WorldWideScience

Sample records for high-efficiency photovoltaic cells

  1. High-efficiency photovoltaic cells

    Science.gov (United States)

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  2. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  3. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    N-cetylpyridinium iodide (N-CPI) as a new electric additive for enhancing photovoltaic performance of the dye-sensitized solar cell (DSSC) was studied.It showed high efficiency for enhancing both the open-circuit voltage and the short-circuit current density of DSSC when the suitable amount of N-CPI as 0.02 M was added in liquid electrolyte.The energy conversion effi- ciency of DSSC increased from 4.429% to 6.535%,with 47.55% enhancement.Therefore,it is a highly efficient electric addi- tive for DSSC.The intrinsic reason is owing to the special molecular structure of N-CPI,which contains two different polarity groups.As a surfactant,N-CPI could form ordered arrangement in liquid electrolyte,which affects the diffusing ability and the redox reaction of I-/I3-,and further affects the photovoltaic performance of DSSC.

  5. Ultra-high efficiency photovoltaic cells for large scale solar power generation.

    Science.gov (United States)

    Nakano, Yoshiaki

    2012-01-01

    The primary targets of our project are to drastically improve the photovoltaic conversion efficiency and to develop new energy storage and delivery technologies. Our approach to obtain an efficiency over 40% starts from the improvement of III-V multi-junction solar cells by introducing a novel material for each cell realizing an ideal combination of bandgaps and lattice-matching. Further improvement incorporates quantum structures such as stacked quantum wells and quantum dots, which allow higher degree of freedom in the design of the bandgap and the lattice strain. Highly controlled arrangement of either quantum dots or quantum wells permits the coupling of the wavefunctions, and thus forms intermediate bands in the bandgap of a host material, which allows multiple photon absorption theoretically leading to a conversion efficiency exceeding 50%. In addition to such improvements, microfabrication technology for the integrated high-efficiency cells and the development of novel material systems that realizes high efficiency and low cost at the same time are investigated.

  6. Organic MEMS/NEMS-based high-efficiency 3D ITO-less flexible photovoltaic cells

    International Nuclear Information System (INIS)

    Kassegne, Sam; Moon, Kee; Martín-Ramos, Pablo; Majzoub, Mohammad; Őzturk, Gunay; Desai, Krishna; Parikh, Mihir; Nguyen, Bao; Khosla, Ajit; Chamorro-Posada, Pedro

    2012-01-01

    A novel approach based on three-dimensional (3D) architecture for polymeric photovoltaic cells made up of an array of sub-micron and nano-pillars which not only increase the area of the light absorbing surface, but also improve the carrier collection efficiency of bulk-heterojunction organic solar cells is presented. The approach also introduces coating of 3D anodes with a new solution-processable highly conductive transparent polymer (Orgacon™) that replaces expensive vacuum-deposited ITO (indium tin oxide) as well as the additional hole-collecting layer of conventional PEDOT:PSS (poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)). In addition, the described procedure is well suited to roll-to-roll high-throughput manufacturing. The high aspect-ratio 3D pillars which form the basis for this new architecture are patterned through micro-electromechanical-system- and nano-electromechanical-system-based processes. For the particular case of P3HT (poly(3-hexylthiophene)) and PCBM (phenyl-C61-butyric acid methyl ester) active material, efficiencies in excess of 6% have been achieved for these photovoltaic cells of 3D architecture using ITO-less flexible PET (polyethylene terephthalate) substrates. This increase in efficiency turns out to be more than twice higher than those achieved for their 2D counterparts. (paper)

  7. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.

    Science.gov (United States)

    Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2015-07-16

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

  8. Electrochemical deposition of buried contacts in high-efficiency crystalline silicon photovoltaic cells

    DEFF Research Database (Denmark)

    Jensen, Jens Arne Dahl; Møller, Per; Bruton, Tim

    2003-01-01

    This article reports on a newly developed method for electrochemical deposition of buried Cu contacts in Si-based photovoltaic ~PV! cells. Contact grooves, 20 mm wide by 40 mm deep, were laser-cut into Si PV cells, hereafter applied with a thin electroless NiP base and subsequently filled with Cu...... by electrochemical deposition at a rate of up to 10 mm per min. With the newly developed process, void-free, superconformal Cu-filling of the laser-cut grooves was observed by scanning electron microscopy and focused ion beam techniques. The Cu microstructure in grooves showed both bottom and sidewall texture......, with a grain-size decreasing from the center to the edges of the buried Cu contacts and a pronounced lateral growth outside the laser-cut grooves. The measured specific contact resistances of the buried contacts was better than the production standard. Overall performance of the new PV cells was equal...

  9. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    Science.gov (United States)

    Rand, Barry; Forrest, Stephen R; Pendergrast Burk, Diane

    2015-03-31

    A method for fabricating an organic photovoltaic cell includes providing a first electrode; depositing a series of at least seven layers onto the first electrode, each layer consisting essentially of a different organic semiconductor material, the organic semiconductor material of at least an intermediate layer of the sequence being a photoconductive material; and depositing a second electrode onto the sequence of at least seven layers. One of the first electrode and the second electrode is an anode and the other is a cathode. The organic semiconductor materials of the series of at least seven layers are arranged to provide a sequence of decreasing lowest unoccupied molecular orbitals (LUMOs) and a sequence of decreasing highest occupied molecular orbitals (HOMOs) across the series from the anode to the cathode.

  10. High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells.

    Science.gov (United States)

    Li, Yongxi; Lin, Jiu-Dong; Che, Xiaozhou; Qu, Yue; Liu, Feng; Liao, Liang-Sheng; Forrest, Stephen R

    2017-11-29

    The absence of near-infrared (NIR) solar cells with high open circuit voltage (V oc ) and external quantum efficiency (EQE) has impeded progress toward achieving organic photovoltaic (OPV) power conversion efficiency PCE > 15%. Here we report a small energy gap (1.3 eV), chlorinated nonfullerene acceptor-based solar cell with PCE = 11.2 ± 0.4%, short circuit current of 22.5 ± 0.6 mA cm -2 , V oc = 0.70 ± 0.01 V and fill factor of 0.71 ± 0.02, which is the highest performance reported to date for NIR single junction OPVs. Importantly, the EQE of this NIR solar cell reaches 75%, between 650 and 850 nm while leaving a transparency window between 400 and 600 nm. The semitransparent OPV using an ultrathin (10 nm) Ag cathode shows PCE = 7.1 ± 0.1%, with an average visible transmittance of 43 ± 2%, Commission d'Eclairage chromaticity coordinates of (0.29, 0.32) and a color rendering index of 91 for simulated AM1.5 illumination transmitted through the cell.

  11. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  12. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    Science.gov (United States)

    Martí, A; Luque, A

    2015-04-22

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

  13. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    International Nuclear Information System (INIS)

    Huang Qi-Zhang; Zhu Yan-Qing; Shi Ji-Fu; Wang Lei-Lei; Zhong Liu-Wen; Xu Gang

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition. (paper)

  14. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    Institute of Scientific and Technical Information of China (English)

    Qi-Zhang Huang; Yan-Qing Zhu; Ji-Fu Shi; Lei-Lei Wang; Liu-Wen Zhong; Gang Xu

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module.The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%.Additionally,with the 3D-printed microfluidic device serving as water cooling,the temperature of the DSC can be effectively controlled,which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module.Moreover,the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%.The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.

  15. Multiscale approaches to high efficiency photovoltaics

    Directory of Open Access Journals (Sweden)

    Connolly James Patrick

    2016-01-01

    Full Text Available While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (French ANR project MultiSolSi. Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software, which is widely known. Yet, a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action “MultiscaleSolar” kicking off in early 2015, which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales, which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.

  16. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    KAUST Repository

    Baran, Derya

    2016-11-21

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  17. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    KAUST Repository

    Baran, Derya; Ashraf, Raja; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Rö hr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  18. High efficiency thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Hans-Werner [Helmholtz Zentrum Berlin (Germany). Solar Energy

    2012-11-01

    Production of photovoltaics is growing worldwide on a gigawatt scale. Among the thin film technologies, Cu(In,Ga)S,Se{sub 2} (CIS or CIGS) based solar cells have been the focus of more and more attention. This paper aims to analyze the success of CIGS based solar cells and the potential of this technology for future photovoltaics large-scale production. Specific material properties make CIS unique and allow the preparation of the material with a wide range of processing options. The huge potential lies in the possibility to take advantage of modern thin film processing equipment and combine it with very high efficiencies beyond 20% already achieved on the laboratory scale. A sustainable development of this technology could be realized by modifying the materials and replacing indium by abundant elements. (orig.)

  19. High-Efficiency Rad-Hard Ultra-Thin Si Photovoltaic Cell Technology for Space, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Improvements to solar cell efficiency that is consistent with low cost, high volume fabrication techniques are critical for future NASA space missions. In this...

  20. Design Strategies for Ultra-high Efficiency Photovoltaics

    Science.gov (United States)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  1. High-efficiency photovoltaic technology including thermoelectric generation

    Science.gov (United States)

    Fisac, Miguel; Villasevil, Francesc X.; López, Antonio M.

    2014-04-01

    Nowadays, photovoltaic solar energy is a clean and reliable source for producing electric power. Most photovoltaic systems have been designed and built up for use in applications with low power requirements. The efficiency of solar cells is quite low, obtaining best results in monocrystalline silicon structures, with an efficiency of about 18%. When temperature rises, photovoltaic cell efficiency decreases, given that the short-circuit current is slightly increased, and the open-circuit voltage, fill factor and power output are reduced. To ensure that this does not affect performance, this paper describes how to interconnect photovoltaic and thermoelectric technology into a single structure. The temperature gradient in the solar panel is used to supply thermoelectric cells, which generate electricity, achieving a positive contribution to the total balance of the complete system.

  2. Controlling the Morphology of BDTT-DPP-Based Small Molecules via End-Group Functionalization for Highly Efficient Single and Tandem Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Ji-Hoon; Park, Jong Baek; Yang, Hoichang; Jung, In Hwan; Yoon, Sung Cheol; Kim, Dongwook; Hwang, Do-Hoon

    2015-11-04

    A series of narrow-band gap, π-conjugated small molecules based on diketopyrrolopyrrole (DPP) electron acceptor units coupled with alkylthienyl-substituted-benzodithiophene (BDTT) electron donors were designed and synthesized for use as donor materials in solution-processed organic photovoltaic cells. In particular, by end-group functionalization of the small molecules with fluorine derivatives, the nanoscale morphologies of the photoactive layers of the photovoltaic cells were successfully controlled. The influences of different fluorine-based end-groups on the optoelectronic and morphological properties, carrier mobilities, and the photovoltaic performances of these materials were investigated. A high power conversion efficiency (PCE) of 6.00% under simulated solar light (AM 1.5G) illumination has been achieved for organic photovoltaic cells based on a small-molecule bulk heterojunction system consisting of a trifluoromethylbenzene (CF3) end-group-containing oligomer (BDTT-(DPP)2-CF3) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. As a result, the introduction of CF3 end-groups has been found to enhance both the short circuit current density (JSC) and fill factor (FF). A tandem photovoltaic device comprising an inverted BDTT-(DPP)2-CF3:PC71BM cell and a poly(3-hexylthiophene) (P3HT):indene-C60-bisadduct (IC60BA)-based cell as the top and bottom cell components, respectively, showed a maximum PCE of 8.30%. These results provide valuable guidelines for the rational design of conjugated small molecules for applications in high-performance organic photovoltaic cells. Furthermore, to the best of our knowledge, this is the first report on the design of fluorine-functionalized BDTT-DPP-based small molecules, which have been shown to be a viable candidate for use in inverted tandem cells.

  3. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  4. High efficiency double sided solar cells

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1990-06-01

    Silicon technology state of the art for single crystalline was given to be limited to less than 20% efficiency. A proposed new form of photovoltaic solar cell of high current high efficiency with double sided structures has been given. The new forms could be n ++ pn ++ or p ++ np ++ double side junctions. The idea of double sided devices could be understood as two solar cells connected back-to-back in parallel electrical connection, in which the current is doubled if the cell is illuminated from both sides by a V-shaped reflector. The cell is mounted to the reflector such that each face is inclined at an angle of 45 deg. C to each side of the reflector. The advantages of the new structure are: a) High power devices. b) Easy to fabricate. c) The cells are used vertically instead of horizontal use of regular solar cell which require large area to install. This is very important in power stations and especially for satellite installation. If the proposal is made real and proved to be experimentally feasible, it would be a new era for photovoltaic solar cells since the proposal has already been extended to even higher currents. The suggested structures could be stated as: n ++ pn ++ Vp ++ np ++ ;n ++ pn ++ Vn ++ pn ++ ORp ++ np ++ Vp ++ np ++ . These types of structures are formed in wedged shape to employ indirect illumination by either parabolic; conic or V-shaped reflectors. The advantages of these new forms are low cost; high power; less in size and space; self concentrating; ... etc. These proposals if it happens to find their ways to be achieved experimentally, I think they will offer a short path to commercial market and would have an incredible impact on solar cell technology and applications. (author). 12 refs, 5 figs

  5. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  6. DOE/OER-sponsored basic research in high-efficiency photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Deb, S.K.; Benner, J.P. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    A high-efficiency photovoltaic project involving many of the national laboratories and several universities has been initiated under the umbrella of the U.S. Department of Energy (DOE) Center of Excellence for the Synthesis and Processing of Advanced Materials. The objectives of this project are to generate advances in fundamental scientific understanding that will impact the efficiency, cost and reliability of thin-film photovoltaic cells. The project is focused on two areas. (1) Silicon-Based Thin Films, in which key scientific and technological problems involving amorphous and polycrystalline silicon thin films will be addressed, and (2) Next-Generation Thin-Film Photovoltaics, which will be concerned with the possibilities of new advances and breakthroughs in the materials and physics of photovoltaics using non-silicon-based materials.

  7. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  8. Highly Efficient PCDTBT:PC71 BM Based Photovoltaic Devices without Thermal Annealing Treatment

    International Nuclear Information System (INIS)

    Yang Shao-Peng; Kong Wei-Guang; Liu Bo-Ya; Fu Guang-Sheng; Zheng Wen-Yao; Li Bao-Min; Liu Xian-Hao

    2011-01-01

    We propose an effective method to fabricate highly efficient organic photovoltaic cells based on poly [N-9 - heptadecanyl-2, 7-carbazole-alt-5,5-(4'7'-di-2-thienyl-2'1'3-b-enzothiadiazole): [6,6]-phenyl C 71 -butyric acid methyl ester (PCDTBT:PC 71 BM). A power conversion efficiency of as high as 5.6% and a fill factor of 53.7% are achieved from the optimized cells. The influence of surface morphology of the active layer on the performance of the cells is also investigated. (cross-disciplinary physics and related areas of science and technology)

  9. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui

    2010-06-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  10. High efficiency solid-state sensitized heterojunction photovoltaic device

    KAUST Repository

    Wang, Mingkui; Liu, Jingyuan; Cevey-Ha, Ngoc-Le; Moon, Soo-Jin; Liska, Paul; Humphry-Baker, Robin; Moser, Jacques-E.; Grä tzel, Carole; Wang, Peng; Zakeeruddin, Shaik M.

    2010-01-01

    The high molar extinction coefficient heteroleptic ruthenium dye, NaRu(4,4′-bis(5-(hexylthio)thiophen-2-yl)-2,2′-bipyridine) (4-carboxylic acid-4′-carboxylate-2,2′-bipyridine) (NCS) 2, exhibits certified 5% electric power conversion efficiency at AM 1.5 solar irradiation (100 mW cm-2) in a solid-state dye-sensitized solar cell using 2,2′,7,7′-tetrakis-(N,N-di-pmethoxyphenylamine)-9, 9′-spirobifluorene (spiro-MeOTAD) as the organic hole-transporting material. This demonstration elucidates a class of photovoltaic devices with potential for low-cost power generation. © 2010 Elsevier Ltd. All rights reserved.

  11. Research and development of photovoltaic power system. Research on surface passivation for high-efficiency silicon solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Hyomen passivation no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on surface passivation of high-efficiency silicon solar cells. In research on carrier recombination on SiO2/doped silicon interface, measurements were carried out on minority carrier life with respect to p-type silicon substrates with which phosphorus with high and low concentrations are diffused uniformly on the surface and non-uniformly on the back and then oxidized. The measurements were performed for the purpose of evaluating the carrier recombination at p-n junctions. Effective life time of oxidized test samples increased longer than that of prior to the oxidization as a result of effect of surface passivation contributing remarkably. In research on reduction in carrier recombination on SiO2/Si interface by using H radical annealing, experiments were conducted by using a method that uses more active H-atoms. As a result, it was revealed that the reduction effect is recognized at as low temperature as 200{degree}C, and photo-bias effect is also noticeable. Other research activities included analytic research on minority carrier recombination on micro crystalline silicon/crystalline silicon interface, and experimental research on evaluation of minority carrier life of poly-crystalline silicon wafers. 6 figs.

  12. Simple processing of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Hamammu, I.M.; Ibrahim, K.

    2006-01-01

    Cost effective photovoltaic devices have been an area research since the development of the first solar cells, as cost is the major factor in their usage. Silicon solar cells have the biggest share in the photovoltaic market, though silicon os not the optimal material for solar cells. This work introduces a simplified approach for high efficiency silicon solar cell processing, by minimizing the processing steps and thereby reducing cost. The suggested procedure might also allow for the usage of lower quality materials compared to the one used today. The main features of the present work fall into: simplifying the diffusion process, edge shunt isolation and using acidic texturing instead of the standard alkaline processing. Solar cells of 17% efficiency have been produced using this procedure. Investigations on the possibility of improving the efficiency and using less quality material are still underway

  13. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    Science.gov (United States)

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  14. Low-Cost, High Efficiency, Silicon Based Photovoltaic Devices

    Science.gov (United States)

    2015-08-27

    for photovoltaic applications. Figure 14: (a) Absorption and scattering efficiencies versus sizes of Au nanoparticle at 550 nm, (b) scattering...efficiency as a function of wavelength for different Au nanoparticles sizes . 32 Review of plasmonics light trapping for photovoltaic application...ensure that the irradiation variation was within 3%. The external quantum efficiency (EQE) system used a 300W Xenon light source with a spot size of 1mm

  15. High efficiency lithium-thionyl chloride cell

    Science.gov (United States)

    Doddapaneni, N.

    1982-08-01

    The polarization characteristics and the specific cathode capacity of Teflon bonded carbon electrodes in the Li/SOCl2 system have been evaluated. Doping of electrocatalysts such as cobalt and iron phthalocyanine complexes improved both cell voltage and cell rate capability. High efficiency Li/SOCl2 cells were thus achieved with catalyzed cathodes. The electrochemical reduction of SOCl2 seems to undergo modification at catalyzed cathode. For example, the reduction of SOCl2 at FePc catalyzed cathode involves 2-1/2 e-/mole of SOCl2. Furthermore, the reduction mechanism is simplified and unwanted chemical species are eliminated by the catalyst. Thus a potentially safer high efficiency Li/SOCl2 can be anticipated.

  16. Comparison and Design of High Efficiency Microinverters for Photovoltaic Applications

    OpenAIRE

    Dominic, Jason

    2014-01-01

    With the decrease in availability of non-renewable energy sources coupled with the increase in the amount of energy required for the operation of personal electronic devices there has been an increased focus on developing systems that take advantage of renewable energy sources. Renewal energy sources such as photovoltaic (PV) panels have become more popular due to recent developments in PV panel manufacturing that decreases material costs and improves energy harvesting efficiency. Since PV so...

  17. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  18. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  19. Highly Efficient LiYF4:Yb(3+), Er(3+) Upconversion Single Crystal under Solar Cell Spectrum Excitation and Photovoltaic Application.

    Science.gov (United States)

    Chen, Xu; Xu, Wen; Song, Hongwei; Chen, Cong; Xia, Haiping; Zhu, Yongsheng; Zhou, Donglei; Cui, Shaobo; Dai, Qilin; Zhang, Jiazhong

    2016-04-13

    Luminescent upconversion is a promising way to harvest near-infrared (NIR) sunlight and transforms it into visible light that can be directly absorbed by active materials of solar cells and improve their power conversion efficiency (PCE). However, it is still a great challenge to effectively improve the PCE of solar cells with the assistance of upconversion. In this work, we demonstrate the application of the transparent LiYF4:Yb(3+), Er(3+) single crystal as an independent luminescent upconverter to improve the PCE of perovskite solar cells. The LiYF4:Yb(3+), Er(3+) single crystal is prepared by an improved Bridgman method, and its internal quantum efficiency approached to 5.72% under 6.2 W cm(-2) 980 nm excitation. The power-dependent upconversion luminescence indicated that under the excitation of simulated sunlight the (4)F(9/2)-(4)I(15/2) red emission originally results from the cooperation of a 1540 nm photon and a 980 nm photon. Furthermore, when the single crystal is placed in front of the perovskite solar cells, the PCE is enhanced by 7.9% under the irradiation of simulated sunlight by 7-8 solar constants. This work implies the upconverter not only can serve as proof of principle for improving PCE of solar cells but also is helpful to practical application.

  20. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... converter components. Wide bandgap power semiconductors are introduced due to their superior performance in comparison to traditional silicon power devices. The analysis presents a study based on switching loss measurements performed on Si IGBTs, SiC JFETs, SiC MOSFETs and their respective gate drivers...

  1. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  2. The waffle: a new photovoltaic diode geometry having high efficiency and backside contacts

    DEFF Research Database (Denmark)

    Leistiko, Otto

    1994-01-01

    By employing anisotropic etching techniques and advanced device processing it is possible to micromachine new types of mechanical, electronic, and optical devices of silicon, which have unique properties. In this paper the characteristics of a new type of photovoltaic diode fabricated employing...... these processing techniques are described. This novel device has not only high efficiency, but also has both contacts placed on the backside of the cell. The first devices which are only 50 mm in diameter are of relatively good quality with low leakage currents (nA), high breakdown voltages (80 V), and low series...... resistance (mohms). The measured efficiencies at AM 1.5 lie between 12 to 15% with short circuit currents of 25-30 mA/cm2, and open circuit voltages of 0.58-0.6 V...

  3. High-Efficiency BODIPY-Based Organic Photovoltaics

    KAUST Repository

    Chen, John J.; Conron, Sarah M.; Erwin, Patrick; Dimitriou, Michael; McAlahney, Kyle; Thompson, Mark E.

    2015-01-01

    © 2014 American Chemical Society. A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm2 and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

  4. High-Efficiency BODIPY-Based Organic Photovoltaics

    KAUST Repository

    Chen, John J.

    2015-01-14

    © 2014 American Chemical Society. A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm2 and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

  5. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  6. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  7. A high efficiency photovoltaic module integrated converter with the asymmetrical half-bridge flyback converter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heeje; Kim, Jongrak; Shin, Dongsul [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); Kim, Hosung; Lee, Kyungjun [Department of Electrical Engineering, Pusan National University, Jangjeon, Geumjeong, Busan 609-735 (Korea); New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea); Kim, Jonghyun; Yoo, Dongwook [New and Renewable Energy System Research Center, Korea Electro-technology Research Institute, 28-1, Sungju-dong Changwon-si, Kyungsannam-do, 641-120 (Korea)

    2010-08-15

    A module integrated converter (MIC) for a photovoltaic (PV) cell is important part of power conditioning system (PCS). It performs maximum power point tracking of a PV cell to generate the power as much as possible from solar energy. There are several methods for connection between the PV modules and the MICs. In order to avoid partial shading effects, converter-per-module approach was proposed. The MIC that performs maximum power point tracking (MPPT), if it is low efficiency, is no use. The MIC whose output is connected to the output of PV module was proposed for high efficiency. However, there are some problems. In this study, an asymmetrical half-bridge flyback converter is proposed instead of the original flyback converter with same method to solve the problems. The proposed MIC was built to verify the performance. The new topology using soft switching technique showed good performance for the efficiency. At the higher power, the efficiency of the proposed converter is higher than existing converter. (author)

  8. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for development of extra-high efficiency solar cells (fundamental research on extra-high efficiency Si solar cells); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Chokokoritsu taiyo denchi no gijutsu kaihatsu no tame no kaiseki hyoka (chokokoritsu silicon taiyo denchi gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, T; Suzuki, E; Ishikawa, K; Takato, H; Yui, N; Shimokawa, R [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation for development of extra-high efficiency silicon solar cells. It is necessary for development of extra-high efficiency Si solar cells to extend as far as possible service life of minority carriers and to develop the evaluation techniques. Noting photoluminescence (PL) observable even with Si, the method of evaluating characteristics of minority carriers, which are not limited in samples, is developed to experimentally determine their service life from transitional response of the PL characteristics. Si has an extremely low quantum effect, because it is an indirect transitional semiconductor, and needs measurement of very high sensitivity. A rapid heat annealing apparatus and others to generate carriers in the infrared and ultraviolet regions are provided in consideration that these are possible means to increase efficiency. These possibilities will be pursued by developing the annealing techniques. 1 fig.

  9. Progress in high-efficient solution process organic photovoltaic devices fundamentals, materials, devices and fabrication

    CERN Document Server

    Li, Gang

    2015-01-01

    This book presents an important technique to process organic photovoltaic devices. The basics, materials aspects and manufacturing of photovoltaic devices with solution processing are explained. Solution processable organic solar cells - polymer or solution processable small molecules - have the potential to significantly reduce the costs for solar electricity and energy payback time due to the low material costs for the cells, low cost and fast fabrication processes (ambient, roll-to-roll), high material utilization etc. In addition, organic photovoltaics (OPV) also provides attractive properties like flexibility, colorful displays and transparency which could open new market opportunities. The material and device innovations lead to improved efficiency by 8% for organic photovoltaic solar cells, compared to 4% in 2005. Both academic and industry research have significant interest in the development of this technology. This book gives an overview of the booming technology, focusing on the solution process fo...

  10. Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics

    Science.gov (United States)

    Zhou, Ru; Niu, Haihong; Ji, Fengwei; Wan, Lei; Mao, Xiaoli; Guo, Huier; Xu, Jinzhang; Cao, Guozhong

    2016-11-01

    PbS is a promising light harvester for near-infrared (NIR) responsive quantum dot (QD) photovoltaics due to its narrow bulk band gap (0.41 eV) and large exciton Bohr radius (18 nm). However, the relatively low conduction band (CB) and high-density surface defects of PbS as two major drawbacks for its use in solar cells severely hamper the photovoltaic performance enhancement. In this work, a modified solution-based successive ionic layer adsorption and reaction (SILAR) utilizing mixed cationic precursors of Pb2+ and Cd2+ is explored, and such a scheme offers two benefits, band-structure tailoring and surface passivation. In-situ deposited CdS suppresses the excessive growth of PbS in the mesopores, thereby facilitating the favorable electron injection from PbS to TiO2 in view of the up-shifted CB level of QDs; the intimate interpenetration of two sulfides with each other leads to superior passivation of trap state defects on PbS, which suppresses the interfacial charge recombination. With the construction of photovoltaics based on such a hybrid (Pb,Cd)S/CdS configuration, impressive power conversion efficiency up to 4.08% has been reached, outperforming that of the conventional PbS/CdS pattern (2.95%). This work highlights the great importance of band-structure tailoring and surface passivation for constructing highly efficient PbS QD photovoltaics.

  11. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  12. Recent Advances in High Efficiency Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Yoshio; Ohshita; Hidetoshi; Suzuki; Kenichi; Nishimura; Masafumi; Yamaguchi

    2007-01-01

    1 Results The conversion efficiency of sunlight to electricity is limited around 25%,when we use single junction solar cells. In the single junction cells,the major energy losses arise from the spectrum mismatching. When the photons excite carriers with energy well in excess of the bandgap,these excess energies were converted to heat by the rapid thermalization. On the other hand,the light with lower energy than that of the bandgap cannot be absorbed by the semiconductor,resulting in the losses. One way...

  13. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  14. Photovoltaic power generation system with photovoltaic cells as bypass diodes

    Science.gov (United States)

    Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna; Cruz-Campa, Jose Luis; Okandan, Murat

    2017-11-28

    A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cell is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.

  15. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  16. High-efficient solar cells with porous silicon

    International Nuclear Information System (INIS)

    Migunova, A.A.

    2002-01-01

    It has been shown that the porous silicon is multifunctional high-efficient coating on silicon solar cells, modifies its surface and combines in it self antireflection and passivation properties., The different optoelectronic effects in solar cells with porous silicon were considered. The comparative parameters of uncovered photodetectors also solar cells with porous silicon and other coatings were resulted. (author)

  17. A Short Progress Report on High-Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Tang, He; He, Shengsheng; Peng, Chuangwei

    2017-12-01

    Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.

  18. Manipulation of radicals and ions in LFICP-aided fabrication of high efficiency solar cells

    International Nuclear Information System (INIS)

    Xu, S.

    2013-01-01

    In this talk, we report on the development and diagnostics of low frequency inductively coupled plasma (LFICP) reactor for fabrication of high efficiency silicon solar cells. Chemically active, thermally non-equilibrium plasma possess unique advantages for manipulation of plasma-generated radicals/ions and overall control of growth and self-organization processes that are crucial for fabrication of photovoltaic materials and solar cells. In low frequency inductively coupled plasmas, generation, selection and control of densities and fluxes of the radicals and ions can easily be controlled by the electron energy distributions and other plasma parameters. The electric field and thermal forces guide selective delivery of the radicals to the surface. Specific substrate activation and temperature determine the ion/heat fluxes from the gas phase to the charged surfaces. Detailed discussion includes the inter-connection between in-situ plasma diagnostics (Optical Emission Spectroscopy, Langmuir Probe diagnostics, and Quadruple Mass Spectrometry) and ex-situ material characterization (XRD, Raman, FTIR EDX, UV/Vis, SEM, Hall-effect and others). Special emphasis is paid to the identification and control strategies of the plasma-generated radicals/ions existed in both the ionized gas phase and on the deposition surfaces. We will show how radicals and ions can be manipulated to meet the structural, optical and electronic requirements for high efficiency photovoltaic cells. Solar cell fabricated by the LFICP plasma exhibits an extraordinarily photovoltaic performance with energy conversion efficiency exceeding 18%. (author)

  19. Development of high-efficiency solar cells on silicon web

    Science.gov (United States)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  20. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers.

    Science.gov (United States)

    Zhang, Maojie; Guo, Xia; Zhang, Shaoqing; Hou, Jianhui

    2014-02-01

    The synergistic effect of fluorination on molecular energy level modulation is realized by introducing fluorine atoms onto both the donor and the acceptor moieties in a D-A polymer, and as a result, the polymer solar cell device based on the trifluorinated polymer, PBT-3F, shows a high efficiency of 8.6%, under illumination of AM 1.5G, 100 mW cm(-) (2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Initial Test Bed for Very High Efficiency Solar Cells

    Science.gov (United States)

    2008-05-01

    efficiency, both at the solar cell and module levels. The optical system consists of a tiled nonimaging concentrating system, coupled with a spectral...To achieve the benefits of the new photovoltaic system architecture, a new optical element is designed that combines a nonimaging optical...of the power from each solar cell. Optics Design The most advanced optical design is based on non- symmetric, nonimaging optics, tiled into an

  2. Irradiation effects on high efficiency Si solar cells

    International Nuclear Information System (INIS)

    Nguyen Duy, T.; Amingual, D.; Colardelle, P.; Bernard, J.

    1974-01-01

    By optimizing the diffusion parameters, high efficiency cells are obtained with 2ohmsxcm (13.5% AMO) and 10ohmsxcm (12.5% AMO) silicon material. These new cells have been submitted to radiation tests under 1MeV, 2MeV electrons and 2.5MeV protons. Their behavior under irradiation is found to be dependent only on the bulk material. By using the same resistivity silicon, the rate of degradation is exactly the same than those of conventional cells. The power increase, due to a better superficial response of the cell, is maintained after irradiation. These results show that new high efficiency cells offer an E.O.L. power higher than conventional cells [fr

  3. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  4. Increased voltage photovoltaic cell

    Science.gov (United States)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  5. Customized color patterning of photovoltaic cells

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  6. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    Science.gov (United States)

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  7. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  8. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  9. Photovoltaic cell module and method of forming

    Science.gov (United States)

    Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay

    2017-12-12

    A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.

  10. Photocurrent of Photovoltaic Cells

    Science.gov (United States)

    Peeler, Seth; McIntyre, Max; Cossel, Raquel; Bowser, Chris; Tzolov, Marian

    Photovoltaic cells can be used to harness clean, renewable energy from light. Examined in this project were photovoltaic cells based on a bulk heterojunction between PCPDTBT and PCBM sandwiched between an ITO anode and an Al cathode. Current-voltage characteristics and impedance spectra for multiple photovoltaic devices were taken under varying DC electrical bias and different level of illumination. This data was interpreted in terms of an equivalent circuit with linear elements, e.g. capacitance, series resistance, and parallel resistance. A physical interpretation of each circuit element will be presented. The spectral response of the devices was characterized by optical transmission and photocurrent spectroscopy using a spectrometer in the spectral range from 300 to 900 nm. The DC measurements confirmed that the devices are electrically rectifying. The AC measurements allowed modeling of the devices as a dielectric between two electrodes with injection current passing through it. The characteristic peaks for both PCBDTBT and PCBM are clearly visible in both the photocurrent and transmission data. The good correlation between the photocurrent and transmission data indicates photocurrent generation due to absorption in both materials constituting the heterojunction.

  11. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  12. Controllable Nanoscale Inverted Pyramids for High-Efficient Quasi-Omnidirectional Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Xu, Haiyuan; Zhong, Sihua; Zhuang, Yufeng; Shen, Wenzhong

    2017-11-14

    Nanoscale inverted pyramid structures (NIPs) have always been regarded as one of the most paramount light management schemes to achieve the extraordinary performance in various devices, especially in solar cells, due to their outstanding antireflection ability with relative lower surface enhancement ratio. However, the current approaches to fabricating the NIPs are complicated and not cost-effective for the massive cell production in the photovoltaic industry. Here, controllable NIPs are fabricated on crystalline silicon (c-Si) wafers by Ag catalyzed chemical etching and alkaline modification, which is a preferable all-solution-processed method. Through applying the NIPs to c-Si solar cells and optimizing the cell design, we have successfully achieved highly efficient NIPs textured solar cells with the champion efficiency of 20.5%. Importantly, the NIPs textured solar cells are further demonstrated to possess the quasi-omnidirectional property over the broad sunlight incident angles of approximately 0°-60°. Moreover, the NIPs are theoretically revealed to offer light trapping advantage for ultrathin c-Si solar cells. Hence, the NIPs formed by the controllable method exhibit a great potential to be used in the future photovoltaic industry as surface texture. © 2017 IOP Publishing Ltd.

  13. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  14. Solar energy: photovoltaics

    International Nuclear Information System (INIS)

    Goetzberger, A.; Voss, B.; Knobloch, J.

    1994-01-01

    This textbooks covers the following topics: foundations of photovoltaics, solar energy, P-N junctions, physics of solar cells, high-efficiency solar cells, technology of Si solar cells, other solar cells, photovoltaic applications. (orig.)

  15. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  16. Mesoscopic Oxide Double Layer as Electron Specific Contact for Highly Efficient and UV Stable Perovskite Photovoltaics.

    Science.gov (United States)

    Tavakoli, Mohammad Mahdi; Giordano, Fabrizio; Zakeeruddin, Shaik Mohammed; Grätzel, Michael

    2018-04-11

    The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO 2 nanoparticles covered by a thin film of SnO 2 , either in amorphous (a-SnO 2 ), crystalline (c-SnO 2 ), or nanocrystalline (quantum dot) form (SnO 2 -NC). We find that the band gap of a-SnO 2 is larger than that of the crystalline (tetragonal) polymorph leading to a corresponding lift in its conduction band edge energy which aligns it perfectly with the conduction band edge of both the triple cation perovskite and the TiO 2 scaffold. This enables very fast electron extraction from the light perovskite, suppressing the notorious hysteresis in the current-voltage ( J-V) curves and retarding nonradiative charge carrier recombination. As a result, we gain a remarkable 170 mV in open circuit photovoltage ( V oc ) by replacing the crystalline SnO 2 by an amorphous phase. Because of the quantum size effect, the band gap of our SnO 2 -NC particles is larger than that of bulk SnO 2 causing their conduction band edge to shift also to a higher energy thereby increasing the V oc . However, for SnO 2 -NC there remains a barrier for electron injection into the TiO 2 scaffold decreasing the fill factor of the device and lowering the PCE. Introducing the a-SnO 2 coated mp-TiO 2 scaffold as electron extraction layer not only increases the V oc and PEC of the solar cells but also render them resistant to UV light which forebodes well for outdoor deployment of these new PSC architectures.

  17. High-Efficiency Isolated Photovoltaic Microinverter Using Wide-Band Gap Switches for Standalone and Grid-Tied Applications

    Directory of Open Access Journals (Sweden)

    Yu-Chen Liu

    2018-03-01

    Full Text Available An isolated photovoltaic micro-inverter for standalone and grid-tied applications is designed and implemented to achieve high efficiency. System configuration and design considerations, including the proposed active-clamp forward-flyback resonant converter for the DC-DC stage and a dual-frequency full-bridge inverter for the DC-AC stage, are analyzed and discussed. A prototype microinverter system is built and tested. Experimental results verify the feasibility of the proposed system, which achieves 95% power conversion efficiency at full load.

  18. Isolated high-efficiency DC/DC converter for photovoltaic applications

    NARCIS (Netherlands)

    Vermulst, B.J.D.; Wijnands, C.G.E.; Duarte, J.L.

