevational ranges, how do their uppermost populations contend with lower visitation? We investigated visitation rates and pollen limitation in high Andean Rhodolirium montanum . We test the hypothesis that lower visitation rates at high elevations are compensated for by the possession of long-lived flowers. Visitation rates decreased markedly over elevation as temperature decreased. Pollen limitation was absent at the low elevation site but did occur at the high elevation site. While initiation of stigmatic pollen deposition at high elevations was not delayed, rates of pollen arrival were lower, and cessation of pollination, as reflected by realized flower longevity, occurred later in the flower lifespan. Comparison of the elevational visitation decline and levels of pollen limitation indicates that flower longevity partially compensates for the lower visitation rates at high elevation. The functional role of flower longevity, however, was strongly masked by qualitative pollen limitation arising from higher abortion levels attributable to transference of genetically low-quality pollen in large clones. Stronger clonal growth at high elevations could counterbalance the negative fitness consequences of residual pollen limitation due to low visitation rates and/or difficult establishment under colder conditions. Visitation rates on the lower part of the elevational range greatly exceeded community rates

  5. Daily/Hourly Hydrosystem Operation : How the Columbia River System Responds to Short-Term Needs.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1994-02-01

    The System Operation Review, being conducted by the Bonneville Power Administration, the US Army Corps of Engineers, and the US Bureau of Reclamation, is analyzing current and potential future operations of the Columbia River System. One goal of the System Operations Review is to develop a new System Operation Strategy. The strategy will be designed to balance the many regionally and nationally important uses of the Columbia River system. Short-term operations address the dynamics that affect the Northwest hydro system and its multiple uses. Demands for electrical power and natural streamflows change constantly and thus are not precisely predictable. Other uses of the hydro system have constantly changing needs, too, many of which can interfere with other uses. Project operators must address various river needs, physical limitations, weather, and streamflow conditions while maintaining the stability of the electric system and keeping your lights on. It takes staffing around the clock to manage the hour-to-hour changes that occur and the challenges that face project operators all the time.

  6. Evaluation of HIV Surveillance System in Rivers State, Nigeria ...

    African Journals Online (AJOL)

    Sony Computer (Iby)

    HIV surveillance system generates information for timely and appropriate ..... active type of surveillance.14 Nonetheless, it requires training, supervision and motivation ... very effectively.14 The introduction of reward-system could be included.

  7. Functional safeguards for computers for protection systems for Savannah River reactors

    International Nuclear Information System (INIS)

    Kritz, W.R.

    1977-06-01

    Reactors at the Savannah River Plant have recently been equipped with a ''safety computer'' system. This system utilizes dual digital computers in a primary protection system that monitors individual fuel assembly coolant flow and temperature. The design basis for the (SRP safety) computer systems allowed for eventual failure of any input sensor or any computer component. These systems are routinely used by reactor operators with a minimum of training in computer technology. The hardware configuration and software design therefore contain safeguards so that both hardware and human failures do not cause significant loss of reactor protection. The performance of the system to date is described

  8. Sediment Buffering and Transport in the Holocene Indus River System

    Science.gov (United States)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  9. Imaging beneath the skin of large tropical rivers: System morphodynamics of the Fly and Beni Rivers revealed by novel sub-surface sonar, deep coring, and modelling

    Science.gov (United States)

    Aalto, R. E.; Grenfell, M.; Lauer, J. W.

    2011-12-01

    Tropical rivers dominate Earth's fluvial fluxes for water, carbon, and mineral sediment. They are characterized by large channels and floodplains, old system histories, prolonged periods of flooding, and a clay-dominated sediment flux. However, the underlying bed & floodplain strata are poorly understood. Available data commonly stem from skin-deep approaches such as GIS analysis of imagery, shallow sampling & topographic profiling during lower river stages. Given the large temporal & spatial scales, new approaches are needed to see below lag deposits on mobile sandy beds & deep into expansive floodbasins. Furthermore, such data are needed to test whether we can interpret large tropical river morphology using analogies to small temperate systems. Systems in a dynamic state of response to sea level rise or an increase/contrast in sediment load would provide especially valuable insight. Last August we conducted a field campaign along the Fly and Strickland Rivers in Papua New Guinea (discharge ~5,350 CMS) and this September we investigated the Beni River in Northern Bolivia (discharge ~3,500 CMS). Results were obtained using a novel measurement method: a high-power (>4kW) dual-frequency SyQwest sub-bottom profiler customized to best image 10-20m below the river/lake bed in shallow water. We were able to distinguish sandy deposits from harder clay and silt lenses and also collected bed grab samples to verify our sonar results. Deep borehole samples (5-15m), bank samples, and push cores confirmed observations from the sonar profiling. We simultaneously collected side-scan sonar imagery plus DGPS records of water/bed elevations that could be used to parameterize numerical models. We have now analyzed these results in some detail. Findings for the Fly River include: 1) The prevalence of hard clay beneath the bed of the Lower Fly River and many locations along the Strickland River, retarding migration; 2) Unusual bed morphology along the lower Middle Fly River, where the

  10. Numerical simulation of groundwater flow for the Yakima River basin aquifer system, Washington

    Science.gov (United States)

    Ely, D.M.; Bachmann, M.P.; Vaccaro, J.J.

    2011-01-01

    A regional, three-dimensional, transient numerical model of groundwater flow was constructed for the Yakima River basin aquifer system to better understand the groundwater-flow system and its relation to surface-water resources. The model described in this report can be used as a tool by water-management agencies and other stakeholders to quantitatively evaluate proposed alternative management strategies that consider the interrelation between groundwater availability and surface-water resources.

  11. Integrated forecast system atmospheric - hydrologic - hydraulic for the Urubamba river basin

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, L [Peruvian National Weather Service, Lima (Peru); Carrillo, M; Diaz, A; Coronado, J; Fano, G [Peruvian National Weather Service, Lima (Peru)

    2004-07-01

    Full text: During the months of December to March, Peru is affected by intense precipitations which generate every year land slides and floods mainly in low and middle river basins of the western and Eastern of the Andes, places that exhibit the greatest number of population and productive activities. These extreme events are favored by the steep slopes that characterize the Peruvian topography. For this reason at the end of year 2000, SENAMHI began the design of a monitoring, analysis and forecast system, that had the capacity to predict the occurrence of adverse events on the low and middle river basins of the main rivers such as Piura river in the north of Peru and the Rimac river in the capital of the country. The success of this system opened the possibilities of developing similar systems throughout the country and extend to different users or sectors such as: energy, water management, river transport, etc. An example of a solution prepared for a user (the gas extraction company Pluspetrol) was the implementation of a river level forecasting system in the Urubamba river to support river navigation in this amazonic river where water level variability turns risky the navigation during the dry season. The Urubamba catchment higher altitudes are famous because of the presence of the Machupicchu ancient city, downslope this city is characterized by the Amazon rainforest with scarce observation stations for water level and rainfall. A very challenging modelling and operational hydrology enterprise was developed. The system implemented for the Urubamba river consist on running the atmospheric part of the global climate model CCM3, this model inputs Sea Surface Temperature forecasts from NCEP-NOAA. The global model was set on a T42 (300 km) grid resolution, this information was used as initial and boundary conditions for the regional model RAMS which provided a downscaled 20 Km grid resolution having as results daily precipitation forecasts. Besides the global

  12. Integrated forecast system atmospheric-hydrologic-hydraulic for the Urubamba River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, L; Carrillo, M; Diaz, A; Coronado, J; Fano, G [Peruvian National Weather Service, Lima (Peru)

    2006-02-15

    Full text: During the months of December to March, Peru is affected by intense precipitations which generate every year land slides and floods mainly in low and middle river basins of the western and Eastern of the Andes, places that exhibit the greatest number of population and productive activities. These extreme events are favored by the steep slopes that characterize the Peruvian topography. For this reason at the end of year 2000, SENAMHI began the design of a monitoring, analysis and forecast system, that had the capacity to predict the occurrence of adverse events on the low and middle river basins of the main rivers such as Piura river in the north of Peru and the Rimac river in the capital of the country. The success of this system opened the possibilities of developing similar systems throughout the country and extend to different users or sectors such as: energy, water management, river transport, etc. An example of a solution prepared for a user (the gas extraction company Pluspetrol) was the implementation of a river level forecasting system in the Urubamba river to support river navigation in this amazonic river where water level variability turns risky the navigation during the dry season. The Urubamba catchment higher altitudes are famous because of the presence of the Machupicchu ancient city, downslope this city is characterized by the Amazon rainforest with scarce observation stations for water level and rainfall. A very challenging modelling and operational hydrology enterprise was developed. The system implemented for the Urubamba river consist on running the atmospheric part of the global climate model CCM3, this model inputs Sea Surface Temperature forecasts from NCEP-NOAA. The global model was set on a T42 (300 km) grid resolution, this information was used as initial and boundary conditions for the regional model RAMS which provided a downscaled 20 Km grid resolution having as results daily precipitation forecasts. Besides the global

  13. Application of a Sediment Information System to the Three Gorges Project on Yangtze River, China

    Science.gov (United States)

    Cao, Shuyou; Liu, Xingnian; Yang, Kejun; Li, Changzhi

    Based on survey and analysis of a huge number of observed entrance sediment transport data and the research results of physical and numerical modeling of Three Gorges Reservoir on the Yangtze River, a sediment information system was designed. The basis of this system includes spatial data and properties of geographic elements, and various documents involved to the Three Gorges Project (TGP). Database and knowledge base are constructed as the information bank. The running environment is constructed by the general control program to realize requirements about various sediment information. The system chooses the window software as the system software. The techniques of graphical user interfaces and groupware geographic information system are applied in this system. In this phase, the emphases of the system are development of document system, map system, and presentation system. Cross-section system of the TGP was also attached. For further improvement of the system, a prepared interface of decision supporting subsystem is finished.

  14. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  15. Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record

    Science.gov (United States)

    Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.

    2017-12-01

    Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.

  16. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Alexander I. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation)]. E-mail: nikitin@typhoon.obninsk.ru; Chumichev, Vladimir B. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Valetova, Nailia K. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Katrich, Ivan Yu. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Kabanov, Alexander I. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Dunaev, Gennady E. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Shkuro, Valentina N. [SI RPA ' Typhoon' of the Roshydromet, 82, Lenin avenue, Obninsk, Kaluga region 249038 (Russian Federation); Rodin, Victor M. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation); Mironenko, Alexander N. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation); Kireeva, Elena V. [Tobolsk Biological Station of RAS, 15, Voikov street, Tobolsk, Tyumen region 626150 (Russian Federation)

    2007-07-15

    Data on content of {sup 90}Sr, {sup 137}Cs, {sup 239,240}Pu and {sup 3}H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of {sup 137}Cs, {sup 90}Sr and {sup 3}H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by {sup 90}Sr is distinctly traced as far as the area of the Irtysh and Ob confluence.

  17. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River)

    International Nuclear Information System (INIS)

    Nikitin, Alexander I.; Chumichev, Vladimir B.; Valetova, Nailia K.; Katrich, Ivan Yu.; Kabanov, Alexander I.; Dunaev, Gennady E.; Shkuro, Valentina N.; Rodin, Victor M.; Mironenko, Alexander N.; Kireeva, Elena V.

    2007-01-01

    Data on content of 90 Sr, 137 Cs, 239,240 Pu and 3 H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the 'Mayak' PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of 137 Cs, 90 Sr and 3 H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of 'Mayak' PA waste transport by 90 Sr is distinctly traced as far as the area of the Irtysh and Ob confluence

  18. Development and application of a large scale river system model for National Water Accounting in Australia

    Science.gov (United States)

    Dutta, Dushmanta; Vaze, Jai; Kim, Shaun; Hughes, Justin; Yang, Ang; Teng, Jin; Lerat, Julien

    2017-04-01

    Existing global and continental scale river models, mainly designed for integrating with global climate models, are of very coarse spatial resolutions and lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing water accounts, which have become increasingly important for water resources planning and management at regional and national scales. A continental scale river system model called Australian Water Resource Assessment River System model (AWRA-R) has been developed and implemented for national water accounting in Australia using a node-link architecture. The model includes major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. Two key components of the model are an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. The results in the Murray-Darling Basin shows highly satisfactory performance of the model with median daily Nash-Sutcliffe Efficiency (NSE) of 0.64 and median annual bias of less than 1% for the period of calibration (1970-1991) and median daily NSE of 0.69 and median annual bias of 12% for validation period (1992-2014). The results have demonstrated that the performance of the model is less satisfactory when the key processes such as overbank flow, groundwater seepage and irrigation diversion are switched off. The AWRA-R model, which has been operationalised by the Australian Bureau of Meteorology for continental scale water accounting, has contributed to improvements in the national water account by substantially reducing accounted different volume (gain/loss).

  19. Performance variations of river water source heat pump system according to heat exchanger capacity variations

    International Nuclear Information System (INIS)

    Park, Seong Ryong; Baik, Young Jin; Lee, Young Soo; Kim, Hee Hwan

    2003-01-01

    The utilization of unused energy is important because it can afford to offer a chance to increase energy efficiency of a heat pump system. One of the promising unused energy sources is river water. It can be used as a heat source in both heating and cooling effectively with its superior features as a secondary working fluids. In this study, the performance of a 5HP heat pump system using river water as a heat source is investigated by both experiment and simulation. According to system simulation results, performance improvement of condenser seems more effective than that of evaporator for better COPH. The serial connection is also preferred among several methods to improve plate type heat exchanger performance. The experimental results show that the hot water of 50∼60 .deg. C can be acquired from water heat source of 5∼9 .deg. C with COPH of 2.7∼3.5

  20. SOFTWARE AND TECHNOLOGIES FOR GEOGRAPHIC INFORMATION SYSTEM OF YENISEI RIVER BASIN

    Directory of Open Access Journals (Sweden)

    A. A. Kadochnikov

    2016-01-01

    Full Text Available The work considers the questions of formation of problem-focused geoinformation system of the Yenisei river basin based on interdisciplinary scientific studies. The creation of a system, in which are collected and systematized information about its river network, will provide an opportunity for analysis and modeling of hydrological processes various natural and man-made phenomena, qualitative and quantitative assessment of water resources, ecological status. Methodological basis of development is a regional system of indicators for sustainable environmental management. Development is created in the service-oriented paradigm on the basis of geoportal technologies, interactive web mapping, distributed storage and data processing. The focus in this article is paid to the problems of software design and technological support, the characteristics of software components implementation of the web GIS, the effective processing and presentation of geospatial data.

  1. Implementation of Environmental Flows for Intermittent River Systems: Adaptive Management and Stakeholder Participation Facilitate Implementation

    Science.gov (United States)

    Conallin, John; Wilson, Emma; Campbell, Josh

    2018-03-01

    Anthropogenic pressure on freshwater ecosystems is increasing, and often leading to unacceptable social-ecological outcomes. This is even more prevalent in intermittent river systems where many are already heavily modified, or human encroachment is increasing. Although adaptive management approaches have the potential to aid in providing the framework to consider the complexities of intermittent river systems and improve utility within the management of these systems, success has been variable. This paper looks at the application of an adaptive management pilot project within an environmental flows program in an intermittent stream (Tuppal Creek) in the Murray Darling Basin, Australia. The program focused on stakeholder involvement, participatory decision-making, and simple monitoring as the basis of an adaptive management approach. The approach found that by building trust and ownership through concentrating on inclusiveness and transparency, partnerships between government agencies and landholders were developed. This facilitated a willingness to accept greater risks and unintended consequences allowing implementation to occur.

  2. Rates and causes of accidents for general aviation aircraft operating in a mountainous and high elevation terrain environment.

    Science.gov (United States)

    Aguiar, Marisa; Stolzer, Alan; Boyd, Douglas D

    2017-10-01

    Flying over mountainous and/or high elevation terrain is challenging due to rapidly changeable visibility, gusty/rotor winds and downdrafts and the necessity of terrain avoidance. Herein, general aviation accident rates and mishap cause/factors were determined (2001-2014) for a geographical region characterized by such terrain. Accidents in single piston engine-powered aircraft for states west of the US continental divide characterized by mountainous terrain and/or high elevation (MEHET) were identified from the NTSB database. MEHET-related-mishaps were defined as satisfying any one, or more, criteria (controlled flight into terrain/obstacles (CFIT), downdrafts, mountain obscuration, wind-shear, gusting winds, whiteout, instrument meteorological conditions; density altitude, dust-devil) cited as factors/causal in the NTSB report. Statistics employed Poisson distribution and contingency tables. Although the MEHET-related accident rate declined (pairplanes and flying under IFR to assure terrain clearance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 3. A 40-years record of the polymetallic pollution of the Lot River system, France

    Science.gov (United States)

    Audry, S.; Schäfer, J.; Blanc, G.; Veschambre, S.; Jouanneau, J.-M.

    2003-04-01

    The Lot River system (southwest France) is known for historic Zn and Cd pollution that originates from Zn ore treatment in the small Riou-Mort watershed and affects seafood production in the Gironde Estuary. We present a sedimentary record from 2 cores taken in a dam lake downstream of the Riou-Mort watershed covering the evolution of metal inputs into the Lot River over the past 40 years (1960-2001). Depth profiles of Cd, Zn, Cu and Pb concentrations are comparable indicating common sources and transport. The constant Zn/Cd ratio (˜50) observed in the sediment cores is similar to that in SPM from the Riou-Mort watershed, indicating the dominance of point source pollution upon the geochemical background signal. Cadmium, Zn, Cu and Pb concentrations in the studied sediment cores show an important peak in 42-44 cm depth with up to 300 mg.kg-1 (Cd), 10,000 mg.kg-1 (Zn), 150 mg.kg-1 (Cu) and 930 mg.kg-1 (Pb). These concentrations are much higher than geochemical background values; For example, Cd concentrations are more than 350-fold higher than those measured in the same riverbed upstream the confluence with the Riou-Mort River. This peak coincides with the upper 137Cs peak resulting from the Chernobyl accident (1986). Therefore, this heavy metal peak is attributed to the latest accidental Cd pollution of the Lot-River in 1986. Several downward heavy metal peaks reflect varying input probably due to changes in industrial activities within the Riou-Mort watershed. Given mean sedimentation rate of about 2 cm.yr-1, the record suggests constant and much lower heavy metal concentrations since the early nineties due to restriction of industrial activities and remediation efforts in the Riou-Mort watershed. Nevertheless, Cd, Zn, Cu and Pb concentrations in the upper sediment remain high, compared to background values from reference sites in the upper Lot River system.

  4. Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system

    Science.gov (United States)

    Wang, Deli; Lin, Wenfang; Yang, Xiqian; Zhai, Weidong; Dai, Minhan; Arthur Chen, Chen-Tung

    2012-12-01

    This study for the first time examined dissolved metals (Cu, Cd, and Mn) together with dissolved oxygen and carbonate system in the whole Pearl River Estuary system, from the upper rivers to the groundwater discharges until the estuarine zone, and explored their potential impacts in the adjacent northern South China Sea (SCS) during May-August 2009. This river-groundwater-estuary system was generally characterized by low dissolved metal levels as a whole, whilst subject to severe perturbations locally. In particular, higher dissolved Cu and Cd occurred in the North River (as high as 60 nmol/L of Cu and 0.99 nmol/L of Cd), as a result of an anthropogenic source from mining activities there. Dissolved Cu levels were elevated in the upper estuary near the city of Guangzhou (Cu: ˜40 nmol/L), which could be attributable to sewage and industrial effluent discharges there. Elevated dissolved metal levels (Cu: ˜20-40 nmol/L; Cd: ˜0.2-0.8 nmol/L) also occurred in the groundwaters and parts of the middle and lower estuaries, which could be attributable to a series of geochemical reactions, e.g., chloride-induced desorption from the suspended sediments, oxidation of metal sulfides, and the partial dissolution of minerals. The high river discharge during our sampling period (May-August 2009) significantly diluted anthropogenic signals in the estuarine mixing zone. Of particular note was the high river discharge (which may reach 18.5 times as high as in the dry season) that transported anthropogenic signals (as indicated by dissolved Cu and Cd) into the adjacent shelf waters of the northern SCS, and might have led to the usually high phytoplankton productivity there (chlorophyll-a value >10 μg/L).

  5. Bacterial levels in the Nyl River system, Limpopo province, South ...

    African Journals Online (AJOL)

    Heterotrophic plate counts, faecal coliform counts and total coliform counts indicated that the system was stressed. The Modimolle sewage treatment works and local agricultural activities were found to be the point and diffuse sources of bacterial contamination, respectively. African Journal of Aquatic Science 2010, 35(1): ...

  6. Population Aspects of Fishes in Geba and Sor Rivers, White Nile System in Ethiopia, East Africa

    Directory of Open Access Journals (Sweden)

    Simagegnew Melaku

    2017-01-01

    Full Text Available This study was carried out to assess the diversity, condition factor, length-weight relationship, and sex ratio of fishes in Geba and Sor Rivers located in Baro-Akobo Basin, White Nile system within Ethiopia. Fish samples were collected in one wet and one dry season. The length-weight relationships were fitted using power equation for the most abundant species. A total of 348 fish specimens were collected using gillnets and hooks. These were identified into eight species and one Garra sp. representing seven genera and four families. Family Cyprinidae was the most dominant with six species (66.7%. Labeobarbus intermedius, Labeobarbus nedgia, and Labeo cylindricus were the most abundant fish species, respectively, with 60.72%, 16.83%, and 14.66% index of relative importance (IRI. The diversity index was higher for Geba River (H′ = 1.50 than for Sor River (H′ = 1.10. All the three most abundant species had negative allometric growth. Seasonal variations in the mean Fulton condition factor (FCF were statistically significant for L. cylindricus (p<0.05. There was variation in the sex ratio with the females dominating in all the three most abundant species. Further investigation into the fish diversity, food, feeding, and reproductive behaviors of fish species especially in the tributaries of these rivers and their socioeconomic aspects is recommended.

  7. Preliminary subsurface hydrologic considerations: Columbia River Plateau Physiographic Province. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Veatch, M.D.

    1980-04-01

    This report contains a discussion of the hydrologic conditions of the Columbia River Plateau physiographic province. The Columbia River Plateau is underlain by a thick basalt sequence. The Columbia River basalt sequence contains both basalt flows and sedimentary interbeds. These sedimentary interbeds, which are layers of sedimentary rock between lava flows, are the main aquifer zones in the basalt sequence. Permeable interflow zones, involving the permeable top and/or rubble bottom of a flow, are also water-transmitting zones. A number of stratigraphic units are present in the Pasco Basin, which is in the central part of the Columbia River Plateau. At a conceptual level, the stratigraphic sequence from the surface downward can be separated into four hydrostratigraphic systems. These are: (1) the unsaturated zone, (2) the unconfined aquifer, (3) the uppermost confined aquifers, and (4) the lower Yakima basalt hydrologic sequence. A conceptual layered earth model (LEM) has been developed. The LEM represents the major types of porous media (LEM units) that may be encountered at a number of places on the Columbia Plateau, and specifically in the Pasco Basin. The conceptual LEM is not representative of the actual three-dimensional hydrostratigraphic sequence and hydrologic conditions existing at any specific site within the Columbia Plateau physiographic province. However, the LEM may be useful for gaining a better understanding of how the hydrologic regime may change as a result of disruptive events that may interact with a waste repository in geologic media

  8. Spatial-temporal fluvial morphology analysis in the Quelite river: It's impact on communication systems

    Science.gov (United States)

    Ramos, Judith; Gracia, Jesús

    2012-01-01

    SummaryDuring 2008 and 2009 heavy rainfall took place around the Mazatlan County in the Sinaloa state, Mexico, with a return period (Tr) between 50 and 100 years. As a result, the region and its infrastructure, such as the railways and highways (designed for a Tr = 20 years) were severely exposed to floods and, as a consequence damage caused by debris and sediments dragged into the channel. One of the highest levels of damage to the infrastructure was observed in the columns of Quelite River railway's bridge. This is catastrophic as the railway is very important for trade within the state and also among other states in Mexico and in the USA. In order to understand the impact of the flooding and to avoid the rail system being damaged it is necessary to analyse how significant the changes in the river channel have been. This analysis looks at the definition of the main channel and its floodplain as a result of the sediment variability, not only at the bridge area, but also upstream and downstream. The Quelite River study considers the integration of Geographic Information Systems (GIS) and remote sensing data to map, recognise and assess the spatio-temporal change channel morphology. This increases the effectiveness of using different types of geospatial data with in situ measurements such as hydrological data. Thus, this paper is an assessment of a 20 years study period carried out using historical Landsat images and aerial photographs as well as recent Spot images. A Digital Elevation Model (DEM) of local topography and flow volumes were also used. The results show the Quelite River is an active river with a high suspended sediment load and migration of meanders associated to heavy rainfall. The river also has several deep alluvial floodplain channels which modified the geometry and other morphological characteristics of the channel in the downstream direction. After the identification of the channel changes, their causes and solutions to control, the channel

  9. Pb isotope evidence for contaminant-metal dispersal in an international river system: The lower Danube catchment, Eastern Europe

    International Nuclear Information System (INIS)

    Bird, Graham; Brewer, Paul A.; Macklin, Mark G.; Nikolova, Mariyana; Kotsev, Tsvetan; Mollov, Mihail; Swain, Catherine

    2010-01-01

    Lead isotope signatures ( 207 Pb/ 206 Pb, 208 Pb/ 206 Pb, 208 Pb/ 204 Pb, 206 Pb/ 204 Pb), determined by magnetic sector ICP-MS in river channel sediment, metal ores and mine waste, have been used as geochemical tracers to quantify the delivery and dispersal of sediment-associated metals in the lower Danube River catchment. Due to a diverse geology and range of ore-body ages, Pb isotope signatures in ore-bodies within the lower Danube River catchment show considerable variation, even within individual metallogenic zones. It is also possible to discriminate between the Pb isotopic signatures in mine waste and river sediment within river systems draining individual ore bodies. Lead isotopic data, along with multi-element data; were used to establish the provenance of river sediments and quantify sedimentary contributions to mining-affected tributaries and to the Danube River. Data indicate that mining-affected tributaries in Serbia and Bulgaria contribute up to 30% of the river channel sediment load of the lower Danube River. Quantifying relative sediment contributions from mining-affected tributaries enables spatial patterns in sediment-associated metal and As concentrations to be interpreted in terms of key contaminant sources. Combining geochemical survey data with that regarding the provenance of contaminated sediments can therefore be used to identify foci for remediation and environmental management strategies.

  10. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

    Science.gov (United States)

    Conlisk, Erin; Castanha, Cristina; Germino, Matthew J.; Veblen, Thomas T; Smith, Jeremy M.; Kueppers, Lara M.

    2017-01-01

    Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively.Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers.Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forest and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine.Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.

  11. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    Science.gov (United States)

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  12. Effects of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation

    International Nuclear Information System (INIS)

    Zhang Lei; Wang Lianxi; Li Fusheng

    2009-01-01

    [Objective]The experiment aimed to explore the influence of enhanced ultraviolet radiation-B on maize in arid regions of middle-high elevation for correct assessing the influence of enhanced ultraviolet radiation-B on maize and providing scientific reference to make proper countermeasures.[Method] The location test in field and lift lamp of UV-B were used to observe the changes of maize height , leaf area and number of green leaves under influences of different UV-B radiation. [Result]In arid regions of middle-high elevation, enhanced ultraviolet radiation-B could dwarf maize plant, decrease leaf area, decline number of green leaves and yield. The reason of decreasing leaf area was that enhanced ultraviolet radiation-B shortened leaf length and leaf width while the reason of declining yield was that yield components were all negatively influenced and with the increase of ultraviolet radiation-B, the yield declined dramatically.[Conclusion]The result of this experiment would be good for maize production in arid regions of middle-high elevation

  13. Two Case Studies to Quantify Resilience across Food-Energy-Water Systems: the Columbia River Treaty and Adaptation in Yakima River Basin Irrigation Systems

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Richey, A.; Rushi, B. R.; Stockle, C.; Yoder, J.; Barik, M.; Lee, S. Y.; Rajagopalan, K.; Brady, M.; Barber, M. E.; Boll, J.; Padowski, J.

    2017-12-01

    The U.S. Pacific Northwest (PNW) plays a significant role in meeting agricultural and hydroelectric demands nationwide. Climatic and anthropogenic stressors, however, potentially threaten the productivity, resilience, and environmental health of the region. Our objective is to understand how resilience of each Food-Energy-Water (FEW) sector, and the combined Nexus, respond to exogenous perturbations and the extent to which technological and institutional advances can buffer these perturbations. In the process of taking information from complex integrated models and assessing resilience across FEW sectors, we start with two case studies: 1) Columbia River Treaty (CRT) with Canada that determines how multiple reservoirs in the Columbia River basin (CRB) are operated, and 2) climate change adaptation actions in the Yakima River basin (YRB). We discuss these case studies in terms of the similarities and contrasts related to FEW sectors and management complexities. Both the CRB and YBP systems are highly sensitive to climate change (they are both snowmelt-dominant) and already experience water conflict. The CRT is currently undergoing renegotiation; a new CRT will need to consider a much more comprehensive approach, e.g., treating environmental flows explicitly. The YRB also already experiences significant water conflict and thus the comprehensive Yakima Basin Integrated Plan (YBIP) is being pursued. We apply a new modeling framework that mechanistically captures the interactions between the FEW sectors to quantify the impacts of CRT and YBIP planning (as well as adaptation decisions taken by individuals, e.g., irrigators) on resilience in each sector. Proposed modification to the CRT may relieve impacts to multiple sectors. However, in the YRB, irrigators' actions to adapt to climate change (through investing in more efficient irrigation technology) could reduce downstream water availability for other users. Developing a process to quantify resilience to perturbations

  14. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    Science.gov (United States)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the

  15. Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies.

    Science.gov (United States)

    Whitehead, Paul; Bussi, Gianbattista; Hossain, Mohammed Abed; Dolk, Michaela; Das, Partho; Comber, Sean; Peters, Rebecca; Charles, Katrina J; Hope, Rob; Hossain, Md Sarwar

    2018-08-01

    River water quality in rapidly urbanising Asian cities threatens to damage the resource base on which human health, economic growth and poverty reduction all depend. Dhaka reflects the challenges and opportunities for balancing these dynamic and complex trade-offs which goals can be achieved through effective policy interventions. There is a serious problem of water pollution in central Dhaka, in the Turag-Tongi-Balu River system in Bangladesh with the river system being one of the most polluted in the world at the moment. A baseline survey of water chemistry and total coliforms has been undertaken and shows dissolved oxygen close to zero in the dry season, high organic loading together with extreme levels of Ammonium-N and total coliform in the water. Models have been applied to assess hydrochemical processes in the river and evaluate alternative strategies for policy and the management of the pollution issues. In particular models of flow, Nitrate-N, Ammonium-N and indicator bacteria (total coliforms) are applied to simulate water quality in the river system. Various scenarios are explored to clean up the river system, including flow augmentation and improved effluent treatment. The model results indicate that improved effluent treatment is likely to have a more significant impact on reducing Ammonium-N and total coliforms than flow augmentation, but a combined strategy would greatly reduce the pollution problems in the Turag-Tongi-Balu River System. Copyright © 2018. Published by Elsevier B.V.

  16. Soil and Land Resources Information System (SLISYS-Tarim) for Sustainable Management of River Oases along the Tarim River, China

    Science.gov (United States)

    Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl

    2017-04-01

    The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall 3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied

  17. EVALUATION OF DISASTER MITIGATION SYSTEM AGAINST LAHAR FLOW OF PUTIH RIVER, MT. MERAPI AREA

    Directory of Open Access Journals (Sweden)

    T. Maksal Saputra

    2013-05-01

    Result of the evaluation shows that the existing early warning system does not produce sufficient time for the sand miners to save themselves. The proposed solution is to divide sand mine area in Putih River into 3 zones, each zone has different procedure of the early warning and evacuation. This is arranged to avoid casualties to the sand miners. Keywords: Lahar flood, sand miners, early warning.

  18. Columbia River system operation review: Final environmental impact statement. Appendix R, Pacific Northwest Coordination agreement (PNCA)

    International Nuclear Information System (INIS)

    1995-11-01

    Currently, the Federal government coordinates the planning and operation of the Federal Columbia River Power System (FCRPS) with projects owned and operated by the region's non-Federal hydrogenerating utilities pursuant to the Pacific North-west Coordination Agreement (PNCA). The Bureau of Reclamation (Reclamation), the Corps of Engineers (Corps), and the Bonneville Power Administration (BPA) are parties to the PNCA on behalf of the government of the United States. The PNCA is a complex agreement that provides an opportunity for the region's power producers to maximize the power system's reliability and economy while meeting their multiple-use objectives. The PNCA does not dictate the operation of the resources it coordinates. It is essentially an accounting mechanism that exchanges the power produced among the parties in order to improve the reliability of the system and reduce regional power costs. Project owners retain complete autonomy to operate as needed to meet their multiple-use requirements. The PNCA was executed in 1964 as an important component of regional plans to maximize the Northwest's hydro resource capability. Maximization also included the development of storage projects on the Columbia River in Canada pursuant to the terms of the 1964 Columbia River Treaty. Because of the link between power coordination and Treaty issues, the current parties to the PNCA, currently are contemplating entering into a replacement or renewed power coordination agreement. Because the power coordination agreement is a consensual arrangement, its ultimate provisions must be acceptable to all of its signatories. This Appendix R to the Final Environmental Impact Statement of the Columbia River System is a presentation of the Pacific North-west Coordination Agreement

  19. Surveys of tidal river systems in the northern territory of Australia and their crocodile populations

    Energy Technology Data Exchange (ETDEWEB)

    Vorlicek, G.C.; Messel, H.; Green, W.J.

    1986-01-01

    This book provides an update on the population dynamics of Crocodylus porous in the tidal waterways of Van Diemen Gulf and the Southern Gulf of Carpentaria, Australia, during 1984 and 1985. Contents: Prologue; Dedication; Introduction; Status of Crocodylus porous. July 1984, in the tidal waterways of the Alligator Region and in the Adelaide River System of Northern Australia: recovery underway; Resurvey of Crocodylus porous populations in the tidal waterways of the southern Gulf of Carpentaria, September - October 1985; Local knowledge - Northern Australia style.

  20. Standard criteria for disposal of liquid radioactive wastes from nuclear power plants into surface waters (river systems)

    International Nuclear Information System (INIS)

    Pisarev, V.V.; Tsybizov, I.S.

    1976-01-01

    Radioactive products discharge into natural water streams results in the necessity to regulate nuclear power plant discharges to ensure radiation safety (RS) for population using a river and surrounding river territory. To ensure RS it is necessary to set scientific-founded standards of permissible discharge level of liquid radioactive wastes (LRW) from nuclear power plant assuring observance of hygienic requirements for surface water puring. Volume of permissible LRW discharge into river systems must be set both with provision for concrete physical-geographycal conditions, specficity of utilizing the river and river valley and social-economical peculiarities of crtical population groups. The value of permissible LRW discharge into river systems is determined by three criterion groups: radiological, ecological and hydrological ones. By means of radiological group the internal and external irradiation doses for the whole body and its separate organs are set and RS of population is determined. Ecological criteria include a number of parameters (coefficients of accumulation, distribution and transition) determining quantitative ratios between radioactive element contents in water and separate links of biological chains: soil/water, fish/water, vegetables/water and others. Hydrological criteria determine the degree of waste dilution in rivers, control radioactive contamination of flood-lands areas and in common with ecological criteria determine radionuclide contents in soil and food products. A method of determining average annual values of LRW dilution in river waters is presented [ru

  1. Soft systems methodology and the ecosystem approach: a system study of the Cooum River and environs in Chennai, India.

    Science.gov (United States)

    Bunch, Martin J

    2003-02-01

    This paper discusses the integration of soft systems methodology (SSM) within an ecosystem approach in research to support rehabilitation and management of the Cooum River and environs in Chennai, India. The Cooum is an extremely polluted urban stream. Its management is complicated by high rates of population growth, poverty, uncontrolled urban development, jurisdictional conflicts, institutional culture, flat topography, tidal action, blockage of the river mouth, and monsoon flooding. The situation is characterized by basic uncertainty about main processes and activities, and the nature of relationships among actors and elements in the system.SSM is an approach for dealing with messy or ill-structured problematic situations involving human activity. In this work SSM contributed techniques (such as "rich picture" and "CATWOE" tools) to description of the Cooum situation as a socioecological system and informed the approach itself at a theoretical level. Application of three general phases in SSM is discussed in the context of the Cooum River research: (1) problem definition and exploration of the problem situation, (2) development of conceptual models of relevant systems, and (3) the use of these to generate insight and stimulate debate about desirable and feasible change. Its use here gives weight to the statement by others that SSM would be a particularly appropriate methodology to operate the ecosystem approach. As well as informing efforts at management of the Cooum system, this work led the way to explore an adaptive ecosystem approach more broadly to management of the urban environment for human health in Chennai.

  2. Monitoring of organochlorine pesticides using PFU systems in Yunnan lakes and rivers, China.

    Science.gov (United States)

    Yang, Jun; Zhang, Wenjing; Shen, Yunfen; Feng, Weisong; Wang, Xinhua

    2007-01-01

    Polyurethane foam unit (PFU) systems were collected from 11 lakes and three rivers in the Yunnan Plateau, China and, the PFU extrusion liquids were analyzed for organochlorine pesticides (OCPs) by gas chromatography with electron capture detection (GC-ECD). The concentrations of pp'-DDE, HCB and HCHs were undetectable to 1.86 microgl-1 (mean 0.27 microgl-1), undetectable to 0.72 microgl-1 (mean 0.11 microgl-1), and 0.24-21.95 microgl-1 (mean 7.39 microgl-1) respectively in lakes; and those in rivers were undetectable to 0.23 microgl-1 (mean 0.08 microgl-1), 0.68-2.93 microgl-1 (mean 1.70 microgl-1), and 2.71-37.56 microgl-1 (mean 17.01 microgl-1) respectively. Notably, some residue levels of OCPs exceeded the US National Recommended Water Quality Criteria, implying Yunnan has levels of OCPs potentially harmful to human health. Further, the contamination by OCPs showed an obvious spatial distribution pattern. Amongst the lakes, Dianchi, Xingyun, Lugu and Yangzonghai had the highest OCP levels dominated by beta-HCH, whereas among rivers, Nujiang and Lancang Rivers had the highest contents of OCPs dominated by alpha-HCH. This demonstrates that HCHs are the predominant contaminants and some point sources of HCHs may still exist in Yunnan. The pollution levels in Yunnan were compared with other studies, suggesting the PFU method is suitable for long-term on-line monitoring of trace OCPs in aquatic ecosystems. Therefore, continuous studies monitoring OCPs in lakes and rivers are needed to further understand the future trend of contamination.

  3. Field Operations For The "Intelligent River" Observation System: A Basin-wide Water Quality Observation System In The Savannah River Basin And Platform Supporting Related Diverse Initiatives.

    Science.gov (United States)

    Sutton, A.; Koons, M.; O'Brien-Gayes, P.; Moorer, R.; Hallstrom, J.; Post, C.; Gayes, P. T.

    2017-12-01

    The Intelligent River (IR) initiative is an NSF sponsored study developing new data management technology for a range of basin-scale applications. The technology developed by Florida Atlantic and Clemson University established a network of real-time reporting water quality sondes; from the mountains to the estuary of the Savannah River basin. Coastal Carolina University led the field operations campaign. Ancillary studies, student projects and initiatives benefitted from the associated instrumentation, infrastructure and operational support of the IR program. This provided a vehicle for students to participate in fieldwork across the watershed and pursue individual interests. Student projects included: 1) a Multibeam sonar survey investigating channel morphology in the area of an IR sensor station and 2) field tests of developing techniques for acquiring and assimilating flood velocity data into model systems associated with a separate NSF Rapid award. The multibeam survey within the lower Savannah basin exhibited a range of complexity in bathymetry, bedforms and bottom habitat in the vicinity of one of the water quality stations. The complex morphology and bottom habitat reflect complex flow patterns, localized areas of depositional and erosive tendencies providing a valuable context for considering point-source water quality time series. Micro- Lagrangian drifters developed by ISENSE at Florida Atlantic University, a sled mounted ADCP, and particle tracking from imagery collected by a photogrammetric drone were tested and used to develop methodology for establishing velocity, direction and discharge levels to validate, initialize and assimilate data into advance models systems during future flood events. The prospect of expanding wide scale observing systems can serve as a platform to integrate small and large-scale cooperative studies across disciplines as well as basic and applied research interests. Such initiatives provide opportunities for embedded education

  4. Use of digital computers in the protection system for Savannah River reactors

    International Nuclear Information System (INIS)

    Gimmy, K.L.

    1977-06-01

    Each production reactor at the Savannah River Plant has recently been provided with a protective system using dual digital computers. The dual ''safety computers'' monitor coolant temperature and flow in each of the 600 fuel assemblies in the reactor. The system provides alarms and automatic reactor shutdown (SCRAM) if these variables exceed predetermined setpoints. The system provides the primary protection for unwanted local or general power increase or assembly coolant flow reduction. Standard process control computers are used and all scanning, data output, and protective action are controlled by software prepared by Du Pont

  5. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report Exhibits.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d` Alene tribe.

  6. Columbia River system operation review: Final environmental impact statement. Main report exhibits

    International Nuclear Information System (INIS)

    1995-11-01

    This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d' Alene tribe

  7. A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    .... The six LTRMP study reaches are Pools 4 (excluding Lake Pepin), 8, 13, and 26 of the Upper Mississippi River, an unimpounded reach of the Mississippi River near Cape Girardeau, Missouri, and the La Grange Pool of the Illinois River...

  8. 1994 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,653 collections of fishes from stratified random sad permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1994...

  9. 1991 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1998-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,653 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1991...

  10. 1996 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,378 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1996...

  11. 1992 Annual Status Report: A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,221 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during I 992...

  12. 1997 Annual Status Report A Summary of Fish Data in Six Reaches of The Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    1998-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,797 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1997...

  13. 1998 Annual Status Report: A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Burkhardt, Randy

    2000-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,664 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1998...

  14. 1995 Annual Status Report. A Summary of Fish Data in Six Reaches of the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Gutreuter, Steve

    1997-01-01

    The Long Term Resource Monitoring Program (LTRMP) completed 2,723 collections of fishes from stratified random and permanently fixed sampling locations in six study reaches of the Upper Mississippi River System during 1995...

  15. Potentiometric-surface altitude of the confined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  16. Water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  17. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  18. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system

    Directory of Open Access Journals (Sweden)

    Mario Vicente Caputo

    Full Text Available ABSTRACT: The development of the transcontinental Amazon River System involved geological events in the Andes Chain; Vaupés, Purus and Gurupá arches; sedimentary basins of the region and sea level changes. The origin and age of this river have been discussed for decades, and many ideas have been proposed, including those pertaining to it having originated in the Holocene, Pleistocene, Pliocene, Late Miocene, or even earlier times. Under this context, the geology of the sedimentary basins of northern Brazil has been analyzed from the Mesozoic time on, and some clarifications are placed on its stratigraphy. Vaupés Arch, in Colombia, was uplifted together with the Andean Mountains in the Middle Miocene time. In the Cenozoic Era, the Purus Arch has not blocked this drainage system westward to marine basins of Western South America or eastward to the Atlantic Ocean. Also the Gurupá Arch remained high up to the end of Middle Miocene, directing this drainage system westward. With the late subsidence and breaching of the Gurupá Arch and a major fall in sea level, at the beginning of the Late Miocene, the Amazon River quickly opened its pathway to the west, from the Marajó Basin, through deep headward erosion, capturing a vast drainage network from cratonic and Andean areas, which had previously been diverted towards the Caribbean Sea. During this time, the large siliciclastic influx to the Amazon Mouth (Foz do Amazonas Basin and its fan increased, due to erosion of large tracts of South America, linking the Amazon drainage network to that of the Marajó Basin. This extensive exposure originated the Late Miocene (Tortonian unconformity, which marks the onset of the transcontinental Amazon River flowing into the Atlantic Ocean.

  19. Seasonal streamflow prediction by a combined climate-hydrologic system for river basins of Taiwan

    Science.gov (United States)

    Kuo, Chun-Chao; Gan, Thian Yew; Yu, Pao-Shan

    2010-06-01

    SummaryA combined, climate-hydrologic system with three components to predict the streamflow of two river basins of Taiwan at one season (3-month) lead time for the NDJ and JFM seasons was developed. The first component consists of the wavelet-based, ANN-GA model (Artificial Neural Network calibrated by Genetic Algorithm) which predicts the seasonal rainfall by using selected sea surface temperature (SST) as predictors, given that SST are generally predictable by climate models up to 6-month lead time. For the second component, three disaggregation models, Valencia and Schaake (VS), Lane, and Canonical Random Cascade Model (CRCM), were tested to compare the accuracy of seasonal rainfall disaggregated by these three models to 3-day time scale rainfall data. The third component consists of the continuous rainfall-runoff model modified from HBV (called the MHBV) and calibrated by a global optimization algorithm against the observed rainfall and streamflow data of the Shihmen and Tsengwen river basins of Taiwan. The proposed system was tested, first by disaggregating the predicted seasonal rainfall of ANN-GA to rainfall of 3-day time step using the Lane model; then the disaggregated rainfall data was used to drive the calibrated MHBV to predict the streamflow for both river basins at 3-day time step up to a season's lead time. Overall, the streamflow predicted by this combined system for the NDJ season, which is better than that of the JFM season, will be useful for the seasonal planning and management of water resources of these two river basins of Taiwan.

  20. Establishing the system of public communal utility on the river Danube and the river Sava on the territory of Belgrade

    Directory of Open Access Journals (Sweden)

    Pušić Antonije

    2007-01-01

    Full Text Available Waste disposal and treatment problem consideration in the Republic of Serbia is making a pioneer steps. Main goal of this paper is to emphasize problems of waste disposal on waterways in urban areas, which consists of three aspects: uncontrolled disposal, possibilities of waste elimination and institutional model of collecting and recycling. Considering the fact that Draft version of Waste disposal law is not yet adopted by the national government (beside the fact that it contains the question of disposing and recycling municipal solid waste and that it is not elaborating the problem of dumping the municipal waste into rivers, this paper will give methodological and legislative recommendations for the solution of this problem. However, city of Belgrade and the other cities in Serbia are often facing serious problems (arranged riverfronts covered with municipal waste. Because of that, it is necessary to define methods of collecting and treatment of waste disposed in the water streams (in the area of technology. It is also important to determine legislative framework, and also to establish hierarchy in decision-making on the local level. One of the main goals is to determine new aspects of public communal utilities (so called "river communal utility", which will have jurisdiction in this area. International experiences must be analyzed separately and based on them is proposed new concept of elimination of waste from the rivers. Implementation of this pilot project is recommended on the river Danube and the river Sava on the territory of the city of Belgrade.

  1. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.; Legin, E.; Legin, V. [Khlopin Radium Institute, St. Petersburg (Russian Federation); Shishlov, A.; Savitskii, Yu. [Krasnoyarsk Mining and Chemical Combine, Krasnoyarsk (Russian Federation); Novikov, A.; Goryachenkova, T. [Russian Academy of Sciences, Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation)

    2001-03-01

    For 35 years Krasnoyarsk Mining-Chemical Combine (MCC) manufactures weapon plutonium in single-pass production reactors cooled with water of the Yenisey River. Water discharge from these reactors is the major source of radioactive contamination of the Yenisey River. We have demonstrated that after putting the reactors out of operation (in late 1992) the contamination level of the Yenisey River with short-lived radionuclides considerably decreased, and now the radioactive contamination is caused essentially by Cs-137, Eu-152, Pu-239,240, Sr-90, and Am-241, whose concentration in the aqueous phase is lower than in bottom sediments and, particularly, flood-land deposits by several orders of magnitude (except for Sr-90). The flood-land deposits are classified with the most contaminated environmental objects in the territories under the impact of MCC: their radioactivity is comparable with that of low-level waste. Taking into account the considerable depth and area of the flood-land deposits, this allows their classification as a great technogenic radiation anomaly. Comparison of the maximal Cs-137 and Pu-239,240 levels in flood-land soils and bottom sediments of the Yenisey River with those in bottom sediments of the Pripyat' River and the Kiev reservoir shows that these values are close each to other. A direct correlation is found between the spatial distribution of Cs-137 on the one hand and Pu-239,240, Eu-152, and Am-241 on the other hand in the aqueous phase and bottom sediments, which is not the case for Sr-90. Data on the distribution coefficients of the indicated radionuclides between the deposits and aqueous phase (obtained with actual and model systems) and also on the radionuclide distribution throughout geochemical mobility forms suggest that the essential part of Cs, Pu, Eu, and Am migrates with fine-disperse suspended material, the transport and distribution of which is controlled by the hydrological regime of the Yenisey River. By contrast, strontium

  2. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.; Legin, E.; Legin, V.; Shishlov, A.; Savitskii, Yu.; Novikov, A.; Goryachenkova, T.

    2001-01-01

    For 35 years Krasnoyarsk Mining-Chemical Combine (MCC) manufactures weapon plutonium in single-pass production reactors cooled with water of the Yenisey River. Water discharge from these reactors is the major source of radioactive contamination of the Yenisey River. We have demonstrated that after putting the reactors out of operation (in late 1992) the contamination level of the Yenisey River with short-lived radionuclides considerably decreased, and now the radioactive contamination is caused essentially by Cs-137, Eu-152, Pu-239,240, Sr-90, and Am-241, whose concentration in the aqueous phase is lower than in bottom sediments and, particularly, flood-land deposits by several orders of magnitude (except for Sr-90). The flood-land deposits are classified with the most contaminated environmental objects in the territories under the impact of MCC: their radioactivity is comparable with that of low-level waste. Taking into account the considerable depth and area of the flood-land deposits, this allows their classification as a great technogenic radiation anomaly. Comparison of the maximal Cs-137 and Pu-239,240 levels in flood-land soils and bottom sediments of the Yenisey River with those in bottom sediments of the Pripyat' River and the Kiev reservoir shows that these values are close each to other. A direct correlation is found between the spatial distribution of Cs-137 on the one hand and Pu-239,240, Eu-152, and Am-241 on the other hand in the aqueous phase and bottom sediments, which is not the case for Sr-90. Data on the distribution coefficients of the indicated radionuclides between the deposits and aqueous phase (obtained with actual and model systems) and also on the radionuclide distribution throughout geochemical mobility forms suggest that the essential part of Cs, Pu, Eu, and Am migrates with fine-disperse suspended material, the transport and distribution of which is controlled by the hydrological regime of the Yenisey River. By contrast, strontium

  3. Columbia River system operation review. Final environmental impact statement

    International Nuclear Information System (INIS)

    1995-11-01

    This study attempts to identify and analyze the impacts of the System Operating Strategy (SOS) alternatives on cultural resources. The impacts include effects on Native American traditional cultural values, properties and practices. They also include effects on archeological or historic properties meeting the criteria of the National Register of Historic Places. In addition to responding to the requirements of the National Environmental Policy Act (NEPA), this analysis addresses the requirements of the National Historic Preservation Act (NHPA), the Archeological Resources Protection Act (ARPA), the Native American Graves Protection and Repatriation Act (NAGPRA), the Native American Religious Freedom Act (NARFA), and other relevant legislation. To meet their legally mandated cultural resources requirements, the SOR agencies will develop agreements and Implementation Plans with the appropriate State Historic Preservation Officers (SHPOs), Tribes, and the Advisory Council on Historic Preservation (ACHP) detailing the measures necessary to best manage the resource. The planning and implementation activities will be staged over a number of years in consultation with affected Tribes

  4. Sorption Characteristics of Sediments in the Upper Mississippi River System Above Lake Pepin

    National Research Council Canada - National Science Library

    James, W

    1999-01-01

    This technical note examines equilibrium phosphorus processes and sorption characteristics for sediments collected from the Minnesota River, immediately upstream from its confluence with the Upper Mississippi River (UMR...

  5. Strontium concentrations and isotope ratios in a forest-river system in the South Qinling Mts., China.

    Science.gov (United States)

    Bu, Hongmei; Song, Xianfang; Zhang, Quanfa; Burford, Michele A

    2016-04-15

    The concentrations of dissolved strontium (Sr) and isotope ratios ((87)Sr/(86)Sr) in rainwater, river water, and water from forest soil are measured to investigate the contributions of these sources to a river during base flow conditions in the relatively pristine South Qinling Mountains, China. Dissolved Sr concentrations and (87)Sr/(86)Sr ratios vary significantly between different water types (p water samples including Ca(2+), Mg(2+), EC, and TDS (p water chemistry in the river water. Using the three-source mixing model, atmospheric inputs, carbonate, and silicate weathering contribute 74%, 20%, and 6% respectively to the dissolved Sr in the river water. This research has provided new insights into the contribution of sources of Sr to a river system in a mountainous catchment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Water Quality Projects Summary for the Mid-Columbia and Cumberland River Systems

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hadjerioua, Boualem [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    Scheduling and operational control of hydropower systems is accompanied with a keen awareness of the management of water use, environmental effects, and policy, especially within the context of strict water rights policy and generation maximization. This is a multi-objective problem for many hydropower systems, including the Cumberland and Mid-Columbia river systems. Though each of these two systems have distinct operational philosophies, hydrologic characteristics, and system dynamics, they both share a responsibility to effectively manage hydropower and the environment, which requires state-of-the art improvements in the approaches and applications for water quality modeling. The Department of Energy and Oak Ridge National Laboratory have developed tools for total dissolved gas (TDG) prediction on the Mid-Columbia River and a decision-support system used for hydropower generation and environmental optimization on the Cumberland River. In conjunction with IIHR - Hydroscience & Engineering, The University of Iowa and University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), ORNL has managed the development of a TDG predictive methodology at seven dams along the Mid-Columbia River and has enabled the ability to utilize this methodology for optimization of operations at these projects with the commercially available software package Riverware. ORNL has also managed the collaboration with Vanderbilt University and Lipscomb University to develop a state-of-the art method for reducing high-fidelity water quality modeling results into surrogate models which can be used effectively within the context of optimization efforts to maximize generation for a reservoir system based on environmental and policy constraints. The novel contribution of these efforts is the ability to predict water quality conditions with simplified methodologies at the same level of accuracy as more complex and resource intensive computing methods

  7. An automated system to simulate the River discharge in Kyushu Island using the H08 model

    Science.gov (United States)

    Maji, A.; Jeon, J.; Seto, S.