    2012-01-01

    While an increasing number of photovoltaic (PV) systems is installed, those systems typically use central inverters. In practical cases, output-power differences between PV modules will cause these central-inverter-based systems not to achieve Maximum Power Point (MPP) for each PV module.

  19. Isolated high-efficiency grid-connected de-central inverter for photovoltaic modules

    NARCIS (Netherlands)

    Vermulst, B.J.D.

    2012-01-01

    While an increasing number of photovoltaic (PV) systems is installed, those systems typically use central inverters. In practical cases, output-power differences between PV modules will cause these central-inverter-based systems not to achieve Maximum Power Point (MPP) for each PV module.

  20. A high-efficiency solution-deposited thin-film photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Mitzi, David B; Yuan, Min; Liu, Wei; Chey, S Jay; Schrott, Alex G [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States); Kellock, Andrew J; Deline, Vaughn [IBM Almaden Research Center, San Jose, CA (United States)

    2008-10-02

    High-quality Cu(In,Ga)Se{sub 2} (CIGS) films are deposited from hydrazine-based solutions and are employed as absorber layers in thin-film photovoltaic devices. The CIGS films exhibit tunable stoichiometry and well-formed grain structure without requiring post-deposition high-temperature selenium treatment. Devices based on these films offer power conversion efficiencies of 10% (AM1.5 illumination). (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  1. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    Science.gov (United States)

    Wanlass, Mark W [Golden, CO

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  2. High-efficiency solar cells physics, materials, and devices

    CERN Document Server

    Wang, Xiaodong

    2013-01-01

    This book creates a platform for knowledge sharing and dissemination of research on making current photovoltaic technology cheaper, creating advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers.

  3. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    Science.gov (United States)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we

  4. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    Science.gov (United States)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  5. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents

    KAUST Repository

    Wadsworth, Andrew; Ashraf, Raja; Abdelsamie, Maged; Pont, Sebastian; Little, Mark; Moser, Maximilian; Hamid, Zeinab; Neophytou, Marios; Zhang, Weimin; Amassian, Aram; Durrant, James R.; Baran, Derya; McCulloch, Iain

    2017-01-01

    With chlorinated solvents unlikely to be permitted for use in solution-processed organic solar cells in industry, there must be a focus on developing nonchlorinated solvent systems. Here we report high-efficiency devices utilizing a low-bandgap donor polymer (PffBT4T-2DT) and a nonfullerene acceptor (EH-IDTBR) from hydrocarbon solvents and without using additives. When mesitylene was used as the solvent, rather than chlorobenzene, an improved power conversion efficiency (11.1%) was achieved without the need for pre- or post-treatments. Despite altering the processing conditions to environmentally friendly solvents and room-temperature coating, grazing incident X-ray measurements confirmed that active layers processed from hydrocarbon solvents retained the robust nanomorphology obtained with hot-processed chlorinated solvents. The main advantages of hydrocarbon solvent-processed devices, besides the improved efficiencies, were the reproducibility and storage lifetime of devices. Mesitylene devices showed better reproducibility and shelf life up to 4000 h with PCE dropping by only 8% of its initial value.

  6. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents

    KAUST Repository

    Wadsworth, Andrew

    2017-06-01

    With chlorinated solvents unlikely to be permitted for use in solution-processed organic solar cells in industry, there must be a focus on developing nonchlorinated solvent systems. Here we report high-efficiency devices utilizing a low-bandgap donor polymer (PffBT4T-2DT) and a nonfullerene acceptor (EH-IDTBR) from hydrocarbon solvents and without using additives. When mesitylene was used as the solvent, rather than chlorobenzene, an improved power conversion efficiency (11.1%) was achieved without the need for pre- or post-treatments. Despite altering the processing conditions to environmentally friendly solvents and room-temperature coating, grazing incident X-ray measurements confirmed that active layers processed from hydrocarbon solvents retained the robust nanomorphology obtained with hot-processed chlorinated solvents. The main advantages of hydrocarbon solvent-processed devices, besides the improved efficiencies, were the reproducibility and storage lifetime of devices. Mesitylene devices showed better reproducibility and shelf life up to 4000 h with PCE dropping by only 8% of its initial value.

  7. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers

    KAUST Repository

    Kim, Gi-Hwan

    2015-11-11

    © 2015 American Chemical Society. The optoelectronic tunability offered by colloidal quantum dots (CQDs) is attractive for photovoltaic applications but demands proper band alignment at electrodes for efficient charge extraction at minimal cost to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high quality CQD solids. We report robust self-assembled monolayers (R-SAMs) that enable us to increase the efficiency of CQD photovoltaics. Only by developing a process for secure anchoring of aromatic SAMs, aided by deposition of the SAMs in a water-free deposition environment, were we able to provide an interface modification that was robust against the ensuing chemical treatments needed in the fabrication of CQD solids. The energy alignment at the rectifying interface was tailored by tuning the R-SAM for optimal alignment relative to the CQD quantum-confined electron energy levels. This resulted in a CQD PV record power conversion efficiency (PCE) of 10.7% with enhanced reproducibility relative to controls.

  8. Highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    A 3D hyperbranched TiO2 electron transporting material is demonstrated, which exhibits superior carrier transport and lifetime, as well as excellent infiltration, leading to highly efficient mesostructured hybrid solar cells, such as lead-halide perovskites (15.5%) and dye-sensitized solar cells (11.2%).

  9. Highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials

    KAUST Repository

    Mahmood, Khalid

    2015-03-23

    A 3D hyperbranched TiO2 electron transporting material is demonstrated, which exhibits superior carrier transport and lifetime, as well as excellent infiltration, leading to highly efficient mesostructured hybrid solar cells, such as lead-halide perovskites (15.5%) and dye-sensitized solar cells (11.2%).

  10. Advanced Nanomaterials for High-Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junhong [University of Wisconsin-Milwaukee

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  11. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  12. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for development of extra-high efficiency solar cells (fundamental research on extra-high efficiency III-V compound semiconductor tandem solar cells); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Chokokoritsu taiyo denchi no gijutsu kaihatsu no tame no kaiseki hyoka (chokokoritsu III-V zoku kagobutsu taiyo denchi gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Sekikawa, T; Kawanami, H; Sakata, I; Nagai, K; Matsumoto, K; Miki, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for development of extra-high efficiency III-V compound semiconductor tandem solar cells. Heteroepitaxial structures of compound semiconductors, such as GaAs, on silicon substrates are analyzed and evaluated by EXAFS, Raman and RHEED for the initial stage of the film growth and heterointerfaces. The device capable of in-situ observation of the growing surface structures during the period of heteroepitaxial film growth is introduced, to investigate the effects of rise-up and initial growth conditions on defects. The effects of atomic hydrogen on growth of a GaAs film on a silicon substrate are investigated from photoluminescence and solar cell characteristics, to confirm the effects of reducing defects. Heteroepitaxial growth of InGaP, which has the optimum band width for forming multi-junction silicon solar cells, on a silicon substrate is investigated, to find that an interfacial buffer layer is necessary to form a good film. 2 figs.

  13. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-09-30

    organic cation evolution and moisture penetration to overcome the often-reported thermal and environmental instability of metal halide perovskites. Previous perovskite-containing tandems utilized molybdenum oxide (MoOx) as a sputter buffer layer, but this has raised concerns over long-term stability, as the iodide in the perovskite can chemically react with MoOx. Mixed-cation perovskite solar cells have consistently outperformed their single-cation counterparts. The first perovskite device to exceed 20% PCE was fabricated with a mixture of methylammonium (MA) and formamidinium (FA). Recent reports have shown promising results with the introduction of cesium mixtures, enabling high efficiencies with improved photo-, moisture, and thermal stability. The increased moisture and thermal stability are especially important as they broaden the parameter space for processing on top of the perovskite, enabling the deposition of metal oxide contacts through atomic layer deposition (ALD) or chemical vapor deposition (CVD) that may require elevated temperatures or water as a counter reagent. Both titanium dioxide (TiO2) and tin oxide (SnO2) have consistently proven to be effective electron-selective contacts for perovskite solar cells and both can be deposited via ALD at temperatures below 150 °C. We introduced a bilayer of SnO2 and zinc tin oxide (ZTO) that can be deposited by either low-temperature ALD or pulsed-CVD as a window layer with minimal parasitic absorption, efficient electron extraction, and sufficient buffer properties to prevent the organic and perovskite layers from damage during the subsequent sputter deposition of a transparent ITO electrode. We explored pulsed-CVD as a modified ALD process with a continual, rather than purely step-wise, growth component in order to considerably reduce the process time of the SnO2 deposition process and minimize potential perovskite degradation. These layers, when

  14. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  15. Multiferroic Double Perovskites ScFe1-xCrxO3 (1 /6 ≤x ≤5 /6 ) for Highly Efficient Photovoltaics and Spintronics

    Science.gov (United States)

    Cai, Tian-Yi; Liu, Shi-Chen; Ju, Sheng; Liu, Cheng-You; Guo, Guang-Yu

    2017-09-01

    Ferroelectric oxides are attractive materials for constructing efficient solar cells. Nevertheless, a wide band gap of nearly 3.0 eV in these ferroelectric oxides would result in poor overall sunlight absorption and, hence, low energy conversion efficiency. Here, by systematic first-principles density-functional calculations, we demonstrate that double-perovskite semiconductors ScFe1-xCrxO3 (1 /6 ≤x ≤5 /6 ) with a narrow band gap of approximately 1.8 eV would simultaneously exhibit large ferroelectric polarization (100 μ C /cm2 ) and ferrimagnetic magnetization (170 emu/cm3 ). Within a Schottky-based model for a typical sandwich solar-cell structure, a power-conversion efficiency of 9.0% can be reached by neglecting all other sources of photovoltaicity in ferroelectric materials. This value is larger than the largest value of 8.1% observed in ferroelectric oxides. Furthermore, these double perovskites are found to be single-spin semiconductors, and the obtained photocurrent is fully spin polarized over almost the entire Sun spectrum. These fascinating advantages would make ScFex Cr1 -xO3 (1 /6 ≤x ≤5 /6 ) semiconductors promising candidates for highly efficient solar cells and spin photovoltaic devices.

  16. Advances in High-Efficiency III-V Multijunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Richard R. King

    2007-01-01

    Full Text Available The high efficiency of multijunction concentrator cells has the potential to revolutionize the cost structure of photovoltaic electricity generation. Advances in the design of metamorphic subcells to reduce carrier recombination and increase voltage, wide-band-gap tunnel junctions capable of operating at high concentration, metamorphic buffers to transition from the substrate lattice constant to that of the epitaxial subcells, concentrator cell AR coating and grid design, and integration into 3-junction cells with current-matched subcells under the terrestrial spectrum have resulted in new heights in solar cell performance. A metamorphic Ga0.44In0.56P/Ga0.92In0.08As/ Ge 3-junction solar cell from this research has reached a record 40.7% efficiency at 240 suns, under the standard reporting spectrum for terrestrial concentrator cells (AM1.5 direct, low-AOD, 24.0 W/cm2, 25∘C, and experimental lattice-matched 3-junction cells have now also achieved over 40% efficiency, with 40.1% measured at 135 suns. This metamorphic 3-junction device is the first solar cell to reach over 40% in efficiency, and has the highest solar conversion efficiency for any type of photovoltaic cell developed to date. Solar cells with more junctions offer the potential for still higher efficiencies to be reached. Four-junction cells limited by radiative recombination can reach over 58% in principle, and practical 4-junction cell efficiencies over 46% are possible with the right combination of band gaps, taking into account series resistance and gridline shadowing. Many of the optimum band gaps for maximum energy conversion can be accessed with metamorphic semiconductor materials. The lower current in cells with 4 or more junctions, resulting in lower I2R resistive power loss, is a particularly significant advantage in concentrator PV systems. Prototype 4-junction terrestrial concentrator cells have been grown by metal-organic vapor-phase epitaxy, with preliminary measured

  17. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth; Cabanetos, Clement; Jahnke, Justin P.; Idso, Matthew N.; El Labban, Abdulrahman; Ngongang Ndjawa, Guy Olivier; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F.; Amassian, Aram; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  18. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  19. Highly efficient and stable dye-sensitized solar cells based on nanographite/polypyrrole counter electrode

    International Nuclear Information System (INIS)

    Yue, Gentian; Zhang, Xin’an; Wang, Lei; Tan, Furui; Wu, Jihuai; Jiang, Qiwei; Lin, Jianming; Huang, Miaoliang; Lan, Zhang

    2014-01-01

    Graphical abstract: Much higher photovoltaic performance of dye-sensitized solar cell with nanographite/PPy counter electrode as well as that of Pt configuration device. - Highlights: • Pt-free dye-sensitized solar cells. • The nanographite/PPy composite film showed high catalytic activity as well as Pt electrode. • The enhanced catalytic activity was attributed to increased active sites. • The DSSC based on the nanographite/PPy electrode showed a high photovoltaic performance. - Abstract: Nanographite/polypyrrole (NG/PPy) composite film was successfully prepared via in situ polymerization on rigid fluorine-doped tin oxide substrate and served as counter electrode (CE) for dye-sensitized solar cells (DSSCs). The surface morphology and composition of the composite film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectra and Fourier transform infrared spectroscopy (FTIR). The electrochemical performance of the NG/PPy electrode was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results of CV and EIS revealed that the NG/PPy electrode possessed excellent electrocatalytic activity for the reduction reaction of triiodide to iodide and low charge transfer resistance at the interface between electrolyte and CE, respectively. The DSSC assembled with the novel NG/PPy CE exhibited an enhanced power conversion efficiency of 7.40% under full sunlight illumination as comparing to that of the DSSC based on sputtered-Pt electrode. Thus, the NG/PPy CE could be premeditated as a promising alternative CE for low-cost and high- efficient DSSCs

  20. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    Science.gov (United States)

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  1. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    Science.gov (United States)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  2. Simulation of High Efficiency Heterojunction Solar Cells with AFORS-HET

    International Nuclear Information System (INIS)

    Wang Lisheng; Chen Fengxiang; Ai Yu

    2011-01-01

    In this paper, the high efficiency TCO/a-Si:H (n)/a-Si:H(i)/c-Si(p)/uc-Si(p + )/Al HIT (heterojunction with intrinsic thin-layer) solar cells was analyzed and designed by AFORS-HET software. The influences of emitter, intrinsic layer and back surface field (BSF) on the photovoltaic characteristics of solar cell were discussed. The simulation results show that the key role of the intrinsic layer inserted between the a-Si:H and crystalline silicon substrate is to decrease the interface states density. If the interface states density is lower than 10 10 cm -2 V -1 thinner intrinsic layer is better than thicker one. The increase of the thickness of the emitter will decrease the short-current density and affect the conversion efficiency. Microcrystalline BSF can increase conversion efficiency more than 2 percentage points compared with HIT solar cell with no BSF. But this BSF requires the doping concentration must exceed 10 20 cm -3 . Considered the band mismatch between crystalline silicon and microcrystalline silicon, the optimal band gap of microcrystalline silicon BSF is about 1.4-1.6eV.

  3. Photovoltaic cell and production thereof

    Science.gov (United States)

    Narayanan, Srinivasamohan [Gaithersburg, MD; Kumar, Bikash [Bangalore, IN

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  4. Transparent contacts for stacked compound photovoltaic cells

    Science.gov (United States)

    Tauke-Pedretti, Anna; Cederberg, Jeffrey; Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis

    2016-11-29

    A microsystems-enabled multi-junction photovoltaic (MEM-PV) cell includes a first photovoltaic cell having a first junction, the first photovoltaic cell including a first semiconductor material employed to form the first junction, the first semiconductor material having a first bandgap. The MEM-PV cell also includes a second photovoltaic cell comprising a second junction. The second photovoltaic cell comprises a second semiconductor material employed to form the second junction, the second semiconductor material having a second bandgap that is less than the first bandgap, the second photovoltaic cell further comprising a first contact layer disposed between the first junction of the first photovoltaic cell and the second junction of the second photovoltaic cell, the first contact layer composed of a third semiconductor material having a third bandgap, the third bandgap being greater than or equal to the first bandgap.

  5. High-efficiency silicon solar cells for low-illumination applications

    OpenAIRE

    Glunz, S.W.; Dicker, J.; Esterle, M.; Hermle, M.; Isenberg, J.; Kamerewerd, F.; Knobloch, J.; Kray, D.; Leimenstoll, A.; Lutz, F.; Oßwald, D.; Preu, R.; Rein, S.; Schäffer, E.; Schetter, C.

    2002-01-01

    At Fraunhofer ISE the fabrication of high-efficiency solar cells was extended from a laboratory scale to a small pilot-line production. Primarily, the fabricated cells are used in small high-efficiency modules integrated in prototypes of solar-powered portable electronic devices such as cellular phones, handheld computers etc. Compared to other applications of high-efficiency cells such as solar cars and planes, the illumination densities found in these mainly indoor applications are signific...

  6. Optimizing Grid Patterns on Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  7. Photovoltaic cells employing zinc phosphide

    Science.gov (United States)

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  8. Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Maria Konstantakou

    2017-09-01

    Full Text Available Solution-processed organic-inorganic halide perovskites are currently established as the hottest area of interest in the world of photovoltaics, ensuring low manufacturing cost and high conversion efficiencies. Even though various fabrication/deposition approaches and device architectures have been tested, researchers quickly realized that the key for the excellent solar cell operation was the quality of the crystallization of the perovskite film, employed to assure efficient photogeneration of carriers, charge separation and transport of the separated carriers at the contacts. One of the most typical methods in chemistry to crystallize a material is anti-solvent precipitation. Indeed, this classical precipitation method worked really well for the growth of single crystals of perovskite. Fortunately, the method was also effective for the preparation of perovskite films by adopting an anti-solvent dripping technique during spin-coating the perovskite precursor solution on the substrate. With this, polycrystalline perovskite films with pure and stable crystal phases accompanied with excellent surface coverage were prepared, leading to highly reproducible efficiencies close to 22%. In this review, we discuss recent results on highly efficient solar cells, obtained by the anti-solvent dripping method, always in the presence of Lewis base adducts of lead(II iodide. We present all the anti-solvents that can be used and what is the impact of them on device efficiencies. Finally, we analyze the critical challenges that currently limit the efficacy/reproducibility of this crystallization method and propose prospects for future directions.

  9. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  10. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Science.gov (United States)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-01

    Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.

  11. Development of high efficiency solar cells on silicon web

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  12. Research Update: Behind the high efficiency of hybrid perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Azhar Fakharuddin

    2016-09-01

    Full Text Available Perovskite solar cells (PSCs marked tremendous progress in a short period of time and offer bright hopes for cheap solar electricity. Despite high power conversion efficiency >20%, its poor operational stability as well as involvement of toxic, volatile, and less-abundant materials hinders its practical deployment. The fact that degradation and toxicity are typically observed in the most successful perovskite involving organic cation and toxic lead, i.e., CH3NH3PbX3, requires a deep understanding of their role in photovoltaic performance in order to envisage if a non-toxic, stable yet highly efficient device is feasible. Towards this, we first provide an overview of the basic chemistry and physics of halide perovskites and its correlation with its extraordinary properties such as crystal structure, bandgap, ferroelectricity, and electronic transport. We then discuss device related aspects such as the various device designs in PSCs and role of interfaces in origin of PV parameters particularly open circuit voltage, various film processing methods and their effect on morphology and characteristics of perovskite films, and the origin and elimination of hysteresis and operational stability in these devices. We then identify future perspectives for stable and efficient PSCs for practical deployment.

  13. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  14. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  15. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  16. Impurity effects in silicon for high efficiency solar cells

    Science.gov (United States)

    Hopkins, R. H.; Rohatgi, A.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs including, e.g., back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings can produce devices with conversion efficiencies above 20 percent (AM1). To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentration at which cell performance degrades is more than an order of magnitude lower for an 18-percent cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as-grown material can lead to the production of devices with efficiencies aboved 18 percent, as has been verified experimentally.

  17. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.; Sachs-Quintana, I. T.; Kastrop, John P.; Beaupré , Serge; Leclerc, Mario; McGehee, Michael D.

    2011-01-01

    Organic bulk-heterojunction solar cells comprising poly[N-9'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2', 1',3'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Novel materials for high-efficiency solar cells

    Science.gov (United States)

    Kojima, Nobuaki; Natori, Masato; Suzuki, Hidetoshi; Inagaki, Makoto; Ohshita, Yoshio; Yamaguchi, Masafumi

    2009-08-01

    Our Toyota Technological Institute group has investigated various novel materials for solar cells from organic to III-V compound materials. In this paper, we report our recent results in conductivity control of C60 thin films by metal-doping for organic solar cells, and mobility improvement of (In)GaAsN compounds for III-V tandem solar cells. The epitaxial growth of Mg-doped C60 films was attempted. It was found that the epitaxial growth of Mg-doped C60 film was enabled by using mica (001) substrate in the low Mg concentration region (Mg/C60 molar ratio defects leads this improvement.

  19. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.

    2011-04-20

    Organic bulk-heterojunction solar cells comprising poly[N-9\\'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4\\',7\\'-di-2-thienyl-2\\', 1\\',3\\'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui; Hu, Hanlin; Spada, E.; Jagadamma, Lethy Krishnan; Yan, Buyi; Abdelsamie, Maged; Yang, Y.; Yu, L.; Munir, Rahim; Li, R.; Ngongang Ndjawa, Guy Olivier; Amassian, Aram

    2016-01-01

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported

  1. High Efficiency Solar Cell on Low Cost Metal Foil Substrate, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future space missions will require Solar cell arrays having specific power ratings in excess of 1000 W/kg. Conventional crystalline photovoltaic technology comprised...

  2. High Efficiency Quantum Well Waveguide Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...

  3. High Efficiency, High Density Terrestrial Panel. [for solar cell modules

    Science.gov (United States)

    Wohlgemuth, J.; Wihl, M.; Rosenfield, T.

    1979-01-01

    Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.

  4. High Efficiency Advanced Lightweight Fuel Cell (HEAL-FC), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Infinity's High Efficiency Advanced Lightweight Fuel Cell (HEAL FC) is an improved version of its current fuel cell technology developed for space applications. The...

  5. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    Science.gov (United States)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  6. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    OpenAIRE

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of photovoltaic (PV) devices which deploy the chemical-vapor-deposited hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) and their alloys as the absorber layers and doped ...

  7. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  8. Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells.

    Science.gov (United States)

    Zimmermann, Eugen; Pfadler, Thomas; Kalb, Julian; Dorman, James A; Sommer, Daniel; Hahn, Giso; Weickert, Jonas; Schmidt-Mende, Lukas

    2015-05-01

    Low-cost hybrid solar cells have made tremendous steps forward during the past decade owing to the implementation of extremely thin inorganic coatings as absorber layers, typically in combination with organic hole transporters. Using only extremely thin films of these absorbers reduces the requirement of single crystalline high-quality materials and paves the way for low-cost solution processing compatible with roll-to-roll fabrication processes. To date, the most efficient absorber material, except for the recently introduced organic-inorganic lead halide perovskites, has been Sb 2 S 3 , which can be implemented in hybrid photovoltaics using a simple chemical bath deposition. Current high-efficiency Sb 2 S 3 devices utilize absorber coatings on nanostructured TiO 2 electrodes in combination with polymeric hole transporters. This geometry has so far been the state of the art, even though flat junction devices would be conceptually simpler with the additional potential of higher open circuit voltages due to reduced charge carrier recombination. Besides, the role of the hole transporter is not completely clarified yet. In particular, additional photocurrent contribution from the polymers has not been directly shown, which points toward detrimental parasitic light absorption in the polymers. This study presents a fine-tuned chemical bath deposition method that allows fabricating solution-processed low-cost flat junction Sb 2 S 3 solar cells with the highest open circuit voltage reported so far for chemical bath devices and efficiencies exceeding 4%. Characterization of back-illuminated solar cells in combination with transfer matrix-based simulations further allows to address the issue of absorption losses in the hole transport material and outline a pathway toward more efficient future devices.

  9. Highly efficient perovskite solar cells with crosslinked PCBM interlayers

    KAUST Repository

    Qiu, W.

    2017-01-09

    Commercially available phenyl-C-butyric acid methyl ester (PCBM) is crosslinked with 1,6-diazidohexane (DAZH), resulting in films resistant to common solvents used in perovskite solar cell processing. By using crosslinked PCBM as an interlayer and (HC(NH))(CHNH)PbIBr as the active layer, we achieve small area devices and modules with a maximum steady-state power conversion efficiency of 18.1% and 14.9%, respectively.

  10. Selenium Interlayer for High-Efficiency Multijunction Solar Cell

    Science.gov (United States)

    Landis, Geoffrey A. (Inventor)

    2016-01-01

    A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.

  11. Photovoltaic cells and photodetectors made with semiconductor polymers: recent progress

    Science.gov (United States)

    Yu, Gang; Srdanov, Gordana; Wang, Hailiang; Cao, Yong; Heeger, Alan J.

    2000-05-01

    In this presentation, we discuss recent progress on polymer photovoltaic cells and polymer photodetectors. By improving the fill-factor of polymer photovoltaic cells, the energy conversion efficiency was improved significantly to over 4 percent. Such high efficiency polymer photovoltaic cells are promising for many applications including e-papers, e-books and smart-windows. Polymer photodetectors with similar device configuration show high photosensitivity, low dark current, large dynamic range, linear intensity dependence, low noise level and fast response time. These parameters are comparable to or even better than their inorganic counterparts. The advantages of low manufacturing cost, large detection area, and easy hybridization and integration with other electronic or optical components make them promising for a variety of applications including chemical/biomedical analysis, full-color digital image sensing and high energy radiation detection.

  12. Novel Materials for High Efficiency Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Carson, Stephen [Arkema Inc.; Mountz, David [Arkema Inc.; He, Wensheng [Arkema Inc.; Zhang, Tao [Arkema Inc.

    2013-12-31

    Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

  13. High Efficiency Boost Converter with Three State Switching Cell

    DEFF Research Database (Denmark)

    Klimczak, Pawel; Munk-Nielsen, Stig

    2009-01-01

    is on performance improvement of this type of the converter. Use of foil windings helps to reduce conduction losses in magnetic components and to reduce size of these components. Also it has been demonstrated that the regulation range of this type of converter can be increased by operation with duty cycle lower......The boost converter with the three-state switching cell seems to be a good candidate for a dc-dc stage for non-isolated generators based on alternative energy sources. It provides a high voltage gain, a reduced voltage stress on transistors and limited input current ripples. In this paper the focus...

  14. Dissolution-recrystallization method for high efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Luo, Junsheng; Wan, Zhongquan; Liu, Xingzhao; Jia, Chunyang, E-mail: cyjia@uestc.edu.cn

    2017-06-30

    Highlights: • Dissolution-recrystallization method can improve perovskite crystallization. • Dissolution-recrystallization method can improve TiO{sub 2}/perovskite interface. • The optimal perovskite solar cell obtains the champion PCE of 16.76%. • The optimal devices are of high reproducibility. - Abstract: In this work, a dissolution-recrystallization method (DRM) with chlorobenzene and dimethylsulfoxide treating the perovskite films during the spin-coating process is reported. This is the first time that DRM is used to control perovskite crystallization and improve the device performance. Furthermore, the DRM is good for reducing defects and grain boundaries, improving perovskite crystallization and even improving TiO{sub 2}/perovskite interface. By optimizing, the DRM2-treated perovskite solar cell (PSC) obtains the best photoelectric conversion efficiency (PCE) of 16.76% under AM 1.5 G illumination (100 mW cm{sup −2}) with enhanced J{sub sc} and V{sub oc} compared to CB-treated PSC.

  15. Light-induced lattice expansion leads to high-efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.

    2018-04-05

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.

  16. High Efficiency Multijunction Solar Cells with Finely-Tuned Quantum Wells

    Science.gov (United States)

    Varonides, Argyrios C.

    The field of high efficiency (inorganic) photovoltaics (PV) is rapidly maturing in both efficiency goals and cover all cost reduction of fabrication. On one hand, know-how from space industry in new solar cell design configurations and on the other, fabrication cost reduction challenges for terrestrial uses of solar energy, have paved the way to a new generation of PV devices, capable of capturing most of the solar spectrum. For quite a while now, the goal of inorganic solar cell design has been the total (if possible) capture-absorption of the solar spectrum from a single solar cell, designed in such a way that a multiple of incident wavelengths could be simultaneously absorbed. Multi-absorption in device physics indicates parallel existence of different materials that absorb solar photons of different energies. Bulk solid state devices absorb at specific energy thresholds, depending on their respective energy gap (EG). More than one energy gaps would on principle offer new ways of photon absorption: if such a structure could be fabricated, two or more groups of photons could be absorbed simultaneously. The point became then what lattice-matched semiconductor materials could offer such multiple levels of absorption without much recombination losses. It was soon realized that such layer multiplicity combined with quantum size effects could lead to higher efficiency collection of photo-excited carriers. At the moment, the main reason that slows down quantum effect solar cell production is high fabrication cost, since it involves primarily expensive methods of multilayer growth. Existing multi-layer cells are fabricated in the bulk, with three (mostly) layers of lattice-matched and non-lattice-matched (pseudo-morphic) semiconductor materials (GaInP/InGaN etc), where photo-carrier collection occurs in the bulk of the base (coming from the emitter which lies right under the window layer). These carriers are given excess to conduction via tunnel junction (grown between

  17. Review of status developments of high-efficiency crystalline silicon solar cells

    Science.gov (United States)

    Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng

    2018-03-01

    In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

  18. High-efficiency solar cell with earth-abundant liquid-processed absorber

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Teodor K; Reuter, Kathleen B; Mitzi, David B [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)

    2010-05-25

    A composite liquid deposition approach merging the concepts of solution and particle-based coating for multinary chalcogenide materials is demonstrated. Photovoltaic absorbers based on earth-abundant Cu-Zn-Sn-S-Se kesterites show exceptional phase purity and are incorporated into solar cells with power conversion efficiency above 9.6%, bringing the state of the art of kesterite photovoltaic materials to a level suitable for possible commercialization. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. High Efficiency Quantum Dot III-V Multijunction Solar Cell for Space Power, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to utilize quantum dots to develop a super high-efficiency multijunction III-V solar cell for space. In metamorphic triple junction space solar...

  20. Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer

    International Nuclear Information System (INIS)

    Lu, Shudi; Lin, Jie; Liu, Kong; Yue, Shizhong; Ren, Kuankuan; Tan, Furui; Wang, Zhijie; Jin, Peng; Qu, Shengchun; Wang, Zhanguo

    2017-01-01

    To take a full advantage of polymer semiconductors on realization of large-area flexible photovoltaic devices, herein, we fabricate polymer solar cells on the basis of polyethylene terephthalate (PET) with imprinted Ag grid as transparent electrode. The key fabrication procedure is the adoption of a modified PEDOT:PSS (PH1000) solution for spin-coating the buffer layer to form a compact contact with the substrate. In comparison with the devices with intrinsic PEDOT:PSS buffer layer, the advanced devices present a much higher efficiency of 6.51%, even in a large device area of 2.25 cm"2. Subsequent characterizations reveal that such devices show an impressive performance stability as the bending angle is enlarged to 180° and bending time is up to 1000 cycles. Not only providing a general methodology to construct high efficient and flexible polymer solar cells, this paper also involves deep insights on device working mechanism in bending conditions.

  1. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    NARCIS (Netherlands)

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of

  2. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    Science.gov (United States)

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High throughput parallel backside contacting and periodic texturing for high-efficiency solar cells

    Science.gov (United States)

    Daniel, Claus; Blue, Craig A.; Ott, Ronald D.

    2014-08-19

    Disclosed are configurations of long-range ordered features of solar cell materials, and methods for forming same. Some features include electrical access openings through a backing layer to a photovoltaic material in the solar cell. Some features include textured features disposed adjacent a surface of a solar cell material. Typically the long-range ordered features are formed by ablating the solar cell material with a laser interference pattern from at least two laser beams.

  4. Design Strategies for High-Efficiency CdTe Solar Cells

    Science.gov (United States)

    Song, Tao

    With continuous technology advances over the past years, CdTe solar cells have surged to be a leading contributor in thin-film photovoltaic (PV) field. While empirical material and device optimization has led to considerable progress, further device optimization requires accurate device models that are able to provide an in-depth understanding of CdTe device physics. Consequently, this thesis is intended to develop a comprehensive model system for high-efficiency CdTe devices through applying basic design principles of solar cells with numerical modeling and comparing results with experimental CdTe devices. The CdTe absorber is central to cell performance. Numerical simulation has shown the feasibility of high energy-conversion efficiency, which requires both high carrier density and long minority carrier lifetime. As the minority carrier lifetime increases, the carrier recombination at the back surface becomes a limitation for cell performance with absorber thickness cell performance, since it can induce a large valence-band bending which suppresses the hole injection near the interface for the electron-hole recombination, but too large a spike is detrimental to photocurrent transport. In a heterojunction device with many defects at the emitter/absorber interface (high SIF), a thin and highly-doped emitter can induce strong absorber inversion and hence help maintain good cell performance. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. In terms of specific emitter materials, the calculations suggest that the (Mg,Zn)O alloy with 20% Mg, or a similar type-I heterojunction partner with moderate DeltaE C (e.g., Cd(S,O) or (Cd,Mg)Te with appropriate oxygen or magnesium ratios) should yield higher voltages and would therefore be better candidates for the CdTe-cell emitter. The CdTe/substrate interface is also of great importance, particularly in the growth of epitaxial

  5. Method of making photovoltaic cell

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Zhou, Xiaowang; Zubia, David

    2017-06-20

    A photovoltaic solar cell comprises a nano-patterned substrate layer. A plurality of nano-windows are etched into an intermediate substrate layer to form the nano-patterned substrate layer. The nano-patterned substrate layer is positioned between an n-type semiconductor layer composed of an n-type semiconductor material and a p-type semiconductor layer composed of a p-type semiconductor material. Semiconductor material accumulates in the plurality of nano-windows, causing a plurality of heterojunctions to form between the n-type semiconductor layer and the p-type semiconductor layer.

  6. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture

    NARCIS (Netherlands)

    Koushik, D.; Verhees, W.J.H.; Kuang, Y.; Veenstra, S.; Zhang, D.; Verheijen, M.A.; Creatore, M.; Schropp, R.E.I.

    2017-01-01

    Perovskite materials are drawing tremendous interest for photovoltaic solar cell applications, but are hampered by intrinsic material and device instability issues. Such issues can arise from environmental influences as well as from the chemical incompatibility of the perovskite layer with charge

  7. High efficiency thin-film solar cells for space applications: challenges and opportunities

    NARCIS (Netherlands)

    Leest, R.H. van

    2017-01-01

    In theory high efficiency thin-film III-V solar cells obtained by the epitaxial lift-off (ELO) technique offer excellent characteristics for application in space solar panels. The thesis describes several studies that investigate the space compatibility of the thin-film solar cell design developed

  8. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. Development of technologies to manufacture ultra-high efficiency crystalline compound solar cells; 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Chokokoritsu kessho kagobutsu taiyo denchi no seizo gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development has been performed on laminated cells comprising of GaInP/GaAs//GaInAs using poly-element compound semiconductors. This paper summarizes the achievements in fiscal 1999. In developing the technology to manufacture large-area ultra-high efficiency cells, fabrication of 5-cm square GaAs cells was worked on, and a conversion efficiency of 24.7%, which is equivalent or better than that for 1-cm square cell, was achieved by using the epitaxial growth temperature for the GaAs cell structure of 600 degrees C, by adopting the p-on-p structure and by making the electrode thicker by using the plating method. Furthermore, trial fabrication was performed on 5-cm square cells also on GaInAs as the bottom cell. A conversion efficiency of 4.6% was obtained in a 5-cm square cell as a result of high level homogenization of film thickness and composition by optimizing the gas flow in growing GaInAs onto an InP substrate, and using a growth temperature of 550 degrees C. In developing the technology to form GaInP/GaAs laminated cells, discussions were given by using 5-mm square cells on especially improving the GaInP crystallinity and reducing the series resistance in the window layer. GaInP/GaAs-2 bonded lamination cells were fabricated, whereas a conversion efficiency of 19.63% was obtained without using a reflection preventing film. (NEDO)

  9. Analysis and evaluation for practical application of photovoltaic power generation system. Analysis and evaluation for extra-high efficiency solar cells (research on new concentrator modules); Taiyoko hatsuden system jitsuyoka no tame no kaiseki hyoka. Chokokoritsu taiyo denchi no gijutsu kaihatsu no tame no kaiseki hyoka (shingata shuko module)

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, J; Sakuta, K; Sawada, S; Yaoita, A [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for analysis and evaluation of concentrator modules for extra-high efficiency solar cells. The outdoor exposure tests have been under way for 3 years for fluorescent plates, as part of the research program for development of materials and elementary techniques, and essentially no degradation has been observed by the perylene pigment test. Coupling of the fluorescent concentrator and solar cell units is investigated for the coupling position and method, to theoretically analyze geometrical coupling efficiency, where they are coupled at the bottom faces in consideration of easiness of module fabrication. It is demonstrated that a high coupling efficiency can be realized when the cell is sufficiently wide relative to thickness of the fluorescent plate. The coupling method is experimentally examined using transparent silicon gel. A prototype module having the same size as the commercial module (420mm by 960mm) is made on a trial basis, where a total of nine 20mm-thick cells are cut out of a single-crystalline silicon solar cell, 100mm by 100mm in size, and are connected to concentrators at the bottom faces. It shows 2.3 times increased output by the test using a large-area solar simulator. 2 figs.

  10. Photoinduced Field-Effect Passivation from Negative Carrier Accumulation for High-Efficiency Silicon/Organic Heterojunction Solar Cells.