    2015-12-01

    Kyushu Island is located in southwestern part of Japan, and it is often affected by typhoons and a Baiu front. There have been severe water-related disasters recorded in Kyushu Island. On the other hand, because of high population density and for crop growth, water resource is an important issue of Kyushu Island.The simulation of river discharge is important for water resource management and early warning of water-related disasters. This study attempts to apply H08 model to simulate river discharge in Kyushu Island. Geospatial meteorological and topographical data were obtained from Japanese Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and Automated Meteorological Data Acquisition System (AMeDAS) of Japan Meteorological Agency (JMA). The number of the observation stations of AMeDAS is limited and is not quite satisfactory for the application of water resources models in Kyushu. It is necessary to spatially interpolate the point data to produce grid dataset. Meteorological grid dataset is produced by considering elevation dependence. Solar radiation is estimated from hourly sunshine duration by a conventional formula. We successfully improved the accuracy of interpolated data just by considering elevation dependence and found out that the bias is related to geographical location. The rain/snow classification is done by H08 model and is validated by comparing estimated and observed snow rate. The estimates tend to be larger than the corresponding observed values. A system to automatically produce daily meteorological grid dataset is being constructed.The geospatial river network data were produced by ArcGIS and they were utilized in the H08 model to simulate the river discharge. Firstly, this research is to compare simulated and measured specific discharge, which is the ratio of discharge to watershed area. Significant error between simulated and measured data were seen in some rivers. Secondly, the outputs by the coupled model including crop growth

  8. Individual Dose Calculations with Use of the Revised Techa River Dosimetry System TRDS-2009D

    Energy Technology Data Exchange (ETDEWEB)

    Degteva, M. O.; Shagina, N. B.; Tolstykh, E. I.; Vorobiova, M. I.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    An updated deterministic version of the Techa River Dosimetry System (TRDS-2009D) has been developed to estimate individual doses from external exposure and intake of radionuclides for residents living on the Techa River contaminated as a result of radioactive releases from the Mayak plutonium facility in 1949–1956. The TRDS-2009D is designed as a flexible system that uses, depending on the input data for an individual, various elements of system databases to provide the dosimetric variables requested by the user. Several phases are included in the computation schedule. The first phase includes calculations with use of a common protocol for all cohort members based on village-average-intake functions and external dose rates; individual data on age, gender and history of residence are included in the first phase. This phase results in dose estimates similar to those obtained with system TRDS-2000 used previously to derive risks of health effects in the Techa River Cohort. The second phase includes refinement of individual internal doses for those persons who have had body-burden measurements or exposure parameters specific to the household where he/she lived on the Techa River. The third phase includes summation of individual doses from environmental exposure and from radiological examinations. The results of TRDS-2009D dose calculations have demonstrated for the ETRC members on average a moderate increase in RBM dose estimates (34%) and a minor increase (5%) in estimates of stomach dose. The calculations for the members of the ETROC indicated similar small changes for stomach, but significant increase in RBM doses (400%). Individual-dose assessments performed with use of TRDS-2009D have been provided to epidemiologists for exploratory risk analysis in the ETRC and ETROC. These data provide an opportunity to evaluate the possible impact on radiogenic risk of such factors as confounding exposure (environmental and medical), changes in the Techa River source

  9. Geomorphic and hydraulic controls on large-scale riverbank failure on a mixed bedrock-alluvial river system, the River Murray, South Australia: a bathymetric analysis.

    Science.gov (United States)

    De Carli, E.; Hubble, T.

    2014-12-01

    During the peak of the Millennium Drought (1997-2010) pool-levels in the lower River Murray in South Australia dropped 1.5 metres below sea level, resulting in large-scale mass failure of the alluvial banks. The largest of these failures occurred without signs of prior instability at Long Island Marina whereby a 270 metre length of populated and vegetated riverbank collapsed in a series of rotational failures. Analysis of long-reach bathymetric surveys of the river channel revealed a strong relationship between geomorphic and hydraulic controls on channel width and downstream alluvial failure. As the entrenched channel planform meanders within and encroaches upon its bedrock valley confines the channel width is 'pinched' and decreases by up to half, resulting in a deepening thalweg and channel bed incision. The authors posit that flow and shear velocities increase at these geomorphically controlled 'pinch-points' resulting in complex and variable hydraulic patterns such as erosional scour eddies, which act to scour the toe of the slope over-steepening and destabilising the alluvial margins. Analysis of bathymetric datasets between 2009 and 2014 revealed signs of active incision and erosional scour of the channel bed. This is counter to conceptual models which deem the backwater zone of a river to be one of decelerating flow and thus sediment deposition. Complex and variable flow patterns have been observed in other mixed alluvial-bedrock river systems, and signs of active incision observed in the backwater zone of the Mississippi River, United States. The incision and widening of the lower Murray River suggests the channel is in an erosional phase of channel readjustment which has implications for riverbank collapse on the alluvial margins. The prevention of seawater ingress due to barrage construction at the Murray mouth and Southern Ocean confluence, allowed pool-levels to drop significantly during the Millennium Drought reducing lateral confining support to the

  10. Climate Change Impact Assessment of Dike Safety and Flood Risk in the Vidaa River System

    DEFF Research Database (Denmark)

    Madsen, H.; Sunyer Pinya, Maria Antonia; Larsen, J.

    2013-01-01

    The impact of climate change on the flood risk and dike safety in the Vidaa River system, a cross-border catchment located in the southern part of Jutland, Denmark and northern Germany, is analysed. The river discharges to the Wadden Sea through a tidal sluice, and extreme water level conditions...... in the river system occur in periods of high sea water levels where the sluice is closed and increased catchment run-off take place. Climate model data from the ENSEMBLES data archive are used to assess the changes in climate variables and the resulting effect on catchment run-off. Extreme catchment run......-off is expected to increase about 8 % in 2050 and 14 % in 2100. The changes in sea water level is assessed considering climate projections of mean sea level rise, isostatic changes, and changes in storm surge statistics. At the Vidaa sluice a mean sea level rise of 0.15–0.39 m in 2050 and 0.41–1.11 m in 2010...

  11. Evolution of tertiary intermontane fluvial system of Powder River Basin, Wyoming and Montana

    International Nuclear Information System (INIS)

    Flores, R.M.; Ethridge, F.G.

    1985-01-01

    Exploration and development of economic coal and uranium deposits of the Tertiary Fort Union and Wasatch Formations provided data related to the evolution of depositional systems in the Powder River Basin. In ascending order, the Paleocene Fort Union Formation consists of the Tullock, Lebo, and Tongue River Members. The overlying Eocene Wasatch Formation consists of the conglomeratic Kingsbury and Moncrief Members and laterally equivalent finer grained deposits. Evolution of fluvial deposition in the basin was determined from sandstone percent maps. A high proportion of sandstones in the Tullock Member and combined Tongue River Member and Wasatch Formation formed in interconnected east-west and north-south belts. The east-west belts represent alluvial fans, as well as braided and meandering tributary streams. The north-south belts reflect meandering and anastomosing trunk streams fed by basin margin tributaries. The sandstones of the Lebo Shale show east-west trends and represent deposits of fluvio-deltaic systems that filled a western, closed-lacustrine basin. The lake in this basin may have formed during localized subsidence along the Buffalo deep fault. These contrasting styles of fluvial deposition were largely controlled by extrabasinal and intrabasinal tectonics associated with Laramide orogeny

  12. Helium isotopes in geothermal systems: Iceland, The Geysers, Raft River and Steamboat Springs

    International Nuclear Information System (INIS)

    Torgersen, T.

    1982-01-01

    Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios and in terms of the processes which can alter the isotopic ratio. Using this interpretational scheme, Iceland is found to be an area of hot-spot magmatic He implying an active volcanic source although the data are suggestive of high-temperature weathering release of crustal He incorporated in the geothermal fluids. By comparison to fumarolic gases from Hawaii and Juan De Fuca and Cayman Trench basaltic glass samples, The Geysers contains MOR type magmatic He again implying an active volcanic source possibly a 'leaky' transform related to the San Andreas Fault System. Raft River contains only crustal He indicating no active volcanic sources. Steamboat Springs He isotope ratios are distinctly less than typical plate margin volcanics but must still have a magmatic source. (author)

  13. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Sippel; William C. Carrigan; Kenneth D. Luff; Lyn Canter

    2003-11-12

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). The software tools in ICS have been developed for characterization of reservoir properties and evaluation of hydrocarbon potential using a combination of inter-disciplinary data sources such as geophysical, geologic and engineering variables. The ICS tools provide a means for logical and consistent reservoir characterization and oil reserve estimates. The tools can be broadly characterized as (1) clustering tools, (2) neural solvers, (3) multiple-linear regression, (4) entrapment-potential calculator and (5) file utility tools. ICS tools are extremely flexible in their approach and use, and applicable to most geologic settings. The tools are primarily designed to correlate relationships between seismic information and engineering and geologic data obtained from wells, and to convert or translate seismic information into engineering and geologic terms or units. It is also possible to apply ICS in a simple framework that may include reservoir characterization using only engineering, seismic, or geologic data in the analysis. ICS tools were developed and tested using geophysical, geologic and engineering data obtained from an exploitation and development project involving the Red River Formation in Bowman County, North Dakota and Harding County, South Dakota. Data obtained from 3D seismic surveys, and 2D seismic lines encompassing nine prospective field areas were used in the analysis. The geologic setting of the Red River Formation in Bowman and Harding counties is that of a shallow-shelf, carbonate system. Present-day depth of the Red River formation is approximately 8000 to 10,000 ft below ground surface. This report summarizes production results from well demonstration activity, results of reservoir characterization of the Red River Formation at demonstration sites, descriptions of ICS tools and strategies for their application.

  14. Sedimentation and contamination patterns of dike systems along the Rhône River (France)

    Science.gov (United States)

    Seignemartin, Gabrielle; Tena, Alvaro; Piégay, Hervé; Roux, Gwenaelle; Winiarski, Thierry

    2017-04-01

    Humans have historically modified the Rhône River, especially in the last centuries. In the 19th century, the river was systematically embanked for flood protection purposes, and works continued along the 20th century with dike system engineering work for navigation. The Rhône was canalised and its historical course by-passed by a series of hydroelectric dams. Besides, industrial activity polluted the river. For example, high levels of PCB's were attributed to the inputs of the heavily industrialized zone downstream from Lyon. During floods, these contaminants, associated with the suspended sediment, were trapped by the engineering works and the floodplain. Currently, a master plan to reactivate the river dynamics in the alluvial margins by removing the groyne-fields and dikes in the by-passed sections is being implemented. Within this context, this work aims to assess historical dynamics of sediment and associated contaminants in the floodplain (e.g. trace metal elements), notably in the dike system, in order to evaluate the contamination risk related to bank protection removal. With this objective, a transversal methodology has been applied coupling GIS diachronic analysis (old maps, bathymetric data, Orthophotos, LIDAR, etc.) to understand the historical floodplain evolution, sediment survey to obtain sediment thickness (metal rod and Ground Penetrating Radar), and sediment sampling (manual auger and core sampling) to obtain the metal element concentrations (X-Ray Fluorescence and Inductively Coupled Plasma Mass Spectrometry). By this way, metal element patterns were defined and used as contamination tracing indicators to apprehend the contamination history but also as geochemical background indicators to define the sediment source influence. We found that sediment temporal patterns are directly related with the by-pass construction year. Spatially, fine sediment deposition predominates in the dike systems, being lower in the floodplain already disconnected in

  15. Development and Implementation of the Waste Management Information System to Support Hanford's River Corridor Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, L M [Washington Closure Hanford, LLC, 3070 George Washington Way, Richland, WA 99354 (United States)

    2006-07-01

    This paper describes the development of a Waste Information Management System (WMIS) to support the waste designation, transportation, and disposal processes used by Washington Closure Hanford, LLC to support cleanup of the Columbia River Corridor. This waste, primarily consisting of remediated burial sites and building demolition debris, is disposed at the Environmental Restoration Disposal Facility (ERDF), which is located in the center of the Hanford Site (an approximately 1460 square kilometers site). WMIS uses a combination of bar-code scanning, hand-held computers, and strategic employment of a radio frequency identification (RFID) tag system to track each waste shipment from waste generation to disposal. (authors)

  16. Design of River System Deadlock Avoidance Supervisor by Using Petri Net

    Directory of Open Access Journals (Sweden)

    Danko Kezić

    2010-05-01

    Full Text Available Advanced function of the computer-based river traffic management system should automatically predict and prevent possible conflict and deadlock states between vessels by using adequate control policy (supervisor. This paper proposes a formal method for calculating maximally permissive deadlock prevention supervisor. To model the river system, the authors use a class of Petri net suitable for describing multiple re-entrant flowlines with disjoint sets of resources, jobs and control places, and matrix-based formal method to analyze the system. By using matrix algebra, the structural characteristics of the Petri net (circular waits, P-invariants, critical siphons and subsystem, key resource have been analyzed and the steps for supervisor design proposed. The first and the second level deadlocks can be avoided by maintaining the number of tokens in the critical subsystems and ensuring that the key resource would not be the last available resource in the system. The derived supervisor has been verified by a computer simulation using MATLAB environment. KEYWORDS: traffic management system, deadlock avoidance, discrete event system, Petri net

  17. Reconciling drainage and receiving basin signatures of the Godavari River system

    Science.gov (United States)

    Ojoshogu Usman, Muhammed; Kirkels, Frédérique Marie Sophie Anne; Zwart, Huub Michel; Basu, Sayak; Ponton, Camilo; Blattmann, Thomas Michael; Ploetze, Michael; Haghipour, Negar; McIntyre, Cameron; Peterse, Francien; Lupker, Maarten; Giosan, Liviu; Eglinton, Timothy Ian

    2018-06-01

    The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of old or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of

  18. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    Science.gov (United States)

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  19. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    Science.gov (United States)

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  20. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    Science.gov (United States)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  1. Priority ranking of safety-related systems for structural assessment at Savannah River Site

    International Nuclear Information System (INIS)

    Kao, G.C.; Daugherty, W.L.; Barnes, D.M.

    1993-01-01

    In order to extend the service life of safety related structures and systems in a logical manner, a Structural Enhancement Program was initiated to evaluate the structural integrity of eight systems, namely: cooling water system, emergency cooling system, moderator recovery system, supplementary safety system, water removal system, service raw water system, service clarified water system, and river water system. Since the level of importance of each system to reactor operations varies from one system to another, the scope of structural integrity evaluation for each system should be prioritized accordingly. This paper presents the assessment of system priority for structural evaluation based on a ranking methodology and specifies the level of structural evaluation consistent with the established priority. The effort was undertaken by a five-member panel representing four major disciplines, including: structures, reactor engineering/operations, risk management, and materials. The above systems were divided into a total of thirty-five subsystems. These subsystems were then ranked with six attributes, namely: safety classification, degradation mechanisms, difficulty of replacement, failure mode, radiation dose to workers, and consequence of failure. Each attribute was assigned a set of consequences or events with corresponding weighting scores. The results of the ranking process yielded two groups of subsystems, categorized as Priority I and II subsystems. The level of structural assessment was then formulated accordingly. The prioritized approach will allow more efficient allocation of resources, so that the Structural Enhancement Program can be implemented in a cost-effective and efficient manner

  2. Priority ranking of safety-related systems for structural enhancement assessment at Savannah River Site

    International Nuclear Information System (INIS)

    Kao, G.C.; Daugherty, W.L.; Barnes, D.M.

    1992-09-01

    In order to extend the service life of safety related structures and systems in a logical manner, a Structural Enhancement Program was initiated to evaluate the structural integrity of eight (8) systems, namely: Cooling Water System, Emergency Cooling System, Moderator Recovery System supplementary Safety System, Water Removal System, Service Raw Water System, Service Clarified Water System, and River Water System. Since the level of importance of each system to reactor operations varies from one system to another, the scope of structural integrity evaluation for each system should be prioritized accordingly. This paper presents the assessment of system priority for structural evaluation based on a ranking methodology and specifies the level of structural evaluation consistent with the established priority. The effort was undertaken by a five-member panel representing four (4) major disciplines, including. structures, reactor engineering/operations, risk management and materials. The above systems were divided into a total of thirty-five (35) subsystem. These subsystems were then ranked with six (6) attributes, namely: Safety Classification, Degradation Mechanisms, Difficulty of Replacement, Failure Mode, Radiation Dose to Workers and Consequence of Failure. Each attribute was assigned a set of consequences or events with corresponding weighting scores. The results of the ranking process yielded two groups of subsystems, categorized as Priority I and II subsystems. The level of structural assessment was then formulated accordingly. The prioritized approach will allow more efficient allocation of resources, so that the Structural Enhancement Program can be implemented in a cost-effective and efficient manner

  3. A system dynamics approach for integrated management of the Jucar River Basin

    Science.gov (United States)

    Rubio-Martin, Adria; Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2017-04-01

    System dynamics (SD) is a modelling approach that allows the analysis of complex systems through the mathematical definition of variables and their relationships. Based on systems thinking, SD is suitable for interdisciplinary studies of the management of complex systems. Over the past 50 years, SD tools have been applied to fields as diverse as economics, ecology, politics, sociology and resource management. Its application to the field of water resources has grown significantly over the last two decades, facilitating the enhancement of models by adding social, economic and ecological components. However, its application to the operation of complex multireservoir systems has been very limited so far. In this contribution, we have developed a SD model for the Jucar River Basin, one of the most vulnerable basins in the western Mediterranean region with regard to droughts. The system has three main reservoirs, which allows for a multiannual management of the storage that compensates the highly variable streamflow from upstream. Our SD model of the Jucar River Basin is able to capture the complexity of the water resource system. The model developed consists of five interlinked subsystems: a) Topology of the system network, including the 3 main reservoirs, water seepage and evaporation, inflows and catchments. b) Monthly operating rules of each reservoir. The rules were derived from the expert knowledge eluded from the operators of the reservoirs. c) Monthly urban, agricultural and environmental water demands. d) State index of the system and drought mitigation measures triggered depending on the state index. e) Mancha Oriental aquifer and stream-aquifer interaction with the Jucar River. The comparison between observed and simulated series showed that the model provides a good representation of the observed reservoir operation and total deficits. The interdisciplinary and open nature of the methodology allows to add new variables and dynamics to the model that are

  4. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests

    Science.gov (United States)

    David J. P. Moore; Nicole A. Trahan; Phil Wilkes; Tristan Quaife; Britton B. Stephens; Kelly Elder; Ankur R. Desai; Jose Negron; Russell K. Monson

    2013-01-01

    Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no...

  5. Post-fire Downy Brome (Bromus tectorum) invasion at high elevation in Wyoming

    Science.gov (United States)

    The invasive annual grass downy brome is the most ubiquitous weed in sagebrush systems of western North America. The center of invasion has largely been the Great Basin region, but there is an increasing abundance and distribution in the Rocky Mountain States. We evaluated post-fire vegetation chang...

  6. Invasive pathogen threatens bird-pine mutualism: Implications for sustaining a high-elevation ecosystem

    Science.gov (United States)

    Shawn T. McKinney; Carl E. Fiedler; Diana F. Tomback

    2009-01-01

    Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's...

  7. Warm season precipitation signal in δ2 H values of wood lignin methoxyl groups from high elevation larch trees in Switzerland.

    Science.gov (United States)

    Riechelmann, Dana F C; Greule, Markus; Siegwolf, Rolf T W; Anhäuser, Tobias; Esper, Jan; Keppler, Frank

    2017-10-15

    In this study, we tested stable hydrogen isotope ratios of wood lignin methoxyl groups (δ 2 H methoxyl values) as a palaeoclimate proxy in dendrochronology. This is a quite new method in the field of dendrochronology and the sample preparation is much simpler than the methods used before to measure δ 2 H values from wood. We measured δ 2 H methoxyl values in high elevation larch trees (Larix decidua Mill.) from Simplon Valley (southern Switzerland). Thirty-seven larch trees were sampled and five individuals analysed for their δ 2 H methoxyl values at annual (1971-2009) and pentadal resolution (1746-2009). The δ 2 H methoxyl values were measured as CH 3 I released upon treatment of the dried wood samples with hydroiodic acid. 10-90 μL from the head-space were injected into the gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/HTC-IRMS) system. Testing the climate response of the δ 2 H methoxyl values, the annually resolved series show a positive correlation of r = 0.60 with June/July precipitation. The pentadally resolved δ 2 H methoxyl series do not show any significant correlation to climate parameters. Increased precipitation during June and July, which are on average warm and relatively dry months, results in higher δ 2 H values of the xylem water and, therefore, higher δ 2 H values in the lignin methoxyl groups. Therefore, we suggest that δ 2 H methoxyl values of high elevation larch trees might serve as a summer precipitation proxy. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Mapping of a river using close range photogrammetry technique and unmanned aerial vehicle system

    International Nuclear Information System (INIS)

    Room, M H M; Ahmad, A

    2014-01-01

    Photogrammetry is a technique that can be used to record the information of any feature without direct contact. Nowadays, a combination of photogrammetry and Unmanned Aerial Vehicle (UAV) systems is widely used for various applications, especially for large scale mapping. UAV systems offer several advantages in terms of cost and image resolution compared to terrestrial photogrammetry and remote sensing system. Therefore, a combination of photogrammetry and UAV created a new term which is UAV photogrammetry. The aim of this study is to investigate the ability of a UAV system to map a river at very close distance. A digital camera is attached to the Hexacopter UAV and it is flown at 2 m above the ground surface to produce aerial photos. Then, the aerial photos are processed to create two photogrammetric products as output. These are mosaicked orthophoto and digital image. Both products are assessed (RSME). The RSME of X and Y coordinates are ±0.009 m and ±0.033 m respectively. As a conclusion, photogrammetry and the UAV system offer a reliable accuracy for mapping a river model and advantages in term of cost-efficient, high ground resolution and rapid data acquisition

  9. Laboratory QA/QC improvements for small drinking water systems at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.D.

    1995-12-01

    The Savannah River Site (SRS), a 310 square mile facility located near Aiken, S.C., is operated by Westinghouse Savannah River Company for the US Department of Energy. SRS has 28 separate drinking water systems with average daily demands ranging from 0.0002 to 0.5 MGD. All systems utilize treated groundwater. Until recently, the water laboratories for each system operated independently. As a result, equipment, reagents, chemicals, procedures, personnel, and quality control practices differed from location to location. Due to this inconsistency, and a lack of extensive laboratory OA/QC practices at some locations, SRS auditors were not confident in the accuracy of daily water quality analyses results. The Site`s Water Services Department addressed these concerns by developing and implementing a practical laboratory QA/QC program. Basic changes were made which can be readily adopted by most small drinking water systems. Key features of the program include: Standardized and upgraded laboratory instrumentation and equipment; standardized analytical procedures based on vendor manuals and site requirements; periodic accuracy checks for all instrumentation; creation of a centralized laboratory to perform metals digestions and chlorine colorimeter accuracy checks; off-site and on-site operator training; proper storage, inventory and shelf life monitoring for reagents and chemicals. This program has enhanced the credibility and accuracy of SRS drinking water system analyses results.

  10. ASSESSMENT OF UNCERTAINTY IN THE RADIATION DOSES FOR THE TECHA RIVER DOSIMETRY SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Degteva, M. O.; Anspaugh, L. R.; Shagina, N. B.

    2009-10-23

    In order to provide more accurate and precise estimates of individual dose (and thus more precise estimates of radiation risk) for the members of the ETRC, a new dosimetric calculation system, the Techa River Dosimetry System-2009 (TRDS-2009) has been prepared. The deterministic version of the improved dosimetry system TRDS-2009D was basically completed in April 2009. Recent developments in evaluation of dose-response models in light of uncertain dose have highlighted the importance of different types of uncertainties in the development of individual dose estimates. These include uncertain parameters that may be either shared or unshared within the dosimetric cohort, and also the nature of the type of uncertainty as aleatory or epistemic and either classical or Berkson. This report identifies the nature of the various input parameters and calculational methods incorporated in the Techa River Dosimetry System (based on the TRDS-2009D implementation), with the intention of preparing a stochastic version to estimate the uncertainties in the dose estimates. This report reviews the equations, databases, and input parameters, and then identifies the author’s interpretations of their general nature. It presents the approach selected so that the stochastic, Monte-Carlo, implementation of the dosimetry System - TRDS-2009MC - will provide useful information regarding the uncertainties of the doses.

  11. Induction of cytotoxic and genotoxic effects of Guandu River waters in the Allium cepa system

    Directory of Open Access Journals (Sweden)

    Jennifer Vieira Gomes

    2015-01-01

    Full Text Available The Guandu River is the main source of water supply for the metropolitan region of Rio de Janeiro and has been facing serious environmental problems due to increasing population and industrial pollution, as well as the presence of polluted tributaries. This study analyzed the cytotoxic and genotoxic potential of the Guandu River’s waters, through the use of the Allium cepa test system. Collection points were chosen at the greatest confluences of pollutant sources. The sampling included two different seasons: the rainy season (January and February and the dry season (June and July. The analyses of 5000 cells per treatment showed that all the points studied had some degree of cytotoxicity and/or genotoxicity. Two sampling locations, which receive major influxes from the polluted waters of the Poços/Queimados and Cabuçu/Ipiranga Rivers, stood out for the strong presence of micronuclei, sticky chromosomes, mitotic spindle abnormalities, necrotic cells and nucleolar changes compared to the negative control. At least two locations also found changes in the mitotic index. The existence of variations in the number of cytotoxic and genotoxic changes between periods of rain and drought indicates that the cytotoxic and genotoxic potential of the water pollutants varies according to time, depending on the discharges of the tributary rivers and the increase of contaminated effluents. The results highlight the importance of bio-monitoring to assist managers in the control of effluent discharge.

  12. The UP modelling system for large scale hydrology: simulation of the Arkansas-Red River basin

    Directory of Open Access Journals (Sweden)

    C. G. Kilsby

    1999-01-01

    Full Text Available The UP (Upscaled Physically-based hydrological modelling system to the Arkansas-Red River basin (USA is designed for macro-scale simulations of land surface processes, and aims for a physical basis and, avoids the use of discharge records in the direct calibration of parameters. This is achieved in a two stage process: in the first stage parametrizations are derived from detailed modelling of selected representative small and then used in a second stage in which a simple distributed model is used to simulate the dynamic behaviour of the whole basin. The first stage of the process is described in a companion paper (Ewen et al., this issue, and the second stage of this process is described here. The model operated at an hourly time-step on 17-km grid squares for a two year simulation period, and represents all the important hydrological processes including regional aquifer recharge, groundwater discharge, infiltration- and saturation-excess runoff, evapotranspiration, snowmelt, overland and channel flow. Outputs from the model are discussed, and include river discharge at gauging stations and space-time fields of evaporation and soil moisture. Whilst the model efficiency assessed by comparison of simulated and observed discharge records is not as good as could be achieved with a model calibrated against discharge, there are considerable advantages in retaining a physical basis in applications to ungauged river basins and assessments of impacts of land use or climate change.

  13. Geochemistry of bed and suspended sediment in the Mississippi river system: provenance versus weathering and winnowing.

    Science.gov (United States)

    Piper, D Z; Ludington, Steve; Duval, J S; Taylor, H E

    2006-06-01

    Stream-bed sediment for the size fraction less than 150 microm, examined in 14,000 samples collected mostly from minor tributaries to the major rivers throughout the Mississippi River drainage system, is composed of 5 mineral fractions identified by factor analysis-Al-silicate minerals, quartz, calcite and dolomite, heavy minerals, and an Fe-Mn fraction. The Al-silicate fraction parallels its distribution in the regolith, emphasizing the local sediment source as a primary control to its distribution. Quartz and the heavy-mineral fraction, and associated trace elements, exhibit a complementary distribution to that of the Al-silicate fraction, with a level of enrichment in the bed sediment that is achieved through winnowing and sorting. The carbonate fraction has a distribution suggesting its dissolution during transport. Trace elements partitioned onto the Fe-Mn, possibly amorphous oxyhydride, fraction are introduced to the streams, in part, through human activity. Except for the heavy-mineral fraction, these fractions are identified in suspended sediment from the Mississippi River itself. Although comparison of the tributary bed sediment with the riverine suspended sediment is problematic, the geochemistry of the suspended sediment seems to corroborate the interpretation of the geochemistry of the bed sediment.

  14. Effluent trading in river systems through stochastic decision-making process: a case study.

    Science.gov (United States)

    Zolfagharipoor, Mohammad Amin; Ahmadi, Azadeh

    2017-09-01

    The objective of this paper is to provide an efficient framework for effluent trading in river systems. The proposed framework consists of two pessimistic and optimistic decision-making models to increase the executability of river water quality trading programs. The models used for this purpose are (1) stochastic fallback bargaining (SFB) to reach an agreement among wastewater dischargers and (2) stochastic multi-criteria decision-making (SMCDM) to determine the optimal treatment strategy. The Monte-Carlo simulation method is used to incorporate the uncertainty into analysis. This uncertainty arises from stochastic nature and the errors in the calculation of wastewater treatment costs. The results of river water quality simulation model are used as the inputs of models. The proposed models are used in a case study on the Zarjoub River in northern Iran to determine the best solution for the pollution load allocation. The best treatment alternatives selected by each model are imported, as the initial pollution discharge permits, into an optimization model developed for trading of pollution discharge permits among pollutant sources. The results show that the SFB-based water pollution trading approach reduces the costs by US$ 14,834 while providing a relative consensus among pollutant sources. Meanwhile, the SMCDM-based water pollution trading approach reduces the costs by US$ 218,852, but it is less acceptable by pollutant sources. Therefore, it appears that giving due attention to stability, or in other words acceptability of pollution trading programs for all pollutant sources, is an essential element of their success.

  15. Dam busy: beavers and their influence on the structure and function of river systems

    Science.gov (United States)

    Larsen, J.; Larsen, A.; Lane, S. N.

    2017-12-01

    Beavers (Castor fiber, Castor canadensis) are the most influential mammalian ecosystem engineer, heavily modifying rivers and floodplains and influencing the hydrology, geomorphology, carbon and nutrient cycling, and ecology. They do this by constructing dams, digging canals and burrows, felling trees and introducing wood into streams, which in turn impounds water, raises shallow water tables, and alters the partitioning of the water balance, sediment transport and channel patters, biogeochemical cycling, and aquatic and terrestrial habitats. However, largely in the absence of predators, beaver numbers have been rapidly increasing throughout Europe since the 1980s, but also in parts of the US and South America, prompting a need to comprehensively review the current state of knowledge on how beavers influence the structure and function of river systems. Here, we synthesize the overall impacts on hydrology, geomorphology, biogeochemistry, and aquatic and terrestrial ecosystems. We then examine the key feedbacks and overlaps between these changes induced by beavers, finding that modifications to the longitudinal connectivity drive many key process feedbacks. However, the magnitude of these feedbacks is also heavily dependent on the landscape and climatic context, with the ability to promote lateral connectivity determining the extent of beaver impacts as stream order increases. Crucially, beavers shape a river corridor, introducing distinct processes and feedbacks that would have existed prior to the historical collapse of beaver populations. There is thus a need to adapt current river management and restoration practices such that they can accommodate and enhance the ecosystem engineering services provided by beavers. We summarize key knowledge gaps that remain in our understanding of beaver impacts, which help map an interdisciplinary future research agenda.

  16. A topological system for delineation and codification of the Earth's river basins

    Science.gov (United States)

    Verdin, K.L.; Verdin, J.P.

    1999-01-01

    A comprehensive reference system for the Earth's river basins is proposed as a support to fiver basin management, global change research, and the pursuit of sustainable development. A natural system for delineation and codification of basins is presented which is based upon topographic control and the topology of the fiver network. These characteristics make the system well suited for implementation and use with digital elevation models (DEMs) and geographic information systems. A demonstration of these traits is made with the 30-arcsecond GTOPO30 DEM for North America. The system has additional appeal owing to its economy of digits and the topological information that they carry. This is illustrated through presentation of comparisons with USGS hydrologic unit codes and demonstration of the use of code numbers to reveal dependence or independence of water use activities within a basin.

  17. Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel

    Science.gov (United States)

    Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung

    2017-04-01

    The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.

  18. Evidence of the St. Clair-Detroit River system as a dispersal corridor and nursery habitat for transient larval burbot

    Science.gov (United States)

    McCullough, Darrin E.; Roseman, Edward F.; Keeler, Kevin M.; DeBruyne, Robin L.; Pritt, Jeremy J.; Thompson, Patricia A.; Ireland, Stacey A.; Ross, Jason E.; Bowser, Dustin; Hunter, Robert D.; Castle, Dana Kristina; Fischer, Jason; Provo, Stacy A.

    2015-01-01

    Burbot Lota lota are distributed across the Laurentian Great Lakes where they occupy a top piscivore role. The St. Clair-Detroit River System is known to provide a migration corridor as well as spawning and nursery habitat for many indigenous fishes of economic and ecological significance. However, knowledge is scant of the early life history of burbot and the importance of this system in their dispersal, survival, and recruitment. In order to assess the role of the St. Clair-Detroit River System to burbot ecology, we collected larval burbot during ichthyoplankton surveys in this system from 2010 to 2013 as part of a habitat restoration monitoring program. More and larger burbot larvae were found in the St. Clair River than in the lower Detroit River, although this may be due to differences in sampling methods between the two rivers. Consistent with existing studies, larval burbot exhibited ontogenesis with a distinct transition from a pelagic zooplankton-based diet to a benthic macroinvertebrate-based diet. Our results demonstrate that the St. Clair-Detroit Rivers provide food resources, required habitat, and a migration conduit between the upper and lower Great Lakes, but the contribution of these fish to the lower lakes requires further examination.

  19. Urban metabolism and river systems: an historical perspective – Paris and the Seine, 1790–1970

    Directory of Open Access Journals (Sweden)

    S. Barles

    2007-11-01

    Full Text Available The aim of this paper is to analyse metabolic interaction between Paris and the Seine during the industrial era, 1790–1970, a period marked by strong population growth, technological changes, and the absence of specific legislation on environmental issues. The viewpoint focuses on exchanges of waters and wastes between city and river, quantifying them and tracing their evolution in the light of the strategies implemented by the stakeholders in charge. The study combines industrial ecology, local history and the history of technology. From 1790 to 1850, waste matters, and especially excreta, were considered as raw materials, not refuse: they generated real profits. The removal of human excreta aimed not only at improving urban hygiene, but at producing the fertilizers needed in rural areas. Discharging them into the river was out of the question. But after the 1860s, several factors upset this exploitation, notably domestic water supply: night soil became more and more liquid, difficult to handle and to turn into fertilizer; once utilised, the water had to be removed from the house; at the same time, the sewerage system developed and had negative impacts on the river. Even so, Parisian engineers continued to process sewage using techniques that would not only ensure hygiene but also conciliate economic and agricultural interests: combined sewerage system and sewage farms. Both of these early periods are thus noteworthy for a relative limitation of the river's deterioration by urban wastes. Not until the 1920s, when domestic water supply had become the standard and excreta came to be considered as worthless waste, was the principle of valorisation abandoned. This led to important and long-lasting pollution of the Seine (despite the construction of a treatment plant, aggravating the industrial pollution that had been in evidence since the 1840s. Analysing the priorities that led to the adoption of one principle or another in matters of urban

  20. Long term prospective of the Seine River system: Confronting climatic and direct anthropogenic changes

    International Nuclear Information System (INIS)

    Ducharne, A.; Baubion, C.; Beaudoin, N.; Benoit, M.; Billen, G.; Brisson, N.; Garnier, J.; Kieken, H.; Lebonvallet, S.; Ledoux, E.; Mary, B.; Mignolet, C.; Poux, X.; Sauboua, E.; Schott, C.; Thery, S.; Viennot, P.

    2007-01-01

    To explore the evolution of a human impacted river, the Seine (France), over the 21st century, three driving factors were examined: climate, agriculture, and point source inputs of domestic and industrial origin. Three future scenarios were constructed, by modification of a baseline representative of recent conditions. A climate change scenario, based on simulations by a general circulation model driven by the SRES-A2 scenario of radiative forcing, accounts for an average warming of + 3.3 deg. C over the watershed and marked winter increase and summer decrease in precipitation. To illustrate a possible reduction in nitrate pollution from agricultural origin, a scenario of good agricultural practices was considered, introducing catch crops and a 20% decrease in nitrogen fertilisation. Future point source pollution was estimated following the assumptions embedded in scenario SRES-A2 regarding demographic, economic and technologic changes, leading to reductions of 30 to 75% compared to 2000, depending on the pollutants. Four models, addressing separate components of the river system (agronomical model, hydrogeological model, land surface model and water quality model), were used to analyse the relative impact of these scenarios on water quality, in light of their impact on hydrology and crop production. The first-order driving factor of water quality over the 21st century is the projected reduction of point source pollution, inducing a noticeable decrease in eutrophication and oxygen deficits downstream from Paris. The impact of climate change on these terms is driven by the warming of the water column. It enhances algal growth in spring and the loss factors responsible for phytoplankton mortality in late summer (grazers and viruses). In contrast, increased seasonal contrasts in river discharge have a negligible impact on river water quality, as do the changes in riverine nitrate concentration, which never gets limiting. The latter changes have a similar magnitude

  1. Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems – concepts, emerging trends, and research challenges

    Directory of Open Access Journals (Sweden)

    J.-H. Park

    2018-05-01

    Full Text Available Human activities are drastically altering water and material flows in river systems across Asia. These anthropogenic perturbations have rarely been linked to the carbon (C fluxes of Asian rivers that may account for up to 40–50 % of the global fluxes. This review aims to provide a conceptual framework for assessing the human impacts on Asian river C fluxes, along with an update on anthropogenic alterations of riverine C fluxes. Drawing on case studies conducted in three selected rivers (the Ganges, Mekong, and Yellow River and other major Asian rivers, the review focuses on the impacts of river impoundment and pollution on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia and Oceania. A critical examination of major conceptual models of riverine processes against observed trends suggests that to better understand altered metabolisms and C fluxes in anthropogenic land-water-scapes, or riverine landscapes modified by human activities, the traditional view of the river continuum should be complemented with concepts addressing spatial and temporal discontinuities created by human activities, such as river impoundment and pollution. Recent booms in dam construction on many large Asian rivers pose a host of environmental problems, including increased retention of sediment and associated C. A small number of studies that measured greenhouse gas (GHG emissions in dammed Asian rivers have reported contrasting impoundment effects: decreased GHG emissions from eutrophic reservoirs with enhanced primary production vs. increased emissions from the flooded vegetation and soils in the early years following dam construction or from the impounded reaches and downstream estuaries during the monsoon period. These contrasting results suggest that the rates of metabolic processes in the impounded and downstream reaches can vary greatly longitudinally

  2. Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems - concepts, emerging trends, and research challenges

    Science.gov (United States)

    Park, Ji-Hyung; Nayna, Omme K.; Begum, Most S.; Chea, Eliyan; Hartmann, Jens; Keil, Richard G.; Kumar, Sanjeev; Lu, Xixi; Ran, Lishan; Richey, Jeffrey E.; Sarma, Vedula V. S. S.; Tareq, Shafi M.; Xuan, Do Thi; Yu, Ruihong

    2018-05-01

    Human activities are drastically altering water and material flows in river systems across Asia. These anthropogenic perturbations have rarely been linked to the carbon (C) fluxes of Asian rivers that may account for up to 40-50 % of the global fluxes. This review aims to provide a conceptual framework for assessing the human impacts on Asian river C fluxes, along with an update on anthropogenic alterations of riverine C fluxes. Drawing on case studies conducted in three selected rivers (the Ganges, Mekong, and Yellow River) and other major Asian rivers, the review focuses on the impacts of river impoundment and pollution on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia and Oceania. A critical examination of major conceptual models of riverine processes against observed trends suggests that to better understand altered metabolisms and C fluxes in anthropogenic land-water-scapes, or riverine landscapes modified by human activities, the traditional view of the river continuum should be complemented with concepts addressing spatial and temporal discontinuities created by human activities, such as river impoundment and pollution. Recent booms in dam construction on many large Asian rivers pose a host of environmental problems, including increased retention of sediment and associated C. A small number of studies that measured greenhouse gas (GHG) emissions in dammed Asian rivers have reported contrasting impoundment effects: decreased GHG emissions from eutrophic reservoirs with enhanced primary production vs. increased emissions from the flooded vegetation and soils in the early years following dam construction or from the impounded reaches and downstream estuaries during the monsoon period. These contrasting results suggest that the rates of metabolic processes in the impounded and downstream reaches can vary greatly longitudinally over time as a

  3. Natural equilibria and anthropic effects on sediment transport in big river systems: The Nile case

    Science.gov (United States)

    Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Vezzoli, Giovanni; Villa, Igor

    2014-05-01

    knowledge of the Nile sediment system not only has wide paleoclimatic, paleoceanographic and archaeological implications, including a better understanding of Quaternary environmental changes in northern Africa, water circulation and sapropel development in the Mediterranean Sea, and impact on the Egyptian civilization by natural phenomena, but is also strongly needed to mitigate undesirable impacts of human activities on natural equilibria and to improve watershed, reservoir and coastal management. Mineralogical data (Shukri, 1950) integrated by new petrographic, heavy-mineral and geochemical analyses (Padoan et al., 2011) show how sediments derived from Archean gneisses exposed through northern Uganda and from Panafrican basements drained by Ethiopian tributaries of River Sobat become progressively enriched in quartz at the expense of unstable components across the Sudd and Machar Marshes (grey shaded area). Petrographic, mineralogical, and isotopic signatures are gradually homogenized along both the Bahr el Jebel/Bahr ez Zeraf and the Sobat and remain finally unchanged down to Khartoum, which suggests massive sediment dumping in the marshes. This explains why White Nile sediment contribution to the main Nile downstream Khartoum is virtually negligible (Garzanti et al., 2006). Garzanti, E., Andò, S., Vezzoli, G., Abdel Megid, A.A., El Kammar, A., 2006. Petrology of Nile River sands (Ethiopian and Sudan): sediment budgets and erosion patterns. Earth Planet. Sci. Lett., 252, 327-341. Padoan, M., Garzanti, E., Harlavan, Y., Villa, I.M., 2011. Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochim. Cosmochim. Acta, 75, 3627-3644. Said, R., 1993. The River Nile, Oxford, Pergamon, 1993, 320 p. Shukri, N.M., 1950. The mineralogy of some Nile sediments. Quart. J. Geol. Soc. London, 105, 511-534. Williams, M.A.J., Faure, H., 1980. The Sahara and the Nile. Balkema, Rotterdam. Woodward, J.C., Macklin, M.G., Krom, M.D., Williams, M.A.J., 2007

  4. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  5. Trace metal distributions in the sediments from river-reservoir systems: case of the Congo River and Lake Ma Vallée, Kinshasa (Democratic Republic of Congo).

    Science.gov (United States)

    Mwanamoki, Paola M; Devarajan, Naresh; Niane, Birane; Ngelinkoto, Patience; Thevenon, Florian; Nlandu, José W; Mpiana, Pius T; Prabakar, Kandasamy; Mubedi, Josué I; Kabele, Christophe G; Wildi, Walter; Poté, John

    2015-01-01

    The contamination of drinking water resources by toxic metals is a major problem in many parts of the world, particularly in dense populated areas of developing countries that lack wastewater treatment facilities. The present study characterizes the recent evolution with time of some contaminants deposited in the Congo River and Lake Ma Vallée, both located in the vicinity of the large city of Kinshasa, capital of Democratic Republic of Congo (DRC). Physicochemical parameters including grain size distribution, organic matter and trace element concentrations were measured in sediment cores sampled from Congo River (n = 3) and Lake Ma Vallée (n = 2). The maximum concentration of trace elements in sediment profiles was found in the samples from the sites of Pool Malebo, with the values of 107.2, 111.7, 88.6, 39.3, 15.4, 6.1 and 4.7 mg kg(-1) for Cr, Ni, Zn, Cu, Pb, As and Hg, respectively. This site, which is characterized by intense human activities, is especially well known for the construction of numerous boats that are used for regular navigation on Congo River. Concerning Lake Ma Vallée, the concentration of all metals are generally low, with maximum values of 26.3, 53.6, 16.1, 15.3, 6.5 and 1.8 mg kg(-1) for Cr, Ni, Zn, Cu, Pb and As, respectively. However, the comparison of the metal profiles retrieved from the different sampled cores also reveals specific variations. The results of this study point out the sediment pollution by toxic metals in the Congo River Basin. This research presents useful tools for the evaluation of sediment contamination of river-reservoir systems.

  6. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    Science.gov (United States)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help

  7. Urban Floods in Lowlands—Levee Systems, Unplanned Urban Growth and River Restoration Alternative: A Case Study in Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Gomes Miguez

    2015-08-01

    Full Text Available The development of cities has always had a very close relation with water. However, cities directly impact land use patterns and greatly change natural landscapes, aggravating floods. Considering this situation, this paper intends to discuss lowland occupation and city sustainability in what regards urban stormwater management, fluvial space, and river restoration, aiming at minimizing flood risks and improving natural and built environment conditions. River plains tend to be attractive places for a city to grow. From ancient times, levees have been used to protect lowland areas along major watercourses to allow their occupation. However, urban rivers demand space for temporary flood storage. From a systemic point of view, levees along extensive river reaches act as canalization works, limiting river connectivity with flood plains, rising water levels, increasing overtopping risks and transferring floods downstream. Departing from this discussion, four case studies in the Iguaçu-Sarapuí River Basin, a lowland area of Rio de Janeiro State, Brazil, are used to compose a perspective in which the central point refers to the need of respecting watershed limits and giving space to rivers. Different aspects of low-lying city planning are discussed and analyzed concerning the integration of the built and natural environments.

  8. Assessment of flood-induced changes of phytoplankton along a river-floodplain system using the morpho-functional approach.

    Science.gov (United States)

    Mihaljević, Melita; Spoljarić, Dubravka; Stević, Filip; Zuna Pfeiffer, Tanja

    2013-10-01

    In this research, we aimed to find out how the differences in hydrological connectivity between the main river channel and adjacent floodplain influence the changes in phytoplankton community structure along a river-floodplain system. The research was performed in the River Danube floodplain (Croatian river section) in the period 2008-2009 characterised by different flooding pattern on an annual time scale. By utilising the morpho-functional approach and multivariate analyses, the flood-derived structural changes of phytoplankton were analysed. The lake stability during the isolation phase triggered the specific pattern of morpho-functional groups (MFG) which were characterised by cyanobacterial species achieving very high biomass. Adversely, the high water turbulence in the lake during the frequent and extreme flooding led to evident similarity between lake and river assemblages. Besides different diatom species (groups of small and large centrics and pennates), which are the most abundant representatives in the river phytoplankton, many other groups such as cryptophytes and colonial phytomonads appeared to indicate altered conditions in the floodplain driven by flooding. Having different functional properties, small centric diatom taxa sorted to only one MFG cannot clearly reflect environmental changes that are shown by the species-level pattern. Disadvantages in using the MFG approach highlight that it is still necessary to combine it with taxonomical approach in monitoring of phytoplankton in the river-floodplain ecosystems.

  9. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests.

    Science.gov (United States)

    Moore, David J P; Trahan, Nicole A; Wilkes, Phil; Quaife, Tristan; Stephens, Britton B; Elder, Kelly; Desai, Ankur R; Negron, Jose; Monson, Russell K

    2013-06-01

    Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km(2) valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6-7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8-10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon. © 2013 John Wiley & Sons Ltd/CNRS.

  10. Geospatial Modelling Approach for Interlinking of Rivers: A Case Study of Vamsadhara and Nagavali River Systems in Srikakulam, Andhra Pradesh

    OpenAIRE

    Swathi Lakshmi, A.; Saran, S.; Srivastav, S. K.; Krishna Murthy, Y. V. N.

    2014-01-01

    India is prone to several natural disasters such as floods, droughts, cyclones, landslides and earthquakes on account of its geoclimatic conditions. But the most frequent and prominent disasters are floods and droughts. So to reduce the impact of floods and droughts in India, interlinking of rivers is one of the best solutions to transfer the surplus flood waters to deficit/drought prone areas. Geospatial modelling provides a holistic approach to generate probable interlinking routes...

  11. The Montana Rivers Information System: Edit/entry program user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases. The purpose of this User`s Manual is to: (1) describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and (2) provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  12. Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes

    Science.gov (United States)

    Fleming, Erich D.; Prufert-Bebout, Leslie

    2010-06-01

    The Bolivian Altiplano is a harsh environment for life with high solar irradiation (visible and UVR), below freezing temperatures, and some of the lowest precipitation rates on the planet. However, microbial life is visibly abundant in small isolated refugia of spring or snowmelt-fed lakes. In this study, we characterized the cyanobacterial composition of a variety of microbial mats present in three lake systems: Laguna Blanca, Laguna Verde (elevation 4300 m), and a summit lake in the Licancabur Volcano cone (elevation 5970 m). These lakes and their adjacent geothermal springs present an interesting diversity of environments within a geographically small region (5 km2). From these sites, 78 cyanobacterial cultures were isolated in addition to ˜400 cyanobacterial 16S rRNA gene sequences from environmental genomic DNA. Based on microscopy, cultivation, and molecular analyses, these communities contained many heterocytous, nitrogen-fixing cyanobacteria (e.g., Calothrix, Nostoc, Nodularia) as well as a large number of cyanobacteria belonging to the form-genus Leptolyngbya. More than a third (37%) of all taxa in this study were new species (≤96% 16S rRNA gene sequence identity), and 11% represented new and novel taxa distantly related (≤93% identity) to any known cyanobacteria. This is one of the few studies to characterize cyanobacterial communities based on both cultivation-dependent and cultivation-independent analyses.

  13. Formation and maintenance of single-thread tie channels entering floodplain lakes: Observations from three diverse river systems

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.; Parker, G.

    2009-06-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology; yet they are generally unrecognized and little studied. Here we report the results of field studies focused on tie channel origin and morphodynamics in the following three contrasting systems: the Middle Fly River (Papua New Guinea), the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed, single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V-shaped cross section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bidirectional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  14. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Joel C [Los Alamos National Laboratory; Dietrich, William E [UC BERKELEY; Day, Geoff [NEWCREST MINING; Parker, Gary [UNIV OF ILLINOIS

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  15. River Stream-Flow and Zayanderoud Reservoir Operation Modeling Using the Fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Saeed Jamali

    2007-12-01

    Full Text Available The Zayanderoud basin is located in the central plateau of Iran. As a result of population increase and agricultural and industrial developments, water demand on this basin has increased extensively. Given the importance of reservoir operation in water resource and management studies, the performance of fuzzy inference system (FIS for Zayanderoud reservoir operation is investigated in this paper. The model of operation consists of two parts. In the first part, the seasonal river stream-flow is forecasted using the fuzzy rule-based system. The southern oscillated index, rain, snow, and discharge are inputs of the model and the seasonal river stream-flow its output. In the second part, the operation model is constructed. The amount of releases is first optimized by a nonlinear optimization model and then the rule curves are extracted using the fuzzy inference system. This model operates on an "if-then" principle, where the "if" is a vector of fuzzy permits and "then" is the fuzzy result. The reservoir storage capacity, inflow, demand, and year condition factor are used as permits. Monthly release is taken as the consequence. The Zayanderoud basin is investigated as a case study. Different performance indices such as reliability, resiliency, and vulnerability are calculated. According to results, FIS works more effectively than the traditional reservoir operation methods such as standard operation policy (SOP or linear regression.

  16. Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Van Huong

    2018-02-01

    Full Text Available Integrated Agriculture Aquaculture (IAA is characteristic with diversity of small-scale production systems in the Red River Delta, Vietnam where most integrated aquaculture systems are closely associated to the VAC model, an ecosystem production that three components: garden (V, pond (A and livestock pen (C are integrated. These VAC systems effectively use all the available land, air, water and solar energy resources, and also effectively recycle by-products and waste for providing diversified agricultural products to meet the complex nutritional demands of rural communities. The IAA systems are dynamic, diverse and subject to economic and environmental changes. By investigating 167 aquaculture households, the traditional VAC, New VAC, Animal Fish (AF and Commercial Fish (FS systems are identified as four existing IAA systems. This paper presents the main characteristics and economic efficiency of these IAA systems. The study’s results indicate clear evidence that the traditional VAC system and New VAC system are the most efficient and effective models. The findings of this study have shed light on the important role of integrated aquaculture systems to food security and economic development of households and local communities. The VAC systems are likely to propose for improving household food security and developing the local economy.

  17. The Dnieper River Aquatic System Radioactive Contamination; Long-tern Natural Attenuation And Remediation History

    Science.gov (United States)

    Voitsekhovych, Oleg; Laptev, Genadiy; Kanivets, Vladimir; Konoplev, Alexey

    2013-04-01

    Near 27 year passed after the Chernobyl Accident, and the experience gained to study radionuclide behavior in the aquatic systems and to mitigate water contamination are still pose of interest for scientists, society and regulatory austerities. There are different aspects of radionuclide transport in the environment were studied since the Chernobyl fallout in 1986 covered the river catchments, wetlands, river, lakes/reservoirs and reached the Black Sea. The monitoring time series data set and also data on the radionuclides behavior studies in the water bodies (river, lakes and the Black Sea) are available now in Ukraine and other affected countries. Its causation analyses, considering the main geochemical, physical and chemical and hydrological process, governing by radionuclide mobility and transport on the way from the initially contaminated catchments, through the river-reservoir hydrological system to the Black Sea can help in better understanding of the main factors governing be the radionuclide behavior in the environment. Radionuclide washout and its hydrological transport are determined speciation of radionuclides as well as soil types and hydrological mode and also geochemistry and landscape conditions at the affected areas. Mobility and bioavailability of radionuclides are determined by ratio of radionuclide chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solid-liquid distribution). In many cases the natural attenuation processes governing by the above mentioned processes supported by water flow transportation and sedimentation played the key role in self-rehabilitation of the aquatic ecosystems. The models developed during post-Chernobyl decade and process parameters studies can help in monitoring and remediation programs planed for Fukusima Daichi affected watersheds areas as well. Some most important monitoring data

  18. Decision support system based on DPSIR framework for a low flow Mediterranean river basin

    Science.gov (United States)

    Bangash, Rubab Fatima; Kumar, Vikas; Schuhmacher, Marta

    2013-04-01

    The application of decision making practices are effectively enhanced by adopting a procedural approach setting out a general methodological framework within which specific methods, models and tools can be integrated. Integrated Catchment Management is a process that recognizes the river catchment as a basic organizing unit for understanding and managing ecosystem process. Decision support system becomes more complex by considering unavoidable human activities within a catchment that are motivated by multiple and often competing criteria and/or constraints. DPSIR is a causal framework for describing the interactions between society and the environment. This framework has been adopted by the European Environment Agency and the components of this model are: Driving forces, Pressures, States, Impacts and Responses. The proposed decision support system is a two step framework based on DPSIR. Considering first three component of DPSIR, Driving forces, Pressures and States, hydrological and ecosystem services models are developed. The last two components, Impact and Responses, helped to develop Bayesian Network to integrate the models. This decision support system also takes account of social, economic and environmental aspects. A small river of Catalonia (Northeastern Spain), Francoli River with a low flow (~2 m3/s) is selected for integration of catchment assessment models and to improve knowledge transfer from research to the stakeholders with a view to improve decision making process. DHI's MIKE BASIN software is used to evaluate the low-flow Francolí River with respect to the water bodies' characteristics and also to assess the impact of human activities aiming to achieve good water status for all waters to comply with the WFD's River Basin Management Plan. Based on ArcGIS, MIKE BASIN is a versatile decision support tool that provides a simple and powerful framework for managers and stakeholders to address multisectoral allocation and environmental issues in river

  19. Upriver transport of dissolved substances in an estuary and sub-estuary system of the lower James River, Chesapeake Bay

    Science.gov (United States)

    Hong, Bo; Shen, Jian; Xu, Hongzhou

    2018-01-01

    The water exchange between the James River and the Elizabeth River, an estuary and sub-estuary system in the lower Chesapeake Bay, was investigated using a 3D numerical model. The conservative passive tracers were used to represent the dissolved substances (DS) discharged from the Elizabeth River. The approach enabled us to diagnose the underlying physical processes that control the expansion of the DS, which is representative of potential transport of harmful algae blooms, pollutants from the Elizabeth River to the James River without explicitly simulating biological processes. Model simulations with realistic forcings in 2005, together with a series of processoriented numerical experiments, were conducted to explore the correlations of the transport process and external forcing. Model results show that the upriver transport depends highly on the freshwater discharge on a seasonal scale and maximum upriver transport occurs in summer with a mean transport time ranging from 15-30 days. The southerly/easterly wind, low river discharge, and neap tidal condition all act to strengthen the upriver transport. On the other hand, the northerly/westerly wind, river pulse, water level pulse, and spring tidal condition act to inhibit the upriver transport. Tidal flushing plays an important role in transporting the DS during spring tide, which shortens the travel time in the lower James River. The multivariable regression analysis of volume mean subtidal DS concentration in the mesohaline portion of the James River indicates that DS concentration in the upriver area can be explained and well predicted by the physical forcings (r = 0.858, p = 0.00001).