    Science.gov (United States)

    Liu, Zhaolang; Yang, Zhenhai; Wu, Sudong; Zhu, Juye; Guo, Wei; Sheng, Jiang; Ye, Jichun; Cui, Yi

    2017-12-26

    Carrier recombination and light management of the dopant-free silicon/organic heterojunction solar cells (HSCs) based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are the critical factors in developing high-efficiency photovoltaic devices. However, the traditional passivation technologies can hardly provide efficient surface passivation on the front surface of Si. In this study, a photoinduced electric field was induced in a bilayer antireflective coating (ARC) of polydimethylsiloxane (PDMS) and titanium oxide (TiO 2 ) films, due to formation of an accumulation layer of negative carriers (O 2 - species) under UV (sunlight) illumination. This photoinduced field not only suppressed the silicon surface recombination but also enhanced the built-in potential of HSCs with 84 mV increment. In addition, this photoactive ARC also displayed the outstanding light-trapping capability. The front PEDOT:PSS/Si HSC with the saturated O 2 - received a champion PCE of 15.51% under AM 1.5 simulated sunlight illumination. It was clearly demonstrated that the photoinduced electric field was a simple, efficient, and low-cost method for the surface passivation and contributed to achieve a high efficiency when applied in the Si/PEDOT:PSS HSCs.

  11. Atomic layer deposition for high-efficiency crystalline silicon solar cells

    NARCIS (Netherlands)

    Macco, B.; van de Loo, B.W.H.; Kessels, W.M.M.; Bachmann, J.

    2017-01-01

    This chapter illustrates that Atomic Layer Deposition (ALD) is in fact an enabler of novel high-efficiency Si solar cells, owing to its merits such as a high material quality, precise thickness control, and the ability to prepare film stacks in a well-controlled way. It gives an overview of the

  12. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells.

    Science.gov (United States)

    Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei

    2015-09-16

    The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.

  13. High Efficiency Conjugated Polymer Donor and Fullerene Derivative Acceptor Photovoltaic Materials for Polymer Solar Cells%聚合物太阳能电池高效共轭聚合物给体和富勒烯受体光伏材料

    Institute of Scientific and Technical Information of China (English)

    李永舫

    2011-01-01

    Polymer solar ceils (PSCs) are composed of a blend film (active layer) of a conjugated polymer donor and a fullerene derivative acceptor sandwiched between a transparent ITO positive electrode and a low workfunction metal negative electrode. PSCs have become the hot research field in recent years, due to their unique advantages of simple fabrication, low cost, light weight and capability to be fabricated into flexible devices. The present research focus is to improve their photovoltaic power conversion efficiency (PCE), and the key aspects for improving PCE are high efficiency photovoltaic materials. In this paper,I will mainly introduce the recent research progress of Institute of Chemistry, Chinese Academy of Sciences (ICCAS) on the new conjugated polymer donor and fullerene derivative photovoltaic materials, including the donor materials of two-dimensional conjugated polymers with conjugated side chains, conjugated polymers with electron-withdrawing substituents for lower HOMO energy levels, D-A copolymer with broad absorption and lower HOMO energy levels,and the acceptor materials of indene-C60 bisadduct (ICBA) and indene-CT0 bisadduct. The highest PCE of the PSCs based on the conjugated polymer donor materials reached 7.59%, which is one of the highest efficiencies reported in literatures so for. The PSCs based on P3HT as donor and our ICBA as acceptor showed PCE higher than 7~ ,which is the highest efficiency for the PSCs based on P3HT.%聚合物太阳能电池(PSC)由共轭聚合物给体和富勒烯衍生物受体的共混膜(活性层)夹在ITO透明导电玻璃正极和低功函数金属负极之间所组成,具有制备过程简单、成本低、重量轻、可制备成柔性器件等突出优点,近年来成为国内外研究前沿和热点。当前研究的焦点是提高器件的光电能量转换效率,而提高效率的关键是高效共轭聚合物给体和富勒烯衍生物受体光伏材料。本文将重点介

  14. Hybrid polymer-inorganic photovoltaic cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Janssen, R.A.J.; Merhari, L.

    2009-01-01

    Composite materials made from organic conjugated polymers and inorganic semiconductors such as metal oxides attract considerable interest for photovoltaic applications. Hybrid polymer-inorganic solar cells offer the opportunity to combine the beneficial properties of the two materials in charge

  15. Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell

    Science.gov (United States)

    Imran, Ali; Jiang, Jianliang; Eric, Debora; Yousaf, Muhammad

    2018-01-01

    Quantum Dots (QDs) intermediate band solar cells (IBSC) are the most attractive candidates for the next generation of photovoltaic applications. In this paper, theoretical model of InAs/GaAs device has been proposed, where we have calculated the effect of variation in the thickness of intrinsic and IB layer on the efficiency of the solar cell using detailed balance theory. IB energies has been optimized for different IB layers thickness. Maximum efficiency 46.6% is calculated for IB material under maximum optical concentration.

  16. The status of silicon ribbon growth technology for high-efficiency silicon solar cells

    Science.gov (United States)

    Ciszek, T. F.

    1985-01-01

    More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).

  17. Sliver Solar Cells: High-Efficiency, Low-Cost PV Technology

    Directory of Open Access Journals (Sweden)

    Evan Franklin

    2007-01-01

    Full Text Available Sliver cells are thin, single-crystal silicon solar cells fabricated using standard fabrication technology. Sliver modules, composed of several thousand individual Sliver cells, can be efficient, low-cost, bifacial, transparent, flexible, shadow tolerant, and lightweight. Compared with current PV technology, mature Sliver technology will need 10% of the pure silicon and fewer than 5% of the wafer starts per MW of factory output. This paper deals with two distinct challenges related to Sliver cell and Sliver module production: providing a mature and robust Sliver cell fabrication method which produces a high yield of highly efficient Sliver cells, and which is suitable for transfer to industry; and, handling, electrically interconnecting, and encapsulating billions of sliver cells at low cost. Sliver cells with efficiencies of 20% have been fabricated at ANU using a reliable, optimised processing sequence, while low-cost encapsulation methods have been demonstrated using a submodule technique.

  18. The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell

    KAUST Repository

    Peters, Craig H.

    2011-10-11

    Degradation in a high efficiency polymer solar cell is caused by the formation of states in the bandgap. These states increase the energetic disorder in the system. The power conversion efficiency loss does not occur when current is run through the device in the dark but occurs when the active layer is photo-excited. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells

    International Nuclear Information System (INIS)

    Abdolahad, M.; Janmaleki, M.; Mohajerzadeh, S.; Akhavan, O.; Abbasi, S.

    2013-01-01

    Green tea-reduced graphene oxide (GT-rGO) sheets have been exploited for high efficiency near infrared (NIR) photothermal therapy of HT29 and SW48 colon cancer cells. The biocompatibility of GT-rGO sheets was investigated by means of MTT assays. The polyphenol constituents of GT-rGO act as effective targeting ligands for the attachment of rGO to the surface of cancer cells, as confirmed by the cell granularity test in flow cytometry assays and also by scanning electron microscopy. The photo-thermal destruction of higher metastatic cancer cells (SW48) is found to be more than 20% higher than that of the lower metastatic one (HT29). The photo-destruction efficiency factor of the GT-rGO is found to be at least two orders of magnitude higher than other carbon-based nano-materials. Such excellent cancer cell destruction efficiency provided application of a low concentration of rGO (3 mg/L) and NIR laser power density (0.25 W/cm 2 ) in our photo-thermal therapy of cancer cells. Highlights: ► Attachment of polyphenol groups to graphene nano-sheets during reduction process by green tea. ► Selective attachment of polyphenols to cancer cell membrane. ► High efficiency photothermal therapy of colon cancer cells with green-tea reduced graphene oxide

  20. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  1. Simulation design of P–I–N-type all-perovskite solar cells with high efficiency

    International Nuclear Information System (INIS)

    Du Hui-Jing; Wang Wei-Chao; Gu Yi-Fan

    2017-01-01

    According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J sc of 32.47 mA/cm 2 . The small series resistance of the all-perovskite solar cell also benefits the high J sc . The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem. (paper)

  2. High-Efficiency Multiscale Modeling of Cell Deformations in Confined Microenvironments in Microcirculation and Microfluidic Devices

    Science.gov (United States)

    Lu, Huijie; Peng, Zhangli

    2017-11-01

    Our goal is to develop a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidic devices, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases, e.g. anemia, sickle cell diseases, and malaria. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We are developing a high-efficiency multiscale model of cell-fluid interaction to study these two topics.

  3. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.

    Science.gov (United States)

    Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R; Buecheler, Stephan; Tiwari, Ayodhya N

    2013-01-01

    Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.

  4. Numerical quantification and minimization of perimeter losses in high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Heiser, Gernot; Green, M.A. [New South Wales Univ., Kensington, NSW (Australia)

    1996-09-01

    This paper presents a quantitative analysis of perimeter losses in high-efficiency silicon solar cells. A new method of numerical modelling is used, which provides the means to simulate a full-sized solar cell, including its perimeter region. We analyse the reduction in efficiency due to perimeter losses as a function of the distance between the active cell area and the cut edge. It is shown how the optimum distance depends on whether the cells in the panel are shingled or not. The simulations also indicate that passivating the cut-face with a thermal oxide does not increase cell efficiency substantially. Therefore, doping schemes for the perimeter domain are suggested in order to increase efficiency levels above present standards. Finally, perimeter effects in cells that remain embedded in the wafer during the efficiency measurement are outlined. (author)

  5. Improved contact metallization for high efficiency EFG polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Dube, C.E.; Gonsiorawski, R.C.

    1990-01-01

    Improvements in the performance of polycrystalline silicon solar cells based on a novel, laser patterned contact process are described. Small lots of cells having an average conversion efficiency of 14 + %, with several cells approaching 15%, are reported for cells of 45 cm 2 area. The high efficiency contact design is based on YAG laser patterning of the silicon nitride anti-reflection coating. The Cu metallization is done using light-induced plating, with the cell providing the driving voltage for the plating process. The Cu electrodeposits into the laser defined windows in the AR coating for reduced contact area, following which the Cu bridges on top of the Ar coating to form a continuous finger pattern. The higher cell conversion efficiency is attributed to reduced shadow loss, higher junction quality, and reduced metal-semiconductor interfacial area

  6. High-efficiency organic solar cells based on end-functional-group-modified poly(3-hexylthiophene)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Soo; Lee, Ji Hwang [School of Environmental Science and Engineering Polymer Research Institute, Pohang University of Science and Engineering Pohang, 790-784 (Korea); Lee, Youngmin; Park, Jong Hwan; Kim, Jin Kon; Cho, Kilwon [Department of Chemical Engineering Polymer Research Institute, Pohang University of Science and Engineering Pohang, 790-784 (Korea)

    2010-03-26

    Photovoltaic devices of end-functional-group-modified poly 3-(hexylthiophene)/[6,6]-phenyl-C{sub 61} butyric acid methyl ester (P3HT:PCBM) are fabricated with thermal annealing. The surface energies between donor and acceptor were matched by varying the end group, which can be used to control vertical and horizontal phase separation in the active layer, leading mixed nanomorphology with optimized phase separation, low series resistance, and high performance for solar cell devices. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2016-04-01

    Full Text Available In this work, we describe the role of the different layers in perovskite solar cells to achieve reproducible, ~16% efficient perovskite solar cells. We used a planar device architecture with PEDOT:PSS on the bottom, followed by the perovskite layer and an evaporated C60 layer before deposition of the top electrode. No high temperature annealing step is needed, which also allows processing on flexible plastic substrates. Only the optimization of all of these layers leads to highly efficient and reproducible results. In this work, we describe the effects of different processing conditions, especially the influence of the C60 top layer on the device performance.

  8. Measuring The Contact Resistances Of Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    Simple method devised to measure contact resistances of photovoltaic solar cells. Method uses readily available equipment and applicable at any time during life of cell. Enables evaluation of cell contact resistance, contact-end resistance, contact resistivity, sheet resistivity, and sheet resistivity under contact.

  9. Tandem junction amorphous semiconductor photovoltaic cell

    Science.gov (United States)

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic stack comprising at least two p.sup.+ i n.sup.+ cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p.sup.+ i n.sup.+ cells.

  10. High-performance polymer photovoltaic cells and photodetectors

    Science.gov (United States)

    Yu, Gang; Srdanov, Gordana; Wang, Hailiang; Cao, Yong; Heeger, Alan J.

    2001-02-01

    Polymer photovoltaic cells and photodetectors have passed their infancy and become mature technologies. The energy conversion efficiency of polymer photovoltaic cells have been improved to over 4.1% (500 nm, 10 mW/cm2). Such high efficiency polymer photovoltaic cells are promising for many applications including e-papers, e-books and smart- windows. The development of polymer photodetectors is even faster. The performance parameters have been improved to the level meeting all specifications for practical applications. The polymer photodetectors are of high photosensitivity (approximately 0.2 - 0.3 A/Watt in visible and UV), low dark current (0.1 - 1 nA/cm2), large dynamic range (> 8 orders of magnitude), linear intensity dependence, low noise level and fast response time (to nanosecond time domain). These devices show long shelf and operation lives. The advantages of low manufacturing cost, large detection area, and easy hybridization and integration with other electronic or optical components make the polymer photodetectors promising for a variety of applications including chemical/biomedical analysis, full-color digital image sensing and high energy radiation detection.

  11. Control of indium tin oxide anode work function modified using Langmuir-Blodgett monolayer for high-efficiency organic photovoltaics

    Directory of Open Access Journals (Sweden)

    Yuya Yokokura

    2017-08-01

    Full Text Available The use of Langmuir-Blodgett (LB monolayers to modify the indium tin oxide (ITO work function and thus improve the performance of zinc phthalocyanine (ZnPc/fullerene (C60-based and boron subphthalocyanine chloride (SubPc/C60-based small molecule organic photovoltaic devices (OPVs was examined. In general, LB precursor compounds contain one or more long alkyl chain substituents that can act as spacers to prevent electrical contact with adjoining electrode surfaces. As one example of such a compound, arachidic acid (CH3(CH218COOH was inserted in the forms of one-layer, three-layer or five-layer LB films between the anode ITO layer and the p-type layer in ZnPc-C60-based OPVs to investigate the effects of the long alkyl chain group when it acts as an electrically insulating spacer. The short-circuit current density (Jsc values of the OPVs with the three- and five-layer inserts (1.78 mA·cm−2 and 0.61 mA·cm−2, respectively were reduced dramatically, whereas the Jsc value for the OPV with the single-layer insertion (2.88 mA·cm−2 was comparable to that of the OPV without any insert (3.14 mA·cm-2. The ITO work function was shifted positively by LB deposition of a surfactant compound, C9F19C2H4-O-C2H4-COOH (PFECA, which contained a fluorinated head group. This positive effect was maintained even after formation of an upper p-type organic layer. The Jsc and open-circuit voltage (Voc of the SubPc-C60-based OPV with the LB-modified ITO layers were effectively enhanced. As a result, a 42% increase in device efficiency was achieved.

  12. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  13. New III-V cell design approaches for very high efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. (Purdue Univ., Lafayette, IN (United States))

    1993-04-01

    This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell's efficiency less dependent on materialquality.

  14. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    Science.gov (United States)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  15. Origin of Reduced Open-Circuit Voltage in Highly Efficient Small-Molecule-Based Solar Cells upon Solvent Vapor Annealing.

    Science.gov (United States)

    Deng, Wanyuan; Gao, Ke; Yan, Jun; Liang, Quanbin; Xie, Yuan; He, Zhicai; Wu, Hongbin; Peng, Xiaobin; Cao, Yong

    2018-03-07

    In this study, we demonstrate that remarkably reduced open-circuit voltage in highly efficient organic solar cells (OSCs) from a blend of phenyl-C 61 -butyric acid methyl ester and a recently developed conjugated small molecule (DPPEZnP-THD) upon solvent vapor annealing (SVA) is due to two independent sources: increased radiative recombination and increased nonradiative recombination. Through the measurements of electroluminescence due to the emission of the charge-transfer state and photovoltaic external quantum efficiency measurement, we can quantify that the open-circuit voltage losses in a device with SVA due to the radiative recombination and nonradiative recombination are 0.23 and 0.31 V, respectively, which are 0.04 and 0.07 V higher than those of the as-cast device. Despite of the reduced open-circuit voltage, the device with SVA exhibited enhanced dissociation of charge-transfer excitons, leading to an improved short-circuit current density and a remarkable power conversion efficiency (PCE) of 9.41%, one of the best for solution-processed OSCs based on small-molecule donor materials. Our study also clearly shows that removing the nonradiative recombination pathways and/or suppressing energetic disorder in the active layer would result in more long-lived charge carriers and enhanced open-circuit voltage, which are prerequisites for further improving the PCE.

  16. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.

    Science.gov (United States)

    Wang, Bangmei; Li, Kunyu; Wang, Amy; Reiser, Michelle; Saunders, Thom; Lockey, Richard F; Wang, Jia-Wang

    2015-10-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technique, based on the non-homologous end-joining (NHEJ) repair pathway, has been used to generate gene knock-outs with variable sizes of small insertion/deletions with high efficiency. More precise genome editing, either the insertion or deletion of a desired fragment, can be done by combining the homology-directed-repair (HDR) pathway with CRISPR cleavage. However, HDR-mediated gene knock-in experiments are typically inefficient, and there have been no reports of successful gene knock-in with DNA fragments larger than 4 kb. Here, we describe the targeted insertion of large DNA fragments (7.4 and 5.8 kb) into the genomes of mouse embryonic stem (ES) cells and zygotes, respectively, using the CRISPR/HDR technique without NHEJ inhibitors. Our data show that CRISPR/HDR without NHEJ inhibitors can result in highly efficient gene knock-in, equivalent to CRISPR/HDR with NHEJ inhibitors. Although NHEJ is the dominant repair pathway associated with CRISPR-mediated double-strand breaks (DSBs), and biallelic gene knock-ins are common, NHEJ and biallelic gene knock-ins were not detected. Our results demonstrate that efficient targeted insertion of large DNA fragments without NHEJ inhibitors is possible, a result that should stimulate interest in understanding the mechanisms of high efficiency CRISPR targeting in general.

  17. Highly Efficient IR to NIR Upconversion in Gd2O2S: Er3+ for Photovoltaic Applications

    NARCIS (Netherlands)

    Martin Rodriguez, R.; Fischer, S.; Ivaturi, A.; Froehlich, B.; Krämer, K.W.; Goldschmidt, J.C.; Richards, B.S.; Meijerink, A.

    2013-01-01

    Upconversion (UC) is a promising option to enhance the efficiency of solar cells by conversion of sub-bandgap infrared photons to higher energy photons that can be utilized by the solar cell. The UC quantum yield is a key parameter for a successful application. Here the UC luminescence properties of

  18. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    Science.gov (United States)

    Welser, Roger E. (Inventor); Sood, Ashok K. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  19. Grid-Optimization Program for Photovoltaic Cells

    Science.gov (United States)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  20. Towards a utilisation of transient processing in the technology of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Eichhammer, W.

    1989-01-01

    The utilization of transient processing in the technology of high efficient silicon solar cells is investigated. An ultraviolet laser (an ArF pulsed excimer laser working at 193 nm) is applied. Laser processing induces only a short superficial melting of the material and does not modify the transport properties in the base of the material. This mode of processing associated to ion implantation to form the junction as well as an oxide layer in an atmosphere of oxygen. The volume was left entirely cold in this process. The results of the investigation show: that an entirely cold process of solar cell fabrication needs a thermal treatment at a temperature around 600 C; that the oxides obtained are not satisfying as passivating layers; and that the Rapid Thermal Processing (RTP) induced recombination centers are not directly related to the quenching step but a consequence of the presence of metal impurities. The utilisation of transient processing in the adiabatic regime (laser) and in the rapid isothermal regime (RTP) are possible as two complementary techniques for the realization of high efficiency solar cells

  1. Photovoltaic Cells and Modules towards Terawatt Era

    Institute of Scientific and Technical Information of China (English)

    Vitezslav Benda

    2017-01-01

    Progresses in photovoltaic technologies over the past years are evident from the lower costs,the rising efficiency,to the great improvements in system reliability and yield.Cumulative installed power yearly growths were on an average more than 40% in the period from 2007 to 2016 and in 2016,the global cumulative photovoltaic power installed has reached 320 GWp.The level 0.5 TWp could be reached before 2020.The production processes in the solar industry still have great potential for optimization both wafer based and thin film technologies.Trends following from the present technology levels are discussed,also taking into account other parts of photovoltaic systems that influence the cost of electrical energy produced.Present developments in the three generations of photovoltaic modules are discussed along with the criteria for the selection of appropriate photovoltaic module manufacturing technologies.The wafer based crystalline silicon (c-silicon) technologies have the role of workhorse of present photovoltaic power generation,representing more than 90% of total module production.Further technology improvements have to be implemented without significantly increasing costs per unit,despite the necessarily more complex manufacturing processes involved.The tandem of c-silicon and thin film cells is very promising.Durability may be a limiting factor of this technology due to the dependence of the produced electricity cost on the module service time.

  2. A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells

    Institute of Scientific and Technical Information of China (English)

    Huanran Feng; Miaomiao Li; Wang Ni; Bin Kan; Yunchuang Wang; Yamin Zhang; Hongtao Zhang; Xiangjian Wan; Yongsheng Chen

    2017-01-01

    Three acceptor-donor-acceptor(A-D-A) small molecules DCAODTBDT,DRDTBDT and DTBDTBDT using dithieno[2,3-d:2’,3’-d’]benzo[l,2-b:4,5-b’]dithiophene as the central building block,octyl cyanoacetate,3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells(OPVs).The impacts of these different electron withdrawing end groups on the photophysical properties,energy levels,charge carrier mobility,morphologies of blend films,and their photovoltaic properties have been systematically investigated.OPVs device based on DRDTBDT gave the best power conversion efficiency(PCE) of 8.34%,which was significantly higher than that based on DCAODTBDT(4.83%) or DTBDTBDT(3.39%).These results indicate that rather dedicated and balanced consideration of absorption,energy levels,morphology,mobility,etc.for the design of small-molecule-based OPVs(SM-OPVs)and systematic investigations are highly needed to achieve high performance for SM-OPVs.

  3. A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells

    Institute of Scientific and Technical Information of China (English)

    Huanran Feng; Miaomiao Li; Wang Ni; Bin Kan; Yunchuang Wang; Yamin Zhang; Hongtao Zhang; Xiangjian Wan; Yongsheng Chen

    2017-01-01

    Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT,DRDTBDT and DTBDTBDT using dithieno[2,3-d∶2',3'-d']benzo[1,2-b∶4,5-b']dithiophene as the central building block,octyl cyanoacetate,3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs).The impacts of these different electron withdrawing end groups on the photophysical properties,energy levels,charge carrier mobility,morphologies of blend films,and their photovoltaic properties have been systematically investigated.OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%,which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%).These results indicate that rather dedicated and balanced consideration of absorption,energy levels,morphology,mobility,etc.for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.

  4. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    Science.gov (United States)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  5. High-Efficiency, Multijunction Solar Cells for Large-Scale Solar Electricity Generation

    Science.gov (United States)

    Kurtz, Sarah

    2006-03-01

    A solar cell with an infinite number of materials (matched to the solar spectrum) has a theoretical efficiency limit of 68%. If sunlight is concentrated, this limit increases to about 87%. These theoretical limits are calculated using basic physics and are independent of the details of the materials. In practice, the challenge of achieving high efficiency depends on identifying materials that can effectively use the solar spectrum. Impressive progress has been made with the current efficiency record being 39%. Today's solar market is also showing impressive progress, but is still hindered by high prices. One strategy for reducing cost is to use lenses or mirrors to focus the light on small solar cells. In this case, the system cost is dominated by the cost of the relatively inexpensive optics. The value of the optics increases with the efficiency of the solar cell. Thus, a concentrator system made with 35%- 40%-efficient solar cells is expected to deliver 50% more power at a similar cost when compare with a system using 25%-efficient cells. Today's markets are showing an opportunity for large concentrator systems that didn't exist 5-10 years ago. Efficiencies may soon pass 40% and ultimately may reach 50%, providing a pathway to improved performance and decreased cost. Many companies are currently investigating this technology for large-scale electricity generation. The presentation will cover the basic physics and more practical considerations to achieving high efficiency as well as describing the current status of the concentrator industry. This work has been authored by an employee of the Midwest Research Institute under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow

  6. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles

    Directory of Open Access Journals (Sweden)

    Federico Brivio

    2013-10-01

    Full Text Available The performance of perovskite solar cells recently exceeded 15% solar-to-electricity conversion efficiency for small-area devices. The fundamental properties of the active absorber layers, hybrid organic-inorganic perovskites formed from mixing metal and organic halides [e.g., (NH4PbI3 and (CH3NH3PbI3], are largely unknown. The materials are semiconductors with direct band gaps at the boundary of the first Brillouin zone. The calculated dielectric constants and band gaps show an orientation dependence, with a low barrier for rotation of the organic cations. Due to the electric dipole of the methylammonium cation, a photoferroic effect may be accessible, which could enhance carrier collection.

  7. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials

    International Nuclear Information System (INIS)

    Palacios, P.; Aguilera, I.; Wahnon, P.

    2008-01-01

    In this work, we present frozen phonon and linear response ab-initio research into the vibrational properties of the CuGaS 2 chalcopyrite and transition metal substituted (CuGaS 2 )M alloys. These systems are potential candidates for developing a novel solar-cell material with enhanced optoelectronic properties based in the implementation of the intermediate-band concept. We have previously carried out ab-initio calculations of the electronic properties of these kinds of chalcopyrite metal alloys showing a narrow transition metal band isolated in the semiconductor band gap. The substitutes used in the present work are the 3d metal elements, Titanium and Chromium. For the theoretical calculations we use standard density functional theory at local density and generalized gradient approximation levels. We found that the optical phonon branches of the transition metal chalcopyrite, are very sensitive to the specific bonding geometry and small changes in the transition metal environment

  8. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.

    2018-01-02

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  9. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.; Kutbee, Arwa T.; Khan, Sherjeel M.; Sepulveda, Adrian C.; Wicaksono, Irmandy; Nour, Maha A.; Wehbe, Nimer; Almislem, Amani Saleh Saad; Ghoneim, Mohamed T.; Sevilla, Galo T.; Syed, Ahad; Shaikh, Sohail F.; Hussain, Muhammad Mustafa

    2018-01-01

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  10. Trial of accelerator cells machining with high precision and high efficiency at Okayama region

    International Nuclear Information System (INIS)

    Yoshikawa, Mitsuo; Yoden, Hiroyuki; Yokomizo, Seiichi; Sumida, Tsuneto; Kunishida, Jun; Oshita, Isao

    2005-01-01

    In the framework of the project 'Promotion of Science and Technology in Regional Areas' by the Ministry of Education, Culture, Sports, Science and Technology, we have prepared a special apparatus for machining accelerator cells with a high precision and a high efficiency for the future linear collider. A machining with as small an error as 2 micrometers has been realized. Necessary time to finish one accelerator cell is reduced from 128 minutes to 34 minutes due to the suppression of the heating of the object at the machining. If newly developed one chuck method was employed, the precision and efficiency would be further improved. By cutting at both sides of the spindle, the necessary time for machining would be reduced by half. (author)

  11. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    Science.gov (United States)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  12. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    NARCIS (Netherlands)

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the

  13. Fuel Cell / electrolyser, Solar Photovoltaic Powered

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents experimental obtained results in the operation ofelectrolyzer powered by solar photovoltaic modules, for the waterelectrolysis and with the obtained hydrogen and oxygen proceeds tothe operation in fuel cell mode, type PEM. The main operatingparameters and conditions to optimize the energy conversion on thesolar-hydrogen-electricity cycle are highlighted, so that those arecomparable or superior to conventional cycles.

  14. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    Science.gov (United States)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a

  15. Towards High Performance Organic Photovoltaic Cells: A Review of Recent Development in Organic Photovoltaics

    Directory of Open Access Journals (Sweden)

    Junsheng Yu

    2014-09-01

    Full Text Available Organic photovoltaic cells (OPVs have been a hot topic for research during the last decade due to their promising application in relieving energy pressure and environmental problems caused by the increasing combustion of fossil fuels. Much effort has been made toward understanding the photovoltaic mechanism, including evolving chemical structural motifs and designing device structures, leading to a remarkable enhancement of the power conversion efficiency of OPVs from 3% to over 15%. In this brief review, the advanced progress and the state-of-the-art performance of OPVs in very recent years are summarized. Based on several of the latest developed approaches to accurately detect the separation of electron-hole pairs in the femtosecond regime, the theoretical interpretation to exploit the comprehensive mechanistic picture of energy harvesting and charge carrier generation are discussed, especially for OPVs with bulk and multiple heterojunctions. Subsequently, the novel structural designs of the device architecture of OPVs embracing external geometry modification and intrinsic structure decoration are presented. Additionally, some approaches to further increase the efficiency of OPVs are described, including thermotics and dynamics modification methods. Finally, this review highlights the challenges and prospects with the aim of providing a better understanding towards highly efficient OPVs.

  16. High efficiency electrotransformation of Lactococcus lactis spp. lactis cells pretreated with lithium acetate and dithiothreitol

    Directory of Open Access Journals (Sweden)

    Filioussis George

    2007-03-01

    . Both host-vector systems proved to be reproducible and highly efficient. Conclusion This investigation sought to improve still further transformation efficiencies and to provide a reliable high efficiency transformation system for L. lactis spp. lactis. The applied methodology, tested in two well-known strains, allows the production of large numbers of transformants and the construction of large recombinant libraries.

  17. Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies

    Science.gov (United States)

    Tanake, Katsuaki

    InP/Si substrates for bulk InP in the fabrication of such a four-junction solar cell could significantly reduce the substrate cost since the current prices for commercial InP substrates are much higher than those for Si substrates by two orders of magnitude. Direct heteroepitaxial growth of InP thin films on Si substrates has not produced the low dislocation-density high quality layers required for active InGaAs/InP in optoelectronic devices due to the ˜8% lattice mismatch between InP and Si. We successfully fabricated InP/Si substrates by He implantation of InP prior to bonding to a thermally oxidized Si substrate and annealing to exfoliate an InP thin film. The thickness of the exfoliated InP films was only 900 nm, which means hundreds of the InP/Si substrates could be prepared from a single InP wafer in principle. The photovoltaic current-voltage characteristics of the In0.53Ga0.47As cells fabricated on the wafer-bonded InP/Si substrates were comparable to those synthesized on commercially available epi-ready InP substrates, and had a ˜20% higher short-circuit current which we attribute to the high reflectivity of the InP/SiO2/Si bonding interface. This work provides an initial demonstration of wafer-bonded InP/Si substrates as an alternative to bulk InP substrates for solar cell applications. We have observed photocurrent enhancements up to 260% at 900 nm for a GaAs cell with a dense array of Ag nanoparticles with 150 nm diameter and 20 nm height deposited through porous alumina membranes by thermal evaporation on top of the cell, relative to reference GaAs cells with no metal nanoparticle array. This dramatic photocurrent enhancement is attributed to the effect of metal nanoparticles to scatter the incident light into photovoltaic layers with a wide range of angles to increase the optical path length in the absorber layer. GaAs solar cells with metallic structures at the bottom of the photovoltaic active layers, not only at the top, using semiconductor

  18. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  19. Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Wang, A.; Zhao, J.; Robinson, S.J.; Bowden, S.; Green, M.A. [New South Wales Univ., Kensington, NSW (Australia). Centre for Photovoltaic Devices and Systems; Heiser, G. [New South Wales Univ., Sydney, NSW (Australia). School of Computer Science and Engineering; Aberle, A.G. [Institut fuer Solarenergieforschung (ISFH), Emmerthal (Germany)

    1996-11-01

    This paper presents an improved method for measuring the total lumped series resistance (R{sub s}) of high-efficiency solar cells. Since this method greatly minimizes the influence of non-linear recombination processes on the measured R{sub s} values, it is possible to determine R{sub s} as a function of external current density over a wide range of illumination levels with a significantly improved level of accuracy. This paper furthermore explains how resistive losses in the emitter, the base, the metal/silicon contacts and the front metal grid can be separately determined by combining measurements and multi-dimensional numerical simulations. A novel combination of device simulation and circuit simulation is introduced in order to simulate complete 2 x 2 cm s sq. P:ERL (`passivated emitter and rear locally-diffused`) silicon solar cells. These computer simulations provide improved insight into the dynamics of resistive losses, and thus allow new strategies for the optimization of resistive losses to be developed. The predictions have been experimentally verified with PERL cells, whose resistive losses were reduced to approximately half of their previous values, contributing to a new efficiency world record (24.0%) for silicon solar cells under terrestrial illumination. The measurement techniques and optimization strategies presented here can be applied to most other types of solar cells, and to materials other than silicon. (Author)

  20. Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies.

    Science.gov (United States)

    Zuo, Lijian; Shi, Xueliang; Jo, Sae Byeok; Liu, Yun; Lin, Fracis; Jen, Alex K-Y

    2018-04-01

    Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy-loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum. A novel nonfullerene acceptor, 6TBA, is synthesized to resolve the thermalization and V OC loss, and another small bandgap nonfullerene acceptor, 4TIC, is used in the back sub-cell to alleviate transmission loss. Tandem architecture design significantly reduces the light absorption loss, and compensates carrier dynamics and thermalization loss. Interfacial engineering further reduces energy loss from carrier dynamics in the tandem architecture. As a result of this concerted effort, a very high power conversion efficiency (13.20%) is obtained. A detailed quantitative analysis on the energy losses confirms that the improved device performance stems from these multiple strategies. The results provide a rational way to explore the ultimate device performance through molecular design and device engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stable high efficiency two-dimensional perovskite solar cells via cesium doping

    KAUST Repository

    Zhang, Xu

    2017-08-15

    Two-dimensional (2D) organic-inorganic perovskites have recently emerged as one of the most important thin-film solar cell materials owing to their excellent environmental stability. The remaining major pitfall is their relatively poor photovoltaic performance in contrast to 3D perovskites. In this work we demonstrate cesium cation (Cs) doped 2D (BA)(MA)PbI perovskite solar cells giving a power conversion efficiency (PCE) as high as 13.7%, the highest among the reported 2D devices, with excellent humidity resistance. The enhanced efficiency from 12.3% (without Cs) to 13.7% (with 5% Cs) is attributed to perfectly controlled crystal orientation, an increased grain size of the 2D planes, superior surface quality, reduced trap-state density, enhanced charge-carrier mobility and charge-transfer kinetics. Surprisingly, it is found that the Cs doping yields superior stability for the 2D perovskite solar cells when subjected to a high humidity environment without encapsulation. The device doped using 5% Cs degrades only ca. 10% after 1400 hours of exposure in 30% relative humidity (RH), and exhibits significantly improved stability under heating and high moisture environments. Our results provide an important step toward air-stable and fully printable low dimensional perovskites as a next-generation renewable energy source.

  2. Realization of highly efficient polymer solar cell based on PBDTTT-EFT and [71]PCBM

    Science.gov (United States)

    Bharti, Vishal; Chand, Suresh; Dutta, Viresh

    2018-04-01

    In this work, we have fabricated highly efficient polymer solar cells based on the blend of PBDTTT-EFT:PC71BM in the inverted device configuration. By using low temperature processed zinc oxide (ZnO) nanoparticles as an electron-transport layer (ETL) and 1,8-diiodooctane (DIO) as additive in chlorobenzene (CB) solvent we have achieved PCE of 9.43% with an excellent short-circuit current density (Jsc) of 17.6 mAcm-2, open circuit voltage (Voc) of 0.80 V and fill factor (FF) of 0.67. These results reveals that addition of 3% DIO additive in CB solvent improve the morphology (lower charge carrier recombination and better metal/organic semiconductor interface) and provide uniform interpenetrating networks in PBDTTT-EFT:PC71BM blend active layer.

  3. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    Science.gov (United States)

    Kasick, Michael P.

    2004-01-01

    Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between

  4. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells

    Directory of Open Access Journals (Sweden)

    B. Conings

    2014-08-01

    Full Text Available Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO2 electron collection layer that requires a high temperature treatment (>450 °C, which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ∼150 °C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO2 layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO2 layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO2/CH3NH3PbI3-xClxpoly(3-hexylthiophene/Ag architecture.

  5. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  6. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2013-01-01

    Full Text Available This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures. A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF to reduce minority carrier recombination loss at the back contact in ultra-thin CdTe cells. In this analysis the highest conversion efficiency of CdTe based PV cell without BSF has been found to be around 17% using CdTe absorber thickness of 5 μm. However, the proposed structures with different BSF have shown acceptable efficiencies with an ultra-thin CdTe absorber of only 0.6 μm. The proposed structure with As2Te3 BSF showed the highest conversion efficiency of 20.8% ( V,  mA/cm2, and . Moreover, the proposed structures have shown improved stability in most extents, as it was found that the cells have relatively lower negative temperature coefficient. However, the cell with ZnTe BSF has shown better overall stability than other proposed cells with temperature coefficient (TC of −0.3%/°C.

  7. Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

    KAUST Repository

    Kan, Zhipeng

    2018-05-11

    Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.

  8. Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

    KAUST Repository

    Kan, Zhipeng; Wang, Zhenwei; Firdaus, Yuliar; Babics, Maxime; Alshareef, Husam N.; Beaujuge, Pierre

    2018-01-01

    Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.

  9. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  10. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    Science.gov (United States)

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  12. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    International Nuclear Information System (INIS)

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-01-01

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  13. Synthetic Glycopolymers for Highly Efficient Differentiation of Embryonic Stem Cells into Neurons: Lipo- or Not?

    Science.gov (United States)

    Liu, Qi; Lyu, Zhonglin; Yu, You; Zhao, Zhen-Ao; Hu, Shijun; Yuan, Lin; Chen, Gaojian; Chen, Hong

    2017-04-05

    To realize the potential application of embryonic stem cells (ESCs) for the treatment of neurodegenerative diseases, it is a prerequisite to develop an effective strategy for the neural differentiation of ESCs so as to obtain adequate amount of neurons. Considering the efficacy of glycosaminoglycans (GAG) and their disadvantages (e.g., structure heterogeneity and impurity), GAG-mimicking glycopolymers (designed polymers containing functional units similar to natural GAG) with or without phospholipid groups were synthesized in the present work and their ability to promote neural differentiation of mouse ESCs (mESCs) was investigated. It was found that the lipid-anchored GAG-mimicking glycopolymers (lipo-pSGF) retained on the membrane of mESCs rather than being internalized by cells after 1 h of incubation. Besides, lipo-pSGF showed better activity in promoting neural differentiation. The expression of the neural-specific maker β3-tubulin in lipo-pSGF-treated cells was ∼3.8- and ∼1.9-fold higher compared to natural heparin- and pSGF-treated cells at day 14. The likely mechanism involved in lipo-pSGF-mediated neural differentiation was further investigated by analyzing its effect on fibroblast growth factor 2 (FGF2)-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway which is important for neural differentiation of ESCs. Lipo-pSGF was found to efficiently bind FGF2 and enhance the phosphorylation of ERK1/2, thus promoting neural differentiation. These findings demonstrated that engineering of cell surface glycan using our synthetic lipo-glycopolymer is a highly efficient approach for neural differentiation of ESCs and this strategy can be applied for the regulation of other cellular activities mediated by cell membrane receptors.

  14. Comparison of Two Types of Vertically Aligned ZnO NRs for Highly Efficient Polymer Solar Cells

    DEFF Research Database (Denmark)

    Gonzalez-Valls, Irene; Angmo, Dechan; Gevorgyan, Suren

    2013-01-01

    : concentration, solvent, and deposition speed. The effect of different NR electrode morphologies is analyzed on the solar cell performance and characterized by current–voltage curves and IPCE analyses. The photovoltaic performance of the solar cells was observed to be influenced by many factors, among them...

  15. Pulsed laser illumination of photovoltaic cells

    Science.gov (United States)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  16. Organic photovoltaic cells: from performance improvement to manufacturing processes.

    Science.gov (United States)

    Youn, Hongseok; Park, Hui Joon; Guo, L Jay

    2015-05-20

    Organic photovoltaics (OPVs) have been pursued as a next generation power source due to their light weight, thin, flexible, and simple fabrication advantages. Improvements in OPV efficiency have attracted great attention in the past decade. Because the functional layers in OPVs can be dissolved in common solvents, they can be manufactured by eco-friendly and scalable printing or coating technologies. In this review article, the focus is on recent efforts to control nanomorphologies of photoactive layer and discussion of various solution-processed charge transport and extraction materials, to maximize the performance of OPV cells. Next, recent works on printing and coating technologies for OPVs to realize solution processing are reviewed. The review concludes with a discussion of recent advances in the development of non-traditional lamination and transfer method towards highly efficient and fully solution-processed OPV. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Laser processes and system technology for the production of high-efficient crystalline solar cells

    Science.gov (United States)

    Mayerhofer, R.; Hendel, R.; Zhu, Wenjie; Geiger, S.

    2012-10-01

    The laser as an industrial tool is an essential part of today's solar cell production. Due to the on-going efforts in the solar industry, to increase the cell efficiency, more and more laser-based processes, which have been discussed and tested at lab-scale for many years, are now being implemented in mass production lines. In order to cope with throughput requirements, standard laser concepts have to be improved continuously with respect to available average power levels, repetition rates or beam profile. Some of the laser concepts, that showed high potential in the past couple of years, will be substituted by other, more economic laser types. Furthermore, requirements for processing with less-heat affected zones fuel the development of industry-ready ultra short pulsed lasers with pulse widths even below the picosecond range. In 2011, the German Ministry of Education and Research (BMBF) had launched the program "PV-Innovation Alliance", with the aim to support the rapid transfer of high-efficiency processes out of development departments and research institutes into solar cell production lines. Here, lasers play an important role as production tools, allowing the fast implementation of high-performance solar cell concepts. We will report on the results achieved within the joint project FUTUREFAB, where efficiency optimization, throughput enhancement and cost reduction are the main goals. Here, the presentation will focus on laser processes like selective emitter doping and ablation of dielectric layers. An indispensable part of the efforts towards cost reduction in solar cell production is the improvement of wafer handling and throughput capabilities of the laser processing system. Therefore, the presentation will also elaborate on new developments in the design of complete production machines.

  18. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2016-09-09

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  19. Magnetic field enhancement of organic photovoltaic cells performance.

    Science.gov (United States)

    Oviedo-Casado, S; Urbina, A; Prior, J

    2017-06-27

    Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.

  20. A Quantitative Analysis of Photovoltaic Modules Using Halved Cells

    Directory of Open Access Journals (Sweden)

    S. Guo

    2013-01-01

    Full Text Available In a silicon wafer-based photovoltaic (PV module, significant power is lost due to current transport through the ribbons interconnecting neighbour cells. Using halved cells in PV modules is an effective method to reduce the resistive power loss which has already been applied by some major PV manufacturers (Mitsubishi, BP Solar in their commercial available PV modules. As a consequence, quantitative analysis of PV modules using halved cells is needed. In this paper we investigate theoretically and experimentally the difference between modules made with halved and full-size solar cells. Theoretically, we find an improvement in fill factor of 1.8% absolute and output power of 90 mW for the halved cell minimodule. Experimentally, we find an improvement in fill factor of 1.3% absolute and output power of 60 mW for the halved cell module. Also, we investigate theoretically how this effect confers to the case of large-size modules. It is found that the performance increment of halved cell PV modules is even higher for high-efficiency solar cells. After that, the resistive loss of large-size modules with different interconnection schemes is analysed. Finally, factors influencing the performance and cost of industrial halved cell PV modules are discussed.

  1. High-efficiency perovskite solar cells based on anatase TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yan, E-mail: huangyan@ecust.edu.cn [School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237 (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Wu, Jiamin; Gao, Di [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-01-01

    Perovskite solar cells (PSCs) based on one-dimensional anatase TiO{sub 2} nanotube arrays were prepared by using a two-step deposition method to fill the arrays of TiO{sub 2} nanotubes in different lengths with perovskite. The photovoltaic performance of PSCs was found to be significantly dependent on the length of the TiO{sub 2} nanotubes, and the power conversion efficiency decreased as the length of the TiO{sub 2} nanotubes increased from ~ 0.40 μm to ~ 0.65 and then to ~ 0.93 μm. The PSC fabricated with ~ 0.40 μm-long anatase TiO{sub 2} nanotube arrays yielded a power conversion efficiency of 11.3% and a fill factor of 0.68 under illumination of 100 mW/cm{sup 2} AM 1.5G simulated sunlight, which is significantly higher than previously reported solar cells based on 1-D TiO{sub 2} nanostructures. Incident photon-to-current efficiency and electrochemical impedance spectroscopy measurements indicated that longer TiO{sub 2} nanotubes led to higher recombination losses of charge carriers, possibly due to poor filling of the nanotube arrays with perovskite. - Highlights: • 1D anatase TiO{sub 2} nanotubes were used to fabricate perovskite solar cells. • The best efficiency of 11.3% was achieved with ~ 0.40 μm-long TiO{sub 2} nanotubes. • The efficiency of the devices decreased with increasing TiO{sub 2} nanotube lengths.

  2. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation.

    Science.gov (United States)

    He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi

    2016-12-27

    Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.

  3. The construction of a process line for high efficiency silicon solar cells under clean-room conditions

    International Nuclear Information System (INIS)

    Aberle, A.; Faller, C.; Grille, T.; Glunz, S.; Kamerewerd, F.J.; Kopp, J.; Knobloch, J.; Klussmann, S.; Lauby, E.; Noel, A.; Paul, O.; Schaeffer, E.; Schubert, U.; Seitz, S.; Sterk, S.; Voss, B.; Warta, W.; Wettling, W.

    1992-08-01

    The aim of this research project was to plan, construct and test a clean-room technology laboratory for the manufacturing of silicon solar cells with 20% efficiency (1.5AM). In addition to the establishment of the laboratory, there existed the case of establishing the material and technological fundamentals of high-efficiency solar cells, testing and optimizing all stages of production as well as constructing test stands for accompanying characterisation work. The following final report describes the construction of the laboratory and characterisation systems, the material elements of high-efficiency solar cells as well as the most important results of solar cell production and optimisation. (orig./BWI) [de

  4. Photovoltaic Cells and Systems: Current State and Future Trends

    OpenAIRE

    Hadj Bourdoucen; Joseph A. Jervase; Abdullah Al-Badi; Adel Gastli; Arif Malik

    2000-01-01

    Photovoltaics is the process of converting solar energy into electrical energy. Any photovoltaic system invariably consists of solar cell arrays and electric power conditioners. Photovoltaic systems are reliable, quiet, safe and both environmentally benign and self-sustaining. In addition, they are cost-effective for applications in remote areas. This paper presents a review of solar system components and integration, manufacturing, applications, and basic research related to photovoltaics. P...

  5. Highly Efficient and Stable Sn-Rich Perovskite Solar Cells by Introducing Bromine.

    Science.gov (United States)

    Lee, Seojun; Kang, Dong-Won

    2017-07-12

    Compositional engineering of recently arising methylammonium (MA) lead (Pb) halide based perovskites is an essential approach for finding better perovskite compositions to resolve still remaining issues of toxic Pb, long-term instability, etc. In this work, we carried out crystallographic, morphological, optical, and photovoltaic characterization of compositional MASn 0.6 Pb 0.4 I 3-x Br x by gradually introducing bromine (Br) into parental Pb-Sn binary perovskite (MASn 0.6 Pb 0.4 I 3 ) to elucidate its function in Sn-rich (Sn:Pb = 6:4) perovskites. We found significant advances in crystallinity and dense coverage of the perovskite films by inserting the Br into Sn-rich perovskite lattice. Furthermore, light-intensity-dependent open circuit voltage (V oc ) measurement revealed much suppressed trap-assisted recombination for a proper Br-added (x = 0.4) device. These contributed to attaining the unprecedented power conversion efficiency of 12.1% and V oc of 0.78 V, which are, to the best of our knowledge, the highest performance in the Sn-rich (≥60%) perovskite solar cells reported so far. In addition, impressive enhancement of photocurrent-output stability and little hysteresis were found, which paves the way for the development of environmentally benign (Pb reduction), stable monolithic tandem cells using the developed low band gap (1.24-1.26 eV) MASn 0.6 Pb 0.4 I 3-x Br x with suggested composition (x = 0.2-0.4).

  6. DNA Based Electrochromic and Photovoltaic Cells

    Science.gov (United States)

    2012-01-01

    using deoxyribonucleic acid complex as an electron blocking layer App. Phys. Lett. 88 (2006) 171109. 23. F.H.C. Crick , J.D. Watson . The complementary...9550-09-1-0647 final 01-09-2009 ; 30-11-2011 DNA Based Electrochromic and Photovoltaic Cells FA 9550-09-1-0647 Pawlicka, Agnieszka, J. Instituto de...Available. DNA is an abundant natural product with very good biodegradation properties and can be used to obtain gel polymer electrolytes (GPEs) with high

  7. High-efficiency, thin-film- and concentrator solar cells from GaAs. Final report; High-efficiency, Duennschicht- und Konzentrator-Solarzellen aus Galliumarsenid. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Bett, A W [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Pilkuhn, M [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Scholz, F [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Baldus, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Blieske, U [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Blug, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Duong, T [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Schetter, C [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Stollwerck, G [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Sulima, O [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Wegener, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Doernen, A [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Frankowsky, G [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Haase, D [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Hahn, G [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Hangleiter, A [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Stauss, P [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Tsai, C Y [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Zieger, K [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4

    1996-10-01

    Main topic of the project was the manufacturing of highly efficient GaAs-solar cells and the fabrication of concentrator cells. During this process significant progress was made with the material preparation, the solar cell technology and the material and process characterisation. This succeeded in the following efficiencies: - GaAs solar cell made by MOVPE technology: 22.9% on 4 cm{sup 2} (AM1.5g) - GaAs solar cell made by LPE-ER process: 22.8% on 4 cm{sup 2} (AM1.5g) - GaAs concentrator solar cell made by LPE-ER process: 24.9% at C=100xAM1.5d - GaAs concentrator module with fresnel lenses: Module efficiency 20.1% (under irradiation of 793 W/m{sup 2}). Another main focus was the epitaxy of GaAs on Si substrate. Two different approaches were investigated. Together with the cooperation partner ASE, Heilbronn a selective growth technology was developed that led to a decreased crack formation. By a simultanous optimization of the other epitaxy and process parameters, the efficiency was increased up to 16.6% AM0 on 1 cm{sup 2} solar cells. Furthermore a hybrid epitaxy was investigated. A GaAs layer was deposited onto a Si substrate using MOVPE. The solar cell structure was grown with a low temperature LPE. Unexpected difficulties appeared with this process, so that fundamental experiments needed to be done with the LPE technology. So far, no solar cells could be manufactured with this method. In addition, work was performed on GaInP solar cells on GaAs substrate. An efficiency of 15.7% (AM0) was acchieved. (orig.) [Deutsch] Gegenstand des Projekts war die Herstellung hocheffizienter GaAs-Solarzellen und die Fertigung von Konzentratorsolarzellen. Dazu wurden wesentliche Fortschritte bei der Materialpraeparation, der Solarzellentechnologie und der Material- and Prozesscharakterisierung erzielt. Diese Erfolge druecken sich in den erzielten Wirkungsgraden aus: - GaAs-Solarzelle hergestellt mit MOVPE-Technologie: 22.9% auf 4 cm{sup 2} (AM1.5g) - GaAs-Solarzelle hergestellt

  8. Silicon solar cells with high efficiencies. Final report; Silicium-Solarzellen mit hoechsten Wirkungsgraden. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W.; Knobloch, J.; Glunz, S.W.; Henninger, V.; Kamerewerd, F.J.; Koester, B.; Leimenstoll, A.; Schaeffer, E.; Schumacher, J.; Sterk, S.; Warta, W.

    1996-06-01

    In this report the basic activities for the development of the silicon high efficiency solar cell technology are described. The project had two main goals: (i) The improvement of efficiencies using a systematic optimization of all cell parameters and technology steps and (ii) the simplification of the technology towards the possibilities of an industrial production, keeping the cell efficiency at a high level. Starting from the LBSF technology, developed at Fraunhofer ISE, the reduction of all loss mechanisms led to efficiencies up to 22.5% on FZ-silicon. Using a modification of this technology efficiencies of up to 21.7% have been reached on Cz-silicon. Even after the reduction of the number of photolithographic steps from six to three efficiencies up to 21.6% on FZ- and 19.5% on Cz-silicon have been obtained. These are best values in an international comparison. (orig.) [Deutsch] In diesem Projektbericht werden grundlegende Arbeiten zur Entwicklung der Silicium-`Highefficiency`-Solarzellentechnologie beschrieben. Das Projekt hatte zwei Hauptziele: (i) Die Erhoehung der Wirkungsgrade durch eine systematische Optimierung aller Zellparameter und aller Technologieschritte und (ii) die Vereinfachung der Technologie unter Beibehaltung sehr hoher Wirkungsgrade mit dem Ziel einer Annaeherung an die Moeglichkeiten der Industriefertigung. Ausgehend von der im Fraunhofer ISE entwickelten LBSF-Technologie gelang es durch Reduzierung aller Verlustmechanismen, Wirkungsgrade bis zu 22.5% auf FZ-Silicium zu erreichen. Nach Anpassung der Technologie wurden auf Cz-Silicium Wirkungsgrade bis 21.7% erzielt. Ein von sechs auf drei Fotomaskenschritte reduzierter Prozess erzielte immerhin noch Werte bis 21.6% auf FZ- und 19.5% auf Cz-Material. Alle dieser Werte stellen im internationalen Vergleich Spitzenleistungen dar. (orig.)

  9. High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron Collecting Interlayer

    KAUST Repository

    Xu, Weidong; Yan, Congfei; Kan, Zhipeng; Wang, Yang; Lai, Wen-Yong; Huang, Wei

    2016-01-01

    A novel fulleropyrrolidine derivative, named as FPNOH, was designed, synthesized and utilized as an efficient electron-collecting (EC) layer for inverted organic solar cells (i-OSCs). The grafted diethanolamino-polar moieties can not only trigger its function as an EC interlayer, but also induce orthogonal solubility that guarantees subsequent multi-layer processing without interfacial mixing. A higher power conversion efficiency (PCE) value of 8.34% was achieved for i-OSC devices with ITO/FPNOH EC electrode, compared to that of the sol-gel ZnO based reference devices with an optimized PCE value of 7.92%. High efficiency exceeding 7.7% was still achieved even for the devices with a relatively thick PFNOH film (16.9 nm). It is worthwhile to mention that this kind of material exhibits less thickness dependent performance, in contrast to widely utilized p-type conjugated polyelectrolytes (CPEs) as well as the non-conjugated polyelectrolytes (NCPEs). Further investigation on illuminating intensity dependent parameters revealed the role of FPNOH in reducing interfacial traps-induced recombination at ITO/active layer interface.

  10. High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron Collecting Interlayer

    KAUST Repository

    Xu, Weidong

    2016-05-20

    A novel fulleropyrrolidine derivative, named as FPNOH, was designed, synthesized and utilized as an efficient electron-collecting (EC) layer for inverted organic solar cells (i-OSCs). The grafted diethanolamino-polar moieties can not only trigger its function as an EC interlayer, but also induce orthogonal solubility that guarantees subsequent multi-layer processing without interfacial mixing. A higher power conversion efficiency (PCE) value of 8.34% was achieved for i-OSC devices with ITO/FPNOH EC electrode, compared to that of the sol-gel ZnO based reference devices with an optimized PCE value of 7.92%. High efficiency exceeding 7.7% was still achieved even for the devices with a relatively thick PFNOH film (16.9 nm). It is worthwhile to mention that this kind of material exhibits less thickness dependent performance, in contrast to widely utilized p-type conjugated polyelectrolytes (CPEs) as well as the non-conjugated polyelectrolytes (NCPEs). Further investigation on illuminating intensity dependent parameters revealed the role of FPNOH in reducing interfacial traps-induced recombination at ITO/active layer interface.

  11. Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode

    International Nuclear Information System (INIS)

    Al-bahrani, Majid Raissan; Xu, Xiaobao; Ahmad, Waqar; Ren, Xiaoliang; Su, Jun; Cheng, Ze; Gao, Yihua

    2014-01-01

    Highlights: • High-performance PANI/MWCNT-CE was incorporated in a Pt-CE in DSSCs. • GNS/MWCNT/PANI-CE exhibits a high power conversion efficiency (PCE) of 7.52%. • GNS/MWCNT/PANI composite has a high catalytic activity for the reduction of I 3 − . • GNS/MWCNT/PANI composite has a low R CT on the electrolyte/CE interface. - Abstract: A graphene-based nanosheet composite/multiwalled carbon nanotube/polyaniline (GNS/MWCNT/PANI) was synthesized via an in situ polymerization technique and applied by the spin-coating method as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). The combination of the high catalytic activity of PANI and outstanding conductivity of GNS/MWCNT improved the photovoltaic performance of the hybrid CE. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that the GNS/MWCNT/PANI composite has high catalytic activity for the reduction of triiodide to iodide and low charge-transfer resistance at the electrolyte/electrode interface. Transmission electron microscopy (TEM) images showed that the GNS/MWCNT/PANI-CE has a rough and porous structure and X-ray diffraction analysis confirmed the formation of PANI coating on the surface of the GNS/CNT. In particular, current–voltage measurements showed the superior power conversion efficiency (PCE) of 7.52% of the DSSC based on GNS/MWCNT/PANI-CE compared to the PCE of 6.69% of the DSSC based on Pt-CE

  12. Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Al-bahrani, Majid Raissan [Center for Nanoscale Characterization and Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology - HUST, Luoyu Road 1037, Wuhan 430074 (China); Faculty of Science, Thi-Qar University, Nassiriya (Iraq); Xu, Xiaobao [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan (China); Ahmad, Waqar; Ren, Xiaoliang; Su, Jun [Center for Nanoscale Characterization and Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology - HUST, Luoyu Road 1037, Wuhan 430074 (China); Cheng, Ze [School of Physics, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074 (China); Gao, Yihua, E-mail: gaoyihua@hust.edu.cn [Center for Nanoscale Characterization and Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology - HUST, Luoyu Road 1037, Wuhan 430074 (China)

    2014-11-15

    Highlights: • High-performance PANI/MWCNT-CE was incorporated in a Pt-CE in DSSCs. • GNS/MWCNT/PANI-CE exhibits a high power conversion efficiency (PCE) of 7.52%. • GNS/MWCNT/PANI composite has a high catalytic activity for the reduction of I{sub 3}{sup −}. • GNS/MWCNT/PANI composite has a low R{sub CT} on the electrolyte/CE interface. - Abstract: A graphene-based nanosheet composite/multiwalled carbon nanotube/polyaniline (GNS/MWCNT/PANI) was synthesized via an in situ polymerization technique and applied by the spin-coating method as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). The combination of the high catalytic activity of PANI and outstanding conductivity of GNS/MWCNT improved the photovoltaic performance of the hybrid CE. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that the GNS/MWCNT/PANI composite has high catalytic activity for the reduction of triiodide to iodide and low charge-transfer resistance at the electrolyte/electrode interface. Transmission electron microscopy (TEM) images showed that the GNS/MWCNT/PANI-CE has a rough and porous structure and X-ray diffraction analysis confirmed the formation of PANI coating on the surface of the GNS/CNT. In particular, current–voltage measurements showed the superior power conversion efficiency (PCE) of 7.52% of the DSSC based on GNS/MWCNT/PANI-CE compared to the PCE of 6.69% of the DSSC based on Pt-CE.

  13. ZnO@TiO2 Architectures for a High Efficiency Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    Lei, Jianfei; Liu, Shuli; Du, Kai; Lv, Shijie; Liu, Chaojie; Zhao, Lingzhi

    2015-01-01

    Graphical Abstract: A fast and improved electrochemical process was reported to fabricate ZnO@TiO 2 heterogeneous architectures with enhanced power conversion efficiency (ƞ = 2.16%). This paper focuses on achieving high dye loading via binding noncorrosive TiO 2 nanocones to the outermost layer, while retaining the excellent electron transport behavior of the ZnO-based internal layer. Display Omitted -- Highlights: • Nanoconic TiO 2 particles are loaded on the surface of aligned ZnO NWs successfully by a liquid phase deposition method. • ZnO@TiO 2 architectures exhibit high efficiency of the DSSCs. -- Abstract: Instead of the spin coating step, an improved electrochemical process is reported in this paper to prepare ZnO seeded substrates and ZnO nanowires (ZnO NWs). Vertically aligned ZnO NWs are deposited electrochemically on the ZnO seeded substrates directly forming backbones for loading nanoconic TiO 2 particles, and hence ZnO@TiO 2 heterogeneous architectures are obtained. When used as photoanode materials of the dye-sensitized solar cells (DSSCs), ZnO@TiO 2 architectures exhibit enhanced power conversion efficiency (PCE) of the DSSCs. Results of the solar cell testing show that addition of TiO 2 shells to the ZnO NWs significantly increases short circuit current (from 2.6 to 4.7 mA cm −2 ), open circuit voltage (from 0.53 V to 0.77 V) and fill factor (from 0.30 to 0.59). The PCE jumped from 0.4% for bare ZnO NWs to 2.16% for ZnO@TiO 2 architectures under 100 mW cm −2 of AM 1.5 G illumination

  14. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States)

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  15. Photovoltaic cells for laser power beaming

    Science.gov (United States)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  16. Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells

    Science.gov (United States)

    Zou, Yunlong

    Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.

  17. Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells.

    Science.gov (United States)

    Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy.

  18. Photovoltaic Cell Operation on Mars

    Science.gov (United States)

    Landis, Geoffrey A.; Kerslake, Thomas; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    The Martian surface environment provides peculiar challenges for the operation of solar arrays: low temperature, solar flux with a significant scattered component that varies in intensity and spectrum with the amount of suspended atmospheric dust, and the possibility of performance loss due to dust deposition on the array surface. This paper presents theoretical analyses of solar cell performance on the surface of Mars and measurements of cells under Martian conditions.

  19. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.

    Science.gov (United States)

    Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong

    2017-03-01

    Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.

  20. High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions

    Science.gov (United States)

    Xue, Jiangeng; Uchida, Soichi; Rand, Barry P; Forrest, Stephen

    2013-11-19

    A device is provided, having a first electrode, a second electrode, and a photoactive region disposed between the first electrode and the second electrode. The photoactive region includes a first organic layer comprising a mixture of an organic acceptor material and an organic donor material, wherein the first organic layer has a thickness not greater than 0.8 characteristic charge transport lengths, and a second organic layer in direct contact with the first organic layer, wherein: the second organic layer comprises an unmixed layer of the organic acceptor material or the organic donor material of the first organic layer, and the second organic layer has a thickness not less than about 0.1 optical absorption lengths. Preferably, the first organic layer has a thickness not greater than 0.3 characteristic charge transport lengths. Preferably, the second organic layer has a thickness of not less than about 0.2 optical absorption lengths. Embodiments of the invention can be capable of power efficiencies of 2% or greater, and preferably 5% or greater.

  1. Photovoltaic-cell technologies joust for position

    Science.gov (United States)

    Fischetti, M. A.

    1984-03-01

    The three most promising photovoltaic cell technologies, single-crystal-silicon cells, polycrystalline thin films, and amorphous silicon thin films, are reviewed and discussed in terms of present levels of applicability and the prospects for domination of PV markets in the future. A U.S. DOE research plan running from 1984 to 1988 which aims to produce PV modules that will generate electricity at $.20/kWh by 1988 is outlined, and R & D efforts in Japan and Europe are considered. Although GaAs cells have reached efficiencies to 20 percent in the laboratory, the most successful commercial products have been single-crystal-silicon cells with efficiencies between 11 and 12 percent. It is suggested that the immiment rise of amorphous silicon in the late 1980s may thwart polycrystalline-cell development before it has a chance to flourish.

  2. Terrestrial photovoltaic cell process testing

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.

  3. High efficiency high rate microcrystalline silicon thin-film solar cells deposited at plasma excitation frequencies larger than 100 MHz

    Czech Academy of Sciences Publication Activity Database

    Strobel, C.; Leszczynska, B.; Merkel, U.; Kuske, J.; Fischer, D.D.; Albert, M.; Holovský, Jakub; Michard, S.

    2015-01-01

    Roč. 143, Dec (2015), 347-353 ISSN 0927-0248 R&D Projects: GA MŠk 7E12029 EU Projects: European Commission(XE) 283501 - Fast Track Institutional support: RVO:68378271 Keywords : VHF * PECVD * microcrystalline silicon * solar cell * high rate * high efficiency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  4. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming; Paetzold, Ulrich W; Gehlhaar, Robert; Smirnov, Vladimir; Boyen, Hans-Gerd; Tait, Jeffrey Gerhart; Conings, Bert; Zhang, Weimin; Nielsen, Christian; McCulloch, Iain; Froyen, Ludo; Heremans, Paul; Cheyns, David

    2015-01-01

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can

  5. Photovoltaic reciprocity and quasi-Fermi level splitting in nanostructure-based solar cells (Conference Presentation)

    Science.gov (United States)

    Aeberhard, Urs

    2017-04-01

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions [1]. So far, the theory has been verified for a wide range of devices and material systems and forms the basis of a growing number of luminesecence imaging techniques used in the characterization of photovoltaic materials, cells and modules [2-5]. However, there are also some examples where the theory fails, such as in the case of amorphous silicon. In our contribution, we critically assess the assumptions made in the derivation of the theory and compare its predictions with rigorous formal relations as well as numerical computations in the framework of a comprehensive quantum-kinetic theory of photovoltaics [6] as applied to ultra-thin absorber architectures [7]. One of the main applications of the photovoltaic reciprocity relation is the determination of quasi-Fermi level splittings (QFLS) in solar cells from the measurement of luminescence. In nanostructure-based photovoltaic architectures, the determination of QFLS is challenging, but instrumental to assess the performance potential of the concepts. Here, we use our quasi-Fermi level-free theory to investigate existence and size of QFLS in quantum well and quantum dot solar cells. [1] Uwe Rau. Reciprocity relation between photovoltaic quantum efficiency and electrolumines- cent emission of solar cells. Phys. Rev. B, 76(8):085303, 2007. [2] Thomas Kirchartz and Uwe Rau. Electroluminescence analysis of high efficiency cu(in,ga)se2 solar cells. J. Appl. Phys., 102(10), 2007. [3] Thomas Kirchartz, Uwe Rau, Martin Hermle, Andreas W. Bett, Anke Helbig, and Jrgen H. Werner. Internal voltages in GaInP-GaInAs-Ge multijunction solar cells determined by electro- luminescence measurements. Appl. Phys. Lett., 92(12), 2008. [4] Thomas Kirchartz, Anke Helbig, Wilfried Reetz, Michael Reuter, Jürgen H. Werner, and

  6. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Kirmani, Ahmad R.; Amassian, Aram

    2015-01-01

    Until recently, only mesoporous TiO2 and ZnO were successfully demonstrated as electron transport layers (ETL) alongside the reports of ZrO2 and Al2O3 as scaffold materials in organometal halide perovskite solar cells, largely owing to ease of processing and to high power conversion efficiency. In this article, we explore tungsten trioxide (WO3)-based nanostructured and porous ETL materials directly grown hydrothermally with different morphologies such as nanoparticles, nanorods and nanosheet arrays. The nanostructure morphology strongly influences the photocurrent and efficiency in organometal halide perovskite solar cells. We find that the perovskite solar cells based on WO3 nanosheet arrays yield significantly enhanced photovoltaic performance as compared to nanoparticles and nanorod arrays due to good perovskite absorber infiltration in the porous scaffold and more rapid carrier transport. We further demonstrate that treating the WO3 nanostructures with an aqueous solution of TiCl4 reduces charge recombination at the perovskite/WO3 interface, resulting in the highest power conversion efficiency of 11.24% for devices based on WO3 nanosheet arrays. The successful demonstration of alternative ETL materials and nanostructures based on WO3 will open up new opportunities in the development of highly efficient perovskite solar cells. This journal is © The Royal Society of Chemistry 2015.

  7. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    Energy Technology Data Exchange (ETDEWEB)

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  8. Progress in N-type Si Solar Cell and Module Technology for High Efficiency and Low Cost

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dengyuan; Xiong, Jingfeng; Hu, Zhiyan; Li, Gaofei; Wang, Hongfang; An, Haijiao; Yu, Bo; Grenko, Brian; Borden, Kevin; Sauer, Kenneth; Cui, Jianhua; Wang, Haitao [Yingli Green Energy Holding Co., LTD, 071051 Boading (China); Roessler, T. [Yingli Green Energy Europe GmbH, Heimeranstr. 37, 80339 Munich (Germany); Bultman, J. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Vlooswijk, A.H.G.; Venema, P.R. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands)

    2012-06-15

    A novel high efficiency solar cell and module technology, named PANDA, using crystalline n-type CZ Si wafers has moved into large-scale production at Yingli. The first commercial sales of the PANDA modules commenced in mid 2010. Up to 600MW of mass production capacity from crystal-Si growth, wafer slicing, cell processing and module assembly have been implemented by the end of 2011. The PANDA technology was developed specifically for high efficiency and low cost. In contrast to the existing n-type Si solar cell manufacturing methods in mass production, this new technology is largely compatible with a traditional p-type Si solar cell production line by conventional diffusion, SiNx coating and screen-printing technology. With optimizing all technologies, Yingli's PANDA solar cells on semi-square 6-inch n-type CZ wafers (cell size 239cm{sup 2}) have been improved to currently have an average efficiency on commercial production lines exceeding 19.0% and up to 20.0% in pilot production. The PANDA modules have been produced and were certified according to UL1703, IEC 61215 and IEC 61730 standards. Nearly two years of full production on scale-up lines show that the PANDA modules have a high efficiency and power density, superior high temperature performance, near zero initial light induced degradation, and excellent efficiency at low irradiance.

  9. An Al-doped ZnO electrode grown by highly efficient cylindrical rotating magnetron sputtering for low cost organic photovoltaics

    Science.gov (United States)

    Park, Jun-Hyuk; Ahn, Kyung-Jun; Park, Kang-Il; Na, Seok-In; Kim, Han-Ki

    2010-03-01

    We report the characteristics of Al-doped zinc oxide (AZO) films prepared by a highly efficient cylindrical rotating magnetron sputtering (CRMS) system for use as a transparent conducting electrode in cost-efficient bulk hetero-junction organic solar cells (OSCs). Using a rotating cylindrical type cathode with an AZO target, whose usage was above 80%, we were able to obtain a low cost and indium free AZO electrode with a low sheet resistance of ~4.59 Ω/sq, a high transparency of 85% in the visible wavelength region and a work function of 4.9 eV at a substrate temperature of 230 °C. Moreover, the neutral poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) based OSC fabricated on the CRMS-grown AZO electrode at 230 °C showed an open circuit voltage of 0.5 V, a short circuit current of 8.94 mA cm-2, a fill factor of 45% and power conversion efficiency of 2.01%, indicating that CRMS is a promising cost-efficient AZO deposition technique for low cost OSCs.

  10. PAPER PRINTED PHOTOVOLTAIC CELLS: EMERGING METHOD OF PV CELL PRODUCTION

    OpenAIRE

    Nikhil S. Mane*, Avinash M. Patil2, Vishal P. Patil3

    2017-01-01

    An Solar energy is a renewable method for the energy production. The use of solar energy is increasing day by day and share of solar energy is increasing in the power sector of India. But as per pollution increases with energy consumption the need of solar energy will goes on increase in recent future as solar energy is a best option in both thermal and photovoltaic energy conversion processes. Photovoltaic cells are compact and has no movable parts which provides them effectiveness and easy ...

  11. Hybrid window layer for photovoltaic cells

    Science.gov (United States)

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  12. Cell shunt resistance and photovoltaic module performance

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, T.J.; Basso, T.S.; Rummel, S.R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  13. High-performance polymeric photovoltaic cells with a gold chloride-treated polyacrylonitrile hole extraction interlayer

    Science.gov (United States)

    Jeong, Ji-Ho; Noh, Yong-Jin; Kim, Seok-Soon; Kwon, Sung-Nam; Na, Seok-In

    2018-03-01

    We introduce a high efficiency polymeric photovoltaic cell (PPV) to be obtained by polyacrylonitrile (PAN) hole extraction layer (HEL) modification with gold chloride (AuCl3). The role of PAN HELs with AuCl3 and their effects on solar cell performances were studied with ultraviolet photoemission spectroscopy, atomic force microscopy, internal resistances in PPVs, and current-voltage power curves. The resultant PPVs with AuCl3-treated PAN HELs showed improved cell efficiency compared to PSCs with no interlayer and PAN without AuCl3. Furthermore, with AuCl3-treated PAN, we finally achieved a high efficiency of 6.91%, and a desirable PPV-stability in poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophe-ne-2,6-diyl][3-fluoro-2-[(2-thylhexyl)carbonyl]-thieno[3,4-b]thiophenediyl

  14. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  15. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...

  16. Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons.

    Science.gov (United States)

    Sagal, Jonathan; Zhan, Xiping; Xu, Jinchong; Tilghman, Jessica; Karuppagounder, Senthilkumar S; Chen, Li; Dawson, Valina L; Dawson, Ted M; Laterra, John; Ying, Mingyao

    2014-08-01

    Human pluripotent stem cells (PSCs) are a promising cell resource for various applications in regenerative medicine. Highly efficient approaches that differentiate human PSCs into functional lineage-specific neurons are critical for modeling neurological disorders and testing potential therapies. Proneural transcription factors are crucial drivers of neuron development and hold promise for driving highly efficient neuronal conversion in PSCs. Here, we study the functions of proneural transcription factor Atoh1 in the neuronal differentiation of PSCs. We show that Atoh1 is induced during the neuronal conversion of PSCs and that ectopic Atoh1 expression is sufficient to drive PSCs into neurons with high efficiency. Atoh1 induction, in combination with cell extrinsic factors, differentiates PSCs into functional dopaminergic (DA) neurons with >80% purity. Atoh1-induced DA neurons recapitulate key biochemical and electrophysiological features of midbrain DA neurons, the degeneration of which is responsible for clinical symptoms in Parkinson's disease (PD). Atoh1-induced DA neurons provide a reliable disease model for studying PD pathogenesis, such as neurotoxin-induced neurodegeneration in PD. Overall, our results determine the role of Atoh1 in regulating neuronal differentiation and neuron subtype specification of human PSCs. Our Atoh1-mediated differentiation approach will enable large-scale applications of PD patient-derived midbrain DA neurons in mechanistic studies and drug screening for both familial and sporadic PD. ©AlphaMed Press.

  17. Study on Characteristics of CdS/Cu2S Photovoltaic Cell

    International Nuclear Information System (INIS)

    Nwe Nwe Htun

    2011-12-01

    In this paper the CdS-Cu2S photovoltaic cell has been prepared and characteristiced by using evaporation method on glass substrate. CdS film was deposited on the Pyrex glass substrate by evaporation and Cu2S layer was obtained by electroplating in a dilute acqueous solution of CusO4 at room temperature. Silver electrode was applied to the electroplated surface. The results of electrical and optical characteristics of the CdS-Cu2S hetrojunction were investigated. The photovoltaic response has been observed under various illuminated intensity for different wavelengths in visible region. It was found to be the photovoltage and photocurrent varying with different light intensities. It can be concluded that formation of a low resistivity CdS film and Cu2S layer play a big role in obtaining a high efficiency cell.