  20. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    Science.gov (United States)

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  1. Integrated and Sustainable Water Management of Red-Thai Binh Rivers System Under Change

    Science.gov (United States)

    Giuliani, M.; Anghileri, D.; Castelletti, A.; Mason, E.; Micotti, M.; Soncini-Sessa, R.; Weber, E.

    2014-12-01

    Vietnam is currently undergoing a rapid economic and demographic development, characterized by internal migrations from the rural areas to the main cities with increasing water demands to guarantee adequate energy and food productions. Hydropower is the primary renewable energy resource in the country, accounting for 33% of the total electric power production, while agriculture contributes for 18% of the national GDP and employs 70% of the population. To cope with this heterogeneous and fast-evolving context, water resources development and management have to be reconsidered by enlarging their scope across sectors and by adopting effective tools to analyze the potential of current and projected infrastructure along with their operating strategies. This work contributes a novel decision-analytic framework based on Multi-Objective Evolutionary Direct Policy Search (MOE-DPS) to support the design of integrated and sustainable water resources management strategies in the Red-Thai Binh River system. The Red River Basin is the second largest basin of Vietnam, with a total area of about 169,000 km2, and comprises three main tributaries and several reservoirs, namely SonLa and HoaBinh on the Da River, ThacBa and TuyenQuang on the Lo River. These reservoirs are regulated for maximizing hydropower production, mitigating flood primarily in Hanoi, and guaranteeing irrigation water supply to the agricultural districts in the delta. The dimensionality of the system and the number of objectives involved increase the complexity of the problem. We address these challenges by combining the MOE-DPS framework with Gaussian radial basis functions policy approximation and the Borg MOEA, which have been demonstrated to guarantee good solutions quality in such many objective policy design problems. Results show that the proposed framework successfully identified alternative management strategies for the system, which explore different tradeoffs among the multi-sector services involved

  2. Variation in stable isotopes of freshwater mussel shells in a Kentucky river system

    Science.gov (United States)

    Erhardt, A. M.; Haag, W.; Price, S.; Weisrock, D.

    2017-12-01

    Isotopic signatures in freshwater mussel shells can reflect environmental differences among streams and human impacts on river systems. In the southeastern United States, mussels exhibit extraordinary biodiversity, serve an important role as filter feeders, and are sensitive to environmental change. Additionally, their long life-span (up to 50 years) and seasonal shell deposition can permit high-resolution environmental reconstructions. We examined variation in shell stable isotope values among mussel species and locations throughout the Licking River system in Kentucky. We sampled 8 species at 11 locations. These species represented a range of life-history traits, and locations were distributed among tributaries and the main stem of the Licking River. Samples of the outer organic periostracum layer were analysed for organic δ13C and δ15N, while organic δ15N and inorganic δ13C and δ18O were measured in the inner carbonate portion of the shell. At the same location, preliminary results show variations 2‰ in δ13C and 1‰ in δ15N between different species. We suspect these relationships are due to variations in diet and/or body size. Some, though not all, specimens show variation along the growth axis. For the same species at different locations, preliminary results showed a range of 4‰ in δ13C and 10‰ in δ15N values. Isotope ratios of specimens from the main stem were distinct from those of specimens from the river's largest tributary. Overall, δ13C shows distinct values for each tributary, while δ15N shows a general decline downstream. These variations are likely the result of environmental factors such as the degree of karstification and the ratio of forest to pasture within the catchment. We hope to use this study to identify if any isotopically distinct sources, such as fertilizers or animal manure, contribute to the high nutrient load in these systems. These results represent an exploratory effort to describe watershed-scale and mussel

  3. Neogene palaeochannel deposits in Sudan - Remnants of a trans-Saharan river system?

    Science.gov (United States)

    Bussert, Robert; Eisawi, Ali A. M.; Hamed, Basher; Babikir, Ibrahim A. A.

    2018-05-01

    The start of Nile-type trans-Saharan drainage systems in NE Africa during the Cenozoic is disputed. Stratigraphical and sedimentological data in Egypt are partly in conflict with the uplift history of potential source areas of water and sediment in East Africa. Here, we investigate outcrops of the Wadi Awatib Conglomerate in Sudan that provide the first evidence of northerly flowing Neogene rivers in the region. Dimension and relief of basal erosion surfaces, overall geometry of deposits and palaeocurrent indicators demonstrate that the deposits represent the fill of northward-oriented incised valleys. The conglomerates were deposited in deep gravel-bed rivers, by hyperconcentrated flows, tractions carpets and gravel bars, primarily during heavily sediment-laden floods of probably monsoonal origin. Stratigraphical and geomorphological relationships show that the deposits are between Eocene and Pliocene in age. Considering the structural history of the region and periods in the Cenozoic with palaeoclimatic conditions suitable for the production and transport of gravels, we hypothesize that the dramatic base-level fall during the Late Miocene Messinian salinity crisis in combination with a favorable palaeoclimate caused the incision of valleys and their subsequent filling with conglomerates. Sea-level change in the Mediterranean Sea and headward erosion of streams that were connected to the Egyptian Nile might have been the primary cause of valley incision and deposition of conglomerates, despite a location far inland from the coastline. We suggest that the deposits document a relatively young Neogene (Messinian to early Pliocene) trans-Saharan river system unrelated to uplift of the Ethiopian Plateau.

  4. National-local land-use conflicts in floodways of the Mississippi River system

    Directory of Open Access Journals (Sweden)

    G Mathias Kondolf

    2018-02-01

    Full Text Available Conflicts between national and local governments over land use in floodplains have been well documented in the US and elsewhere. The US National Flood Insurance Program offers subsidized flood insurance to communities that agree to prevent further development in floodplains, but the requirements are poorly enforced and local governments are commonly reluctant to restrain development on flood-prone lands. In this paper we highlight this problem in particularly sensitive areas: the floodways (or flood bypasses that are essential components of the Mississippi River flood control system. To properly operate the flood control system, the US Army Corps of Engineers must be able to divert flow from the mainstem Mississippi into the bypasses, thereby lowering stage in the main river, and thus minimizing flooding of cities and other vulnerable areas. However, operation of the Birds-Point-New Madrid Floodway in Missouri was compromised in 2011 by local opposition (and a legal challenge ultimately rejected by the US Supreme Court, and it was finally used to accommodate floodwaters. The West Atchafalaya Floodway in Louisiana experienced a threefold increase in the number of structures within the floodway from about 1970 to 2010. Because of the pattern of flooding, the West Atchafalaya Floodway was not needed in 2011, but if it is needed in the future, its operation may be compromised by the extensive encroachments within the floodway. Thus, operation of critical national infrastructure, designed to deal with floods on an interstate, river-basin scale, is compromised by land-use decisions made at the local level.

  5. Carbonate system and nutrients in the Pearl River estuary, China: Seasonal and inter-annual variations

    Science.gov (United States)

    Guo, X.

    2017-12-01

    Located in southern China and surrounded by several metropolis, the Pearl River estuary is a large subtropical estuary under significant human perturbation. We examined the impact of sewage treatment rate on the water environmental factors. Carbonate system parameters (Dissolved inorganic carbon or DIC, Total alkalinity or TA, and pH), and nutrients were surveyed in the Pearl River estuary from 2000 to 2015. Spatially, concentrations of nutrients were high at low salinity and decreased with salinity in both wet and dry seasons although seasonal variation occurred. However, distribution patterns of DIC and TA differed in wet and dry seasons. In wet season, both DIC and TA were low at low salinity (600-1500 umol kg-1) and increased with salinity, but in dry season they were high at low salinity (3000-3500 umol kg-1) and decreased with salinity. Compared with the years before 2010, both values and distribution patterns of DIC, TA and pH were similar among the years in wet season, but they were conspicuously different in the upper estuary in dry season. Both DIC and TA were more than 1000 umol kg-1 lower than those in the years before 2010. For nutrients at low salinity, the ammonia concentration was much lower in the years after 2010 (200 vs. 400 umol kg-1 in wet season and 400 vs. 800 umol kg-1 in dry season), but nitrate concentration was slightly higher (180 vs 120 mmol kg-1 in wet season and 200 vs 180 mmol kg-1 in dry season). As a reference, carbonate system parameters and nutrients were stable among the 16 years in the adjacent northern South China Sea. The variations in biogeochemical processes induced by nutrients concentration and structure as a result of sewage discharge will be discussed in detail. The decrease in DIC, TA and nutrients in the upper Pearl River estuary after 2010 was due mainly to the improvement of sewage treatment rate and capacity.

  6. Invasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem.

    Science.gov (United States)

    McKinney, Shawn T; Fiedler, Carl E; Tomback, Diana F

    2009-04-01

    Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's Nutcracker (Nucifraga columbiana) for dispersal of its large, wingless seeds. Clark's Nutcracker, a facultative mutualist with whitebark pine, is sensitive to rates of energy gain, and emigrates from subalpine forests during periods of cone shortages. The invasive fungal pathogen Cronartium ribicola, which causes white pine blister rust, reduces whitebark pine cone production by killing cone-bearing branches and trees. Mortality from blister rust reaches 90% or higher in some whitebark pine forests in the Northern Rocky Mountains, USA, and the rust now occurs nearly rangewide in whitebark pine. Our objectives were to identify the minimum level of cone production necessary to elicit seed dispersal by nutcrackers and to determine how cone production is influenced by forest structure and health. We quantified forest conditions and ecological interactions between nutcrackers and whitebark pine in three Rocky Mountain ecosystems that differ in levels of rust infection and mortality. Both the frequency of nutcracker occurrence and probability of seed dispersal were strongly related to annual whitebark pine cone production, which had a positive linear association with live whitebark pine basal area, and negative linear association with whitebark pine tree mortality and rust infection. From our data, we estimated that a threshold level of approximately 1000 cones/ha is needed for a high likelihood of seed dispersal by nutcrackers (probability > or = 0.7), and that this level of cone production can be met by forests with live whitebark pine basal area > 5.0 m2/ha. The risk of mutualism disruption is greatest in northern

  7. Developing and testing temperature models for regulated systems: a case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-01-01

    well; the HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = −4.1 to −10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77–0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.

  8. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-11-01

    HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = -4.1 to -10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77-0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.

  9. Meteorological conditions associated to high sublimation amounts in semiarid high-elevation Andes decrease the performance of empirical melt models

    Science.gov (United States)

    Ayala, Alvaro; Pellicciotti, Francesca; MacDonell, Shelley; McPhee, James; Burlando, Paolo

    2015-04-01

    Empirical melt (EM) models are often preferred to surface energy balance (SEB) models to calculate melt amounts of snow and ice in hydrological modelling of high-elevation catchments. The most common reasons to support this decision are that, in comparison to SEB models, EM models require lower levels of meteorological data, complexity and computational costs. However, EM models assume that melt can be characterized by means of a few index variables only, and their results strongly depend on the transferability in space and time of the calibrated empirical parameters. In addition, they are intrinsically limited in accounting for specific process components, the complexity of which cannot be easily reconciled with the empirical nature of the model. As an example of an EM model, in this study we use the Enhanced Temperature Index (ETI) model, which calculates melt amounts using air temperature and the shortwave radiation balance as index variables. We evaluate the performance of the ETI model on dry high-elevation sites where sublimation amounts - that are not explicitly accounted for the EM model - represent a relevant percentage of total ablation (1.1 to 8.7%). We analyse a data set of four Automatic Weather Stations (AWS), which were collected during the ablation season 2013-14, at elevations between 3466 and 4775 m asl, on the glaciers El Tapado, San Francisco, Bello and El Yeso, which are located in the semiarid Andes of central Chile. We complement our analysis using data from past studies in Juncal Norte Glacier (Chile) and Haut Glacier d'Arolla (Switzerland), during the ablation seasons 2008-09 and 2006, respectively. We use the results of a SEB model, applied to each study site, along the entire season, to calibrate the ETI model. The ETI model was not designed to calculate sublimation amounts, however, results show that their ability is low also to simulate melt amounts at sites where sublimation represents larger percentages of total ablation. In fact, we

  10. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    Science.gov (United States)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  11. Nutrient fluctuations in the Quatipuru river: A macrotidal estuarine mangrove system in the Brazilian Amazonian basin

    Science.gov (United States)

    Pamplona, Fábio Campos; Paes, Eduardo Tavares; Nepomuceno, Aguinaldo

    2013-11-01

    The temporal and spatial variability of dissolved inorganic nutrients (NO3-, NO2-, NH4+, PO43- and DSi), total nitrogen (TN), total phosphorus (TP), nutrient ratios, suspended particulate matter (SPM) and Chlorophyll-a (Chl-a) were evaluated for the macrotidal estuarine mangrove system of the Quatipuru river (QUATIES), east Amazon coast, North Brazil. Temporal variability was assessed by fortnightly sampling at a fixed station within the middle portion of the estuary, from November 2009 to November 2010. Spatial variability was investigated from two field surveys conducted in November 2009 (dry season) and May 2010 (rainy season), along the salinity gradient of the system. The average DIN (NO3- + NO2- + NH4+) concentration of 9 μM in the dry season was approximately threefold greater in comparison to the rainy season. NH4+ was the main form of DIN in the dry season, while NO3- predominated in the rainy season. The NH4+ concentrations in the water column during the dry season are largely attributed to release by tidal wash-out of the anoxic interstitial waters of the surficial mangrove sediments. On the other hand, the higher NO3- levels during the wet season, suggested that both freshwater inputs and nitrification processes in the water column acted in concert. The river PO43- concentrations (DIP mangrove forests also played a relevant role as a nutrient source as established by the high variability of the nutrient behaviour along the estuarine gradient, consequently affecting the productivity in QUATIES.

  12. Grey fuzzy optimization model for water quality management of a river system

    Science.gov (United States)

    Karmakar, Subhankar; Mujumdar, P. P.

    2006-07-01

    A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.

  13. Adaptation potential to climate change of the Peribonka River (Quebec, Canada) water resources system

    International Nuclear Information System (INIS)

    Minville, M.; Krau, S.; Brissette, F.; Leconte, R.

    2008-01-01

    This study investigated the influence of climatic change on the Peribonka water resources system. The impacts of climatic change on hydroelectric power reservoir operations in the region were assessed using a set of operating rules optimized for future hydrological regimes. Thirty climate change projections from 5 climate models, 2 greenhouse gas (GHG) scenarios, and 3 temporal horizons were used in the study. Climatic change projections were then downscaled using the Delta approach and coupled to a stochastic weather generator developed to account for natural variabilities in local climates. A lumped hydrological model was used to simulate future hydrological regimes. A stochastic dynamic programming technique was then used to optimize reservoir operating rules for various time series of future river flows. The operating rules were then used in conjunction with a river system simulation tool in order to determine reservoir and hydroelectric production scenarios under different climatic change regimes. Results of the study showed significant increases in hydroelectricity production for most of the climate change projections. However, nonproductive spillage was also increased. Reservoir reliability was also reduced. tabs., figs

  14. A stochastic conflict resolution model for trading pollutant discharge permits in river systems.

    Science.gov (United States)

    Niksokhan, Mohammad Hossein; Kerachian, Reza; Amin, Pedram

    2009-07-01

    This paper presents an efficient methodology for developing pollutant discharge permit trading in river systems considering the conflict of interests of involving decision-makers and the stakeholders. In this methodology, a trade-off curve between objectives is developed using a powerful and recently developed multi-objective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The best non-dominated solution on the trade-off curve is defined using the Young conflict resolution theory, which considers the utility functions of decision makers and stakeholders of the system. These utility functions are related to the total treatment cost and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. Finally, an optimization model provides the trading discharge permit policies. The practical utility of the proposed methodology in decision-making is illustrated through a realistic example of the Zarjub River in the northern part of Iran.

  15. CO2 Outgassing from an Urbanized River System Fueled by Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Yoon, Tae Kyung; Jin, Hyojin; Begum, Most Shirina; Kang, Namgoo; Park, Ji-Hyung

    2017-09-19

    Continuous underway measurements were combined with a basin-scale survey to examine human impacts on CO 2 outgassing in a highly urbanized river system in Korea. While the partial pressure of CO 2 (pCO 2 ) was measured at 15 sites using syringe equilibration, 3 cruises employing an equilibrator were done along a 30 km transect in the Seoul metropolitan area. The basin-scale survey revealed longitudinal increases in surface water pCO 2 and dissolved organic carbon (DOC) in the downstream reach. Downstream increases in pCO 2 , DOC, fluorescence index, and inorganic N and P reflected disproportionately large contributions from wastewater treatment plant (WWTP) effluents carried by major urban tributaries. Cruise transects exhibited strong localized peaks of pCO 2 up to 13 000 μatm and 13 CO 2 enrichment along the confluences of tributaries at an average flow, whereas CO 2 pulses were dampened by increased flow during the monsoon period. Fluctuations in pCO 2 along the eutrophic reach downstream of the confluences reflected environmental controls on the balance between photosynthesis, biodegradation, and outgassing. The results underscore WWTP effluents as an anthropogenic source of nutrients, DOC, and CO 2 and their influences on algal blooms and associated C dynamics in eutrophic urbanized river systems, warranting further research on urbanization-induced perturbations to riverine metabolic processes and carbon fluxes.

  16. A System Dynamics Model to Improve Water Resources Allocation in the Conchos River

    Science.gov (United States)

    Gastelum, J. R.; Valdes, J. B.; Stewart, S.

    2005-12-01

    The Conchos river located in Chihuahua state on a semiarid region is the most important Mexican river contributing water deliveries to USA as established by the Water treaty of 1944 signed between Mexico and USA. Historically, Mexico has delivered to UNITED STATES 550 Hm3 (445,549.5 ACF) per year of water since the treaty was established, which is 25% above the yearly water volume Mexico is required to deliver. The Conchos river has contributed with 54% of the historic Mexican water treaty deliveries to the UNITED STATES, which represents the highest percentage of the 6 Mexican rivers considered on the water treaty. However, during drought situations the basin has proven to be vulnerable, for instance, because of the severe drought of the 90's, several cities in 1992 on Chihuahua state where declared disaster areas, and from 1992 to 2001 Mexico had accumulated a water treaty deficit of 2111.6 Hm3 (1,710,586 ACF). This has conduced to economic, social, and political difficulties in both countries. Because of the cited problematic and considering the poor understanding of the relationship between water supply and demand factors on the basin, a decision support system (DSS) has been developed aimed to improve the decision making process related with the water resources allocation process. This DSS has been created using System Dynamics (SD). It is a semi-distributed model and is running on monthly time step basis. For both the short and long term, three important water resources management strategies have been evaluated: several water allocation policies from reservoirs to water users; bulk water rights transfers inside and outside Irrigation Districts; and improvement of water distribution efficiencies. The model results have provided very useful regard to gain more quantitative understanding of the different strategies being implemented. They have also indicated that the different water resources alternatives change its degree of importance according to the

  17. Environmental Nitrogen Losses from Commercial Crop Production Systems in the Suwannee River Basin of Florida.

    Science.gov (United States)

    Prasad, Rishi; Hochmuth, George J

    2016-01-01

    The springs and the Suwannee river of northern Florida in Middle Suwanee River Basin (MSRB) are among several examples in this planet that have shown a temporal trend of increasing nitrate concentration primarily due to the impacts of non-point sources such as agriculture. The rate of nitrate increase in the river as documented by Ham and Hatzell (1996) was 0.02 mg N L-1 y-1. Best management practices (BMPs) for nutrients were adopted by the commercial farms in the MSRB region to reduce the amounts of pollutants entering the water bodies, however the effectiveness of BMPs remains a topic of interest and discussion among the researchers, environmental administrators and policy makers about the loads of nitrogen entering into groundwater and river systems. Through this study, an initiative was taken to estimate nitrogen losses into the environment from commercial production systems of row and vegetable crops that had adopted BMPs and were under a presumption of compliance with state water quality standards. Nitrogen mass budget was constructed by quantifying the N sources and sinks for three crops (potato (Solanum tuberosum L.), sweet corn (Zea mays L.) and silage corn (Zea mays L.)) over a four year period (2010-2013) on a large representative commercial farm in northern Florida. Fertilizer N was found to be the primary N input and represented 98.0 ± 1.4, 91.0 ± 13.9, 78.0 ± 17.3% of the total N input for potato, sweet corn, and silage corn, respectively. Average crop N uptake represented 55.5%, 60.5%, and 65.2% of the mean total input N whereas average mineral N left in top 0.3 m soil layer at harvest represented 9.1%, 4.5%, and 2.6% of the mean total input N. Mean environmental N losses represented 35.3%, 34.3%, and 32.7% of the mean total input N for potato, sweet corn, and silage corn, respectively. Nitrogen losses showed a linear trend with increase in N inputs. Although, there is no quick fix for controlling N losses from crop production in MSRB, the

  18. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system

    Science.gov (United States)

    Latrubesse, Edgardo M.; Cozzuol, Mario; da Silva-Caminha, Silane A. F.; Rigsby, Catherine A.; Absy, Maria Lucia; Jaramillo, Carlos

    2010-05-01

    On the basis of paleontological content (vertebrates and palynology) and facies analysis from river banks, road cuts, and three wells, we have assigned the uppermost levels of the Solimões Formation in western Amazonia, Brazil, to the Late Miocene. The vertebrate fossil record from outcropping sediments is assigned to the Huayquerian-Mesopotamian mammalian biozones, spanning 9-6.5 Ma. Additionally, we present results that demonstrate that deposits in Peruvian Amazonia attributed to Miocene tidal environments are actually fluvial sediments that have been misinterpreted (both environmentally and chronologically) by several authors. The entire Late Miocene sequence was deposited in a continental environment within a subsiding basin. The facies analysis, fossil fauna content, and palynological record indicate that the environment of deposition was dominated by avulsive rivers associated with megafan systems, and avulsive rivers in flood basins (swamps, lakes, internal deltas, and splays). Soils developed on the flatter, drier areas, which were dominated by grasslands and gallery forest in a tropical to subtropical climate. These Late Miocene sediments were deposited from westward of the Purus arch up to the border of Brazil with Peru (Divisor Ranges) and Bolivia (Pando block). Eastward of the Iquitos structural high, however, more detailed studies, including vertebrate paleontology, need to be performed to calibrate with more precision the ages of the uppermost levels of the Solimões Formation. The evolution of the basin during the late Miocene is mainly related to the tectonic behavior of the Central Andes (˜ 3°-15°S). At approximately 5 Ma, a segment of low angle of subduction was well developed in the Nazca Plate, and the deformation in the Subandean foreland produced the inland reactivation of the Divisor/Contamana Ranges and tectonic arrangements in the Eastern Andes. During the Pliocene southwestern Brazilian Amazonia ceased to be an effective sedimentary

  19. Food habits of introduced rodents in high-elevation shrubland of Haleakala National Park, Maui, Hawai'i

    Science.gov (United States)

    Cole, F. Russell; Loope, Lloyd L.; Medeiros, Arthur C.; Howe, Cameron E.; Anderson, Laurel J.

    2000-01-01

    Mus musculus and Rattus rattus are ubiquitous consumers in the high-elevation shrubland of Haleakala National Park. Food habits of these two rodent species were determined from stomach samples obtained by snaptrapping along transects located at four different elevations during November 1984 and February, May, and August 1985. Mus musculus fed primarily on fruits, grass seeds, and arthropods. Rattus rattus ate various fruits, dicot leaves, and arthropods. Arthropods, many of which are endemic, were taken frequently by Mus musculus throughout the year at the highest elevation where plant food resources were scarce. Araneida, Lepidoptera (primarily larvae), Coleoptera, and Homoptera were the main arthropod taxa taken. These rodents, particularly Mus musculus, exert strong predation pressure on populations of arthropod species, including locally endemic species on upper Haleakala Volcano.

  20. Comparison of the sensitivity of surface downward longwave radiation to changes in water vapor at two high elevation sites

    International Nuclear Information System (INIS)

    Chen, Yonghua; Naud, Catherine M; Rangwala, Imtiaz; Landry, Christopher C; Miller, James R

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 km apart horizontally and 348 m vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR–q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here. (letter)

  1. Comparison of the Sensitivity of Surface Downward Longwave Radiation to Changes in Water Vapor at Two High Elevation Sites

    Science.gov (United States)

    Chen, Yonghua; Naud, Catherine M.; Rangwala, Imtiaz; Landry, Christopher C.; Miller, James R.

    2014-01-01

    Among the potential reasons for enhanced warming rates in many high elevation regions is the nonlinear relationship between surface downward longwave radiation (DLR) and specific humidity (q). In this study we use ground-based observations at two neighboring high elevation sites in Southwestern Colorado that have different local topography and are 1.3 kilometers apart horizontally and 348 meters vertically. We examine the spatial consistency of the sensitivities (partial derivatives) of DLR with respect to changes in q, and the sensitivities are obtained from the Jacobian matrix of a neural network analysis. Although the relationship between DLR and q is the same at both sites, the sensitivities are higher when q is smaller, which occurs more frequently at the higher elevation site. There is a distinct hourly distribution in the sensitivities at both sites especially for high sensitivity cases, although the range is greater at the lower elevation site. The hourly distribution of the sensitivities relates to that of q. Under clear skies during daytime, q is similar between the two sites, however under cloudy skies or at night, it is not. This means that the DLR-q sensitivities are similar at the two sites during daytime but not at night, and care must be exercised when using data from one site to infer the impact of water vapor feedbacks at another site, particularly at night. Our analysis suggests that care should be exercised when using the lapse rate adjustment to infill high frequency data in a complex topographical region, particularly when one of the stations is subject to cold air pooling as found here.