  18. Technological development for super-high efficiency solar cells. Technological development for super-high efficiency singlecrystalline silicon solar cells (super-high efficiency singlecrystalline Si solar cells); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Chokokoritsu tankessho silicon taiyo denchi no gijutsu kaihatsu (chokokoritsu tankessho silicon taiyo denchi cell no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development of super-high efficiency singlecrystalline silicon solar cells in fiscal 1994. (1) On development of high-performance light receiving layer, the fine electrode for receiving surfaces was designed to reduce serial resistance, and the high-quality oxide passivation film was studied to reduce surface recombination velocity. (2) On development of forming technology of back heterojunction, the high-quality cell with B-doped fine crystalline Si film on its back was studied by heat treatment of the fine crystalline Si film, and the cell structure with high back reflectance of light was also studied. (3) On analysis for high-efficiency cells, the relation between the back recombination velocity at the interface between p-type substrate and back passivation film, and the internal collection efficiency as probe light was injected from the back, was calculated by numerical simulation. As a result, the cell back recombination velocity could be evaluated by measuring the spectral internal collection efficiency to back injection. 15 figs., 6 tabs.

  19. Organic photovoltaic cells with pentacene nanocolumn arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Shuwen; Schaefer, Peter; Rabe, Juergen P.; Koch, Norbert [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin (Germany)

    2011-07-01

    Highly ordered pentacene nanocolumn arrays were fabricated by glancing angle deposition (GLAD) on indium tin oxide (ITO) substrates. The nanocolumn diameter was set to 100-150 nm as revealed by scanning electron microscopy and atomic force microscopy. Interdigitated bulk heterojunction photovoltaic cells (OPVCs) were formed by spin-coating [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) as the acceptor material onto the pentacene nanocolumn film. Bathocuproine (BCP) was deposited on top of PCBM as exciton blocking layer. The conversion efficiency of nanocolumn-based OPVCs was significantly higher compared to planar heterojunction OPVCs of the same materials. Further device performance improvement was achieved through employing a thin pentacene seed layer before GLAD, which promoted PCBM solution infiltration between pentacene nanocolumns.

  20. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  1. Monocrystalline silicon solar cells applied in photovoltaic system

    OpenAIRE

    L.A. Dobrzański; A. Drygała; M. Giedroć; M. Macek

    2012-01-01

    Purpose: The aim of the paper is to fabricate the monocrystalline silicon solar cells using the conventional technology by means of screen printing process and to make of them photovoltaic system.Design/methodology/approach: The investigation of current – voltage characteristic to determinate basic electrical properties of monocrystalline silicon solar cells were investigated under Standard Test Condition. Photovoltaic module was produced from solar cells with the largest short-circuit curren...

  2. Formation of photovoltaic modules based on polycrystalline solar cells

    OpenAIRE

    L. A. Dobrzański; A. Drygała; A. Januszka

    2009-01-01

    Purpose: The main aim of the paper is formation of photovoltaic modules and analysis of their main electric parameters.Design/methodology/approach: Photovoltaic modules were produced from four polycrystalline silicon solar cells, that were cut and next joined in series. Soft soldering technique and copper-tin strip were used for joining cells.Findings: In order to provide useful power for any application, the individual solar cells must be connected together to give the appropriate current an...

  3. An episomal vector-based CRISPR/Cas9 system for highly efficient gene knockout in human pluripotent stem cells.

    Science.gov (United States)

    Xie, Yifang; Wang, Daqi; Lan, Feng; Wei, Gang; Ni, Ting; Chai, Renjie; Liu, Dong; Hu, Shijun; Li, Mingqing; Li, Dajin; Wang, Hongyan; Wang, Yongming

    2017-05-24

    Human pluripotent stem cells (hPSCs) represent a unique opportunity for understanding the molecular mechanisms underlying complex traits and diseases. CRISPR/Cas9 is a powerful tool to introduce genetic mutations into the hPSCs for loss-of-function studies. Here, we developed an episomal vector-based CRISPR/Cas9 system, which we called epiCRISPR, for highly efficient gene knockout in hPSCs. The epiCRISPR system enables generation of up to 100% Insertion/Deletion (indel) rates. In addition, the epiCRISPR system enables efficient double-gene knockout and genomic deletion. To minimize off-target cleavage, we combined the episomal vector technology with double-nicking strategy and recent developed high fidelity Cas9. Thus the epiCRISPR system offers a highly efficient platform for genetic analysis in hPSCs.

  4. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang; Wei, Bin; Luo, Yong; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32

  5. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan; Hu, Hanlin; Kim, Taesoo; Ngongang Ndjawa, Guy Olivier; Mansour, Ahmed; El Labban, Abdulrahman; Faria, Jorge C.D.; Munir, Rahim; Anjum, Dalaver H.; McLachlan, Martyn A.; Amassian, Aram

    2016-01-01

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top

  6. Flasher Powered by Photovoltaic Cells and Ultracapacitors

    Science.gov (United States)

    Eichenberg, Dennis J.; Soltis, Richard F.

    2003-01-01

    A unique safety flasher powered by photovoltaic cells and ultracapacitors has been developed. Safety flashers are used wherever there are needs to mark actually or potentially hazardous locations. Examples of such locations include construction sites, highway work sites, and locations of hazardous operations. Heretofore, safety flashers have been powered by batteries, the use of which entails several disadvantages: Batteries must be kept adequately charged, and must not be allowed to become completely discharged. Batteries have rather short cycle lives, and their internal constituents that react chemically to generate electricity deteriorate (and hence power-generating capacities decrease) over time. The performances of batteries are very poor at low temperatures, which often occur in the circumstances in which safety flashers are most needed. The disposal of batteries poses a threat to the environment. The development of the present photovoltaic/ultracapacitor- powered safety flasher, in which the ultracapacitors are used to store energy, overcomes the aforementioned disadvantages of using batteries to store energy. The ultracapacitors in this flasher are electrochemical units that have extremely high volumetric capacitances because they contain large-surface-area electrodes separated by very small gaps. Ultracapacitors have extremely long cycle lives, as compared to batteries; consequently, it will never be necessary to replace the ultracapacitors in the safety flasher. The reliability of the flasher is correspondingly increased, and the life-of-system cost and the adverse environmental effects of the flasher are correspondingly reduced. Moreover, ultracapacitors have excellent low-temperature characteristics, are maintenance-free, and provide consistent performance over time.

  7. Organic dye for highly efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Ito, S.; Graetzel, M. [Institut des Sciences et Ingenierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Horiuchi, T.; Miura, H. [Technology Research Laboratory, Corporate Research Center, Mitsubishi Paper Mills Limited, 46, Wadai, Tsukuba City, Ibaraki 300-4247 (Japan); Uchida, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-chome, Aoba-ku, Sendai 980-8577 (Japan)

    2005-04-04

    The feasibility of solid-state dye-sensitized solar cells as a low-cost alternative to amorphous silicon cells is demonstrated. Such a cell with a record efficiency of over 4 % under simulated sunlight is reported, made possible by using a new organic metal-free indoline dye as the sensitizer with high absorption coefficient. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  9. Plastic encapsulated, dye sensitised photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Potter, R.J.; Otley, L.C.; Durrant, J.R.; Haque, S.; Xu, C. [Imperial College of Science, Technology and Medicine, London (United Kingdom); Holmes, A.B.; Park, T.; Schulte, N. [Cambridge Univ. (United Kingdom)

    2004-07-01

    The report presents the results of a collaborative project that aimed to demonstrate the technical feasibility of a plastic-encapsulated, solid state, dye-sensitised solar cell (DSSC) with an energy conversion efficiency (ECE) of at least 3%. DSSCs offer a possible 'step change' in photovoltaic technology resulting in lower costs compared with existing technologies. The project involved a series of eight main tasks: the development of first and second generation HTM electrolytes; the development of polymer-supported electrolytes; the development of low temperature electrode coating procedures; dye development; cell assembly and testing; component integration; and overall process development. A wide range of innovative HTMs have been synthesised, including materials incorporating both hole-transporting and ion-chelating functional groups. The ruthenium-based dye, N3, remained the preferred sensitising component. The project has produced a system that can routinely achieve over 5% ECE at 0.1 Sun illumination on 1 cm{sup 2} cells using polymer-supported electrolytes.

  10. Interactive Visual Analysis for Organic Photovoltaic Solar Cells

    KAUST Repository

    Abouelhassan, Amal A.

    2017-01-01

    Organic Photovoltaic (OPV) solar cells provide a promising alternative for harnessing solar energy. However, the efficient design of OPV materials that achieve better performance requires support by better-tailored visualization tools than

  11. InGaN High Temperature Photovoltaic Cells, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this Phase II project are to develop InGaN photovoltaic cells for high temperature and/or high radiation environments to TRL 4 and to define the...

  12. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    Science.gov (United States)

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  13. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    Directory of Open Access Journals (Sweden)

    Ming-Wai Poon

    Full Text Available A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs. Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2 reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%. Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs. This cell type may also have advantages in retinal pigmented epithelial differentiation.

  14. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    Science.gov (United States)

    Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou

    2015-01-01

    A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.

  15. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells.

    Science.gov (United States)

    Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2017-06-07

    We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.

  16. Bulk heterojunction organic photovoltaic cell fabricated by the electrospray deposition method using mixed organic solvent

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Takeshi; Takagi, Kenji; Asano, Takashi [Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); RIKEN, 2-1 Hirosawa, Wakou-shi, Saitama 351-0198 (Japan); Honda, Zentaro; Kamata, Norihiko; Ueno, Keiji; Shirai, Hajime [Department of Functional Materials Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Ju, Jungmyoung; Yamagata, Yutaka; Tajima, Yusuke [RIKEN, 2-1 Hirosawa, Wakou-shi, Saitama 351-0198 (Japan)

    2011-07-15

    A high-efficiency bulk heterojunction organic photovoltaic cell (OPV) was achieved by the electrospray deposition method. The surface roughness of the P3HT:PCBM thin film can be reduced using the mixed solvent consisting of o-dichlorobenzene (o-DCB) and acetone. The effect of acetone concentration is related to its dielectric constant. Under an optimized concentration of acetone in o-DCB (20 vol%), the P3HT/PCBM active layer with a smooth surface can be formed, and the power conversion efficiency of the OPV was 1.9%. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lumb, Matthew P. [The George Washington University, 2121 I Street NW, Washington, DC 20037 (United States); Naval Research Laboratory, Washington, DC 20375 (United States); Steiner, Myles A.; Geisz, John F. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Walters, Robert J. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-11-21

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.

  18. Photovoltaic

    International Nuclear Information System (INIS)

    Fechner, H.; Heidenreich, M.

    2001-01-01

    In 1993 a wide test for photovoltaic (PV) was carried out in Austria, 110 stations were built and precise measurements were done. At that time the demand of integrating direct current from solar cells into the 50 Hz alternating current network was a weak point. At present four european research projects dealing with security, reliability, network compatibility and its integration in buildings are being developed. The cost development of PVs in Germany from 1983 to 1998 is given. Because of the PV environmental quality, one million of new intallations are demanded (until 2010) by the European commission. In Austria exists ∼5,000 kWp installed capacity and the growth rate average in the last years was 30 %. (nevyjel)

  19. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo; Weber, Klaus; Hameiri, Ziv; De Wolf, Stefaan

    2017-01-01

    quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low

  20. Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bedair, Salah M. [North Carolina State Univ., Raleigh, NC (United States); Hauser, John R. [North Carolina State Univ., Raleigh, NC (United States); Elmasry, Nadia [North Carolina State Univ., Raleigh, NC (United States); Colter, Peter C. [North Carolina State Univ., Raleigh, NC (United States); Bradshaw, G. [North Carolina State Univ., Raleigh, NC (United States); Carlin, C. Z. [North Carolina State Univ., Raleigh, NC (United States); Samberg, J. [North Carolina State Univ., Raleigh, NC (United States); Edmonson, Kenneth [Spectrolab, Inc., Sylmar, CA (United States)

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  1. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua

    2017-11-08

    As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.

  2. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guijun, E-mail: gliad@connect.ust.hk; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing [State Key Laboratory on Advanced Displays and Optoelectronics Technologies, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-06-09

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  3. Polymer Separators for High-Power, High-Efficiency Microbial Fuel Cells

    KAUST Repository

    Chen, Guang

    2012-12-26

    Microbial fuel cells (MFCs) with hydrophilic poly(vinyl alcohol) (PVA) separators showed higher Coulombic efficiencies (94%) and power densities (1220 mW m-2) than cells with porous glass fiber separators or reactors without a separator after 32 days of operation. These remarkable increases in both the coublomic efficiency and the power production of the microbial fuel cells were made possible by the separator\\'s unique characteristics of fouling mitigation of the air cathode without a large increase in ionic resistance in the cell. This new type of polymer gel-like separator design will be useful for improving MFC reactor performance by enabling compact cell designs. © 2012 American Chemical Society.

  4. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    International Nuclear Information System (INIS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-01-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400–800 nm) and bottom (800–1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  5. Radiation-hard, high efficiency InP solar cell and panel development

    International Nuclear Information System (INIS)

    Keavney, C.J.; Vernon, S.M.; Haven, V.E.; Nowlan, M.J.; Walters, R.J.; Slatter, R.L.; Summers, G.P.

    1991-01-01

    Indium phosphide solar cells with efficiencies over 19% (Air mass zero, 25 degrees C) and area of 4 cm 2 have been made and incorporated into prototype panels. The panels will be tested in space to confirm the high radiation resistance expected from InP solar cells, which makes the material attractive for space use, particularly in high-radiation orbits. Laboratory testing indicated an end-of-life efficiency of 15.5% after 10 15 1 MeV electrons, and 12% after 10 16 . These cells are made by metalorganic chemical vapor deposition, and have a shallow homojunction structure. The manufacturing process is amendable to scale-up to larger volumes; more than 200 cells were produced in the laboratory operation. Cell performance, radiation degradation, annealing behavior, and results of deep level transient spectroscopy studies are presented in this paper

  6. Study of Temperature Coefficients for Parameters of Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Daniel Tudor Cotfas

    2018-01-01

    Full Text Available The temperature is one of the most important factors which affect the performance of the photovoltaic cells and panels along with the irradiance. The current voltage characteristics, I-V, are measured at different temperatures from 25°C to 87°C and at different illumination levels from 400 to 1000 W/m2, because there are locations where the upper limit of the photovoltaic cells working temperature exceeds 80°C. This study reports the influence of the temperature and the irradiance on the important parameters of four commercial photovoltaic cell types: monocrystalline silicon—mSi, polycrystalline silicon—pSi, amorphous silicon—aSi, and multijunction InGaP/InGaAs/Ge (Emcore. The absolute and normalized temperature coefficients are determined and compared with their values from the related literature. The variation of the absolute temperature coefficient function of the irradiance and its significance to accurately determine the important parameters of the photovoltaic cells are also presented. The analysis is made on different types of photovoltaics cells in order to understand the effects of technology on temperature coefficients. The comparison between the open-circuit voltage and short-circuit current was also performed, calculated using the temperature coefficients, determined, and measured, in various conditions. The measurements are realized using the SolarLab system, and the photovoltaic cell parameters are determined and compared using the LabVIEW software created for SolarLab system.

  7. Toward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design

    KAUST Repository

    Wang, Hsin-Ping

    2017-07-11

    Recent technological advances in conventional planar and microstructured solar cell architectures have significantly boosted the efficiencies of these devices near the corresponding theoretical values. Nanomaterials and nanostructures have promising potential to push the theoretical limits of solar cell efficiency even higher using the intrinsic advantages associated with these materials, including efficient photon management, rapid charge transfer, and short charge collection distances. However, at present the efficiency of nanostructured solar cells remains lower than that of conventional solar devices due to the accompanying losses associated with the employment of nanomaterials. The concurrent design of both optical and electrical components will presumably be an imperative route toward breaking the present-day limit of nanostructured solar cells. This review summarizes the losses in traditional solar cells, and then discusses recent advances in applications of nanotechnology to solar devices from both optical and electrical perspectives. Finally, a rule for nanostructured solar cells by concurrently engineering the optical and electrical design is devised. Following these guidelines should allow for exceeding the theoretical limit of solar cell efficiency soon.

  8. Modelling and design of high efficiency radiation tolerant indium phosphide space solar cells

    International Nuclear Information System (INIS)

    Goradia, C.; Geier, J.V.; Weinberg, I.

    1987-01-01

    Using a fairly comprehensive model, the authors did a parametric variation study of the InP shallow homojunction solar cell with a view to determining the maximum realistically achievable efficiency and an optimum design that would yield this efficiency. Their calculations show that with good quality epitaxial material, a BOL efficiency of about 20.3% at 1AMO, 25 0 C may be possible. The design parameters of the near-optimum cell are given. Also presented are the expected radiation damage of the performance parameters by 1MeV electrons and a possible explanation of the high radiation tolerance of InP solar cells

  9. Toward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design

    KAUST Repository

    Wang, Hsin-Ping; He, Jr-Hau

    2017-01-01

    potential to push the theoretical limits of solar cell efficiency even higher using the intrinsic advantages associated with these materials, including efficient photon management, rapid charge transfer, and short charge collection distances. However

  10. High-Efficiency, Radiation-Hard, Lightweight IMM Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA exploration missions require high specific power (>500 W/kg) solar arrays. To increase cell efficiency while reducing weight and maintaining...

  11. High Efficiency Semi-Fuel Cell Incorporating an Ion Exchange Membrane

    National Research Council Canada - National Science Library

    Medeiros, Maria G; Dow, Eric G; Bessette, Russell R; Yan, Susan G; Dischert, Dwayne W

    2004-01-01

    It is a general purpose and object of the present invention to eliminate the parasitic direct reaction of the catholyte with the metal anode in a semi-fuel cell, thereby improving the overall energy...

  12. Light-Weight, Flexible, High Efficiency Vacuum Photo-Thermo-Voltaic Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional solar cells are limited in efficiency, require heavy weight for high power applications, and tend to degrade rapidly in the harsh radiation environment...

  13. High Efficiency Quantum Dot III-V Thermophotovoltaic Cell for Space Power, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Quantum dots are nanoscale materials that have already improved the performance of optical sensors, lasers, light emitting diodes and solar cells. The unique...

  14. High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ching-Mei; Cui, Yi [Department of Materials Science and Engineering, Durand Building, 496 Lomita Mall, Stanford University, Stanford, CA 94305-4034 (United States); Battaglia, Corsin; Pahud, Celine; Haug, Franz-Josef; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue Breguet 2, 2000 Neuchatel (Switzerland); Ruan, Zhichao; Fan, Shanhui [Department of Electrical Engineering, Stanford University (United States)

    2012-06-15

    An amorphous silicon solar cell on a periodic nanocone back reflector with a high 9.7% initial conversion efficiency is presented. The optimized back-reflector morphology provides powerful light trapping and enables excellent electrical cell performance. Up-scaling to industrial production of large-area modules should be possible using nanoimprint lithography. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. A novel photoanode with three-dimensionally, hierarchically ordered nanobushes for highly efficient photoelectrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Karuturi, Siva Krishna; Liu, Lijun; Su, Liap Tat; Tok, Alfred Iing Yoong [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Luo, Jingshan; Cheng, Chuanwei; Fan, Hong Jin [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University (Singapore)

    2012-08-08

    A 3D hierarchically ordered nanobush structure is fabricated for use as a photoanode in photoelectrochemical cells. The photoanode structure has several favorable intrinsic characteristics, including high interface area, direct electron transport pathways, and engineered light scattering centers. Sensitization with CdS quantum dots is demonstrated, and this nanobush photoanode is expected to be advantageous also in solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ying Ao

    Full Text Available Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM, and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications.

  17. Simulation of a high-efficiency silicon-based heterojunction solar cell

    Science.gov (United States)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-04-01

    The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  18. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye; Dohrmann, Yeshi; List, Frederick A.; Green, Johney B.; Babu, Sudarsanam S.; Zhang, Feng-Yuan

    2018-04-01

    Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2 A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.

  19. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Inagaki, Toru; Nishiwaki, Futoshi; Kanou, Jirou; Yamasaki, Satoru; Hosoi, Kei; Miyazawa, Takashi; Yamada, Masaharu; Komada, Norikazu

    2006-01-01

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 o C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O 3-δ , Ni-(CeO 2 ) 1-x (SmO 1.5 ) x cermet anode, and Sm(Sr)CoO 3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 o C was obtained using high temperature off-gas from SOFC

  20. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan)]. E-mail: inagaki@rdd.kepco.co.jp; Nishiwaki, Futoshi [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Kanou, Jirou [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Yamasaki, Satoru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Miyazawa, Takashi [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Yamada, Masaharu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Komada, Norikazu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2006-02-09

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 {sup o}C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O{sub 3-{delta}}, Ni-(CeO{sub 2}){sub 1-x}(SmO{sub 1.5}) {sub x} cermet anode, and Sm(Sr)CoO{sub 3-{delta}} cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 {sup o}C was obtained using high temperature off-gas from SOFC.

  1. Integrated high-efficiency Pt/carbon nanotube arrays for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weimin; Minett, Andrew I.; Zhao, Jie; Razal, Joselito M.; Wallace, Gordon G.; Romeo, Tony; Chen, Jun [Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, NSW 2522 (Australia); Gao, Mei [Division of Materials Science and Engineering, CSIRO, Bayview Ave, Clayton, VIC 3168 (Australia)

    2011-07-15

    A facile strategy to deposit Pt nanoparticles with various metal-loading densities on vertically aligned carbon nanotube (ACNT) arrays as electrocatalysts for proton exchange membrane (PEM) fuel cells is described. The deposition is achieved by electrostatic adsorption of the Pt precursor on the positively charged polyelectrolyte functionalized ACNT arrays and subsequent reduction by L-ascorbic acid. The application of the aligned electrocatalysts in fuel cells is realized by transferring from a quartz substrate to nafion membrane using a hot-press procedure to fabricate the membrane electrode assembly (MEA). It is shown that the MEA with vertically aligned structured electrocatalysts provides better Pt utilization than that with Pt on conventional carbon nanotubes or carbon black, resulting in higher fuel cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. High efficiency thin film solar cells grown by molecular beam epitaxy (HEFTY)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Barnham, K.W.J.; Ballard, I.M.; Zhang, J. [Imperial College, London (United Kingdom)

    2006-05-04

    The project sought to show the UK as a world leader in the field of thin film crystalline solar cells. A premise was that the cell design be suitable for large-scale manufacturing and provide a basis for industrial exploitation. The study demonstrated (1) that silicon films grown at temperatures suitable for deposition on glass by Gas Phase Molecular Beam Epitaxy gives better PV cells than does Ultra Low Pressure Chemical Vapor Deposition; (2) a conversion energy of 15 per cent was achieved - the project target was 18 per cent and (3) one of the highest reported conversion efficiencies for a 15 micrometre silicon film was achieved. The study was carried out by BP Solar Limited under contract to the DTI.

  3. A method for high efficiency YAC lipofection into murine embryonic stem cells.

    Science.gov (United States)

    Lee, J T; Jaenisch, R

    1996-01-01

    We describe a modified protocol for introducing yeast artificial chromosomes (YACs) into murine embryonic stem (ES) cells by lipofection. With a decreased DNA:cell ratio, increased concentration of condensing agents and altered culture conditions, this protocol reduces the requirement for YAC DNA to a few micrograms, improves the recovery of neomycin-resistant ES colonies and increases the yield of clones containing both flanking vector markers and insert. These modifications enable generation of sufficient 'intact' transgenic clones for biological analysis with a single experiment. PMID:9016681

  4. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Koo, John, E-mail: john-koo@amat.com; Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James [Applied Materials, Inc., Varian Semiconductor Equipment Business Unit, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  5. Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia

    2014-06-25

    In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.

  6. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells

    International Nuclear Information System (INIS)

    Shalan, A.E.; Rashad, M.M.; Yu, Youhai; Lira-Cantú, Mónica; Abdel-Mottaleb, M.S.A.

    2013-01-01

    Graphical abstract: (a) A highly ordered, vertically oriented TiO 2 nanorods compared with TiO 2 nanopaticles and (b) Dye sensitized solar cell fabricated using sealing technique. Highlights: ► TiO 2 nanorods particles size of 3–5 nm was synthesized hydrothermally at 100 °C. ► S BET was 78.14 m 2 /g and the band gap energy was 3.2 eV. ► (J sc ) and (V oc ) of the DSSC were in the range 10.84–13.23 mA cm −2 and 0.71–0.78 V. ► Conversion efficiency of DSSCs was 7.2%. ► IPCE analyses of the DSSC showed two peaks, at ∼350 and 520 nm. -- Abstract: A low temperature hydrothermal process have been developed to synthesize titania nanorods (NRs) and nanoparticles (NPs) with controlled size for dye sensitized solar cells (DSSCs). Effect of calcination temperature on the performance of TiO 2 nanoparticles for solar cells was investigated and discussed. The crystallite size and the relative crystallinity of the anatase phase were increased with increasing the calcination temperature. The structures and morphologies of both (TiO 2 nanorods and nanoparticles) were characterized using XRD, SEM, TEM/HRTEM, UV–vis Spectroscopy, FTIR and BET specific surface area (S BET ) as well as pore-size distribution by BJH. The size of the titania nanorods was 6.7 nm width and 22 nm length while it was 13 nm for nanoparticles. Efficiency of dye-sensitized solar cells (DSSCs) fabricated with oriented TiO 2 nanorods was reported to be more superior compared to DSSC based on mesoporous TiO 2 nanoparticles due to their high surface area, hierarchically mesoporous structures, low charge recombination and fast electron-transfer rate. With increasing calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency (η) decreased. The efficiency of the assembly solar cells was decreased due to the agglomeration of the particles and difficulty of electron movement. The power efficiency was enhanced from 1.7% for TiO 2 nanoparticles cells at

  7. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  8. A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells

    NARCIS (Netherlands)

    Hall, R.D.; Riksen-Bruinsma, T.; Weyens, G.; Rosquin, I.J.; Denys, R.N.; Evans, I.J.; Lathouwers, J.E.; LefObvre, M.P.; Dunwell, J.M.; Tunen, van A.; Krens, F.A.

    1996-01-01

    An optimized protocol has been developed for the efficient and rapid genetic modification of sugar beet (Beta vulgaris L). A polyethylene glycol- mediated DNA transformation technique could be applied to protoplast populations enriched specifically for a single totipotent cell type derived from

  9. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.

    2017-02-04

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  10. A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells

    KAUST Repository

    Allen, Thomas G.; Bullock, James; Jeangros, Quentin; Samundsett, Christian; Wan, Yimao; Cui, Jie; Hessler-Wyser, Aï cha; De Wolf, Stefaan; Javey, Ali; Cuevas, Andres

    2017-01-01

    Recent advances in the efficiency of crystalline silicon (c-Si) solar cells have come through the implementation of passivated contacts that simultaneously reduce recombination and resistive losses within the contact structure. In this contribution, low resistivity passivated contacts are demonstrated based on reduced titania (TiOx) contacted with the low work function metal, calcium (Ca). By using Ca as the overlying metal in the contact structure we are able to achieve a reduction in the contact resistivity of TiOx passivated contacts of up to two orders of magnitude compared to previously reported data on Al/TiOx contacts, allowing for the application of the Ca/TiOx contact to n-type c-Si solar cells with partial rear contacts. Implementing this contact structure on the cell level results in a power conversion efficiency of 21.8% where the Ca/TiOx contact comprises only ≈6% of the rear surface of the solar cell, an increase of 1.5% absolute compared to a similar device fabricated without the TiOx interlayer.

  11. Highly Efficient Perovskite Solar Cells Using Non-Toxic Industry Compatible Solvent System

    NARCIS (Netherlands)

    Wang, J.; Giacomo, F. Di; Brüls, J.; Gorter, H.; Katsouras, I.; Groen, P.; Janssen, R.A.J.; Andriessen, R.; Galagan, Y.

    2017-01-01

    Perovskite solar cells attract a lot attention as alternative energy sources for the future energy market. With the remarkable lab-scale achievements, the investigations into a high-throughput large-scale production of perovskite devices are now on the agenda. The first step towards mass

  12. Mesostructured Fullerene Electrodes for Highly Efficient n–i–p Perovskite Solar Cells

    KAUST Repository

    Zhong, Yufei

    2016-10-21

    Electron-transporting layers in today\\'s stateof-the-art n-i-p organohalide perovskite solar cells are almost exclusively made of metal oxides. Here, we demonstrate a novel mesostructured fullerene-based electron-transporting material (ETM) that is crystalline, hydrophobic, and cross-linked, rendering it solvent-and heat resistant for subsequent perovskite solar cell fabrication The fullerene ETM is shown to enhance the structural and electronic properties of the CH3NH3PbI3 layer grown atop, reducing its Urbach energy from similar to 26 to 21 meV, while also increasing crystallite size and improving texture. The resulting mesostructured n-i-p solar cells achieve reduced recombination, improved device-to-device variation, reduced hysteresis, and a power conversion efficiency above 15%, surpassing the performance of similar devices prepared using mesoporous TiO2 and well above the performance of planar heterojunction devices on amorphous or crystalline [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM). This work is the first demonstration of a viable, hydrophobic, and high-performance mesostructured electron-accepting contact to work effectively in n-i-p perovskite solar cells.

  13. Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell

    International Nuclear Information System (INIS)

    Dong, Juan; Shi, Jiangjian; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2015-01-01

    The mechanism of charge recombination at the interface of n-type electron transport layer (n-ETL) and perovskite absorber on the carrier properties in the perovskite solar cell is theoretically studied. By solving the one dimensional diffusion equation with different boundary conditions, it reveals that the interface charge recombination in the perovskite solar cell can be suppressed by adjusting the conduction band offset (ΔE C ) at ZnO ETL/perovskite absorber interface, thus leading to improvements in cell performance. Furthermore, Mg doped ZnO nanorods ETL has been designed to control the energy band levels. By optimizing the doping amount of Mg, the conduction band minimum of the Mg doped ZnO ETL has been raised up by 0.29 eV and a positive ΔE C of about 0.1 eV is obtained. The photovoltage of the cell is thus significantly increased due to the relatively low charge recombination

  14. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2016-05-01

    Full Text Available Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  15. High efficiency isolated DC/DC converter inherently optimized for fuel cell applications

    DEFF Research Database (Denmark)

    Petersen, Lars Press; Jensen, Lasse Crone; Larsen, Martin Norgaard

    2013-01-01

    The isolated full-bridge boost converter has been suggested as the best choice for fuel cell applications. Comparisons have been carried out in the literature using both stress factors and experimental verified designs to determine the optimal converter. Never the less, this paper suggests...

  16. Highly efficient Perovskite solar cells using non-toxic industry compatible solvent system

    NARCIS (Netherlands)

    Wang, J.; Di Giacomo, F.; Bruls, J.; Gorter, H.H.; Katsouras, I.; Groen, W.A.; Janssen, R.A.J.; Andriessen, R.; Galagan, Y.

    2017-01-01

    Perovskite solar cells attract a lot attention as alternative energy sources for the future energy market. With the remarkable lab-scale achievements, the investigations into a high-throughput large-scale production of perovskite devices are now on the agenda. The first step towards mass

  17. Highly efficient local delivery of endothelial progenitor cells significantly potentiates angiogenesis and full-thickness wound healing.

    Science.gov (United States)

    Wang, Chenggui; Wang, Qingqing; Gao, Wendong; Zhang, Zengjie; Lou, Yiting; Jin, Haiming; Chen, Xiaofeng; Lei, Bo; Xu, Huazi; Mao, Cong

    2018-03-15

    Wound therapy with a rapid healing performance remains a critical clinical challenge. Cellular delivery is considered to be a promising approach to improve the efficiency of healing, yet problems such as compromised cell viability and functionality arise due to the inefficient delivery. Here, we report the efficient delivery of endothelial progenitor cells (EPCs) with a bioactive nanofibrous scaffold (composed of collagen and polycaprolactone and bioactive glass nanoparticles, CPB) for enhancing wound healing. Under the stimulation of CPB nanofibrous system, the viability and angiogenic ability of EPCs were significantly enhanced through the activation of Hif-1α/VEGF/SDF-1α signaling. In vivo, CPB/EPC constructs significantly enhanced the formation of high-density blood vessels by greatly upregulating the expressions of Hif-1α, VEGF, and SDF-1α. Moreover, owing to the increased local delivery of cells and fast neovascularization within the wound site, cell proliferative activity, granulation tissue formation, and collagen synthesis and deposition were greatly promoted by CPB/EPC constructs resulting in rapid re-epithelialization and regeneration of skin appendages. As a result, the synergistic enhancement of wound healing was observed from CPB/EPC constructs, which suggests the highly efficient delivery of EPCs. CPB/EPC constructs may become highly competitive cell-based therapeutic products for efficient impaired wound healing application. This study may also provide a novel strategy to develop bioactive cell therapy constructs for angiogenesis-related regenerative medicine. This paper reported a highly efficient local delivery of EPCs using bioactive glass-based CPB nanofibrous scaffold for enhancing angiogenesis and wound regeneration. In vitro study showed that CPB can promote the proliferation, migration, and tube formation of EPCs through upregulation of the Hif-1α/VEGF/SDF-1α signaling pathway, indicating that the bioactivity and angiogenic ability of

  18. Dielectric passivation schemes for high efficiency n-type c-si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saynova, D.S.; Romijn, I.G.; Cesar, I.; Lamers, M.W.P.E.; Gutjahr, A. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Dingemans, G. [ASM, Kapeldreef 75, B-3001 Leuven (Belgium); Knoops, H.C.M.; Van de Loo, B.W.H.; Kessels, W.M.M. [Eindhoven University of Technology, Department of Appl. Physics, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Siarheyeva, O.; Granneman, E. [Levitech BV, Versterkerstraat 10, 1322AP Almere (Netherlands); Venema, P.R.; Vlooswijk, A.H.G. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands); Gautero, L.; Borsa, D.M.

    2013-10-15

    We investigate the impact of different dielectric layers and stacks on the passivation properties of boron doped p{sup ++}-emitters and phosphorous doped n{sup +}-BSFs which are relevant for competitive n-type cell conversion efficiencies. The applied passivation schemes are associated with specific properties at c-Si/dielectric interface and functional mechanisms. In this way we aim to gain a deeper understanding of the passivation mechanism of the differently doped fields within the n-type cells and identify options to further improve the efficiency. The deposition technologies in our study comprise industrial PECVD systems and/or ALD both in industrial and lab scale configurations. In case of p{sup ++}-emitters the best results were achieved by combining field effect and chemical passivation using stacks of low temperature wet chemical oxide and thin ALD-AlOx capped with PECVD-SiNx. The corresponding Implied Voc values were of about (673{+-}2) mV and J{sub 0} of (68{+-}2) fA/cm{sup 2}. For the n{sup +}-BSF passivation the passivation scheme based on SiOx with or without additional AlOx film deposited by a lab scale temporal ALD processes and capped with PECVD-SiNx layer yielded a comparable Implied Voc of (673{+-}2) mV, but then corresponding to J{sub 0} value of (80{+-}15) fA/cm{sup 2}. This passivation scheme is mainly based on the chemical passivation and was also suitable for p{sup ++} surface. This means that we have demonstrated that for n-Pasha cells both the emitter and BSF can be passivated with the same type of passivation that should lead to > 20% cell efficiency. This offers the possibility for transfer this passivation scheme to advanced cell architectures, such as IBC.

  19. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

    Science.gov (United States)

    Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y

    2017-09-01

    Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, Lynne M [Technic Inc; Munoz, Krystal [Technic Inc.; Karas, Joseph [Arizona State Univ., Tempe, AZ (United States); Bowden, Stuart [Arizona State Univ., Tempe, AZ (United States); Rand, James A; Gallegos, Anthony [Technic Inc.; Tyson, Tom [Technic Inc.; Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-03-30

    The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of $1 / WDC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipment choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200

  1. High efficient plastic solar cells fabricated with a high-throughput gravure printing method

    Energy Technology Data Exchange (ETDEWEB)

    Kopola, P.; Jin, H.; Tuomikoski, M.; Maaninen, A.; Hast, J. [VTT, Kaitovaeylae 1, FIN-90571 Oulu (Finland); Aernouts, T. [IMEC, Organic PhotoVoltaics, Polymer and Molecular Electronics, Kapeldreef 75, B-3001 Leuven (Belgium); Guillerez, S. [CEA-INES RDI, 50 Avenue Du Lac Leman, 73370 Le Bourget Du Lac (France)

    2010-10-15

    We report on polymer-based solar cells prepared by the high-throughput roll-to-roll gravure printing method. The engravings of the printing plate, along with process parameters like printing speed and ink properties, are studied to optimise the printability of the photoactive as well as the hole transport layer. For the hole transport layer, the focus is on testing different formulations to produce thorough wetting of the indium-tin-oxide (ITO) substrate. The challenge for the photoactive layer is to form a uniform layer with optimal nanomorphology in the poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend. This results in a power conversion efficiency of 2.8% under simulated AM1.5G solar illumination for a solar cell device with gravure-printed hole transport and a photoactive layer. (author)

  2. High-Efficiency High Step-Up DC-DC Converter with Dual Coupled Inductors for Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Shen, Yanfeng; Siwakoti, Yam Prasad

    2018-01-01

    with a common ground connection of the input and output make the proposed topology a proper candidate for a transformer-less grid connected photovoltaic systems. The operating performance, analysis and mathematical derivations of the proposed dc-dc converter have been demonstrated in the paper. Moreover......This paper introduces a non-isolated high step-up dc-dc converter with dual coupled inductors suitable for distributed generation applications. By implementing an input parallel connection, the proposed dc-dc structure inherits shared input current with low ripple, which also requires small...... capacitive filter at its input. Moreover, this topology can reach high voltage gain by using dual coupled inductors in series connection at the output stage. The proposed converter uses active clamp circuits with a shared clamp capacitor for the main switches. In addition to the active clamp circuit...

  3. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    Science.gov (United States)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  4. Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid

    OpenAIRE

    Ixchelt Cuaranta-Monroy; Zoltan Simandi; Zsuzsanna Kolostyak; Quang-Minh Doan-Xuan; Szilard Poliska; Attila Horvath; Gergely Nagy; Zsolt Bacso; Laszlo Nagy

    2014-01-01

    Adipocyte differentiation and function have become the major research targets due to the increasing interest in obesity and related metabolic conditions. Although, late stages of adipogenesis have been extensively studied, the early phases remain poorly understood. Here we present that supplementing ascorbic acid (AsA) to the adipogenic differentiation cocktail enables the robust and efficient differentiation of mouse embryonic stem cells (mESCs) to mature adipocytes. Such ESC-derived adipocy...

  5. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells.

    Science.gov (United States)

    Amber Yousaf, S; Ikram, M; Ali, S

    2018-10-01

    The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. NiS(NPs)-PEDOT-PSS composite counter electrode for a high efficiency dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Maiaugree, Wasan [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Center for Alternative Energy Research and Development, Khon Kaen University, Khon Kaen 40002 (Thailand); Pimparue, Pachara; Jarernboon, Wirat [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Pimanpang, Samuk [Department of Physics, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Amornkitbamrung, Vittaya [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Swatsitang, Ekaphan, E-mail: ekaphan@kku.ac.th [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Center for Alternative Energy Research and Development, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2017-06-15

    Graphical abstract: Figure(a) and (b) represent models depict PEDOT-PSS counter electrodes of DSSC without and with NiS NPs modification, respectively. The active surface area of PEDOT-PSS polymer can be improved by combining with NiS(NPs). The I-V curves in figure (c) show the superior photovoltaic conversion efficiency of 8.18% for NiS(NPs)/PEDOT-PSS DSSC. - Highlights: • Active surface area of PEDOT-PSS CE can be improved by mixing with NiS(NPs). • Electrocatalytic activity of mixed NiS(NPs)/PEDOT-PSS polymer is also improved. • NiS(NPs)/PEDOT-PSS CE shows a very low charge transfer resistance of 0.46 Ω. • In this work, the high photovoltaic conversion efficiency of 8.18% is achieved. - Abstract: Nickel sulfide (NiS) nanoparticles (NPs) (NiS(NPs)) were prepared by the hydrothermal method. X-ray diffraction (XRD) results indicate the hexagonal structure of NiS(NPs). SEM micrographs reveal the agglomeration of irregular hexagonal – shaped NiS(NPs) with estimated particle size in the range of 50–150 nm. Counter electrodes (CEs) of dye-sensitized solar cells (DSSCs) were prepared by coating the composite slurry of different NiS(NPs) loadings and Poly (3, 4-Ethylendioxythiophene) – Poly (Styrene Sulfonate) (PEDOT-PSS) on fluoride-doped tin oxide (FTO) substrates using a doctor blading technique. Cyclic voltammetry (CV) results indicate that the composites of NiS(NPs) and PEDOT-PSS (NiS(NPs)/PEDOT-PSS) films could function as a catalyst for I{sub 3}{sup −} reduction with a maximum cell efficiency of 8.18% for a cell of 0.3 g NiS(NPs) loading.

  7. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wali, Qamar; Fakharuddin, Azhar; Yasin, Amina; Ab Rahim, Mohd Hasbi; Ismail, Jamil; Jose, Rajan, E-mail: rjose@ump.edu.my

    2015-10-15

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m{sup 2}/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm{sup 2}) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS.

  8. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. Development of thin film solar cell manufacturing technologies (Development of technologies to manufacture applied type thin film solar cells with new structure and development of high-efficiency hybrid thin film/sheet solar cells); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (oyogata shin kozo usumaku taiyo denchi no seizo gijutsu kaihatsu (kokoritsu hybrid gata usumaku / sheet taiyo denchi no seizo gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to develop low-cost and high-efficiency hybrid thin film/sheet solar cells, research and development has been performed. This paper summarizes the achievements in fiscal 1999. The research is related to a hybrid construction, in which the upper cells of amorphous silicon thin film are formed on the lower cells bonded with micro-crystalline silicon thin film relative to a poly-crystalline silicon sheet. In the technology to form the upper cells, a pin-construction using amorphous silicon thin film made by using the plasma CVD process was adopted, whereas an open circuit voltage of 1.45V, a short circuit current of 13.6 mA/cm{sup 2}, and a conversion efficiency of 13.5% were obtained. In the technology to form the substrate for the lower cells, formation of flat silicon thin plate that can be peeled off was identified as a result of adopting the construction in which a graphite substrate is provided on a rotating cooling body of 12-prism type. With regard to the technology to bond and form the lower cells, electrical properties of hetero-bonded cells were discussed, and an open circuit voltage of 0.605V and a conversion efficiency of 14.3% were obtained as a result of enhancing the film quality and optimizing the film thickness. (NEDO)

  9. FY 2000 report on the results of the development of technology for commercialization of the photovoltaic power system - Development of production technology of thin film solar cells. Development of production technology of application type new structure thin film solar cells (Development of production technology of high efficiency hybrid thin films/sheet solar cells); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Oyogata shinkozo hakumaku taiyodenchi no seizo gijutsu kaihatsu, (Kokoritsu hybrid gata hakumaku / sheet taiyodenchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of realizing low cost and high efficiency hybrid thin films/sheet solar cells, the R and D were carried out, and the FY 2000 results were reported. As to the formation technology of the upper cell, the following technologies were developed and the results contributory to the heightening of efficiency were obtained: technology for improvement of cell characteristics by gap widening of p layer, technology for optimization of formation conditions of i layer corresponding to the hybrid solar cell, technology for heightening of current by the intermediate ZnO layer just under the upper cell. Relating to the development of formation technology of high quality microcrystal thin films, it was indicated that the microcrystal silicon thin film had the conformity effective also for polycrystal silicon, and at the same time, the conversion efficiency of 12.8% and release voltage of 0.579V were obtained by the cell using the cast polycrystal board. In the thin film/polycrystal sheet hybrid solar cell in which all these technologies were integrated, the conversion efficiency of 12.0% was achieved, and the possibility was verified of achieving the target efficiency of 14% by further improvement of FF. (NEDO)

  10. Artificial Neural Network Based Model of Photovoltaic Cell

    Directory of Open Access Journals (Sweden)

    Messaouda Azzouzi

    2017-03-01

    Full Text Available This work concerns the modeling of a photovoltaic system and the prediction of the sensitivity of electrical parameters (current, power of the six types of photovoltaic cells based on voltage applied between terminals using one of the best known artificial intelligence technique which is the Artificial Neural Networks. The results of the modeling and prediction have been well shown as a function of number of iterations and using different learning algorithms to obtain the best results. 

  11. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, M.; Nathanson, D. [Ztek Corp., Waltham, MA (United States); Bradshaw, D.T. [Tennessee Valley Authority, Chattanooga, TN (United States)] [and others

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  12. Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals

    Science.gov (United States)

    Bhattacharya, Sayak; John, Sajeev

    2018-04-01

    We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.

  13. Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation

    Directory of Open Access Journals (Sweden)

    Plumas Joel

    2009-01-01

    Full Text Available Abstract Background Gene modified dendritic cells (DC are able to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific manner. Among the different DC subsets, plasmacytoid DC (pDC are well known for their ability to recognize and respond to a variety of viruses by secreting high levels of type I interferon. Methods We analyzed here, the transduction efficiency of a pDC cell line, GEN2.2, and of pDC derived from CD34+ progenitors, using lentiviral vectors (LV pseudotyped with different envelope glycoproteins such as the vesicular stomatitis virus envelope (VSVG, the gibbon ape leukaemia virus envelope (GaLV or the feline endogenous virus envelope (RD114. At the same time, we evaluated transgene expression (E-GFP reporter gene under the control of different promoters. Results We found that efficient gene transfer into pDC can be achieved with VSVG-pseudotyped lentiviral vectors (LV under the control of phoshoglycerate kinase (PGK and elongation factor-1 (EF1α promoters (28% to 90% of E-GFP+ cells, respectively in the absence of phenotypic and functional maturation. Surprisingly, promoters (desmin or synthetic C5–12 described as muscle-specific and which drive gene expression in single strand AAV vectors in gene therapy protocols were very highly active in pDC using VSVG-LV. Conclusion Taken together, our results indicate that LV vectors can serve to design pDC-based vaccines in humans, and they are also useful in vitro to evaluate the immunogenicity of the vector preparations, and the specificity and safety of given promoters used in gene therapy protocols.

  14. Highly efficient mesenchymal stem cell proliferation on poly-epsilon-caprolactone nanofibers with embedded magnetic nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Daňková, Jana; Buzgo, Matej; Vejpravová, Jana; Kubíčková, Simona; Sovková, Věra; Vysloužilová, L.; Mantlíková, Alice; Nečas, A.; Amler, Evžen

    2015-01-01

    Roč. 10, č. 2015 (2015), s. 7307-7317 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GA15-15697S; GA MŠk(CZ) LO1508; GA MŠk(CZ) LO1309; GA MŠk(CZ) 7E12057 Grant - others:FP7 MULTIFUN(XE) 262943 Program:FP7 Institutional support: RVO:68378041 ; RVO:68378271 Keywords : magnetic particles * mesenchymal stem cells * nanofibers Subject RIV: FP - Other Medical Disciplines; BM - Solid Matter Physics ; Magnetism (FZU-D)

  15. High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode

    KAUST Repository

    Tétreault, Nicolas

    2011-11-09

    Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO2, or TiO 2 host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated. © 2011 American Chemical Society.

  16. High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode

    KAUST Repository

    Té treault, Nicolas; Arsenault, É ric; Heiniger, Leo-Philipp; Soheilnia, Navid; Brillet, Jé ré mie; Moehl, Thomas; Zakeeruddin, Shaik; Ozin, Geoffrey A.; Grä tzel, Michael

    2011-01-01

    Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO2, or TiO 2 host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated. © 2011 American Chemical Society.

  17. Development of a high-efficiency hydrogen generator for fuel cells for distributed power generation

    Energy Technology Data Exchange (ETDEWEB)

    Duraiswamy, K.; Chellappa, Anand [Intelligent Energy, 2955 Redondo Ave., Long Beach, CA 90806 (United States); Smith, Gregory; Liu, Yi; Li, Mingheng [Department of Chemical and Materials Engineering, California State Polytechnic University, Pomona, CA 91768 (United States)

    2010-09-15

    A collaborative effort between Intelligent Energy and Cal Poly Pomona has developed an adsorption enhanced reformer (AER) for hydrogen generation for use in conjunction with fuel cells in small sizes. The AER operates at a lower temperature (about 500 C) and has a higher hydrogen yield and purity than those in the conventional steam reforming. It employs ceria supported rhodium as the catalyst and potassium-promoted hydrotalcites to remove carbon dioxide from the products. A novel pulsing feed concept is developed for the AER operation to allow a deeper conversion of the feedstock to hydrogen. Continuous production of near fuel-cell grade hydrogen is demonstrated in the AER with four packed beds running alternately. In the best case of methane reforming, the overall conversion to hydrogen is 92% while the carbon dioxide and carbon monoxide concentrations in the production stream are on the ppm level. The ratio of carbon dioxide in the regeneration exhaust to the one in the product stream is on the order of 10{sup 3}. (author)

  18. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  19. Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells

    KAUST Repository

    Eid, Jessica; Liang, Haifan; Gereige, Issam; Lee, Sang; Van Duren, Jeroen K J

    2013-01-01

    We report on a sodium fluoride (NaF) thickness variation study for the H2Se batch furnace selenization of sputtered Cu(In,Ga) films in a wide range of Cu(In,Ga) film compositions to form Cu(In,Ga)Se2 (CIGSe) films and solar cells. Literature review indicates lack of consensus on the mechanisms involved in Na altering CIGSe film properties. In this work, for sputtered and batch-selenized CIGSe, NaF addition results in reduced gallium content and an increase in grain size for the top portion of the CIGSe film, as observed by scanning electron microscopy and secondary ion mass spectrometry. The addition of up to 20nm of NaF resulted in an improvement in all relevant device parameters: open-circuit voltage, short-circuit current, and fill factor. The best results were found for 15nm NaF addition, resulting in solar cells with 16.0% active-area efficiency (without anti-reflective coating) at open-circuit voltage (VOC) of 674mV. © 2013 John Wiley & Sons, Ltd.

  20. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification.

    Science.gov (United States)

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-07-07

    Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.

  1. Combinatorial study of NaF addition in CIGSe films for high efficiency solar cells

    KAUST Repository

    Eid, Jessica

    2013-12-04

    We report on a sodium fluoride (NaF) thickness variation study for the H2Se batch furnace selenization of sputtered Cu(In,Ga) films in a wide range of Cu(In,Ga) film compositions to form Cu(In,Ga)Se2 (CIGSe) films and solar cells. Literature review indicates lack of consensus on the mechanisms involved in Na altering CIGSe film properties. In this work, for sputtered and batch-selenized CIGSe, NaF addition results in reduced gallium content and an increase in grain size for the top portion of the CIGSe film, as observed by scanning electron microscopy and secondary ion mass spectrometry. The addition of up to 20nm of NaF resulted in an improvement in all relevant device parameters: open-circuit voltage, short-circuit current, and fill factor. The best results were found for 15nm NaF addition, resulting in solar cells with 16.0% active-area efficiency (without anti-reflective coating) at open-circuit voltage (VOC) of 674mV. © 2013 John Wiley & Sons, Ltd.

  2. Enhanced Photovoltaic Properties of Gradient Doping Solar Cells

    International Nuclear Information System (INIS)

    Zhang Chun-Lei; Du Hui-Jing; Zhu Jian-Zhuo; Xu Tian-Fu; Fang Xiao-Yong

    2012-01-01

    An optimum design of a-Si:H(n)/a-Si:H(i)/c-Si(p) heterojunction solar cell is realized with 24.27% conversion efficiency by gradient doping of the a-Si:H(n) layer. The photovoltaic properties are simulated by the AFORSHET software. Besides the additional electric field caused by the gradient doping, the enhanced and widen spectral response also improves the solar cell performance compared with the uniform-doping mode. The simulation shows that the gradient doping is efficient to improve the photovoltaic performance of the solar cells. The study is valuable for the solar cell design with excellent performances

  3. High Efficiency Organic Solar Cells: December 16, 2009 - February 2, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Walker, K.; Joslin, S.

    2011-05-01

    Details on the development of novel organic solar cells incorporating Trimetasphere based acceptors are presented including: baseline performance for Lu-PCBEH acceptor blended with P3HT demonstrated at 4.89% PCE exceeding the 4.5% PCE goal; an increase of over 250mV in Voc was demonstrated for Lu-PCBEH blended with low band gap polymers compared to a comparable C60-PCBM device. The actual Voc was certified at 260mV higher for a low band gap polymer device using the Lu-PCBEH acceptor; and the majority of the effort was focused on development of a device with over 7% PCE. While low current and fill factors suppressed overall device performance for the low band gap polymers tested, significant discoveries were made that point the way for future development of these novel acceptor materials.

  4. High Efficiency InP Solar Cells from Low Toxicity Tertiarybutylphosphine

    Science.gov (United States)

    Hoffman, Richard W., Jr.; Fatemi, Navid S.; Wilt, David M.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David A.

    1994-01-01

    Large scale manufacture of phosphide based semiconductor devices by organo-metallic vapor phase epitaxy (OMVPE) typically requires the use of highly toxic phosphine. Advancements in phosphine substitutes have identified tertiarybutylphosphine (TBP) as an excellent precursor for OMVPE of InP. High quality undoped and doped InP films were grown using TBP and trimethylindium. Impurity doped InP films were achieved utilizing diethylzinc and silane for p and n type respectively. 16 percent efficient solar cells under air mass zero, one sun intensity were demonstrated with Voc of 871 mV and fill factor of 82.6 percent. It was shown that TBP could replace phosphine, without adversely affecting device quality, in OMVPE deposition of InP thus significantly reducing toxic gas exposure risk.

  5. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury

    Czech Academy of Sciences Publication Activity Database

    Vaněček, Václav; Zablotskyy, Vitaliy A.; Forostyak, Serhiy; Růžička, Jiří; Herynek, V.; Babič, Michal; Jendelová, Pavla; Kubinová, Šárka; Dejneka, Alexandr; Syková, Eva

    2012-01-01

    Roč. 7, 16 Jul (2012), s. 3719-3730 E-ISSN 1178-2013 R&D Projects: GA ČR(CZ) GAP304/12/1370; GA ČR GAP304/11/0731; GA ČR(CZ) GAP304/11/0189; GA ČR GAP304/11/0653; GA AV ČR IAA500390902 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z10100522; CEZ:AV0Z40500505 Keywords : nanoparticles * mesenchymal stem cells * magnetic targeting Subject RIV: FH - Neurology; BM - Solid Matter Physics ; Magnetism (FZU-D); FH - Neurology (UMCH-V) Impact factor: 3.463, year: 2012

  6. Non-classical nuclear localization signal peptides for high efficiency lipofection of primary neurons and neuronal cell lines.

    Science.gov (United States)

    Ma, H; Zhu, J; Maronski, M; Kotzbauer, P T; Lee, V M-Y; Dichter, M A; Diamond, S L

    2002-01-01

    Gene transfer into CNS is critical for potential therapeutic applications as well as for the study of the genetic basis of neural development and nerve function. Unfortunately, lipid-based gene transfer to CNS cells is extremely inefficient since the nucleus of these post-mitotic cells presents a significant barrier to transfection. We report the development of a simple and highly efficient lipofection method for primary embryonic rat hippocampal neurons (up to 25% transfection) that exploits the M9 sequence of the non-classical nuclear localization signal of heterogeneous nuclear ribonucleoprotein A1 for targeting beta(2)-karyopherin (transportin-1). M9-assistant lipofection resulted in 20-100-fold enhancement of transfection over lipofection alone for embryonic-derived retinal ganglion cells, rat pheochromocytoma (PC12) cells, embryonic rat ventral mesencephalon neurons, as well as the clinically relevant human NT2 cells or retinoic acid-differentiated NT2 neurons. This technique can facilitate the implementation of promoter construct experiments in post-mitotic cells, stable transformant generation, and dominant-negative mutant expression techniques in CNS cells.

  7. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J

    2017-08-22

    Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.

  8. Highly Efficient and Visible Light Responsive Heterojunction Composites as Dual Photoelectrodes for Photocatalytic Fuel Cell

    Directory of Open Access Journals (Sweden)

    Honghui Pan

    2018-01-01

    Full Text Available In the present work, a novel photocatalytic fuel cell (PFC system involving a dual heterojunction photoelectrodes, viz. polyaniline/TiO2 nanotubes (PANI/TiO2 NTs photoanode and CuO/Co3O4 nanorods (CuO/Co3O4 NRs photocathode, has been designed. Compared to TiO2 NTs electrode of PFC, the present heterojunction design not only enhances the visible light absorption but also offers the higher efficiency in degrading Rhodamine B–a model organic pollutant. The study includes an evaluation of the dual performance of the photoelectrodes as well. Under visible-light irradiation of 3 mW cm−2, the cell composed of the photoanode PANI/TiO2 NTs and CuO/Co3O4 NRs photocathode forms an interior bias of +0.24 V within the PFC system. This interior bias facilitated the transfer of electrons from the photoanode to photocathode across the external circuit and combined with the holes generated therein along with a simultaneous power production. In this manner, the separation of electron/hole pair was achieved in the photoelectrodes by releasing the holes and electrons of PANI/TiO2 NTs photoanode and CuO/Co3O4 NRs photocathode, respectively. Using this PFC system, the degradation of Rhodamine B in aqueous media was achieved to an extent of 68.5% within a reaction duration of a four-hour period besides a simultaneous power generation of 85 μA cm−2.

  9. Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jinbiao; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Tu, Yongguang; Huo, Jinghao; Zheng, Min; Lin, Jianming

    2015-08-15

    Highlights: • A transparent Ni{sub 0.85}Se is prepared by a facile solvothermal reaction. • Ni{sub 0.85}Se electrode has better electrocatalytic activity than Pt electrode. • DSSC with Ni{sub 0.85}Se electrode obtains efficiency of 8.88%, higher than DSSC with Pt. • DSSC with Ni{sub 0.85}Se/mirror electrode achieves an efficiency of 10.19%. - Abstract: A transparent nickel selenide (Ni{sub 0.85}Se) is prepared by a facile solvothermal reaction and used as an efficient Pt-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). Field emission scanning electron microscopy observes that the as-prepared Ni{sub 0.85}Se possesses porous structure. Cyclic voltammogram measurement indicates that Ni{sub 0.85}Se electrode has larger current density than Pt electrode. Electrochemical impedance spectroscopy shows that the Ni{sub 0.85}Se electrode has lower charge-transfer resistance than Pt electrode. Under simulated solar light irradiation with intensity of 100 mW cm{sup −2} (AM 1.5), the DSSC based on the Ni{sub 0.85}Se CE achieves a power conversion efficiency (PCE) of 8.88%, which is higher than the solar cell based on Pt CE (8.13%). Based on the transparency of Ni{sub 0.85}Se, the DSSC with Ni{sub 0.85}Se/mirror achieves a PCE of 10.19%.

  10. Recombination mechanisms in highly efficient thin film Zn(S,O)/Cu(In,Ga)S2 based solar cells

    Science.gov (United States)

    Merdes, S.; Sáez-Araoz, R.; Ennaoui, A.; Klaer, J.; Lux-Steiner, M. Ch.; Klenk, R.

    2009-11-01

    Progress in fabricating Cu(In,Ga)S2 based solar cells with Zn(S,O) buffer is presented. An efficiency of 12.9% was achieved. Using spectral response, current-voltage and temperature dependent current-voltage measurements, current transport in this junction was studied and compared to that of a highly efficient CdS/Cu(In,Ga)S2 solar cell with a special focus on recombination mechanisms. Independently of the buffer type and despite the difference in band alignment of the two junctions, interface recombination is found to be the main recombination channel in both cases. This was unexpected since it is generally assumed that a cliff facilitates interface recombination while a spike suppresses it.

  11. Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, Nazim; Choi, Pyoungho; Smith, Franklyn; Bokerman, Gary [Florida Solar Energy Center, University of Central Florida, 1679 Clearlake Road, Cocoa, FL 32922-5703 (United States)

    2010-02-15

    In view of impending depletion of hydrocarbon fuel resources and their negative environmental impact, it is imperative to significantly increase the energy conversion efficiency of hydrocarbon-based power generation systems. The combination of a hydrocarbon decomposition reactor with a direct carbon and hydrogen fuel cells (FC) as a means for a significant increase in chemical-to-electrical energy conversion efficiency is discussed in this paper. The data on development and operation of a thermocatalytic hydrocarbon decomposition reactor and its coupling with a proton exchange membrane FC are presented. The analysis of the integrated power generating system including a hydrocarbon decomposition reactor, direct carbon and hydrogen FC using natural gas and propane as fuels is conducted. It was estimated that overall chemical-to-electrical energy conversion efficiency of the integrated system varied in the range of 49.4-82.5%, depending on the type of fuel and FC used, and CO{sub 2} emission per kW{sub el}h produced is less than half of that from conventional power generation sources. (author)

  12. Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells

    Science.gov (United States)

    Wang, Kejia; Shin, Byungha; Reuter, Kathleen B.; Todorov, Teodor; Mitzi, David B.; Guha, Supratik

    2011-01-01

    We have carried out detailed microstructural studies of phase separation and grain boundary composition in Cu2ZnSnS4 based solar cells. The absorber layer was fabricated by thermal evaporation followed by post high temperature annealing on hot plate. We show that inter-reactions between the bottom molybdenum and the Cu2ZnSnS4, besides triggering the formation of interfacial MoSx, results in the out-diffusion of Cu from the Cu2ZnSnS4 layer. Phase separation of Cu2ZnSnS4 into ZnS and a Cu-Sn-S compound is observed at the molybdenum-Cu2ZnSnS4 interface, perhaps as a result of the compositional out-diffusion. Additionally, grain boundaries within the thermally evaporated absorber layer are found to be either Cu-rich or at the expected bulk composition. Such interfacial compound formation and grain boundary chemistry likely contributes to the lower than expected open circuit voltages observed for the Cu2ZnSnS4 devices.

  13. Cell viability and MRI performance of highly efficient polyol-coated magnetic nanoparticles

    International Nuclear Information System (INIS)

    Arteaga-Cardona, Fernando; Gutiérrez-García, Eric; Hidalgo-Tobón, Silvia; López-Vasquez, Ciro; Brito-Barrera, Yazmín A.; Flores-Tochihuitl, Julia; Angulo-Molina, Aracely; Reyes-Leyva, Julio R.; González-Rodríguez, Roberto; Coffer, Jeffery L.; Pal, Umapada

    2016-01-01

    This work aimed at determining conditions that would allow us to control the size of the NPs and create a system with characteristics apt for biomedical applications. We describe a comprehensive study on the synthesis and physical characterization of two highly sensitive sets of triethylene glycol (TREG) and polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (SPIONs) to be evaluated for use as magnetic resonance (MR) contrast agents. The ferrofluids demonstrated excellent colloidal stability in deionized water at pH 7.0 as indicated by dynamic light scattering (DLS) data. The magnetic relaxivities, r_2, were measured on a 1.5 T clinical MRI instrument. Values in the range from 205 to 257 mM"−"1 s"−"1 were obtained, varying proportionally to the SPIONs’ sizes and coating nature. Further in vitro cell viability tests and in vivo biodistribution analyses of the intravenously administered nanoparticles showed that the prepared systems have good biocompatibility and migrate to several organs, mainly the meninges, spleen, and liver. Based on these results, our findings demonstrated the potential utility of these nanosystems as clinical contrast agents for MR imaging.

  14. Cell viability and MRI performance of highly efficient polyol-coated magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Arteaga-Cardona, Fernando [Universidad de las Américas de Puebla, Departamento de Ciencias Químico-Biológicas (Mexico); Gutiérrez-García, Eric [Instituto Literario, Universidad Autónoma del Estado de México (Mexico); Hidalgo-Tobón, Silvia, E-mail: shid@xanum.uam.mx [Universidad Autónoma Metropolitana, Departamento de Física (Mexico); López-Vasquez, Ciro; Brito-Barrera, Yazmín A. [Universidad de las Américas de Puebla, Departamento de Ciencias Químico-Biológicas (Mexico); Flores-Tochihuitl, Julia [Benemérita Universidad Autónoma de Puebla, Facultad de Estomatología (Mexico); Angulo-Molina, Aracely [Universidad de Sonora, Departamento de Ciencias Químico-Biológicas (Mexico); Reyes-Leyva, Julio R. [Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente (CIBIOR) (Mexico); González-Rodríguez, Roberto; Coffer, Jeffery L. [Texas Christian University, Department of Chemistry (United States); Pal, Umapada [Benemérita Universidad Autónoma de Puebla, Apdo, Instituto de Física (Mexico); and others

    2016-11-15

    This work aimed at determining conditions that would allow us to control the size of the NPs and create a system with characteristics apt for biomedical applications. We describe a comprehensive study on the synthesis and physical characterization of two highly sensitive sets of triethylene glycol (TREG) and polyethylene glycol (PEG)-coated superparamagnetic iron oxide nanoparticles (SPIONs) to be evaluated for use as magnetic resonance (MR) contrast agents. The ferrofluids demonstrated excellent colloidal stability in deionized water at pH 7.0 as indicated by dynamic light scattering (DLS) data. The magnetic relaxivities, r{sub 2}, were measured on a 1.5 T clinical MRI instrument. Values in the range from 205 to 257 mM{sup −1} s{sup −1} were obtained, varying proportionally to the SPIONs’ sizes and coating nature. Further in vitro cell viability tests and in vivo biodistribution analyses of the intravenously administered nanoparticles showed that the prepared systems have good biocompatibility and migrate to several organs, mainly the meninges, spleen, and liver. Based on these results, our findings demonstrated the potential utility of these nanosystems as clinical contrast agents for MR imaging.

  15. A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jia; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Jia, Jinbiao; Ge, Jinhua; Bao, Quanlin; Wang, Chaotao; Fan, Leqing

    2017-04-15

    Highlights: • Ni{sub 0.85}Se was obtained by hydrothermal way and the film was gained by spin-coating. • Ni{sub 0.85}Se film has good conductivity and excellent electrocatalytic activity. • DSSC based on transparent Ni{sub 0.85}Se counter electrode obtains PCE of 8.96%. • The PCE reaches 10.76% when putting a mirror under Ni{sub 0.85}Se counter electrode. - Abstract: Nickel selenide (Ni{sub 0.85}Se) was synthesized by a facile one-step hydrothermal reaction and Ni{sub 0.85}Se film was prepared by spin-coating Ni{sub 0.85}Se ink on FTO and used as counter electrode (CE) in dye-sensitized solar cells (DSSC). The Ni{sub 0.85}Se CEs not only show high transmittance in visible range, but also possess remarkable electrocatalytic activity toward I{sup −}/I{sub 3}{sup −}. The electrocatalytic ability of Ni{sub 0.85}Se films was verified by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. The DSSC using Ni{sub 0.85}Se CE exhibits a power conversion efficiency (PCE) of 8.96%, while the DSSC consisting of sputtered Pt CE only exhibits a PCE of 8.15%. When adding a mirror under Ni{sub 0.85}Se CE, the resultant DSSC exhibits a PCE of 10.76%, which exceeds that of a DSSC based on sputtered Pt CE (8.44%) by 27.49%.

  16. Morphology changes upon scaling a high-efficiency, solution-processed solar cell

    KAUST Repository

    Ro, Hyun Wook

    2016-08-02

    Solution processing via roll-to-roll (R2R) coating promises a low cost, low thermal budget, sustainable revolution for the production of solar cells. Poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′′′-di(2-octyldodecyl)-2,2′;5′,2′′;5′′,2′′′-quaterthiophen-5,5-diyl)], PffBT4T-2OD, has recently been shown to achieve high power conversion efficiency (>10%) paired with multiple acceptors when thick films are spun-coat from hot solutions. We present detailed morphology studies of PffBT4T-2OD based bulk heterojunction films deposited by the volume manufacturing compatible techniques of blade-coating and slot-die coating. Significant aspects of the film morphology, the average crystal domain orientation and the distribution of the characteristic phase separation length scales, are remarkably different when deposited by the scalable techniques vs. spun-coat. Yet, we find that optimized blade-coated devices achieve PCE > 9.5%, nearly the same as spun-coat. These results challenge some widely accepted propositions regarding what is an optimal BHJ morphology and suggest the hypothesis that diversity in the morphology that supports high performance may be a characteristic of manufacturable systems, those that maintain performance when coated thicker than ≈200 nm. In situ measurements reveal the key differences in the solidification routes for spin- and blade-coating leading to the distinct film structures. © 2016 The Royal Society of Chemistry.

  17. High-efficiency near-infrared enabled planar perovskite solar cells by embedding upconversion nanocrystals.

    Science.gov (United States)

    Meng, Fan-Li; Wu, Jiao-Jiao; Zhao, Er-Fei; Zheng, Yan-Zhen; Huang, Mei-Lan; Dai, Li-Ming; Tao, Xia; Chen, Jian-Feng

    2017-11-30

    Integration of the upconversion effect in perovskite solar cells (PSCs) is a facile approach towards extending the spectral absorption from the visible to the near infrared (NIR) range and reducing the non-absorption loss of solar photons. However, the big challenge for practical application of UCNCs in planar PSCs is the poor compatibility between UCNCs and the perovskite precursor. Herein, we have subtly overcome the tough compatibility issue using a ligand-exchange strategy. For the first time, β-NaYF 4 :Yb,Er UCNCs have been embedded in situ into a CH 3 NH 3 PbI 3 layer to fabricate NIR-enabled planar PSCs. The CH 3 NH 3 I-capped UCNCs generated from the ligand-exchange were mixed with the perovskite precursor and served as nucleation sites for the UCNC-mediated heteroepitaxial growth of perovskite; moreover, the in situ embedding of UCNCs into the perovskite layer was realized during a spin-coating process. The resulting UCNC-embedded perovskite layer attained a uniform pinhole-free morphology with enlarged crystal grains and enabled NIR absorption. It also contributed to the energy transfer from the UCNCs to the perovskite and electron transport to the collecting electrode surface. The device fabricated using the UCNC-embedded perovskite film achieved an average power-conversion efficiency of 18.60% (19.70% for the best) under AM 1.5G and 0.37% under 980 nm laser, corresponding to 54% and 740-fold increase as compared to that of its counterpart without UCNCs.

  18. Morphology changes upon scaling a high-efficiency, solution-processed solar cell

    KAUST Repository

    Ro, Hyun Wook; Downing, Jonathan M.; Engmann, Sebastian; Herzing, Andrew A.; DeLongchamp, Dean M.; Richter, Lee J.; Mukherjee, Subhrangsu; Ade, Harald; Abdelsamie, Maged; Jagadamma, Lethy Krishnan; Amassian, Aram; Liu, Yuhang; Yan, He

    2016-01-01

    Solution processing via roll-to-roll (R2R) coating promises a low cost, low thermal budget, sustainable revolution for the production of solar cells. Poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′′′-di(2-octyldodecyl)-2,2′;5′,2′′;5′′,2′′′-quaterthiophen-5,5-diyl)], PffBT4T-2OD, has recently been shown to achieve high power conversion efficiency (>10%) paired with multiple acceptors when thick films are spun-coat from hot solutions. We present detailed morphology studies of PffBT4T-2OD based bulk heterojunction films deposited by the volume manufacturing compatible techniques of blade-coating and slot-die coating. Significant aspects of the film morphology, the average crystal domain orientation and the distribution of the characteristic phase separation length scales, are remarkably different when deposited by the scalable techniques vs. spun-coat. Yet, we find that optimized blade-coated devices achieve PCE > 9.5%, nearly the same as spun-coat. These results challenge some widely accepted propositions regarding what is an optimal BHJ morphology and suggest the hypothesis that diversity in the morphology that supports high performance may be a characteristic of manufacturable systems, those that maintain performance when coated thicker than ≈200 nm. In situ measurements reveal the key differences in the solidification routes for spin- and blade-coating leading to the distinct film structures. © 2016 The Royal Society of Chemistry.

  19. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    Science.gov (United States)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  20. High Mobility, Hole Transport Materials for Highly Efficient PEDOT:PSS Replacement in Inverted Perovskite Solar Cells

    KAUST Repository

    Neophytou, Marios

    2017-04-24

    Perovskite solar cells are one of the most promising photovoltaic technologies, due to their rapid increase in power conversion efficiency (3.8% to 21.1%) in a very short period of time and the relative ease of their fabrication compared to traditional inorganic solar cells. One of the drawbacks of perovskite solar cells is their limited stability in non-inert atmospheres. In the inverted device configuration this lack of stability can be attributed to the inclusion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) as the hole transporting layer. Herein we report the synthesis of two new triarylamine based hole transporting materials, synthesised from readily available starting materials. These new materials show increased power conversion efficiencies, of 13.0% and 12.1%, compared to PEDOT:PSS (10.9%) and exhibit increased stability achieving lifetimes in excess of 500 hours. Both molecules are solution processible at low temperatures and offer potential for low cost, scalable production on flexible substrates for large scale perovskite solar cells.

  1. High Mobility, Hole Transport Materials for Highly Efficient PEDOT:PSS Replacement in Inverted Perovskite Solar Cells

    KAUST Repository

    Neophytou, Marios; Griffiths, Jack; Fraser, James; Kirkus, Mindaugas; Chen, Hu; Nielsen, Christian; McCulloch, Iain

    2017-01-01

    Perovskite solar cells are one of the most promising photovoltaic technologies, due to their rapid increase in power conversion efficiency (3.8% to 21.1%) in a very short period of time and the relative ease of their fabrication compared to traditional inorganic solar cells. One of the drawbacks of perovskite solar cells is their limited stability in non-inert atmospheres. In the inverted device configuration this lack of stability can be attributed to the inclusion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) as the hole transporting layer. Herein we report the synthesis of two new triarylamine based hole transporting materials, synthesised from readily available starting materials. These new materials show increased power conversion efficiencies, of 13.0% and 12.1%, compared to PEDOT:PSS (10.9%) and exhibit increased stability achieving lifetimes in excess of 500 hours. Both molecules are solution processible at low temperatures and offer potential for low cost, scalable production on flexible substrates for large scale perovskite solar cells.

  2. Wide-angle light-trapping electrode for photovoltaic cells.

    Science.gov (United States)

    Omelyanovich, Mikhail M; Simovski, Constantin R

    2017-10-01

    In this Letter, we experimentally show that a submicron layer of a transparent conducting oxide that may serve a top electrode of a photovoltaic cell based on amorphous silicon when properly patterned by notches becomes an efficient light-trapping structure. This is so for amorphous silicon thin-film solar cells with properly chosen thicknesses of the active layers (p-i-n structure with optimal thicknesses of intrinsic and doped layers). The nanopatterned layer of transparent conducting oxide reduces both the light reflectance from the photovoltaic cell and transmittance through the photovoltaic layers for normal incidence and for all incidence angles. We explain the physical mechanism of our light-trapping effect, prove that this mechanism is realized in our structure, and show that the nanopatterning is achievable in a rather easy and affordable way that makes our method of solar cell enhancement attractive for industrial adaptations.

  3. Series interconnected photovoltaic cells and method for making same

    Science.gov (United States)

    Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  4. Laminated photovoltaic modules using back-contact solar cells

    Science.gov (United States)

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  5. 77 FR 25400 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-04-30

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Alignment of... crystalline silicon photovoltaic cells, whether or not assembled into modules (solar cells) from the People's... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Initiation of...

  6. 77 FR 37877 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-06-25

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Preliminary... crystalline silicon photovoltaic cells, whether or not assembled into modules (``solar cells''), from the.... Correction In the Federal Register notice Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled...

  7. Advanced interface modelling of n-Si/HNO3 doped graphene solar cells to identify pathways to high efficiency

    Science.gov (United States)

    Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.

    2018-03-01

    In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.

  8. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  9. High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass

    Science.gov (United States)

    Colegrove, E.; Banai, R.; Blissett, C.; Buurma, C.; Ellsworth, J.; Morley, M.; Barnes, S.; Gilmore, C.; Bergeson, J. D.; Dhere, R.; Scott, M.; Gessert, T.; Sivananthan, Siva

    2012-10-01

    Multiple polycrystalline CdS/CdTe solar cells with efficiencies greater than 15% were produced on buffered, commercially available Pilkington TEC Glass at EPIR Technologies, Inc. (EPIR, Bolingbrook, IL) and verified by the National Renewable Energy Laboratory (NREL). n-CdS and p-CdTe were grown by chemical bath deposition (CBD) and close space sublimation, respectively. Samples with sputter-deposited CdS were also investigated. Initial results indicate that this is a viable dry-process alternative to CBD for production-scale processing. Published results for polycrystalline CdS/CdTe solar cells with high efficiencies are typically based on cells using research-grade transparent conducting oxides (TCOs) requiring high-temperature processing inconducive to low-cost manufacturing. EPIR's results for cells on commercial glass were obtained by implementing a high-resistivity SnO2 buffer layer and by optimizing the CdS window layer thickness. The high-resistivity buffer layer prevents the formation of CdTe-TCO junctions, thereby maintaining a high open-circuit voltage and fill factor, whereas using a thin CdS layer reduces absorption losses and improves the short-circuit current density. EPIR's best device demonstrated an NREL-verified efficiency of 15.3%. The mean efficiency of hundreds of cells produced with a buffer layer between December 2010 and June 2011 is 14.4%. Quantum efficiency results are presented to demonstrate EPIR's progress toward NREL's best-published results.

  10. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins.

    Science.gov (United States)

    Chen, Fanfan; Zhang, Guoqiang; Yu, Ling; Feng, Yanye; Li, Xianghui; Zhang, Zhijun; Wang, Yongting; Sun, Dapeng; Pradhan, Sriharsa

    2016-07-30

    Induced pluripotent mesenchymal stem cells (iPMSCs) are novel candidates for drug screening, regenerative medicine, and cell therapy. However, introduction of transcription factor encoding genes for induced pluripotent stem cell (iPSC) generation which could be used to generate mesenchymal stem cells is accompanied by the risk of insertional mutations in the target cell genome. We demonstrate a novel method using an inactivated viral particle to package and deliver four purified recombinant Yamanaka transcription factors (Sox2, Oct4, Klf4, and c-Myc) resulting in reprogramming of human primary fibroblasts. Whole genome bisulfite sequencing was used to analyze genome-wide CpG methylation of human iPMSCs. Western blot, quantitative PCR, immunofluorescence, and in-vitro differentiation were used to assess the pluripotency of iPMSCs. The resulting reprogrammed fibroblasts show high-level expression of stem cell markers. The human fibroblast-derived iPMSC genome showed gains in DNA methylation in low to medium methylated regions and concurrent loss of methylation in previously hypermethylated regions. Most of the differentially methylated regions are close to transcription start sites and many of these genes are pluripotent pathway associated. We found that DNA methylation of these genes is regulated by the four iPSC transcription factors, which functions as an epigenetic switch during somatic reprogramming as reported previously. These iPMSCs successfully differentiate into three embryonic germ layer cells, both in vitro and in vivo. Following multipotency induction in our study, the delivered transcription factors were degraded, leading to an improved efficiency of subsequent programmed differentiation. Recombinant transcription factor based reprogramming and derivatization of iPMSC offers a novel high-efficiency approach for regenerative medicine from patient-derived cells.

  11. Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification

    Directory of Open Access Journals (Sweden)

    Friederike Knipping

    2017-03-01

    Full Text Available In T cells with transgenic high-avidity T cell receptors (TCRs, endogenous and transferred TCR chains compete for surface expression and may pair inappropriately, potentially causing autoimmunity. To knock out endogenous TCR expression, we assembled 12 transcription activator-like effector nucleases (TALENs and five guide RNAs (gRNAs from the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas9 system. Using TALEN mRNA, TCR knockout was successful in up to 81% of T cells. Additionally, we were able to verify targeted gene addition of a GFP gene by homology-directed repair at the TALEN target site, using a donor suitable for replacement of the reporter transgene with therapeutic TCR chains. Remarkably, analysis of TALEN and CRISPR/Cas9 specificity using integrase-defective lentiviral vector capture revealed only one off-target site for one of the gRNAs and three off-target sites for both of the TALENs, indicating a high level of specificity. Collectively, our work shows highly efficient and specific nucleases for T cell engineering.

  12. Ex vivo electroporation of retinal cells: a novel, high efficiency method for functional studies in primary retinal cultures.

    Science.gov (United States)

    Vergara, M Natalia; Gutierrez, Christian; O'Brien, David R; Canto-Soler, M Valeria

    2013-04-01

    Primary retinal cultures constitute valuable tools not only for basic research on retinal cell development and physiology, but also for the identification of factors or drugs that promote cell survival and differentiation. In order to take full advantage of the benefits of this system it is imperative to develop efficient and reliable techniques for the manipulation of gene expression. However, achieving appropriate transfection efficiencies in these cultures has remained challenging. The purpose of this work was to develop and optimize a technique that would allow the transfection of chick retinal cells with high efficiency and reproducibility for multiple applications. We developed an ex vivo electroporation method applied to dissociated retinal cell cultures that offers a significant improvement over other currently available transfection techniques, increasing efficiency by five-fold. In this method, eyes were enucleated, devoid of RPE, and electroporated with GFP-encoding plasmids using custom-made electrodes. Electroporated retinas were then dissociated into single cells and plated in low density conditions, to be analyzed after 4 days of incubation. Parameters such as voltage and number of electric pulses, as well as plasmid concentration and developmental stage of the animal were optimized for efficiency. The characteristics of the cultures were assessed by morphology and immunocytochemistry, and cell viability was determined by ethidium homodimer staining. Cell imaging and counting was performed using an automated high-throughput system. This procedure resulted in transfection efficiencies in the order of 22-25% of cultured cells, encompassing both photoreceptors and non-photoreceptor neurons, and without affecting normal cell survival and differentiation. Finally, the feasibility of the technique for cell-autonomous studies of gene function in a biologically relevant context was tested by carrying out gain and loss-of-function experiments for the

  13. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    Science.gov (United States)

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  14. Hydrogenated TiO2 Thin Film for Accelerating Electron Transport in Highly Efficient Planar Perovskite Solar Cells.

    Science.gov (United States)

    Yao, Xin; Liang, Junhui; Li, Yuelong; Luo, Jingshan; Shi, Biao; Wei, Changchun; Zhang, Dekun; Li, Baozhang; Ding, Yi; Zhao, Ying; Zhang, Xiaodan

    2017-10-01

    Intensive studies on low-temperature deposited electron transport materials have been performed to improve the efficiency of n-i-p type planar perovskite solar cells to extend their application on plastic and multijunction device architectures. Here, a TiO 2 film with enhanced conductivity and tailored band edge is prepared by magnetron sputtering at room temperature by hydrogen doping (HTO), which accelerates the electron extraction from perovskite photoabsorber and reduces charge transfer resistance, resulting in an improved short circuit current density and fill factor. The HTO film with upward shifted Fermi level guarantees a smaller loss on V OC and facilitates the growth of high-quality absorber with much larger grains and more uniform size, leading to devices with negligible hysteresis. In comparison with the pristine TiO 2 prepared without hydrogen doping, the HTO-based device exhibits a substantial performance enhancement leading to an efficiency of 19.30% and more stabilized photovoltaic performance maintaining 93% of its initial value after 300 min continuous illumination in the glove box. These properties permit the room-temperature magnetron sputtered HTO film as a promising electron transport material for flexible and tandem perovskite solar cell in the future.

  15. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  16. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  17. 77 FR 10478 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-02-22

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement of... determination in the countervailing duty investigation of crystalline silicon photovoltaic cells, whether or not... Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of...

  18. 76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Science.gov (United States)

    2011-12-16

    ...)] Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1... injured by reason of imports from China of crystalline silicon photovoltaic cells and modules, provided... imports of crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October...

  19. 77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Science.gov (United States)

    2012-12-06

    ... Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1\\ developed... imports of crystalline silicon photovoltaic cells and modules from China, provided for in subheadings 8501... silicon photovoltaic cells and modules from China. Chairman Irving A. Williamson and Commissioner Dean A...

  20. 77 FR 14732 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-03-13

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement of... of an antidumping duty investigation of crystalline silicon photovoltaic cells, whether or not... currently due no later than March 27, 2012. \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not...

  1. 77 FR 4764 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-01-31

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Second... preliminary determination of the countervailing duty investigation of crystalline silicon photovoltaic cells... February 13, 2012.\\1\\ \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules...

  2. 76 FR 81914 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2011-12-29

    ... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement of... investigation of crystalline silicon photovoltaic cells, whether or not assembled into modules, from the People..., 2012. \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the...

  3. Routes to Ultrahigh Efficiency Photovoltaic and Photoelectrochemical Devices

    Energy Technology Data Exchange (ETDEWEB)

    Eisler, Carissa; Lloyd, John; Flowers, Cris; Darbe, Sunita; Warmann, Emily; Verlage, Erik; Fountaine, Kate; Hu, Shu; Lewis, Nathan; Atwater, Harry

    2014-10-15

    We discuss ‘full spectrum’ photovoltaic modules that leverage low-cost III-V compound semiconductor cells, efficient optics and unconventional fabrication/assembly methods, and discuss advances in photoelectrochemical water-splitting with high efficiency.

  4. Highly efficient inverted polymer solar cells based on a cross-linkable water-/alcohol-soluble conjugated polymer interlayer.

    Science.gov (United States)

    Zhang, Kai; Zhong, Chengmei; Liu, Shengjian; Mu, Cheng; Li, Zhengke; Yan, He; Huang, Fei; Cao, Yong

    2014-07-09

    A cross-linkable water/alcohol soluble conjugated polymer (WSCP) material poly[9,9-bis(6'-(N,N-diethylamino)propyl)-fluorene-alt-9,9-bis(3-ethyl(oxetane-3-ethyloxy)-hexyl) fluorene] (PFN-OX) was designed. The cross-linkable nature of PFN-OX is good for fabricating inverted polymer solar cells (PSCs) with well-defined interface and investigating the detailed working mechanism of high-efficiency inverted PSCs based on poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b']dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7) and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) blend active layer. The detailed working mechanism of WSCP materials in high-efficiency PSCs were studied and can be summarized into the following three effects: a) PFN-OX tunes cathode work function to enhance open-circuit voltage (Voc); b) PFN-OX dopes PC71BM at interface to facilitate electron extraction; and c) PFN-OX extracts electrons and blocks holes to enhance fill factor (FF). On the basis of this understanding, the hole-blocking function of the PFN-OX interlayer was further improved with addition of a ZnO layer between ITO and PFN-OX, which led to inverted PSCs with a power conversion efficiency of 9.28% and fill factor high up to 74.4%.

  5. Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off

    International Nuclear Information System (INIS)

    Schermer, J.J.; Bauhuis, G.J.; Mulder, P.; Haverkamp, E.J.; Deelen, J. van; Niftrik, A.T.J. van; Larsen, P.K.

    2006-01-01

    Using the epitaxial lift-off (ELO) technique, a III-V device structure can be separated from its GaAs substrate by selective wet etching of a thin release layer. The thin-film structures obtained by the ELO process can be cemented or van der Waals bonded on arbitrary smooth surface carriers for further processing. It is shown that the ELO method, initially able to separate millimetre-sized GaAs layers with a lateral etch rate of about 1 mm/h, has been developed to a process capable to free the entire 2-in. epitaxial structures from their substrates with etch rates up to 30 mm/h. With these characteristics the method has a large potential for the production of high efficiency thin-film solar cells. By choosing the right deposition and ELO strategy, the thin-film III-V cells can be adequately processed on both sides allowing for an entire range of new cell structures. In the present work, the performance of semi-transparent bifacial solar cells, produced by the deposition of metal grid contacts on both sides, was evaluated. Reflection of light at the rear side of the bifacial GaAs solar cells was found to result in an enhanced collection probability of the photon-induced carriers compared to that of regular III-V cells on a GaAs substrate. To enhance this effect, thin-film GaAs cells with gold mirror back contacts were prepared. Even in their present premature stage of development, these single-junction thin-film cells reached a record efficiency of 24.5% which is already very close to the 24.9% efficiency that was obtained with a regular GaAs cell on a GaAs substrate. From this it could be concluded that, as a result of the photon confinement, ELO cells require a significantly thinner base layer than regular GaAs cells while at the same time they have the potential to reach a higher efficiency

  6. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  7. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions.

    Directory of Open Access Journals (Sweden)

    Masakatsu D Yanagimachi

    Full Text Available Monocytic lineage cells (monocytes, macrophages and dendritic cells play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3 × 10(6 ± 0.3 × 10(6 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5-6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery.

  8. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability.

    Directory of Open Access Journals (Sweden)

    Paul W Burridge

    2011-04-01

    Full Text Available The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC, including hiPSC generated from CD34(+ cord blood using non-viral, non-integrating methods.We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34(+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5% oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64-89% of cardiac troponin I(+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.

  9. Solid State Photovoltaic Research Branch

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  10. Multistack integration of three-dimensional hyperbranched anatase titania architectures for high-efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Su, Cheng-Yong; Kuang, Dai-Bin

    2014-04-30

    An unprecedented attempt was conducted on suitably functionalized integration of three-dimensional hyperbranched titania architectures for efficient multistack photoanode, constructed via layer-by-layer assembly of hyperbranched hierarchical tree-like titania nanowires (underlayer), branched hierarchical rambutan-like titania hollow submicrometer-sized spheres (intermediate layer), and hyperbranched hierarchical urchin-like titania micrometer-sized spheres (top layer). Owing to favorable charge-collection, superior light harvesting efficiency and extended electron lifetime, the multilayered TiO2-based devices showed greater J(sc) and V(oc) than those of a conventional TiO2 nanoparticle (TNP), and an overall power conversion efficiency of 11.01% (J(sc) = 18.53 mA cm(-2); V(oc) = 827 mV and FF = 0.72) was attained, which remarkably outperformed that of a TNP-based reference cell (η = 7.62%) with a similar film thickness. Meanwhile, the facile and operable film-fabricating technique (hydrothermal and drop-casting) provides a promising scheme and great simplicity for high performance/cost ratio photovoltaic device processability in a sustainable way.

  11. TiO2 Nanotube Arrays Composite Film as Photoanode for High-Efficiency Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Jinghua Hu

    2014-01-01

    Full Text Available A double-layered photoanode made of hierarchical TiO2 nanotube arrays (TNT-arrays as the overlayer and commercial-grade TiO2 nanoparticles (P25 as the underlayer is designed for dye-sensitized solar cells (DSSCs. Crystallized free-standing TNT-arrays films are prepared by two-step anodization process. For photovoltaic applications, DSSCs based on double-layered photoanodes produce a remarkably enhanced power conversion efficiency (PCE of up to 6.32% compared with the DSSCs solely composed of TNT-arrays (5.18% or nanoparticles (3.65% with a similar thickness (24 μm at a constant irradiation of 100 mW cm−2. This is mainly attributed to the fast charge transport paths and superior light-scattering ability of TNT-arrays overlayer and good electronic contact with F-doped tin oxide (FTO glass provided from P25 nanoparticles as a bonding layer.

  12. Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido

    2018-01-01

    The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.

  13. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming

    2015-09-30

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can be easily controlled with this e-beam induced evaporation method, which enables the usage of different types of substrates. Here, Perovskite solar cells based on CH3NH3PbI3-xClx achieve power conversion efficiencies of 14.6% on glass and 13.5% on flexible plastic substrates. The relationship between the TiO2 layer thickness and the perovskite morphology is studied with scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Our results indicate that pinholes in thin TiO2 layer lead to pinholes in the perovskite layer. By optimizing the TiO2 thickness, perovskite layers with substantially increased surface coverage and reduced pinhole areas are fabricated, increasing overall device performance.

  14. Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost

    Science.gov (United States)

    Huang, Haibin; Tian, Gangyu; Zhou, Lang; Yuan, Jiren; Fahrner, Wolfgang R.; Zhang, Wenbin; Li, Xingbing; Chen, Wenhao; Liu, Renzhong

    2018-03-01

    A novel structure of Ag grid/SiN x /n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid was designed to increase the efficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost. The simulation results show that the new structure obtains higher efficiency compared with the typical bifacial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current (J sc), while retaining the advantages of a high open-circuit voltage, low temperature coefficient, and good weak-light performance. Moreover, real cells composed of the novel structure with dimensions of 75 mm ×75 mm were fabricated by a special fabrication recipe based on industrial processes. Without parameter optimization, the cell efficiency reached 21.1% with the J sc of 41.7 mA/cm2. In addition, the novel structure attained 28.55% potential conversion efficiency under an illumination of AM 1.5 G, 100 mW/cm2. We conclude that the configuration of the Ag grid/SiN x /n+-c-Si/n-c-Si/i-a-Si:H/p+-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost. Project supported by the Jiangxi Provincial Key Research and Development Foundation, China (Grant No. 2016BBH80043), the Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, China (Grant No. NJ20160032), and the National Natural Science Foundation of China (Grant Nos. 61741404, 61464007, and 51561022).

  15. Technological development for super-high efficiency solar cells. Survey on the commercialization on analysis; Chokokoritsu taiyo denchi no gijutsu kaihatsu. Jitsuyoka kaiseki ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on analysis of super-high efficiency solar cells for practical use in fiscal 1994. (1) On the survey on crystalline compound solar cells, it was pointed out that the present study target is III-V compound semiconductor solar cell, and efficiencies of 36-39% are theoretically expected by use of two-junction cells. (2) On structure of super-high efficiency solar cells of 40%, selection of upper and lower cell materials for multi-junction cells, high-efficiency tandem Si solar cells, and the merit and possibility of light collection operation were surveyed, and their issues were discussed. (3) On physical properties of mixed crystalline semiconductors and characteristic evaluation of solar cells, impurities, trap center, minority carrier life, and applicability of supper lattice structure to high-efficiency solar cells were surveyed. (4) On fabrication technology of compound semiconductor solar cells, various problems of and approaches to electrode formation and antireflection film technologies, the meaning and issues of thin film substrate technology and continuous process, trial calculation of costs, safety, and resource problem were surveyed.

  16. Fission product detection by means of photovoltaic cells

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F.; Fontenille, A.; Glasser, F.; Stassi, P.; Tsan Ung Chan

    1988-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested in-beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12 ns (FWHM) has been measured between two cells. (orig.)

  17. Photovoltaics

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the photovoltaics. It presents the principles and the applications, the issues and the current technology, the challenges and the Group Total commitment in the domain. (A.L.B.)

  18. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-01-01

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module’s electrolumin...

  19. Polymer photovoltaic cells sensitive to the circular polarization ofl light

    NARCIS (Netherlands)

    Gilot, J.; Abbel, R.J.; Lakhwani, G.; Meijer, E.W.; Schenning, A.P.H.J.; Meskers, S.C.J.

    2009-01-01

    Chiral conjugated polymer is used to construct a photovoltaic cell whose response depends on the circular polarization of the incoming light. The selectivity for left and right polarized light as a function of the thickness of the polymer layer is accounted for by modeling of the optical properties

  20. Fabrication approaches for plasmon-improved photovoltaic cells

    DEFF Research Database (Denmark)

    Gritti, Claudia; Malureanu, Radu; Kardynal, B.

    During this talk we will present various fabrication approaches to improve the performance of photovoltaic (PV) cells by using metallic nanoparticles in order to generate photocurrent below the bandgap. This effect is possible due to the generation of surface plasmon polaritons (SPPs) in optimized...

  1. Superlattice doped layers for amorphous silicon photovoltaic cells

    Science.gov (United States)

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  2. Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure.

    Science.gov (United States)

    Su, Pengyu; Fu, Wuyou; Yao, Huizhen; Liu, Li; Ding, Dong; Feng, Fei; Feng, Shuang; Xue, Yebin; Liu, Xizhe; Yang, Haibin

    2017-10-01

    In this paper, we fabricated a TiO 2 homogeneous hybrid structure for application in perovskite solar cells (PSCs) under ambient conditions. Under the standard air mass 1.5 global (AM 1.5G) illumination, PSCs based on homogeneous hybrid structure present a maximum power conversion efficiency of 5.39% which is higher than that of pure TiO 2 nanosheets. The enhanced properties can be explained by the better contact of TiO 2 nanosheets/nanoparticles with CH 3 NH 3 PbI 3 and fewer pinholes in electron transport materials. The advent of such unique structure opens up new avenues for the future development of high-efficiency photovoltaic cells.

  3. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    Science.gov (United States)

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  4. A novel in vitro method for detecting undifferentiated human pluripotent stem cells as impurities in cell therapy products using a highly efficient culture system.

    Directory of Open Access Journals (Sweden)

    Keiko Tano

    Full Text Available Innovative applications of cell therapy products (CTPs derived from human pluripotent stem cells (hPSCs in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs or human neurons at the ratio of 0.001%-0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process.

  5. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  6. High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Final Technical Report, 4 March 1998--15 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2003-10-01

    This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Si materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.

  7. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-06-13

    ... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells...

  8. Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs

    Directory of Open Access Journals (Sweden)

    Timothy P. Sheets

    2016-12-01

    Full Text Available The domestic pig is an ideal “dual purpose” animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR and associated nuclease Cas9 (CRISPR/Cas9, it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT and direct injection of CRISPR/Cas ribonucleoprotein complex targeting GRB10 into the reconstituted oocytes to generate GRB10 ablated Ossabaw fetuses. This strategy resulted in highly efficient (100% generation of biallelic modifications in cloned fetuses. By combining SCNT with CRISPR/Cas9 microinjection, genome edited animals can now be produced without the need to manage a founder herd, while simultaneously eliminating the need for laborious in vitro culture and screening. Our approach utilizes standard cloning techniques while simultaneously performing genome editing in the cloned zygotes of a large animal model for agriculture and biomedical applications.

  9. Rubidium distribution at atomic scale in high efficient Cu(In,Ga)Se2 thin-film solar cells

    Science.gov (United States)

    Vilalta-Clemente, Arantxa; Raghuwanshi, Mohit; Duguay, Sébastien; Castro, Celia; Cadel, Emmanuel; Pareige, Philippe; Jackson, Philip; Wuerz, Roland; Hariskos, Dimitrios; Witte, Wolfram

    2018-03-01

    The introduction of a rubidium fluoride post deposition treatment (RbF-PDT) for Cu(In,Ga)Se2 (CIGS) absorber layers has led to a record efficiency up to 22.6% for thin-film solar cell technology. In the present work, high efficiency CIGS samples with RbF-PDT have been investigated by atom probe tomography (APT) to reveal the atomic distribution of all alkali elements present in CIGS layers and compared with non-treated samples. A Scanning Electron Microscopy Dual beam station (Focused Ion Beam-Gas Injection System) as well as Transmission Kikuchi diffraction is used for atom probe sample preparation and localization of the grain boundaries (GBs) in the area of interest. The analysis of the 3D atomic scale APT reconstructions of CIGS samples with RbF-PDT shows that inside grains, Rb is under the detection limit, but the Na concentration is enhanced as compared to the reference sample without Rb. At the GBs, a high concentration of Rb reaching 1.5 at. % was found, and Na and K (diffusing from the glass substrate) are also segregated at GBs but at lower concentrations as compared to Rb. The intentional introduction of Rb leads to significant changes in the chemical composition of CIGS matrix and at GBs, which might contribute to improve device efficiency.

  10. Cell fiber-based three-dimensional culture system for highly efficient expansion of human induced pluripotent stem cells.

    Science.gov (United States)

    Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji

    2017-06-06

    Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.

  11. Byproduct mineral commodities used for the production of photovoltaic cells

    Science.gov (United States)

    Bleiwas, Donald I.

    2010-01-01

    Rising fossil fuel costs, environmental concerns relating to global climate change, and Government policy to signifcantly increase our Nation's energy independence have placed greater emphasis on the generation of electricity from renewable sources, such as the Sun (light and heat), water, and wind, which for all intents and purposes are inexhaustible resources. Although the total amount of electricity generated from the direct conversion of sunlight through photovoltaic cells is relatively small compared with that from other forms of renewable energy, the rate of growth in the sector is signifcant. The total value of energy of photovoltaic cells produced worldwide increased to nearly 7 gigawatts (GW) in 2008 from 45 megawatts (MW) in 1990, a compound annual growth rate of about 30 percent. In the United States, manufacturing of photovoltaic cells has grown exponentially to about 480 MW in 2008, accounting for 6 percent of world production, from less than 10 MW of photovoltaic capacity in 1990 (Benner, 2007; U.S. Department of Energy, Energy Information Administration, 2010), a compound annual growth rate of approxi-mately 23 percent. A production capacity of 1 GW of electricity [or 8,760 gigawatthours1 (GWh)] is equivalent to the annual electricity requirements for roughly 800,000 average households in the United States (U.S. Department of Energy, Energy Information Administration, 2010). This estimate does not include losses of electricity, such as during transmission through power lines.

  12. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    Science.gov (United States)

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  13. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    Science.gov (United States)

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically

  14. Highly efficient and stable cyclometalated ruthenium(II) complexes as sensitizers for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Huang, Jian-Feng; Liu, Jun-Min; Su, Pei-Yang; Chen, Yi-Fan; Shen, Yong; Xiao, Li-Min; Kuang, Dai-Bin; Su, Cheng-Yong

    2015-01-01

    Highlights: • Four novel thiocyanate-free cyclometalated ruthenium sensitizer were conveniently synthesized. • The D-CF 3 -sensitized DSSCs show higher efficiency compared to N719 based cells. • The DSSCs based on D-CF 3 and D-bisCF 3 sensitizers exhibit excellent long-term stability. • The diverse cyclometalated Ru complexes can be developed as high-performance sensitizers for use in DSSC. - Abstract: Four novel thiocyanate-free cyclometallted Ru(II) complexes, D-bisCF 3 , D-CF 3 , D-OMe, and D-DPA, with two 4,4′-dicarboxylic acid-2,2′-bipyridine together with a functionalized phenylpyridine ancillary ligand, have been designed and synthesized. The effect of different substituents (R = bisCF 3 , CF 3 , OMe, and DPA) on the ancillary C^N ligand on the photophysical properties and photovoltaic performance is investigated. Under standard global AM 1.5 solar conditions, the device based on D-CF 3 sensitizer gives a higher conversion efficiency of 8.74% than those based on D-bisCF 3 , D-OMe, and D-DPA, which can be ascribed to its broad range of visible light absorption, appropriate localization of the frontier orbitals, weak hydrogen bonds between -CF 3 and -OH groups at the TiO 2 surface, moderate dye loading on TiO 2 , and high charge collection efficiency. Moreover, the D-bisCF 3 and D-CF 3 based DSSCs exhibit good stability under 100 mW cm −2 light soaking at 60 °C for 400 h

  15. Optical modeling and optimization of multilayer organic photovoltaic cells

    International Nuclear Information System (INIS)

    Filippov, V.V.; Shulitskij, B.G.

    2010-01-01

    We show that the spectral position of the maxima in the exciton generation rate G in a photovoltaic cell, taking into account the spectral energy distribution in the AM1,5G solar spectrum, is determined by the absorption bands of its donor and acceptor materials. It varies slightly as the thicknesses of the layers in the cell change. Interference of light affects only the magnitude of these maxima. For a cell based on a CuPc (copper phthalocyanine)-C 60 (fullerene) heterojunction, the G maxima are located at 640 nm, 720 nm (absorption in CuPc) and close to 495 nm (absorption in C 60 ). The photovoltaic cell can be optimized using the ratio of the magnitudes of these maxima and their variations as layer thicknesses are varied and the exciton diffusion length is taken into account.(authors)

  16. Traceable calibration of photovoltaic reference cells using natural sunlight

    Science.gov (United States)

    Müllejans, H.; Zaaiman, W.; Pavanello, D.; Dunlop, E. D.

    2018-02-01

    At the European Solar Test Installation (ESTI) photovoltaic (PV) reference cells are calibrated traceably to SI units via the World Radiometric Reference (WRR) using natural sunlight. The Direct Sunlight Method (DSM) is described in detail and the latest measurement results and an updated uncertainty budget are reported. These PV reference cells then provide a practical means for measuring the irradiance of natural or simulated sunlight during the calibration of other PV devices.

  17. Photovoltaic enhancement of Si solar cells by assembled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Y.F.Zhang; Y.F.Wang; N.Chen; Y.Y.Wang; Y.Z.Zhang; Z.H.Zhou; L.M.Wei

    2010-01-01

    Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm-2, an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.

  18. Technique for Outdoor Test on Concentrating Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Paola Sansoni

    2015-01-01

    Full Text Available Outdoor experimentation of solar cells is essential to maximize their performance and to assess utilization requirements and limits. More generally tests with direct exposure to the sun are useful to understand the behavior of components and new materials for solar applications in real working conditions. Insolation and ambient factors are uncontrollable but can be monitored to know the environmental situation of the solar exposure experiment. A parallel characterization of the photocells can be performed in laboratory under controllable and reproducible conditions. A methodology to execute solar exposure tests is proposed and practically applied on photovoltaic cells for a solar cogeneration system. The cells are measured with concentrated solar light obtained utilizing a large Fresnel lens mounted on a sun tracker. Outdoor measurements monitor the effects of the exposure of two multijunction photovoltaic cells to focused sunlight. The main result is the continuous acquisition of the V-I (voltage-current curve for the cells in different conditions of solar concentration and temperature of exercise to assess their behavior. The research investigates electrical power extracted, efficiency, temperatures reached, and possible damages of the photovoltaic cell.

  19. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    International Nuclear Information System (INIS)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8"+ CAR-T cells had antigen-specific cytotoxic activity. • CD4"+ CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  20. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku, E-mail: nakagawa@phs.osaka-u.ac.jp; Okada, Naoki, E-mail: okada@phs.osaka-u.ac.jp

    2016-04-22

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  1. Highly Efficient and Stable Organic Solar Cells via Interface Engineering with a Nanostructured ITR-GO/PFN Bilayer Cathode Interlayer

    Directory of Open Access Journals (Sweden)

    Ding Zheng

    2017-08-01

    Full Text Available An innovative bilayer cathode interlayer (CIL with a nanostructure consisting of in situ thermal reduced graphene oxide (ITR-GO and poly[(9,9-bis(3′-(N,N-dimethylamionpropyl-2,7-fluorene-alt-2,7-(9,9-dioctyl fluorene] (PFN has been fabricated for inverted organic solar cells (OSCs. An approach to prepare a CIL of high electronic quality by using ITR-GO as a template to modulate the morphology of the interface between the active layer and electrode and to further reduce the work function of the electrode has also been realized. This bilayer ITR-GO/PFN CIL is processed by a spray-coating method with facile in situ thermal reduction. Meanwhile, the CIL shows a good charge transport efficiency and less charge recombination, which leads to a significant enhancement of the power conversion efficiency from 6.47% to 8.34% for Poly({4,8-bis[(2-ethylhexyloxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexylcarbonyl]thieno[3,4-b]thiophenediyl} (PTB7:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM-based OSCs. In addition, the long-term stability of the OSC is improved by using the ITR-GO/PFN CIL when compared with the pristine device. These results indicate that the bilayer ITR-GO/PFN CIL is a promising way to realize high-efficiency and stable OSCs by using water-soluble conjugated polymer electrolytes such as PFN.

  2. A highly efficient Micro-Power Converter between a Solar Cell and a Rechargable Lithium-ion Battery

    NARCIS (Netherlands)

    Woerd, van der A.C.; Bais, M.A.; Jong, de L.P.; Roermund, van A.H.M.; Varandan, V.K.; Singer, R.A.; Vellekoop, M.J.

    1998-01-01

    This paper describes the design of a low-power photo-voltaic power converter which will be used in a directional hearing aid. It is argued, that the use of a switched-capacitor converter is needed when integration on a chip is demanded. This converter combined with a parallel power converter has an

  3. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Liwen, E-mail: SANG.Liwen@nims.go.jp [International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-PRESTO, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Liao, Meiyong; Koide, Yasuo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sumiya, Masatomo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-ALCA, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  4. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Science.gov (United States)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  5. Standard Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic Device and a Photovoltaic Reference Cell

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a procedure for the determination of a spectral mismatch parameter used in performance testing of photovoltaic devices. 1.2 The spectral mismatch parameter is a measure of the error, introduced in the testing of a photovoltaic device, caused by mismatch between the spectral responses of the photovoltaic device and the photovoltaic reference cell, as well as mismatch between the test light source and the reference spectral irradiance distribution to which the photovoltaic reference cell was calibrated. Examples of reference spectral irradiance distributions are Tables E490 or G173. 1.3 The spectral mismatch parameter can be used to correct photovoltaic performance data for spectral mismatch error. 1.4 This test method is intended for use with linear photovoltaic devices. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, a...

  6. Photovoltaics

    International Nuclear Information System (INIS)

    Prince, M.B.

    1994-01-01

    Photovoltaic energy systems have the long range potential for supplying a significant part of the world's need for electricity Even today, such systems offer many benefits compared to other energy systems such as fossil fuel, nuclear and other renewable systems. These include: stability, reliability, require no water, no moving parts, environmentally benign, moderate efficiency, modular, universally usable, easy maintenance, and low power distribution costs. This paper will present information on present costs of the key system components, realistic cost projections and the results of a comparative study of three renewable approaches for a large system. (author), (tabs. 2)

  7. Graphene-embedded 3D TiO2 inverse opal electrodes for highly efficient dye-sensitized solar cells: morphological characteristics and photocurrent enhancement.

    Science.gov (United States)

    Kim, Hye-Na; Yoo, Haemin; Moon, Jun Hyuk

    2013-05-21

    We demonstrated the preparation of graphene-embedded 3D inverse opal electrodes for use in DSSCs. The graphene was incorporated locally into the top layers of the inverse opal structures and was embedded into the TiO2 matrix via post-treatment of the TiO2 precursors. DSSCs comprising the bare and 1-5 wt% graphene-incorporated TiO2 inverse opal electrodes were compared. We observed that the local arrangement of graphene sheets effectively enhanced electron transport without significantly reducing light harvesting by the dye molecules. A high efficiency of 7.5% was achieved in DSSCs prepared with the 3 wt% graphene-incorporated TiO2 inverse opal electrodes, constituting a 50% increase over the efficiencies of DSSCs prepared without graphene. The increase in efficiency was mainly attributed to an increase in J(SC), as determined by the photovoltaic parameters and the electrochemical impedance spectroscopy analysis.

  8. Particle analysis and differentiation using a photovoltaic cell

    International Nuclear Information System (INIS)

    Fu, Lung-Ming; Shu, Wei-En; Wang, Yao-Nan

    2012-01-01

    A method is proposed for the sizing and counting of fluorescent and non-fluorescent particles of various sizes on a poly-dimethylsiloxane microchip. In the proposed approach, the detection region of the microchip is illuminated by a laser, which is then incident on a power-free photovoltaic cell. As the particles (both fluorescent and non-fluorescent) pass through the detection region, they block the laser beam, causing a reduction in the output voltage of the cell. The voltage signal is interfaced to a PC and is used to determine both the size and the number of the particles. Meanwhile, the fluorescence signal generated by the fluorescent particles within the sample is detected by an avalanche photodetector and is used to differentiate between the fluorescent and non-fluorescent particles in the sample. The effectiveness of the proposed approach is demonstrated using fluorescent-labeled beads with means diameters of 5, 8 and 10 µm, respectively, and unlabeled beads with a mean diameter of 7.2 µm. The experimental results confirm that the forward scattered light signal generated by the photovoltaic cell enables both the size and the number of the particles to be reliably determined. Moreover, it is shown that the number of non-fluorescent particles within the sample can be easily determined by comparing the signals received from the photovoltaic cell and avalanche photodetector, respectively. (paper)

  9. University Crystalline Silicon Photovoltaics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  10. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  11. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells.

    Science.gov (United States)

    Chirilă, Adrian; Reinhard, Patrick; Pianezzi, Fabian; Bloesch, Patrick; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Keller, Debora; Gretener, Christina; Hagendorfer, Harald; Jaeger, Dominik; Erni, Rolf; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2013-12-01

    Thin-film photovoltaic devices based on chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber layers show excellent light-to-power conversion efficiencies exceeding 20%. This high performance level requires a small amount of alkaline metals incorporated into the CIGS layer, naturally provided by soda lime glass substrates used for processing of champion devices. The use of flexible substrates requires distinct incorporation of the alkaline metals, and so far mainly Na was believed to be the most favourable element, whereas other alkaline metals have resulted in significantly inferior device performance. Here we present a new sequential post-deposition treatment of the CIGS layer with sodium and potassium fluoride that enables fabrication of flexible photovoltaic devices with a remarkable conversion efficiency due to modified interface properties and mitigation of optical losses in the CdS buffer layer. The described treatment leads to a significant depletion of Cu and Ga concentrations in the CIGS near-surface region and enables a significant thickness reduction of the CdS buffer layer without the commonly observed losses in photovoltaic parameters. Ion exchange processes, well known in other research areas, are proposed as underlying mechanisms responsible for the changes in chemical composition of the deposited CIGS layer and interface properties of the heterojunction.

  12. Geometric photovoltaics applied to amorphous silicon thin film solar cells

    Science.gov (United States)

    Kirkpatrick, Timothy

    Geometrically generalized analytical expressions for device transport are derived from first principles for a photovoltaic junction. Subsequently, conventional planar and unconventional coaxial and hemispherical photovoltaic architectures are applied to detail the device physics of the junction based on their respective geometry. For the conventional planar cell, the one-dimensional transport equations governing carrier dynamics are recovered. For the unconventional coaxial and hemispherical junction designs, new multi-dimensional transport equations are revealed. Physical effects such as carrier generation and recombination are compared for each cell architecture, providing insight as to how non-planar junctions may potentially enable greater energy conversion efficiencies. Numerical simulations are performed for arrays of vertically aligned, nanostructured coaxial and hemispherical amorphous silicon solar cells and results are compared to those from simulations performed for the standard planar junction. Results indicate that fundamental physical changes in the spatial dependence of the energy band profile across the intrinsic region of an amorphous silicon p-i-n junction manifest as an increase in recombination current for non-planar photovoltaic architectures. Despite an increase in recombination current, however, the coaxial architecture still appears to be able to surpass the efficiency predicted for the planar geometry, due to the geometry of the junction leading to a decoupling of optics and electronics.

  13. Temperature dependence of photovoltaic cells, modules, and systems

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Burdick, J.; Caiyem, Y. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  14. 77 FR 73017 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-12-07

    ... photovoltaic cells, whether or not assembled into modules (solar cells), from the People's Republic of China... published its final determination in the countervailing duty investigation of solar cells from the PRC.\\2... covered by this order is crystalline silicon photovoltaic cells, and modules, laminates, and panels...

  15. Silicon Nitride Antireflection Coatings for Photovoltaic Cells

    Science.gov (United States)

    Johnson, C.; Wydeven, T.; Donohoe, K.

    1984-01-01

    Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.

  16. Constructal Optimization of Top Contact Metallization of a Photovoltaic Solar Cell

    OpenAIRE

    Bhakta, Aditya; Bandyopadhyay, Santanu

    2010-01-01

    A top contact metallization of a photovoltaic solar cell collects the current generated by incident solar radiation. Several power-loss mechanisms are associated with the current flow through the front contact grid. The design of the top metal contact grid is one of the most important areas of efficient photovoltaic solar cell design. In this paper, an approach based on the constructal theory is proposed to design the grid pattern in a photovoltaic solar cell, minimizing total resistive losse...

  17. Stiffness-Independent Highly Efficient On-Chip Extraction of Cell-Laden Hydrogel Microcapsules from Oil Emulsion into Aqueous Solution by Dielectrophoresis.

    Science.gov (United States)

    Huang, Haishui; Sun, Mingrui; Heisler-Taylor, Tyler; Kiourti, Asimina; Volakis, John; Lafyatis, Gregory; He, Xiaoming

    2015-10-28

    A dielectrophoresis (DEP)-based method achieves highly efficient on-chip extraction of cell-laden microcapsules of any stiffness from oil into aqueous solution. The hydrogel microcapsules can be extracted into the aqueous solution by DEP and interfacial tension forces with no trapped oil, while the encapsulated cells are free from electrical damage due to the Faraday cage effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    Science.gov (United States)

    Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel

    2009-01-01

    We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  19. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins.

    Directory of Open Access Journals (Sweden)

    Teruhiko Suzuki

    Full Text Available Microcell-mediated chromosome transfer (MMCT is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell.

  20. Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries

    DEFF Research Database (Denmark)

    Beliatis, Michail

    2018-01-01

    Incorporating plasmonic nanoparticles in organic photovoltaic (OPV) devices can increase the optical thickness of the organic absorber layer while keeping its physical thickness small. However, trade-offs between various structure parameters have caused contradictions regarding the effectiveness...... of plasmonics in the literature, that have somewhat stunted the progressing of a unified theoretical understanding for practical applications. We examine the optical enhancement mechanisms of practical PCDTBT:PC70BM OPV cells incorporating metal nanoparticles. The plasmonic near- and far-field contributions...... show that an already optimized PCDTBT:PC70BM cell can be further optically enhanced by plasmonic effects by at least 20% with the incorporation of Ag nanoparticles....

  1. Production of solar photovoltaic cells on the Moon

    Science.gov (United States)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  2. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  3. A review of photovoltaic cells cooling techniques

    Science.gov (United States)

    Zubeer, Swar A.; Mohammed, H. A.; Ilkan, Mustafa

    2017-11-01

    This paper highlights different cooling techniques to reduce the operating temperature of the PV cells. This review paper focuses on the improvement of the performance of the small domestic use PV systems by keeping the temperature of the cells as low as possible and uniform. Different cooling techniques have been investigated experimentally and numerically the impact of the operating temperature of the cells on the electrical and thermal performance of the PV systems. The advantages and disadvantages of ribbed wall heat sink cooling, array air duct cooling installed beneath the PV panel, water spray cooling technique and back surface water cooling are examined in this paper to identify their effective impact on the PV panel performance. It was identified that the water spray cooling system has a proper impact on the PV panel performance. So the water cooling is one way to enhance the electrical efficiency of the PV panel.

  4. A review of photovoltaic cells cooling techniques

    Directory of Open Access Journals (Sweden)

    Zubeer Swar A.

    2017-01-01

    Full Text Available This paper highlights different cooling techniques to reduce the operating temperature of the PV cells. This review paper focuses on the improvement of the performance of the small domestic use PV systems by keeping the temperature of the cells as low as possible and uniform. Different cooling techniques have been investigated experimentally and numerically the impact of the operating temperature of the cells on the electrical and thermal performance of the PV systems. The advantages and disadvantages of ribbed wall heat sink cooling, array air duct cooling installed beneath the PV panel, water spray cooling technique and back surface water cooling are examined in this paper to identify their effective impact on the PV panel performance. It was identified that the water spray cooling system has a proper impact on the PV panel performance. So the water cooling is one way to enhance the electrical efficiency of the PV panel.

  5. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Graetzel, M. [Institut de Chimie Physique, Ecole Polytechnique Federal de Lausanne (Switzerland)

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  6. High efficiency, long life terrestrial solar panel

    Science.gov (United States)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  7. Improving the photovoltaic performance of perovskite solar cells with acetate

    Science.gov (United States)

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  8. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada)

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  9. Improving the photovoltaic performance of perovskite solar cells with acetate.

    Science.gov (United States)

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  10. Photovoltaic Cells Improvised With Used Bipolar Junction Transistors

    International Nuclear Information System (INIS)

    Akintayo, J. A

    2002-01-01

    The understanding of the underlying principle that the solar cell consists of a p-n junction is exploited to adapt the basic NPN or PNP Bipolar Junction Transistors (BJT) to serve as solar cells. In this mode the in improvised solar cell have employed just the emitter and the base sections with an intact emitter/base junction as the active PN area. The improvised devices tested screened and sorted are wired up in strings, blocks and modules. The photovoltaic modules realised tested as close replica of solar cells with output voltage following insolation level. Further work need be done on the modules to make them generate usable levels of output voltage and current

  11. Design & Fabrication of a High-Voltage Photovoltaic Cell

    Energy Technology Data Exchange (ETDEWEB)

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  12. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    International Nuclear Information System (INIS)

    Chakraborty, S.; Manik, N. B.

    2014-01-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I–V) characteristic results, we observed a certain transition voltage (V th ) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, V th is 3.9 V whereas for COOH-SWCNT mixed with this dye, V th drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm 2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers. (semiconductor devices)

  13. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    OpenAIRE

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190?mV and ISC of ~9??A, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46?mW confirmed...

  14. Understanding organic photovoltaic cells: Electrode, nanostructure, reliability, and performance

    Science.gov (United States)

    Kim, Myung-Su

    My Ph.D. research has focused on alternative renewable energy using organic semiconductors. During my study, first, I have established reliable characterization methods of organic photovoltaic devices. More specifically, less than 5% variation of power conversion efficiency of fabricated organic blend photovoltaic cells (OBPC) was achieved after optimization. The reproducibility of organic photovoltaic cell performance is one of the essential issues that must be clarified before beginning serious investigations of the application of creative and challenging ideas. Second, the relationships between fill factor (FF) and process variables have been demonstrated with series and shunt resistance, and this provided a chance to understand the electrical device behavior. In the blend layer, series resistance (Rs) and shunt resistance (Rsh) were varied by controlling the morphology of the blend layer, the regioregularity of the conjugated polymer, and the thickness of the blend layer. At the interface between the cathode including PEDOT:PSS and the blend layer, cathode conductivity was controlled by varying the structure of the cathode or adding an additive. Third, we thoroughly examined possible characterization mistakes in OPVC. One significant characterization mistake is observed when the crossbar electrode geometry of OPVC using PEDOT:PSS was fabricated and characterized with illumination which is larger than the actual device area. The hypothesis to explain this overestimation was excess photo-current generated from the cell region outside the overlapped electrode area, where PEDOT:PSS plays as anode and this was clearly supported with investigations. Finally, I incorporated a creative idea, which enhances the exciton dissociation efficiency by increasing the interface area between donor and acceptor to improve the power conversion efficiency of organic photovoltaic cells. To achieve this, nanoimprint lithography was applied for interface area increase. To clarify the

  15. Operating Cell Temperature Determination in Flat-Plate Photovoltaic Modules

    International Nuclear Information System (INIS)

    Chenlo, F.

    2002-01-01

    Two procedures (simplified and complete) to determine me operating cell temperature in photovoltaic modules operating in real conditions assuming isothermal stationary modules are presented in this work. Some examples are included that show me dependence of this temperature on several environmental (sky, ground and ambient temperatures, solar irradiance, wind speed, etc.) and structural (module geometry and size, encapsulating materials, anti reflexive optical coatings, etc.) factors and also on electrical module performance. In a further step temperature profiles for non-isothermal modules are analysed besides transitory effects due to variable irradiance and wind gusts. (Author) 27 refs

  16. Photovoltaic technologies

    International Nuclear Information System (INIS)

    Bagnall, Darren M.; Boreland, Matt

    2008-01-01

    Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel supplies and carbon emissions mean that governments and individuals are increasingly prepared to ignore its current high costs. It will become truly mainstream when its costs are comparable to other energy sources. At the moment, it is around four times too expensive for competitive commercial production. Three generations of photovoltaics have been envisaged that will take solar power into the mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers. These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film device technologies account for around 5-6% of the current market. As second-generation technology reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency will be needed to maintain the cost-reduction trend. Third-generation devices will use new technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies and the implementation of new technologies and third-generation concepts can lead to fully cost-competitive solar energy in 10-15 years. (author)

  17. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  18. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    International Nuclear Information System (INIS)

    Chubb, D.L.; Flood, D.J.; Lowe, R.A.

    1993-08-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source

  19. Advanced tendencies in development of photovoltaic cells for power engineering

    Science.gov (United States)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  20. 76 FR 66748 - Crystalline Silicon Photovoltaic Cells and Modules From China; Institution of Antidumping and...

    Science.gov (United States)

    2011-10-27

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary)] Crystalline Silicon Photovoltaic Cells and Modules From China; Institution of Antidumping and Countervailing... imports from China of crystalline silicon photovoltaic cells and modules, provided for in subheadings 8541...

  1. Improvements in CdTe- and CIGS-based thin-film solar cells and investigation on new materials for photovoltaic applications.

    OpenAIRE

    Rosa, Greta

    2018-01-01

    Currently, thin-film solar cells are one of the most promising technologies for low-cost renewable energy production. CdTe- and CuInGaSe2-based cells, which achieved record efficiencies of 22.1% and 22.6% respectively, are the most attractive among thin-film solar cells. These high efficiencies have had a huge influence in making them highly competitive in the photovoltaic market, with an estimated final cost per module lower than US $ 0.50 per peak-watt. At the Thin Film Laboratory of the...

  2. Design and Photovoltaic Properties of Graphene/Silicon Solar Cell

    Science.gov (United States)

    Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren

    2018-04-01

    Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi p-n junction has advantages, including higher open-circuit voltage (V OC) and less carrier recombination. In this study, Gr/Si quasi p-n junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.

  3. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah

    2016-06-09

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  4. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    KAUST Repository

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Fré dé ric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

  5. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor

    Science.gov (United States)

    Holliday, Sarah; Ashraf, Raja Shahid; Wadsworth, Andrew; Baran, Derya; Yousaf, Syeda Amber; Nielsen, Christian B.; Tan, Ching-Hong; Dimitrov, Stoichko D.; Shang, Zhengrong; Gasparini, Nicola; Alamoudi, Maha; Laquai, Frédéric; Brabec, Christoph J.; Salleo, Alberto; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications. PMID:27279376

  6. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  7. Low light illumination study on commercially available homojunction photovoltaic cells

    International Nuclear Information System (INIS)

    Russo, Johnny; Ray, William; Litz, Marc S.

    2017-01-01

    Highlights: • COTS PV cells are tested under indoor and narrow light spectra. • InGaP is the most efficient under low light conditions (0.5–100 μW_o_p_t/cm"2). • InGaP is selected for isotope battery. • Optimal incident wavelength (614 nm) for InGaP is identified in model. - Abstract: Low illumination (10"−"4 suns) and indoor light energy harvesting is needed to meet the demands of zero net energy (ZNE) building, Internet of Things (IoT), and beta-photovoltaic energy harvesting systems to power remote sensors. Photovoltaic (PV) solar cells under low intensity and narrow (±40 nm) light spectrum conditions are not well characterized nor developed, especially for commercially available devices and scalable systems. PV operating characteristics under 1 sun illumination decrease at lower light intensity and narrow spectrum conditions (efficiency drops from ∼25% at 100 mW_o_p_t/cm"2 to 2% at 1 μW_o_p_t/cm"2). By choosing a PV with a bandgap that matches the light source operating wavelength, the total system efficiency can be improved. By quantifying losses on homojunction photovoltaics (thermalization and leakage current), we have determined the theoretical optimized efficiency for a set of PV material and a selected set of light sources. We measure single-junction solar cells’ parameters under three different light sources (indoor light and narrow spectrum LED sources) with light intensities ranging from 0.5 to 100 μW_o_p_t/cm"2. Measurements show that indium gallium phosphide (InGaP) PV has the highest surface power density and conversion efficiency (29% under ≈1 μW_o_p_t/cm"2 from a 523 nm central peak LED). A beta-photovoltaic experimental study identifies InGaP to be optimized for use with the ZnS:Cu, Al and tritium at STP. The results have guided the selection of PV material for scalable isotope batteries and other low-light energy harvesting systems.

  8. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics

    KAUST Repository

    Beiley, Zach M.

    2013-10-07

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High absorption coefficients of the CuSb(Se,Te2 and CuBi(S,Se2 alloys enable high-efficient 100 nm thin-film photovoltaics

    Directory of Open Access Journals (Sweden)

    Chen Rongzhen

    2017-01-01

    Full Text Available We demonstrate that the band-gap energies Eg of CuSb(Se,Te2 and CuBi(S,Se2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1−xTex2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω for CuSb(Se1−xTex2 is at ħω = Eg + 1 eV as much as 5–7 times larger than α(ω for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 − 150 nm, and the efficiency increases to ∼30% if the Auger effect is diminished.

  10. High absorption coefficients of the CuSb(Se,Te)2 and CuBi(S,Se)2 alloys enable high-efficient 100 nm thin-film photovoltaics

    Science.gov (United States)

    Chen, Rongzhen; Persson, Clas

    2017-06-01

    We demonstrate that the band-gap energies Eg of CuSb(Se,Te)2 and CuBi(S,Se)2 can be optimized for high energy conversion in very thin photovoltaic devices, and that the alloys then exhibit excellent optical properties, especially for tellurium rich CuSb(Se1-xTex)2. This is explained by multi-valley band structure with flat energy dispersions, mainly due to the localized character of the Sb/Bi p-like conduction band states. Still the effective electron mass is reasonable small: mc ≈ 0.25m0 for CuSbTe2. The absorption coefficient α(ω) for CuSb(Se1-xTex)2 is at ħω = Eg + 1 eV as much as 5-7 times larger than α(ω) for traditional thin-film absorber materials. Auger recombination does limit the efficiency if the carrier concentration becomes too high, and this effect needs to be suppressed. However with high absorptivity, the alloys can be utilized for extremely thin inorganic solar cells with the maximum efficiency ηmax ≈ 25% even for film thicknesses d ≈ 50 - 150 nm, and the efficiency increases to ˜30% if the Auger effect is diminished.

  11. The Importance of End Groups for Solution-Processed Small-Molecule Bulk-Heterojunction Photovoltaic Cells.

    Science.gov (United States)

    Duan, Ruomeng; Cui, Yong; Zhao, Yanfei; Li, Chen; Chen, Long; Hou, Jianhui; Wagner, Manfred; Baumgarten, Martin; He, Chang; Müllen, Klaus

    2016-05-10

    End groups in small-molecule photovoltaic materials are important owing to their strong influence on molecular stability, solubility, energy levels, and aggregation behaviors. In this work, a series of donor-acceptor pentads (D2 -A-D1 -A-D2 ) were designed and synthesized, aiming to investigate the effect of the end groups on the materials properties and photovoltaic device performance. These molecules share identical central A-D1 -A triads (with benzodithiophene as D1 and 6-carbonyl-thieno[3,4-b]thiophene as A), but with various D2 end groups composed of alkyl-substituted thiophene (T), thieno[3,2-b]thiophene (TT), and 2,2'-bithiophene (BT). The results indicate a relationship between conjugated segment/alkyl chain length of the end groups and the photovoltaic performance, which contributes to the evolving molecular design principles for high efficiency organic solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A new high-efficiency GaAs solar cell structure using a heterostructure back-surface field

    Science.gov (United States)

    Gale, R. P.; Fan, J. C. C.; Turner, G. W.; Chapman, R. L.

    1984-01-01

    Shallow-homojunction GaAs solar cells are fabricated with a back-surface field (BSF) produced by a GaAs/Al(0.2)Ga(0.8)As heterostructure. These cells exhibit higher open-circuit voltages and conversion efficiencies than control cells made with a p-GaAs/p(+)-GaAs BSF. Conversion efficiencies of over 22 percent (AM1, total area) have been obtained with this new structure. The use of a higher bandgap material below the active region not only provides an enhanced BSF but will also permit the implementation of two solar-cell designs: a GaAs cell with a back-surface reflector and an AlGaAs cell that can be used as the upper cell in tandem configurations.

  13. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.

    Science.gov (United States)

    Li, Yongfang

    2012-05-15

    Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole

  14. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  15. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor.

    Science.gov (United States)

    Thumann, G; Stöcker, M; Maltusch, C; Salz, A K; Barth, S; Walter, P; Johnen, S

    2010-02-01

    Transplantation of pigment epithelial cells in patients with age-related macular degeneration and Parkinson's disease has the potential to improve functional rehabilitation. Genetic modification of cells before transplantation may allow the delivery of neuroprotective factors to achieve functional improvement. As transplantation of cells modified using viral vectors is complicated by the possible dissemination of viral particles and severe immune reactions, we have explored non-viral methods to insert genetic material in pigment epithelial cells. Using lipofection or nucleofection ARPE-19 cells, freshly isolated and primary retinal and iris pigment epithelial (IPE) cells were transfected with plasmids encoding green fluorescent protein (GFP) and with three plasmids encoding recombinant pigment epithelium-derived factor (PEDF) and GFP. Transfection efficiency was evaluated by fluorescence microscopy and stability of protein expression by immunoblotting. Pigment epithelial cells were successfully transfected with plasmid encoding GFP. Expression of GFP in ARPE-19 was transient, but was observed for up to 1 year in IPE cells. Analysis of pigment epithelial cells transfected with PEDF plasmids revealed that PEDF fusion proteins were successfully expressed and functionally active. In conclusion, efficient transfer of genetic information in pigment epithelial cells can be achieved using non-viral transfection protocols.

  16. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  17. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  18. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  19. Electrical research on solar cells and photovoltaic materials

    Science.gov (United States)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  20. Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA

    OpenAIRE

    Warren, Luigi; Manos, Philip D.; Ahfeldt, Tim; Loh, Yuin-Han; Li, Hu; Lau, Frank; Ebina, Wataru; Mandal, Pankaj; Smith, Zachary D.; Meissner, Alexander; Daley, George Q.; Brack, Andrew S.; Collins, James J.; Cowan, Chad; Schlaeger, Thorsten M.

    2010-01-01

    Clinical application of induced pluripotent stem (iPS) cells is limited by the low efficiency of iPS derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPS cells towards clinically useful cell types are lacking. Here we describe a simple, non-integrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate anti-viral re...

  1. HIGH EFFICIENCY TURBINE

    OpenAIRE

    VARMA, VIJAYA KRUSHNA

    2012-01-01

    Varma designed ultra modern and high efficiency turbines which can use gas, steam or fuels as feed to produce electricity or mechanical work for wide range of usages and applications in industries or at work sites. Varma turbine engines can be used in all types of vehicles. These turbines can also be used in aircraft, ships, battle tanks, dredgers, mining equipment, earth moving machines etc, Salient features of Varma Turbines. 1. Varma turbines are simple in design, easy to manufac...

  2. InGaN High-Temperature Photovoltaic Cells

    Science.gov (United States)

    Starikov, David

    2015-01-01

    This Phase II project developed Indium-Gallium-Nitride (InGaN) photovoltaic cells for high-temperature and high-radiation environments. The project included theoretical and experimental refinement of device structures produced in Phase I as well as modeling and optimization of solar cell device processing. The devices have been tested under concentrated air mass zero (AM0) sunlight, at temperatures from 100 degC to 250 degC, and after exposure to ionizing radiation. The results are expected to further verify that InGaN can be used for high-temperature and high-radiation solar cells. The large commercial solar cell market could benefit from the hybridization of InGaN materials to existing solar cell technology, which would significantly increase cell efficiency without relying on highly toxic compounds. In addition, further development of this technology to even lower bandgap materials for space applications would extend lifetimes of satellite solar cell arrays due to increased radiation hardness. This could be of importance to the Departmentof Defense (DoD) and commercial satellite manufacturers.

  3. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.

    Science.gov (United States)

    Warren, Luigi; Manos, Philip D; Ahfeldt, Tim; Loh, Yuin-Han; Li, Hu; Lau, Frank; Ebina, Wataru; Mandal, Pankaj K; Smith, Zachary D; Meissner, Alexander; Daley, George Q; Brack, Andrew S; Collins, James J; Cowan, Chad; Schlaeger, Thorsten M; Rossi, Derrick J

    2010-11-05

    Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Highly efficient destruction of squamous carcinoma cells of the head and neck by photochemical internalization of Ranpirnase.

    Science.gov (United States)

    Liebers, Nora; Holland-Letz, Tim; Welschof, Mona; Høgset, Anders; Jäger, Dirk; Arndt, Michaela A E; Krauss, Jürgen

    2017-11-01

    Photochemical Internalization is a novel drug delivery technology for cancer treatment based on the principle of Photodynamic Treatment. Using a photosensitizer that locates in endocytic vesicles membranes of tumor cells, Photochemical internalization enables cytosolic release of endocytosed antitumor agents in a site-specific manner. The purpose of the present in-vitro study was to explore whether Photochemical Internalization is able to enhance the efficacy of Ranpirnase, a cytotoxic amphibian ribonuclease, for eradication of squamous cell carcinoma of the head and neck. Cell viability was measured in 8 primary human cell lines of squamous cell carcinoma of the head and neck after treatment with Ranpirnase and Photochemical Internalization. For Photochemical Internalization the photosensitizer disulfonated tetraphenyl porphine was incubated with tumor cells followed by exposure to blue light (435 nm). Our study demonstrates significant enhancement of antitumor activity of Ranpirnase by Photochemical Internalization. Treatment responses were heterogeneous between the primary cancer cell lines. Combining Photochemical Internalization with Ranpirnase resulted in 4.6 to 1,940-fold increased cytotoxicity when compared with the ribonuclease alone (P Internalization in squamous cell carcinoma of the head and neck.

  5. Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%

    Science.gov (United States)

    Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun

    2017-08-01

    We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.

  6. A Feasible and Effective Post-Treatment Method for High-Quality CH3NH3PbI3 Films and High-Efficiency Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxiao Jiang

    2018-01-01

    Full Text Available The morphology control of CH3NH3PbI3 (MAPbI3 thin-film is crucial for the high-efficiency perovskite solar cells, especially for their planar structure devices. Here, a feasible and effective post-treatment method is presented to improve the quality of MAPbI3 films by using methylamine (CH3NH2 vapor. This post-treatment process is studied thoroughly, and the perovskite films with smooth surface, high preferential growth orientation and large crystals are obtained after 10 s treatment in MA atmosphere. It enhances the light absorption, and increases the recombination lifetime. Ultimately, the power conversion efficiency (PCE of 15.3% for the FTO/TiO2/MAPbI3/spiro-OMeTAD/Ag planar architecture solar cells is achieved in combination with this post-treatment method. It represents a 40% improvement in PCE compared to the best control cell. Moreover, the whole post-treatment process is simple and cheap, which only requires some CH3NH2 solution in absolute ethanol. It is beneficial to control the reaction rate by changing the volume of the solution. Therefore, we are convinced that the post-treatment method is a valid and essential approach for the fabrication of high-efficiency perovskite solar cells.

  7. Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Thankappan, Aparna, E-mail: aparna.subhash@gmail.com [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India); Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi (India); Divya, S.; Augustine, Anju K.; Girijavallaban, C.P.; Radhakrishnan, P.; Thomas, Sheenu; Nampoori, V.P.N. [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India)

    2015-05-29

    Performance of dye sensitized solar cells based on betanin natural dye from red beets with various nanostructured photoanodes on transparent conducting glass has been investigated. In four different electrolyte systems cell efficiency of 2.99% and overall photon to current conversion efficiency of 20% were achieved using ZnO nanosheet electrode with iodide based electrolyte in acetonitrile solution. To enhance solar harvesting in organic solar cells, uniform sized metal nanoparticles (gold (Au) of ~ 8 nm) synthesized via microwave irradiation method were incorporated into the device consisting of ZnO. Enhanced power conversion efficiency of 1.71% was achieved with ZnO/Au nanocomposite compared to the 0.868% efficiency of the bare ZnO nanosheet cell with ferrocene based electrolyte. - Highlights: • The influence of electrolytes has been studied. • Cell efficiency of 2.99% was achieved by ZnO. • Enhancement of efficiency with incorporation of Au nano.

  8. ENERGY MANAGEMENT OF PHOTOVOLTAIC SYSTEMS USING FUEL CELLS

    Directory of Open Access Journals (Sweden)

    Cristian MIRON

    2016-11-01

    Full Text Available Renewable energy generators show an accelerated growth both in terms of production wise, as well as in research fields. Focusing only on photovoltaic panels, the generated energy has the disadvantage of being strongly oscillatory in evolution. The classical solution is to create a network between photovoltaic farms spanning on large distances, in order to share the total energy before sending it to the clients. A solution that was recently proposed is going to use hydrogen in order to store the energy surplus. Fuel Cells (FCs represent energy generators whose energy vector is usually hydrogen. These have already started the transition from the laboratory context towards commercialization. Due to their high energy density, as well as their theoretical infinite storage capacity through hydrogen, configurations based on electrolyzers and FCs are seen as high potential storage systems, both for vehicle and for stationary applications. Therefore, a study on such distributed control systems is of high importance. This paper analyses the existing solutions, with emphasis on a particular case where a supervisory system is developed and tested in a specialised simulation software.

  9. CH3 NH3 PbI3 and HC(NH2 )2 PbI3 Powders Synthesized from Low-Grade PbI2 : Single Precursor for High-Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Zhang, Yong; Kim, Seul-Gi; Lee, Do-Kyoung; Park, Nam-Gyu

    2018-05-09

    High-efficiency perovskite solar cells are generally fabricated by using highly pure (>99.99 %) PbI 2 mixed with an organic iodide in polar aprotic solvents. However, the use of such an expensive chemical may impede progress toward large-scale industrial applications. Here, we report on the synthesis of perovskite powders by using inexpensive low-grade (99 %) PbI 2 and on the photovoltaic performance of perovskite solar cells prepared from a powder-based single precursor. Pure APbI 3 [A=methylammonium (MA) or formamidinium (FA)] perovskite powders were synthesized by treating low-grade PbI 2 with MAI or FAI in acetonitrile at ambient temperature. The structural phase purity was confirmed by X-ray diffraction. The solar cell with a MAPbI 3 film prepared from the synthesized perovskite powder demonstrated a power conversion efficiency (PCE) of 17.14 %, which is higher than the PCE of MAPbI 3 films prepared by using both MAI and PbI 2 as precursors (PCE=13.09 % for 99 % pure PbI 2 and PCE=16.39 % for 99.9985 % pure PbI 2 ). The synthesized powder showed better absorption and photoluminescence, which were responsible for the better photovoltaic performance. For the FAPbI 3 powder, a solution with a yellow non-perovskite δ-FAPbI 3 powder synthesized at room temperature was found to lead to a black perovskite film, whereas a solution with the black perovskite α-FAPbI 3 powder synthesized at 150 °C was not transformed into a black perovskite film. The α↔δ transition between the powder and film was assumed to correlate with the difference in the iodoplumbates in the powder-dissolved solution. An average PCE of 17.21 % along with a smaller hysteresis [ΔPCE=PCE reverse -PCE forward )=1.53 %] was demonstrated from the perovskite solar cell prepared by using δ-FAPbI 3 powder; this PCE is higher than the average PCE of 17.05 % with a larger hysteresis (ΔPCE=2.71 %) for a device based on a conventional precursor solution dissolving MAI with high

  10. Broad-spectrum enhanced absorption of graphene-molybdenum disulfide photovoltaic cells in metal-mirror microcavity

    Science.gov (United States)

    Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu

    2018-04-01

    The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.

  11. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays.

    Science.gov (United States)

    Xue, Peng; Wu, Yafeng; Guo, Jinhong; Kang, Yuejun

    2015-04-01

    Circulating tumor cells (CTCs), which are derived from primary tumor site and transported to distant organs, are considered as the major cause of metastasis. So far, various techniques have been applied for CTC isolation and enumeration. However, there exists great demand to improve the sensitivity of CTC capture, and it remains challenging to elute the cells efficiently from device for further biomolecular and cellular analyses. In this study, we fabricate a dual functional chip integrated with herringbone structure and micropost array to achieve CTC capture and elution through EpCAM-based immunoreaction. Hep3B tumor cell line is selected as the model of CTCs for processing using this device. The results demonstrate that the capture limit of Hep3B cells can reach up to 10 cells (per mL of sample volume) with capture efficiency of 80% on average. Moreover, the elution rate of the captured Hep3B cells can reach up to 69.4% on average for cell number ranging from 1 to 100. These results demonstrate that this device exhibits dual functions with considerably high capture rate and elution rate, indicating its promising capability for cancer diagnosis and therapeutics.

  12. Effect of electroless nickel on the series resistance of high-efficiency inkjet printed passivated emitter rear contacted solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lenio, Martha A.T. [REC Technology US, Inc., 1159 Triton Dr., Foster City, CA 94301 (United States); Lennon, A.J.; Ho-Baillie, A.; Wenham, S.R. [ARC Photovoltaics Centre of Excellence, University of NSW, Sydney, NSW 2052 (Australia)

    2010-12-15

    Many existing and emerging solar cell technologies rely on plated metal to form the front surface contacts, and aluminium to form the rear contact. Interactions between the metal plating solutions and the aluminium rear can have a significant impact on cell performance. This paper describes non-uniform nickel deposition on the sintered aluminium rear surface of passivated emitter and rear contacted (PERC) cells patterned using an inkjet printing technique. Rather than being plated homogeneously over the entire rear surface as is observed on an alloyed aluminium rear, the nickel is plated only in the vicinity of the point openings in the rear surface silicon dioxide dielectric layer. Furthermore, this non-uniform nickel deposition was shown to increase the contact resistance of the rear point contacts by an order of magnitude, resulting in higher series resistance values for these fabricated PERC cells. (author)

  13. Numerical dataset for analyzing the performance of a highly efficient ultrathin film CdTe solar cell

    Directory of Open Access Journals (Sweden)

    Rucksana Safa Sultana

    2017-06-01

    Full Text Available The article comprises numerical data of distinct semiconductor materials applied in the sketch of a CdTe absorber based ultrathin film solar cell. Additionally, the contact layer parametric values of the cell have been described also. Therefore, the simulation has been conducted with data related to the hetero-structured (n-ZnO/n-CdS/p-CdTe/p-ZnTe semiconductor device and a J–V characteristics curve was obtained. The operating conditions have also been recorded. Afterward, the solar cell performance parameters such as open circuit voltage (Voc, short circuit current density (Jsc, fill factor (FF, and efficiency (η have been investigated and compared with reference cell.

  14. Highly Efficient Differentiation and Enrichment of Spinal Motor Neurons Derived from Human and Monkey Embryonic Stem Cells

    Science.gov (United States)

    Wada, Tamaki; Honda, Makoto; Minami, Itsunari; Tooi, Norie; Amagai, Yuji; Nakatsuji, Norio; Aiba, Kazuhiro

    2009-01-01

    Background There are no cures or efficacious treatments for severe motor neuron diseases. It is extremely difficult to obtain naïve spinal motor neurons (sMNs) from human tissues for research due to both technical and ethical reasons. Human embryonic stem cells (hESCs) are alternative sources. Several methods for MN differentiation have been reported. However, efficient production of naïve sMNs and culture cost were not taken into consideration in most of the methods. Methods/Principal Findings We aimed to establish protocols for efficient production and enrichment of sMNs derived from pluripotent stem cells. Nestin+ neural stem cell (NSC) clusters were induced by Noggin or a small molecule inhibitor of BMP signaling. After dissociation of NSC clusters, neurospheres were formed in a floating culture containing FGF2. The number of NSCs in neurospheres could be expanded more than 30-fold via several passages. More than 33% of HB9+ sMN progenitor cells were observed after differentiation of dissociated neurospheres by all-trans retinoic acid (ATRA) and a Shh agonist for another week on monolayer culture. HB9+ sMN progenitor cells were enriched by gradient centrifugation up to 80% purity. These HB9+ cells differentiated into electrophysiologically functional cells and formed synapses with myotubes during a few weeks after ATRA/SAG treatment. Conclusions and Significance The series of procedures we established here, namely neural induction, NSC expansion, sMN differentiation and sMN purification, can provide large quantities of naïve sMNs derived from human and monkey pluripotent stem cells. Using small molecule reagents, reduction of culture cost could be achieved. PMID:19701462

  15. Energy efficiency of a photovoltaic cell based thin films CZTS by ...

    African Journals Online (AJOL)

    Energy efficiency of a photovoltaic cell based thin films CZTS by SCAPS. ... use of natural resources, the use of renewable energy including solar photovoltaic ... η for typical structures of ZnO / i- ZnO / CdS / CZTS and ITO / ZnO / CdS / CZTS.

  16. Combinatorial Modulation of Signaling Pathways Reveals Cell-Type-Specific Requirements for Highly Efficient and Synchronous iPSC Reprogramming

    Directory of Open Access Journals (Sweden)

    Simon E. Vidal

    2014-10-01

    Full Text Available The differentiated state of somatic cells provides barriers for the derivation of induced pluripotent stem cells (iPSCs. To address why some cell types reprogram more readily than others, we studied the effect of combined modulation of cellular signaling pathways. Surprisingly, inhibition of transforming growth factor β (TGF-β together with activation of Wnt signaling in the presence of ascorbic acid allows >80% of murine fibroblasts to acquire pluripotency after 1 week of reprogramming factor expression. In contrast, hepatic and blood progenitors predominantly required only TGF-β inhibition or canonical Wnt activation, respectively, to reprogram at efficiencies approaching 100%. Strikingly, blood progenitors reactivated endogenous pluripotency loci in a highly synchronous manner, and we demonstrate that expression of specific chromatin-modifying enzymes and reduced TGF-β/mitogen-activated protein (MAP kinase activity are intrinsic properties associated with the unique reprogramming response of these cells. Our observations define cell-type-specific requirements for the rapid and synchronous reprogramming of somatic cells.

  17. Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides.

    Science.gov (United States)

    Dixon, James E; Osman, Gizem; Morris, Gavin E; Markides, Hareklea; Rotherham, Michael; Bayoussef, Zahia; El Haj, Alicia J; Denning, Chris; Shakesheff, Kevin M

    2016-01-19

    Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application.

  18. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation

    Directory of Open Access Journals (Sweden)

    Pasquale Marrazzo

    2016-01-01

    Full Text Available Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs. The perspective role of dental pulp stem cells (DPSCs in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1% was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H2O2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.

  19. Highly Efficient In Vitro Reparative Behaviour of Dental Pulp Stem Cells Cultured with Standardised Platelet Lysate Supplementation.

    Science.gov (United States)

    Marrazzo, Pasquale; Paduano, Francesco; Palmieri, Francesca; Marrelli, Massimo; Tatullo, Marco

    2016-01-01

    Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H 2 O 2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.

  20. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui

    2015-07-30

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.