  2. Performance of the Multi-Radar Multi-Sensor System over the Lower Colorado River, Texas

    Science.gov (United States)

    Bayabil, H. K.; Sharif, H. O.; Fares, A.; Awal, R.; Risch, E.

    2017-12-01

    Recently observed increases in intensities and frequencies of climate extremes (e.g., floods, dam failure, and overtopping of river banks) necessitate the development of effective disaster prevention and mitigation strategies. Hydrologic models can be useful tools in predicting such events at different spatial and temporal scales. However, accuracy and prediction capability of such models are often constrained by the availability of high-quality representative hydro-meteorological data (e.g., precipitation) that are required to calibrate and validate such models. Improved technologies and products such as the Multi-Radar Multi-Sensor (MRMS) system that allows gathering and transmission of vast meteorological data have been developed to provide such data needs. While the MRMS data are available with high spatial and temporal resolutions (1 km and 15 min, respectively), its accuracy in estimating precipitation is yet to be fully investigated. Therefore, the main objective of this study is to evaluate the performance of the MRMS system in effectively capturing precipitation over the Lower Colorado River, Texas using observations from a dense rain gauge network. In addition, effects of spatial and temporal aggregation scales on the performance of the MRMS system were evaluated. Point scale comparisons were made at 215 gauging locations using rain gauges and MRMS data from May 2015. Moreover, the effects of temporal and spatial data aggregation scales (30, 45, 60, 75, 90, 105, and 120 min) and (4 to 50 km), respectively on the performance of the MRMS system were tested. Overall, the MRMS system (at 15 min temporal resolution) captured precipitation reasonably well, with an average R2 value of 0.65 and RMSE of 0.5 mm. In addition, spatial and temporal data aggregations resulted in increases in R2 values. However, reduction in RMSE was achieved only with an increase in spatial aggregations.

  3. Potential for water salvage by removal of non-native woody vegetation from dryland river systems

    Science.gov (United States)

    Doody, T.M.; Nagler, P.L.; Glenn, E.P.; Moore, G.W.; Morino, K.; Hultine, K.R.; Benyon, R.G.

    2011-01-01

    Globally, expansion of non-native woody vegetation across floodplains has raised concern of increased evapotranspiration (ET) water loss with consequent reduced river flows and groundwater supplies. Water salvage programs, established to meet water supply demands by removing introduced species, show little documented evidence of program effectiveness. We use two case studies in the USA and Australia to illustrate factors that contribute to water salvage feasibility for a given ecological setting. In the USA, saltcedar (Tamarix spp.) has become widespread on western rivers, with water salvage programs attempted over a 50-year period. Some studies document riparian transpiration or ET reduction after saltcedar removal, but detectable increases in river base flow are not conclusively shown. Furthermore, measurements of riparian vegetation ET in natural settings show saltcedar ET overlaps the range measured for native riparian species, thereby constraining the possibility of water salvage by replacing saltcedar with native vegetation. In Australia, introduced willows (Salix spp.) have become widespread in riparian systems in the Murray-Darling Basin. Although large-scale removal projects have been undertaken, no attempts have been made to quantify increases in base flows. Recent studies of ET indicate that willows growing in permanently inundated stream beds have high transpiration rates, indicating water savings could be achieved from removal. In contrast, native Eucalyptus trees and willows growing on stream banks show similar ET rates with no net water salvage from replacing willows with native trees. We conclude that water salvage feasibility is highly dependent on the ecohydrological setting in which the non-native trees occur. We provide an overview of conditions favorable to water salvage. Copyright ?? 2011 John Wiley & Sons, Ltd.

  4. Local models for rainstorm-induced hazard analysis on Mediterranean river-torrential geomorphological systems

    Directory of Open Access Journals (Sweden)

    N. Diodato

    2004-01-01

    Full Text Available Damaging hydrogeomorphological events are defined as one or more simultaneous phenomena (e.g. accelerated erosions, landslides, flash floods and river floods, occurring in a spatially and temporal random way and triggered by rainfall with different intensity and extent. The storm rainfall values are highly dependent on weather condition and relief. However, the impact of rainstorms in Mediterranean mountain environments depend mainly on climatic fluctuations in the short and long term, especially in rainfall quantity. An algorithm for the characterisation of this impact, called Rainfall Hazard Index (RHI, is developed with a less expensive methodology. In RHI modelling, we assume that the river-torrential system has adapted to the natural hydrological regime, and a sudden fluctuation in this regime, especially those exceeding thresholds for an acceptable range of flexibility, may have disastrous consequences for the mountain environment. RHI integrate two rainfall variables based upon storm depth current and historical data, both of a fixed duration, and a one-dimensionless parameter representative of the degree ecosystem flexibility. The approach was applied to a test site in the Benevento river-torrential landscape, Campania (Southern Italy. So, a database including data from 27 events which have occurred during an 77-year period (1926-2002 was compared with Benevento-station RHI(24h, for a qualitative validation. Trends in RHIx for annual maximum storms of duration 1, 3 and 24h were also examined. Little change is observed at the 3- and 24-h duration of a storm, but a significant increase results in hazard of a short and intense storm (RHIx(1h, in agreement with a reduction in return period for extreme rainfall events.

  5. Improved Lower Mekong River Basin Hydrological Decision Making Using NASA Satellite-based Earth Observation Systems

    Science.gov (United States)

    Bolten, J. D.; Mohammed, I. N.; Srinivasan, R.; Lakshmi, V.

    2017-12-01

    Better understanding of the hydrological cycle of the Lower Mekong River Basin (LMRB) and addressing the value-added information of using remote sensing data on the spatial variability of soil moisture over the Mekong Basin is the objective of this work. In this work, we present the development and assessment of the LMRB (drainage area of 495,000 km2) Soil and Water Assessment Tool (SWAT). The coupled model framework presented is part of SERVIR, a joint capacity building venture between NASA and the U.S. Agency for International Development, providing state-of-the-art, satellite-based earth monitoring, imaging and mapping data, geospatial information, predictive models, and science applications to improve environmental decision-making among multiple developing nations. The developed LMRB SWAT model enables the integration of satellite-based daily gridded precipitation, air temperature, digital elevation model, soil texture, and land cover and land use data to drive SWAT model simulations over the Lower Mekong River Basin. The LMRB SWAT model driven by remote sensing climate data was calibrated and verified with observed runoff data at the watershed outlet as well as at multiple sites along the main river course. Another LMRB SWAT model set driven by in-situ climate observations was also calibrated and verified to streamflow data. Simulated soil moisture estimates from the two models were then examined and compared to a downscaled Soil Moisture Active Passive Sensor (SMAP) 36 km radiometer products. Results from this work present a framework for improving SWAT performance by utilizing a downscaled SMAP soil moisture products used for model calibration and validation. Index Terms: 1622: Earth system modeling; 1631: Land/atmosphere interactions; 1800: Hydrology; 1836 Hydrological cycles and budgets; 1840 Hydrometeorology; 1855: Remote sensing; 1866: Soil moisture; 6334: Regional Planning

  6. Emergy and Economic Evaluations of Four Fruit Production Systems on Reclaimed Wetlands Surrounding the Pearl River Estuary, China

    Science.gov (United States)

    Emergy and economic methods were used to evaluate and compare a traditional tropical fruit cultivation system, for bananas, and three newly introduced fruit cultivation systems, for papaya, guava and wampee, on reclaimed wetlands of the Pearl River Estuary, China. The evaluations...

  7. Ichthyofauna of the Kubo, Tochikura, and Ichinono river systems (Kitakami River drainage, northern Japan), with a comparison of predicted and surveyed species richness

    Science.gov (United States)

    Nakae, Masanori; Senou, Hiroshi

    2014-01-01

    Abstract The potential fish species pool of the Kubo, Tochikura, and Ichinono river systems (tributaries of the Iwai River, Kitakami River drainage), Iwate Prefecture, northern Japan, was compared with the observed ichthyofauna by using historical records and new field surveys. Based on the literature survey, the potential species pool comprised 24 species/subspecies but only 20, including 7 non-native taxa, were recorded during the fieldwork. The absence during the survey of 11 species/subspecies from the potential species pool suggested either that sampling effort was insufficient, or that accurate determination of the potential species pool was hindered by lack of biogeographic data and ecological data related to the habitat use of the species. With respect to freshwater fish conservation in the area, Lethenteron reissneri, Carassius auratus buergeri, Pseudorasbora pumila, Tachysurus tokiensis, Oryzias latipes, and Cottus nozawae are regarded as priority species, and Cyprinus rubrofuscus, Pseudorasbora parva, and Micropterus salmoides as targets for removal. PMID:25425932

  8. Linking Flow Regime, Floodplain Lake Connectivity and Fish Catch in a Large River-Floodplain System, the Volga-Akhtuba Floodplain (Russian Federation)

    NARCIS (Netherlands)

    Wolfshaar, van de K.E.; Middelkoop, H.; Addink, E.; Winter, H.V.; Nagelkerke, L.A.J.

    2011-01-01

    River-floodplain systems are amongst the most productive—but often severely impacted—aquatic systems worldwide. We explored the ecological response of fish to flow regime in a large river-floodplain system by studying the relationships between (1) discharge and inundated floodplain area, with a

  9. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  10. Design and implementation of expert decision system in Yellow River Irrigation

    Science.gov (United States)

    Fuping, Wang; Bingbing, Lei; Jie, Pan

    2018-03-01

    How to make full use of water resources in the Yellow River irrigation is a problem needed to be solved urgently. On account of the different irrigation strategies in various growth stages of wheat, this paper proposes a novel irrigation expert decision system basing on fuzzy control technique. According to the control experience, expert knowledge and MATLAB simulation optimization, we obtain the irrigation fuzzy control table stored in the computer memory. The controlling irrigation is accomplished by reading the data from fuzzy control table. The experimental results show that the expert system can be used in the production of wheat to achieve timely and appropriate irrigation, and ensure that wheat growth cycle is always in the best growth environment.

  11. Montana Rivers Information System : Edit/Entry Program User's Manual.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Montana Department of Fish, Wildlife and Parks

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural, and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases and comprises of the Montana Interagency Stream Fisheries Database; the MDFWP Recreation Database; and the MDFWP Wildlife Geographic Information System. The purpose of this User`s Manual is to describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and to provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  12. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river-reservoir system.

    Science.gov (United States)

    Jiang, Xiaoliang; Xiong, Ziqian; Liu, Hui; Liu, Guihua; Liu, Wenzhi

    2017-01-01

    The majority of rivers in the world have been dammed, and over 45,000 large reservoirs have been constructed for multiple purposes. Riparian and reservoir shorelines are the two most important wetland types in a dammed river. To date, few studies have concerned the heavy metal pollution in wetland soils of these river-reservoir systems. In this study, we measured the concentrations of ten heavy metals (Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, and Zn) in surface soils collected from riparian and reservoir shorelines along the Han River in different seasons. Our results found that the Co, Cu, and Ni concentrations in riparian wetlands were significantly lower than those in reservoir shorelines. In riparian wetlands, only soil Sr concentration significantly increased after summer and autumn submergence. Multivariate statistical analyses demonstrated that Ba and Cd might originate from industrial and mining sources, whereas Sr and Mn predominantly originated from natural rock weathering. The ecological risk assessment analysis indicated that both riparian and reservoir shorelines along the Han River in China exhibited a moderate ecological risk in soil heavy metals. The upper Han River basin is the water resource area of China's Middle Route of the South-to-North Water Transfer Project. Therefore, to control the contamination of heavy metals in wetland soils, more efforts should be focused on reducing the discharge of mining and industrial pollutants into the riparian and reservoir shorelines.

  13. Pesticide residue assessment in three selected agricultural production systems in the Choluteca River Basin of Honduras

    International Nuclear Information System (INIS)

    Kammerbauer, J.; Moncada, J.

    1999-01-01

    There is a basic lack of information about the presence of pesticide residues in the environment in Central America. Over the period of February 1995 to June 1997, river, well, lagoon and spring water samples, as well as soil, fish tissue, lagoon bed sediments and some foodstuffs were taken from the greater Cholutecan River Basin of Honduras and analyzed for pesticide residues. These were collected at three separate sites (La Lima, Zamorano and Choluteca), each characterized by differing agricultural production systems. The main pesticide residues found in soil samples were dieldrin and p,p'-DDT, while river water samples were found to have detectable levels of heptachlor, endosulfan and chlorpyrifos, with lagoon and well water also being shown to contain heptachlor. These pesticides detected were in more than 20% of the samples assessed. In river water samples more pesticide residues at higher concentrations were found to be associated with areas of more intensive agricultural production. The fewest pesticides with lowest concentrations were found in the small subwatershed associated with traditional agricultural production. Although the pesticides found in the soils at the three sites were generally similar they tended to be higher in the southern part of the Cholutecan watershed, followed by the central zone, with the lowest concentrations being found in the more traditional production zone. In lagoon and well water samples more pesticides, but mostly in lower concentrations were detected at the traditional production site than at the others. Ten pesticide compounds were detected in fish tissue, mainly organochlorines, some of which were also found in lagoon sediments. In terms of food products, almost no pesticides were detected in vegetables, but the kidney adipose tissue taken from slaughtered cows was shown to have a tendency to contain some organochlorines. Spring water in the traditional agricultural production zone contained three organochlorine compounds

  14. Columbia River system operation review: Final environmental impact statement. Main report

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) Final EIS addresses four actions: (a) need to develop coordinated strategy for managing the multiple uses of the Federal Columbia River system (System Operating Strategy [SOS]); (b) need to provide interested parties other than management agencies with a long-term role in system planning (Forum); (c) need to renew or change current Canadian Entitlement Allocation Agreements (CEAA); and (d) need to renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA). SOS alternatives analyzed are: (1) operation prior to Endangered Species Act listings of salmon stocks; (2) current operations (no action); (3) stable storage project operation; (4) natural river operation; (5) fixed drawdown; (6) operating strategies proposed by the U.S. Fish and Wildlife Service, National Marine Fisheries Service, State fisheries agencies, Native American tribes, and Federal operating agencies; and (7) Preferred Alternative. The seven Forum alternatives analyzed are: (1) decisionmaking by the SOR lead agencies (preferred alternative); (2) decisionmaking by SOR lead agencies and recommendations by an existing regional entity; (3) decisionmaking by SOR lead agencies and recommendations by a new regional entity; (4) decisionmaking by a Federal consultation forum; (5) decisionmaking by a new entity; (6) decisionmaking by one Federal operating agency; (7) decisionmaking by a Federal agency other than an operating agency. PNCA alternatives analyzed are: (1) no replacement contract; (2) contract to maximize regional power benefits; (3) roll over existing PNCA; (4) current PNCA with modified operating procedures (preferred alternative); (5) current PNCA with nonpower modifications. CEAA alternatives include: (1) no action (no replacement of current allocation agreements); (2) entitlement allocation: 55 percent Federal; 45 percent non-Federal; (3) entitlement allocation: 70 percent Federal, 30 percent non-Federal (preferred alternative); (4) no agreement

  15. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    The System Operation Review (SOR) Final EIS addresses four actions: (a) need to develop coordinated strategy for managing the multiple uses of the Federal Columbia River system (System Operating Strategy [SOS]); (b) need to provide interested parties other than management agencies with a long-term role in system planning (Forum); (c) need to renew or change current Canadian Entitlement Allocation Agreements (CEAA); and (d) need to renegotiate and renew the Pacific Northwest Coordination Agreement (PNCA). SOS alternatives analyzed are: (1) operation prior to Endangered Species Act listings of salmon stocks; (2) current operations (no action); (3) stable storage project operation; (4) natural river operation; (5) fixed drawdown; (6) operating strategies proposed by the U.S. Fish and Wildlife Service, National Marine Fisheries Service, State fisheries agencies, Native American tribes, and Federal operating agencies; and (7) Preferred Alternative. The seven Forum alternatives analyzed are: (1) decisionmaking by the SOR lead agencies (preferred alternative); (2) decisionmaking by SOR lead agencies and recommendations by an existing regional entity; (3) decisionmaking by SOR lead agencies and recommendations by a new regional entity; (4) decisionmaking by a Federal consultation forum; (5) decisionmaking by a new entity; (6) decisionmaking by one Federal operating agency; (7) decisionmaking by a Federal agency other than an operating agency. PNCA alternatives analyzed are: (1) no replacement contract; (2) contract to maximize regional power benefits; (3) roll over existing PNCA; (4) current PNCA with modified operating procedures (preferred alternative); (5) current PNCA with nonpower modifications. CEAA alternatives include: (1) no action (no replacement of current allocation agreements); (2) entitlement allocation: 55 percent Federal; 45 percent non-Federal; (3) entitlement allocation: 70 percent Federal, 30 percent non-Federal (preferred alternative); (4) no agreement.

  16. Optimizing Water Use and Hydropower Production in Operational Reservoir System Scheduling with RiverWare

    Science.gov (United States)

    Magee, T. M.; Zagona, E. A.

    2017-12-01

    Practical operational optimization of multipurpose reservoir systems is challenging for several reasons. Each purpose has its own constraints which may conflict with those of other purposes. While hydropower generation typically provides the bulk of the revenue, it is also among the lowest priority purposes. Each river system has important details that are specific to the location such as hydrology, reservoir storage capacity, physical limitations, bottlenecks, and the continuing evolution of operational policy. In addition, reservoir operations models include discrete, nonlinear, and nonconvex physical processes and if-then operating policies. Typically, the forecast horizon for scheduling needs to be extended far into the future to avoid near term (e.g., a few hours or a day) scheduling decisions that result in undesirable future states; this makes the computational effort much larger than may be expected. Put together, these challenges lead to large and customized mathematical optimization problems which must be solved efficiently to be of practical use. In addition, the solution process must be robust in an operational setting. We discuss a unique modeling approach in RiverWare that meets these challenges in an operational setting. The approach combines a Preemptive Linear Goal Programming optimization model to handle prioritized policies complimented by preprocessing and postprocessing with Rulebased Simulation to improve the solution with regard to nonlinearities, discrete issues, and if-then logic. An interactive policy language with a graphical user interface allows modelers to customize both the optimization and simulation based on the unique aspects of the policy for their system while the routine physical aspect of operations are modeled automatically. The modeler is aided by a set of compiled predefined functions and functions shared by other modelers. We illustrate the success of the approach with examples from daily use at the Tennessee Valley

  17. Systems Engineering in the Development and Implementation of the Savannah River Site Transuranic Waste Disposition Program

    International Nuclear Information System (INIS)

    Fayfich, R.R.

    1999-01-01

    The use of systems engineering facilitated the strategic planning and implementation of the Savannah River Site (SRS) transuranic waste disposal program. This application represented the first SRS use of systems engineering in the pre-program planning stages during the development of a comprehensive strategic plan for the disposal of transuranic waste at the Department of Energy Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The use of systems engineering focused the efforts of the technical experts to devise a three initiative plan for the disposal of transuranic waste where previous efforts failed. Continued application of systems engineering facilitated the further development and implementation of the first initiative outlined in the strategic plan, i.e., set-up the program and process to begin to characterize and ship waste to the WIPP.This application of systems engineering to the transuranic waste program represented the first opportunity at the SRS for a comprehensive usage of systems engineering at all program levels. The application was initiated at the earliest possible point in the program development, i.e., strategic planning, and successively was used in detailed development and implementation of the program. Systems engineering successfully focused efforts to produce a comprehensive plan for the disposal of SRS transuranic waste at the WIPP, and facilitated development of the SRS capability and infrastructure to characterize, certify, and ship waste

  18. Water resource protection in Australia: Links between land use and river health with a focus on stubble farming systems

    Science.gov (United States)

    Bowmer, Kathleen H.

    2011-06-01

    SummaryStubble farming (conservation farming, minimum tillage, zero tillage) has increased in Australia over several decades with claims of improved productivity, landscape stability and environmental benefit including ecosystem services downstream, yet recent audits show a dramatic and general decline in river health. This review explores explanations for this apparent anomaly. Many confounding factors complicate interactions between land use and river condition and may disguise or over-ride the potential benefits of adoption of stubble systems or other improvements in agricultural land use practice. These factors include climate change and variability; land use changes including an increase in bushfires, growth of farm dams and afforestation; lag times between land use change and expression of benefits in river systems; use of inappropriate scale that disguises local benefit; variations in the extent of ecosystem resilience; impacts of river regulation; and impacts of introduced species. Additionally, the value of river condition and utility is complicated by different local or regional perceptions and by contrasting rural and urban outlooks. The use of indicators, risk frameworks and biophysical modelling may help elucidate the complex relationships between land use and downstream ecosystem impact. The strengthening of local, regional and catchment scale approaches is advocated. This includes the re-integration of land management and governance with water management and planning. It is encouraging that farmers are themselves developing systems to optimise trade-offs between on-farm activities and ecosystem service benefits. This approach needs to be supported and extended.

  19. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    Science.gov (United States)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  20. Hydropolitical Complexes and Asymmetrical Power: Conflict, Cooperation, and Governance of International River Systems

    Directory of Open Access Journals (Sweden)

    Jenny R. Kehl

    2015-08-01

    Full Text Available Hydropolitical complexes are emerging to negotiate water-sharing policies that promote politicalstability, regional security, economic prosperity, and environmental sustainability. Yet interstatedisputes are occurring within most hydropolitical complexes, and weak riparians are oftencoerced to agree to water-sharing policies that adversely affect them. This research examines thestrategies weak riparians use to assert leverage in international river basins with asymmetricalpower, and the success of those strategies in achieving cooperation versus conflict. Grounded inthe theoretical framework of hydro hegemony, hard power, and soft power, this study uses crossnational analysis to test the effects of geographic, military, political, economic, technological,and external influence on water governance in eight international river systems. The resultsdemonstrate that weak riparians mobilize the assets and capacities of external actors, such asdonor countries and the World Bank, to increase their leverage within hydropolitical complexes.The study finds that strategies to balance hard power are largely ineffective; they fail to achievecooperative water-sharing arrangements and often exacerbate conflict. In contrast, strategies tobalance economic power and soft power, such as market access and political legitimacy, aremore successful in promoting cooperation and preventing conflict in hydropolitical complexes.

  1. Application of hydrometeorological coupled European flood forecasting operational real time system in Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Yi-qi Yan

    2009-12-01

    Full Text Available This study evaluated the application of the European flood forecasting operational real time system (EFFORTS to the Yellow River. An automatic data pre-processing program was developed to provide real-time hydrometeorological data. Various GIS layers were collected and developed to meet the demands of the distributed hydrological model in the EFFORTS. The model parameters were calibrated and validated based on more than ten years of historical hydrometeorological data from the study area. The San-Hua Basin (from the Sanmenxia Reservoir to the Huayuankou Hydrological Station, the most geographically important area of the Yellow River, was chosen as the study area. The analysis indicates that the EFFORTS enhances the work efficiency, extends the flood forecasting lead time, and attains an acceptable level of forecasting accuracy in the San-Hua Basin, with a mean deterministic coefficient at Huayuankou Station, the basin outlet, of 0.90 in calibration and 0.96 in validation. The analysis also shows that the simulation accuracy is better for the southern part than for the northern part of the San-Hua Basin. This implies that, along with the characteristics of the basin and the mechanisms of runoff generation of the hydrological model, the hydrometeorological data play an important role in simulation of hydrological behavior.

  2. Status after 5 Years of Survival Compliance Testing in the Federal Columbia River Power System (FCRPS)

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Weiland, Mark A.; Ham, Kenneth D.; Ploskey, Gene R.; McMichael, Geoffrey A.; Colotelo, Alison H.; Carlson, Thomas J.; Woodley, Christa M.; Eppard, M. Brad; Hockersmith, Eric E.

    2016-06-27

    Survival studies of juvenile salmonids implanted with acoustic tags have been conducted at hydroelectric dams within the Federal Columbia River Power System (FCRPS) in the Columbia and Snake rivers between 2010 and 2014 to assess compliance with dam passage survival standards stipulated in the 2008 Biological Opinion (BiOp). For juvenile salmonids migrating downstream in the spring, dam passage survival defined as survival from the upstream dam face to the tailrace mixing zone must be ≥96% and for summer migrants, ≥93%, and estimated with a standard error ≤1.5% (i.e., 95% confidence interval of ±3%). A total of 29 compliance tests have been conducted at 6 of 8 FCRPS main-stem dams, using over 109,000 acoustic-tagged salmonid smolts. Of these 29 compliance studies, 23 met the survival standards and 26 met the precision requirements. Of the 6 dams evaluated to date, individual survival estimates range from 0.9597 to 0.9868 for yearling Chinook Salmon, 0.9534 to 0.9952 for steelhead, and 0.9076 to 0.9789 for subyearling Chinook Salmon. These investigations suggest the large capital investment over the last 20 years to improve juvenile salmon passage through the FCRPS dams has been beneficial.

  3. The Effect of Zebra Mussels on Algal Community Structure in an Impounded River System

    Science.gov (United States)

    Trumble, A. F.; Luttenton, M.

    2005-05-01

    The zebra mussel, Dreissena polymorpha, invaded the Great Lakes Region in the mid 1980's, and subsequently colonized inland lakes and coastal river systems through secondary invasions. The Muskegon River below Croton Dam was colonized by zebra mussels in 2000 following their introduction into Croton impoundment in the late 1990's. No zebra mussels were found below Croton Dam in 1999 but had increased to 25,000 m-2 by 2001. We examined the affect of zebra mussels on epilithic periphyton communities by comparing plots that were and were not colonized by zebra mussels. Chlorophyll a increased in both treatments over time but was significantly higher in control plots than in zebra mussel plots. The concentration of chlorophyll a in the control plots increased from 14 µgcm-2 to 26 µgcm-2 and the concentration in the zebra mussel plots started at 12 µgcm-2, peaked at 19 µgcm-2, and then decreased to 15 µgcm-2 over a 6 week period. In a related experiment using artificial streams, chlorophyll a increased with increasing zebra mussel density, but differences were not significant. The different trends observed between the two experiments may be explained in part by arthropod invertebrates associated with zebra mussel populations.

  4. Investing for upgrading: the emergence of financial system of science and technology in China’s Pearl River Delta

    OpenAIRE

    XIAODONG WANG; CHRISTOF MORSCHER

    2016-01-01

    This article discusses the recent reform policy in China on setting up new financial system for supporting science and technology innovation. Based on the financial sector development in the Pearl River Delta in China’s Guangdong Province, especially Guangzhou, one pilot city of Chinese Science and Technology Financial System Reform, the article analyses the problems in financial system and makes some suggestion on how to restructure the financial system to meet the financial need of local em...

  5. Water and chemical budgets in an urbanized river system under various hydrological conditions

    Science.gov (United States)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Since historical times, riversides are preferential settlement places for human life and activities, ultimately leading to the development of Cities. Available water resources are not only essential to ensure human's vital functions, they are also used for the production of food, goods, and energy, as transport routes and as evacuation ways for domestic and industrial waste products. All these activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. An extreme example of strongly modified river system is the river Zenne crossing the city of Brussels. In and around the city, the river together with its connected navigation canal, determine a small vertical urbanized area (800 km2) combining extreme land-use landscapes. While the southern upstream part of this area lies in a region of intensive agricultural activities, the central part is occupied by a dense cityscape including a forested area, and the downstream part is mainly under industrial influence. In this context, we established a box-model representation of water and selected polluting chemicals (N and P, biological oxygen demand, and a selection of metals, pesticides and PAHs) budgets for the studied area under variable hydrological conditions. We first have identified the general distribution of water and pollutant tracers in the various background sources of the system: waters in streams located in the very upstream parts of the catchment, and untreated and treated sewage. Secondly we have assessed the distribution of water flows, and pollutant tracer concentrations at the boundaries of the studied water systems for different stable hydrological conditions and during flood events. Finally we will discuss water budgets and pollution tracer budgets for a yearly average hydrological situation and for dry and wet weather conditions in order

  6. Demonstration and evaluation of the pulsed ultraviolet-irradiation gas-treatment system, Savannah River Site

    International Nuclear Information System (INIS)

    Schneider, J.; Wilkey, M.; Peters, R.; Tomczyk, N.; Friedlund, J.; Farber, P.

    1994-10-01

    Argonne National Laboratory was asked to demonstrate and evaluate a pulsed ultraviolet-irradiation system developed by Purus, Inc., at the Volatile Organic Compounds Non-Arid Integrated Demonstration at the Savannah River Site near aiken, South Carolina. The Purus system consists of four reactor chambers, each containing a xenon flash lamp. During the two weeks of testing, samples were taken and analyzed from the inlet and outlet sides of the Purus system. The contaminants of concern on the inlet were tetrachloroethylene (PCE), trichloroethylene (TCE), and 1,1,1-trichloroethane (TCA); the contaminants of concern on the outlet were PCE, TCE, TCA, carbon tetrachloride (CT), and chloroform. The evaluation of the Purus system included an examination of the reduction of both TCE and PCE and a search for any change in the concentrations. (Operating conditions included flow rates, ranging from 25 to 100 standard cubic feet per minute; inlet concentration of PCE, ranging from 360 to 10,700 parts per million volume; and flash lamp rates, ranging from 1 to 30 hertz.) The Purus system was quite efficient at reducing the concentrations of both PCE and TCE. The potential by-products, TCA, CT, and chloroform, showed no significant increases throughout the range of the various operating parameters. Overall, the Purus system appears to be a cost-efficient means of reducing the concentrations of PCE and TCE, while the removal of the initial photo-oxidation products and TCA is slower and needs further evaluation

  7. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals

    International Nuclear Information System (INIS)

    Macintosh, K.A.; Jordan, P.; Cassidy, R.; Arnscheidt, J.; Ward, C.

    2011-01-01

    Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L −1 (0.018 mg TRP L −1 ) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km −2 to 4.6 km −2 and 13.8 km −2 to 17.2 km −2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.

  8. System of prediction and warning of floods in the water basin of Struma/ Strymonas River

    International Nuclear Information System (INIS)

    Mimides, Theologos; Rizos, Spyros; Soulis, Kostas; Dimitrov, Dobri

    2004-01-01

    Struma is collecting waters from four countries: Bulgaria, Serbia, FYROM and Greece. Most of its basin area is located in Bulgaria and Greece, while the upper part of its basin is in Bulgaria. There are important hydro technical structures just below the Bulgarian-Greek border, and the floods generated in the Bulgarian part of the basin could significantly affect the security of those structures and their operational rules. That is why several years ago a project related to flood warning at Struma/ Strymonas river basin was formulated and its first phase was completed in 2000. The main objective of the project was to demonstrate the principal possibility for issuing reliable warnings for hazardous flood events with sufficient lead-time to organize flood mitigation measures. The project implementation team included various scientists from the Agricultural University of Athens-Greece (leader), from the Center of Remote Sensing, Bristol University-UK, and from the National Institute of Meteorology and Hydrology of Sofia - Bulgaria. The work program of the first project phase included a range of activities implemented by the Bulgarian and Greek team members, coordinated by the Agricultural University of Athens. Among the activities of the Project are included: a) a preliminary model for peak flood hydrographs and specifications of an early warning system, b) a real time flood forecasting by routing flood hydrographs through the system of the river and Kerkini lake, c) thematic maps of vegetation and land cover derived by satellite remote sensing, d) satellite snow monitoring in the basin, e) an adaptation of the Alladin Weather Forecast Model at the hydrological basin and scaling of the Crocus Snow Model at a preliminary stage, and f) development of a geo environmental recording system.(Author)

  9. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    Science.gov (United States)

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross

  10. Understanding the controls on sediment-P interactions and dynamics along a non-tidal river system in a rural–urban catchment: The River Nene

    International Nuclear Information System (INIS)

    Tye, A.M.; Rawlins, B.G.; Rushton, J.C.; Price, R.

    2016-01-01

    The release of Phosphorus (P) from river sediments has been identified as a contributing factor to waters failing the criteria for ‘Good Ecological Status’ under the EU Water Framework Directive (WFD). To identify the contribution of sediment-P to river systems, an understanding of the factors that influence its distribution within the entire non-tidal system is required. Thus the aims of this work were to examine the (i) total (P_T_o_t_a_l) and labile (P_L_a_b_i_l_e) concentrations in sediment, (ii) the sequestration processes and (iii) the interactions between sediment P and the river water in the six non-tidal water bodies of the River Nene, U.K. Collection of sediments followed a long period of flooding and high stream flow. In each water body, five cores were extracted and homogenised for analysis with an additional core being taken and sampled by depth increments. Comparing the distribution of sediment particle size and P_T_o_t_a_l data with soil catchment geochemical survey data, large increases in P_T_o_t_a_l were identified in sediments from water body 4–6, where median concentrations of P_T_o_t_a_l in the sediment (3603 mg kg"−"1) were up to double those of the catchment soils. A large proportion of this increase may be related to in-stream sorption of P, particularly from sewage treatment facilities where the catchment becomes more urbanised after water body 3. A linear correlation (r = 0.8) between soluble reactive phosphate (SRP) and Boron in the sampled river waters was found suggesting increased STW input in water bodies 4–6. P_L_a_b_i_l_e concentrations in homogenised cores were up to 100 mg kg"−"1 PO_4–P (generally < 2% of P_T_o_t_a_l) and showed a general increase with distance from the headwaters. A general increase in Equilibrium Phosphate Concentrations (EPC_0) from an average of 0.9–∼1.7 μm L"−"1 was found between water bodies 1–3 and 4–6. Fixation within oxalate extractable phases (Al, Fe and Mn) accounted

  11. Role of neutron activation analysis in the study of heavy metal pollution of a lake-river system

    International Nuclear Information System (INIS)

    Filby, R.H.; Shah, K.R.; Funk, W.H.

    1974-01-01

    Details of a study of combined organic and metallic pollution of the Coeur d'Alene Lake-River and Spokane River system and the role played by nuclear techniques in the investigation are presented. The Coeur d'Alene River drains through the N. Idaho Pb--Zn mining region of Kellogg and the mining industry is the major source of metallic pollution of the lake and river system. The first part of the study has involved the determination of Pb, Zn, Ag, Cd, As, Cu, Sb, Co, Cr, Cs, Rb, Sc, Ba, Eu, La, Tb, Y, Zr, Fe, Mn, Mo, by INAA in waters, sediments and organisms throughout the region. Extremely high values for Pb, Zn, Sb, Fe and other metals were found in the Coeur d'Alene River delta sediments and in the lake sediments. Results from the study of metals in an aquatic ecosystem show the value of combining nuclear techniques with other methods of trace analysis in practical pollution problems

  12. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review

    Directory of Open Access Journals (Sweden)

    J.-T. Cornelis

    2011-01-01

    Full Text Available Silicon (Si released as H4SiO4 by weathering of Si-containing solid phases is partly recycled through vegetation before its land-to-rivers transfer. By accumulating in terrestrial plants to a similar extent as some major macronutrients (0.1–10% Si dry weight, Si becomes largely mobile in the soil-plant system. Litter-fall leads to a substantial reactive biogenic silica pool in soil, which contributes to the release of dissolved Si (DSi in soil solution. Understanding the biogeochemical cycle of silicon in surface environments and the DSi export from soils into rivers is crucial given that the marine primary bio-productivity depends on the availability of H4SiO4 for phytoplankton that requires Si. Continental fluxes of DSi seem to be deeply influenced by climate (temperature and runoff as well as soil-vegetation systems. Therefore, continental areas can be characterized by various abilities to transfer DSi from soil-plant systems towards rivers. Here we pay special attention to those processes taking place in soil-plant systems and controlling the Si transfer towards rivers. We aim at identifying relevant geochemical tracers of Si pathways within the soil-plant system to obtain a better understanding of the origin of DSi exported towards rivers. In this review, we compare different soil-plant systems (weathering-unlimited and weathering-limited environments and the variations of the geochemical tracers (Ge/Si ratios and δ30Si in DSi outputs. We recommend the use of biogeochemical tracers in combination with Si mass-balances and detailed physico-chemical characterization of soil-plant systems to allow better insight in the sources and fate of Si in these biogeochemical systems.

  13. Water pollution control technology and strategy for river-lake systems: a case study in Gehu Lake and Taige Canal.

    Science.gov (United States)

    Zhang, Yimin; Zhang, Yongchun; Gao, Yuexiang; Zhang, Houhu; Cao, Jianying; Cai, Jinbang; Kong, Xiangji

    2011-07-01

    The Taoge water system is located in the upstream of Taihu Lake basin and is characterized by its multi-connected rivers and lakes. In this paper, current analyses of hydrology, hydrodynamics and water pollution of Gehu Lake and Taige Canal are presented. Several technologies are proposed for pollution prevention and control, and water environmental protection in the Taihu Lake basin. These included water pollution control integration technology for the water systems of Gehu Lake, Taige Canal and Caoqiao River. Additionally, river-lake water quality and quantity regulation technology, ecological restoration technology for polluted and degraded water bodies, and water environmental integration management and optimization strategies were also examined. The main objectives of these strategies are to: (a) improve environmental quality of relative water bodies, prevent pollutants from entering Gehu Lake and Taige Canal, and ensure that the clean water after the pre-treatment through Gehu Lake is not polluted before entering the Taihu Lake through Taige Canal; (b) stably and efficiently intercept and decrease the pollution load entering the lake through enhancing the river outlet ecological system structure function and water self-purifying capacity, and (c) designate Gehu Lake as a regulation system for water quality and water quantity in the Taoge water system and thus guarantee the improvement of the water quality of the inflow into Taihu Lake.

  14. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    1999-01-01

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment

  15. Founder effects and genetic population structure of brown trout (Salmo trutta) in a Danish river system

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    1996-01-01

    The influence of founder effects on the genetic population structure of brown trout (Salmo trutta) was studied in a small Danish river system. Samples of trout from seven locations were analysed by allozyme electrophoresis and mitochondrial DNA restriction fragment length polymorphism analysis....... For comparison, allozyme data from other Danish trout populations and mtDNA data from two hatchery strains were included. Genetic differentiation among populations was found to be small but significant. Pairwise tests for homogeneity of allele and haplotype frequencies between samples showed that significance...... simulations of the influence of founder effects on mitochondrial DNA differentiation and variability showed that the observed divergence could be due either to natural founder effects or to a genetic contribution by hatchery trout. However, the allozyme results pointed towards natural founder effects...

  16. The effects of parameter variation on MSET models of the Crystal River-3 feedwater flow system

    International Nuclear Information System (INIS)

    Miron, A.

    1998-01-01

    In this paper we develop further the results reported in Reference 1 to include a systematic study of the effects of varying MSET models and model parameters for the Crystal River-3 (CR) feedwater flow system The study used archived CR process computer files from November 1-December 15, 1993 that were provided by Florida Power Corporation engineers Fairman Bockhorst and Brook Julias. The results support the conclusion that an optimal MSET model, properly trained and deriving its inputs in real-time from no more than 25 of the sensor signals normally provided to a PWR plant process computer, should be able to reliably detect anomalous variations in the feedwater flow venturis of less than 0.1% and in the absence of a venturi sensor signal should be able to generate a virtual signal that will be within 0.1% of the correct value of the missing signal

  17. Quantitative Analogue Experimental Sequence Stratigraphy : Modelling landscape evolution and sequence stratigraphy of river-shelf sedimentary systems by quantitative analogue experiments

    NARCIS (Netherlands)

    Heijst, Maximiliaan Wilhelmus Ignatius Maria van

    2000-01-01

    This thesis reports a series of flume tank experiments that were conducted to model the stratigraphic evolution of river-delta systems. Chapter 1 introduces the river-delta sedimentary system that is subject of modelling. The chapter also includes an overview of previous research and the summary and

  18. A high-elevation, multi-proxy biotic and environmental record of MIS 6-4 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA

    Science.gov (United States)

    Miller, Ian M.; Pigati, Jeffrey S.; Anderson, R. Scott; Johnson, Kirk R.; Mahan, Shannon; Ager, Thomas A.; Baker, Richard G.; Blaauw, Maarten; Bright, Jordon; Brown, Peter M.; Bryant, Bruce; Calamari, Zachary T.; Carrara, Paul E.; Michael D., Cherney; Demboski, John R.; Elias, Scott A.; Fisher, Daniel C.; Gray, Harrison J.; Haskett, Danielle R.; Honke, Jeffrey S.; Jackson, Stephen T.; Jiménez-Moreno, Gonzalo; Kline, Douglas; Leonard, Eric M.; Lifton, Nathaniel A.; Lucking, Carol; McDonald, H. Gregory; Miller, Dane M.; Muhs, Daniel R.; Nash, Stephen E.; Newton, Cody; Paces, James B.; Petrie, Lesley; Plummer, Mitchell A.; Porinchu, David F.; Rountrey, Adam N.; Scott, Eric; Sertich, Joseph J. W.; Sharpe, Saxon E.; Skipp, Gary L.; Strickland, Laura E.; Stucky, Richard K.; Thompson, Robert S.; Wilson, Jim

    2014-01-01

    In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~ 140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5.

  19. A high-elevation, multi-proxy biotic and environmental record of MIS 6–4 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA

    Energy Technology Data Exchange (ETDEWEB)

    Ian M. Miller; Mitchell A. Plummer; Various Others

    2014-10-01

    In North America, terrestrial records of biodiversity and climate change that span Marine Oxygen Isotope Stage (MIS) 5 are rare. Where found, they provide insight into how the coupling of the ocean–atmosphere system is manifested in biotic and environmental records and how the biosphere responds to climate change. In 2010–2011, construction at Ziegler Reservoir near Snowmass Village, Colorado (USA) revealed a nearly continuous, lacustrine/wetland sedimentary sequence that preserved evidence of past plant communities between ~140 and 55 ka, including all of MIS 5. At an elevation of 2705 m, the Ziegler Reservoir fossil site also contained thousands of well-preserved bones of late Pleistocene megafauna, including mastodons, mammoths, ground sloths, horses, camels, deer, bison, black bear, coyotes, and bighorn sheep. In addition, the site contained more than 26,000 bones from at least 30 species of small animals including salamanders, otters, muskrats, minks, rabbits, beavers, frogs, lizards, snakes, fish, and birds. The combination of macro- and micro-vertebrates, invertebrates, terrestrial and aquatic plant macrofossils, a detailed pollen record, and a robust, directly dated stratigraphic framework shows that high-elevation ecosystems in the Rocky Mountains of Colorado are climatically sensitive and varied dramatically throughout MIS 5

  20. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia)

    Science.gov (United States)

    Vrzel, Janja; Solomon, D. Kip; Blažeka, Željko; Ogrinc, Nives

    2018-01-01

    River basin aquifers are common sites for drinking water wells as bank filtration can be a cost effective pretreatment technology. A groundwater vulnerability to pollution depends on a groundwater mean residence time and on a relative contribution of river water versus local precipitation to groundwater. Environmental isotopes of oxygen and hydrogen (δ18O and δ2H), tritium (3H) and concentrations of nitrate (NO3-) were used to investigate hydrological pathways, mean residence time and interactions between surface water and groundwater in the Ljubljansko polje aquifer system in Slovenia. δ18O and δ2H values indicate a spatial variability of the influence of individual groundwater sources inside the aquifer - local precipitation and the Sava River water. Fractions of river water in groundwater depend on the depth of perforated screens in the pumping wells and their distance from the Sava River. It was estimated that groundwater at wells Kleče 11, Hrastje 3, and Hrastje 8 is mostly composed of recently infiltrated local precipitation, while the Sava River is the dominant source of groundwater at the well Jarški prod 1. Groundwater at wells Kleče 8, Kleče 12, and Jarški prod 3 contains on average between 41% and 48% of the Sava River water. The 3H and 3H/3He methods indicate short mean residence time of groundwater present at Jarški prod (2-7 years) and Hrastje (7-8 years). A small fraction (pollution.

  1. Zoning of Water Quality of Hamadan Darreh-Morad Beyg River Based on NSFWQI Index Using Geographic Information System

    Directory of Open Access Journals (Sweden)

    A.R. Rahmani

    2009-10-01

    Full Text Available Introduction & Objective: Rivers are one of the main water supply resources for various uses such as agricultural, industrial and drinking purposes. As population and consumption increase, monitoring of rivers water quality becomes an important function of environmental management field. Because Darreh-Morad Beyg river of Hamadan is a water supply for different purposes and many pollutants are discharged in it, its water quality assessment seems necessary. Zoning of pollution and depicting a detailed image of surface water resources quality using geographic information system (GIS are the key factors for the better management of these resources.Materials & Methods: This research is a cross sectional- descriptive study and river water samples were taken for 7 months from 6 sampling stations on the length of the river. Biochemical oxygen demand (BOD, electrical conductivity, dissolved oxygen (D.O., pH, fecal coli form, nitrate, temperature, phosphate and total solids were determined in the samples. Obtained data were analyzed by national sanitation foundation water quality index (NSFWQI and the river was zoned using GIS software.Results: Results of the analyses by NSFWQI showed the best water quality for station 1 and the worst water quality for station 6 with scores of 62.78 and 27.49, respectively.Conclusion: The NSFWQI is a suitable index for zoning of Darreh-Morad Beyg river. Monitoring of physical, chemical, bacteriological quality parameters and using water quality index in various sampling stations are used in the assessment of water pollution. It also helps the officials to correctly decide about the water uses for different purposes.

  2. Hydrological Controls on Dissolved Organic Matter Quality and Export in a Coastal River System in Southeastern USA

    Science.gov (United States)

    Bhattacharya, R.; Osburn, C. L.

    2017-12-01

    Dissolved organic matter (DOM) exported from river catchments can influence the biogeochemical processes in coastal environments with implications for water quality and carbon budget. High flow conditions are responsible for most DOM export ("pulses") from watersheds, and these events reduce DOM transformation and production by "shunting" DOM from river networks into coastal waters: the Pulse-Shunt Concept (PSC). Subsequently, the source and quality of DOM is also expected to change as a function of river flow. Here, we used stream dissolved organic carbon concentrations ([DOC]) along with DOM optical properties, such as absorbance at 350 nm (a350) and fluorescence excitation and emission matrices modeled by parallel factor analysis (PARAFAC), to characterize DOM source, quality and fluxes under variable flow conditions for the Neuse River, a coastal river system in the southeastern US. Observations were made at a flow gauged station above head of tide periodically between Aug 2011 and Feb 2013, which captured low flow periods in summer and several high flow events including Hurricane Irene. [DOC] and a350 were correlated and varied positively with river flow, implying that a large portion of the DOM was colored, humic and flow-mobilized. During high flow conditions, PARAFAC results demonstrated the higher influx of terrestrial humic DOM, and lower in-stream phytoplankton production or microbial degradation. However, during low flow, DOM transformation and production increased in response to higher residence times and elevated productivity. Further, 70% of the DOC was exported by above average flows, where 3-4 fold increases in DOC fluxes were observed during episodic events, consistent with PSC. These results imply that storms dramatically affects DOM export to coastal waters, whereby high river flow caused by episodic events primarily shunt terrestrial DOM to coastal waters, whereas low flow promotes in-stream DOM transformation and amendment with microbial DOM.

  3. The Spatial Distribution of Bed Sediment on Fluvial System: A Mini Review of the Aceh Meandering River

    Directory of Open Access Journals (Sweden)

    Muhammad Irham

    2016-08-01

    Full Text Available Dynamic interactions of hydrological and geomorphological processes in the fluvial system result in accumulated deposit on the bed because the capacity to carry sediment has been exceeded. The bed load of the Aceh fluvial system is primarily generated by mechanical weathering resulting in boulders, pebbles, and sand, which roll or bounce along the river bed forming temporary deposits as bars on the insides of meander bends, as a result of a loss of transport energy in the system. This dynamic controls the style and range of deposits in the Aceh River. This study focuses on the spatial distribution of bed-load transport of the Aceh River. Understanding the spatial distribution of deposits facilitates the reconstruction of the changes in controlling factors during accumulation of deposits. One of the methods can be done by sieve analysis of sediment, where the method illuminates the distribution of sediment changes associated with channel morphology under different flow regimes. Hence, the purpose of this mini review is to investigate how the sediment along the river meander spatially dispersed. The results demonstrate that channel deposits in the Aceh River are formed from four different type of materials: pebble deposited along upstream left bank; sand located on the upstream, downstream, and along meander belts; and silt and clay located along the cut bank of meander bends. Because of different depositional pattern, the distribution of the sediment along the river can be used as a surrogate to identify bank stability, as well as to predict critical geometry for meander bend initiation

  4. Los Alamos MAWST software layered on Westinghouse Savannah River Company's nuclear materials accountability system

    International Nuclear Information System (INIS)

    Whitty, W.J.; Smith, J.E.; Davis, J.M. Jr.

    1995-01-01

    The Los Alamos Safeguards Systems Group's Materials Accounting With Sequential Testing (MAWST) computer program was developed to fulfill DOE Order 5633.3B requiring that inventory-difference control limits be based on variance propagation or any other statistically valid technique. Westinghouse Savannah River Company (WSRC) developed a generic computerized accountability system, NucMAS, to satisfy accounting and reporting requirements for material balance areas. NucMAS maintains the calculation methods and the measurement information required to compute nuclear material transactions in elemental and isotopic masses by material type code. The Safeguards Systems Group designed and implemented to WSRC's specifications a software interface application, called NucMASloe. It is a layered product for NucMAS that automatically formats a NucMAS data set to a format compatible with MAWST and runs MAWST. This paper traces the development of NucMASloe from the Software Requirements through the testing and demonstration stages. The general design constraints are described as well as the difficulties encountered on interfacing an external software product (MAWST) with an existing classical accounting structure (NucMAS). The lessons learned from this effort, the design, and some of the software are directly applicable to the Local Area Network Material Accountability System (LANMAS) being sponsored by DOE

  5. Multiple effects of hydrological connectivity on floodplain processes in human modified river systems

    Science.gov (United States)

    Hein, Thomas; Bondar-Kunze, Elisabeth; Preiner, Stefan; Reckendorfer, Walter; Tritthart, Michael; Weigelhofer, Gabriele; Welti, Nina

    2014-05-01

    Floodplain and riparian ecosystems provide multiple functions and services of importance for human well-being and are of strategic importance for different sectors at catchment scale. Especially floodplains in the vicinity of urban areas can be areas of conflicting interests ranging from different land use types, flood water retention, drinking water production and recreation to conservation of last remnants of former riverine landscape, as it is the case in floodplains in the Danube Nationalpark downstream Vienna. Many of these ecosystem functions and services are controlled by the exchange conditions between river main channel and floodplain systems, the hydrological connectivity. At the same time these systems have been highly altered and especially the connectivity has been severely impaired. Thus, far ranging effects of changes in hydrological connectivity at various levels can be expected in altered floodplain systems. The aim of this presentation is to explore the complex control of different ecosystem functions and associated services by different parameters of hydrological connectivity, ranging from nutrient, sediment and matter dynamics and biodiversity aspects. Increasing connectivity will be shown to impact microbial dynamics, sediment-water interactions, carbon dynamics and trophic conditions, thus affecting the fundamental functions of particular floodplain systems at various spatial and temporal scales. Based on these changes also the provision of ecosystem services of floodplains is affected. The results clearly show that hydrological connectivity needs to be considered in a sustainable management approach.

  6. Evaluation of automatic cloud removal method for high elevation areas in Landsat 8 OLI images to improve environmental indexes computation

    Science.gov (United States)

    Alvarez, César I.; Teodoro, Ana; Tierra, Alfonso

    2017-10-01

    Thin clouds in the optical remote sensing data are frequent and in most of the cases don't allow to have a pure surface data in order to calculate some indexes as Normalized Difference Vegetation Index (NDVI). This paper aims to evaluate the Automatic Cloud Removal Method (ACRM) algorithm over a high elevation city like Quito (Ecuador), with an altitude of 2800 meters above sea level, where the clouds are presented all the year. The ACRM is an algorithm that considers a linear regression between each Landsat 8 OLI band and the Cirrus band using the slope obtained with the linear regression established. This algorithm was employed without any reference image or mask to try to remove the clouds. The results of the application of the ACRM algorithm over Quito didn't show a good performance. Therefore, was considered improving this algorithm using a different slope value data (ACMR Improved). After, the NDVI computation was compared with a reference NDVI MODIS data (MOD13Q1). The ACMR Improved algorithm had a successful result when compared with the original ACRM algorithm. In the future, this Improved ACRM algorithm needs to be tested in different regions of the world with different conditions to evaluate if the algorithm works successfully for all conditions.

  7. Review of reports associated with systems of the K, P and L reactors at the Savannah River Site

    International Nuclear Information System (INIS)

    Cowgill, M.G.

    1992-02-01

    Six reports associated with the structural integrity of several systems of the Savannah River Site reactors are reviewed. The focus is on the materials-related aspects of the reports and no attempt is made to address the stress analysis-related issues

  8. Non-linear response of the Golo River system, Corsica, France, to Late Quaternary climatic and sea level variations

    NARCIS (Netherlands)

    Forzoni, A.; Storms, J.E.A.; Reimann, T.; Moreau, J.; Jouet, G.

    2015-01-01

    Disentangling the impact of climatic and sea level variations on fluvio-deltaic stratigraphy is still an outstanding question in sedimentary geology and geomorphology. We used the Golo River system, Corsica, France, as a natural laboratory to investigate the impact of Late Quaternary climate and sea

  9. Evaluation of partial water reuse systems used for Atlantic salmon smolt production at the White River National Fish Hatchery

    Science.gov (United States)

    Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8,000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The part...

  10. 78 FR 56264 - Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc...

    Science.gov (United States)

    2013-09-12

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Bear Mining Corp., Four Rivers BioEnergy, Inc., Mainland Resources, Inc., QI Systems Inc., South Texas Oil Co., and Synova Healthcare Group, Inc... that there is a lack of current and accurate information concerning the securities of Big Bear Mining...

  11. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  12. Spatial Structure and Temporal Variation of Fish Communities in the Upper Mississippi River System

    National Research Council Canada - National Science Library

    Chick, John H; Ickes, Brian S; Pegg, Mark A; Barko, Valerie A; Hrabik, Robert A; Herzog, David P

    2005-01-01

    Variation in community composition (presence/absence data) and structure (relative abundance) of Upper Mississippi River fishes was assessed using data from the Long Term Resource Monitoring Program...

  13. Lead Pollution Remanence in an Urban River System: A multi-scale temporal and spatial study

    Directory of Open Access Journals (Sweden)

    Ayrault S.

    2013-04-01

    Full Text Available This work aims at studying the fate of sediments contaminated with tetraethyl Pb from leaded gasoline using a two-dimension upscaling approach, from a small urban subcatchment, the Orge River (900 km2 to the whole Seine River basin (64700 km2, in France. In France, the leaded gasoline reduction started in 1986 and leaded gasoline was completely banned after 2000. This work aims at assessing whether the ban of leaded gasoline is related to changes in Pb contamination sources of these river suspended sediment particles (SPM and bed sediment. Sediment cores and samples collected in the course of previous research projects of the Seine River contamination were used as temporal archives. The study of the isotopic lead ratio showed the fast decrease of the contamination of urban river suspended particulate matter due to the “gasoline” lead source from 2000 to 2011. This source mostly disappeared in the SPM from the Seine River basin that includes urban areas but also agricultural and industrial activities. Nevertheless, it is still present in the small urban catchment of the Orge River. The results on bed sediments showed a different pattern, where the “gasoline” source is still active in densely populated areas, either in the Seine River in the 20 km downstream Paris, or along the Orge River.

  14. Harmonious Development between Socio-Economy and River-Lake Water Systems in Xiangyang City, China

    Directory of Open Access Journals (Sweden)

    Qiting Zuo

    2016-11-01

    Full Text Available River-lake water systems (RLS are important carriers for matter transformation and energy transmission. Influenced by accelerated social and economic development, the structural, functional, and environmental states of RLS have been seriously damaged. It is an important problem for human beings to coordinate the contradiction between socio-economic development and the protection of RLS. In order to quantitatively study the harmonious relationship between socio-economic development and the state of RLS, the harmony theory method was used to analyze the degree of harmonious development between socio-economy and RLS in this study taking Xiangyang City as an example, and formulating corresponding harmonious optimization schemes. The results indicate that: (1 the state of RLS had a relatively small change during 2009–2014, and its spatial distribution shows a decreasing trend with the Han River as the central axis decreases on both of its sides; (2 before 2011, the driving force of socio-economic development in Xiang yang City mainly originated in the peripheral regions such as Laohekou City, Zaoyang City, and Gucheng County, but after 2011, it migrated rapidly towards Downtown, and reached the maximum in 2014; (3 when the influence of regional socio-economic development on RLS is small, socio-economic development is the main factor driving the change of the overall harmonious development degree of socio-economy and RLS. However when the influence is big, it is combined, driven by socio-economic development and the state of RLS; (4 the main factors affecting the overall harmonious degree of socio-economy and RLS in Xiangyang City include: river length, standard ratio of water quality, water consumption per capita, reservoir regulation capability, farmland irrigation water consumption per Mu (Mu is an area unit in China, 1 Mu approximately equals to 666.67 m2, and sewage treatment rate. This study can provide a reference for the future analysis of

  15. Fish invasions in the world's river systems: when natural processes are blurred by human activities.

    Directory of Open Access Journals (Sweden)

    Fabien Leprieur

    2008-02-01

    Full Text Available Because species invasions are a principal driver of the human-induced biodiversity crisis, the identification of the major determinants of global invasions is a prerequisite for adopting sound conservation policies. Three major hypotheses, which are not necessarily mutually exclusive, have been proposed to explain the establishment of non-native species: the "human activity" hypothesis, which argues that human activities facilitate the establishment of non-native species by disturbing natural landscapes and by increasing propagule pressure; the "biotic resistance" hypothesis, predicting that species-rich communities will readily impede the establishment of non-native species; and the "biotic acceptance" hypothesis, predicting that environmentally suitable habitats for native species are also suitable for non-native species. We tested these hypotheses and report here a global map of fish invasions (i.e., the number of non-native fish species established per river basin using an original worldwide dataset of freshwater fish occurrences, environmental variables, and human activity indicators for 1,055 river basins covering more than 80% of Earth's surface. First, we identified six major invasion hotspots where non-native species represent more than a quarter of the total number of species. According to the World Conservation Union, these areas are also characterised by the highest proportion of threatened fish species. Second, we show that the human activity indicators account for most of the global variation in non-native species richness, which is highly consistent with the "human activity" hypothesis. In contrast, our results do not provide support for either the "biotic acceptance" or the "biotic resistance" hypothesis. We show that the biogeography of fish invasions matches the geography of human impact at the global scale, which means that natural processes are blurred by human activities in driving fish invasions in the world's river systems

  16. Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam.

    Science.gov (United States)

    Hanh, Pham Thi Minh; Sthiannopkao, Suthipong; Kim, Kyoung-Woong; Ba, Dang The; Hung, Nguyen Quang

    2010-06-01

    In order to investigate the temporal and spatial variations of 14 physical and chemical surface water parameters in the Nhue and Day sub-river systems of Vietnam, surface water samples were taken from 43 sampling sites during the dry and rainy seasons in 2007. The results were statistically examined by Mann-Whitney U-test and hierarchical cluster analysis. The results show that water quality of the Day River was significantly improved during the rainy season while this was not the case of the Nhue River. However, the river water did not meet the Vietnamese surface water quality standards for dissolved oxygen (DO), biological oxygen demand (BOD(5)), chemical oxygen demand (COD), nutrients, total coliform, and fecal coliform. This implies that the health of local communities using untreated river water for drinking purposes as well as irrigation of vegetables may be at risk. Forty-three sampling sites were grouped into four main clusters on the basis of water quality characteristics with particular reference to geographic location and land use and revealed the contamination levels from anthropogenic sources.

  17. Water quality evaluation system to assess the status and the suitability of the Citarum river water to different uses.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2010-09-01

    Water quality degradation in the Citarum river will increase from the year to year due to increasing pollutant loads when released particularly from Bandung region of the upstream areas into the river without treatment. This will be facing the problems on water quality status to use for multi-purposes in the downstream areas. The water quality evaluation system is used to evaluate the available water condition that distinguishes into two categories, i.e., the water quality index (WQI) and water quality aptitude (WQA). The assessment of water quality for the Citarum river from 10 selected stations was found that the WQI situates in the bad category generally and the WQA ranges from the suitable quality for agriculture and livestock watering uses to the unsuitable for biological potential function, drinking water production, and leisure activities and sports in the upstream areas of Saguling dam generally.

  18. Using tritium to document the mean transit time and sources of water contributing to a chain-of-ponds river system: Implications for resource protection

    International Nuclear Information System (INIS)

    Cartwright, I.; Morgenstern, U.

    2016-01-01

    Documenting the interaction between groundwater and rivers is fundamental to understanding hydrological systems. While many studies have examined the location and magnitude of groundwater inflows to rivers, much less is known about the transit times of water in catchments and from where in the aquifer the groundwater originates. Resolving those questions is vital for protecting riverine ecosystems, assessing the impact of contamination, and understanding the potential consequences of groundwater pumping. This study uses tritium ("3H) to evaluate the mean transit times of water contributing to Deep Creek (southeast Australia), which is a chain-of-ponds river system. "3H activities of river water vary between 1.47 and 2.91 TU with lower "3H activities recorded during cease-to-flow periods when the river comprises isolated groundwater-fed pools. Regional groundwater 1–2.5 km away from Deep Creek at depths of 7.5–46.5 m has "3H activities of between 100 years. Alternatively the variation in "3H activities can be explained by mixing of a young near-river water component with up to 50% older groundwater. The results of this study reinforce the need to protect shallow near-river groundwater from contamination in order to safeguard riverine ecosystems and also illustrate the potential pitfalls in using regional bores to characterise the geochemistry of near-river groundwater. - Highlights: • We measured tritium in river water and groundwater from a groundwater-fed river. • Transit times of the river water are years to decades. • Transit times of regional groundwater are decades to centuries. • Regional groundwater is only a minor component of the river water. • Results have implications for protection of the river and its ecosystems.

  19. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system.

    Science.gov (United States)

    Lin, Bing-Sian; Lee, Chon-Lin; Brimblecombe, Peter; Liu, James T

    2016-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  1. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    International Nuclear Information System (INIS)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F.

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications

  2. River Basin Information System: Open Environmental Data Management for Research and Decision Making

    Directory of Open Access Journals (Sweden)

    Franziska Zander

    2016-07-01

    Full Text Available An open, standardized data management and related service infrastructure is a crucial requirement for a seamless storage and exchange of data and information within research projects, for the dissemination of project results and for their application in decision making processes. However, typical project databases often refer to only one research project and are limited to specific purposes. Once implemented, those systems are often not further maintained and updated, rendering the stored information useless once the system stops operating. The River Basin Information System (RBIS presented here is designed to fit not only the requirements of one research project, but focuses on generic functions, extensibility and standards compliance typically found in interdisciplinary environmental research. Developed throughout more than 10 years of research cooperation worldwide, RBIS is designed to manage different types of environmental data with and without spatial context together with a rich set of metadata. Beside data management and storage, RBIS provides functions for the visualization, linking, analysis and processing of different types of data to support research, decision making, result dissemination and information discovery for all kinds of users. The focus of this paper is on the description of the technical implementation and the presentation of functions. This will be complemented by an overview of example applications and experiences during RBIS development and operation.

  3. About the coding system of rivers, catchment basing and their characteristics of the republic of Armenia

    International Nuclear Information System (INIS)

    Avagyan, A.A.; Arakelyan, A.A.

    2011-01-01

    The coding of rivers, catchements, lakes and seas is one of the most important requirements of Water Framework Directive of the European Union. This coding provides solutions to actual problems of planning and management of water resources of the Republic of Armenia. The coding system provides the hierarchy of water bodies and watersheds with their typology as well as their geographic and natural conditions, anthropogenic pressures and ecological status. This approach is a fundamentally new complex solution to the coding of water resources. The coding technique allows you to automate the assessment and mapping of environmental risks and areas of water bodies which are subjected to significant pressure and also helps to solve other problems concerning the planning and the management of water resources. A complex code of each water body consists of the following groups of codes: Hydrographic code - an identifier of a water body in the hydrographic system of the country; Codes of static attributes in the system requirements of the Water Framework Directive of the European Union; Codes of static attributes of the qualifiers of the RA National Water Program; Codes of dynamic attributes that define the quality of water and characteristics of water use; Codes of dynamic attributes describing the human impact and determining the ecological status of water body

  4. Improving the Performance of Highly Constrained Water Resource Systems using Multiobjective Evolutionary Algorithms and RiverWare

    Science.gov (United States)

    Smith, R.; Kasprzyk, J. R.; Zagona, E. A.

    2015-12-01

    Instead of building new infrastructure to increase their supply reliability, water resource managers are often tasked with better management of current systems. The managers often have existing simulation models that aid their planning, and lack methods for efficiently generating and evaluating planning alternatives. This presentation discusses how multiobjective evolutionary algorithm (MOEA) decision support can be used with the sophisticated water infrastructure model, RiverWare, in highly constrained water planning environments. We first discuss a study that performed a many-objective tradeoff analysis of water supply in the Tarrant Regional Water District (TRWD) in Texas. RiverWare is combined with the Borg MOEA to solve a seven objective problem that includes systemwide performance objectives and individual reservoir storage reliability. Decisions within the formulation balance supply in multiple reservoirs and control pumping between the eastern and western parts of the system. The RiverWare simulation model is forced by two stochastic hydrology scenarios to inform how management changes in wet versus dry conditions. The second part of the presentation suggests how a broader set of RiverWare-MOEA studies can inform tradeoffs in other systems, especially in political situations where multiple actors are in conflict over finite water resources. By incorporating quantitative representations of diverse parties' objectives during the search for solutions, MOEAs may provide support for negotiations and lead to more widely beneficial water management outcomes.

  5. Status of the dirty darter, Etheostoma olivaceum, and bluemask darter, Etheostoma (Doration)sp., with notes on fishes of the Caney Fork River system, Tennessee

    International Nuclear Information System (INIS)

    Layman, S.R.; Simons, A.M.; Wood, R.M.

    1993-01-01

    Seventy-six localities were sampled in the Caney Fork River system and adjacent Cumberland River tributaries. Etheostoma olivaceum was found in small creeks from nine tributaries of lower Caney Fork River and three tributaries of the Cumberland River in the Nashville Basin physiographic province. The species was most abundant around slab rocks and rubble over bedrock in slow to moderate current. Etheostoma olivaceum was common throughout its small range; however, given widespread habitat degradation from agriculture, the species should retain its open-quotes deemed in need of managementclose quotes status in Tennessee. The bluemask darter, Etheostoma (Doration) sp., was collected in slow to moderate current over sand and gravel in Collins River, Rocky River, Cane Creek, and Caney Fork River. All four populations were isolated upstream of Great Falls Reservoir in the Highland Rim physiographic province. The species was found in a 37-km reach of Collins River but was restricted to reaches of 0.2 to 4.3 km in the other three streams. Threats to the species include pesticides from plant nurseries, siltation, gravel dredging, and acid mine drainage. The authors recommend that the bluemask darter be listed as state and federally protected. Two new records were established for the rare Barrens darter, Etheostoma forbesi, in lower Collins River and Barren Fork River, and eight previously unknown records of the species were identified from older museum collections. 21 refs., 1 fig., 1 tab

  6. The acoustic streamflow-measuring system on the Columbia River at The Dalles, Oregon

    Science.gov (United States)

    Smith, Winchell; Hubbard, Larry L.; Laenen, Antonius

    1971-01-01

    Records of discharge on the Columbia River at The Dalles, Oreg., are vital to the management of the complex water-development projects in the Columbia River basin. Accurate discharge figures are needed for consistent day-to-day management and are required to meet treaty obligations with Canada.

  7. Multi-timescale sediment responses across a human impacted river-estuary system

    Science.gov (United States)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  8. Pharmaceuticals occurrence in a WWTP with significant industrial contribution and its input into the river system

    International Nuclear Information System (INIS)

    Collado, N.; Rodriguez-Mozaz, S.; Gros, M.; Rubirola, A.; Barceló, D.; Comas, J.; Rodriguez-Roda, I.; Buttiglieri, G.

    2014-01-01

    Occurrence and removal of 81 representative Pharmaceutical Active Compounds (PhACs) were assessed in a municipal WWTP located in a highly industrialized area, with partial water reuse after UV tertiary treatment and discharge to a Mediterranean river. Water monitoring was performed in an integrated way at different points in the WWTP and river along three seasons. Consistent differences between therapeutic classes were observed in terms of influent concentration, removal efficiencies and seasonal variation. Conventional (primary and secondary) treatment was unable to completely remove numerous compounds and UV-based tertiary treatment played a complementary role for some of them. Industrial activity influence was highlighted in terms of PhACs presence and seasonal distribution. Even if global WWTP effluent impact on the studied river appeared to be minor, PhACs resulted widespread pollutants in river waters. Contamination can be particularly critical in summer in water scarcity areas, when water flow decreases considerably. -- Highlights: • Seasonal variation revealed a higher spring-summer removal compared to winter time. • Biological process was unable to provide a complete removal for most compounds. • UV-based tertiary treatment did play a complementary removal role for specific PhACs. • Diffuse river contamination and local WWTP contribution to it were observed. • River attenuation capacity is an important factor for removing most of the compounds. -- PhACs integrated WWTP-river data evaluation of coupled biological process and UV tertiary treatment in a WWTP with significant industrial contribution and in the receiving river waters

  9. Reliability analysis of the Red River dikes system in Viet Nam

    NARCIS (Netherlands)

    Pham Quang, T.

    2014-01-01

    This dissertation presents the applications of probabilistic-based frameworks in geotechnical and hydraulic engineering, for the assessment of the Red River dikes in Viet Nam. Dike along rivers often spread over the deltaic environment and its earthen structures are parts of a long civilian history,

  10. Agroforestry systems in the Sonora River Watershed, Mexico: An example of effective land stewardship

    Science.gov (United States)

    Diego Valdez-Zamudio; Peter F. Ffolliot

    2000-01-01

    The Sonora River watershed is located in the central part of the state of Sonora,Mexico, and is one of the most important watersheds in the region. Much of the state's economy depends on the natural resources, products, and productive activities developed in this watershed. Many natural areas along the river and its tributaries have been converted to a large...

  11. Studies on calcium, magnesium and sulphate in the Mandovi and Zuari river system (Goa)

    Digital Repository Service at National Institute of Oceanography (India)

    SenGupta, R.; Naik, S.

    -conservative parameters. Sulphate, however behaves in a purely conservative manner and remains in a steady state in the rivers. A'Simple mixture'relationship is applied to calculate the dilution and mixing processes in the rivers using calcium, magnesium and sulphate...

  12. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    Science.gov (United States)

    Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.

    2014-01-01

    The glacial, lower Tertiary, and Upper Cretaceous aquifer systems in the Williston and Powder River structural basins within the United States and Canada are the uppermost principal aquifer systems and most accessible sources of groundwater for these energy-producing basins. The glacial aquifer system covers the northeastern part of the Williston structural basin. The lower Tertiary and Upper Cretaceous aquifer systems are present in about 91,300 square miles (mi2) of the Williston structural basin and about 25,500 mi2 of the Powder River structural basin. Directly under these aquifer systems are 800 to more than 3,000 feet (ft) of relatively impermeable marine shale that serves as a basal confining unit. The aquifer systems in the Williston structural basin have a shallow (less than 2,900 ft deep), wide, and generally symmetrical bowl shape. The aquifer systems in the Powder River structural basin have a very deep (as much as 8,500 ft deep), narrow, and asymmetrical shape.

  13. Evolution of the LR56 radioactive liquid waste transportation system for use at Hanford, Oak Ridge, and Savannah River Sites

    International Nuclear Information System (INIS)

    Clement, G.; Delvecchio, D.J.; Sazawal, V.

    1997-01-01

    The LR56 system is a radioactive liquid transportation cask licensed for use in France for on-site road transfer of Type B bulk quantities of radioactive liquids. Three LR56 systems (with adaptations for use at the Department of Energy (DOE) sites in the US) have been recently purchased for use at the Hanford site, the Oak Ridge National laboratory site and the Savannah River Site. The paper discussed the main features of the LR56 system and presents the evolution of the design. Particular attention is given to the last version developed for the Savannah River Site to be used for the transfer of highly concentrated alpha bearing liquids. For this application a special enhancement of the secondary vessel has been implemented which provides the system with a double leak tight confinement

  14. Wandering gravel-bed rivers and high-constructive stable channel sandy fluvial systems in the Ross River area, Yukon Territory, Canada

    Directory of Open Access Journals (Sweden)

    Darrel G.F. Long

    2011-07-01

    Gravel-dominated strata, inter-bedded with, and overlying coal-bearing units, are interpreted as deposits of wandering gravel-bed rivers, with sinuosity approaching 1.4. In most exposures they appear to be dominated by massive and thin planar-bedded granule to small pebble conglomerates, which would traditionally be interpreted as sheet-flood or longitudinal bar deposits of a high-gradient braided stream or alluvial fan. Architectural analysis of exposures in an open-pit shows that the predominance of flat bedding is an artefact of the geometry of the roadside exposures. In the pit the conglomerates are dominated by large scale cross stratification on a scale of 1–5.5 m. These appear to have developed as downstream and lateral accretion elements on side-bars and on in-channel bars in water depths of 2–12 m. Stacking of strata on domed 3rd order surfaces suggests development of longitudinal in-channel bar complexes similar to those observed in parts of the modern Rhône River system. Mudstone preserved in some of the channels reflects intervals of channel abandonment or avulsion. Minimum channel width is from 70 to 450 m.

  15. A river system to watch: documenting the effects of saltcedar (Tamarix spp.) biocontrol in the Virgin River valley

    Science.gov (United States)

    Bateman, Heather L.; Dudley, Tom L.; Bean, Dan W.; Ostoja, Steven M.; Hultine, Kevin R.; Kuehn, Michael J.

    2010-01-01

    Throughout riparian areas of the southwestern United States, non-native saltcedar (also known as tamarisk; Tamarix spp.) can form dense, monotypic stands and is often reported to have detrimental effects on native plants and habitat quality (Everitt 1980; Shafroth et al. 2005). Natural resource managers of these riparian areas spend considerable time and resources controlling saltcedar using a variety of techniques, including chemical (Duncan and McDaniel 1998), mechanical, and burning methods (Shafroth et al. 2005). Approximately one billion dollars are spent each year on river restoration projects nationally (Bernhardt et al. 2005), and a majority of these projects focus on invasive species control in the Southwest (Follstad Shah et al. 2007). A technique that has drawn much attention is the use of the saltcedar leaf beetle (Diorhabda spp.), a specialist herbivore, as biological control of saltcedar (Lewis et al. 2003). Research testing was conducted with beetles housed in secure enclosures in six states in 1998 and 1999 (Dudley et al. 2001), followed by open release at some of those sites starting in 2001 (DeLoach et al. 2004). By 2005, full-scale saltcedar biocontrol was implemented in 13 states, led by the USDA Animal and Plant Health Inspection Service (APHIS), the agency that oversees biological control programs, and with the participation and support of the U.S. Fish and Wildlife Service (USFWS). Despite the widespread application of Diorhabda, however, only limited research has quantified the consequences (benefits and costs) on biotic communities and ecosystem services. Alterations to riparian areas caused by various non-native species control activities have the potential to affect a variety of habitat types used by wildlife (Bateman et al. 2008a); processes like water availability, fluvial deposition, and erosion; and the establishment of other non-native species (Carruthers and D'Antonio 2005, Shafroth et al. 2005, DeLoach et al. 2006). Similarly

  16. Software and system development using virtual platforms full-system simulation with wind river simics

    CERN Document Server

    Aarno, Daniel

    2014-01-01

    Virtual platforms are finding widespread use in both pre- and post-silicon computer software and system development. They reduce time to market, improve system quality, make development more efficient, and enable truly concurrent hardware/software design and bring-up. Virtual platforms increase productivity with unparalleled inspection, configuration, and injection capabilities. In combination with other types of simulators, they provide full-system simulations where computer systems can be tested together with the environment in which they operate. This book is not only about what simulat

  17. Retrospective Analysis of Wood Anatomical Traits Reveals a Recent Extension in Tree Cambial Activity in Two High-Elevation Conifers.

    Science.gov (United States)

    Carrer, Marco; Castagneri, Daniele; Prendin, Angela L; Petit, Giai; von Arx, Georg

    2017-01-01

    The study of xylogenesis or wood formation is a powerful, yet labor intensive monitoring approach to investigate intra-annual tree growth responses to environmental factors. However, it seldom covers more than a few growing seasons, so is in contrast to the much longer lifespan of woody plants and the time scale of many environmental processes. Here we applied a novel retrospective approach to test the long-term (1926-2012) consistency in the timing of onset and ending of cambial activity, and in the maximum cambial cell division rate in two conifer species, European larch and Norway spruce at high-elevation in the Alps. We correlated daily temperature with time series of cell number and lumen area partitioned into intra-annual sectors. For both species, we found a good correspondence (1-10 days offset) between the periods when anatomical traits had significant correlations with temperature in recent decades (1969-2012) and available xylogenesis data (1996-2005), previously collected at the same site. Yet, results for the 1926-1968 period indicate a later onset and earlier ending of the cambial activity by 6-30 days. Conversely, the peak in the correlation between annual cell number and temperature, which should correspond to the peak in secondary growth rate, was quite stable over time, with just a minor advance of 4-5 days in the recent decades. Our analyses on time series of wood anatomical traits proved useful to infer on past long-term changes in xylogenetic phases. Combined with intensive continuous monitoring, our approach will improve the understanding of tree responses to climate variability in both the short- and long-term context.

  18. Retrospective Analysis of Wood Anatomical Traits Reveals a Recent Extension in Tree Cambial Activity in Two High-Elevation Conifers

    Directory of Open Access Journals (Sweden)

    Marco Carrer

    2017-05-01

    Full Text Available The study of xylogenesis or wood formation is a powerful, yet labor intensive monitoring approach to investigate intra-annual tree growth responses to environmental factors. However, it seldom covers more than a few growing seasons, so is in contrast to the much longer lifespan of woody plants and the time scale of many environmental processes. Here we applied a novel retrospective approach to test the long-term (1926–2012 consistency in the timing of onset and ending of cambial activity, and in the maximum cambial cell division rate in two conifer species, European larch and Norway spruce at high-elevation in the Alps. We correlated daily temperature with time series of cell number and lumen area partitioned into intra-annual sectors. For both species, we found a good correspondence (1–10 days offset between the periods when anatomical traits had significant correlations with temperature in recent decades (1969–2012 and available xylogenesis data (1996–2005, previously collected at the same site. Yet, results for the 1926–1968 period indicate a later onset and earlier ending of the cambial activity by 6–30 days. Conversely, the peak in the correlation between annual cell number and temperature, which should correspond to the peak in secondary growth rate, was quite stable over time, with just a minor advance of 4–5 days in the recent decades. Our analyses on time series of wood anatomical traits proved useful to infer on past long-term changes in xylogenetic phases. Combined with intensive continuous monitoring, our approach will improve the understanding of tree responses to climate variability in both the short- and long-term context.

  19. Impact of ecological diversity on genetic and phytochemical variation injuniperus excelsa from high elevation zones of quetta valley, pakistan

    International Nuclear Information System (INIS)

    Seed, S.; Barozai, M.Y.K.; Ahmed, A.; Tareen, R.B.

    2017-01-01

    Juniperusexcelsa (Cupressaceae) is an evergreen tree and the second most diverse group of the conifers distributed abundantly in high elevation zones of Balochistan. Genetic and phytochemical variations in three naturally occurring populations of J.excelsa were analysed. Genetic variability was assessed by different molecular markers (RAPD, ISSR and URP) with an objective to use genetic diversity as a key to conserve the taxon which is also known as living fossil as dominated in Mesozoic era. Genetic diversity was assessed by polymorphic bands to generate a dendrogram based on UPGMA. Using tested markers, 116 bands were amplified out of which 67 bands were polymorphic with an average value of 8.37 (57%) bands per primer. Based on data, a cluster dendrogram was prepared that exhibited the mean genetic similarity matrix as 0.57 and two major clusters diverge at 0.49. The genetic similarity coefficient among all accessions ranged from 0.35 to 0.90. In phytochemical analysis, total phenolic and flavonoid contents were estimated and compared among all accessions. Ecological characteristics of the study sites were measured to check their impact on genetic and chemical variation. Soil properties were analyzed for Principal Component Analysis. Chemical variation of J. excelsa of three sites revealed by dissimilarity matrix exhibiting genetic distance based on TPC and Flavonoids. Cluster analysis represent two major groups. Mean concentration of TPC and flavonoids were 56+-9.15 and 150+-27.9 mg/g respectively. PCA of soil considered three factors had Eigen values >1 and explain cumulatively 4.60 %, 26.02% and 10.36 % of the variance. First factor was positively correlated with second and fifth, but negatively correlated with other factors. In conclusion, molecular marker profiling together with phytochemical variation of total phenolic and flavonoid content in all accessions of Juniperusexcelsa and impact of ecological diversity on Genetic and chemical variation can be used

  20. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness

    Science.gov (United States)

    Nusslé, Sébastien; Matthews, Kathleen R.; Carlson, Stephanie M.

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two “resting” meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a “resting” state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change. PMID:26565706

  1. Data management for the Clinch River Breeder Reactor Plant Project by use of document status and hold systems

    International Nuclear Information System (INIS)

    Hunt, C.S.; Beck, A.E.; Akhtar, M.S.

    1982-01-01

    This paper describes the development, framework, and scope of the Document Status System and the Document Hold System for the Clinch River Breeder Reactor Plant Project. It shows how data are generated at five locations and transmitted to a central computer for processing and storage. The resulting computerized data bank provides reports needed to perform day-to-day management and engineering planning. Those reports also partially satisfy the requirements of the Project's Quality Assurance Program

  2. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor c