WorldWideScience

Sample records for high-efficiency cdte solar

  1. Design Strategies for High-Efficiency CdTe Solar Cells

    Science.gov (United States)

    Song, Tao

    With continuous technology advances over the past years, CdTe solar cells have surged to be a leading contributor in thin-film photovoltaic (PV) field. While empirical material and device optimization has led to considerable progress, further device optimization requires accurate device models that are able to provide an in-depth understanding of CdTe device physics. Consequently, this thesis is intended to develop a comprehensive model system for high-efficiency CdTe devices through applying basic design principles of solar cells with numerical modeling and comparing results with experimental CdTe devices. The CdTe absorber is central to cell performance. Numerical simulation has shown the feasibility of high energy-conversion efficiency, which requires both high carrier density and long minority carrier lifetime. As the minority carrier lifetime increases, the carrier recombination at the back surface becomes a limitation for cell performance with absorber thickness cell performance, since it can induce a large valence-band bending which suppresses the hole injection near the interface for the electron-hole recombination, but too large a spike is detrimental to photocurrent transport. In a heterojunction device with many defects at the emitter/absorber interface (high SIF), a thin and highly-doped emitter can induce strong absorber inversion and hence help maintain good cell performance. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. In terms of specific emitter materials, the calculations suggest that the (Mg,Zn)O alloy with 20% Mg, or a similar type-I heterojunction partner with moderate DeltaE C (e.g., Cd(S,O) or (Cd,Mg)Te with appropriate oxygen or magnesium ratios) should yield higher voltages and would therefore be better candidates for the CdTe-cell emitter. The CdTe/substrate interface is also of great importance, particularly in the growth of epitaxial

  2. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.

    Science.gov (United States)

    Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R; Buecheler, Stephan; Tiwari, Ayodhya N

    2013-01-01

    Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.

  3. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  4. Numerical Analysis of Novel Back Surface Field for High Efficiency Ultrathin CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2013-01-01

    Full Text Available This paper numerically explores the possibility of high efficiency, ultrathin, and stable CdTe cells with different back surface field (BSF using well accepted simulator AMPS-1D (analysis of microelectronics and photonic structures. A modified structure of CdTe based PV cell SnO2/Zn2SnO4/CdS/CdTe/BSF/BC has been proposed over reference structure SnO2/Zn2SnO4/CdS/CdTe/Cu. Both higher bandgap materials like ZnTe and Cu2Te and low bandgap materials like As2Te3 and Sb2Te3 have been used as BSF to reduce minority carrier recombination loss at the back contact in ultra-thin CdTe cells. In this analysis the highest conversion efficiency of CdTe based PV cell without BSF has been found to be around 17% using CdTe absorber thickness of 5 μm. However, the proposed structures with different BSF have shown acceptable efficiencies with an ultra-thin CdTe absorber of only 0.6 μm. The proposed structure with As2Te3 BSF showed the highest conversion efficiency of 20.8% ( V,  mA/cm2, and . Moreover, the proposed structures have shown improved stability in most extents, as it was found that the cells have relatively lower negative temperature coefficient. However, the cell with ZnTe BSF has shown better overall stability than other proposed cells with temperature coefficient (TC of −0.3%/°C.

  5. Thin film CdTe solar cells by close spaced sublimation: Recent results from pilot line

    International Nuclear Information System (INIS)

    Siepchen, B.; Drost, C.; Späth, B.; Krishnakumar, V.; Richter, H.; Harr, M.; Bossert, S.; Grimm, M.; Häfner, K.; Modes, T.; Zywitzki, O.; Morgner, H.

    2013-01-01

    CdTe is an attractive material to produce high efficient and low cost thin film solar cells. The semiconducting layers of this kind of solar cell can be deposited by the Close Spaced Sublimation (CSS) process. The advantages of this technique are high deposition rates and an excellent utilization of the raw material, leading to low production costs and competitive module prices. CTF Solar GmbH is offering equipment and process knowhow for the production of CdTe solar modules. For further improvement of the technology, research is done at a pilot line, which covers all relevant process steps for manufacture of CdTe solar cells. Herein, we present the latest results from the process development and our research activities on single functional layers as well as for complete solar cell devices. Efficiencies above 13% have already been obtained with Cu-free back contacts. An additional focus is set on different transparent conducting oxide materials for the front contact and a Sb 2 Te 3 based back contact. - Highlights: ► Laboratory established on industrial level for CdTe solar cell research ► 13.0% cell efficiency with our standard front contact and Cu-free back contact ► Research on ZnO-based transparent conducting oxide and Sb 2 Te 3 back contacts ► High resolution scanning electron microscopy analysis of ion polished cross section

  6. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

    Directory of Open Access Journals (Sweden)

    M. M. Aliyu

    2012-01-01

    Full Text Available This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears the most favorable candidate, while close spaced sublimation (CSS, electrodeposition (ED, magnetic sputtering (MS, and high vacuum thermal evaporation (HVE have been found to be most common deposition technologies used for CdTe on metal foils. The advantages of these techniques include large grain size (CSS, ease of constituent control (ED, high material incorporation (MS, and low temperature process (MS, HVE, ED. These invert-structured thin film CdTe solar cells, like their superstrate counterparts, suffer from problems of poor ohmic contact at the back electrode. Thus similar strategies are applied to minimize this problem. Despite the challenges faced by flexible structures, efficiencies of up to 13.8% and 7.8% have been achieved in superstrate and substrate cell, respectively. Based on these analyses, new strategies have been proposed for obtaining cheaper, more efficient, and viable flexible CdTe solar cells of the future.

  7. Numerical dataset for analyzing the performance of a highly efficient ultrathin film CdTe solar cell

    Directory of Open Access Journals (Sweden)

    Rucksana Safa Sultana

    2017-06-01

    Full Text Available The article comprises numerical data of distinct semiconductor materials applied in the sketch of a CdTe absorber based ultrathin film solar cell. Additionally, the contact layer parametric values of the cell have been described also. Therefore, the simulation has been conducted with data related to the hetero-structured (n-ZnO/n-CdS/p-CdTe/p-ZnTe semiconductor device and a J–V characteristics curve was obtained. The operating conditions have also been recorded. Afterward, the solar cell performance parameters such as open circuit voltage (Voc, short circuit current density (Jsc, fill factor (FF, and efficiency (η have been investigated and compared with reference cell.

  8. CDTE alloys and their application for increasing solar cell performance

    Science.gov (United States)

    Swanson, Drew E.

    Cadmium Telluride (CdTe) thin film solar is the largest manufactured solar cell technology in the United States and is responsible for one of the lowest costs of utility scale solar electricity at a purchase agreement of $0.0387/kWh. However, this cost could be further reduced by increasing the cell efficiency. To bridge the gap between the high efficiency technology and low cost manufacturing, a research and development tool and process was built and tested. This fully automated single vacuum PV manufacturing tool utilizes multiple inline close space sublimation (CSS) sources with automated substrate control. This maintains the proven scalability of the CSS technology and CSS source design but with the added versatility of independent substrate motion. This combination of a scalable deposition technology with increased cell fabrication flexibility has allowed for high efficiency cells to be manufactured and studied. The record efficiency of CdTe solar cells is lower than fundamental limitations due to a significant deficit in voltage. It has been modeled that there are two potential methods of decreasing this voltage deficiency. The first method is the incorporation of a high band gap film at the back contact to induce a conduction-band barrier that can reduce recombination by reflecting electrons from the back surface. The addition of a Cd1-x MgxTe (CMT) layer at the back of a CdTe solar cell should induce this desired offset and reflect both photoelectrons and forward-current electrons away from the rear surface. Higher collection of photoelectrons will increase the cells current and the reduction of forward current will increase the cells voltage. To have the optimal effect, CdTe must have reasonable carrier lifetimes and be fully depleted. To achieve this experimentally, CdTe layers have been grown sufficiently thin to help produce a fully depleted cell. A variety of measurements including performance curves, transmission electron microscopy, x

  9. Growth and characterization of CdTe absorbers on GaAs by MBE for high concentration PV solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ari, Ozan; Polat, Mustafa; Selamet, Yusuf [Department of Physics, Izmir Institute of Technology, Izmir 35430 (Turkey); Karakaya, Merve [Department of Material Science and Engineering, Izmir Institute of Technology, Izmir 35430 (Turkey)

    2015-11-15

    CdTe based II-VI absorbers are promising candidates for high concentration PV solar cells with an ideal band gap for AM1.5 solar radiation. In this study, we propose single crystal CdTe absorbers grown on GaAs substrates with a molecular beam epitaxy (MBE) which is a clean deposition technology. We show that high quality CdTe absorber layers can be grown with full width half maximum of X-ray diffraction rocking curves (XRD RC) as low as 227 arc-seconds with 0.5% thickness uniformity that a 2 μm layer is capable of absorbing 99% of AM1.5 solar radiation. Bandgap of the CdTe absorber is found as 1.483 eV from spetroscopic ellipsometry (SE) measurements. Also, high absorption coefficient is calculated from the results, which is ∝5 x 10{sup 5}cm{sup -1} in solar radiation spectrum. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer

    International Nuclear Information System (INIS)

    Tian, Yiyao; Zhang, Yijie; Lin, Yizhao; Gao, Kuo; Zhang, Yunpeng; Liu, Kaiyi; Yang, Qianqian; Zhou, Xiao; Qin, Donghuan; Wu, Hongbin; Xia, Yuxin; Hou, Lintao; Lan, Linfeng; Chen, Junwu; Wang, Dan; Yao, Rihui

    2013-01-01

    CdTe nanocrystal (NC)/CdS p–n hetero-junction solar cells with an ITO/ZnO-In/CdS/CdTe/MoO x /Ag-inverted structure were prepared by using a layer-by-layer solution process. The CdS thin films were prepared by chemical bath deposition on top of ITO/ZnO-In and were found to be very compact and pin-hole free in a large area, which insured high quality CdTe NCs thin-film formation upon it. The device performance was strongly related to the CdCl 2 annealing temperature and annealing time. Devices exhibited power conversion efficiency (PCE) of 3.08 % following 400 °C CdCl 2 annealing for 5 min, which was a good efficiency for solution processed CdTe/CdS NC-inverted solar cells. By carefully designing and optimizing the CdCl 2 -annealing conditions (370 °C CdCl 2 annealing for about 15 min), the PCE of such devices showed a 21 % increase, in comparison to 400 °C CdCl 2 -annealing conditions, and reached a better PCE of 3.73 % while keeping a relatively high V OC of 0.49 V. This PCE value, to the best of our knowledge, is the highest PCE reported for solution processed CdTe–CdS NC solar cells. Moreover, the inverted solar cell device was very stable when kept under ambient conditions, less than 4 % degradation was observed in PCE after 40 days storage

  11. Influence of the layer parameters on the performance of the CdTe solar cells

    Science.gov (United States)

    Haddout, Assiya; Raidou, Abderrahim; Fahoume, Mounir

    2018-03-01

    Influence of the layer parameters on the performances of the CdTe solar cells is analyzed by SCAPS-1D. The ZnO: Al film shows a high efficiency than SnO2:F. Moreover, the thinner window layer and lower defect density of CdS films are the factor in the enhancement of the short-circuit current density. As well, to increase the open-circuit voltage, the responsible factors are low defect density of the absorbing layer CdTe and high metal work function. For the low cost of cell production, ultrathin film CdTe cells are used with a back surface field (BSF) between CdTe and back contact, such as PbTe. Further, the simulation results show that the conversion efficiency of 19.28% can be obtained for the cell with 1-μm-thick CdTe, 0.1-μm-thick PbTe and 30-nm-thick CdS.

  12. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  13. Solution-processed efficient CdTe nanocrystal/CBD-CdS hetero-junction solar cells with ZnO interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yiyao; Zhang, Yijie; Lin, Yizhao; Gao, Kuo; Zhang, Yunpeng; Liu, Kaiyi; Yang, Qianqian [South China University of Technology, School of Materials Science and Engineering (China); Zhou, Xiao; Qin, Donghuan, E-mail: qindh@scut.edu.cn; Wu, Hongbin [South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices (China); Xia, Yuxin; Hou, Lintao [Jinan University, College of Science and Engineering (China); Lan, Linfeng; Chen, Junwu; Wang, Dan; Yao, Rihui [South China University of Technology, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices (China)

    2013-11-15

    CdTe nanocrystal (NC)/CdS p–n hetero-junction solar cells with an ITO/ZnO-In/CdS/CdTe/MoO{sub x}/Ag-inverted structure were prepared by using a layer-by-layer solution process. The CdS thin films were prepared by chemical bath deposition on top of ITO/ZnO-In and were found to be very compact and pin-hole free in a large area, which insured high quality CdTe NCs thin-film formation upon it. The device performance was strongly related to the CdCl{sub 2} annealing temperature and annealing time. Devices exhibited power conversion efficiency (PCE) of 3.08 % following 400 °C CdCl{sub 2} annealing for 5 min, which was a good efficiency for solution processed CdTe/CdS NC-inverted solar cells. By carefully designing and optimizing the CdCl{sub 2}-annealing conditions (370 °C CdCl{sub 2} annealing for about 15 min), the PCE of such devices showed a 21 % increase, in comparison to 400 °C CdCl{sub 2}-annealing conditions, and reached a better PCE of 3.73 % while keeping a relatively high V{sub OC} of 0.49 V. This PCE value, to the best of our knowledge, is the highest PCE reported for solution processed CdTe–CdS NC solar cells. Moreover, the inverted solar cell device was very stable when kept under ambient conditions, less than 4 % degradation was observed in PCE after 40 days storage.

  14. A low-cost non-toxic post-growth activation step for CdTe solar cells

    Science.gov (United States)

    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K.

    2014-07-01

    Cadmium telluride, CdTe, is now firmly established as the basis for the market-leading thin-film solar-cell technology. With laboratory efficiencies approaching 20 per cent, the research and development targets for CdTe are to reduce the cost of power generation further to less than half a US dollar per watt (ref. 2) and to minimize the environmental impact. A central part of the manufacturing process involves doping the polycrystalline thin-film CdTe with CdCl2. This acts to form the photovoltaic junction at the CdTe/CdS interface and to passivate the grain boundaries, making it essential in achieving high device efficiencies. However, although such doping has been almost ubiquitous since the development of this processing route over 25 years ago, CdCl2 has two severe disadvantages; it is both expensive (about 30 cents per gram) and a water-soluble source of toxic cadmium ions, presenting a risk to both operators and the environment during manufacture. Here we demonstrate that solar cells prepared using MgCl2, which is non-toxic and costs less than a cent per gram, have efficiencies (around 13%) identical to those of a CdCl2-processed control group. They have similar hole densities in the active layer (9 × 1014 cm-3) and comparable impurity profiles for Cl and O, these elements being important p-type dopants for CdTe thin films. Contrary to expectation, CdCl2-processed and MgCl2-processed solar cells contain similar concentrations of Mg; this is because of Mg out-diffusion from the soda-lime glass substrates and is not disadvantageous to device performance. However, treatment with other low-cost chlorides such as NaCl, KCl and MnCl2 leads to the introduction of electrically active impurities that do compromise device performance. Our results demonstrate that CdCl2 may simply be replaced directly with MgCl2 in the existing fabrication process, thus both minimizing the environmental risk and reducing the cost of CdTe solar-cell production.

  15. Performance and Metastability of CdTe Solar Cells with a Te Back-Contact Buffer Layer

    Science.gov (United States)

    Moore, Andrew

    Thin-film CdTe photovoltaics are quickly maturing into a viable clean-energy solution through demonstration of competitive costs and performance stability with existing energy sources. Over the last half decade, CdTe solar technology has achieved major gains in performance; however, there are still aspects that can be improved to progress toward their theoretical maximum efficiency. Perhaps equally valuable as high photovoltaic efficiency and a low levelized cost of energy, is device reliability. Understanding the root causes for changes in performance is essential for accomplishing long-term stability. One area for potential performance enhancement is the back contact of the CdTe device. This research incorporated a thin-film Te-buffer layer into the contact structure, between the CdTe and contact metal. The device performance and characteristics of many different back contact configurations were rigorously studied. CdTe solar cells fabricated with the Te-buffer contact showed short-circuit current densities and open-circuit voltages that were on par with the traditional back-contacts used at CSU. However, the Te-buffer contact typically produced 2% larger fill-factors on average, leading to greater conversation efficiency. Furthermore, using the Te buffer allowed for incorporation of 50% less Cu, which is used for p-type doping but is also known to decrease lifetime and stability. This resulted in an additional 3% fill-factor gain with no change in other parameters compared to the standard-Cu treated device. In order to better understand the physical mechanisms of the Te-buffer contact, electrical and material properties of the Te layer were extracted and used to construct a simple energy band diagram. The Te layer was found to be highly p-type (>1018 cm-3) and possess a positive valence-band offset of 0.35-0.40 eV with CdTe. An existing simulation model incorporating the Te-layer properties was implemented and validated by comparing simulated results of CdTe

  16. The effect of excitons on CdTe solar cells

    International Nuclear Information System (INIS)

    Karazhanov, S. Zh.; Zhang, Y.; Mascarenhas, A.; Deb, S.

    2000-01-01

    Temperature and doping-level dependence of CdTe solar cells is investigated, taking into account the involvement of excitons on photocurrent transport. We show that the density of excitons in CdTe is comparable with that of minority carriers at doping levels ≥10 15 cm -3 . From the investigation of the dark-saturation current, we show that the product of electron and hole concentrations at equilibrium is several orders of magnitude more than the square of the intrinsic carrier concentration. With this assumption, we have studied the effect of excitons on CdTe solar cells, and the effect is negative. CdTe solar cell performance with excitons included agrees well with existing experimental results. (c) 2000 American Institute of Physics

  17. Research and development of CdTe based thin film PV solar cells

    Science.gov (United States)

    Diso, Dahiru Garba

    The motivation behind this research is to bring cheap, low-cost and clean energy technologies to the society. Colossal use of fossil fuel has created noticeable pollution problems contributing to climate change and health hazards. Silicon based solar cells have dominated the market but it is cost is high due to the manufacturing process. Therefore, the way forward is to develop thin films solar cells using low-cost attractive materials, grown by cheaper, scalable and manufacturable techniques.The aim and objectives of this work is to develop low-cost, high efficiency solar cell using electrodeposition (ED) technique. The material layers include CdS and ZnTe as the window materials, while the absorber material is CdTe. Fabricating a suitable devices for solar energy conversion (i.e. glass/conducting glass/window material/absorber material/metal) structure. Traditional way of fabricating this structure is to grow window material (CdS) using chemical bath deposition (CBD) and absorber material (CdTe) using electrodeposition. However, CBD is a batch process and therefore creates large volumes of Cd-containing waste solutions each time adding high cost in manufacturing process. This research programme is therefore on development of an "All ED-solar cells" structure.Material studies were carried out using photoelectrochemical (PEC) studies, UV-Vis spectrophotometry, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Furthermore, the electrical characterisation of fully fabricated devices was performed using current-voltage (I-V) and capacitance-voltage (C-V) measurements.This research programme has demonstrated that CdS and ZnTe window materials can be electrodeposited and used in thin film solar cell devices. The CdS electrolytic bath can be used for a period of 7 months without discarding it like in the CBD process which usually has life

  18. New Sunshine Program for fiscal 2000. Development of photovoltaic system commercialization technology - Development of thin-film solar cell manufacturing technology - Development of low-cost/large area module manufacturing technology (Development of high-reliability CdTe solar cell module manufacturing technology); 2000 nendo New sunshine keikaku seika hokokusho. Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Hakumaku taiyodenchi no seizo gijutsu kaihatsu, Tei cost dai menseki mojuru seizo gijutsu kaihatsu (Koshinraisei CdTe taiyo denchi mojuru no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development was conducted for reliable CdTe solar cell modules, large in area and high in efficiency. In the study of large-area CdS thin film fabrication, a conversion efficiency of 12.5-14.2% was achieved in a cell in a large-area substrate using a mist method-aided process of continuous CdS film fabrication. In the study of large-area CdTe thin film fabrication, the optimization was studied of the base-forming CdS film fabrication conditions and of the CdTe film fabrication conditions in a method using a CdTe powder processed by dry kneading, and a conversion efficiency peak was found to exist when the CdS film thickness was in the range of 700-900 angstrom. In the fabrication of large-area submodules, a large-area substrate was taken up, and TCO (transparent conducting oxide) film was fabricated by the mist method, CdTe film by the normal pressure CSS method, electrodes by the screen printing method, and CdTe film patterns by the blast method. As the result, a conversion efficiency of 11.0% was achieved. In a cost estimation for large-area CdTe solar cell modules, 140 yen/Wp (conversion efficiency: 11.0%, annual production: 100 MW) was obtained. (NEDO)

  19. The next generation CdTe technology- Substrate foil based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, Chris [Univ. of South Florida, Tampa, FL (United States)

    2017-03-22

    The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal of this project) a roll-to-toll high throughput technology could be developed.

  20. Growth and analysis of micro and nano CdTe arrays for solar cell applications

    Science.gov (United States)

    Aguirre, Brandon Adrian

    CdTe is an excellent material for infrared detectors and photovoltaic applications. The efficiency of CdTe/CdS solar cells has increased very rapidly in the last 3 years to ˜20% but is still below the maximum theoretical value of 30%. Although the short-circuit current density is close to its maximum of 30 mA/cm2, the open circuit voltage has potential to be increased further to over 1 Volt. The main limitation that prevents further increase in the open-circuit voltage and therefore efficiency is the high defect density in the CdTe absorber layer. Reducing the defect density will increase the open-circuit voltage above 1 V through an increase in the carrier lifetime and concentration to tau >10 ns and p > 10 16 cm-3, respectively. However, the large lattice mismatch (10%) between CdTe and CdS and the polycrystalline nature of the CdTe film are the fundamental reasons for the high defect density and pose a difficult challenge to solve. In this work, a method to physically and electrically isolate the different kinds of defects at the nanoscale and understand their effect on the electrical performance of CdTe is presented. A SiO2 template with arrays of window openings was deposited between the CdTe and CdS to achieve selective-area growth of the CdTe via close-space sublimation. The diameter of the window openings was varied from the micro to the nanoscale to study the effect of size on nucleation, grain growth, and defect density. The resulting structures enabled the possibility to electrically isolate and individually probe micrometer and nanoscale sized CdTe/CdS cells. Electron back-scattered diffraction was used to observe grain orientation and defects in the miniature cells. Scanning and transmission electron microscopy was used to study the morphology, grain boundaries, grain orientation, defect structure, and strain in the layers. Finally, conducting atomic force microscopy was used to study the current-voltage characteristics of the solar cells. An

  1. An optimized multilayer structure of CdS layer for CdTe solar cells application

    International Nuclear Information System (INIS)

    Han Junfeng; Liao Cheng; Jiang Tao; Spanheimer, C.; Haindl, G.; Fu, Ganhua; Krishnakumar, V.; Zhao Kui; Klein, A.; Jaegermann, W.

    2011-01-01

    Research highlights: → Two different methods to prepare CdS films for CdTe solar cells. → A new multilayer structure of window layer for the CdTe solar cell. → Thinner CdS window layer for the solar cell than the standard CdS layer. → Higher performance of solar cells based on the new multilayer structure. - Abstract: CdS layers grown by 'dry' (close space sublimation) and 'wet' (chemical bath deposition) methods are deposited and analyzed. CdS prepared with close space sublimation (CSS) has better crystal quality, electrical and optical properties than that prepared with chemical bath deposition (CBD). The performance of CdTe solar cell based on the CSS CdS layer has higher efficiency than that based on CBD CdS layer. However, the CSS CdS suffers from the pinholes. And consequently it is necessary to prepare a 150 nm thin film for CdTe/CdS solar cell. To improve the performance of CdS/CdTe solar cells, a thin multilayer structure of CdS layer (∼80 nm) is applied, which is composed of a bottom layer (CSS CdS) and a top layer (CBD CdS). That bi-layer film can allow more photons to pass through it and significantly improve the short circuit current of the CdS/CdTe solar cells.

  2. Evolution of oxygenated cadmium sulfide (CdS:O) during high-temperature CdTe solar cell fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Meysing, Daniel M.; Reese, Matthew O.; Warren, Charles W.; Abbas, Ali; Burst, James M.; Mahabaduge, Hasitha P.; Metzger, Wyatt K.; Walls, John M.; Lonergan, Mark C.; Barnes, Teresa M.; Wolden, Colin A.

    2016-12-01

    Oxygenated cadmium sulfide (CdS:O) produced by reactive sputtering has emerged as a promising alternative to conventional CdS for use as the n-type window layer in CdTe solar cells. Here, complementary techniques are used to expose the window layer (CdS or CdS:O) in completed superstrate devices and combined with a suite of materials characterization to elucidate its evolution during high temperature device processing. During device fabrication amorphous CdS:O undergoes significant interdiffusion with CdTe and recrystallization, forming CdS1-yTey nanocrystals whose Te fraction approaches solubility limits. Significant oxygen remains after processing, concentrated in sulfate clusters dispersed among the CdS1-yTey alloy phase, accounting for ~30% of the post-processed window layer based on cross-sectional microscopy. Interdiffusion and recrystallization are observed in devices with un-oxygenated CdS, but to a much lesser extent. Etching experiments suggest that the CdS thickness is minimally changed during processing, but the CdS:O window layer is reduced from 100 nm to 60-80 nm, which is confirmed by microscopy. Alloying reduces the band gap of the CdS:O window layer to 2.15 eV, but reductions in thickness and areal density improve its transmission spectrum, which is well matched to device quantum efficiency. The changes to the window layer in the reactive environments of device fabrication are profoundly different than what occurs by thermal annealing in an inert environment, which produced films with a band gap of 2.4 eV for both CdS and CdS:O. These results illustrate for the first time the significant changes that occur to the window layer during processing that are critical to the performance of CdTe solar cells.

  3. Improvements in CdTe- and CIGS-based thin-film solar cells and investigation on new materials for photovoltaic applications.

    OpenAIRE

    Rosa, Greta

    2018-01-01

    Currently, thin-film solar cells are one of the most promising technologies for low-cost renewable energy production. CdTe- and CuInGaSe2-based cells, which achieved record efficiencies of 22.1% and 22.6% respectively, are the most attractive among thin-film solar cells. These high efficiencies have had a huge influence in making them highly competitive in the photovoltaic market, with an estimated final cost per module lower than US $ 0.50 per peak-watt. At the Thin Film Laboratory of the...

  4. Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials

    International Nuclear Information System (INIS)

    Zhu, Jiaoyan; Yang, Yuehua; Gao, Yuping; Qin, Donghuan; Wu, Hongbin; Huang, Wenbo; Hou, Lintao

    2014-01-01

    Interface states influence the operation of nanocrystal (NC) solar cell carrier transport, recombination and energetic mechanisms. In a typical CdTe NC solar cell with a normal structure of a ITO/p-CdTe NCs/n-acceptor (or without)/Al configuration, the contact between the ITO and CdTe is a non-ohm contact due to a different work function (for an ITO, the value is ∼4.7 eV, while for CdTe NCs, the value is ∼5.3 eV), which results in an energetic barrier at the ITO/CdTe interface and decreases the performance of the NC solar cells. This work investigates how interface materials (including Au, MoO x and C 60 ) affect the performance of NC solar cells. It is found that devices with interface materials have shown higher V oc than those without interface materials. For the case in which we used Au as an interface, we obtained a high open-circuit voltage of 0.65 V, coupled with a high fill factor (62%); this resulted in a higher energy conversion efficiency (ECE) of 5.3%, which showed a 30% increase in the ECE compared with those without the interlayer. The capacitance measurements indicate that the increased V oc in the case in which Au was used as the interface is likely due to good ohm contact between the Au’s and the CdTe NCs’ thin film, which decreases the energetic barrier at the ITO/CdTe interface. (paper)

  5. Atmospheric Pressure Chemical Vapor Deposition of CdTe for High-Efficiency Thin-Film PV Devices; Annual Report, 26 January 1998-25 January 1999

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P. V. [ITN Energy Systems, Wheat Ridge, Colorado (US); Kee, R.; Wolden, C.; Raja, L.; Kaydanov, V.; Ohno, T.; Collins, R.; Aire, M.; Kestner, J. [Colorado School of Mines, Golden, Colorado (US); Fahrenbruch, A. [ALF, Inc., Stanford, California (US)

    1999-09-30

    ITN's 3-year project, titled ''Atmospheric Pressure Chemical Vapor Deposition (APCVD) of CdTe for High-Efficiency Thin-Film Photovoltaic (PV) Devices,'' has the overall objectives of improving thin-film CdTe PV manufacturing technology and increasing CdTe PV device power conversion efficiency. CdTe deposition by APCVD employs the same reaction chemistry as has been used to deposit 16%-efficient CdTe PV films, i.e., close-spaced sublimation, but employs forced convection rather than diffusion as a mechanism of mass transport. Tasks of the APCVD program center on demonstrating APCVD of CdTe films, discovering fundamental mass-transport parameters, applying established engineering principles to the deposition of CdTe films, and verifying reactor design principles that could be used to design high-throughput, high-yield manufacturing equipment. Additional tasks relate to improved device measurement and characterization procedures that can lead to a more fundamental understanding of CdTe PV device operation, and ultimately, to higher device conversion efficiency and greater stability. Specifically, under the APCVD program, device analysis goes beyond conventional one-dimensional device characterization and analysis toward two-dimension measurements and modeling. Accomplishments of the first year of the APCVD subcontract include: selection of the Stagnant Flow Reactor design concept for the APCVD reactor, development of a detailed reactor design, performance of detailed numerical calculations simulating reactor performance, fabrication and installation of an APCVD reactor, performance of dry runs to verify reactor performance, performance of one-dimensional modeling of CdTe PV device performance, and development of a detailed plan for quantification of grain-boundary effects in polycrystalline CdTe devices.

  6. Solar cells based on electrodeposited thin films of ZnS, CdS, CdSSe and CdTe

    Science.gov (United States)

    Weerasinghe, Ajith R.

    The motivations of this research were to produce increased efficiency and low-cost solar cells. The production efficiency of Si solar cells has almost reached their theoretical limit, and reducing the manufacturing cost of Si solar cells is difficult to achieve due to the high-energy usage in material purifying and processing stages. Due to the low usage of materials and input energy, thin film solar cells have the potential to reduce the costs. CdS/CdTe thin film solar cells are already the cheapest on $/W basis. The cost of CdTe solar cells can be further reduced if all the semiconducting layers are fabricated using the electrodeposition (ED) method. ED method is scalable, low in the usage of energy and raw materials. These benefits lead to the cost effective production of semiconductors. The conventional method of fabricating CdS layers produces Cd containing waste solutions routinely, which adds to the cost of solar cells.ZnS, CdS and CdS(i-X)Sex buffer and window layers and CdTe absorber layers have been successfully electrodeposited and explored under this research investigation. These layers were fully characterised using complementary techniques to evaluate the material properties. Photoelectrochemical (PEC) studies, optical absorption, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM) and Raman spectroscopy were utilised to evaluate the material properties of these solid thin film layers. ZnS and CdS thin film layers were electrodeposited from Na-free chemical precursors to avoid the group I element (Na) to reduce deterioration of CdTe devices. Deposition parameters such as, growth substrates, temperature, pH, growth cathodic voltage, stirring rate, time and chemical concentrations were identified to fabricate the above semiconductors. To further optimise these layers, a heat treatment process specific to the material was developed. In addition

  7. Improved electron density through hetero-junction binary sensitized TiO2/ CdTe / D719 system as photoanode for dye sensitized solar cell

    Science.gov (United States)

    Pandey, A. K.; Ahmad, Muhammad Shakeel; Alizadeh, Mahdi; Rahim, Nasrudin Abd

    2018-07-01

    The combined effect of dual sensitization and hetero-junction symmetry has been investigated on the performance of TiO2 based dye sensitized solar cell. CdTe nanoparticles have been introduced in TiO2 matrix to function as sensitizer as well as act as hetero-junction between D719 dye and TiO2 nanoarchitecture. Four concentrations of CdTe i.e. 0.5 wt%, 2 wt%, 5 wt% and 8 wt% have been investigated. Morphological and compositional studies have been conducted using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Light absorption characteristics have been investigated by employing Uv-vis spectroscopy and the overall performance has been studied using solar simulator and electrochemical impedance spectroscopy (EIS). Performance has been found to be increased with the addition of CdTe due to high electron density and reduction in recombination reactions. An increase of 41.73% in incident photo conversion efficiency (IPCE) and 75.57% in short circuit current density (Jsc) have been recorded for the specimens containing 5 wt% CdTe compared to bare TiO2 based DSSCs. Further addition of CdTe leads to reduction in overall performance of DSSCs.

  8. Investigation of Processing, Microstructures and Efficiencies of Polycrystalline CdTe Photovoltaic Films and Devices

    Science.gov (United States)

    Munshi, Amit Harenkumar

    with processes suitable for mass production. These are the highest efficiencies reported by any university or national laboratory for polycrystalline thin-film CdTe photovoltaics bettered only by researchers at First Solar Inc. Processing experiments are traditionally designed based on simulation results however in these study microscopic materials characterization has been used as the primary driving force to understand the effects of processing conditions. Every structure and efficiency reported in this study has been extensively studied using microscopic imaging and materials characterization and processing conditions accordingly altered to achieve higher efficiencies. Understanding CdCl2 passivation treatment out of this has been critical to this process. Several observations with regard to effect of CdCl 2 passivation have allowed the use to this treatment to achieve optimum performance. The effects of deposition temperature are also studied in rigorous details. All of these studies have played an important role in optimization of process that lead to high efficiency thin-film CdTe photovoltaic devices. An effort is made in this study to better understand and establish a 3-way relationship between processing conditions, film microstructure and device efficiency for sublimated thin-film CdTe photovoltaics. Some crucial findings include impact of grain size on efficiency of photovoltaic devices and improvement in fill-factor resulting from use of thicker CdTe absorber with larger grain size. An attempt is also made to understand the microstructure as the device efficiency improves from 1% efficiency to over 18% efficiency.

  9. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.

    2014-04-01

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.

  10. Development of MoOx thin films as back contact buffer for CdTe solar cells in substrate configuration

    International Nuclear Information System (INIS)

    Gretener, C.; Perrenoud, J.; Kranz, L.; Baechler, C.; Yoon, S.; Romanyuk, Y.E.; Buecheler, S.; Tiwari, A.N.

    2013-01-01

    Molybdenum oxide compounds exhibit unique electrical and optical properties depending on oxygen vacancy concentration and composition and therefore, have recently attracted a lot of attention as a hole transport layer in various devices. In this work CdTe solar cells in substrate configuration were grown with evaporated MoO x back contact buffer layers and efficiencies of up to 10% could be achieved without using Cu in the back contact processing. The buffer layer – at the CdTe/back contact interface – in the finished cell was found to consist of MoO 2 phase instead of the expected MoO 3 phase as observed in as-deposited or annealed MoO x layers without CdTe deposition. In order to obtain MoO x buffer layers with desired stoichiometry, MoO x thin films were deposited by radio-frequency sputtering under different growth conditions. The chemical phase, composition, microstructure and optical properties of such layers were studied for their possible use in CdTe solar cells. - Highlights: ► MoO x is used as a back contact buffer in CdTe solar cells in substrate configuration. ► Efficiency of 10.0% was achieved without the addition of Cu. ► The back contact buffer in the finished device consists only of MoO 2 . ► Phases and microstructure of MoO x can be controlled by sputtering conditions

  11. Emitter/absorber interface of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao, E-mail: tsong241@gmail.com; Sites, James R. [Physics Department, Colorado State University, Fort Collins, Colorado 80523 (United States); Kanevce, Ana [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2016-06-21

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔE{sub C} ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se{sub 2} (CIGS) cells. The basic principle is that positive ΔE{sub C}, often referred to as a “spike,” creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔE{sub C} ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a “cliff” (ΔE{sub C} < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔE{sub C} of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔE{sub C}. These

  12. Preparation of p-type NiO films by reactive sputtering and their application to CdTe solar cells

    Science.gov (United States)

    Ishikawa, Ryousuke; Furuya, Yasuaki; Araki, Ryouichi; Nomoto, Takahiro; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Tsuboi, Nozomu

    2016-02-01

    Transparent p-type NiO films were prepared by reactive sputtering using the facing-target system under Ar-diluted O2 gas at Tsub of 30 and 200 °C. The increasing intensity of dominant X-ray diffraction (XRD) peaks indicates improvements in the crystallinity of NiO films upon Cu doping. In spite of the crystallographic and optical changes after Cu-doping, the electrical properties of Cu-doped NiO films were slightly improved. Upon Ag-doping at 30 °C under low O2 concentration, on the other hand, the intensity of the dominant (111) XRD peaks was suppressed and p-type conductivity increased from ˜10-3 to ˜10-1 S cm-1. Finally, our Ag-doped NiO films were applied as the back contact of CdTe solar cells. CdTe solar cells with a glass/ITO/CdS/CdTe/NiO structure exhibited an efficiency of 6.4%, suggesting the high potential of using p-type NiO for the back-contact film in thin-film solar cells.

  13. Spectroscopic study on the doping of polycrystalline CdTe layers for solar cells; Spektroskopische Untersuchungen zur Dotierung von polykristallinen CdTe-Schichten fuer Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Christian

    2011-11-29

    First in the present thesis the fundamental properties of CdTe are described. In the following it is discussed, how a CdTe solar cell is generally constructed, which specialities are to be regarded, and how an improvement of the actually reachable data of such a solar cell in view of the efficiency can be reached fundamentally and in then practical realization. In the third chapter the physical foundations of the most important methods are discussed, which are applied in the framework of this thesis for the analysis of the CdTe layers. The fourth chapter describes the details of the experiments of this thesis. The fifth chapter deals with the analysis of the photoluminescence of CdTe layers. Special attention is put on the analysis of the excitonic luminescence. The sixth chapter treats the implantation of CdTe layers with phosphor. The influence of phosphorus as dopant on the PL spectra of CdTe and the correponding characteristics of implanted solar cells are presented. Also the influence of radiation damages as consequence of the ion implantation is studied in this chapter by means of the analysis of differently thick absorber layers. In the seventh chapter finally a new procedure for the fabrication of solar cells on the base of CdTe as absorber material is introduced, which shall make possible to change the stoichiometry of cadmium mand tellurium specifically and to present additionally a suited material, in order to form the doping of CdTE a solar-cell material variably. The fundamental properties of the new facility are experimentally determined, and first solar cells are fabricated with this facility and analyzed. Also an in-situ doping with phosphorus is thereby performed and the result studied.

  14. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (CdS/CdTe solar cell modules); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (CdTe taiyo denchi module seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of CdS/CdTe solar cell modules in fiscal 1994. (1) On the fabrication technology for high-efficiency large-area solar cells, high-quality CdTe active layer was studied. S content taken in the active layer at sintering of CdTe decreased with an increase in formed CdTe, resulting in improvement of Voc of cells. (2) On the window layer with wide band gap, the solar cell superior in collection efficiency and photoelectric characteristics could be obtained using the newly developed mixed crystal film of Cd(1-x)Zn(x)S. (3) On the forming technology of large-area coating/sintering films, improvement of CdS film quality was studied by pressurized processing of printed CdS films. As a result, improvement of film density and light transmissivity was confirmed. (4) On the leveling process technology of CdTe films, smooth surface films were obtained by experiment using an equipment simultaneously exciting samples in all directions as one of uniform coating methods of films. 7 figs.

  15. Advanced Processing of CdTe- and CuInxGa1-xSe2-Based Solar Cells: Final Report: 18 April 1995 - 31 May 1998

    International Nuclear Information System (INIS)

    Jayapalan, A.; Tetali, B.; Ferekides, C.S.; Marinskiy, D.; Morel, D.L.; Lin, H.; Sankaranarayanan, H.; Bhatt, R.; Narayanaswamy, R.; Prabhakaran, R.; Marinskaya, S.; Zafar, S.

    1999-01-01

    This report summarizes work performed by the University of South Florida Department of Electrical Engineering under this subcontract. The Cadmium telluride(CdTe) portion of this project deals with the development of high-efficiency thin-filmed CdTe solar cells using fabrication techniques that are suitable for manufacturing environments

  16. Development of MoO{sub x} thin films as back contact buffer for CdTe solar cells in substrate configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gretener, C., E-mail: christina.gretener@empa.ch [Laboratory for Thin Films and Photovoltaics, Empa — Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Perrenoud, J.; Kranz, L.; Baechler, C. [Laboratory for Thin Films and Photovoltaics, Empa — Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Yoon, S. [Laboratory for Solid State Chemistry and Catalysis, Empa — Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland); Romanyuk, Y.E.; Buecheler, S.; Tiwari, A.N. [Laboratory for Thin Films and Photovoltaics, Empa — Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, 8600 Dübendorf (Switzerland)

    2013-05-01

    Molybdenum oxide compounds exhibit unique electrical and optical properties depending on oxygen vacancy concentration and composition and therefore, have recently attracted a lot of attention as a hole transport layer in various devices. In this work CdTe solar cells in substrate configuration were grown with evaporated MoO{sub x} back contact buffer layers and efficiencies of up to 10% could be achieved without using Cu in the back contact processing. The buffer layer – at the CdTe/back contact interface – in the finished cell was found to consist of MoO{sub 2} phase instead of the expected MoO{sub 3} phase as observed in as-deposited or annealed MoO{sub x} layers without CdTe deposition. In order to obtain MoO{sub x} buffer layers with desired stoichiometry, MoO{sub x} thin films were deposited by radio-frequency sputtering under different growth conditions. The chemical phase, composition, microstructure and optical properties of such layers were studied for their possible use in CdTe solar cells. - Highlights: ► MoO{sub x} is used as a back contact buffer in CdTe solar cells in substrate configuration. ► Efficiency of 10.0% was achieved without the addition of Cu. ► The back contact buffer in the finished device consists only of MoO{sub 2}. ► Phases and microstructure of MoO{sub x} can be controlled by sputtering conditions.

  17. Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar + O{sub 2} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chao; Ming, Zhenxun [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Li, Bing, E-mail: libing70@126.com [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Feng, Lianghuan [College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Wu, Judy [Department of Physics and Astronomy, Kansas University, Lawrence 66045 (United States)

    2013-06-20

    Highlights: • CdTe films were deposited by PLD at high substrate temperatures (400 °C, 550 °C). • CdTe films were achieved under the atmosphere (1.2 Torr) of Ar mixed with O{sub 2}. • Deposited CdTe films were cubic phase and had strong (1 0 0) preferred orientation. • Scanning electron microscope (SEM) showed an average grain size of 0.3–0.6 μm. • The ultra-thin film (CdS/PLD-CdTe) solar cell with efficiency of 6.68% was made. -- Abstract: Pulsed laser deposition (PLD) is one of the promising techniques for depositing cadmium telluride (CdTe) thin films. It has been reported that PLD CdTe thin films were almost deposited at the lower substrate temperatures (<300 °C) under vacuum conditions. However, the poor crystallinity of CdTe films prepared in this way renders them not conducive to the preparation of high-efficiency CdTe solar cells. To obtain high-efficiency solar cell devices, better crystallinity and more suitable grain size are needed, which requires the CdTe layer to be deposited by PLD at high substrate temperatures (>400 °C). In this paper, CdTe layers were deposited by PLD (KrF, λ = 248 nm, 10 Hz) at different higher substrate temperatures (T{sub s}). Excellent performance of CdTe films was achieved at higher substrate temperatures (400 °C, 550 °C) under an atmosphere of Ar mixed with O{sub 2} (1.2 Torr). X-ray diffraction analysis confirmed the formation of CdTe cubic phase with a strong (1 0 0) preferential orientation at all substrates temperatures on 60 mJ laser energy. The optical properties of CdTe were investigated, and the band gaps of CdTe films were 1.51 eV and 1.49 eV at substrate temperatures of 400 °C and 550 °C, respectively. Scanning electron microscopy (SEM) showed an average grain size of 0.3–0.6 μm. Thus, under these conditions of the atmosphere of Ar + O{sub 2} (15 Torr) and at the relatively high T{sub s} (500 °C), an thin-film (FTO/PLD-CdS (100 nm)/PLD-CdTe (∼1.5 μm)/HgTe: Cu/Ag) solar cell with an

  18. A computational study on the energy bandgap engineering in performance enhancement of CdTe thin film solar cells

    Directory of Open Access Journals (Sweden)

    Ameen M. Ali

    Full Text Available In this study, photovoltaic properties of CdTe thin film in the configuration of n-SnO2/n-CdS/p-CdTe/p-CdTe:Te/metal have been studied by numerical simulation software named “Analysis of Microelectronic and Photonic Structure” (AMPS-1D. A modified structure for CdTe thin film solar cell has been proposed by numerical analysis with the insertion of a back contact buffer layer (CdTe:Te. This layer can serve as a barrier that will decelerate the copper diffusion in CdTe solar cell. Four estimated energy bandgap relations versus the Tellurium (Te concentrations and the (CdTe:Te layer thickness have been examined thoroughly during simulation. Correlation between energy bandgap with the CdTe thin film solar cell performance has also been established. Keywords: Numerical modelling, CdTe thin film, Solar cell, AMPS-1D, Bandgap

  19. Physical vapor deposition of CdTe thin films at low temperature for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Heisler, Christoph; Brueckner, Michael; Lind, Felix; Kraft, Christian; Reisloehner, Udo; Ronning, Carsten; Wesch, Werner [Institute of Solid State Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2012-07-01

    Cadmium telluride is successfully utilized as an absorber material for thin film solar cells. Industrial production makes use of high substrate temperatures for the deposition of CdTe absorber layers. However, in order to exploit flexible substrates and to simplify the manufacturing process, lower deposition temperatures are beneficial. Based on the phase diagram of CdTe, predictions on the stoichiometry of CdTe thin films grown at low substrate temperatures are made in this work. These predictions were verified experimentally using additional sources of Cd and Te during the deposition of the CdTe thin films at different substrate temperatures. The deposited layers were analyzed with energy-dispersive X-ray spectroscopy. In case of CdTe layers which were deposited at substrate temperatures lower than 200 C without usage of additional sources we found a non-stoichiometric growth of the CdTe layers. The application of the additional sources leads to a stoichiometric growth for substrate temperatures down to 100 C which is a significant reduction of the substrate temperature during deposition.

  20. FY 1999 research and development of technologies for commercialization of photovoltaic power generation systems. Development of technologies for production of thin-film solar cells and low-cost, large-area modules (Development of technologies for high-reliability CdTe solar cell modules); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / tei cost daimenseki module seizo gijutsu kaihatsu (koshinraisei CdTe taiyo denchi module no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research and development project is implemented for production of low-cost, large-area modules of CdTe solar cells by the high-quality film-making process and high-function patterning, and the FY 1999 results are reported. The research program for the large-area TCO film-making technologies involves investigations on improvement of SnO{sub 2} film quality by the mist method and continuous film-making, which lead to continuous, stable production of 34 substrates of low resistance of 9.7{omega} on the average. The program for production of the large-area, thin-film CdS/CdTe solar cells involves production of TCO and CdS by the mist method, and patterning of the laminated TCO/CdS film by laser scribing. The CdTe film is formed by the atmospheric pressure CSS method, and treated with CdCl{sub 2} to improve its crystallinity. The CdTe film is patterned by sand blasting, and provided with the carbon and silver electrodes by screen printing, to complete the cell. The process is totally effected at the atmospheric pressure, needing no vacuum device. The CdTe solar cell assembly (130 cells connected in series, opening area: 5,413cm{sup 2}), fabricated on a trial basis, achieves a conversion efficiency of 10%. (NEDO)

  1. Solar-energy conversion by combined photovoltaic converters with CdTe and CuInSe2 base layers

    International Nuclear Information System (INIS)

    Khrypunov, G. S.; Sokol, E. I.; Yakimenko, Yu. I.; Meriuts, A. V.; Ivashuk, A. V.; Shelest, T. N.

    2014-01-01

    The possibility of the combined use of bifacial thin-film solar cells based on CdTe and frontal solar cells with a CuInSe 2 base layer in tandem structures is experimentally confirmed. It is found that, for the use of bifacial solar cells based on cadmium telluride in a tandem structure, the optimal thickness of their base layer should be 1 μm. The gain in the efficiency of the tandem structure, compared with an individual CuInSe 2 -based solar cell, is 1.8% in the case of series-connected solar cells and 1.3%, for parallel-connected

  2. Physical properties of Bi doped CdTe thin films grown by CSVT and their influence on the CdS/CdTe solar cells PV-properties

    International Nuclear Information System (INIS)

    Vigil-Galan, O.; Sanchez-Meza, E.; Ruiz, C.M.; Sastre-Hernandez, J.; Morales-Acevedo, A.; Cruz-Gandarilla, F.; Aguilar-Hernandez, J.; Saucedo, E.; Contreras-Puente, G.; Bermudez, V.

    2007-01-01

    The physical properties of Bi doped CdTe films, grown on glass substrates by the Closed Space Transport Vapour (CSVT) method, from different Bi doped CdTe powders are presented. The CdTe:Bi films were characterized using Photoluminescence, Hall effect, X-Ray diffraction, SEM and Photoconductivity measurements. Moreover, CdS/CdTe:Bi solar cells were made and their characteristics like short circuit current density (J sc ), open circuit voltage (V OC ), fill factor (FF) and efficiency (η) were determined. These devices were fabricated from Bi doped CdTe layers deposited on CdS with the same growth conditions than those used for the single CdTe:Bi layers. A correlation between the CdS/CdTe:Bi solar cell characteristics and the physical properties of the Bi doped CdTe thin films are presented and discussed

  3. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.; Murphy, J.W. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Kim, J. [Korean Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Rozhdestvenskyy, S.; Mejia, I. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Park, H. [Korean Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Allee, D.R. [Flexible Display Center, Arizona State University, Phoenix, AZ 85284 (United States); Quevedo-Lopez, M. [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Gnade, B., E-mail: beg031000@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2016-12-01

    Solid-state neutron detectors offer an alternative to {sup 3}He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10{sup −6} gamma-ray efficiency.

  4. Photoluminescence measurement of polycrystalline CdTe made of high purity source material

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Hannes; Kraft, Christian; Heisler, Christoph; Geburt, Sebastian; Ronning, Carsten; Wesch, Werner [Institute of Solid State Physics, Friedrich Schiller Universitaet Jena, Helmholtzweg 3, 07743 Jena (Germany)

    2012-07-01

    CdTe is a common material for thin film solar cells. However, the mainly used CdTe source material is known to contain a high number of intrinsic defects and impurities. In this work we investigate the defect structure of high purity CdTe by means of Photoluminescence, which is a common method to detect the energy levels of defects in the band gap of semiconductors. We used a 633 nm HeNe-Laser at sample temperatures of 8 K. The examined samples were processed in a new vacuum system based on the PVD method. They yield significantly different spectra on as-grown samples compared to those measured on samples which are grown by the standard process, since the double peak at 1.55 eV was hardly detectable and the A-center correlated transition vanished. Instead a peak at 1.50 eV with pronounced phonon coupling was observed. The 1.50 eV peak is known from other measurements but has not been characterized so far. The intention of this work is to characterize this new feature and the influence of post deposition treatments of the CdTe layers on the PL spectra.

  5. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  6. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Run; Liu, Bo; Yang, Xiaoyan; Bao, Zheng; Li, Bing, E-mail: libing70@126.com; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-01-01

    Graphical abstract: - Highlights: • The large-area CdTe film has been prepared by PVD under the pressure of 0.9 kPa. • The as-prepared CdTe thin film processes excellent photovoltaic properties. • This technique is suitable for depositing large-area CdTe thin film. • The 14.6% champion efficiency CdS/CdTe cell has been achieved. - Abstract: The Cadmium telluride (CdTe) thin film has been prepared by physical vapor deposition (PVD), the Ar + O{sub 2} pressure is about 0.9 kPa. This method is a newer technique to deposit CdTe thin film in large area, and the size of the film is 30 × 40 cm{sup 2}. This method is much different from the close-spaced sublimation (CSS), as the relevance between the source temperature and the substrate temperature is weak, and the gas phase of CdTe is transferred to the substrate by Ar + O{sub 2} flow. Through this method, the compact and uniform CdTe film (30 × 40 cm{sup 2}) has been achieved, and the performances of the CdTe thin film have been determined by transmission spectrum, SEM and XRD. The film is observed to be compact with a good crystallinity, the CdTe is polycrystalline with a cubic structure and a strongly preferred (1 1 1) orientation. Using the CdTe thin film (3 × 5 cm{sup 2}) which is taken from the deposited large-area film, the 14.6% efficiency CdS/CdTe thin film solar cell has been prepared successfully. The structure of the cell is glass/FTO/CdS/CdTe/graphite slurry/Au, short circuit current density (J{sub sc}) of the cell is 26.9 mA/cm{sup 2}, open circuit voltage (V{sub oc}) is 823 mV, and filling factor (FF) is 66.05%. This technique can be a quite promising method to apply in the industrial production, as it has great prospects in the fabricating of large-area CdTe film.

  7. Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells

    Science.gov (United States)

    Werthen, J. G.; Fahrenbruch, A. L.; Bube, R. H.; Zesch, J. C.

    1983-05-01

    The effects of CdTe surface preparation and subsequent junction formation have been investigated through characterization of ITO/CdTe and CdS/CdTe heterojunction solar cells formed by electron beam evaporation of indium-tin-oxide (ITO) and CdS onto single crystal p-type CdTe. Surfaces investigated include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and teh latter surfaces subjected to a hydrogen heat treatment. Both air-cleaved and hydrogen heat treated surfaces have a stoichiometric Cd to Te ratio. The ITO/CdTe junction formation process involves an air heat treatment, which ahs serious effects on the behavior of junctions formed on these surfaces. Etched surfaces which have a large excesss of Te, are less affected by the junction formation process and result in ITO/CdTe heterojunctions with solar efficiencies of 9% (Vsc =20 mA/cm2). Use of low-doped CdTe results in junctions characterized by considerably larger open-circuit votages (Voc =0.81 V) which are attributable to increasing diode factors caused by a shift from interfacial recombination to recombination in the depletion region. Resulting solar efficiencies reach 10.5% which is the highest value reported to date for a genuine CdTe heterojunction, CdS/CdTe heterojunctions show a strong dependence on CdTe surface condition, but less influence on the junction formation process. Solar efficiencies of 7.5% on an etched and heat treated surface are observed. All of these ITO/CdTe and CdS/CdTe heterojunctions have been stable for at least 10 months.

  8. Novel Contact Materials for Improved Performance CdTe Solar Cells Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, Angus [Colorado School of Mines, Golden, CO (United States); Marsillac, Sylvain [Old Dominion Univ., Norfolk, VA (United States); Collins, Robert [Univesity of Toledo

    2018-04-15

    This program has explored a number of novel materials for contacts to CdTe solar cells in order to reduce the back contact Schottky barrier to zero and produce an ohmic contact. The project tested a wide range of potential contact materials including TiN, ZrN, CuInSe2:N, a-Si:H and alloys with C, and FeS2. Improved contacts were achieved with FeS2. As part of understanding the operation of the devices and controlling the deposition processes, a number of other important results were obtained. In the process of this project and following its conclusion it led to research that resulted in seven journal articles, nine conference publications, 13 talks presented at conferences, and training of eight graduate students. The seven journal articles were published in 2015, 2016, and 2017 and have been cited, as of March 2018, 52 times (one cited 19 times and two cited 11 times). We demonstrated high levels of doping of CIS with N but electrical activity of the resulting N was not high and the results were difficult to reproduce. Furthermore, even with high doping the contacts were not good. Annealing did not improve the contacts. A-Si:H was found to produce acceptable but unstable contacts, degrading even over a day or two, apparently due to H incorporation into the CdTe. Alloying with C did not improve the contacts or stability. The transition metal nitrides produced Schottky type contacts for all materials tested. While these contacts were found to be unsatisfactory, we investigated FeS2 and found this material to be effective and comparable to the best contacts currently available. The contacts were found to be chemically stable under heat treatment and preferable to Cu doped contacts. Thus, we demonstrated an improved contact material in the course of this project. In addition, we developed new ways of controlling the deposition of CdTe and other materials, demonstrated the nature of defects in CdTe, and studied the distribution of conductivity and carrier type in CdTe

  9. Metastability and reliability of CdTe solar cells

    Science.gov (United States)

    Guo, Da; Brinkman, Daniel; Shaik, Abdul R.; Ringhofer, Christian; Vasileska, Dragica

    2018-04-01

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers devote significant empirical efforts to study these phenomena and to improve semiconductor device stability. Still, understanding the underlying reasons of these instabilities remains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most commonly alleged causes of metastability in CdTe devices, such as ‘migration of Cu’, have been investigated rigorously over the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses suggesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe provide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic defects; for example, changing the state of an impurity from an interstitial donor to a substitutional acceptor often is accompanied by generation of a compensating intrinsic interstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of temporal

  10. Comparison of structural properties of thermally evaporated CdTe thin films on different substrates

    International Nuclear Information System (INIS)

    Tariq, G.H.; Anis-ur-Rehman, M.

    2011-01-01

    The direct energy band gap in the range of 1.5 eV and the high absorption coefficient (105 cm/sup -1/) makes Cadmium Telluride (CdTe) a suitable material for fabrication of thin film solar cells. Thin film solar cells based on CdTe (1 cm area) achieved efficiency of 15.6% on a laboratory scale. CdTe thin films were deposited by thermal evaporation technique under vacuum 2 X 10/sup -5/mbar on glass and stainless steel (SS) substrates. During deposition substrates temperature was kept same at 200 deg. C for all samples. The structural properties were determined by the X-ray Diffraction (XRD) patterns. All samples exhibit polycrystalline nature. Dependence of different structural parameters such as lattice parameter, micro strain, and grain size and dislocation density on thickness was studied. Also the influence of the different substrates on these parameters was investigated. The analysis showed that the preferential orientation of films was dependent on the substrate type. (author)

  11. High efficiency, long life terrestrial solar panel

    Science.gov (United States)

    Chao, T.; Khemthong, S.; Ling, R.; Olah, S.

    1977-01-01

    The design of a high efficiency, long life terrestrial module was completed. It utilized 256 rectangular, high efficiency solar cells to achieve high packing density and electrical output. Tooling for the fabrication of solar cells was in house and evaluation of the cell performance was begun. Based on the power output analysis, the goal of a 13% efficiency module was achievable.

  12. High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Final Technical Report, 4 March 1998--15 October 2001

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A. D.; Deng, X.; Bohn, R. G.

    2003-10-01

    This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Si materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.

  13. Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells.

    Science.gov (United States)

    Fu, Fan; Pisoni, Stefano; Weiss, Thomas P; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N; Buecheler, Stephan

    2018-03-01

    Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se 2 , CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long-term heat/light soaking has not been demonstrated. In this study, a facile partial ion-exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near-infrared-transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se 2 bottom cell. Non-encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion-exchange to design graded perovskite solar cells with improved efficiency and stability.

  14. Compositionally Graded Absorber for Efficient and Stable Near‐Infrared‐Transparent Perovskite Solar Cells

    Science.gov (United States)

    Pisoni, Stefano; Weiss, Thomas P.; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se2, CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long‐term heat/light soaking has not been demonstrated. In this study, a facile partial ion‐exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near‐infrared‐transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se2 bottom cell. Non‐encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion‐exchange to design graded perovskite solar cells with improved efficiency and stability. PMID:29593970

  15. On the doping problem of CdTe films: The bismuth case

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Brown, M. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Ruiz, C.M. [Depto. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Vidal-Borbolla, M.A. [Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Lomas 4a. Secc., 78210 San Luis Potosi, SLP (Mexico); Ramirez-Bon, R. [CINVESTAV-IPN, U. Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)], E-mail: mtufinovel@yahoo.com.mx; Calixto, M. Estela [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Compaan, A.D. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)

    2008-08-30

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10{sup 13} cm{sup -3}, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10{sup 15} cm{sup -3}. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented.

  16. On the doping problem of CdTe films: The bismuth case

    International Nuclear Information System (INIS)

    Vigil-Galan, O.; Brown, M.; Ruiz, C.M.; Vidal-Borbolla, M.A.; Ramirez-Bon, R.; Sanchez-Meza, E.; Tufino-Velazquez, M.; Calixto, M. Estela; Compaan, A.D.; Contreras-Puente, G.

    2008-01-01

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10 13 cm -3 , depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10 15 cm -3 . Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented

  17. High-Temperature High-Efficiency Solar Thermoelectric Generators

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  18. Electrical characterization of CdTe grain-boundary properties from as processed CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, L.M.; Robinson, G.Y. [Colorado State Univ., Fort Collins, CO (United States); Levi, D.H.; Ahrenkiel, R.K. [National Renewable Energy Lab., Golden, CO (United States); Kaydanov, V. [Colorado School of Mines, Golden, CO (United States)

    1998-09-01

    An ability to liftoff or separate the thin-film polycrystalline CdTe from the CdS, without the use of chemical etches, has enabled direct electrical characterization of the as-processed CdTe near the CdTe/CdS heterointerface. The authors use this ability to understand how a back-contact, nitric-phosphoric (NP) etch affects the grain boundaries throughout the film. Quantitative determination of the grain-boundary barrier potentials and estimates of doping density near the grain perimeter are determined from theoretical fits to measurements of the current vs. temperature. Estimates of the bulk doping are determined from high-frequency resistivity measurements. The light and dark barrier potentials change after the NP etch, and the origin of this change is postulated. Also, a variable doping density within the grains of non-etched material has been determined. These results allow a semi-quantitative grain-boundary band diagram to be drawn that should aid in determining more accurate two-dimensional models for polycrystalline CdTe solar cells.

  19. Rational design of tetraphenylethylene-based luminescent down-shifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units.

    Science.gov (United States)

    Li, Yilin; Li, Zhipeng; Ablekim, Tursunjan; Ren, Tianhui; Dong, Wen-Ji

    2014-12-21

    A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photophysical studies of their solution and solid states, and photovoltaic measurements of their PMMA solid films applied on a CdTe solar cell suggested that the specific spectroscopic properties and Jsc enhancement effects of these molecules were highly related to their chemical structures. The Jsc enhancement effects of these fluorophores were measured on both a CdTe small cell and a large panel. An increase in the output Jsc by as high as 5.69% for a small cell and 8.88% for a large panel was observed. Compared to a traditional LDS molecule, Y083, these fluorophores exhibited more superior capabilities of LDS.

  20. Effect of the grain sizes on the photovoltaic parameters of CdTe solar cells prepared by close space sublimation method

    International Nuclear Information System (INIS)

    Potlog, T.

    2007-01-01

    Thin Film CdS/CdTe solar cells were fabricated by Close Space Sublimation at the substrate temperature ranging from 300 degrees ± 5 degrees to 340 degrees ± degrees. The best photovoltaic parameters were achieved at substrate temperature 320 degrees and source temperature 610 degrees. The open circuit voltage and current density changes significantly with the substrate temperature and depends on the dimension of the grain sizes. Grain size is an efficiency limiting parameter for CdTe layers with large grains. The open circuit voltage and current density are the best for the cells having dimension of grains between 1.0 μm and ∼ 5.0 μm. CdS/CdTe solar cells with an efficiency of ∼ 10% were obtained. (author)

  1. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  2. High-efficiency silicon solar cells for low-illumination applications

    OpenAIRE

    Glunz, S.W.; Dicker, J.; Esterle, M.; Hermle, M.; Isenberg, J.; Kamerewerd, F.; Knobloch, J.; Kray, D.; Leimenstoll, A.; Lutz, F.; Oßwald, D.; Preu, R.; Rein, S.; Schäffer, E.; Schetter, C.

    2002-01-01

    At Fraunhofer ISE the fabrication of high-efficiency solar cells was extended from a laboratory scale to a small pilot-line production. Primarily, the fabricated cells are used in small high-efficiency modules integrated in prototypes of solar-powered portable electronic devices such as cellular phones, handheld computers etc. Compared to other applications of high-efficiency cells such as solar cars and planes, the illumination densities found in these mainly indoor applications are signific...

  3. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    Science.gov (United States)

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of CdCl2 on the growth of CdTe on CdS films for solar cells by isothermal close-spaced vapor transport

    International Nuclear Information System (INIS)

    Vaccaro, P.O.; Meyer, G.O.; Saura, J.

    1991-01-01

    CdS/CdTe solar cells were made by depositing CdTe films by an isothermal close-spaced vapor transport method on sintered CdS/glass substrates. The influence of amounts of CdCl2 ranging from 0 wt% to 8 wt% in the CdTe source on the solar cells performance was studied. Increasing the CdCl2 content enhances the CdTe grainsize but degrades the spectral response and increases the reverse saturation current. An optimal CdCl2 concentration of 1 wt% was found for a growth temperature of 620 deg C. (Author)

  5. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Fedorenko, Y. G.; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K.

    2015-01-01

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe

  6. Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Y. G., E-mail: y.fedorenko@liverpool.ac.uk; Major, J. D.; Pressman, A.; Phillips, L. J.; Durose, K. [Stephenson Institute for Renewable Energy and Department of Physics, School of Physical Sciences, Chadwick Building, University of Liverpool, Liverpool L69 7ZF (United Kingdom)

    2015-10-28

    By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gap states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.

  7. High p-type doping, mobility, and photocarrier lifetime in arsenic-doped CdTe single crystals

    Science.gov (United States)

    Nagaoka, Akira; Kuciauskas, Darius; McCoy, Jedidiah; Scarpulla, Michael A.

    2018-05-01

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 1016 and 1020 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 1017 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 1017/cm3 range is observed for samples quenched at 200-300 °C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 1016 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 1018 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  8. High-Efficiency, Multijunction Solar Cells for Large-Scale Solar Electricity Generation

    Science.gov (United States)

    Kurtz, Sarah

    2006-03-01

    A solar cell with an infinite number of materials (matched to the solar spectrum) has a theoretical efficiency limit of 68%. If sunlight is concentrated, this limit increases to about 87%. These theoretical limits are calculated using basic physics and are independent of the details of the materials. In practice, the challenge of achieving high efficiency depends on identifying materials that can effectively use the solar spectrum. Impressive progress has been made with the current efficiency record being 39%. Today's solar market is also showing impressive progress, but is still hindered by high prices. One strategy for reducing cost is to use lenses or mirrors to focus the light on small solar cells. In this case, the system cost is dominated by the cost of the relatively inexpensive optics. The value of the optics increases with the efficiency of the solar cell. Thus, a concentrator system made with 35%- 40%-efficient solar cells is expected to deliver 50% more power at a similar cost when compare with a system using 25%-efficient cells. Today's markets are showing an opportunity for large concentrator systems that didn't exist 5-10 years ago. Efficiencies may soon pass 40% and ultimately may reach 50%, providing a pathway to improved performance and decreased cost. Many companies are currently investigating this technology for large-scale electricity generation. The presentation will cover the basic physics and more practical considerations to achieving high efficiency as well as describing the current status of the concentrator industry. This work has been authored by an employee of the Midwest Research Institute under Contract No. DE- AC36-99GO10337 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow

  9. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improvement of the sensitivity of CdTe detectors in the high energy regions

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Hiroshi; Ikegami, Kazunori; Takashima, Kazuo; Usami, Teruo [Mitsubishi Electric Corp., Tokyo (Japan); Yamamoto, Takayoshi

    1996-07-01

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of {sup 137}Cs (662keV) and {sup 60}Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  11. Processing and Characterization of Thin Cadmium Telluride Solar Cells

    Science.gov (United States)

    Wojtowicz, Anna

    Cadmium telluride (CdTe) has the highest theoretical limit to conversion efficiency of single-junction photovoltaic (PV) technologies today. However, despite a maximum theoretical open-circuit voltage of 1.20 V, record devices have historically had voltages pinned around only 900 mV. Voltage losses due to high recombination rates remains to be the most complex hurdle to CdTe technology today, and the subject of on-going research in the physics PV group at Colorado State University. In this work, an ultrathin CdTe device architecture is proposed in an effort to reduce bulk recombination and boost voltages. By thinning the CdTe layer, a device's internal electric field extends fully towards the back contact. This quickly separates electrons-hole pairs throughout the bulk of the device and reduces overall recombination. Despite this advantage, very thin CdTe layers also present a unique set of optical and electrical challenges which result in performance losses not as prevalent in thicker devices. When fabricating CdTe solar cells, post-deposition treatments applied to the absorber layer are a critical step for achieving high efficiency devices. Exposure of the polycrystalline CdTe film to a chlorine species encourages the passivation of dangling bonds and larger grain formation, while copper-doping improves device uniformity and voltages. This work focuses on experiments conducted via close-space sublimation to optimize CdCl2 and CuCl treatments for thin CdTe solar cells. Sweeps of both exposure and anneal time were performed for both post-deposition treatments on CdTe devices with 1.0 mum absorber layers. The results demonstrate that thin CdTe devices require substantially less post-deposition processing than standard thicker devices as expected. Additionally, the effects of CdTe growth temperature on thin devices is briefly investigated. The results suggest that higher growth temperatures lead to both electrical and stoichiometric changes in CdTe closely associated

  12. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  13. Highly efficient solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  14. High-efficient solar cells with porous silicon

    International Nuclear Information System (INIS)

    Migunova, A.A.

    2002-01-01

    It has been shown that the porous silicon is multifunctional high-efficient coating on silicon solar cells, modifies its surface and combines in it self antireflection and passivation properties., The different optoelectronic effects in solar cells with porous silicon were considered. The comparative parameters of uncovered photodetectors also solar cells with porous silicon and other coatings were resulted. (author)

  15. High p-Type Doping, Mobility, and Photocarrier Lifetime in Arsenic-Doped CdTe Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagaoka, Akira [Kyoto University; University of Utah; McCoy, Jedidiah [Washington State University; Scarpulla, Michael A. [University of Utah

    2018-05-08

    Group-V element doping is promising for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe for thin film solar cells, but there are roadblocks concerning point defects including the possibility of self-compensation by AX metastability. Herein, we report on doping, lifetime, and mobility of CdTe single crystals doped with As between 10^16 and 10^20 cm-3 grown from the Cd solvent by the travelling heater method. Evidence consistent with AX instability as a major contributor to compensation in samples doped below 10^17 cm-3 is presented, while for higher-doped samples, precipitation of a second phase on planar structural defects is also observed and may explain spatial variation in properties such as lifetime. Rapid cooling after crystal growth increases doping efficiency and mobility for times up to 20-30 days at room temperature with the highest efficiencies observed close to 45% and a hole mobility of 70 cm2/Vs at room temperature. A doping limit in the low 10^17/cm3 range is observed for samples quenched at 200-300 degrees C/h. Bulk minority carrier lifetimes exceeding 20 ns are observed for samples doped near 10^16 cm-3 relaxed in the dark and for unintentionally doped samples, while a lifetime of nearly 5 ns is observed for 10^18 cm-3 As doping. These results help us to establish limits on properties expected for group-V doped CdTe polycrystalline thin films for use in photovoltaics.

  16. Process development for high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gee, J.M.; Basore, P.A.; Buck, M.E.; Ruby, D.S.; Schubert, W.K.; Silva, B.L.; Tingley, J.W.

    1991-12-31

    Fabrication of high-efficiency silicon solar cells in an industrial environment requires a different optimization than in a laboratory environment. Strategies are presented for process development of high-efficiency silicon solar cells, with a goal of simplifying technology transfer into an industrial setting. The strategies emphasize the use of statistical experimental design for process optimization, and the use of baseline processes and cells for process monitoring and quality control. 8 refs.

  17. Photostimulated changes of properties of CdTe films

    Energy Technology Data Exchange (ETDEWEB)

    Dzhafarov, T.D. [Institute of Physics, Azerbaijan National Academy of Sciences, AZ-1143 Baku (Azerbaijan); Yesilkaya, S.S. [Department of Physics, Yildiz Technical University, 34210 Esenler/Istanbul (Turkey)

    2007-08-15

    The effect of illumination during the close-spaced sublimation (CSS) growth on composition, structural, electrical, optical and photovoltaic properties of CdTe films and CdTe/CdS solar cells were investigated. Data on comparative study by using X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectra and conductivity-temperature measurements of CdTe films prepared by CSS method in dark (CSSD) and under illumination (CSSI) were presented. It is shown that the growth rate and the grain size of CdTe films grown under illumination is higher (by factor about of 1.5 and 3 respectively) than those for films prepared without illumination. The energy band gap of CdTe films fabricated by both technology, determined from absorption spectra, is same (about of 1.50 eV), however conductivity of the CdTe films produced by CSSI is considerably greater (by factor of 10{sup 7}) than that of films prepared by CSSD. The photovoltaic parameters of pCdTe/nCdS solar cells fabricated by photostimulated CSSI technology (J{sub sc}=28 mA/cm{sup 2}, V{sub oc}=0.63 V) are considerably larger than those for cells prepared by CSSD method (J{sub sc}=22 mA/cm{sup 2}, V{sub oc}=0.52 V). A mechanism of photostimulated changes of properties of CdTe films and improvement of photovoltaic parameters of CdTe/CdS solar cells is suggested. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. High-efficiency concentrator silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

    1990-11-01

    This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

  19. Achievement report for fiscal 1997 on development of technologies for practical photovoltaic system under New Sunshine Program. Manufacture of thin-film solar cell and of low-cost/large-area module (Manufacture of high-reliability CdTe solar module); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu, tei cost daimenseki module seizo gijutsu kaihatsu (koshinraisei CdTe taiyo denchi module no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The target is a low-cost CdS/CdTe solar cell of a large area (60cm times 90cm), the establishment of mass-production technologies for the cell, and the enhancement of production efficiency. A thin film formation technology of subjecting CdS film organic metal to pyrolysis is established, which reduces photoabsorption loss in the shortwave domain of wavelength of not longer than 500nm, reduces reflection loss in the film, and improves on short-circuit current density. Improvement is also achieved on CdTe film quality and junction quality by use of a proximity sublimation method in a vacuum, when a conversion rate of 16.0% (1cm{sup 2}) is attained which is the highest in the world. Based on the results of the above-said efforts, a 3.3mm-thick glass substrate is employed for CdTe film to develop into a 30cm times 60cm-large size, with the film thereon uniformly thick over a large area thanks to a normal pressure proximity sublimation method. Studies are made toward a process nearer to the ultimate product and, using the patterning technique, a 30cm times 60cm-large CdTe solar cell is tentatively built realizing a conversion rate of 9.8%. (NEDO)

  20. Impedance spectroscopy of CdTe thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Charlotte; Heisler, Christoph; Reisloehner, Udo; Ronning, Carsten; Wesch, Werner [Institute of Solid State Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2012-07-01

    Impedance Spectroscopy (IS) is a widely used method to analyze dielectric properties of specimen as a function of frequency. Typically this characterization method delivers an equivalent circuit diagram of the device under examination to describe its electrical properties. Traditionally IS is used in coating evaluation, corrosion monitoring and in electrochemistry. During the last years the method became more important also in the field of electrical characterization of solar cells. In our work we use IS for the electrical characterization of thin film CdTe solar cells. The measurement is done at room temperature without illumination in a frequency domain from 20 Hz to 2 MHz. The samples are measured under variable forward bias. The results match insufficiently with the model of two resistor-capacitor circuits in series which is commonly used to describe the p-n junction and the blocking back contact. For better consistency, other models from the literature are used and discussed. From the results a conclusion is drawn about the properties of the solar cell such as the nature of the p-n junction or the performance of the back contact.

  1. Semiconductor interfaces of polycrystalline CdTe thin-film solar cells. Characterization and modification of electronic properties

    International Nuclear Information System (INIS)

    Fritsche, J.

    2003-01-01

    In this thesis for the first time the electronic properties of the semiconductor interfaces in polycrystalline CdTe thin-film solar cells, as well as the morphological and electronic properties of the single semiconductor surfaces were systematically characterized by surface-sensitive measuring methods. The morphological surface properties were analyzed by scanning force microscopy. As substrate materials with SnO 2 /ITO covered glass was applied, where the CdS and CdTe layers were deposited. Furthermore the electronic and morphological material properties of differently treated SnO 2 surfaces were characterized. Beside the studies with scanning force microscopy sputtering depth profiles and X-ray photoelectron spectroscopy were measured

  2. Review of status developments of high-efficiency crystalline silicon solar cells

    Science.gov (United States)

    Liu, Jingjing; Yao, Yao; Xiao, Shaoqing; Gu, Xiaofeng

    2018-03-01

    In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

  3. Solution-processing of ultra-thin CdTe/ZnO nanocrystal solar cells

    International Nuclear Information System (INIS)

    MacDonald, Brandon I.; Gengenbach, Thomas R.; Watkins, Scott E.; Mulvaney, Paul; Jasieniak, Jacek J.

    2014-01-01

    We have carried out a detailed study into how modifications of the physical, chemical and optical properties of solution-processed, nanocrystalline CdTe layers influence the photovoltaic performance of sintered CdTe/ZnO nanocrystal solar cells. Such solar cells are fabricated through layer-by-layer assembly, which is enabled through an inter layer chemical and thermal treatment cycle. In this manner we are able to fabricate working solar cells with sintered CdTe layers as low as 90 nm, provided that grain size is precisely controlled. We show that the extent of grain growth achieved during the CdTe sintering process is strongly dependent on nanocrystal surface chemistry and chemical environment, with the removal of the organic capping ligands and the introduction of CdCl 2 prior to annealing leading to greatly enhanced growth. Due to the air processing involved and the nanocrystalline nature of the CdTe, the overall performance of these solar cells is shown to be strongly dependent on both annealing temperature and time, with optimal results requiring a balance between crystal growth and degradation due to oxidation. Using this simple bi-layer device structure, optimized treatment conditions result in power conversion efficiencies of up to 7.7% and peak internal quantum efficiencies in excess of 95%. - Highlights: • We study the growth of nanocrystalline CdTe thin films from colloidal nanocrystals. • We examine the CdTe growth profiles as a function of surface chemistry. • We show that nanocrystalline CdTe is susceptible to oxidation under air annealing. • We show how this oxidation influences performance in CdTe/ZnO solar cells. • We demonstrate CdTe/ZnO solar cells with an efficiency of 7.7% fabricated in air

  4. How grain boundaries affect the efficiency of poly-CdTe solar-cells: A fundamental atomic-scale study of grain boundary dislocation cores using CdTe bi-crystal thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Klie, Robert [Univ. of Illinois, Chicago, IL (United States)

    2016-10-25

    It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functional theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.

  5. Simple processing of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Hamammu, I.M.; Ibrahim, K.

    2006-01-01

    Cost effective photovoltaic devices have been an area research since the development of the first solar cells, as cost is the major factor in their usage. Silicon solar cells have the biggest share in the photovoltaic market, though silicon os not the optimal material for solar cells. This work introduces a simplified approach for high efficiency silicon solar cell processing, by minimizing the processing steps and thereby reducing cost. The suggested procedure might also allow for the usage of lower quality materials compared to the one used today. The main features of the present work fall into: simplifying the diffusion process, edge shunt isolation and using acidic texturing instead of the standard alkaline processing. Solar cells of 17% efficiency have been produced using this procedure. Investigations on the possibility of improving the efficiency and using less quality material are still underway

  6. A Short Progress Report on High-Efficiency Perovskite Solar Cells.

    Science.gov (United States)

    Tang, He; He, Shengsheng; Peng, Chuangwei

    2017-12-01

    Faced with the increasingly serious energy and environmental crisis in the world nowadays, the development of renewable energy has attracted increasingly more attention of all countries. Solar energy as an abundant and cheap energy is one of the most promising renewable energy sources. While high-performance solar cells have been well developed in the last couple of decades, the high module cost largely hinders wide deployment of photovoltaic devices. In the last 10 years, this urgent demand for cost-effective solar cells greatly facilitates the research of solar cells. This paper reviews the recent development of cost-effective and high-efficient solar cell technologies. This report paper covers low-cost and high-efficiency perovskite solar cells. The development and the state-of-the-art results of perovskite solar cell technologies are also introduced.

  7. Se-Se isoelectronic centers in high purity CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Rita; Andre, Regis; Mariette, Henri [CEA-CNRS, Nanophysique et Semiconducteurs, Institut Neel, 25 rue des martyrs, 38042 Grenoble (France); Golnik, Andrzej; Kossacki, Piotr; Gaj, Jan A. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland)

    2010-06-15

    We evidence zero-dimensional exciton states trapped on isoelectronic Se centers in CdTe quantum wells, {delta}-doped with Se. Thanks to special precautions taken to have very high purity CdTe heterostructures, it is possible to observe, in photoluminescence spectra, sharp discrete lines arising from individual centers related to the Se doping. These emission lines appear at about 40 meV below the CdTe band gap energy. The most prominent lines are attributed to the recombination of excitons bound to nearest-neighbor selenium pairs in a tetrahedral CdTe environment. This assignment is confirmed by a common linear polarization direction of the emitted light, parallel to <110>. These excitons localized on individual isoelectronic traps are good candidates as single photon emitters (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Elaboration of fabrication technology of ITO/CdS/CdTe solar cells on flexible polymer substrates

    International Nuclear Information System (INIS)

    Potlog, T.; Spalatu, N.; Capros, N.

    2007-01-01

    The development of high efficiency, stable, lightweight and flexible solar cell is important for terrestrial and space applications. We have developed a novel process to make solar cells on flexible polymer sheets. A thin layer of CdTe compound semiconductor is used for the absorption of solar light and generation of electrical current. In this work the solar electricity conversion efficiency of 4,66% is the highest efficiency reported for a solar cell grown on a polymer sheet. (authors)

  9. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    Science.gov (United States)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  10. Band structure of CdTe under high pressure

    International Nuclear Information System (INIS)

    Jayam, Sr. Gerardin; Nirmala Louis, C.; Amalraj, A.

    2005-01-01

    The band structures and density of states of cadmium telluride (CdTe) under various pressures ranging from normal to 4.5 Mbar are obtained. The electronic band structure at normal pressure of CdTe (ZnS structure) is analyzed and the direct band gap value is found to be 1.654 eV. CdTe becomes metal and superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The equilibrium lattice constant, bulk modulus and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(E F )) gets enhanced after metallization, which leads to the superconductivity in CdTe. In our calculation, the metallization pressure (P M = 1.935 Mbar) and the corresponding reduced volume ((V/V 0 ) M = 0.458) are estimated. Metallization occurs via direct closing of band gap at Γ point. (author)

  11. The CRRES high efficiency solar panel

    International Nuclear Information System (INIS)

    Trumble, T.M.

    1991-01-01

    This paper reports on the High Efficiency Solar Panel (HESP) experiments which is to provide both engineering and scientific information concerning the effects of space radiation on advanced gallium arsenide (GaAs) solar cells. The HESP experiment consists of an ambient panel, and annealing panel and a programmable load. This experiment, in conjunction with the radiation measurement experiments abroad the CREES, provides the first opportunity to simultaneously measure the trapped radiation belts and the results of radiation damage to solar cells. The engineering information will result in a design guide for selecting the optimum solar array characteristics for different orbits and different lifetimes. The scientific information will provide both correlation of laboratory damage effects to space damage effects and a better model for predicting effective solar cell panel lifetimes

  12. High efficiency double sided solar cells

    International Nuclear Information System (INIS)

    Seddik, M.M.

    1990-06-01

    Silicon technology state of the art for single crystalline was given to be limited to less than 20% efficiency. A proposed new form of photovoltaic solar cell of high current high efficiency with double sided structures has been given. The new forms could be n ++ pn ++ or p ++ np ++ double side junctions. The idea of double sided devices could be understood as two solar cells connected back-to-back in parallel electrical connection, in which the current is doubled if the cell is illuminated from both sides by a V-shaped reflector. The cell is mounted to the reflector such that each face is inclined at an angle of 45 deg. C to each side of the reflector. The advantages of the new structure are: a) High power devices. b) Easy to fabricate. c) The cells are used vertically instead of horizontal use of regular solar cell which require large area to install. This is very important in power stations and especially for satellite installation. If the proposal is made real and proved to be experimentally feasible, it would be a new era for photovoltaic solar cells since the proposal has already been extended to even higher currents. The suggested structures could be stated as: n ++ pn ++ Vp ++ np ++ ;n ++ pn ++ Vn ++ pn ++ ORp ++ np ++ Vp ++ np ++ . These types of structures are formed in wedged shape to employ indirect illumination by either parabolic; conic or V-shaped reflectors. The advantages of these new forms are low cost; high power; less in size and space; self concentrating; ... etc. These proposals if it happens to find their ways to be achieved experimentally, I think they will offer a short path to commercial market and would have an incredible impact on solar cell technology and applications. (author). 12 refs, 5 figs

  13. Effect of shells on photoluminescence of aqueous CdTe quantum dots

    International Nuclear Information System (INIS)

    Yuan, Zhimin; Yang, Ping

    2013-01-01

    Graphical abstract: Size-tunable CdTe coated with several shells using an aqueous solution synthesis. CdTe/CdS/ZnS quantum dots exhibited high PL efficiency up to 80% which implies the promising applications for biomedical labeling. - Highlights: • CdTe quantum dots were fabricated using an aqueous synthesis. • CdS, ZnS, and CdS/ZnS shells were subsequently deposited on CdTe cores. • Outer ZnS shells provide an efficient confinement of electron and hole inside the QDs. • Inside CdS shells can reduce the strain on the QDs. • Aqueous CdTe/CdS/ZnS QDs exhibited high stability and photoluminescence efficiency of 80%. - Abstract: CdTe cores with various sizes were fabricated in aqueous solutions. Inorganic shells including CdS, ZnS, and CdS/ZnS were subsequently deposited on the cores through a similar aqueous procedure to investigate the effect of shells on the photoluminescence properties of the cores. In the case of CdTe/CdS/ZnS quantum dots, the outer ZnS shell provides an efficient confinement of electron and hole wavefunctions inside the quantum dots, while the middle CdS shell sandwiched between the CdTe core and ZnS shell can be introduced to obviously reduce the strain on the quantum dots because the lattice parameters of CdS is situated at the intermediate-level between those of CdTe and ZnS. In comparison with CdTe/ZnS core–shell quantum dots, the as-prepared water-soluble CdTe/CdS/ZnS quantum dots in our case can exhibit high photochemical stability and photoluminescence efficiency up to 80% in an aqueous solution, which implies the promising applications in the field of biomedical labeling

  14. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  15. Fiscal 1998 New Sunshine Program achievement report. Development for practical application of photovoltaic system - Development of thin-film solar cell manufacturing technology (Development of low-cost/large-area module manufacturing technology - Development of high-reliability CdS/CdTe solar cell module manufacturing technology); 1998 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu / tei cost daimenseki module seizo gijutsu kaihatsu (koshinraisei CdTe taiyo denchi module no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Cost reduction for the above-named solar cells is the aim of this effort. On the basis of the results of past studies, a technology is established of fabricating a thin CdS film by subjecting a CdS film to organometal pyrolysis, and this brings about a decrease in photoabsorption loss in the range of waves shorter than 500nm and a decrease in in-film reflection loss for an increase in short-circuit current density. A proximity sublimation method is used for CdTe film fabrication, which improves on film quality and film adhesion. These efforts result in the achievement of a conversion efficiency of 16.0% which is the highest in the world. Studies are promoted in a process nearer to the ultimate form, and a 30cm times 60cm large CdTe solar cell is fabricated on the basis of a patterning technique, and the product attains a conversion efficiency of 9.8%. In fiscal 1998, studies center about the establishment of a film fabrication process for a medium-are substrate and about the enhancement of its conversion efficiency, and facilities capable of dealing with large-area substrates are introduced and operated. In a typical achievement, a CdTe solar cell is experimentally fabricated in a process which is wholly under normal pressure, and the product with an aperture area of 1376cm{sup 2} exhibits a conversion efficiency of 10.5% according to JQA (Japan Quality Assurance Organization). (NEDO)

  16. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Wilkening, Jean V.; Field, James A.; Sierra-Alvarez, Reyes

    2017-01-01

    A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. PMID:28472709

  17. Caliste-SO, a CdTe based spectrometer for bright solar event observations in hard X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Meuris, A., E-mail: aline.meuris@cea.fr [CEA-Irfu – CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Limousin, O.; Gevin, O.; Blondel, C.; Martignac, J. [CEA-Irfu – CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Vassal, M.-C.; Soufflet, F.; Fiant, N. [3D Plus – 408 rue Hélène Boucher, F-78532 Buc Cedex (France); Bednarzik, M.; Stutz, S. [Paul Scherrer Institute (PSI), Laboratory for Micro- and Nanotechnology, 5232 Villigen (Switzerland); Grimm, O.; Commichau, V. [ETH Zurich, Institute for Particle Physics, Schafmattstrasse 20, 8093 Zurich (Switzerland)

    2015-07-01

    Caliste-SO is a CdTe hybrid detector designed to be used as a spectrometer for a hard X-ray Fourier telescope. The imaging technique was implemented in the Yohkoh satellite in 1991 and the RHESSI satellite in 2002 to achieve arc-second angular resolution images of solar flares with spectroscopic capabilities. The next generation of such instruments will be the Spectrometer Telescope Imaging X-rays (STIX) on-board the Solar Orbiter mission adopted by the European Space Agency in 2011 for launch in 2017. The design and performance of Caliste-SO allows both high spectral resolution and high count rate measurements from 4 to 150 keV with limited demands on spacecraft resources such as mass, power and volume (critical for interplanetary missions). The paper reports on the flight production of the Caliste-SO devices for STIX, describing the test facilities built-up in Switzerland and France. It illustrates some results obtained with the first production samples that will be mounted in the STIX engineering model.

  18. Optimization of Monocrystalline MgxCd1-xTe/MgyCd1-yTe Double-Heterostructure Solar Cells

    Science.gov (United States)

    Becker, Jacob J.

    Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials--ZnTe, CuZnS, and a-Si:H--and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline

  19. Efficiency enhancement calculations of state-of-the-art solar cells by luminescent layers with spectral shifting, quantum cutting, and quantum tripling function

    NARCIS (Netherlands)

    Ten Kate, O.M.; De Jong, M.; Hintzen, H.T.; Van der Kolk, E.

    2013-01-01

    Solar cells of which the efficiency is not limited by the Shockley-Queisser limit can be obtained by integrating a luminescent spectral conversion layer into the cell structure. We have calculated the maximum efficiency of state-of-the-art c-Si, pc-Si, a-Si, CdTe, GaAs, CIS, CIGS, CGS, GaSb, and Ge

  20. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  1. Radiation hardened high efficiency silicon space solar cell

    International Nuclear Information System (INIS)

    Garboushian, V.; Yoon, S.; Turner, J.

    1993-01-01

    A silicon solar cell with AMO 19% Beginning of Life (BOL) efficiency is reported. The cell has demonstrated equal or better radiation resistance when compared to conventional silicon space solar cells. Conventional silicon space solar cell performance is generally ∼ 14% at BOL. The Radiation Hardened High Efficiency Silicon (RHHES) cell is thinned for high specific power (watts/kilogram). The RHHES space cell provides compatibility with automatic surface mounting technology. The cells can be easily combined to provide desired power levels and voltages. The RHHES space cell is more resistant to mechanical damage due to micrometeorites. Micro-meteorites which impinge upon conventional cells can crack the cell which, in turn, may cause string failure. The RHHES, operating in the same environment, can continue to function with a similar crack. The RHHES cell allows for very efficient thermal management which is essential for space cells generating higher specific power levels. The cell eliminates the need for electrical insulation layers which would otherwise increase the thermal resistance for conventional space panels. The RHHES cell can be applied to a space concentrator panel system without abandoning any of the attributes discussed. The power handling capability of the RHHES cell is approximately five times more than conventional space concentrator solar cells

  2. Electroplating of CdTe Thin Films from Cadmium Sulphate Precursor and Comparison of Layers Grown by 3-Electrode and 2-Electrode Systems

    Directory of Open Access Journals (Sweden)

    Imyhamy M. Dharmadasa

    2017-01-01

    Full Text Available Electrodeposition of CdTe thin films was carried out from the late 1970s using the cadmium sulphate precursor. The solar energy group at Sheffield Hallam University has carried out a comprehensive study of CdTe thin films electroplated using cadmium sulfate, cadmium nitrate and cadmium chloride precursors, in order to select the best electrolyte. Some of these results have been published elsewhere, and this manuscript presents the summary of the results obtained on CdTe layers grown from cadmium sulphate precursor. In addition, this research program has been exploring the ways of eliminating the reference electrode, since this is a possible source of detrimental impurities, such as K+ and Ag+ for CdS/CdTe solar cells. This paper compares the results obtained from CdTe layers grown by three-electrode (3E and two-electrode (2E systems for their material properties and performance in CdS/CdTe devices. Thin films were characterized using a wide range of analytical techniques for their structural, morphological, optical and electrical properties. These layers have also been used in device structures; glass/FTO/CdS/CdTe/Au and CdTe from both methods have produced solar cells to date with efficiencies in the region of 5%–13%. Comprehensive work carried out to date produced comparable and superior devices fabricated from materials grown using 2E system.

  3. The role of oxygen in CdS/CdTe solar cells deposited by close-spaced sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D.H.; Levi, D.H.; Matson, R.J. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The presence of oxygen during close-spaced sublimation (CSS) of CdTe has been previously reported to be essential for high-efficiency CdS/CdTe solar cells because it increases the acceptor density in the absorber. The authors find that the presence of oxygen during CSS increases the nucleation site density of CdTe, thus decreasing pinhole density and grain size. Photoluminescence showed that oxygen decreases material quality in the bulk of the CdTe film, but positively impacts the critical CdS/CdTe interface. Through device characterization the authors were unable to verify an increase in acceptor density with increased oxygen. These results, along with the achievement of high-efficiency cells (13% AM1.5) without the use of oxygen, led the authors to conclude that the use of oxygen during CSS deposition of CdTe can be useful but is not essential.

  4. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  5. CdTe Photovoltaics for Sustainable Electricity Generation

    Science.gov (United States)

    Munshi, Amit; Sampath, Walajabad

    2016-09-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  6. Advances in High-Efficiency III-V Multijunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Richard R. King

    2007-01-01

    Full Text Available The high efficiency of multijunction concentrator cells has the potential to revolutionize the cost structure of photovoltaic electricity generation. Advances in the design of metamorphic subcells to reduce carrier recombination and increase voltage, wide-band-gap tunnel junctions capable of operating at high concentration, metamorphic buffers to transition from the substrate lattice constant to that of the epitaxial subcells, concentrator cell AR coating and grid design, and integration into 3-junction cells with current-matched subcells under the terrestrial spectrum have resulted in new heights in solar cell performance. A metamorphic Ga0.44In0.56P/Ga0.92In0.08As/ Ge 3-junction solar cell from this research has reached a record 40.7% efficiency at 240 suns, under the standard reporting spectrum for terrestrial concentrator cells (AM1.5 direct, low-AOD, 24.0 W/cm2, 25∘C, and experimental lattice-matched 3-junction cells have now also achieved over 40% efficiency, with 40.1% measured at 135 suns. This metamorphic 3-junction device is the first solar cell to reach over 40% in efficiency, and has the highest solar conversion efficiency for any type of photovoltaic cell developed to date. Solar cells with more junctions offer the potential for still higher efficiencies to be reached. Four-junction cells limited by radiative recombination can reach over 58% in principle, and practical 4-junction cell efficiencies over 46% are possible with the right combination of band gaps, taking into account series resistance and gridline shadowing. Many of the optimum band gaps for maximum energy conversion can be accessed with metamorphic semiconductor materials. The lower current in cells with 4 or more junctions, resulting in lower I2R resistive power loss, is a particularly significant advantage in concentrator PV systems. Prototype 4-junction terrestrial concentrator cells have been grown by metal-organic vapor-phase epitaxy, with preliminary measured

  7. High-quality CdTe films from nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.L.; Pehnt, M.; Urgiles, E. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  8. Investigation of the chlorine A-Center in polycrystalline CdTe layers by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Christian; Metzner, Heiner; Haedrich, Mathias [Institut fuer Festkoerperphysik, Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Schley, Pascal [Institut fuer Physik, Technische Universitaet Ilmenau, 98684 Ilmenau (Germany); Goldhahn, Ruediger [Institut fuer Experimentelle Physik, Universitaet Magdeburg, 39016 Magdeburg (Germany)

    2012-07-01

    Polycrystalline CdTe is a well known absorber material for thin film solar cells. However, the improvement of CdTe-based solar cells for industrial application is mainly based on empirical enhancements of certain process steps which are not concerning the absorber itself. Hence, the defect structure of CdTe is still not understood in detail. One of the most discussed defects in CdTe is the so called chlorine A-center. In general, the A-Center describes a defect complex of the intrinsic cadmium vacancy defect and an extrinsic impurity. By means of photoluminescence spectroscopy at temperatures of 5 K we investigated the behavior of the chlorine A-center under different CdTe activation techniques. Therefore, we were able to determine the electronic level of that defect and to analyze its influence on the crystal quality and the functionality of solar cells that were prepared of the corresponding samples.

  9. Development of high-efficiency solar cells on silicon web

    Science.gov (United States)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  10. Radiative and interfacial recombination in CdTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, C. H., E-mail: craig.swartz@txstate.edu; Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H. [Materials Science, Engineering, and Commercialization Program, Texas State University, 601 University Dr., San Marcos, Texas 78666 (United States); Zaunbrecher, K. N. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Mississippi RSF200, Golden, Colorado 80401 (United States)

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  11. Self-Catalyzed CdTe Wires

    Directory of Open Access Journals (Sweden)

    Tom Baines

    2018-04-01

    Full Text Available CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111 oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  12. Technical evaluation of Solar Cells, Inc., CdTe module and array at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Strand, T.; Hansen, R. [National Renewable Energy Lab., Golden, CO (United States); Powell, R.; Sasala, R. [Solar Cells, Inc., Toledo, OH (United States)

    1996-05-01

    The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}, V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

  13. Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Science.gov (United States)

    Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff

    2015-01-01

    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.

  14. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination.

    Science.gov (United States)

    Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun

    2018-04-04

    Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.

  15. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells

    Science.gov (United States)

    2013-01-01

    Hybrid thin film solar cell based on all-inorganic nanoparticles is a new member in the family of photovoltaic devices. In this work, a novel and performance-efficient inorganic hybrid nanostructure with continuous charge transportation and collection channels is demonstrated by introducing CdTe nanotetropods (NTs) and CdSe quantum dots (QDs). Hybrid morphology is characterized, demonstrating an interpenetration and compacted contact of NTs and QDs. Electrical measurements show enhanced charge transfer at the hybrid bulk heterojunction interface of NTs and QDs after ligand exchange which accordingly improves the performance of solar cells. Photovoltaic and light response tests exhibit a combined optic-electric contribution from both CdTe NTs and CdSe QDs through a formation of interpercolation in morphology as well as a type II energy level distribution. The NT and QD hybrid bulk heterojunction is applicable and promising in other highly efficient photovoltaic materials such as PbS QDs. PMID:24139059

  16. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.

    2018-01-02

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  17. Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

    KAUST Repository

    Bahabry, Rabab R.; Kutbee, Arwa T.; Khan, Sherjeel M.; Sepulveda, Adrian C.; Wicaksono, Irmandy; Nour, Maha A.; Wehbe, Nimer; Almislem, Amani Saleh Saad; Ghoneim, Mohamed T.; Sevilla, Galo T.; Syed, Ahad; Shaikh, Sohail F.; Hussain, Muhammad Mustafa

    2018-01-01

    Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.

  18. A novel high efficiency solar photovoltalic pump

    NARCIS (Netherlands)

    Diepens, J.F.L.; Smulders, P.T.; Vries, de D.A.

    1993-01-01

    The daily average overall efficiency of a solar pump system is not only influenced by the maximum efficiency of the components of the system, but just as much by the correct matching of the components to the local irradiation pattern. Normally centrifugal pumps are used in solar pump systems. The

  19. Potential high efficiency solar cells: Applications from space photovoltaic research

    Science.gov (United States)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  20. Interface Study of ITO/ZnO and ITO/SnO2 Complex Transparent Conductive Layers and Their Effect on CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Tingliang Liu

    2013-01-01

    Full Text Available Transparent ITO/ZnO and ITO/SnO2 complex conductive layers were prepared by DC- and RF-magnetron sputtering. Their structure and optical and electronic performances were studied by XRD, UV/Vis Spectroscopy, and four-probe technology. The interface characteristic and band offset of the ITO/ZnO, ITO/SnO2, and ITO/CdS were investigated by Ultraviolet Photoelectron Spectroscopy (UPS and X-ray Photoelectron Spectroscopy (XPS, and the energy band diagrams have also been determined. The results show that ITO/ZnO and ITO/SnO2 films have good optical and electrical properties. The energy barrier those at the interface of ITO/ZnO and ITO/SnO2 layers are almost 0.4 and 0.44 eV, which are lower than in ITO/CdS heterojunctions (0.9 eV, which is beneficial for the transfer and collection of electrons in CdTe solar cells and reduces the minority carrier recombination at the interface, compared to CdS/ITO. The effects of their use in CdTe solar cells were studied by AMPS-1D software simulation using experiment values obtained from ZnO, ITO, and SnO2. From the simulation, we confirmed the increase of Eff, FF, Voc, and Isc by the introduction of ITO/ZnO and ITO/SnO2 layers in CdTe solar cells.

  1. About the use of photoacoustic spectroscopy for the optical characterization of semiconductor thin films: CdTe

    International Nuclear Information System (INIS)

    Marin, E.; Calderon, A.; Vigil G, O.; Sastre, J.; Contreras P, G.; Aguilar H, J.; Saucedo, E.; Ruiz, C.M.

    2006-01-01

    CdTe has been used satisfactorily in multiple and diverse technological applications such as detectors of X and gamma rays that operate at room temperature, for digital imagenology of X rays with medical and industrial applications and as active part in CdTe/CdS solar cells. In form of films, CdTe is generally grown with thicknesses ranging between 3 and 15 μm, for which it is difficult to measure, by means of optical techniques, absorption coefficients greater than 10 3 cm -1 because nearly full absorption of light should occur below 800 nm. The exact determination of the optical absorption coefficient in detectors on the basis of CdTe is very important since this parameter determines the absorption length at which 90% of the photons with energies over the forbidden zone of the CdTe will be absorbed by this. In CdS/CdTe polycrystalline solar cells the greater efficiency of conversion have been reported for film thicknesses of 10 mm, however, the optimal value of this parameter depends strongly on the method and the variables of growth. The optical absorption coefficient spectrum can be determined by several methods, often involving several approximations and the knowledge of some minority carrier related electronic parameters that reduce their application in general way. In this work we propose to determine the absorption coefficient in CdTe thin films by photoacoustic spectroscopy (PAS), because this technique allow us to obtain the optical absorption spectra in thicker layers and therefore the study of the influence of the several growth and post-growth processes in the optical properties of this thin films. We measure by PAS the optical-absorption coefficients of CdTe thin films in the spectral region near the fundamental absorption edge ranging from 1.0 to 2.4 eV using an open cell in the transmission configuration. The films were deposited on different substrates by the CSVT-HW (hot wall) technique. In order to study the influence of several growth

  2. Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation.

    Science.gov (United States)

    Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing

    2018-01-10

    The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.

  3. High efficiency thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Hans-Werner [Helmholtz Zentrum Berlin (Germany). Solar Energy

    2012-11-01

    Production of photovoltaics is growing worldwide on a gigawatt scale. Among the thin film technologies, Cu(In,Ga)S,Se{sub 2} (CIS or CIGS) based solar cells have been the focus of more and more attention. This paper aims to analyze the success of CIGS based solar cells and the potential of this technology for future photovoltaics large-scale production. Specific material properties make CIS unique and allow the preparation of the material with a wide range of processing options. The huge potential lies in the possibility to take advantage of modern thin film processing equipment and combine it with very high efficiencies beyond 20% already achieved on the laboratory scale. A sustainable development of this technology could be realized by modifying the materials and replacing indium by abundant elements. (orig.)

  4. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yan [Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130023 (China); Shen Qihui; Shi Weiguang; Li Jixue; Liu Xiaoyang [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yu Dongdong [1st Hopstail affiliated to Jilin University, Jilin University, Changchun 130023 (China); Zhou Jianguang [Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310058 (China)], E-mail: liuxy@jlu.edu.cn, E-mail: jgzhou70@126.com

    2008-06-18

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  5. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    International Nuclear Information System (INIS)

    Liu Yan; Shen Qihui; Shi Weiguang; Li Jixue; Liu Xiaoyang; Yu Dongdong; Zhou Jianguang

    2008-01-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals

  6. Perovskite Solar Cells for High-Efficiency Tandems

    Energy Technology Data Exchange (ETDEWEB)

    McGehee, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buonassisi, Tonio [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-09-30

    The first monolithic perovskite/silicon tandem was made with a diffused silicon p-n junction, a tunnel junction made of n++ hydrogenated amorphous silicon, a titania electron transport layer, a methylammonium lead iodide absorber, and a Spiro-OMeTAD hole transport layer (HTL). The power conversion efficiency (PCE) was only 13.7% due to excessive parasitic absorption of light in the HTL, limiting the matched current density to 11.5 mA/cm2. Werner et al.15 raised the PCE to a record 21.2% by switching to a silicon heterojunction bottom cell and carefully tuning layer thicknesses to achieve lower optical loss and a higher current density of 15.9 mA/cm2. It is clear from these reports that minimizing parasitic absorption in the window layers is crucial to achieving higher current densities and efficiencies in monolithic tandems. To this end, the window layers through which light first passes before entering the perovskite and silicon absorber materials must be highly transparent. The front electrode must also be conductive to carry current laterally across the top of the device. Indium tin oxide (ITO) is widely utilized as a transparent electrode in optoelectronic devices such as flat-panel displays, smart windows, organic light-emitting diodes, and solar cells due to its high conductivity and broadband transparency. ITO is typically deposited through magnetron sputtering; however, the high kinetic energy of sputtered particles can damage underlying layers. In perovskite solar cells, a sputter buffer layer is required to protect the perovskite and organic carrier extraction layers from damage during sputter deposition. The ideal buffer layer should also be energetically well aligned so as to act as a carrier-selective contact, have a wide bandgap to enable high optical transmission, and have no reaction with the halides in the perovskite. Additionally, this buffer layer should act as a diffusion barrier layer to prevent both

  7. Results from the high efficiency solar panel experiment flown on CRRES

    International Nuclear Information System (INIS)

    Ray, K.P.; Mullen, E.G.; Trumble, T.M.

    1993-01-01

    This paper presents results from the High Efficiency Solar Panel Experiment (HESP) flown on the Combined Release and Radiation Effects Satellite (CRRES). The on-orbit solar cell degradation is correlated with the proton and electron environments. Comparisons between gallium arsenide germanium (GaAs/Ge) and silicon (Si) solar cells are presented, and results from three different annealing methods of like GaAs solar cells are compared

  8. Photovoltaic properties of sintered CdS/CdTe solar cells doped with Cu

    International Nuclear Information System (INIS)

    Park, J.W.; Ahn, B.T.; Im, H.B.; Kim, C.S.

    1992-01-01

    In this paper, all polycrystalline CdS/CdTe solar cells doped with Cu are prepared by a screen printing and sintering method. Cell parameters of the sintered CdS/CdTe solar cells have been investigated in an attempt to find out the optimum doping conditions and concentrations of Cu by adding various amounts of CuCl 2 either into CdTe layer or into back contact carbon layer. Cell parameters of the sintered CdS/CdTe solar cells which contained various amounts of CuCl 2 in the CdTe layers before sintering stay at about the same values as the amount of CuCl 2 increases up to 25 ppm, and then decreases sharply as the amount of CuCl 2 further increases. The Cu added in the CdTe layer diffuses into the CdS layer during the sintering of the CdS-CdTe composite at 625 degrees C to densify the CdTe layer and causes the decrease in the optical transmission of CdS resulting in the degradation of the cell performance. In case the Cu dopant was dispersed in the back carbon paint and was followed by annealing, all cell parameters are improved significantly compared with those fabricated by adding CuCl 2 in the CdTe layer before sintering. A sintered CdS/CdTe solar cell which contained 25 ppm CuCl 2 in the carbon paste and was annealed at 350 degrees C for 10 min shows the highest efficiency. The efficiency of this cell is 12.4% under solar irradiation with an intensity of 80.4 mW/cm 2

  9. High Efficiency Multijunction Solar Cells with Finely-Tuned Quantum Wells

    Science.gov (United States)

    Varonides, Argyrios C.

    The field of high efficiency (inorganic) photovoltaics (PV) is rapidly maturing in both efficiency goals and cover all cost reduction of fabrication. On one hand, know-how from space industry in new solar cell design configurations and on the other, fabrication cost reduction challenges for terrestrial uses of solar energy, have paved the way to a new generation of PV devices, capable of capturing most of the solar spectrum. For quite a while now, the goal of inorganic solar cell design has been the total (if possible) capture-absorption of the solar spectrum from a single solar cell, designed in such a way that a multiple of incident wavelengths could be simultaneously absorbed. Multi-absorption in device physics indicates parallel existence of different materials that absorb solar photons of different energies. Bulk solid state devices absorb at specific energy thresholds, depending on their respective energy gap (EG). More than one energy gaps would on principle offer new ways of photon absorption: if such a structure could be fabricated, two or more groups of photons could be absorbed simultaneously. The point became then what lattice-matched semiconductor materials could offer such multiple levels of absorption without much recombination losses. It was soon realized that such layer multiplicity combined with quantum size effects could lead to higher efficiency collection of photo-excited carriers. At the moment, the main reason that slows down quantum effect solar cell production is high fabrication cost, since it involves primarily expensive methods of multilayer growth. Existing multi-layer cells are fabricated in the bulk, with three (mostly) layers of lattice-matched and non-lattice-matched (pseudo-morphic) semiconductor materials (GaInP/InGaN etc), where photo-carrier collection occurs in the bulk of the base (coming from the emitter which lies right under the window layer). These carriers are given excess to conduction via tunnel junction (grown between

  10. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.

    Science.gov (United States)

    Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J

    2017-08-22

    Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.

  11. High efficiency thin-film solar cells for space applications: challenges and opportunities

    NARCIS (Netherlands)

    Leest, R.H. van

    2017-01-01

    In theory high efficiency thin-film III-V solar cells obtained by the epitaxial lift-off (ELO) technique offer excellent characteristics for application in space solar panels. The thesis describes several studies that investigate the space compatibility of the thin-film solar cell design developed

  12. High performance p-i-n CdTe and CdZnTe detectors

    CERN Document Server

    Khusainov, A K; Ilves, A G; Morozov, V F; Pustovoit, A K; Arlt, R D

    1999-01-01

    A breakthrough in the performance of p-i-n CdTe and CdZnTe detectors is reported. The detector stability has been significantly improved, allowing their use in precise gamma and XRF applications. Detectors with energy resolution close to Si and Ge were produced operating with only -30--35 deg. C cooling (by a Peltier cooler of 15x15x10 mm size and a consumed power less than 5 W). Presently detectors with volume of up to 300 mm sup 3 are available. In terms of photoelectric effect efficiency it corresponds to HPGe detectors with volumes of about 1.5 cm sup 3. The possibilities of further improvement of CdTe and CdZnTe detector characteristics are discussed in this paper.

  13. The effects of anode material type on the optoelectronic properties of electroplated CdTe thin films and the implications for photovoltaic application

    Science.gov (United States)

    Echendu, O. K.; Dejene, B. F.; Dharmadasa, I. M.

    2018-03-01

    The effects of the type of anode material on the properties of electrodeposited CdTe thin films for photovoltaic application have been studied. Cathodic electrodeposition of two sets of CdTe thin films on glass/fluorine-doped tin oxide (FTO) was carried out in two-electrode configuration using graphite and platinum anodes. Optical absorption spectra of films grown with graphite anode displayed significant spread across the deposition potentials compared to those grown with platinum anode. Photoelectrochemical cell result shows that the CdTe grown with graphite anode became p-type after post-deposition annealing with prior CdCl2 treatment, as a result of carbon incorporation into the films, while those grown with platinum anode remained n-type after annealing. A review of recent photoluminescence characterization of some of these CdTe films reveals the persistence of a defect level at (0.97-0.99) eV below the conduction band in the bandgap of CdTe grown with graphite anode after annealing while films grown with platinum anode showed the absence of this defect level. This confirms the impact of carbon incorporation into CdTe. Solar cell made with CdTe grown with platinum anode produced better conversion efficiency compared to that made with CdTe grown using graphite anode, underlining the impact of anode type in electrodeposition.

  14. Fabrication of CdS/CdTe-Based Thin Film Solar Cells Using an Electrochemical Technique

    Directory of Open Access Journals (Sweden)

    I. M. Dharmadasa

    2014-06-01

    Full Text Available Thin film solar cells based on cadmium telluride (CdTe are complex devices which have great potential for achieving high conversion efficiencies. Lack of understanding in materials issues and device physics slows down the rapid progress of these devices. This paper combines relevant results from the literature with new results from a research programme based on electro-plated CdS and CdTe. A wide range of analytical techniques was used to investigate the materials and device structures. It has been experimentally found that n-, i- and p-type CdTe can be grown easily by electroplating. These material layers consist of nano- and micro-rod type or columnar type grains, growing normal to the substrate. Stoichiometric materials exhibit the highest crystallinity and resistivity, and layers grown closer to these conditions show n → p or p → n conversion upon heat treatment. The general trend of CdCl2 treatment is to gradually change the CdTe material’s n-type electrical property towards i-type or p-type conduction. This work also identifies a rapid structural transition of CdTe layer at 385 ± 5 °C and a slow structural transition at higher temperatures when annealed or grown at high temperature. The second transition occurs after 430 °C and requires more work to understand this gradual transition. This work also identifies the existence of two different solar cell configurations for CdS/CdTe which creates a complex situation. Finally, the paper presents the way forward with next generation CdTe-based solar cells utilising low-cost materials in their columnar nature in graded bandgap structures. These devices could absorb UV, visible and IR radiation from the solar spectrum and combine impact ionisation and impurity photovoltaic (PV effect as well as making use of IR photons from the surroundings when fully optimised.

  15. 3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination.

    Science.gov (United States)

    Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing

    2017-07-01

    Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High volume method of making low-cost, lightweight solar materials

    Science.gov (United States)

    Blue, Craig A.; Clemens, Art; Duty, Chad E.; Harper, David C.; Ott, Ronald D.; Rivard, John D.; Murray, Christopher S.; Murray, Susan L.; Klein, Andre R.

    2014-07-15

    A thin film solar cell and a method fabricating thin film solar cells on flexible substrates. The method includes including providing a flexible polymeric substrate, depositing a photovoltaic precursor on a surface of the substrate, such as CdTe, ZrTe, CdZnTe, CdSe or Cu(In,Ga)Se.sub.2, and exposing the photovoltaic precursor to at least one 0.5 microsecond to 10 second pulse of predominately infrared light emitted from a light source having a power output of about 20,000 W/cm.sup.2 or less to thermally convert the precursor into a crystalline photovoltaic material having a photovoltaic efficiency of greater than one percent, the conversion being carried out without substantial damage to the substrate.

  17. Mesoporous Three-Dimensional Graphene Networks for Highly Efficient Solar Desalination under 1 sun Illumination.

    Science.gov (United States)

    Kim, Kwanghyun; Yu, Sunyoung; An, Cheolwon; Kim, Sung-Wook; Jang, Ji-Hyun

    2018-05-09

    Solar desalination via thermal evaporation of seawater is one of the most promising technologies for addressing the serious problem of global water scarcity because it does not require additional supporting energy other than infinite solar energy for generating clean water. However, low efficiency and a large amount of heat loss are considered critical limitations of solar desalination technology. The combination of mesoporous three-dimensional graphene networks (3DGNs) with a high solar absorption property and water-transporting wood pieces with a thermal insulation property has exhibited greatly enhanced solar-to-vapor conversion efficiency. 3DGN deposited on a wood piece provides an outstanding value of solar-to-vapor conversion efficiency, about 91.8%, under 1 sun illumination and excellent desalination efficiency of 5 orders salinity decrement. The mass-producible 3DGN enriched with many mesopores efficiently releases the vapors from an enormous area of the surface by heat localization on the top surface of the wood piece. Because the efficient solar desalination device made by 3DGN on the wood piece is highly scalable and inexpensive, it could serve as one of the main sources for the worldwide supply of purified water achieved via earth-abundant materials without an extra supporting energy source.

  18. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  19. Environmentally Printing Efficient Organic Tandem Solar Cells with High Fill Factors: A Guideline Towards 20% Power Conversion Efficiency

    DEFF Research Database (Denmark)

    Li, Ning; Baran, Derya; Spyropoulos, George D.

    2014-01-01

    presents a major challenge. The reported high PCE values from lab-scale spin-coated devices are, of course, representative, but not helpful for commercialization. Here, organic tandem solar cells with exceptionally high fill factors and PCE values of 7.66% (on glass) and 5.56% (on flexible substrate...... to enhance the power conversion efficiency (PCE). However, due to the undeveloped deposition techniques, the challenges in ink formulation as well as the lack of commercially available high performance active materials, roll-to-roll fabrication of highly efficient organic tandem solar cells currently......), which are the highest values for the solution-processed tandem solar cells fabricated by a mass-production compatible coating technique under ambient conditions, are demonstrated. To predict the highest possible performance of tandem solar cells, optical simulation based on experimentally feasible...

  20. High-Efficiency, Radiation-Hard, Lightweight IMM Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA exploration missions require high specific power (>500 W/kg) solar arrays. To increase cell efficiency while reducing weight and maintaining...

  1. About the use of photoacoustic spectroscopy for the optical characterization of semiconductor thin films: CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Marin, E.; Calderon, A. [CICATA-IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico); Vigil G, O.; Sastre, J.; Contreras P, G.; Aguilar H, J. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Saucedo, E.; Ruiz, C.M. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2006-07-01

    CdTe has been used satisfactorily in multiple and diverse technological applications such as detectors of X and gamma rays that operate at room temperature, for digital imagenology of X rays with medical and industrial applications and as active part in CdTe/CdS solar cells. In form of films, CdTe is generally grown with thicknesses ranging between 3 and 15 {mu}m, for which it is difficult to measure, by means of optical techniques, absorption coefficients greater than 10{sup 3} cm{sup -1} because nearly full absorption of light should occur below 800 nm. The exact determination of the optical absorption coefficient in detectors on the basis of CdTe is very important since this parameter determines the absorption length at which 90% of the photons with energies over the forbidden zone of the CdTe will be absorbed by this. In CdS/CdTe polycrystalline solar cells the greater efficiency of conversion have been reported for film thicknesses of 10 mm, however, the optimal value of this parameter depends strongly on the method and the variables of growth. The optical absorption coefficient spectrum can be determined by several methods, often involving several approximations and the knowledge of some minority carrier related electronic parameters that reduce their application in general way. In this work we propose to determine the absorption coefficient in CdTe thin films by photoacoustic spectroscopy (PAS), because this technique allow us to obtain the optical absorption spectra in thicker layers and therefore the study of the influence of the several growth and post-growth processes in the optical properties of this thin films. We measure by PAS the optical-absorption coefficients of CdTe thin films in the spectral region near the fundamental absorption edge ranging from 1.0 to 2.4 eV using an open cell in the transmission configuration. The films were deposited on different substrates by the CSVT-HW (hot wall) technique. In order to study the influence of several

  2. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo

    2017-05-31

    Dopant-free, carrier-selective contacts (CSCs) on high efficiency silicon solar cells combine ease of deposition with potential optical benefits. Electron-selective titanium dioxide (TiO) contacts, one of the most promising dopant-free CSC technologies, have been successfully implemented into silicon solar cells with an efficiency over 21%. Here, we report further progress of TiO contacts for silicon solar cells and present an assessment of their industrial feasibility. With improved TiO contact quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low performance sensitivity to the wafer resistivity, its applicability to ultrathin substrates as well as its long-term stability. Our findings underscore the great appeal of TiO contacts for industrial implementation with their combination of high efficiency with robust fabrication at low cost.

  3. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    Science.gov (United States)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  4. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    Science.gov (United States)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  5. Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection

    International Nuclear Information System (INIS)

    Hu Fengqin; Ran Yuliang; Zhou Zhuan; Gao Mingyuan

    2006-01-01

    Highly fluorescent CdTe quantum dots (Q-dots) stabilized by 3-mercaptopropionic acid (MPA) were prepared by an aqueous solution approach and used as fluorescent labels in detecting a cancer marker, carcinoembryonic antigen (CEA), expressed on human colon carcinoma cell line LS 180. Nonspecific adsorptions of CdTe Q-dots on carcinoma cells were observed and effectively eliminated by replacing MPA with a thiolated PEG (poly(ethylene glycol), Mn = 750) synthesized according to literature. It was unexpectedly found out that the PEG-coated CdTe Q-dots exhibited very strong and specific affinity to anti-CEA monoclonal antibody rch 24 (rch 24 mAb). The resultant CdTe-(rch 24 mAb) conjugates were successfully used in detections of CEA expressed on the surface of cell line LS 180. Further experiments demonstrated that the fluorescent CdTe Q-dots exhibited much better photostability and a brighter fluorescence than FITC, which consequently led to a higher efficiency in the cancer marker detection

  6. Fiscal 1976 Sunshine Project result report. R and D on photovoltaic power generation system (R and D on 2-6 group compound semiconductor solar cells); 1976 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. 2-6 zoku kagobutsu handotai taiyo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-31

    This report describes the fiscal 1976 research result on 2-6 group compound semiconductor solar cells for photovoltaic power generation systems. The research aims at the system less than 1/100 in cost. Vapor deposition resulted in failure to obtain high-efficiency cells. Vapor-phase growth revealed Cd-Te single-crystal solar cell is promising, however, resulted in failure to obtain high-efficiency thin film elements. Both chemical deposition and sintering succeeded in mass production of prototype high-efficiency elements equal in performance. However, since chemically deposited CdS film is too thin having higher serial resistance, it requires In{sub 2}O{sub 3} auxiliary transmissive electrodes on glass substrates. Since CdTe film and CdS film also require completely different vapor deposition processes in hetero- junction, chemical deposition is more disadvantageous in cost than sintering. CdTe thin film fabricated by screen printing/sintering is most promising. Since Cd is harmful to human bodies, study was made on pollution preventive measures in its production or use stage, and accidents or fires, obtaining some results. (NEDO)

  7. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yanfa, E-mail: yanfa.yan@utoledo.edu; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R. [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); Li, Chen [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Poplawsky, Jonathan [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Zhiwei [Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Ohio 43606 (United States); National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  8. Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2016-04-01

    Full Text Available In this work, we describe the role of the different layers in perovskite solar cells to achieve reproducible, ~16% efficient perovskite solar cells. We used a planar device architecture with PEDOT:PSS on the bottom, followed by the perovskite layer and an evaporated C60 layer before deposition of the top electrode. No high temperature annealing step is needed, which also allows processing on flexible plastic substrates. Only the optimization of all of these layers leads to highly efficient and reproducible results. In this work, we describe the effects of different processing conditions, especially the influence of the C60 top layer on the device performance.

  9. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Alexander P. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Kirk, Wiley P. [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2013-11-07

    Direct bandgap InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga{sub 0.5}In{sub 0.5}P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  10. High Throughput Manufacturing of Thin-Film CdTe Photovoltaic Materials; Final Subcontract Report, 16 November 1993-31 December 1998

    International Nuclear Information System (INIS)

    Sandwisch, D.W.

    1999-01-01

    This report describes work performed by Solar Cells, Inc. (SCI), during this Photovoltaic Manufacturing Technology (PVMaT) subcontract. Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. SCI has developed this technology and is preparing to scale its pilot production capabilities to a multi-megawatt level. This four-phase PVMaT subcontract supports these efforts. The work was related to product definition, process definition, equipment engineering, and support programs development. In the area of product definition and demonstration, two products were specified and demonstrated-a grid-connected, frameless, high-voltage product that incorporates a pigtail potting design and a remote low-voltage product that may be framed and may incorporate a junction box. SCI produced a 60.3-W thin-film CdTe module with total-area efficiency of 8.4%; SCI also improved module pass rate on the interim qualification test protocol from less than 20% to 100% as a result of work related to the subcontract. In the manufacturing process definition area, the multi-megawatt manufacturing process was defined, several of the key processes were demonstrated, and the process was refined and proven on a 100-kW pilot line that now operates as a 250-kW line. In the area of multi-megawatt manufacturing-line conceptual design review, SCI completed a conceptual layout of the multi-megawatt lines. The layout models the manufacturing line and predicts manufacturing costs. SCI projected an optimized capacity, two-shift/day operation of greater than 25 MW at a manufacturing cost of below$1.00/W

  11. High Throughput Manufacturing of Thin-Film CdTe Photovoltaic Materials; Final Subcontract Report, 16 November 1993-31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Sandwisch, D. W. (Solar Cells, Inc.)

    1999-09-02

    This report describes work performed by Solar Cells, Inc. (SCI), during this Photovoltaic Manufacturing Technology (PVMaT) subcontract. Cadmium telluride (CdTe) is recognized as one of the leading materials for low-cost photovoltaic modules. SCI has developed this technology and is preparing to scale its pilot production capabilities to a multi-megawatt level. This four-phase PVMaT subcontract supports these efforts. The work was related to product definition, process definition, equipment engineering, and support programs development. In the area of product definition and demonstration, two products were specified and demonstrated-a grid-connected, frameless, high-voltage product that incorporates a pigtail potting design and a remote low-voltage product that may be framed and may incorporate a junction box. SCI produced a 60.3-W thin-film CdTe module with total-area efficiency of 8.4%; SCI also improved module pass rate on the interim qualification test protocol from less than 20% to 100% as a result of work related to the subcontract. In the manufacturing process definition area, the multi-megawatt manufacturing process was defined, several of the key processes were demonstrated, and the process was refined and proven on a 100-kW pilot line that now operates as a 250-kW line. In the area of multi-megawatt manufacturing-line conceptual design review, SCI completed a conceptual layout of the multi-megawatt lines. The layout models the manufacturing line and predicts manufacturing costs. SCI projected an optimized capacity, two-shift/day operation of greater than 25 MW at a manufacturing cost of below $1.00/W.

  12. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion.

    Science.gov (United States)

    Martí, A; Luque, A

    2015-04-22

    Here we propose, for the first time, a solar cell characterized by a semiconductor transistor structure (n/p/n or p/n/p) where the base-emitter junction is made of a high-bandgap semiconductor and the collector is made of a low-bandgap semiconductor. We calculate its detailed-balance efficiency limit and prove that it is the same one than that of a double-junction solar cell. The practical importance of this result relies on the simplicity of the structure that reduces the number of layers that are required to match the limiting efficiency of dual-junction solar cells without using tunnel junctions. The device naturally emerges as a three-terminal solar cell and can also be used as building block of multijunction solar cells with an increased number of junctions.

  13. Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation.

    Science.gov (United States)

    Yang, Junlong; Pang, Yunsong; Huang, Weixin; Shaw, Scott K; Schiffbauer, Jarrod; Pillers, Michelle Anne; Mu, Xin; Luo, Shirui; Zhang, Teng; Huang, Yajiang; Li, Guangxian; Ptasinska, Sylwia; Lieberman, Marya; Luo, Tengfei

    2017-06-27

    The ability to efficiently utilize solar thermal energy to enable liquid-to-vapor phase transition has great technological implications for a wide variety of applications, such as water treatment and chemical fractionation. Here, we demonstrate that functionalizing graphene using hydrophilic groups can greatly enhance the solar thermal steam generation efficiency. Our results show that specially functionalized graphene can improve the overall solar-to-vapor efficiency from 38% to 48% at one sun conditions compared to chemically reduced graphene oxide. Our experiments show that such an improvement is a surface effect mainly attributed to the more hydrophilic feature of functionalized graphene, which influences the water meniscus profile at the vapor-liquid interface due to capillary effect. This will lead to thinner water films close to the three-phase contact line, where the water surface temperature is higher since the resistance of thinner water film is smaller, leading to more efficient evaporation. This strategy of functionalizing graphene to make it more hydrophilic can be potentially integrated with the existing macroscopic heat isolation strategies to further improve the overall solar-to-vapor conversion efficiency.

  14. Atomic layer deposition for high-efficiency crystalline silicon solar cells

    NARCIS (Netherlands)

    Macco, B.; van de Loo, B.W.H.; Kessels, W.M.M.; Bachmann, J.

    2017-01-01

    This chapter illustrates that Atomic Layer Deposition (ALD) is in fact an enabler of novel high-efficiency Si solar cells, owing to its merits such as a high material quality, precise thickness control, and the ability to prepare film stacks in a well-controlled way. It gives an overview of the

  15. Application of CdTe for the NeXT mission

    International Nuclear Information System (INIS)

    Takahashi, Tadayuki; Nakazawa, Kazuhiro; Watanabe, Shin; Sato, Goro; Mitani, Takefumi; Tanaka, Takaaki; Oonuki, Kousuke; Tamura, Ken'ichi; Tajima, Hiroyasu; Kamae, Tuneyoshi; Madejski, Greg; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Kokubun, Motohide; Terada, Yukikatsu; Kataoka, Jun; Tashiro, Makoto

    2005-01-01

    Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) have been regarded as promising semiconductor materials for hard X-ray and γ-ray detection. The high-atomic number of the materials (Z Cd =48,Z Te =52) gives a high quantum efficiency in comparison with Si. The large band-gap energy (E g =1.5eV) allows to operate the detector at room temperature. Based on recent achievements in high-resolution CdTe detectors, in the technology of ASICs and in bump-bonding, we have proposed the novel hard X-ray and γ-ray detectors for the NeXT mission in Japan. The high-energy response of the super mirror onboard NeXT will enable us to perform the first sensitive imaging observations up to 80keV. The focal plane detector, which combines a fully depleted X-ray CCD and a pixellated CdTe detector, will provide spectra and images in the wide energy range from 0.5 to 80keV. In the soft γ-ray band up to ∼ 1MeV, a narrow field-of-view Compton γ-ray telescope utilizing several tens of layers of thin Si or CdTe detector will provide precise spectra with much higher sensitivity than present instruments. The continuum sensitivity will reach several x10 -8 photons -1 keV -1 cm -2 in the hard X-ray region and a few x10 -7 photons -1 keV -1 cm -2 in the soft γ-ray region

  16. Selectively coated high efficiency glazing for solar-thermal flat-plate collectors

    International Nuclear Information System (INIS)

    Ehrmann, N.; Reineke-Koch, R.

    2012-01-01

    In order to increase the efficiency of solar-thermal flat-plate collectors at temperatures above 100 °C or with low solar irradiation, we implement a double glazing with a low-emitting (low-e) coating on the inner pane to improve the insulation of the transparent cover. Since commercially available low-e glazing provides only insufficient solar transmittance for the application in thermal flat-plate collectors we are developing a sputter-deposited low e-coating system based on transparent conductive oxides which provides a high solar transmittance of 85% due to additional antireflective coatings and the use of low-iron glass substrates. Durability tests of the developed coating system show that our low e-coating system is well suitable even at high temperatures, humidity and condensation.

  17. Study on response function of CdTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunduk; Cho, Gyuseong [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kang, Bo-Sun [Department of Radiological Science, Catholic University of Daegu, Kyoungsan, Kyoungbuk 712-702 (Korea, Republic of)], E-mail: bskang@cu.ac.kr

    2009-10-21

    So far the origin of the mechanism of light emission in the sonoluminescence has not elucidated whether it is due to blackbody radiation or bremsstrahlung. The final goal of our study is measuring X-ray energy spectrum using high-sensitivity cadmium telluride (CdTe) detector in order to obtain information for understanding sonoluminescence phenomena. However, the scope of this report is the measurement of X-ray spectrum using a high-resolution CdTe detector and determination of CdTe detector response function to obtain the corrected spectrum from measured soft X-ray source spectrum. In general, the measured spectrum was distorted by the characteristics of CdTe detector. Monte Carlo simulation code, MCNP, was used to obtain the reference response function of the CdTe detector. The X-ray spectra of {sup 57}Co, {sup 133}Ba, and {sup 241}Am were obtained by a 4x4x1.0(t) mm{sup 3} CdTe detector at room temperature.

  18. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    Science.gov (United States)

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  19. Interaction and energy transfer studies between bovine serum albumin and CdTe quantum dots conjugates: CdTe QDs as energy acceptor probes.

    Science.gov (United States)

    Kotresh, M G; Inamdar, L S; Shivkumar, M A; Adarsh, K S; Jagatap, B N; Mulimani, B G; Advirao, G M; Inamdar, S R

    2017-06-01

    In this paper, a systematic investigation of the interaction of bovine serum albumin (BSA) with water-soluble CdTe quantum dots (QDs) of two different sizes capped with carboxylic thiols is presented based on steady-state and time-resolved fluorescence measurements. Efficient Förster resonance energy transfer (FRET) was observed to occur from BSA donor to CdTe acceptor as noted from reduction in the fluorescence of BSA and enhanced fluorescence from CdTe QDs. FRET parameters such as Förster distance, spectral overlap integral, FRET rate constant and efficiency were determined. The quenching of BSA fluorescence in aqueous solution observed in the presence of CdTe QDs infers that fluorescence resonance energy transfer is primarily responsible for the quenching phenomenon. Bimolecular quenching constant (k q ) determined at different temperatures and the time-resolved fluorescence data provide additional evidence for this. The binding stoichiometry and various thermodynamic parameters are evaluated by using the van 't Hoff equation. The analysis of the results suggests that the interaction between BSA and CdTe QDs is entropy driven and hydrophobic forces play a key role in the interaction. Binding of QDs significantly shortened the fluorescence lifetime of BSA which is one of the hallmarks of FRET. The effect of size of the QDs on the FRET parameters are discussed in the light of FRET parameters obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    Science.gov (United States)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and CdTe//Ge//{ }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  1. Simulation of High Efficiency Heterojunction Solar Cells with AFORS-HET

    International Nuclear Information System (INIS)

    Wang Lisheng; Chen Fengxiang; Ai Yu

    2011-01-01

    In this paper, the high efficiency TCO/a-Si:H (n)/a-Si:H(i)/c-Si(p)/uc-Si(p + )/Al HIT (heterojunction with intrinsic thin-layer) solar cells was analyzed and designed by AFORS-HET software. The influences of emitter, intrinsic layer and back surface field (BSF) on the photovoltaic characteristics of solar cell were discussed. The simulation results show that the key role of the intrinsic layer inserted between the a-Si:H and crystalline silicon substrate is to decrease the interface states density. If the interface states density is lower than 10 10 cm -2 V -1 thinner intrinsic layer is better than thicker one. The increase of the thickness of the emitter will decrease the short-current density and affect the conversion efficiency. Microcrystalline BSF can increase conversion efficiency more than 2 percentage points compared with HIT solar cell with no BSF. But this BSF requires the doping concentration must exceed 10 20 cm -3 . Considered the band mismatch between crystalline silicon and microcrystalline silicon, the optimal band gap of microcrystalline silicon BSF is about 1.4-1.6eV.

  2. A 90 element CdTe array detector

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Y.; Onozuka, A.; Ohmori, M. (Nippon Mining Co. Ltd., Toda, Saitama (Japan). Electronic Material and Components Labs.); Funaki, M. (Nippon Mining Co. Ltd., Toda, Saitama (Japan). Materials Development Research Labs.)

    1992-11-15

    The fabrication of a CdTe array radiation detector and its radiation detection characteristics are described. In order to obtain high efficiency of charge collection and realize uniform detection sensitivity, current-voltage characteristics with the combination of large and small barrier height contacts and three kinds of CdTe crystals have been investigated. It was found that the Schottky barrier height of electroless Pt deposition was 0.97 eV, which effectively suppressed electron injection. By using the crystal grown by the travelling heater method with a Cl concentration of 2 ppm, carrier lifetimes for electrons and holes of 1.0 and 0.5 [mu]s, respectively, were achieved. A 90 element array detector exhibited an energy resolution as low as 4.5 keV and a count rate variation of less than 5% for 60 keV [gamma]-rays. (orig.).

  3. A 90 element CdTe array detector

    Science.gov (United States)

    Iwase, Y.; Funaki, M.; Onozuka, A.; Ohmori, M.

    1992-11-01

    The fabrication of a CdTe array radiation detector and its radiation detection characteristics are described. In order to obtain high efficiency of charge collection and realize uniform detection sensitivity, current-voltage characteristics with the combination of large and small barrier height contacts and three kinds of CdTe crystals have been investigated. It was found that the Schottky barrier height of electroless Pt deposition was 0.97 eV, which effectively suppressed electron injection. By using the crystal grown by the travelling heater method with a Cl concentration of 2 ppm, carrier lifetimes for electrons and holes of 1.0 and 0.5 μs, respectively, were achieved. A 90 element array detector exhibited an energy resolution as low as 4.5 keV and a count rate variation of less than 5% for 60 keV γ-rays.

  4. Anti-Solvent Crystallization Strategies for Highly Efficient Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Maria Konstantakou

    2017-09-01

    Full Text Available Solution-processed organic-inorganic halide perovskites are currently established as the hottest area of interest in the world of photovoltaics, ensuring low manufacturing cost and high conversion efficiencies. Even though various fabrication/deposition approaches and device architectures have been tested, researchers quickly realized that the key for the excellent solar cell operation was the quality of the crystallization of the perovskite film, employed to assure efficient photogeneration of carriers, charge separation and transport of the separated carriers at the contacts. One of the most typical methods in chemistry to crystallize a material is anti-solvent precipitation. Indeed, this classical precipitation method worked really well for the growth of single crystals of perovskite. Fortunately, the method was also effective for the preparation of perovskite films by adopting an anti-solvent dripping technique during spin-coating the perovskite precursor solution on the substrate. With this, polycrystalline perovskite films with pure and stable crystal phases accompanied with excellent surface coverage were prepared, leading to highly reproducible efficiencies close to 22%. In this review, we discuss recent results on highly efficient solar cells, obtained by the anti-solvent dripping method, always in the presence of Lewis base adducts of lead(II iodide. We present all the anti-solvents that can be used and what is the impact of them on device efficiencies. Finally, we analyze the critical challenges that currently limit the efficacy/reproducibility of this crystallization method and propose prospects for future directions.

  5. The construction of a process line for high efficiency silicon solar cells under clean-room conditions

    International Nuclear Information System (INIS)

    Aberle, A.; Faller, C.; Grille, T.; Glunz, S.; Kamerewerd, F.J.; Kopp, J.; Knobloch, J.; Klussmann, S.; Lauby, E.; Noel, A.; Paul, O.; Schaeffer, E.; Schubert, U.; Seitz, S.; Sterk, S.; Voss, B.; Warta, W.; Wettling, W.

    1992-08-01

    The aim of this research project was to plan, construct and test a clean-room technology laboratory for the manufacturing of silicon solar cells with 20% efficiency (1.5AM). In addition to the establishment of the laboratory, there existed the case of establishing the material and technological fundamentals of high-efficiency solar cells, testing and optimizing all stages of production as well as constructing test stands for accompanying characterisation work. The following final report describes the construction of the laboratory and characterisation systems, the material elements of high-efficiency solar cells as well as the most important results of solar cell production and optimisation. (orig./BWI) [de

  6. Study of CdTe/CdS solar cell at low power density for low-illumination applications

    Energy Technology Data Exchange (ETDEWEB)

    Devi, Nisha, E-mail: nishatanwer1989@gmail.com; Aziz, Anver, E-mail: aaziz@jmi.ac.in [Department Of Physics, Solar PV Lab, Jamia Millia Islamia, New Delhi-110025 (India); Datta, Shouvik [Department of Physics, IISER-Pune, Dr.homi Bhabha road, Pashan, Pune-411008 (India)

    2016-05-06

    In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cell at very low incident power, which gives good efficiency.

  7. Study of CdTe/CdS solar cell at low power density for low-illumination applications

    International Nuclear Information System (INIS)

    Devi, Nisha; Aziz, Anver; Datta, Shouvik

    2016-01-01

    In this paper, we numerically investigate CdTe/CdS PV cell properties using a simulation program Solar Cell Capacitance Simulator in 1D (SCAPS-1D). A simple structure of CdTe PV cell has been optimized to study the effect of temperature, absorber thickness and work function at very low incident power. Objective of this research paper is to build an efficient and cost effective solar cell for portable electronic devices such as portable computers and cell phones that work at low incident power because most of such devices work at diffused and reflected sunlight. In this report, we simulated a simple CdTe PV cell at very low incident power, which gives good efficiency.

  8. Atomic-resolution characterization of the effects of CdCl2 treatment on poly-crystalline CdTe thin films

    Science.gov (United States)

    Paulauskas, T.; Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Chan, M. K. Y.; Klie, R. F.

    2014-08-01

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl2 environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl2, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  9. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    Science.gov (United States)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  10. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  11. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  12. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films.

    Science.gov (United States)

    Chirilă, Adrian; Buecheler, Stephan; Pianezzi, Fabian; Bloesch, Patrick; Gretener, Christina; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Perrenoud, Julian; Seyrling, Sieghard; Verma, Rajneesh; Nishiwaki, Shiro; Romanyuk, Yaroslav E; Bilger, Gerhard; Tiwari, Ayodhya N

    2011-09-18

    Solar cells based on polycrystalline Cu(In,Ga)Se(2) absorber layers have yielded the highest conversion efficiency among all thin-film technologies, and the use of flexible polymer films as substrates offers several advantages in lowering manufacturing costs. However, given that conversion efficiency is crucial for cost-competitiveness, it is necessary to develop devices on flexible substrates that perform as well as those obtained on rigid substrates. Such comparable performance has not previously been achieved, primarily because polymer films require much lower substrate temperatures during absorber deposition, generally resulting in much lower efficiencies. Here we identify a strong composition gradient in the absorber layer as the main reason for inferior performance and show that, by adjusting it appropriately, very high efficiencies can be obtained. This implies that future manufacturing of highly efficient flexible solar cells could lower the cost of solar electricity and thus become a significant branch of the photovoltaic industry.

  13. Efficient CsF interlayer for high and low bandgap polymer solar cell

    Science.gov (United States)

    Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan

    2018-02-01

    Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.

  14. Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2018-03-01

    The optimization of microstructural and optoelectrical properties of a thin layer is an important step prior device fabrication process, so an enhancement in these properties of thermally evaporated CdTe thin films is reported in this communication. The films having thickness 450 nm and 850 nm were deposited on thoroughly cleaned glass and indium tin oxide (ITO) substrates followed by annealing at 450 °C in air atmosphere. These films were characterized for microstructural and optoelectrical properties employing X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy, UV-Vis spectrophotometer and source meter. The films found to be have zinc-blende cubic structure with preferred reflection (111) while the crystallographic parameters and direct energy band gap are strongly influenced by the film thickness. The surface morphology studies show that the films are uniform, smooth, homogeneous and nearly dense-packed as well as free from voids and pitfalls as where elemental analysis revealed the presence of Cd and Te element in the deposited films. The electrical analysis showed linear behavior of current with voltage while conductivity is decreased for higher thickness. The results show that the microstructural and optoelectrical properties of CdTe thin layer could be enhanced by varying thickness and films having higher thickness might be processed as promising absorber thin layer to the CdTe-based solar cells.

  15. Doping properties of cadmium-rich arsenic-doped CdTe single crystals: Evidence of metastable AX behavior

    Science.gov (United States)

    Nagaoka, Akira; Kuciauskas, Darius; Scarpulla, Michael A.

    2017-12-01

    Cd-rich composition and group-V element doping are of interest for simultaneously maximizing the hole concentration and minority carrier lifetime in CdTe, but the critical details concerning point defects are not yet fully established. Herein, we report on the properties of arsenic doped CdTe single crystals grown from Cd solvent by the travelling heater method. The photoluminescence spectra and activation energy of 74 ± 2 meV derived from the temperature-dependent Hall effect are consistent with AsTe as the dominant acceptor. Doping in the 1016 to 1017/cm3 range is achieved for measured As concentrations between 1016 and 1020/cm3 with the highest doping efficiency of 40% occurring near 1017 As/cm3. We observe persistent photoconductivity, a hallmark of light-induced metastable configuration changes consistent with AX behavior. Additionally, quenching experiments reveal at least two mechanisms of increased p-type doping in the dark, one decaying over 2-3 weeks and the other persisting for at least 2 months. These results provide essential insights for the application of As-doped CdTe in thin film solar cells.

  16. High Efficiency Quantum Dot III-V Multijunction Solar Cell for Space Power, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to utilize quantum dots to develop a super high-efficiency multijunction III-V solar cell for space. In metamorphic triple junction space solar...

  17. Study of the Mg incorporation in CdTe for developing wide band gap Cd1−xMgxTe thin films for possible use as top-cell absorber in a tandem solar cell

    International Nuclear Information System (INIS)

    Martínez, Omar S.; Millán, Aduljay Remolina; Huerta, L.; Santana, G.; Mathews, N.R.; Ramon-Garcia, M.L.; Morales, Erik R.; Mathew, X.

    2012-01-01

    Highlights: ► Thin films of Cd 1−x Mg x Te with high spatial uniformity and band gap in the range of 1.6–1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg. ► Obtained Cd 1−x Mg x Te films have the structural characteristics of the CdTe, evidence of the change in atomic scattering due to incorporation of Mg was observed. ► XRD and XPS data confirmed the incorporation of Mg in the lattice of CdTe. ► SEM images revealed the impact of Mg incorporation on the morphology of the films, the changes in grain size and grain morphology are noticeable. - Abstract: Thin films of Cd 1−x Mg x Te with band gap in the range of 1.6–1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg on glass substrates heated at 300 °C. Different experimental techniques such as XRD, UV–vis spectroscopy, SEM, and XPS were used to study the effect of Mg incorporation into the lattice of CdTe. The band gap of the films showed a clear tendency to increase as the Mg content in the film is increased. The Cd 1−x Mg x Te films maintain all the structural characteristics of the CdTe, however, diminishing of intensity for the XRD patterns is observed due to both change in preferential orientation and change in atomic scattering due to the incorporation of Mg. SEM images showed significant evidences of morphological changes due to the presence of Mg. XRD, UV–vis spectroscopy, and XPS data confirmed the incorporation of Mg in the lattice of CdTe. The significant increase in band gap of CdTe due to incorporation of Mg suggests that the Cd 1−x Mg x Te thin film is a candidate material to use as absorber layer in the top-cell of a tandem solar cell.

  18. Simulation design of P–I–N-type all-perovskite solar cells with high efficiency

    International Nuclear Information System (INIS)

    Du Hui-Jing; Wang Wei-Chao; Gu Yi-Fan

    2017-01-01

    According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J sc of 32.47 mA/cm 2 . The small series resistance of the all-perovskite solar cell also benefits the high J sc . The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem. (paper)

  19. Effects of Cd{sub 1-x}Zn{sub x}S alloy composition and post-deposition air anneal on ultra-thin CdTe solar cells produced by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, A.J., E-mail: Andrew.J.Clayton@Swansea.ac.uk [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom); Baker, M.A.; Babar, S.; Grilli, R. [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH (United Kingdom); Gibson, P.N. [Institute for Health and Consumer Protection, Joint Research Centre of the European Commission, 21027, Ispra, VA (Italy); Kartopu, G.; Lamb, D.A. [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom); Barrioz, V. [Engineering and Environment, Department of Physics and Electrical Engineering, Northumbria University, Newcastle, NE1 8ST (United Kingdom); Irvine, S.J.C. [Centre for Solar Energy Research, College of Engineering, Swansea University, OpTIC, St. Asaph, LL17 0JD (United Kingdom)

    2017-05-01

    Ultra-thin CdTe:As/Cd{sub 1-x}Zn{sub x}S photovoltaic solar cells with an absorber thickness of 0.5 μm were deposited by metal-organic chemical vapour deposition on indium tin oxide coated boro-aluminosilicate substrates. The Zn precursor concentration was varied to compensate for Zn leaching effects after CdCl{sub 2} activation treatment. Analysis of the solar cell composition and structure by X-ray photoelectron spectroscopy depth profiling and X-ray diffraction showed that higher concentrations of Zn in the Cd{sub 1-x}Zn{sub x}S window layer resulted in suppression of S diffusion across the CdTe/Cd{sub 1-x}Zn{sub x}S interface after CdCl{sub 2} activation treatment. Excessive Zn content in the Cd{sub 1-x}Zn{sub x}S alloy preserved the spectral response in the blue region of the solar spectrum, but increased series resistance for the solar cells. A modest increase in the Zn content of the Cd{sub 1-x}Zn{sub x}S alloy together with a post-deposition air anneal resulted in an improved blue response and an enhanced open circuit voltage and fill factor. This device yielded a mean efficiency of 8.3% over 8 cells (0.25 cm{sup 2} cell area) and best cell efficiency of 8.8%. - Highlights: • CdCl{sub 2} anneal treatment resulted in S diffusing to the back contact. • High Zn levels created mixed cubic/hexagonal structure at the p-n junction. • Increased Zn in Cd{sub 1-x}Zn{sub x}S supressed S diffusion into CdTe. • Device V{sub oc} was enhanced overall with an additional back surface air anneal.

  20. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Portale, Giuseppe; Fang, Hong-Hua; Blake, Graeme R.; ten Brink, Gert H.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2018-01-01

    The low power conversion efficiency (PCE) of tin-based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn-based HPSCs. Herein, this study

  1. Fine-Pitch CdTe Detector for Hard X-Ray Imaging and Spectroscopy of the Sun with the FOXSI Rocket Experiment

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takeda, Shin'lchiro; Takahashi, Tadayuki; Saito, Shinya; Glesener, Lindsay; Bultrago-Casas, Juan Camilo; Krucker, Sam; hide

    2016-01-01

    We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4 to 15 keV using the new technique of HXR focusing optics. The focal plane detector requires less than 100 micrometers position resolution (to take advantage of the angular resolution of the optics) and approximately equals 1 keV energy resolution (full width at half maximum (FWHM)) for spectroscopy down to 4 keV, with moderate cooling (greater than -30 C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66% at 15 keV for the silicon detectors) and position resolution of 75 micrometers for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60 micrometers and almost 100% efficiency for the FOXSI energy range. The sensitive area is 7.67 mm x 7.67 mm, corresponding to the field of view of 791'' x 791''. An energy resolution of 1 keV (FWHM) and low-energy threshold of approximately equals 4 keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on 11 December 2014, and images from the Sun were successfully obtained with the CdTe detector. Therefore, we successfully demonstrated the detector concept and the usefulness of this technique for future HXR observations of the Sun.

  2. Toward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design

    KAUST Repository

    Wang, Hsin-Ping

    2017-07-11

    Recent technological advances in conventional planar and microstructured solar cell architectures have significantly boosted the efficiencies of these devices near the corresponding theoretical values. Nanomaterials and nanostructures have promising potential to push the theoretical limits of solar cell efficiency even higher using the intrinsic advantages associated with these materials, including efficient photon management, rapid charge transfer, and short charge collection distances. However, at present the efficiency of nanostructured solar cells remains lower than that of conventional solar devices due to the accompanying losses associated with the employment of nanomaterials. The concurrent design of both optical and electrical components will presumably be an imperative route toward breaking the present-day limit of nanostructured solar cells. This review summarizes the losses in traditional solar cells, and then discusses recent advances in applications of nanotechnology to solar devices from both optical and electrical perspectives. Finally, a rule for nanostructured solar cells by concurrently engineering the optical and electrical design is devised. Following these guidelines should allow for exceeding the theoretical limit of solar cell efficiency soon.

  3. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Science.gov (United States)

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  4. Effect of In Situ Thermal Annealing on Structural, Optical, and Electrical Properties of CdS/CdTe Thin Film Solar Cells Fabricated by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    Alaa Ayad Al-mebir

    2016-01-01

    Full Text Available An in situ thermal annealing process (iTAP has been introduced before the common ex situ cadmium chloride (CdCl2 annealing to improve crystal quality and morphology of the CdTe thin films after pulsed laser deposition of CdS/CdTe heterostructures. A strong correlation between the two annealing processes was observed, leading to a profound effect on the performance of CdS/CdTe thin film solar cells. Atomic force microscopy and Raman spectroscopy show that the iTAP in the optimal processing window produces considerable CdTe grain growth and improves the CdTe crystallinity, which results in significantly improved optoelectronic properties and quantum efficiency of the CdS/CdTe solar cells. A power conversion efficiency of up to 7.0% has been obtained on thin film CdS/CdTe solar cells of absorber thickness as small as 0.75 μm processed with the optimal iTAP at 450°C for 10–20 min. This result illustrates the importance of controlling microstructures of CdTe thin films and iTAP provides a viable approach to achieve such a control.

  5. Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%

    Science.gov (United States)

    Wu, Tongyue; Wu, Jihuai; Tu, Yongguang; He, Xin; Lan, Zhang; Huang, Miaoliang; Lin, Jianming

    2017-10-01

    The perovskite layer is the most crucial factor for the high performance perovskite solar cells. Based on solvent engineering, we develop a ternary-mixed-solvent method for the growth of high-quality [Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3] cation-anion-mixed perovskite films by introducing N-methyl-2-pyrrolidone (NMP) into the precursor mixed solution. By controlling rapid nucleation and retarding crystal growth via intermediate phase PbI2-NMP (Lewis acid-base adduct), a dense, large grain, pinhole-free and long charge carrier lifetime perovskite film is obtained. By optimizing the precursor solvent composition, the perovskite solar cell achieves an impressive power conversion efficiency of 19.61% under one-sun illumination. The research presented here provides a facile, low-cost and highly efficient way for the preparation of perovskite solar cells.

  6. Radiation-hard, high efficiency InP solar cell and panel development

    International Nuclear Information System (INIS)

    Keavney, C.J.; Vernon, S.M.; Haven, V.E.; Nowlan, M.J.; Walters, R.J.; Slatter, R.L.; Summers, G.P.

    1991-01-01

    Indium phosphide solar cells with efficiencies over 19% (Air mass zero, 25 degrees C) and area of 4 cm 2 have been made and incorporated into prototype panels. The panels will be tested in space to confirm the high radiation resistance expected from InP solar cells, which makes the material attractive for space use, particularly in high-radiation orbits. Laboratory testing indicated an end-of-life efficiency of 15.5% after 10 15 1 MeV electrons, and 12% after 10 16 . These cells are made by metalorganic chemical vapor deposition, and have a shallow homojunction structure. The manufacturing process is amendable to scale-up to larger volumes; more than 200 cells were produced in the laboratory operation. Cell performance, radiation degradation, annealing behavior, and results of deep level transient spectroscopy studies are presented in this paper

  7. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  8. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  9. Intensely emitting CdTe nanocrystals retained initial photoluminescence efficiency in sol-gel derived Si1-xZrxO2 glass

    International Nuclear Information System (INIS)

    Yang, P.; Murase, N.

    2007-01-01

    Emitting CdTe nanocrystals (NCs) were embedded in pure glass matrices (Si 1-x Zr x O 2 , x≤0.15) using a controlled sol-gel method, where the pre-hydrolyzed condition, the molar ratio of Zr/Si, the gelation time, the pH, and the amount of alcohol were judiciously optimized considering the surface condition of the NCs and the mechanism of the glass formation. As a result, the prepared glass phosphor exhibited high photoluminescence efficiencies (40% for green and 60% for red when Zr/Si was 5-10%) by retaining their initial values as in CdTe colloidal solution. To our knowledge, these values are the highest among those ever obtained for any solid matrices containing NCs. Because of the existence of Zr, the prepared glasses exhibit much better resistance against the ambient atmosphere, heat-treatment, and boiling water compared with pure silica glass (x=0) or the glass prepared from our other methods using a silane coupling agent. Thus, the obtained glass is promising for applications such as optical devices. (orig.)

  10. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  11. Stable high efficiency two-dimensional perovskite solar cells via cesium doping

    KAUST Repository

    Zhang, Xu

    2017-08-15

    Two-dimensional (2D) organic-inorganic perovskites have recently emerged as one of the most important thin-film solar cell materials owing to their excellent environmental stability. The remaining major pitfall is their relatively poor photovoltaic performance in contrast to 3D perovskites. In this work we demonstrate cesium cation (Cs) doped 2D (BA)(MA)PbI perovskite solar cells giving a power conversion efficiency (PCE) as high as 13.7%, the highest among the reported 2D devices, with excellent humidity resistance. The enhanced efficiency from 12.3% (without Cs) to 13.7% (with 5% Cs) is attributed to perfectly controlled crystal orientation, an increased grain size of the 2D planes, superior surface quality, reduced trap-state density, enhanced charge-carrier mobility and charge-transfer kinetics. Surprisingly, it is found that the Cs doping yields superior stability for the 2D perovskite solar cells when subjected to a high humidity environment without encapsulation. The device doped using 5% Cs degrades only ca. 10% after 1400 hours of exposure in 30% relative humidity (RH), and exhibits significantly improved stability under heating and high moisture environments. Our results provide an important step toward air-stable and fully printable low dimensional perovskites as a next-generation renewable energy source.

  12. High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times

    Science.gov (United States)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.

  13. A novel microfluidic origami photoelectrochemical sensor based on CdTe quantum dots modified molecularly imprinted polymer and its highly selective detection of S-fenvalerate

    International Nuclear Information System (INIS)

    Wang, Yanhu; Zang, Dejin; Ge, Shenguang; Ge, Lei; Yu, Jinghua; Yan, Mei

    2013-01-01

    Driven by the urgent demand of high-selectively point-of-care testing device for pesticide, molecular imprinting-photoelectrochemistry (MI-PEC) was introduced into microfluidic paper-based analytical strategy to design a novel paper-based photoelectrochemical (paper-based PEC) protocol. The MI-PEC strategy was constructed based on CdTe quantum dots dotted molecular imprinted polymers (CdTe QDs@MIPs), and triggered by a common ultraviolet lamp (∼365 nm, 50$). The paper-based PEC sensor was fabricated by immobilizing CdTe QDs@MIPs on paper-based screen-printed working electrodes (WEs) via gold nanoparticles (Au NPs), which was electrodeposited on the surface of WE to improve the electron transfer efficiency for high sensitivity. Using S-fenvalerate as model analyte, the produced photocurrent from the proposed paper-based MI-PEC sensor upon ultraviolet radiation decreased with the increasing concentrations of S-fenvalerate solution, and the quenched paper-based MI-PEC showed a low detection limit of 3.2 × 10 −9 mol L −1 . This study has made a successful attempt in the development of highly selective and sensitive photoelectrochemical sensor for S-fenvalerate monitoring

  14. Red-shift of the photoluminescent emission peaks of CdTe quantum dots due to the synergistic interaction with carbon quantum dot mixtures

    International Nuclear Information System (INIS)

    Pelayo, E; Zazueta, A; López-Delgado, R; Ayón, A; Saucedo, E; Ruelas, R

    2016-01-01

    We report the relatively large red-shift effect observed in down-shifting carbon quantum dots (CQDs) that is anticipated to have a positive impact on the power conversion efficiency of solar cells. Specifically, with an excitation wavelength of 390 nm, CQDs of different sizes, exhibited down-shifted emission peaks centered around 425 nm. However, a solution comprised of a mixture of CQDs of different sizes, was observed to have an emission peak red-shifted to 515 nm. The effect could arise when larger carbon quantum dots capture the photons emitted by their smaller counterparts followed by the subsequent re-emission at longer wavelengths. Furthermore, the red-shift effect was also observed in CdTe QDs when added to a solution with the aforementioned mixture of Carbon QDs. Thus, whereas a solution solely comprised of a collection of CdTe QDs of different sizes, exhibited a down-shifted photoluminescence centered around 555 nm, the peak was observed to be further red-shifted to 580 nm when combined with the solution of CQDs of different sizes. The quantum dot characterization included crystal structure analysis as well as photon absorption and photoluminescence wavelengths. Subsequently, the synthesized QDs were dispersed in a polymeric layer of poly-methyl-methacrylate (PMMA) and incorporated on functional and previously characterized solar cells, to quantify their influence in the electrical performance of the photovoltaic structures. We discuss the synthesis and characterization of the produced Carbon and CdTe QDs, as well as the observed improvement in the power conversion efficiency of the fabricated photovoltaic devices. (paper)

  15. Sliver Solar Cells: High-Efficiency, Low-Cost PV Technology

    Directory of Open Access Journals (Sweden)

    Evan Franklin

    2007-01-01

    Full Text Available Sliver cells are thin, single-crystal silicon solar cells fabricated using standard fabrication technology. Sliver modules, composed of several thousand individual Sliver cells, can be efficient, low-cost, bifacial, transparent, flexible, shadow tolerant, and lightweight. Compared with current PV technology, mature Sliver technology will need 10% of the pure silicon and fewer than 5% of the wafer starts per MW of factory output. This paper deals with two distinct challenges related to Sliver cell and Sliver module production: providing a mature and robust Sliver cell fabrication method which produces a high yield of highly efficient Sliver cells, and which is suitable for transfer to industry; and, handling, electrically interconnecting, and encapsulating billions of sliver cells at low cost. Sliver cells with efficiencies of 20% have been fabricated at ANU using a reliable, optimised processing sequence, while low-cost encapsulation methods have been demonstrated using a submodule technique.

  16. CdTe layer structures for X-ray and gamma-ray detection directly grown on the Medipix readout-chip by MBE

    Science.gov (United States)

    Vogt, A.; Schütt, S.; Frei, K.; Fiederle, M.

    2017-11-01

    This work investigates the potential of CdTe semiconducting layers used for radiation detection directly deposited on the Medipix readout-chip by MBE. Due to the high Z-number of CdTe and the low electron-hole pair creation energy a thin layer suffices for satisfying photon absorption. The deposition takes place in a modified MBE system enabling growth rates up to 10 μm/h while the UHV conditions allow the required high purity for detector applications. CdTe sensor layers deposited on silicon substrates show resistivities up to 5.8 × 108 Ω cm and a preferred (1 1 1) orientation. However, the resistivity increases with higher growth temperature and the orientation gets more random. Additionally, the deposition of a back contact layer sequence in one process simplifies the complex production of an efficient contact on CdTe with aligned work functions. UPS measurements verify a decrease of the work function of 0.62 eV induced by Te doping of the CdTe.

  17. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.

    Science.gov (United States)

    Zeng, Qingsen; Chen, Zhaolai; Zhao, Yue; Du, Xiaohang; Liu, Fangyuan; Jin, Gan; Dong, Fengxia; Zhang, Hao; Yang, Bai

    2015-10-21

    Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells.

  18. Advanced Nanomaterials for High-Efficiency Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junhong [University of Wisconsin-Milwaukee

    2013-11-29

    Energy supply has arguably become one of the most important problems facing humankind. The exponential demand for energy is evidenced by dwindling fossil fuel supplies and record-high oil and gas prices due to global population growth and economic development. This energy shortage has significant implications to the future of our society, in addition to the greenhouse gas emission burden due to consumption of fossil fuels. Solar energy seems to be the most viable choice to meet our clean energy demand given its large scale and clean/renewable nature. However, existing methods to convert sun light into electricity are not efficient enough to become a practical alternative to fossil fuels. This DOE project aims to develop advanced hybrid nanomaterials consisting of semiconductor nanoparticles (quantum dots or QDs) supported on graphene for cost-effective solar cells with improved conversion efficiency for harvesting abundant, renewable, clean solar energy to relieve our global energy challenge. Expected outcomes of the project include new methods for low-cost manufacturing of hybrid nanostructures, systematic understanding of their properties that can be tailored for desired applications, and novel photovoltaic cells. Through this project, we have successfully synthesized a number of novel nanomaterials, including vertically-oriented graphene (VG) sheets, three-dimensional (3D) carbon nanostructures comprising few-layer graphene (FLG) sheets inherently connected with CNTs through sp{sup 2} carbons, crumpled graphene (CG)-nanocrystal hybrids, CdSe nanoparticles (NPs), CdS NPs, nanohybrids of metal nitride decorated on nitrogen-doped graphene (NG), QD-carbon nanotube (CNT) and QD-VG-CNT structures, TiO{sub 2}-CdS NPs, and reduced graphene oxide (RGO)-SnO{sub 2} NPs. We further assembled CdSe NPs onto graphene sheets and investigated physical and electronic interactions between CdSe NPs and the graphene. Finally we have demonstrated various applications of these

  19. Prototype of high resolution PET using resistive electrode position sensitive CdTe detectors

    International Nuclear Information System (INIS)

    Kikuchi, Yohei; Ishii, Keizo; Matsuyama, Shigeo; Yamazaki, Hiromichi

    2008-01-01

    Downsizing detector elements makes it possible that spatial resolutions of positron emission tomography (PET) cameras are improved very much. From this point of view, semiconductor detectors are preferable. To obtain high resolution, the pixel type or the multi strip type of semiconductor detectors can be used. However, in this case, there is a low packing ratio problem, because a dead area between detector arrays cannot be neglected. Here, we propose the use of position sensitive semiconductor detectors with resistive electrode. The CdTe detector is promising as a detector for PET camera because of its high sensitivity. In this paper, we report development of prototype of high resolution PET using resistive electrode position sensitive CdTe detectors. We made 1-dimensional position sensitive CdTe detectors experimentally by changing the electrode thickness. We obtained 750 A as an appropriate thickness of position sensitive detectors, and evaluated the performance of the detector using a collimated 241 Am source. A good position resolution of 1.2 mm full width half maximum (FWHM) was obtained. On the basis of the fundamental development of resistive electrode position sensitive detectors, we constructed a prototype of high resolution PET which was a dual head type and was consisted of thirty-two 1-dimensional position sensitive detectors. In conclusion, we obtained high resolutions which are 0.75 mm (FWHM) in transaxial, and 1.5 mm (FWHM) in axial. (author)

  20. Research Leading to High Throughput Processing of Thin-Film CdTe PV Module: Phase I Annual Report, October 2003 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R. C.; Meyers, P. V.

    2004-02-01

    Work under this subcontract contributes to the overall manufacturing operation. During Phase I, average module efficiency on the line was improved from 7.1% to 7.9%, due primarily to increased photocurrent resulting from a decrease in CdS thickness. At the same time, production volume for commercial sale increased from 1.5 to 2.5 MW/yr. First Solar is committed to commercializing CdTe-based thin-film photovoltaics. This commercialization effort includes a major addition of floor space and equipment, as well as process improvements to achieve higher efficiency and greater durability. This report presents the results of Phase I of the subcontract entitled''Research Leading to High Throughput Processing of Thin-Film CdTe PV Modules.'' The subcontract supports several important aspects needed to begin high-volume manufacturing, including further development of the semiconductor deposition reactor, advancement of accelerated life testing methods and understanding, and improvements to th e environmental, health, and safety programs. Progress in the development of the semiconductor deposition reactor was made in several areas. First, a new style of vapor transport deposition distributor with simpler operational behavior and the potential for improved cross-web uniformity was demonstrated. Second, an improved CdS feed system that will improve down-web uniformity was developed. Third, the core of a numerical model of fluid and heat flow within the distributor was developed, including flow in a 3-component gas system at high temperature and low pressure and particle sublimation.

  1. Mushrooms as Efficient Solar Steam-Generation Devices.

    Science.gov (United States)

    Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia

    2017-07-01

    Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modelling and design of high efficiency radiation tolerant indium phosphide space solar cells

    International Nuclear Information System (INIS)

    Goradia, C.; Geier, J.V.; Weinberg, I.

    1987-01-01

    Using a fairly comprehensive model, the authors did a parametric variation study of the InP shallow homojunction solar cell with a view to determining the maximum realistically achievable efficiency and an optimum design that would yield this efficiency. Their calculations show that with good quality epitaxial material, a BOL efficiency of about 20.3% at 1AMO, 25 0 C may be possible. The design parameters of the near-optimum cell are given. Also presented are the expected radiation damage of the performance parameters by 1MeV electrons and a possible explanation of the high radiation tolerance of InP solar cells

  3. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.

    Science.gov (United States)

    Park, Cheolmin; Balaji, Nagarajan; Jung, Sungwook; Choi, Jaewoo; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Bong, Sungjae; Chung, Sungyoun; Lee, Youn-Jung; Yi, Junsin

    2015-10-01

    High-efficiency Si solar cells have attracted great attention from researchers, scientists, photovoltaic (PV) industry engineers for the past few decades. With thin wafers, surface passivation becomes necessary to increase the solar cells efficiency by overcoming several induced effects due to associated crystal defects and impurities of c-Si. This paper discusses suitable passivation schemes and optimization techniques to achieve high efficiency at low cost. SiNx film was optimized with higher transmittance and reduced recombination for using as an effective antireflection and passivation layer to attain higher solar cell efficiencies. The higher band gap increased the transmittance with reduced defect states that persisted at 1.68 and 1.80 eV in SiNx films. The thermal stability of SiN (Si-rich)/SiN (N-rich) stacks was also studied. Si-rich SiN with a refractive index of 2.7 was used as a passivation layer and N-rich SiN with a refractive index of 2.1 was used for thermal stability. An implied Voc of 720 mV with a stable lifetime of 1.5 ms was obtained for the stack layer after firing. Si-N and Si-H bonding concentration was analyzed by FTIR for the correlation of thermally stable passivation mechanism. The passivation property of spin coated Al2O3 films was also investigated. An effective surface recombination velocity of 55 cm/s with a high density of negative fixed charges (Qf) on the order of 9 x 10(11) cm(-2) was detected in Al2O3 films.

  4. Development of III-Sb Quantum Dot Systems for High Efficiency Intermediate Band Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huffaker, Diana [Univ. of California, Los Angeles, CA (United States); Hubbard, Seth [Rochester Inst. of Technology, NY (United States); Norman, Andrew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-07-31

    This project aimed to develop solar cells that can help reduce cost per watt. This work focused on developing solar cells that utilize quantum dot (QD) nanomaterials to provide multijunction solar cell efficiency at the cost of single junction solar cell. We focused on a novel concept known as intermediate band solar cells (IBSC) where an additional energy band is inserted in a single solar cell to accommodate sub-bandgap photons absorption which otherwise are lost through transmission. The additional energy band can be achieved by growing QDs within a solar cell p-n junction. Though numerous studies have been conducted to develop such QD systems, very small improvements in solar energy conversion efficiency have been reported. This is mainly due to non-optimal material parameters such as band gap, band offset etc. In this work, we identified and developed a novel QD material system that meets the requirements of IBSC more closely than the current state-of-the-art technology. To achieve these goals, we focused on three important areas of solar cell design: band structure calculations of new materials, efficient device design for high efficiency, and development of new semiconductor materials. In this project, we focused on III-Sb materials as they possess a wide range of energy bandgaps from 0.2 eV to 2eV. Despite the difficulty involved in realizing these materials, we were successfully developed these materials through a systematic approach. Materials studied in this work are AlAsSb (Aluminum Arsenide Antimonide), InAlAs (Indium Aluminum Arsenide) and InAs (Indium Arsenide). InAs was used to develop QD layers within AlAsSb and InAlAs p-n junctions. As the QDs have very small volume, up to 30 QD layers been inserted into the p-n junction to enhance light absorption. These QD multi-stack devices helped in understanding the challenges associated with the development of quantum dot solar cells. The results from this work show that the quantum dot solar cells indeed

  5. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  6. Design and fabrication of a high performance inorganic tandem solar cell with 11.5% conversion efficiency

    International Nuclear Information System (INIS)

    Amiri, Omid; Mir, Noshin; Ansari, Fatemeh; Salavati-Niasari, Masoud

    2017-01-01

    Tandem solar cell is a design that combines two types of solar cells to benefit their advantages. We show a new concept for achieving highly efficient dye sensitized and quantum dot tandem solar cells. The new tandem cell further enhances the performance of the device, leading to a power conversion efficiency more than 11% under 1.5 Air Mass. To the best of our knowledge, this is the first time that the efficiency over 11 percent is achieved based on tandem solar cell. X-ray diffraction, Transmission Electron Microscopy, Scanning Electron Microscopy, Current-Voltage measurments, Intensity modulated photocurrent spectroscopy, intensity modulated photovoltage spectroscopy, Energy Dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, Barrett-Joyner-Halenda and absorption spectroscopy were used to characterize the fabricated solar cells.

  7. Highly Flexible and Washable Nonwoven Photothermal Cloth for Efficient and Practical Solar Steam Generation

    KAUST Repository

    Jin, Yong

    2018-03-29

    Solar-driven water evaporation is emerging as a promising solar-energy utilization process. In the present work, highly stable, flexible and washable nonwoven photothermal cloth is prepared by electrospinning for efficient and durable solar steam evaporation. The cloth is composed of polymeric nanofibers as matrix and inorganic carbon black nanoparticles encapsulated inside the matrix as light absorbing component. The photothermal cloth with an optimized carbon loading shows a desirable underwater black property, absorbing 94% of the solar spectrum and giving rise to a state-of-the-art solar energy utilization efficiency of 83% during pure water evaporation process. Owing to its compositions and special structural design, the cloth possesses anti-photothermal-component-loss property and is highly flexible and mechanically strong, chemically stable in various harsh environment such as strong acid, alkaline, organic solvent and salty water. It can be hand-washed for more than 100 times without degrading its performance and thus offers a potential mechanism for foulant cleaning during practical solar steam generation and distillation processes. The results of this work stimulate more research in durable photothermal materials aiming at real world applications.

  8. Compound polycrystalline solar cells. Recent progress and Y2K perspective

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R.W. [Institute of Energy Conversion, University of Delaware, DE 19716 Newark (United States)

    2001-01-01

    A historical perspective on the development of polycrystalline thin-film solar cells based on CdTe and CuInSe{sub 2} is presented, and recent progress of these thin-film technologies is discussed. Impressive improvements in the efficiency of laboratory scale devices has not been easy to translate to the manufacturing environment, principally due to our lack of understanding of the basic science and engineering of these materials and devices. 'Next-generation' high-performance thin-film solar cells utilizing multijunction device configurations should achieve efficiencies of more than 25% within ten years. However, our cost-effective manufacturing of these more complex devices will be problematic unless the science and engineering issues associated with processing of thin-film PV devices are addressed.

  9. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.

    Science.gov (United States)

    Almeida, J; Liang, D; Vistas, C R; Guillot, E

    2015-03-10

    We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1  W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.

  10. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  11. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  12. Progress in N-type Si Solar Cell and Module Technology for High Efficiency and Low Cost

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dengyuan; Xiong, Jingfeng; Hu, Zhiyan; Li, Gaofei; Wang, Hongfang; An, Haijiao; Yu, Bo; Grenko, Brian; Borden, Kevin; Sauer, Kenneth; Cui, Jianhua; Wang, Haitao [Yingli Green Energy Holding Co., LTD, 071051 Boading (China); Roessler, T. [Yingli Green Energy Europe GmbH, Heimeranstr. 37, 80339 Munich (Germany); Bultman, J. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Vlooswijk, A.H.G.; Venema, P.R. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands)

    2012-06-15

    A novel high efficiency solar cell and module technology, named PANDA, using crystalline n-type CZ Si wafers has moved into large-scale production at Yingli. The first commercial sales of the PANDA modules commenced in mid 2010. Up to 600MW of mass production capacity from crystal-Si growth, wafer slicing, cell processing and module assembly have been implemented by the end of 2011. The PANDA technology was developed specifically for high efficiency and low cost. In contrast to the existing n-type Si solar cell manufacturing methods in mass production, this new technology is largely compatible with a traditional p-type Si solar cell production line by conventional diffusion, SiNx coating and screen-printing technology. With optimizing all technologies, Yingli's PANDA solar cells on semi-square 6-inch n-type CZ wafers (cell size 239cm{sup 2}) have been improved to currently have an average efficiency on commercial production lines exceeding 19.0% and up to 20.0% in pilot production. The PANDA modules have been produced and were certified according to UL1703, IEC 61215 and IEC 61730 standards. Nearly two years of full production on scale-up lines show that the PANDA modules have a high efficiency and power density, superior high temperature performance, near zero initial light induced degradation, and excellent efficiency at low irradiance.

  13. Numerical quantification and minimization of perimeter losses in high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Heiser, Gernot; Green, M.A. [New South Wales Univ., Kensington, NSW (Australia)

    1996-09-01

    This paper presents a quantitative analysis of perimeter losses in high-efficiency silicon solar cells. A new method of numerical modelling is used, which provides the means to simulate a full-sized solar cell, including its perimeter region. We analyse the reduction in efficiency due to perimeter losses as a function of the distance between the active cell area and the cut edge. It is shown how the optimum distance depends on whether the cells in the panel are shingled or not. The simulations also indicate that passivating the cut-face with a thermal oxide does not increase cell efficiency substantially. Therefore, doping schemes for the perimeter domain are suggested in order to increase efficiency levels above present standards. Finally, perimeter effects in cells that remain embedded in the wafer during the efficiency measurement are outlined. (author)

  14. Three-dimensional minority carrier lifetime mapping of thin film semiconductors for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian [PLANT PV, Inc., Belmont, CA (United States); Peters, Craig [PLANT PV, Inc., Belmont, CA (United States); Barnard, Edward [PLANT PV, Inc., Belmont, CA (United States)

    2015-09-30

    This project addresses the difficulty of accurately measuring charge carrier dynamics in novel semiconductor materials for thin film photovoltaic cells. We have developed a two- photon lifetime tomography technique to separate bulk minority carrier lifetime from surface recombination effects and effects of recombination at sub-surface defects. This technique also enables us to characterize how local defects such as grain boundaries– buried below the surface of a sample–affect carrier lifetimes in the active layer, dynamics that have been previously inaccessible. We have applied this newly developed technique to illuminate how CdCl2 treatment improves CdTe PV efficiency. From striking 3D lifetime tomography maps, a clear, sub- surface understanding emerges of the photophysical changes that occur in CdTe active medium following exposure to CdCl2, a standard step in the fabrication of high-efficiency CdTe-based solar cells. This work demonstrates a well-defined method to quantify grain-boundary, interface, and bulk recombination in CdTe and other optically-active polycrystalline semiconductor materials; information that can provide critical information to the development of next- generation photovoltaics and many other semiconductor technologies.

  15. High efficient plastic solar cells fabricated with a high-throughput gravure printing method

    Energy Technology Data Exchange (ETDEWEB)

    Kopola, P.; Jin, H.; Tuomikoski, M.; Maaninen, A.; Hast, J. [VTT, Kaitovaeylae 1, FIN-90571 Oulu (Finland); Aernouts, T. [IMEC, Organic PhotoVoltaics, Polymer and Molecular Electronics, Kapeldreef 75, B-3001 Leuven (Belgium); Guillerez, S. [CEA-INES RDI, 50 Avenue Du Lac Leman, 73370 Le Bourget Du Lac (France)

    2010-10-15

    We report on polymer-based solar cells prepared by the high-throughput roll-to-roll gravure printing method. The engravings of the printing plate, along with process parameters like printing speed and ink properties, are studied to optimise the printability of the photoactive as well as the hole transport layer. For the hole transport layer, the focus is on testing different formulations to produce thorough wetting of the indium-tin-oxide (ITO) substrate. The challenge for the photoactive layer is to form a uniform layer with optimal nanomorphology in the poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend. This results in a power conversion efficiency of 2.8% under simulated AM1.5G solar illumination for a solar cell device with gravure-printed hole transport and a photoactive layer. (author)

  16. Comparative Health Risk Assessment of CdTe Solar PV System and Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Sang Hun; Kang, Hyun Gook

    2014-01-01

    In terms of national energy policy decision-making process, several key factors, including low production cost, negligible risk or impact to environment and population around the facility, must be considered. The purpose of this paper is to assess the public health risk in case of postulated nuclear power plant and CdTe solar PV system accident and compare the estimated public health risk. Both systems release toxic materials to the environment which adversely affect nearby population by exposure from the inhalation and ingestion of the toxic material transported via air. By simulating the airborne transport of released toxic material using Gaussian plume model and modeling exposure pathways to nearby population, average individual health risk is assessed and public health risk per power capacity of each system is compared. The result shows that the average public health risk per power capacity of NPP is less than the case of solar PV system. This implies that NPP has lower risk in terms of public health risk in case of severe accident while it can be used as more reliable energy source than renewable energy source so that NPP would take priority over other renewable energy sources in terms of national energy policy

  17. Ultra-high efficiency photovoltaic cells for large scale solar power generation.

    Science.gov (United States)

    Nakano, Yoshiaki

    2012-01-01

    The primary targets of our project are to drastically improve the photovoltaic conversion efficiency and to develop new energy storage and delivery technologies. Our approach to obtain an efficiency over 40% starts from the improvement of III-V multi-junction solar cells by introducing a novel material for each cell realizing an ideal combination of bandgaps and lattice-matching. Further improvement incorporates quantum structures such as stacked quantum wells and quantum dots, which allow higher degree of freedom in the design of the bandgap and the lattice strain. Highly controlled arrangement of either quantum dots or quantum wells permits the coupling of the wavefunctions, and thus forms intermediate bands in the bandgap of a host material, which allows multiple photon absorption theoretically leading to a conversion efficiency exceeding 50%. In addition to such improvements, microfabrication technology for the integrated high-efficiency cells and the development of novel material systems that realizes high efficiency and low cost at the same time are investigated.

  18. Simulation of a high-efficiency silicon-based heterojunction solar cell

    Science.gov (United States)

    Jian, Liu; Shihua, Huang; Lü, He

    2015-04-01

    The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).

  19. Development of a computer model for polycrystalline thin-film CuInSe sub 2 and CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. (Purdue Univ., Lafayette, IN (United States))

    1992-09-01

    This report describes work to develop an accurate numerical model for CuInSe{sub 2} (CIS) and CdTe-based solar cells capable of running on a personal computer. Such a model will aid researchers in designing and analyzing CIS- and CdTe-based solar cells. ADEPT (A Device Emulation Pregrain and Tool) was used as the basis for this model. An additional objective of this research was to use the models developed to analyze the performance of existing and proposed CIS- and CdTe-based solar cells. The development of accurate numerical models for CIS- and CdTe-based solar cells required the compilation of cell performance data (for use in model verification) and the compilation of measurements of material parameters. The development of the numerical models involved implementing the various physical models appropriate to CIS and CdTe, as well as some common window. A version of the model capable of running on an IBM-comparable personal computer was developed (primary code development is on a SUN workstation). A user-friendly interface with pop-up menus is continuing to be developed for release with the IBM-compatible model.

  20. Modeling of four-terminal solar photovoltaic systems for field application

    Science.gov (United States)

    Vahanka, Harikrushna; Purohit, Zeel; Tripathi, Brijesh

    2018-05-01

    In this article a theoretical framework for mechanically stacked four-terminal solar photovoltaic (FTSPV) system has been proposed. In a mechanical stack arrangement, a semitransparent CdTe panel has been used as a top sub-module, whereas a μc-Si solar panel has been used as bottom sub-module. Theoretical modeling has been done to analyze the physical processes in the system and to estimate reliable prediction of the performance. To incorporate the effect of material, the band gap and the absorption coefficient data for CdTe and μc-Si panels have been considered. The electrical performance of the top and bottom panels operated in a mechanical stack has been obtained experimentally for various inter-panel separations in the range of 0-3 cm. Maximum output power density has been obtained for a separation of 0.75 cm. The mean value of output power density from CdTe (top panel) has been calculated as 32.3 Wm-2 and the mean value of output power density from μc-Si, the bottom panel of four-terminal photovoltaic system has been calculated as ˜3.5 Wm-2. Results reported in this study reveal the potential of mechanically stacked four-terminal tandem solar photovoltaic system towards an energy-efficient configuration.

  1. Light-Weight, Flexible, High Efficiency Vacuum Photo-Thermo-Voltaic Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional solar cells are limited in efficiency, require heavy weight for high power applications, and tend to degrade rapidly in the harsh radiation environment...

  2. Multi-Material Front Contact for 19% Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Joop van Deelen

    2016-02-01

    Full Text Available The trade-off between transmittance and conductivity of the front contact material poses a bottleneck for thin film solar panels. Normally, the front contact material is a metal oxide and the optimal cell configuration and panel efficiency were determined for various band gap materials, representing Cu(In,GaSe2 (CIGS, CdTe and high band gap perovskites. Supplementing the metal oxide with a metallic copper grid improves the performance of the front contact and aims to increase the efficiency. Various front contact designs with and without a metallic finger grid were calculated with a variation of the transparent conductive oxide (TCO sheet resistance, scribing area, cell length, and finger dimensions. In addition, the contact resistance and illumination power were also assessed and the optimal thin film solar panel design was determined. Adding a metallic finger grid on a TCO gives a higher solar cell efficiency and this also enables longer cell lengths. However, contact resistance between the metal and the TCO material can reduce the efficiency benefit somewhat.

  3. Type conversion, contacts, and surface effects in electroplated CdTe films

    International Nuclear Information System (INIS)

    Basol, B.M.; Ou, S.S.; Stafsudd, O.M.

    1985-01-01

    Efficient electroplated CdS/CdTe solar cells can be fabricated by heat treating and type-converting the n-CdTe films deposited on CdS layers. In this paper, various mechanisms which may give rise to the conversion of electroplated CdTe films from n to p type are investigated. It is concluded that Cd-vacancy generation is the main mechanism of type conversion. Possible effects of oxygen on this mechanism are also discussed. Evaporated Au contacts to electroplated p-CdTe films were studied. It was found that the Au contacts depleted the excess Te present on the surface of Br 2 -methanol etched p-CdTe films. Oxygen was found to affect the electrical characteristics of such contacts

  4. Research Update: Behind the high efficiency of hybrid perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Azhar Fakharuddin

    2016-09-01

    Full Text Available Perovskite solar cells (PSCs marked tremendous progress in a short period of time and offer bright hopes for cheap solar electricity. Despite high power conversion efficiency >20%, its poor operational stability as well as involvement of toxic, volatile, and less-abundant materials hinders its practical deployment. The fact that degradation and toxicity are typically observed in the most successful perovskite involving organic cation and toxic lead, i.e., CH3NH3PbX3, requires a deep understanding of their role in photovoltaic performance in order to envisage if a non-toxic, stable yet highly efficient device is feasible. Towards this, we first provide an overview of the basic chemistry and physics of halide perovskites and its correlation with its extraordinary properties such as crystal structure, bandgap, ferroelectricity, and electronic transport. We then discuss device related aspects such as the various device designs in PSCs and role of interfaces in origin of PV parameters particularly open circuit voltage, various film processing methods and their effect on morphology and characteristics of perovskite films, and the origin and elimination of hysteresis and operational stability in these devices. We then identify future perspectives for stable and efficient PSCs for practical deployment.

  5. Study of the Mg incorporation in CdTe for developing wide band gap Cd{sub 1-x}Mg{sub x}Te thin films for possible use as top-cell absorber in a tandem solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Omar S. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Universidad Politecnica del Estado de Guerrero, Comunidad de Puente Campuzano, C.P. 40325 Taxco de Alarcon, Guerrero (Mexico); Millan, Aduljay Remolina [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Huerta, L.; Santana, G. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico. C.P 04510 Mexico D.F. (Mexico); Mathews, N.R.; Ramon-Garcia, M.L.; Morales, Erik R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico); Mathew, X., E-mail: xm@cie.unam.mx [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, 62580 Temixco, Morelos (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Thin films of Cd{sub 1-x}Mg{sub x}Te with high spatial uniformity and band gap in the range of 1.6-1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg. Black-Right-Pointing-Pointer Obtained Cd{sub 1-x}Mg{sub x}Te films have the structural characteristics of the CdTe, evidence of the change in atomic scattering due to incorporation of Mg was observed. Black-Right-Pointing-Pointer XRD and XPS data confirmed the incorporation of Mg in the lattice of CdTe. Black-Right-Pointing-Pointer SEM images revealed the impact of Mg incorporation on the morphology of the films, the changes in grain size and grain morphology are noticeable. - Abstract: Thin films of Cd{sub 1-x}Mg{sub x}Te with band gap in the range of 1.6-1.96 eV were deposited by vacuum co-evaporation of CdTe and Mg on glass substrates heated at 300 Degree-Sign C. Different experimental techniques such as XRD, UV-vis spectroscopy, SEM, and XPS were used to study the effect of Mg incorporation into the lattice of CdTe. The band gap of the films showed a clear tendency to increase as the Mg content in the film is increased. The Cd{sub 1-x}Mg{sub x}Te films maintain all the structural characteristics of the CdTe, however, diminishing of intensity for the XRD patterns is observed due to both change in preferential orientation and change in atomic scattering due to the incorporation of Mg. SEM images showed significant evidences of morphological changes due to the presence of Mg. XRD, UV-vis spectroscopy, and XPS data confirmed the incorporation of Mg in the lattice of CdTe. The significant increase in band gap of CdTe due to incorporation of Mg suggests that the Cd{sub 1-x}Mg{sub x}Te thin film is a candidate material to use as absorber layer in the top-cell of a tandem solar cell.

  6. Performance of High-Efficiency Advanced Triple-Junction Solar Panels for the LILT Mission Dawn

    Science.gov (United States)

    Fatemi, Navid S.; Sharma, Surya; Buitrago, Oscar; Sharps, Paul R.; Blok, Ron; Kroon, Martin; Jalink, Cees; Harris, Robin; Stella, Paul; Distefano, Sal

    2005-01-01

    NASA's Discovery Mission Dawn is designed to (LILT) conditions. operate within the solar system's Asteroid belt, where the large distance from the sun creates a low-intensity, low-temperature (LILT) condition. To meet the mission power requirements under LlLT conditions, very high-efficiency multi-junction solar cells were selected to power the spacecraft to be built by Orbital Sciences Corporation (OSC) under contract with JPL. Emcore's InGaP/InGaAs/Ge advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of greater than 27.6% (one-sun, 28 C), were used to populate the solar panels [1]. The two solar array wings, to be built by Dutch Space, with 5 large- area panels each (total area of 36.4 sq. meters) are projected to produce between 10.3 kWe and 1.3 kWe of end-of life (EOL) power in the 1.0 to 3.0 AU range, respectively. The details of the solar panel design, testing and power analysis are presented.

  7. Edge effects in a small pixel CdTe for X-ray imaging

    Science.gov (United States)

    Duarte, D. D.; Bell, S. J.; Lipp, J.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.; Kachkanov, V.; Sawhney, K. J. S.

    2013-10-01

    Large area detectors capable of operating with high detection efficiency at energies above 30 keV are required in many contemporary X-ray imaging applications. The properties of high Z compound semiconductors, such as CdTe, make them ideally suitable to these applications. The STFC Rutherford Appleton Laboratory has developed a small pixel CdTe detector with 80 × 80 pixels on a 250 μm pitch. Historically, these detectors have included a 200 μm wide guard band around the pixelated anode to reduce the effect of defects in the crystal edge. The latest version of the detector ASIC is capable of four-side butting that allows the tiling of N × N flat panel arrays. To limit the dead space between modules to the width of one pixel, edgeless detector geometries have been developed where the active volume of the detector extends to the physical edge of the crystal. The spectroscopic performance of an edgeless CdTe detector bump bonded to the HEXITEC ASIC was tested with sealed radiation sources and compared with a monochromatic X-ray micro-beam mapping measurements made at the Diamond Light Source, U.K. The average energy resolution at 59.54 keV of bulk and edge pixels was 1.23 keV and 1.58 keV, respectively. 87% of the edge pixels present fully spectroscopic performance demonstrating that edgeless CdTe detectors are a promising technology for the production of large panel radiation detectors for X-ray imaging.

  8. p-type doping efficiency in CdTe: Influence of second phase formation

    Science.gov (United States)

    McCoy, Jedidiah J.; Swain, Santosh K.; Sieber, John R.; Diercks, David R.; Gorman, Brian P.; Lynn, Kelvin G.

    2018-04-01

    Cadmium telluride (CdTe) high purity, bulk, crystal ingots doped with phosphorus were grown by the vertical Bridgman melt growth technique to understand and improve dopant solubility and activation. Large net carrier densities have been reproducibly obtained from as-grown ingots, indicating successful incorporation of dopants into the lattice. However, net carrier density values are orders of magnitude lower than the solubility of P in CdTe as reported in literature, 1018/cm3 to 1019/cm3 [J. H. Greenberg, J. Cryst. Growth 161, 1-11 (1996) and R. B. Hall and H. H. Woodbury, J. Appl. Phys. 39(12), 5361-5365 (1968)], despite comparable starting charge dopant densities. Growth conditions, such as melt stoichiometry and post growth cooling, are shown to have significant impacts on dopant solubility. This study demonstrates that a significant portion of the dopant becomes incorporated into second phase defects as compounds of cadmium and phosphorous, such as cadmium phosphide, which inhibits dopant incorporation into the lattice and limits maximum attainable net carrier density in bulk crystals. Here, we present an extensive study on the characteristics of these second phase defects in relation to their composition and formation kinetics while providing a pathway to minimize their formation and enhance solubility.

  9. Organic dye for highly efficient solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Mende, L.; Bach, U.; Humphry-Baker, R.; Ito, S.; Graetzel, M. [Institut des Sciences et Ingenierie Chimiques (ISIC), Laboratoire de Photonique et Interfaces (LPI), Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Horiuchi, T.; Miura, H. [Technology Research Laboratory, Corporate Research Center, Mitsubishi Paper Mills Limited, 46, Wadai, Tsukuba City, Ibaraki 300-4247 (Japan); Uchida, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-chome, Aoba-ku, Sendai 980-8577 (Japan)

    2005-04-04

    The feasibility of solid-state dye-sensitized solar cells as a low-cost alternative to amorphous silicon cells is demonstrated. Such a cell with a record efficiency of over 4 % under simulated sunlight is reported, made possible by using a new organic metal-free indoline dye as the sensitizer with high absorption coefficient. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  10. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram, E-mail: bkilic@yalova.edu.tr [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Günes, Taylan; Besirli, Ilknur; Sezginer, Merve [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Tuzemen, Sebahattin [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2014-11-01

    Graphical abstract: - Highlights: • The structural and optical characterizations of ZnO nanoflowers were carried out on ITO by hydrothermal method. • Dye sensitized solar cell based ZnO nanoflowers were constructed on substrate. • The surface morphology effect on quantum efficiency and solar conversion efficiency were investigated. - Abstract: 3-dimensional ZnO nanoflower were obtained on FTO (F:SnO{sub 2}) substrate by hydrothermal method in order to produce high efficiency dye sensitized solar cells (DSSCs). We showed that nanoflowers structures have nanoscale branches that stretch to fill gaps on the substrate and these branches of nano-leaves provide both a larger surface area and a direct pathway for electron transport along the channels. It was found that the solar conversion efficiency and quantum efficiency (QE) or incident photon to current conversion efficiencies (IPCE) is highly dependent on nanoflower surface due to high electron injection process. The highest solar conversion efficiency of 5.119 and QE of 60% was obtained using ZnO nanoflowers/N719 dye/I{sup −}/I{sup −}{sub 3} electrolyte. In this study, three dimensional (3D)-nanoflower and one dimensional (1D)-nanowires ZnO nanostructures were also compared against each other in respect to solar conversion efficiency and QE measurements. In the case of the 1D-ZnO nanowire conversion efficiency (η) of 2.222% and IPCE 47% were obtained under an illumination of 100 mW/cm{sup 2}. It was confirmed that the performance of the 3D-nanoflowers was better than about 50% that of the 1D-nanowire dye-sensitized solar cells.

  11. Computational screening of new inorganic materials for highly efficient solar energy conversion

    DEFF Research Database (Denmark)

    Kuhar, Korina

    2017-01-01

    in solar cells convert solar energy into electricity, and PC uses harvested energy to conduct chemical reactions, such as splitting water into oxygen and, more importantly, hydrogen, also known as the fuel of the future. Further progress in both PV and PC fields is mostly limited by the flaws in materials...... materials. In this work a high-throughput computational search for suitable absorbers for PV and PC applications is presented. A set of descriptors has been developed, such that each descriptor targets an important property or issue of a good solar energy conversion material. The screening study...... that we have access to. Despite the vast amounts of energy at our disposal, we are not able to harvest this solar energy efficiently. Currently, there are a few ways of converting solar power into usable energy, such as photovoltaics (PV) or photoelectrochemical generation of fuels (PC). PV processes...

  12. Laser processes and system technology for the production of high-efficient crystalline solar cells

    Science.gov (United States)

    Mayerhofer, R.; Hendel, R.; Zhu, Wenjie; Geiger, S.

    2012-10-01

    The laser as an industrial tool is an essential part of today's solar cell production. Due to the on-going efforts in the solar industry, to increase the cell efficiency, more and more laser-based processes, which have been discussed and tested at lab-scale for many years, are now being implemented in mass production lines. In order to cope with throughput requirements, standard laser concepts have to be improved continuously with respect to available average power levels, repetition rates or beam profile. Some of the laser concepts, that showed high potential in the past couple of years, will be substituted by other, more economic laser types. Furthermore, requirements for processing with less-heat affected zones fuel the development of industry-ready ultra short pulsed lasers with pulse widths even below the picosecond range. In 2011, the German Ministry of Education and Research (BMBF) had launched the program "PV-Innovation Alliance", with the aim to support the rapid transfer of high-efficiency processes out of development departments and research institutes into solar cell production lines. Here, lasers play an important role as production tools, allowing the fast implementation of high-performance solar cell concepts. We will report on the results achieved within the joint project FUTUREFAB, where efficiency optimization, throughput enhancement and cost reduction are the main goals. Here, the presentation will focus on laser processes like selective emitter doping and ablation of dielectric layers. An indispensable part of the efforts towards cost reduction in solar cell production is the improvement of wafer handling and throughput capabilities of the laser processing system. Therefore, the presentation will also elaborate on new developments in the design of complete production machines.

  13. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity

    Science.gov (United States)

    Syed, Asad; Ahmad, Absar

    2013-04-01

    The growing demand for semiconductor [quantum dots (Q-dots)] nanoparticles has fuelled significant research in developing strategies for their synthesis and characterization. They are extensively investigated by the chemical route; on the other hand, use of microbial sources for biosynthesis witnessed the highly stable, water dispersible nanoparticles formation. Here we report, for the first time, an efficient fungal-mediated synthesis of highly fluorescent CdTe quantum dots at ambient conditions by the fungus Fusarium oxysporum when reacted with a mixture of CdCl2 and TeCl4. Characterization of these biosynthesized nanoparticles was carried out by different techniques such as Ultraviolet-visible (UV-Vis) spectroscopy, Photoluminescence (PL), X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. CdTe nanoparticles shows antibacterial activity against Gram positive and Gram negative bacteria. The fungal based fabrication provides an economical, green chemistry approach for production of highly fluorescent CdTe quantum dots.

  14. Thermal Stability-Enhanced and High-Efficiency Planar Perovskite Solar Cells with Interface Passivation.

    Science.gov (United States)

    Zhang, Weihai; Xiong, Juan; Jiang, Li; Wang, Jianying; Mei, Tao; Wang, Xianbao; Gu, Haoshuang; Daoud, Walid A; Li, Jinhua

    2017-11-08

    As the electron transport layer (ETL) of perovskite solar cells, oxide semiconductor zinc oxide (ZnO) has been attracting great attention due to its relatively high mobility, optical transparency, low-temperature fabrication, and good environment stability. However, the nature of ZnO will react with the patron on methylamine, which would deteriorate the performance of cells. Although many methods, including high-temperature annealing, doping, and surface modification, have been studied to improve the efficiency and stability of perovskite solar cells with ZnO ETL, devices remain relatively low in efficiency and stability. Herein, we adopted a novel multistep annealing method to deposit a porous PbI 2 film and improved the quality and uniformity of perovskite films. The cells with ZnO ETL were fabricated at the temperature of perovskite film. Interestingly, the PCE of PCBM-passivated cells could reach nearly 19.1%. To our best knowledge, this is the highest PCE value of ZnO-based perovskite solar cells until now. More importantly, PCBM modification could effectively suppress the decomposition of MAPbI 3 and improve the thermal stability of cells. Therefore, the ZnO is a promising candidate of electron transport material for perovskite solar cells in future applications.

  15. Controllable Nanoscale Inverted Pyramids for High-Efficient Quasi-Omnidirectional Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Xu, Haiyuan; Zhong, Sihua; Zhuang, Yufeng; Shen, Wenzhong

    2017-11-14

    Nanoscale inverted pyramid structures (NIPs) have always been regarded as one of the most paramount light management schemes to achieve the extraordinary performance in various devices, especially in solar cells, due to their outstanding antireflection ability with relative lower surface enhancement ratio. However, the current approaches to fabricating the NIPs are complicated and not cost-effective for the massive cell production in the photovoltaic industry. Here, controllable NIPs are fabricated on crystalline silicon (c-Si) wafers by Ag catalyzed chemical etching and alkaline modification, which is a preferable all-solution-processed method. Through applying the NIPs to c-Si solar cells and optimizing the cell design, we have successfully achieved highly efficient NIPs textured solar cells with the champion efficiency of 20.5%. Importantly, the NIPs textured solar cells are further demonstrated to possess the quasi-omnidirectional property over the broad sunlight incident angles of approximately 0°-60°. Moreover, the NIPs are theoretically revealed to offer light trapping advantage for ultrathin c-Si solar cells. Hence, the NIPs formed by the controllable method exhibit a great potential to be used in the future photovoltaic industry as surface texture. © 2017 IOP Publishing Ltd.

  16. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    Directory of Open Access Journals (Sweden)

    Wagner Anacleto Pinheiro

    2006-03-01

    Full Text Available Unlike other thin film deposition techniques, close spaced sublimation (CSS requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate and a sintered CdTe powder. In this work, CdTe thin films were deposited by CSS technique from different CdTe sources: particles, powder, compact powder, a paste made of CdTe and propylene glycol and source-plates (CdTe/Mo and CdTe/glass. The largest deposition rate was achieved when a paste made of CdTe and propylene glycol was used as the source. CdTe source-plates led to lower rates, probably due to the poor heat transmission, caused by the introduction of the plate substrate. The results also showed that compacting the powder the deposition rate increases due to the better thermal contact between powder particles.

  17. Highly efficient tandem polymer solar cells with a photovoltaic response in the visible light range.

    Science.gov (United States)

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Maojie; Zhao, Kang; Ye, Long; Chen, Yu; Yang, Bei; Hou, Jianhui

    2015-02-18

    Highly efficient polymer solar cells with a tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion -efficiencies over 10% can be realized with a photovoltaic response within 800 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Initial Test Bed for Very High Efficiency Solar Cells

    Science.gov (United States)

    2008-05-01

    efficiency, both at the solar cell and module levels. The optical system consists of a tiled nonimaging concentrating system, coupled with a spectral...To achieve the benefits of the new photovoltaic system architecture, a new optical element is designed that combines a nonimaging optical...of the power from each solar cell. Optics Design The most advanced optical design is based on non- symmetric, nonimaging optics, tiled into an

  19. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan

    2016-09-09

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top of the organic bulk heterojunction layer in the inverted architecture is most commonly an ultrathin (<10 nm) metal oxide layer prepared by vacuum-deposition. Here, we show that an alcohol-based nanocrystalline MoOx suspension with carefully controlled nanocrystal (NC) size can yield state of the art reflective and semitransparent solar cells. Using NCs smaller than the target HTL thickness (∼10 nm) can yield compact, pinhole-free films which result in highly efficient polymer:fullerene bulk heterojunction (BHJ) solar cells with PCE=9.5%. The solution processed HTL is shown to achieve performance parity with vacuum-evaporated HTLs for several polymer:fullerene combinations and is even shown to work as hole injection layer in polymer light emitting diodes (PLED). We also demonstrate that larger MoOx NCs (30–50 nm) successfully composite MoOx with Ag nanowires (NW) to form a highly conducting, transparent top anode with exceptional contact properties. This yields state-of-the-art semitransparent polymer: fullerene solar cells with PCE of 6.5% and overall transmission >30%. The remarkable performance of reflective and semitransparent OPVs is due to the uncommonly high fill factors achieved using a carefully designed strategy for implementation of MoOx nanocrystals as HTL materials. © 2016 Elsevier Ltd

  20. Dissolution-recrystallization method for high efficiency perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Luo, Junsheng; Wan, Zhongquan; Liu, Xingzhao; Jia, Chunyang, E-mail: cyjia@uestc.edu.cn

    2017-06-30

    Highlights: • Dissolution-recrystallization method can improve perovskite crystallization. • Dissolution-recrystallization method can improve TiO{sub 2}/perovskite interface. • The optimal perovskite solar cell obtains the champion PCE of 16.76%. • The optimal devices are of high reproducibility. - Abstract: In this work, a dissolution-recrystallization method (DRM) with chlorobenzene and dimethylsulfoxide treating the perovskite films during the spin-coating process is reported. This is the first time that DRM is used to control perovskite crystallization and improve the device performance. Furthermore, the DRM is good for reducing defects and grain boundaries, improving perovskite crystallization and even improving TiO{sub 2}/perovskite interface. By optimizing, the DRM2-treated perovskite solar cell (PSC) obtains the best photoelectric conversion efficiency (PCE) of 16.76% under AM 1.5 G illumination (100 mW cm{sup −2}) with enhanced J{sub sc} and V{sub oc} compared to CB-treated PSC.

  1. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials.

    Science.gov (United States)

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-10-27

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.

  2. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Directory of Open Access Journals (Sweden)

    Yunfei Shang

    2015-10-01

    Full Text Available Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous, gallium arsenide (GaAs solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed

  3. The Mechanism of Burn-in Loss in a High Efficiency Polymer Solar Cell

    KAUST Repository

    Peters, Craig H.

    2011-10-11

    Degradation in a high efficiency polymer solar cell is caused by the formation of states in the bandgap. These states increase the energetic disorder in the system. The power conversion efficiency loss does not occur when current is run through the device in the dark but occurs when the active layer is photo-excited. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Koo, John, E-mail: john-koo@amat.com; Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James [Applied Materials, Inc., Varian Semiconductor Equipment Business Unit, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  5. Strategies to reduce the open-circuit voltage deficit in Cu2ZnSn(S,Se)4 thin film solar cells

    Science.gov (United States)

    Kim, Jekyung; Shin, Byungha

    2017-09-01

    Cu2ZnSn(S,Se)4 thin film solar cell has attracted significant attention in thin film solar cell technologies considering its low-cost, non-toxicity, and earth-abundance. However, the highest efficiency still remains at 12.6%, far below the theoretical efficiency of Shockley-Queisser (SQ) limit of around 30%. The limitation behind such shortcoming in the device performance was reported to stem primarily from a high V oc deficit compared to other thin film solar cell technologies such as CdTe or Cu(In,Ga)Se2 (CIGS), whose origins are attributed to the prevalence of band tailing from cation disordering as well as to the high recombination at the interfaces. In this report, systematic studies on the causes of a high V oc deficit and associated remarkable approaches to achieve high V oc have been reviewed, provided with a guidance on the future direction of CZTSSe research in resolving the high V oc deficit issue. [Figure not available: see fulltext.

  6. Designing High Efficient Solar Powered OLED Lighting Systems

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune

    2016-01-01

    for the 10 Wp version. Furthermore, we present measurements of state-of-the-art commercial available OLED with regards to the luminous flux, luminous efficacy, luminance homogeneity, temperature dependency and IV characteristic of the OLED panels. In addition, solar powered OLED product concepts are proposed.......OLEDs used in solar powered lighting applications is a market of the future. This paper reports the development of electronic Three-Port-Converters for PV OLED product integration in the low-power area respectively for 1-10 Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power...

  7. Experimental study of efficiency of solar panel by phase change material cooling

    Science.gov (United States)

    Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng

    2017-07-01

    The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.

  8. Intensely emitting CdTe nanocrystals retained initial photoluminescence efficiency in sol-gel derived Si{sub 1-x}Zr{sub x}O{sub 2} glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, P.; Murase, N. [National Institute of Advanced Industrial Science and Technology, Photonics Research Institute, Osaka (Japan)

    2007-10-15

    Emitting CdTe nanocrystals (NCs) were embedded in pure glass matrices (Si{sub 1-x}Zr{sub x}O{sub 2}, x{<=}0.15) using a controlled sol-gel method, where the pre-hydrolyzed condition, the molar ratio of Zr/Si, the gelation time, the pH, and the amount of alcohol were judiciously optimized considering the surface condition of the NCs and the mechanism of the glass formation. As a result, the prepared glass phosphor exhibited high photoluminescence efficiencies (40% for green and 60% for red when Zr/Si was 5-10%) by retaining their initial values as in CdTe colloidal solution. To our knowledge, these values are the highest among those ever obtained for any solid matrices containing NCs. Because of the existence of Zr, the prepared glasses exhibit much better resistance against the ambient atmosphere, heat-treatment, and boiling water compared with pure silica glass (x=0) or the glass prepared from our other methods using a silane coupling agent. Thus, the obtained glass is promising for applications such as optical devices. (orig.)

  9. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    Science.gov (United States)

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Performance of ultra high efficiency thin germanium p-n junction solar cells intended for solar thermophotovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Vera, E S; Loferski, J J; Spitzer, M; Schewchun, J

    1981-01-01

    The theoretical upper limit conversion efficiency as a function of cell thickness and junction position is calculated for a germanium p-n junction solar cell intended for solar thermophotovoltaic energy conversion which incorporates minority carrier mirrors and optical mirrors on both the front and back boundaries of the active part of the device. The optical mirrors provide light confinement reducing the thickness required for optimum performance while minority carrier mirrors diminish surface recombination of carriers which seriously reduce short circuit current and limit open circuit voltage. The role of non-ideal optical and minority carrier mirrors and the effect of resistivity variations are studied. The calculations are conducted under conditions of high incident power (2-25 W/cm/sup 2/) which are encountered in solar thermophotovoltaic energy conversion systems. 14 refs.

  11. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions.

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Wilkening, Jean V; Field, James A; Sierra-Alvarez, Reyes

    2017-08-15

    A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1mgL -1 ), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005mgL -1 ). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. World's Most Efficient Solar Cell

    Science.gov (United States)

    World's Most Efficient Solar Cell National Renewable Energy Laboratory, Spectrolab Set Record For , 1999 - A solar cell that can convert sunlight to electricity at a record-setting 32 percent efficiency on Earth. Spectrolab of Sylmar, Calif., "grew" the record-setting solar cell. After

  13. Research on fabrication technology for thin film solar cells for practical use. Survey on the commercialization analysis; Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Jitsuyoka kaiseki ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on the technological trend, safety and latest technologies of thin film solar cells in fiscal 1994. As the fabrication technology for amorphous film solar cells, three-electrode plasma CVD was surveyed as fabrication method for high-mobility materials, and hydrogen radical CVD as fabrication method for high-photostable films. Current foreign and domestic reliability tests were surveyed for reliability evaluation of solar cells. In order to ascertain the performance, efficiency, physical properties and optimum structure of polycrystalline Si thin film solar cells, previously reported test results on physical properties such as carrier concentration, carrier lifetime and mobility of films were surveyed together with device simulation results. In addition, technologies for high-efficiency CuInSe2 system and CdTe system solar cells, technologies for cost reduction and mass production, and environmental influence were surveyed. Estimation of production costs for cell modules, and safety of thin film solar cells were also surveyed.

  14. High Efficiency Solar-based Catalytic Structure for CO2 Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Menkara, Hisham [PhosphorTech Corporation, Kennesaw, GA (United States)

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO2 reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO2 reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO2 into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  15. Toward High-Efficiency Solution-Processed Planar Heterojunction Sb2S3 Solar Cells.

    Science.gov (United States)

    Zimmermann, Eugen; Pfadler, Thomas; Kalb, Julian; Dorman, James A; Sommer, Daniel; Hahn, Giso; Weickert, Jonas; Schmidt-Mende, Lukas

    2015-05-01

    Low-cost hybrid solar cells have made tremendous steps forward during the past decade owing to the implementation of extremely thin inorganic coatings as absorber layers, typically in combination with organic hole transporters. Using only extremely thin films of these absorbers reduces the requirement of single crystalline high-quality materials and paves the way for low-cost solution processing compatible with roll-to-roll fabrication processes. To date, the most efficient absorber material, except for the recently introduced organic-inorganic lead halide perovskites, has been Sb 2 S 3 , which can be implemented in hybrid photovoltaics using a simple chemical bath deposition. Current high-efficiency Sb 2 S 3 devices utilize absorber coatings on nanostructured TiO 2 electrodes in combination with polymeric hole transporters. This geometry has so far been the state of the art, even though flat junction devices would be conceptually simpler with the additional potential of higher open circuit voltages due to reduced charge carrier recombination. Besides, the role of the hole transporter is not completely clarified yet. In particular, additional photocurrent contribution from the polymers has not been directly shown, which points toward detrimental parasitic light absorption in the polymers. This study presents a fine-tuned chemical bath deposition method that allows fabricating solution-processed low-cost flat junction Sb 2 S 3 solar cells with the highest open circuit voltage reported so far for chemical bath devices and efficiencies exceeding 4%. Characterization of back-illuminated solar cells in combination with transfer matrix-based simulations further allows to address the issue of absorption losses in the hole transport material and outline a pathway toward more efficient future devices.

  16. CdTe polycrystalline films on Ni foil substrates by screen printing and their photoelectric performance

    International Nuclear Information System (INIS)

    Yao, Huizhen; Ma, Jinwen; Mu, Yannan; Su, Shi; Lv, Pin; Zhang, Xiaoling; Zhou, Liying; Li, Xue; Liu, Li; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Highlights: • The sintered CdTe polycrystalline films by a simple screen printing. • The flexible Ni foil was chose as substrates to reduce the weight of the electrode. • The compact CdTe film was obtained at 550 °C sintering temperature. • The photoelectric activity of the CdTe polycrystalline films was excellent. - Abstract: CdTe polycrystalline films were prepared on flexible Ni foil substrates by sequential screen printing and sintering in a nitrogen atmosphere for the first time. The effect of temperature on the quality of the screen-printed film was investigated in our work. The high-quality CdTe films were obtained after sintering at 550 °C for 2 h. The properties of the sintered CdTe films were characterized by scanning electron microscopy, X-ray diffraction pattern and UV–visible spectroscopy. The high-quality CdTe films have the photocurrent was 2.04 mA/cm 2 , which is higher than that of samples prepared at other temperatures. Furthermore, CdCl 2 treatment reduced the band gap of the CdTe film due to the larger grain size. The photocurrent of photoelectrode based on high crystalline CdTe polycrystalline films after CdCl 2 treatment improved to 2.97 mA/cm 2 , indicating a potential application in photovoltaic devices

  17. High-Efficiency Silicon/Organic Heterojunction Solar Cells with Improved Junction Quality and Interface Passivation.

    Science.gov (United States)

    He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi

    2016-12-27

    Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.

  18. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    Science.gov (United States)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  19. High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass

    Science.gov (United States)

    Colegrove, E.; Banai, R.; Blissett, C.; Buurma, C.; Ellsworth, J.; Morley, M.; Barnes, S.; Gilmore, C.; Bergeson, J. D.; Dhere, R.; Scott, M.; Gessert, T.; Sivananthan, Siva

    2012-10-01

    Multiple polycrystalline CdS/CdTe solar cells with efficiencies greater than 15% were produced on buffered, commercially available Pilkington TEC Glass at EPIR Technologies, Inc. (EPIR, Bolingbrook, IL) and verified by the National Renewable Energy Laboratory (NREL). n-CdS and p-CdTe were grown by chemical bath deposition (CBD) and close space sublimation, respectively. Samples with sputter-deposited CdS were also investigated. Initial results indicate that this is a viable dry-process alternative to CBD for production-scale processing. Published results for polycrystalline CdS/CdTe solar cells with high efficiencies are typically based on cells using research-grade transparent conducting oxides (TCOs) requiring high-temperature processing inconducive to low-cost manufacturing. EPIR's results for cells on commercial glass were obtained by implementing a high-resistivity SnO2 buffer layer and by optimizing the CdS window layer thickness. The high-resistivity buffer layer prevents the formation of CdTe-TCO junctions, thereby maintaining a high open-circuit voltage and fill factor, whereas using a thin CdS layer reduces absorption losses and improves the short-circuit current density. EPIR's best device demonstrated an NREL-verified efficiency of 15.3%. The mean efficiency of hundreds of cells produced with a buffer layer between December 2010 and June 2011 is 14.4%. Quantum efficiency results are presented to demonstrate EPIR's progress toward NREL's best-published results.

  20. Polymer solar cells with enhanced open-circuit voltage and efficiency

    Science.gov (United States)

    Chen, Hsiang-Yu; Hou, Jianhui; Zhang, Shaoqing; Liang, Yongye; Yang, Guanwen; Yang, Yang; Yu, Luping; Wu, Yue; Li, Gang

    2009-11-01

    Following the development of the bulk heterojunction structure, recent years have seen a dramatic improvement in the efficiency of polymer solar cells. Maximizing the open-circuit voltage in a low-bandgap polymer is one of the critical factors towards enabling high-efficiency solar cells. Study of the relation between open-circuit voltage and the energy levels of the donor/acceptor in bulk heterojunction polymer solar cells has stimulated interest in modifying the open-circuit voltage by tuning the energy levels of polymers. Here, we show that the open-circuit voltage of polymer solar cells constructed based on the structure of a low-bandgap polymer, PBDTTT, can be tuned, step by step, using different functional groups, to achieve values as high as 0.76 V. This increased open-circuit voltage combined with a high short-circuit current density results in a polymer solar cell with a power conversion efficiency as high as 6.77%, as certified by the National Renewable Energy Laboratory.

  1. Surface passivation for CdTe devices

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Matthew O.; Perkins, Craig L.; Burst, James M.; Gessert, Timothy A.; Barnes, Teresa M.; Metzger, Wyatt K.

    2017-08-01

    In one embodiment, a method for surface passivation for CdTe devices is provided. The method includes adjusting a stoichiometry of a surface of a CdTe material layer such that the surface becomes at least one of stoichiometric or Cd-rich; and reconstructing a crystalline lattice at the surface of the CdTe material layer by annealing the adjusted surface.

  2. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  3. Fabrication of fluorescent composite with ultrafast aqueous synthesized high luminescent CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei, E-mail: mejswu@ust.hk; Chen, Haibin, E-mail: mejswu@ust.hk, E-mail: mejswu@ust.hk; Wu, Jingshen, E-mail: mejswu@ust.hk, E-mail: mejswu@ust.hk [Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong and Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology (Hong Kong); Bi, Xianghong, E-mail: takubatch@gmail.com [Fok Ying Tung Graduate School, The Hong Kong University of Science and Technology (Hong Kong)

    2014-05-15

    Without precursor preparation, inert gas protection and enormous amount of additives and reductants, CdTe quantum dots (QDs) can be rapidly synthesized with high quality. A 600 nm photoluminescence peak wavelength could be obtained within 1 hour's refluxing through minimal addition of 1,2-diaminoethane (DAE). The theoretical design for the experiments are illustrated and further proved by the characterization results with different concentrations and reagents. On the other hand, generation of CdTe QDs was found even under room temperature by applying droplet quantity of DAE. This indicates that QDs can be synthesized with simply a bottle and no enormous additives required. The QDs were mixed into the epoxy matrix through solution casting method with cetyltrimethylammonium (CTA) capping for phase transfer. The acquired epoxy based nanocomposite exhibits good transparency, compatibility and fluorescence.

  4. Design of High Efficient MPPT Solar Inverter

    Directory of Open Access Journals (Sweden)

    Sunitha K. A.

    2017-01-01

    Full Text Available This work aims to design a High Efficient Maximum Power Point Tracking (MPPT Solar Inverter. A boost converter is designed in the system to boost the power from the photovoltaic panel. By this experimental setup a room consisting of 500 Watts load (eight fluorescent tubes is completely controlled. It is aimed to decrease the maintenance cost. A microcontroller is introduced for tracking the P&O (Perturb and Observe algorithm used for tracking the maximum power point. The duty cycle for the operation of the boost convertor is optimally adjusted by using MPPT controller. There is a MPPT charge controller to charge the battery as well as fed to inverter which runs the load. Both the P&O scheme with the fixed variation for the reference current and the intelligent MPPT algorithm were able to identify the global Maximum power point, however the performance of the MPPT algorithm was better.

  5. How to harvest efficient laser from solar light

    Science.gov (United States)

    Zhao, Changming; Guan, Zhe; Zhang, Haiyang

    2018-02-01

    Solar Pumped Solid State Lasers (SPSSL) is a kind of solid state lasers that can transform solar light into laser directly, with the advantages of least energy transform procedure, higher energy transform efficiency, simpler structure, higher reliability, and longer lifetime, which is suitable for use in unmanned space system, for solar light is the only form of energy source in space. In order to increase the output power and improve the efficiency of SPSSL, we conducted intensive studies on the suitable laser material selection for solar pump, high efficiency/large aperture focusing optical system, the optimization of concave cavity as the second focusing system, laser material bonding and surface processing. Using bonded and grooved Nd:YAG rod as laser material, large aperture Fresnel lens as the first stage focusing element, concave cavity as the second stage focusing element, we finally got 32.1W/m2 collection efficiency, which is the highest collection efficiency in the world up to now.

  6. Improved contact metallization for high efficiency EFG polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Dube, C.E.; Gonsiorawski, R.C.

    1990-01-01

    Improvements in the performance of polycrystalline silicon solar cells based on a novel, laser patterned contact process are described. Small lots of cells having an average conversion efficiency of 14 + %, with several cells approaching 15%, are reported for cells of 45 cm 2 area. The high efficiency contact design is based on YAG laser patterning of the silicon nitride anti-reflection coating. The Cu metallization is done using light-induced plating, with the cell providing the driving voltage for the plating process. The Cu electrodeposits into the laser defined windows in the AR coating for reduced contact area, following which the Cu bridges on top of the Ar coating to form a continuous finger pattern. The higher cell conversion efficiency is attributed to reduced shadow loss, higher junction quality, and reduced metal-semiconductor interfacial area

  7. Technological development for super-high efficiency solar cells. Technological development for super-high efficiency singlecrystalline silicon solar cells (super-high efficiency singlecrystalline Si solar cells); Chokokoritsu taiyo denchi no gijutsu kaihatsu. Chokokoritsu tankessho silicon taiyo denchi no gijutsu kaihatsu (chokokoritsu tankessho silicon taiyo denchi cell no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on technological development of super-high efficiency singlecrystalline silicon solar cells in fiscal 1994. (1) On development of high-performance light receiving layer, the fine electrode for receiving surfaces was designed to reduce serial resistance, and the high-quality oxide passivation film was studied to reduce surface recombination velocity. (2) On development of forming technology of back heterojunction, the high-quality cell with B-doped fine crystalline Si film on its back was studied by heat treatment of the fine crystalline Si film, and the cell structure with high back reflectance of light was also studied. (3) On analysis for high-efficiency cells, the relation between the back recombination velocity at the interface between p-type substrate and back passivation film, and the internal collection efficiency as probe light was injected from the back, was calculated by numerical simulation. As a result, the cell back recombination velocity could be evaluated by measuring the spectral internal collection efficiency to back injection. 15 figs., 6 tabs.

  8. CdS/TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation

    Science.gov (United States)

    Krishna Karuturi, Siva; Yew, Rowena; Reddy Narangari, Parvathala; Wong-Leung, Jennifer; Li, Li; Vora, Kaushal; Tan, Hark Hoe; Jagadish, Chennupati

    2018-03-01

    Cadmium sulfide (CdS) is a unique semiconducting material for solar hydrogen generation applications with a tunable, narrow bandgap that straddles water redox potentials. However, its potential towards efficient solar hydrogen generation has not yet been realized due to low photon-to-current conversions, high charge carrier recombination and the lack of controlled preparation methods. In this work, we demonstrate a highly efficient CdS/TiO2 heterostructured photoelectrode using atomic layer deposition and solution ion transfer reactions. Enabled by the well-controlled deposition of CdS nanocrystals on TiO2 inverse opal (TiIO) nanostructures using the proposed method, a saturation photocurrent density of 9.1 mA cm-2 is realized which is the highest ever reported for CdS-based photoelectrodes. We further demonstrate that the passivation of a CdS surface with an ultrathin amorphous layer (˜1.5 nm) of TiO2 improves the charge collection efficiency at low applied potentials paving the way for unassisted solar hydrogen generation.

  9. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents

    KAUST Repository

    Wadsworth, Andrew; Ashraf, Raja; Abdelsamie, Maged; Pont, Sebastian; Little, Mark; Moser, Maximilian; Hamid, Zeinab; Neophytou, Marios; Zhang, Weimin; Amassian, Aram; Durrant, James R.; Baran, Derya; McCulloch, Iain

    2017-01-01

    With chlorinated solvents unlikely to be permitted for use in solution-processed organic solar cells in industry, there must be a focus on developing nonchlorinated solvent systems. Here we report high-efficiency devices utilizing a low-bandgap donor polymer (PffBT4T-2DT) and a nonfullerene acceptor (EH-IDTBR) from hydrocarbon solvents and without using additives. When mesitylene was used as the solvent, rather than chlorobenzene, an improved power conversion efficiency (11.1%) was achieved without the need for pre- or post-treatments. Despite altering the processing conditions to environmentally friendly solvents and room-temperature coating, grazing incident X-ray measurements confirmed that active layers processed from hydrocarbon solvents retained the robust nanomorphology obtained with hot-processed chlorinated solvents. The main advantages of hydrocarbon solvent-processed devices, besides the improved efficiencies, were the reproducibility and storage lifetime of devices. Mesitylene devices showed better reproducibility and shelf life up to 4000 h with PCE dropping by only 8% of its initial value.

  10. Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents

    KAUST Repository

    Wadsworth, Andrew

    2017-06-01

    With chlorinated solvents unlikely to be permitted for use in solution-processed organic solar cells in industry, there must be a focus on developing nonchlorinated solvent systems. Here we report high-efficiency devices utilizing a low-bandgap donor polymer (PffBT4T-2DT) and a nonfullerene acceptor (EH-IDTBR) from hydrocarbon solvents and without using additives. When mesitylene was used as the solvent, rather than chlorobenzene, an improved power conversion efficiency (11.1%) was achieved without the need for pre- or post-treatments. Despite altering the processing conditions to environmentally friendly solvents and room-temperature coating, grazing incident X-ray measurements confirmed that active layers processed from hydrocarbon solvents retained the robust nanomorphology obtained with hot-processed chlorinated solvents. The main advantages of hydrocarbon solvent-processed devices, besides the improved efficiencies, were the reproducibility and storage lifetime of devices. Mesitylene devices showed better reproducibility and shelf life up to 4000 h with PCE dropping by only 8% of its initial value.

  11. Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses

    KAUST Repository

    Chiang, Weiyi

    2014-12-11

    The development in optical trapping and manipulation has been showing rapid progress, most of it is in the small particle sizes in nanometer scales, substituting the conventional continuous-wave lasers with high-repetition-rate ultrashort laser pulse train and nonlinear optical effects. Here, we evaluate two-photon absorption in optical trapping of 2.7 nm-sized CdTe quantum dots (QDs) with high-repetition-rate femtosecond pulse train by probing laser intensity dependence of both Rayleigh scattering image and the two-photon-induced luminescence spectrum of the optically trapped QDs. The Rayleigh scattering imaging indicates that the two-photon absorption (TPA) process enhances trapping ability of the QDs. Similarly, a nonlinear increase of the two-photon-induced luminescence with the incident laser intensity fairly indicates the existence of the TPA process.

  12. Doping efficiency analysis of highly phosphorous doped epitaxial/amorphous silicon emitters grown by PECVD for high efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, H.G.; Sivoththaman, S. [Waterloo Univ., ON (Canada). Dept. of Electrical and Computer Engineering

    2008-08-15

    The efficient doping of hydrogenated amorphous and crystalline silicon thin films is a key factor in the fabrication of silicon solar cells. The most popular method for developing those films is plasma enhanced chemical vapor deposition (PECVD) because it minimizes defect density and improves doping efficiency. This paper discussed the preparation of different structure phosphorous doped silicon emitters ranging from epitaxial to amorphous films at low temperature. Phosphine (PH{sub 3}) was employed as the doping gas source with the same gas concentration for both epitaxial and amorphous silicon emitters. The paper presented an analysis of dopant activation by applying a very short rapid thermal annealing process (RTP). A spreading resistance profile (SRP) and SIMS analysis were used to detect both the active dopant and the dopant concentrations, respectively. The paper also provided the results of a structural analysis for both bulk and cross-section at the interface using high-resolution transmission electron microscopy and Raman spectroscopy, for epitaxial and amorphous films. It was concluded that a unity doping efficiency could be achieved in epitaxial layers by applying an optimized temperature profile using short time processing rapid thermal processing technique. The high quality, one step epitaxial layers, led to both high conductive and high doping efficiency layers.

  13. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Yue, Yuanzheng; Greaves, G. Neville; Zhao, Xiujian

    2015-01-01

    The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed.The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants

  14. High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ching-Mei; Cui, Yi [Department of Materials Science and Engineering, Durand Building, 496 Lomita Mall, Stanford University, Stanford, CA 94305-4034 (United States); Battaglia, Corsin; Pahud, Celine; Haug, Franz-Josef; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue Breguet 2, 2000 Neuchatel (Switzerland); Ruan, Zhichao; Fan, Shanhui [Department of Electrical Engineering, Stanford University (United States)

    2012-06-15

    An amorphous silicon solar cell on a periodic nanocone back reflector with a high 9.7% initial conversion efficiency is presented. The optimized back-reflector morphology provides powerful light trapping and enables excellent electrical cell performance. Up-scaling to industrial production of large-area modules should be possible using nanoimprint lithography. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  16. Performance characteristics of CdTe drift ring detector

    Science.gov (United States)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Veeramani, P.; Kazemi, S.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2014-03-01

    CdTe and CdZnTe material is an excellent candidate for the fabrication of high energy X-ray spectroscopic detectors due to their good quantum efficiency and room temperature operation. The main material limitation is associated with the poor charge transport properties of holes. The motivation of this work is to investigate the performance characteristics of a detector fabricated with a drift ring geometry that is insensitive to the transport of holes. The performance of a prototype Ohmic CdTe drift ring detector fabricated by Acrorad with 3 drift rings is reported; measurements include room temperature current voltage characteristics (IV) and spectroscopic performance. The data shows that the energy resolution of the detector is limited by leakage current which is a combination of bulk and surface leakage currents. The energy resolution was studied as a function of incident X-ray position with an X-ray microbeam at the Diamond Light Source. Different ring biasing schemes were investigated and the results show that by increasing the lateral field (i.e. the bias gradient across the rings) the active area, evaluated by the detected count rate, increased significantly.

  17. Photoluminescence of CdTe nanocrystals grown by pulsed laser ablation on a template of Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guillen-Cervantes, A.; Silva-Lopez, H.; Becerril-Silva, M.; Arias-Ceron, J.S.; Campos-Gonzalez, E.; Zelaya-Angel, O. [CINVESTAV-IPN, Physics Department, Apdo. Postal 14-740, Mexico (Mexico); Medina-Torres, A.C. [Escuela Superior de Fisica y Matematicas del IPN, Mexico (Mexico)

    2014-11-12

    CdTe nanocrystals were grown on eroded Si (111) substrates at room temperature by pulsed laser ablation. Before growth, Si substrates were subjected to different erosion time in order to investigate the effect on the CdTe samples. The erosion process consists of exposition to a pulsed high-voltage electric arc. The surface consequence of the erosion process consists of Si nanoparticles which acted as a template for the growth of CdTe nanocrystals. CdTe samples were studied by X-ray diffraction (XRD), room temperature photoluminescence (RT PL) and high-resolution transmission electron microscopy (HRTEM). CdTe nanocrystals grew in the stable cubic phase, according to XRD spectra. A strong visible emission was detected in photoluminescence (PL) experiments. The PL signal was centered at 540 nm (∝2.34 eV). With the effective mass approximation, the size of the CdTe crystals was estimated around 3.5 nm. HRTEM images corroborated the physical characteristics of CdTe nanocrystals. These results could be useful for the development of CdTe optoelectronic devices. (orig.)

  18. Towards a utilisation of transient processing in the technology of high efficiency silicon solar cells

    International Nuclear Information System (INIS)

    Eichhammer, W.

    1989-01-01

    The utilization of transient processing in the technology of high efficient silicon solar cells is investigated. An ultraviolet laser (an ArF pulsed excimer laser working at 193 nm) is applied. Laser processing induces only a short superficial melting of the material and does not modify the transport properties in the base of the material. This mode of processing associated to ion implantation to form the junction as well as an oxide layer in an atmosphere of oxygen. The volume was left entirely cold in this process. The results of the investigation show: that an entirely cold process of solar cell fabrication needs a thermal treatment at a temperature around 600 C; that the oxides obtained are not satisfying as passivating layers; and that the Rapid Thermal Processing (RTP) induced recombination centers are not directly related to the quenching step but a consequence of the presence of metal impurities. The utilisation of transient processing in the adiabatic regime (laser) and in the rapid isothermal regime (RTP) are possible as two complementary techniques for the realization of high efficiency solar cells

  19. Recent Advances in High Efficiency Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Yoshio; Ohshita; Hidetoshi; Suzuki; Kenichi; Nishimura; Masafumi; Yamaguchi

    2007-01-01

    1 Results The conversion efficiency of sunlight to electricity is limited around 25%,when we use single junction solar cells. In the single junction cells,the major energy losses arise from the spectrum mismatching. When the photons excite carriers with energy well in excess of the bandgap,these excess energies were converted to heat by the rapid thermalization. On the other hand,the light with lower energy than that of the bandgap cannot be absorbed by the semiconductor,resulting in the losses. One way...

  20. High-Efficiency Glass and Printable Flexible Dye-Sensitized Solar Cells with Water-Based Electrolytes

    Directory of Open Access Journals (Sweden)

    Omar Moudam

    2014-01-01

    Full Text Available The performance of a flexible and glass dye-sensitized solar cell (DSSC with water-based electrolyte solutions is described. High concentrations of alkylamidazoliums were used to overcome the deleterious effect of water and, based on this variable, pure water-based electrolyte DSSCs were tested displaying the highest recorded efficiency so far of 3.45% and 6% for flexible and glass cells, respectively, under a simulated air mass 1.5 solar spectrum illumination at 100 mWcm−2. An improvement in the Jsc with high water content and the positive impact of GuSCN on the enhancement of the performance of pure water-based electrolytes were also observed.

  1. Manipulation of radicals and ions in LFICP-aided fabrication of high efficiency solar cells

    International Nuclear Information System (INIS)

    Xu, S.

    2013-01-01

    In this talk, we report on the development and diagnostics of low frequency inductively coupled plasma (LFICP) reactor for fabrication of high efficiency silicon solar cells. Chemically active, thermally non-equilibrium plasma possess unique advantages for manipulation of plasma-generated radicals/ions and overall control of growth and self-organization processes that are crucial for fabrication of photovoltaic materials and solar cells. In low frequency inductively coupled plasmas, generation, selection and control of densities and fluxes of the radicals and ions can easily be controlled by the electron energy distributions and other plasma parameters. The electric field and thermal forces guide selective delivery of the radicals to the surface. Specific substrate activation and temperature determine the ion/heat fluxes from the gas phase to the charged surfaces. Detailed discussion includes the inter-connection between in-situ plasma diagnostics (Optical Emission Spectroscopy, Langmuir Probe diagnostics, and Quadruple Mass Spectrometry) and ex-situ material characterization (XRD, Raman, FTIR EDX, UV/Vis, SEM, Hall-effect and others). Special emphasis is paid to the identification and control strategies of the plasma-generated radicals/ions existed in both the ionized gas phase and on the deposition surfaces. We will show how radicals and ions can be manipulated to meet the structural, optical and electronic requirements for high efficiency photovoltaic cells. Solar cell fabricated by the LFICP plasma exhibits an extraordinarily photovoltaic performance with energy conversion efficiency exceeding 18%. (author)

  2. Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage.

    Science.gov (United States)

    Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok; Braly, Ian L; Liang, Po-Wei; Hillhouse, Hugh W; Jen, Alex K-Y

    2017-09-01

    Organic-inorganic hybrid perovskite multijunction solar cells have immense potential to realize power conversion efficiencies (PCEs) beyond the Shockley-Queisser limit of single-junction solar cells; however, they are limited by large nonideal photovoltage loss (V oc,loss ) in small- and large-bandgap subcells. Here, an integrated approach is utilized to improve the V oc of subcells with optimized bandgaps and fabricate perovskite-perovskite tandem solar cells with small V oc,loss . A fullerene variant, Indene-C 60 bis-adduct, is used to achieve optimized interfacial contact in a small-bandgap (≈1.2 eV) subcell, which facilitates higher quasi-Fermi level splitting, reduces nonradiative recombination, alleviates hysteresis instabilities, and improves V oc to 0.84 V. Compositional engineering of large-bandgap (≈1.8 eV) perovskite is employed to realize a subcell with a transparent top electrode and photostabilized V oc of 1.22 V. The resultant monolithic perovskite-perovskite tandem solar cell shows a high V oc of 1.98 V (approaching 80% of the theoretical limit) and a stabilized PCE of 18.5%. The significantly minimized nonideal V oc,loss is better than state-of-the-art silicon-perovskite tandem solar cells, which highlights the prospects of using perovskite-perovskite tandems for solar-energy generation. It also unlocks opportunities for solar water splitting using hybrid perovskites with solar-to-hydrogen efficiencies beyond 15%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Quantum Efficiency Back-Illuminated AlGaN-Based Solar-Blind Ultraviolet p—i—n Photodetectors

    International Nuclear Information System (INIS)

    Wang Guo-Sheng; Lu Hai; Xie Feng; Chen Dun-Jun; Ren Fang-Fang; Zhang Rong; Zheng You-Dou

    2012-01-01

    AlGaN-based back-illuminated solar-blind ultraviolet (UV) p—i—n photodetectors (PDs) with high quantum efficiency are fabricated on sapphire substrates. To improve the overall performance of the PD, a series of structural design considerations and growth procedures are implemented in the epitaxy process. A distinct wavelength-selective photo-response peak of the PD is obtained in the solar-blind region. When operating in photovoltaic mode, the PD exhibits a solar-blind/UV rejection ratio of up to 4 orders of magnitude and a peak responsivity of ∼113.5 mA/W at 270 nm, which corresponds to an external quantum efficiency of ∼52%. Under a reverse bias of −5 V, the PD shows a low dark current of ∼1.8 pA and an enhanced peak quantum efficiency of ∼64%. The thermal noise limited detectivity is estimated to be ∼ 3.3 × 10 13 cm·Hz 1/2 W −1

  4. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High Efficiency InP Solar Cells from Low Toxicity Tertiarybutylphosphine

    Science.gov (United States)

    Hoffman, Richard W., Jr.; Fatemi, Navid S.; Wilt, David M.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David A.

    1994-01-01

    Large scale manufacture of phosphide based semiconductor devices by organo-metallic vapor phase epitaxy (OMVPE) typically requires the use of highly toxic phosphine. Advancements in phosphine substitutes have identified tertiarybutylphosphine (TBP) as an excellent precursor for OMVPE of InP. High quality undoped and doped InP films were grown using TBP and trimethylindium. Impurity doped InP films were achieved utilizing diethylzinc and silane for p and n type respectively. 16 percent efficient solar cells under air mass zero, one sun intensity were demonstrated with Voc of 871 mV and fill factor of 82.6 percent. It was shown that TBP could replace phosphine, without adversely affecting device quality, in OMVPE deposition of InP thus significantly reducing toxic gas exposure risk.

  6. Review of CdTe medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Entine, G; Garcia, D A; Tow, D E

    1977-02-01

    CdTe sensors are now being used in several areas of nuclear medicine. CdTe probe technics, originally developed to study dental pathology in dog models, are being used clinically to diagnose venous thrombosis of the legs and to detect occult dental infections in patients scheduled for prosthetic cardiovascular and orthopedic surgery. Similar instrumentation is in use in animal research of myocardial infarction and synthetic tooth substitutes. Transmission technics have also been developed to diagnose pulmonary edema and to measure bone mineral changes in space flight. Investigations are also underway in the use of linear or two-dimensional arrays of CdTe gamma sensors for medical imaging. Economic considerations have slowed this work, but the technology appears to be available. Development of photoconductive CdTe X-ray detectors for scintigraphic scanners has also begun. Rapid detector improvement will be needed for success in this field, but the potential usefulness is very great. Together, the present application results are encouraging and wide use of CdTe detectors should occur within only a few years.

  7. RHEED studies of MBE growth mechanisms of CdTe and CdMnTe

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A.; Behr, T.; Litz, T.; Kuhn-Heinrich, B.; Hommel, D.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))

    1993-01-30

    We report on reflection high energy electron diffraction (RHEED) studies of molecular beam epitaxy (MBE) growth of CdTe and CdMnTe on (100) oriented CdTe substrates. RHEED oscillations were measured for both the growth and desorption of CdTe and CdMnTe as a function of flux and temperature. For the first time, the influence of laser and electron irradiation on the growth rate, as well as desorption, of CdTe is studied in detail using RHEED oscillations. We found a very small effect on the growth rate as well as on the CdTe desorption rate. The growth rate of CdTe was determined for different temperatures and CdTe flux ratios. The obtained experimental results are compared with a kinetic growth model to get information on the underlying growth processes, taking into account the influence of a precursor by including surface diffusion. From the comparison between model and experimental results the sticking coefficients of Cd and Te are determined. The growth rate of CdMnTe increases with Mn flux. This dependence can be used to calibrate the Mn content during growth by comparing the growth rate of CdTe with the growth rate of CdMnTe. The change in growth rate has been correlated with Mn content via photoluminescence measurements. In addition, the sticking coefficient of Mn is derived by comparing experimental results with a kinetic growth model. For high manganese content a transition to three-dimensional growth occurs. (orig.).

  8. Technological development for super-high efficiency solar cells. Survey on the commercialization on analysis; Chokokoritsu taiyo denchi no gijutsu kaihatsu. Jitsuyoka kaiseki ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the survey results on analysis of super-high efficiency solar cells for practical use in fiscal 1994. (1) On the survey on crystalline compound solar cells, it was pointed out that the present study target is III-V compound semiconductor solar cell, and efficiencies of 36-39% are theoretically expected by use of two-junction cells. (2) On structure of super-high efficiency solar cells of 40%, selection of upper and lower cell materials for multi-junction cells, high-efficiency tandem Si solar cells, and the merit and possibility of light collection operation were surveyed, and their issues were discussed. (3) On physical properties of mixed crystalline semiconductors and characteristic evaluation of solar cells, impurities, trap center, minority carrier life, and applicability of supper lattice structure to high-efficiency solar cells were surveyed. (4) On fabrication technology of compound semiconductor solar cells, various problems of and approaches to electrode formation and antireflection film technologies, the meaning and issues of thin film substrate technology and continuous process, trial calculation of costs, safety, and resource problem were surveyed.

  9. Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Ortega, Jesus D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Christian, Joshua Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Ray, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kelton, John W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Peacock, Gregory [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Andraka, Charles E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived, designed, and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced local view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs. Modeling results showed that fractal-like structures and geometries can increase the effective solar absorptance by 5 – 20% and the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. Meso-scale prototypes were fabricated using additive manufacturing techniques, and a macro-scale bladed receiver design was fabricated using Inconel 625 tubes. On-sun tests were performed using the solar furnace and solar tower at the National Solar Thermal Test facility. The test results demonstrated enhanced solar absorptance and thermal efficiency of the fractal-like designs.

  10. Structural and optoelectronic properties of β-In{sub 2}S{sub 3} thin films to Be applied on cadmium reduced solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Galarza Gutierrez, Uziel; Albor Aguilera, Maria Lourdes de; Hernandez Vasquez, Cesar; Aguilar Hernandez, Jorge R.; Remolina Millan, Aduljay [Instituto Politecnico Nacional - ESFM, Dept. de Fisica, U.P.A.L.M., Zacatenco (Mexico); Flores Marquez, Jose M. [Instituto Politecnico Nacional - ESIQIE, Dept. Metalurgia y Mat., U.P.A.L.M., Zacatenco (Mexico); Gonzalez Trujillo, Miguel A. [Instituto Politecnico Nacional - ESCOM, Dept. de Ciencias Basicas, U.P.A.L.M., Zacatenco (Mexico); Jimenez Olarte, Daniel [Instituto Politecnico Nacional - ESIME, SEPI, U.P.A.L.M., Zacatenco (Mexico)

    2018-02-15

    In{sub 2}S{sub 3} thin films are prepared by chemical bath deposition (CBD) technique to be applied as buffer layer in CdTe solar cells. CdTe photovoltaic devices are developed using In{sub 2}S{sub 3} as ''standard buffer layer'' in order to reduce the CdS thickness used as window material. It is important to examine potential thin films in a prospective life cycle study, focusing on direct costs, resource availability, and environmental impacts. Open and closed CBD system influence on the In{sub 2}S{sub 3} physical properties is analyzed. Stable tetragonal β-In{sub 2}S{sub 3} phase was confirmed by X-ray diffraction. Electrical properties were determined by four-point probe technique obtaining a resistivity value of 10{sup 2} Ω cm. CdTe solar cells performance was studied by measuring J-V characteristics and spectral quantum efficiencies. These results reveal In{sub 2}S{sub 3} thin films as buffer layer reduce the cadmium quantity used in solar cells manufacture and improve their current collection in blue wavelength region (300-500 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. A facile route to shape controlled CdTe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mntungwa, Nhlakanipho; Rajasekhar, Pullabhotla V.S.R. [Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, Empangeni, KZN (South Africa); Revaprasadu, Neerish, E-mail: nrevapra@pan.uzulu.ac.za [Department of Chemistry, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, Empangeni, KZN (South Africa)

    2011-04-15

    Research highlights: {yields} A facile hybrid solution based/thermolysis route has been used for the synthesis of hexadecylamine capped CdTe nanoparticles. {yields} This method involves the reaction by the addition of an aqueous suspension of a cadmium salt to a freshly prepared NaHTe solution. {yields} The cadmium salt plays an important role in the growth mechanism of the particles and hence its final morphology. - Abstract: Hexadecylamine (HDA) capped CdTe nanoparticles have been synthesized using a facile hybrid solution based/thermolysis route. This method involves the reaction by the addition of an aqueous suspension or solution of a cadmium salt (chloride, acetate, nitrate or carbonate) to a freshly prepared NaHTe solution. The isolated CdTe was then dispersed in tri-octylphosphine (TOP) and injected into pre-heated HDA at temperatures of 190, 230 and 270 deg. C for 2 h. The particle growth and size distribution of the CdTe particles synthesized using cadmium chloride as the cadmium source were monitored using absorption and photoluminescence spectroscopy. The final morphology of the CdTe nanoparticles synthesized from the various cadmium sources was studied by transmission electron microscopy (TEM) and high resolution TEM. The cadmium source has an influence on the final morphology of the particles.

  12. A facile route to shape controlled CdTe nanoparticles

    International Nuclear Information System (INIS)

    Mntungwa, Nhlakanipho; Rajasekhar, Pullabhotla V.S.R.; Revaprasadu, Neerish

    2011-01-01

    Research highlights: → A facile hybrid solution based/thermolysis route has been used for the synthesis of hexadecylamine capped CdTe nanoparticles. → This method involves the reaction by the addition of an aqueous suspension of a cadmium salt to a freshly prepared NaHTe solution. → The cadmium salt plays an important role in the growth mechanism of the particles and hence its final morphology. - Abstract: Hexadecylamine (HDA) capped CdTe nanoparticles have been synthesized using a facile hybrid solution based/thermolysis route. This method involves the reaction by the addition of an aqueous suspension or solution of a cadmium salt (chloride, acetate, nitrate or carbonate) to a freshly prepared NaHTe solution. The isolated CdTe was then dispersed in tri-octylphosphine (TOP) and injected into pre-heated HDA at temperatures of 190, 230 and 270 deg. C for 2 h. The particle growth and size distribution of the CdTe particles synthesized using cadmium chloride as the cadmium source were monitored using absorption and photoluminescence spectroscopy. The final morphology of the CdTe nanoparticles synthesized from the various cadmium sources was studied by transmission electron microscopy (TEM) and high resolution TEM. The cadmium source has an influence on the final morphology of the particles.

  13. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  14. Rational Strategies for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  15. High-flux solar concentration with imaging designs

    Energy Technology Data Exchange (ETDEWEB)

    Feuermann, D. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Gordon, J.M. [Ben-Gurion University of the Negev (Israel). Jacob Blaustein Institute for Desert Research; Ben-Gurion University of the Negev (Israel). Dept. of Mechanical Engineering; Ries, H. [Ries and Partners, Munich (Germany)

    1999-02-01

    Most large solar concentrators designed for high flux concentration at high collection efficiency are based on imaging primary mirrors and nonimaging secondary concentrators. In this paper, we offer an alternative purely imaging two-stage solar concentrator that can attain high flux concentration at high collection efficiency. Possible practical virtues include: (1) an inherent large gap between absorber and secondary mirror; (2) a restricted angular range on the absorber; and (3) an upward-facing receiver where collected energy can be extracted via the (shaded) apex of the parabola. We use efficiency-concentration plots to characterize the solar concentrators considered, and to evaluate the potential improvements with secondary concentrators. (author)

  16. High-efficiency, thin-film- and concentrator solar cells from GaAs. Final report; High-efficiency, Duennschicht- und Konzentrator-Solarzellen aus Galliumarsenid. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Bett, A W [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Pilkuhn, M [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Scholz, F [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Baldus, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Blieske, U [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Blug, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Duong, T [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Schetter, C [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Stollwerck, G [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Sulima, O [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Wegener, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Doernen, A [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Frankowsky, G [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Haase, D [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Hahn, G [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Hangleiter, A [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Stauss, P [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Tsai, C Y [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Zieger, K [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4

    1996-10-01

    Main topic of the project was the manufacturing of highly efficient GaAs-solar cells and the fabrication of concentrator cells. During this process significant progress was made with the material preparation, the solar cell technology and the material and process characterisation. This succeeded in the following efficiencies: - GaAs solar cell made by MOVPE technology: 22.9% on 4 cm{sup 2} (AM1.5g) - GaAs solar cell made by LPE-ER process: 22.8% on 4 cm{sup 2} (AM1.5g) - GaAs concentrator solar cell made by LPE-ER process: 24.9% at C=100xAM1.5d - GaAs concentrator module with fresnel lenses: Module efficiency 20.1% (under irradiation of 793 W/m{sup 2}). Another main focus was the epitaxy of GaAs on Si substrate. Two different approaches were investigated. Together with the cooperation partner ASE, Heilbronn a selective growth technology was developed that led to a decreased crack formation. By a simultanous optimization of the other epitaxy and process parameters, the efficiency was increased up to 16.6% AM0 on 1 cm{sup 2} solar cells. Furthermore a hybrid epitaxy was investigated. A GaAs layer was deposited onto a Si substrate using MOVPE. The solar cell structure was grown with a low temperature LPE. Unexpected difficulties appeared with this process, so that fundamental experiments needed to be done with the LPE technology. So far, no solar cells could be manufactured with this method. In addition, work was performed on GaInP solar cells on GaAs substrate. An efficiency of 15.7% (AM0) was acchieved. (orig.) [Deutsch] Gegenstand des Projekts war die Herstellung hocheffizienter GaAs-Solarzellen und die Fertigung von Konzentratorsolarzellen. Dazu wurden wesentliche Fortschritte bei der Materialpraeparation, der Solarzellentechnologie und der Material- and Prozesscharakterisierung erzielt. Diese Erfolge druecken sich in den erzielten Wirkungsgraden aus: - GaAs-Solarzelle hergestellt mit MOVPE-Technologie: 22.9% auf 4 cm{sup 2} (AM1.5g) - GaAs-Solarzelle hergestellt

  17. Graded band-gap engineering for increased efficiency in CZTS solar cells

    Science.gov (United States)

    Ferhati, H.; Djeffal, F.

    2018-02-01

    In this paper, we propose a potential high efficiency Cu2ZnSn(S,Se)4/CdS (CZTS) solar cell design based on graded band-gap engineering that can offer the benefits of improved absorption behavior and reduced recombination effects. Moreover, a new hybrid approach based on analytical modeling and Particle Swarm Optimization (PSO) is proposed to determinate the optimal band-gap profile of the amended CZTS absorber layer to achieve further efficiency enhancement. It is found that the proposed design exhibits superior performance, where a high efficiency of 16.9% is recorded for the optimized solar cell with a relative improvement of 92%, compared with the reference cell efficiency of 8.8%. Likewise, the optimized CZTS solar cell with a graded band-gap enables achieving a higher open circuit voltage of 889 mV, a short-circuit current of 28.5 mA and a fill factor of 66%. Therefore, the optimized CZTS-based solar cell with graded-band gap paradigm pinpoints a new path toward recording high-efficiency thin-film solar cells through enhancing carrier collection and reducing the recombination rate.

  18. Buried MoO x/Ag Electrode Enables High-Efficiency Organic/Silicon Heterojunction Solar Cells with a High Fill Factor.

    Science.gov (United States)

    Xia, Zhouhui; Gao, Peng; Sun, Teng; Wu, Haihua; Tan, Yeshu; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan

    2018-04-25

    Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.

  19. Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%

    Science.gov (United States)

    Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun

    2017-08-01

    We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.

  20. Mesostructured Fullerene Electrodes for Highly Efficient n–i–p Perovskite Solar Cells

    KAUST Repository

    Zhong, Yufei

    2016-10-21

    Electron-transporting layers in today\\'s stateof-the-art n-i-p organohalide perovskite solar cells are almost exclusively made of metal oxides. Here, we demonstrate a novel mesostructured fullerene-based electron-transporting material (ETM) that is crystalline, hydrophobic, and cross-linked, rendering it solvent-and heat resistant for subsequent perovskite solar cell fabrication The fullerene ETM is shown to enhance the structural and electronic properties of the CH3NH3PbI3 layer grown atop, reducing its Urbach energy from similar to 26 to 21 meV, while also increasing crystallite size and improving texture. The resulting mesostructured n-i-p solar cells achieve reduced recombination, improved device-to-device variation, reduced hysteresis, and a power conversion efficiency above 15%, surpassing the performance of similar devices prepared using mesoporous TiO2 and well above the performance of planar heterojunction devices on amorphous or crystalline [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM). This work is the first demonstration of a viable, hydrophobic, and high-performance mesostructured electron-accepting contact to work effectively in n-i-p perovskite solar cells.

  1. Tests of UFXC32k chip with CdTe pixel detector

    Science.gov (United States)

    Maj, P.; Taguchi, T.; Nakaye, Y.

    2018-02-01

    The paper presents the performance of the UFXC32K—a hybrid pixel detector readout chip working with CdTe detectors. The UFXC32K has a pixel pitch of 75 μm and can cope with both input signal polarities. This functionality allows operating with widely used silicon sensors collecting holes and CdTe sensors collecting electrons. This article describes the chip focusing on solving the issues connected to high-Z sensor material, namely high leakage currents, slow charge collection time and thick material resulting in increased charge-sharring effects. The measurements were conducted with higher X-ray energies including 17.4 keV from molybdenum. Conclusions drawn inside the paper show the UFXC32K's usability for CdTe sensors in high X-ray energy applications.

  2. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    NARCIS (Netherlands)

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of

  3. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  4. Carrier Transport, Recombination, and the Effects of Grain Boundaries in Polycrystalline Cadmium Telluride Thin Films for Photovoltaics

    Science.gov (United States)

    Tuteja, Mohit

    Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does

  5. CdTe aggregates in KBr crystalline matrix

    International Nuclear Information System (INIS)

    Bensouici, A.; Plaza, J.L.; Dieguez, E.; Halimi, O.; Boudine, B.; Addala, S.; Guerbous, L.; Sebais, M.

    2009-01-01

    In this work, we report the experimental results on the fabrication and optical characterization of Czochralski (Cz) grown KBr single crystals doped with CdTe crystallites. The results of the optical absorption have shown two bands, the first one located at 250 nm demonstrates the incorporation of cadmium atoms in the KBr host followed by a partial chemical decomposition of CdTe, the second band located at 585 nm shows an optical response of CdTe aggregates. Photoluminescence spectra at room temperature before annealing showed a band located at 520 nm (2.38 eV), with a blue shift from the bulk gap of 0.82 eV (E g (CdTe)=1.56 eV). While the photoluminescence spectra after annealing at 600 deg. C showed a band situated at 640 nm (1.93 eV), these bands are due to band-to-band transitions of CdTe nanocrystals with a blue shift from the bulk gap at 0.38 eV. Blue shift in optical absorption and photoluminescence spectra confirm nanometric size of dopant. X-ray diffraction (XRD) spectra have shown the incorporation of CdTe aggregates in KBr.

  6. CdTe aggregates in KBr crystalline matrix

    Energy Technology Data Exchange (ETDEWEB)

    Bensouici, A., E-mail: bensouicia@yahoo.f [Laboratory of Crystallography, Department of Physics, Mentouri-Constantine University, Constantine 25000 (Algeria); Plaza, J.L., E-mail: joseluis.plaza@uam.e [Crystal Growth Laboratory (CGL), Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid (Spain); Dieguez, E. [Crystal Growth Laboratory (CGL), Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid (Spain); Halimi, O.; Boudine, B.; Addala, S. [Laboratory of Crystallography, Department of Physics, Mentouri-Constantine University, Constantine 25000 (Algeria); Guerbous, L. [Centre de recherche nucleaire d' Alger (CRNA), Alger 16000 (Algeria); Sebais, M. [Laboratory of Crystallography, Department of Physics, Mentouri-Constantine University, Constantine 25000 (Algeria)

    2009-09-15

    In this work, we report the experimental results on the fabrication and optical characterization of Czochralski (Cz) grown KBr single crystals doped with CdTe crystallites. The results of the optical absorption have shown two bands, the first one located at 250 nm demonstrates the incorporation of cadmium atoms in the KBr host followed by a partial chemical decomposition of CdTe, the second band located at 585 nm shows an optical response of CdTe aggregates. Photoluminescence spectra at room temperature before annealing showed a band located at 520 nm (2.38 eV), with a blue shift from the bulk gap of 0.82 eV (E{sub g} (CdTe)=1.56 eV). While the photoluminescence spectra after annealing at 600 deg. C showed a band situated at 640 nm (1.93 eV), these bands are due to band-to-band transitions of CdTe nanocrystals with a blue shift from the bulk gap at 0.38 eV. Blue shift in optical absorption and photoluminescence spectra confirm nanometric size of dopant. X-ray diffraction (XRD) spectra have shown the incorporation of CdTe aggregates in KBr.

  7. One pot synthesis of multi-functional tin oxide nanostructures for high efficiency dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wali, Qamar; Fakharuddin, Azhar; Yasin, Amina; Ab Rahim, Mohd Hasbi; Ismail, Jamil; Jose, Rajan, E-mail: rjose@ump.edu.my

    2015-10-15

    Photoanode plays a key role in dye sensitized solar cells (DSSCs) as a scaffold for dye molecules, transport medium for photogenerated electrons, and scatters light for improved absorption. Herein, tin oxide nanostructures unifying the above three characteristics were optimized by a hydrothermal process and used as photoanode in DSSCs. The optimized morphology is a combination of hollow porous nanoparticles of size ∼50 nm and micron sized spheres with BET surface area (up to 29 m{sup 2}/g) to allow large dye-loading and light scattering as well as high crystallinity to support efficient charge transport. The optimized morphology gave the highest photovoltaic conversion efficiency (∼7.5%), so far achieved in DSSCs with high open circuit voltage (∼700 mV) and short circuit current density (∼21 mA/cm{sup 2}) employing conventional N3 dye and iodide/triiodide electrolyte. The best performing device achieved an incident photon to current conversion efficiency of ∼90%. The performance of the optimized tin oxide nanostructures was comparable to that of conventional titanium based DSSCs fabricated at similar conditions. - Graphical abstract: Tin oxide hollow nanostructure simultaneously supporting improved light scattering, dye-loading, and charge transport yielded high photovoltaic conversion efficiency in dye-sensitized solar cells. - Highlights: • Uniformly and bimodelly distributed tin oxide hollow nanospheres (HNS) are synthesized. • Uniform HNS are of size ∼10 nm; bimodel HNS has additional size up to ∼800 nm. • They are evaluated as photoelectrodes in dye-sensitized solar cells (DSSCs). • The uniform HNS increase dye-loading and the larger increase light scattering in DSSCs. • Photo conversion efficiency ∼7.5% is achieved using bimodel HNS.

  8. Toward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design

    KAUST Repository

    Wang, Hsin-Ping; He, Jr-Hau

    2017-01-01

    potential to push the theoretical limits of solar cell efficiency even higher using the intrinsic advantages associated with these materials, including efficient photon management, rapid charge transfer, and short charge collection distances. However

  9. High efficiency high rate microcrystalline silicon thin-film solar cells deposited at plasma excitation frequencies larger than 100 MHz

    Czech Academy of Sciences Publication Activity Database

    Strobel, C.; Leszczynska, B.; Merkel, U.; Kuske, J.; Fischer, D.D.; Albert, M.; Holovský, Jakub; Michard, S.

    2015-01-01

    Roč. 143, Dec (2015), 347-353 ISSN 0927-0248 R&D Projects: GA MŠk 7E12029 EU Projects: European Commission(XE) 283501 - Fast Track Institutional support: RVO:68378271 Keywords : VHF * PECVD * microcrystalline silicon * solar cell * high rate * high efficiency Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.732, year: 2015

  10. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    Science.gov (United States)

    Welser, Roger E. (Inventor); Sood, Ashok K. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  11. A stacked CdTe pixel detector for a compton camera

    International Nuclear Information System (INIS)

    Oonuki, Kousuke; Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Nakazawa, Kazuhiro; Ushio, Masayoshi; Mitani, Takefumi; Takahashi, Tadayuki; Tajima, Hiroyasu

    2007-01-01

    We are developing a semiconductor Compton telescope to explore the universe in the energy band from several tens of keV to a few MeV. A detector material of combined Si strip and CdTe pixel is used to cover the energy range around 60keV. For energies above several hundred keV, in contrast, the higher detection efficiency of CdTe semiconductor in comparison with Si is expected to play an important role as both an absorber and a scatterer. In order to demonstrate the spectral and imaging capability of a CdTe-based Compton camera, we developed a Compton telescope consisting of a stack of CdTe pixel detectors as a small scale prototype. With this prototype, we succeeded in reconstructing images and spectra by solving the Compton kinematics within the energy band from 122 to 662keV. The energy resolution (FWHM) of reconstructed spectra is 7.3keV at 511keV. The angular resolution obtained at 511keV is measured to be 12.2 deg. (FWHM)

  12. Highly efficient and stable dye-sensitized solar cells based on nanographite/polypyrrole counter electrode

    International Nuclear Information System (INIS)

    Yue, Gentian; Zhang, Xin’an; Wang, Lei; Tan, Furui; Wu, Jihuai; Jiang, Qiwei; Lin, Jianming; Huang, Miaoliang; Lan, Zhang

    2014-01-01

    Graphical abstract: Much higher photovoltaic performance of dye-sensitized solar cell with nanographite/PPy counter electrode as well as that of Pt configuration device. - Highlights: • Pt-free dye-sensitized solar cells. • The nanographite/PPy composite film showed high catalytic activity as well as Pt electrode. • The enhanced catalytic activity was attributed to increased active sites. • The DSSC based on the nanographite/PPy electrode showed a high photovoltaic performance. - Abstract: Nanographite/polypyrrole (NG/PPy) composite film was successfully prepared via in situ polymerization on rigid fluorine-doped tin oxide substrate and served as counter electrode (CE) for dye-sensitized solar cells (DSSCs). The surface morphology and composition of the composite film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectra and Fourier transform infrared spectroscopy (FTIR). The electrochemical performance of the NG/PPy electrode was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results of CV and EIS revealed that the NG/PPy electrode possessed excellent electrocatalytic activity for the reduction reaction of triiodide to iodide and low charge transfer resistance at the interface between electrolyte and CE, respectively. The DSSC assembled with the novel NG/PPy CE exhibited an enhanced power conversion efficiency of 7.40% under full sunlight illumination as comparing to that of the DSSC based on sputtered-Pt electrode. Thus, the NG/PPy CE could be premeditated as a promising alternative CE for low-cost and high- efficient DSSCs

  13. Highly-Efficient Thermoelectronic Conversion of Heat and Solar Radiation to Electric Power

    OpenAIRE

    Meir, Stefan

    2013-01-01

    Thermionic energy conversion has long been a candidate to convert solar radiation and the combustion heat of fossil fuels into electricity at high efficiencies. However, the formation of electron space charges has prevented the widespread use of the principle since its was first suggested in 1915. In this work, a novel mechanism to suppress the effects of the space charge was investigated: the acceleration of electrons in a special configuration of electric and magnetic fields. This work d...

  14. Dark-red-emitting CdTe0.5Se0.5/Cd0.5Zn0.5S quantum dots: Effect of chemicals on properties

    International Nuclear Information System (INIS)

    Yang, Ping; Zhang, Aiyu; Li, Xiaoyu; Liu, Ning; Zhang, Yulan; Zhang, Ruili

    2013-01-01

    CdTe 0.5 Se 0.5 /Cd 0.5 Zn 0.5 S core/shell quantum dots (QDs) with a tunable photoluminescence (PL) range from yellow to dark red (up to a PL peak wavelength of 683 nm) were fabricated using various reaction systems. The core/shell QDs created in the reaction solution of trioctylamine (TOA) and oleic acid (OA) at 300 °C exhibited narrow PL spectra and a related low PL efficiency (38%). In contrast, the core/shell QDs prepared in the solution of 1-octadecene (ODE) and hexadecylamine (HDA) at 200 °C revealed a high PL efficiency (70%) and broad PL spectra. This phenomenon is ascribed that the precursor of Cd, reaction temperature, solvents, and ligands affected the formation process of the shell. The slow growth rate of the shell in the solution of ODE and HDA made QDs with a high PL efficiency. Metal acetate salts without reaction with HDA led to the core/shell QDs with a broad size distribution. - Graphical abstract: CdTe 0.5 Se 0.5 /Cd 0.5 Zn 0.5 S quantum dots (QDs) with tunable photoluminescence, high PL efficiency, and high stability through organic synthesis, in which chemicals affected the properties of the QDs. Display Omitted - Highlights: • CdTe 0.5 Se 0.5 /Cd 0.5 Zn 0.5 S quantum dots created via organic synthesis. • Chemicals affected the properties of the quantum dots. • The quantum dots revealed high photoluminescence efficiency and stability. • The quantum dots with tunable photoluminescence in a range from yellow to dark red. • The QDs are utilizable for various applications such as biological labeling

  15. Electro-Plating and Characterisation of CdTe Thin Films Using CdCl2 as the Cadmium Source

    Directory of Open Access Journals (Sweden)

    Nor A. Abdul-Manaf

    2015-09-01

    Full Text Available Cadmium telluride (CdTe thin films have been successfully prepared from an aqueous electrolyte bath containing cadmium chloride (CdCl2·H2O and tellurium dioxide (TeO2 using an electrodeposition technique. The structural, electrical, morphological and optical properties of these thin films have been characterised using X-ray diffraction (XRD, Raman spectroscopy, optical profilometry, DC current-voltage (I-V measurements, photoelectrochemical (PEC cell measurement, scanning electron microscopy (SEM, atomic force microscopy (AFM and UV-Vis spectrophotometry. It is observed that the best cathodic potential is 698 mV with respect to standard calomel electrode (SCE in a three electrode system. Structural analysis using XRD shows polycrystalline crystal structure in the as-deposited CdTe thin films and the peaks intensity increase after CdCl2 treatment. PEC cell measurements show the possibility of growing p-, i- and n-type CdTe layers by varying the growth potential during electrodeposition. The electrical resistivity of the as-deposited layers are in the order of 104 Ω·cm. SEM and AFM show that the CdCl2 treated samples are more roughness and have larger grain size when compared to CdTe grown by CdSO4 precursor. Results obtained from the optical absorption reveal that the bandgap of as-deposited CdTe (1.48–1.52 eV reduce to (1.45–1.49 eV after CdCl2 treatment. Full characterisation of this material is providing new information on crucial CdCl2 treatment of CdTe thin films due to its built-in CdCl2 treatment during the material growth. The work is progressing to fabricate solar cells with this material and compare with CdTe thin films grown by conventional sulphate precursors.

  16. High conversion efficiency and high radiation resistance InP solar cells

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Itoh, Yoshio; Yamaguchi, Masafumi

    1987-01-01

    The fabrication of homojunction InP solar cells has been studied using impurity thermal diffusion, organometallic vapor phase epitaxy (OMVPE) and liquid phase epitaxy (LPE), and is discussed in this paper. Conversion efficiencies exceeding 20 % (AM1.5) are attained. These are the most efficient results ever reported for InP cells, and are comparable to those for GaAs cells. Electron and γ-ray irradiation studies have also been conducted for fabricated InP cells. The InP cells were found to have higher radiation resistance than GaAs cells. Through these studies, it has been demonstrated that the InP cells have excellent potential for space application. (author)

  17. Development of high efficiency solar cells on silicon web

    Science.gov (United States)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  18. Oxasmaragdyrins as New and Efficient Hole-Transporting Materials for High-Performance Perovskite Solar Cells.

    Science.gov (United States)

    Mane, Sandeep B; Sutanto, Albertus Adrian; Cheng, Chih-Fu; Xie, Meng-Yu; Chen, Chieh-I; Leonardus, Mario; Yeh, Shih-Chieh; Beyene, Belete Bedemo; Diau, Eric Wei-Guang; Chen, Chin-Ti; Hung, Chen-Hsiung

    2017-09-20

    The high performance of the perovskite solar cells (PSCs) cannot be achieved without a layer of efficient hole-transporting materials (HTMs) to retard the charge recombination and transport the photogenerated hole to the counterelectrode. Herein, we report the use of boryl oxasmaragdyrins (SM01, SM09, and SM13), a family of aromatic core-modified expanded porphyrins, as efficient hole-transporting materials (HTMs) for perovskite solar cells (PSCs). These oxasmaragdyrins demonstrated complementary absorption spectra in the low-energy region, good redox reversibility, good thermal stability, suitable energy levels with CH 3 NH 3 PbI 3 perovskite, and high hole mobility. A remarkable power conversion efficiency of 16.5% (V oc = 1.09 V, J sc = 20.9 mA cm -2 , fill factor (FF) = 72%) is achieved using SM09 on the optimized PSCs device employing a planar structure, which is close to that of the state-of-the-art hole-transporting materials (HTMs), spiro-OMeTAD of 18.2% (V oc = 1.07 V, J sc = 22.9 mA cm -2 , FF = 74%). In contrast, a poor photovoltaic performance of PSCs using SM01 is observed due to the interactions of terminal carboxylic acid functional group with CH 3 NH 3 PbI 3 .

  19. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Kirmani, Ahmad R.; Amassian, Aram

    2015-01-01

    Until recently, only mesoporous TiO2 and ZnO were successfully demonstrated as electron transport layers (ETL) alongside the reports of ZrO2 and Al2O3 as scaffold materials in organometal halide perovskite solar cells, largely owing to ease of processing and to high power conversion efficiency. In this article, we explore tungsten trioxide (WO3)-based nanostructured and porous ETL materials directly grown hydrothermally with different morphologies such as nanoparticles, nanorods and nanosheet arrays. The nanostructure morphology strongly influences the photocurrent and efficiency in organometal halide perovskite solar cells. We find that the perovskite solar cells based on WO3 nanosheet arrays yield significantly enhanced photovoltaic performance as compared to nanoparticles and nanorod arrays due to good perovskite absorber infiltration in the porous scaffold and more rapid carrier transport. We further demonstrate that treating the WO3 nanostructures with an aqueous solution of TiCl4 reduces charge recombination at the perovskite/WO3 interface, resulting in the highest power conversion efficiency of 11.24% for devices based on WO3 nanosheet arrays. The successful demonstration of alternative ETL materials and nanostructures based on WO3 will open up new opportunities in the development of highly efficient perovskite solar cells. This journal is © The Royal Society of Chemistry 2015.

  20. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  1. Controlling the microstructure and properties of titania nanopowders for high efficiency dye sensitized solar cells

    International Nuclear Information System (INIS)

    Shalan, A.E.; Rashad, M.M.; Yu, Youhai; Lira-Cantú, Mónica; Abdel-Mottaleb, M.S.A.

    2013-01-01

    Graphical abstract: (a) A highly ordered, vertically oriented TiO 2 nanorods compared with TiO 2 nanopaticles and (b) Dye sensitized solar cell fabricated using sealing technique. Highlights: ► TiO 2 nanorods particles size of 3–5 nm was synthesized hydrothermally at 100 °C. ► S BET was 78.14 m 2 /g and the band gap energy was 3.2 eV. ► (J sc ) and (V oc ) of the DSSC were in the range 10.84–13.23 mA cm −2 and 0.71–0.78 V. ► Conversion efficiency of DSSCs was 7.2%. ► IPCE analyses of the DSSC showed two peaks, at ∼350 and 520 nm. -- Abstract: A low temperature hydrothermal process have been developed to synthesize titania nanorods (NRs) and nanoparticles (NPs) with controlled size for dye sensitized solar cells (DSSCs). Effect of calcination temperature on the performance of TiO 2 nanoparticles for solar cells was investigated and discussed. The crystallite size and the relative crystallinity of the anatase phase were increased with increasing the calcination temperature. The structures and morphologies of both (TiO 2 nanorods and nanoparticles) were characterized using XRD, SEM, TEM/HRTEM, UV–vis Spectroscopy, FTIR and BET specific surface area (S BET ) as well as pore-size distribution by BJH. The size of the titania nanorods was 6.7 nm width and 22 nm length while it was 13 nm for nanoparticles. Efficiency of dye-sensitized solar cells (DSSCs) fabricated with oriented TiO 2 nanorods was reported to be more superior compared to DSSC based on mesoporous TiO 2 nanoparticles due to their high surface area, hierarchically mesoporous structures, low charge recombination and fast electron-transfer rate. With increasing calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency (η) decreased. The efficiency of the assembly solar cells was decreased due to the agglomeration of the particles and difficulty of electron movement. The power efficiency was enhanced from 1.7% for TiO 2 nanoparticles cells at

  2. Development of Electrodeposited CIGS Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-357

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    At present, most PV materials are fabricated by vacuum technologies. Some of the many disadvantages of vacuum technology are complicated instrumentation, material waste, high cost of deposition per surface area, and instability of some compounds at the deposition temperature. Solution-based approaches for thin-film deposition on large areas are particularly desirable because of the low capital cost of the deposition equipment, relative simplicity of the processes, ease of doping, uniform deposition on a variety of substrates (including interior and exterior of tubes and various nonplanar devices), and potential compatibility with high-throughput (e.g., roll-to-roll) processing. Of the nonsilicon solar photovoltaic device modules that have been deployed to date, those based on the n-CdS/p-CdTe is a leading candidate. Two features in the optical characteristics of CdTe absorber are particularly attractive for photovoltaic conversion of sunlight; (a) its energy bandgap of 1.5 eV, which provides an optimal match with the solar spectrum and thus facilitates its efficient utilization and (b) the direct mode of the main optical transition which results in a large absorption coefficient and turn permits the use of thin layer (1-2 um) of active material. Thin films of CdTe required for these devices have been fabricated by a variety of methods (e.g., vapor transport deposition, vacuum deposition, screen printing and close-spaced sublimation). Electrodeposition is another candidate deserves more attention. This project will focus on delivering low-cost, high efficiency electrodeposited CdTe-based device.

  3. Hybrid Organic-Inorganic Perovskites Open a New Era for Low-Cost, High Efficiency Solar Cells

    Directory of Open Access Journals (Sweden)

    Guiming Peng

    2015-01-01

    Full Text Available The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.

  4. Spatially resolved analysis and minimization of resistive losses in high-efficiency Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Wang, A.; Zhao, J.; Robinson, S.J.; Bowden, S.; Green, M.A. [New South Wales Univ., Kensington, NSW (Australia). Centre for Photovoltaic Devices and Systems; Heiser, G. [New South Wales Univ., Sydney, NSW (Australia). School of Computer Science and Engineering; Aberle, A.G. [Institut fuer Solarenergieforschung (ISFH), Emmerthal (Germany)

    1996-11-01

    This paper presents an improved method for measuring the total lumped series resistance (R{sub s}) of high-efficiency solar cells. Since this method greatly minimizes the influence of non-linear recombination processes on the measured R{sub s} values, it is possible to determine R{sub s} as a function of external current density over a wide range of illumination levels with a significantly improved level of accuracy. This paper furthermore explains how resistive losses in the emitter, the base, the metal/silicon contacts and the front metal grid can be separately determined by combining measurements and multi-dimensional numerical simulations. A novel combination of device simulation and circuit simulation is introduced in order to simulate complete 2 x 2 cm s sq. P:ERL (`passivated emitter and rear locally-diffused`) silicon solar cells. These computer simulations provide improved insight into the dynamics of resistive losses, and thus allow new strategies for the optimization of resistive losses to be developed. The predictions have been experimentally verified with PERL cells, whose resistive losses were reduced to approximately half of their previous values, contributing to a new efficiency world record (24.0%) for silicon solar cells under terrestrial illumination. The measurement techniques and optimization strategies presented here can be applied to most other types of solar cells, and to materials other than silicon. (Author)

  5. Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals

    Science.gov (United States)

    Bhattacharya, Sayak; John, Sajeev

    2018-04-01

    We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.

  6. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    Science.gov (United States)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  7. Current simulation of symmetric contacts on CdTe

    International Nuclear Information System (INIS)

    Ruzin, A.

    2011-01-01

    This article presents the calculated current-voltage characteristics of symmetric Metal-Semiconductor-Metal configurations for Schottky, Ohmic, and injecting-Ohmic contacts on high resistivity CdTe. The results clearly demonstrate that in the wide band-gap, semi-insulating semiconductors, such as high resistivity CdTe, the linearity of the I-V curves cannot be considered a proof of the ohmicity of the contacts. It is shown that the linear I-V curves are expected for a wide range of contact barriers. Furthermore, the slope of these linear curves is governed by the barrier height, rather than the bulk doping concentration. Therefore the deduction of bulk's resistivity from the I-V curves may be false.

  8. Current simulation of symmetric contacts on CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Ruzin, A., E-mail: aruzin@post.tau.ac.il [School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2011-12-01

    This article presents the calculated current-voltage characteristics of symmetric Metal-Semiconductor-Metal configurations for Schottky, Ohmic, and injecting-Ohmic contacts on high resistivity CdTe. The results clearly demonstrate that in the wide band-gap, semi-insulating semiconductors, such as high resistivity CdTe, the linearity of the I-V curves cannot be considered a proof of the ohmicity of the contacts. It is shown that the linear I-V curves are expected for a wide range of contact barriers. Furthermore, the slope of these linear curves is governed by the barrier height, rather than the bulk doping concentration. Therefore the deduction of bulk's resistivity from the I-V curves may be false.

  9. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...... the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG....

  10. Increasing the efficiency of solar thermal panels

    Science.gov (United States)

    Dobrnjac, M.; Latinović, T.; Dobrnjac, S.; Živković, P.

    2016-08-01

    The popularity of solar heating systems is increasing for several reasons. These systems are reliable, adaptable and pollution-free, because the renewable solar energy is used. There are many variants of solar systems in the market mainly constructed with copper pipes and absorbers with different quality of absorption surface. Taking into account the advantages and disadvantages of existing solutions, in order to increase efficiency and improve the design of solar panel, the innovative solution has been done. This new solar panel presents connection of an attractive design and the use of constructive appropriate materials with special geometric shapes. Hydraulic and thermotechnical tests that have been performed on this panel showed high hydraulic and structural stability. Further development of the solar panel will be done in the future in order to improve some noticed disadvantages.

  11. High Mobility, Hole Transport Materials for Highly Efficient PEDOT:PSS Replacement in Inverted Perovskite Solar Cells

    KAUST Repository

    Neophytou, Marios

    2017-04-24

    Perovskite solar cells are one of the most promising photovoltaic technologies, due to their rapid increase in power conversion efficiency (3.8% to 21.1%) in a very short period of time and the relative ease of their fabrication compared to traditional inorganic solar cells. One of the drawbacks of perovskite solar cells is their limited stability in non-inert atmospheres. In the inverted device configuration this lack of stability can be attributed to the inclusion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) as the hole transporting layer. Herein we report the synthesis of two new triarylamine based hole transporting materials, synthesised from readily available starting materials. These new materials show increased power conversion efficiencies, of 13.0% and 12.1%, compared to PEDOT:PSS (10.9%) and exhibit increased stability achieving lifetimes in excess of 500 hours. Both molecules are solution processible at low temperatures and offer potential for low cost, scalable production on flexible substrates for large scale perovskite solar cells.

  12. High Mobility, Hole Transport Materials for Highly Efficient PEDOT:PSS Replacement in Inverted Perovskite Solar Cells

    KAUST Repository

    Neophytou, Marios; Griffiths, Jack; Fraser, James; Kirkus, Mindaugas; Chen, Hu; Nielsen, Christian; McCulloch, Iain

    2017-01-01

    Perovskite solar cells are one of the most promising photovoltaic technologies, due to their rapid increase in power conversion efficiency (3.8% to 21.1%) in a very short period of time and the relative ease of their fabrication compared to traditional inorganic solar cells. One of the drawbacks of perovskite solar cells is their limited stability in non-inert atmospheres. In the inverted device configuration this lack of stability can be attributed to the inclusion of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) as the hole transporting layer. Herein we report the synthesis of two new triarylamine based hole transporting materials, synthesised from readily available starting materials. These new materials show increased power conversion efficiencies, of 13.0% and 12.1%, compared to PEDOT:PSS (10.9%) and exhibit increased stability achieving lifetimes in excess of 500 hours. Both molecules are solution processible at low temperatures and offer potential for low cost, scalable production on flexible substrates for large scale perovskite solar cells.

  13. Placement and efficiency effects on radiative forcing of solar installations

    International Nuclear Information System (INIS)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-01-01

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes

  14. Placement and efficiency effects on radiative forcing of solar installations

    Energy Technology Data Exchange (ETDEWEB)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno, E-mail: bmi@zurich.ibm.com [IBM Research - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  15. Understanding arsenic incorporation in CdTe with atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Burton, G. L.; Diercks, D. R.; Ogedengbe, O. S.; Jayathilaka, P. A. R. D.; Edirisooriya, M.; Myers, T. H.; Zaunbrecher, K. N.; Moseley, J.; Barnes, T. M.; Gorman, B. P.

    2018-08-01

    Overcoming the open circuit voltage deficiency in Cadmium Telluride (CdTe) photovoltaics may be achieved by increasing p-type doping while maintaining or increasing minority carrier lifetimes. Here, routes to higher doping efficiency using arsenic are explored through an atomic scale understanding of dopant incorporation limits and activation in molecular beam epitaxy grown CdTe layers. Atom probe tomography reveals spatial segregation into nanometer scale clusters containing > 60 at% As for samples with arsenic incorporation levels greater than 7-8 x 10^17 cm-3. The presence of arsenic clusters was accompanied by crystal quality degradation, particularly the introduction of arsenic-enriched extended defects. Post-growth annealing treatments are shown to increase the size of the As precipitates and the amount of As within the precipitates.

  16. Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: solar thermal electrochemical production of fuels, metals, bleach

    Energy Technology Data Exchange (ETDEWEB)

    Licht, S. [Department of Chemistry, George Washington University, Washington, DC (United States)

    2011-12-15

    STEP (solar thermal electrochemical production) theory is derived and experimentally verified for the electrosynthesis of energetic molecules at solar energy efficiency greater than any photovoltaic conversion efficiency. In STEP the efficient formation of metals, fuels, chlorine, and carbon capture is driven by solar thermal heated endothermic electrolyses of concentrated reactants occuring at a voltage below that of the room temperature energy stored in the products. One example is CO{sub 2}, which is reduced to either fuels or storable carbon at a solar efficiency of over 50% due to a synergy of efficient solar thermal absorption and electrochemical conversion at high temperature and reactant concentration. CO{sub 2}-free production of iron by STEP, from iron ore, occurs via Fe(III) in molten carbonate. Water is efficiently split to hydrogen by molten hydroxide electrolysis, and chlorine, sodium, and magnesium from molten chlorides. A pathway is provided for the STEP decrease of atmospheric carbon dioxide levels to pre-industrial age levels in 10 years. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. High-rate deposition of epitaxial layers for efficient low-temperature thin film epitaxial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, L.; Schmidt, J.; Wagner, T.A.; Bergmann, R.B. [Stuttgart Univ. (Germany). Inst. of Physical Electronics

    2001-07-01

    Low-temperature deposition of Si for thin-film solar cells has previously been hampered by low deposition rates and low material quality, usually reflected by a low open-circuit voltage of these solar cells. In contrast, ion-assisted deposition produces Si films with a minority-carrier diffusion length of 40 {mu}m, obtained at a record deposition rate of 0.8 {mu}m/min and a deposition temperature of 650{sup o}C with a prebake at 810{sup o}C. A thin-film Si solar cell with a 20-{mu}m-thick epitaxial layer achieves an open-circuit voltage of 622 mV and a conversion efficiency of 12.7% without any light trapping structures and without high-temperature solar cell process steps. (author)

  18. Available online Efficiency potential of indirectly heated solar reforming with different types of solar air receivers

    International Nuclear Information System (INIS)

    Storch, Henrik von; Roeb, Martin; Stadler, Hannes; Sattler, Christian; Hoffschmidt, Bernhard

    2016-01-01

    Highlights: • A process for indirectly heated solar reforming of natural gas with air as heat transfer fluid is proposed. • Different solar receivers are modeled and implemented into the reforming process. • The overall efficiency of the process with different solar receivers is determined. • Optimum solar receiver characteristics for application in a solar reforming process are determined. - Abstract: In solar reforming, the heating value of natural gas is increased by utilization of concentrated solar radiation. Hence, it is a process for storing solar energy in a stable and transportable form that also permits further conversion into liquid fuels like methanol. This process has the potential to significantly decrease the natural gas consumption and the associated CO_2-emissions of methanol production with only few open questions to be addressed prior to commercialization. In the medium and long term, it has the potential to generate methanol as an environmentally friendly fuel for both transport as well as flexible electricity production in combined cycle gas turbines, when biogas is used as reactant. In a previous study the high potential of indirectly heated solar reforming with solar air receivers was shown; however, the efficiency is limited when using state of the art open volumetric receivers. Therefore, different types of air receivers are implemented into an indirectly heated solar reforming process and the overall efficiency potential is assessed in the present study. The implemented receivers are an open volumetric cavity receiver, a closed volumetric cavity receiver and a tubular cavity receiver. The open volumetric cavity receiver and tubular cavity receiver achieve the best results due to their capability of operating efficiently at temperatures well above 700 °C. For these receivers peak efficiencies up to 29% and 27% respectively are predicted. As the utilization of an open volumetric cavity receiver constitutes an open heat transfer

  19. Band Alignment for Rectification and Tunneling Effects in Al2O3 Atomic-Layer-Deposited on Back Contact for CdTe Solar Cell.

    Science.gov (United States)

    Su, Yantao; Xin, Chao; Feng, Yancong; Lin, Qinxian; Wang, Xinwei; Liang, Jun; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-10-11

    The present work intends to explain why ultrathin Al 2 O 3 atomic-layer-deposited (ALD) on the back contact with rectification and tunneling effects can significantly improve the performance of CdTe solar cells in our previous work [ Liang , J. ; et al. Appl. Phys. Lett. 2015 , 107 , 013907 ]. Herein, we further study the mechanism through establishing the interfacial energy band diagram configuration of the ALD Al 2 O 3 /Cu x Te by experiment of X-ray photoelectron spectroscopy and first-principles calculations and conclude to find the band alignment with optimized layer thickness (about 1 nm ALD Al 2 O 3 ) as the key factor for rectification and tunneling effects.

  20. Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO 4 Photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanqun; Wang, Ruirui; Yang, Ye; Yan, Dongpeng; Xiang, Xu

    2016-08-03

    The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., E < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is -1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs.

  1. Processing of semiconductors and thin film solar cells using electroplating

    Science.gov (United States)

    Madugu, Mohammad Lamido

    bandgap solar cells were fabricated. This means that the solar cells investigated in this thesis were not the conventional p-n junction type solar cells. The conventional cadmium chloride (CdCl[2] or CC) treatment was applied to the structures to produce high performance devices; however, by modifying the treatment to include cadmium chloride and cadmium fluoride (CdCl[2]+CdF[2] or CF) device performance could be improved further. The fabricated devices were characterised using I-V and C-V measurement techniques. The highest cell efficiency achieved in this research was -10%, with an open circuit voltage of 640 mV, short-circuit current density of 38.1 mAcm[-2], fill factor of 0.41 and doping concentration of 2.07x1016 cm3. These parameters were obtained for the glass/FTO/n-In[x]Se[y]/n-CdS/n-CdTe/Au solar cell structure.

  2. Movable air solar collector and its efficiency

    International Nuclear Information System (INIS)

    Lauva, A.; Aboltinš, A.; Palabinskis, J.; Karpova Sadigova, N.

    2008-01-01

    Implementing the guidelines of the Latvian National Programme for Energy in the field of alternative energy, intensive research shall be carried on regarding the use of solar energy, as it can be successfully used not only for the purposes of water heating and production of electrical energy, but also for air warming. The amount of heat necessary for the drying of rough forage and grain drying by active aeration in June, July and August can be obtained using solar radiation. The Latvian Guidelines for the Energy Development 2006-2016 state that the solar radiance in Latvia is of quite low intensity. The total amount of solar energy is 1109 kWh m -2 per year. The period of usage of the solar thermal energy is beginning from the last decade of April, when the intensity of radiation is 120 kWh m -2 , until the first decade of September. Within this period (approximately 1800 hours), it is possible to use the solar thermal energy by placing solar collectors. The usage of solar collectors for in drying of agricultural production is topical from the viewpoint of decreasing the consumption of energy used for the drying, as electrical energy and fossil energy resources become more expensive and tend to run out. In the processes that concern drying of agricultural production, efficiently enough solar radiation energy can be used. Due to this reason researching continues and expands in the field of usage of solar energy for the processes of drying and heating. The efficiency factor of the existing solar collectors is not high, but they are of simple design and cheep for production and exploitation. By improving the design of the solar collectors and choosing modern materials that absorb the solar radiation energy, it is possible the decrease the efficiency factor of solar collectors and decrease the production costs. In the scientific laboratory of grain drying and storage of Latvia University of Agriculture, a pilot device movable folding solar collector pilot device

  3. Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Thankappan, Aparna, E-mail: aparna.subhash@gmail.com [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India); Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi (India); Divya, S.; Augustine, Anju K.; Girijavallaban, C.P.; Radhakrishnan, P.; Thomas, Sheenu; Nampoori, V.P.N. [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India)

    2015-05-29

    Performance of dye sensitized solar cells based on betanin natural dye from red beets with various nanostructured photoanodes on transparent conducting glass has been investigated. In four different electrolyte systems cell efficiency of 2.99% and overall photon to current conversion efficiency of 20% were achieved using ZnO nanosheet electrode with iodide based electrolyte in acetonitrile solution. To enhance solar harvesting in organic solar cells, uniform sized metal nanoparticles (gold (Au) of ~ 8 nm) synthesized via microwave irradiation method were incorporated into the device consisting of ZnO. Enhanced power conversion efficiency of 1.71% was achieved with ZnO/Au nanocomposite compared to the 0.868% efficiency of the bare ZnO nanosheet cell with ferrocene based electrolyte. - Highlights: • The influence of electrolytes has been studied. • Cell efficiency of 2.99% was achieved by ZnO. • Enhancement of efficiency with incorporation of Au nano.

  4. Charge-carrier transport and recombination in heteroepitaxial CdTe

    International Nuclear Information System (INIS)

    Kuciauskas, Darius; Farrell, Stuart; Dippo, Pat; Moseley, John; Moutinho, Helio; Li, Jian V.; Allende Motz, A. M.; Kanevce, Ana; Zaunbrecher, Katherine; Gessert, Timothy A.; Levi, Dean H.; Metzger, Wyatt K.; Colegrove, Eric; Sivananthan, S.

    2014-01-01

    We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 μm from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm 2 (Vs) −1 and diffusion coefficient D of 17 cm 2  s −1 . We find limiting recombination at the epitaxial film surface (surface recombination velocity S surface  = (2.8 ± 0.3) × 10 5  cm s −1 ) and at the heteroepitaxial interface (interface recombination velocity S interface  = (4.8 ± 0.5) × 10 5  cm s −1 ). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic devices that employ epitaxial CdTe.

  5. MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells

    Science.gov (United States)

    Kohnehpoushi, Saman; Nazari, Pariya; Abdollahi Nejand, Bahram; Eskandari, Mehdi

    2018-05-01

    In this work MoS2 thin film was studied as a potential two-dimensional (2D) hole-transporting material for fabrication of low-cost, durable and efficient perovskite solar cells. The thickness of MoS2 was studied as a potential factor in reaching high power conversion efficiency in perovskite solar cells. The thickness of the perovskite layer and the different metal back contacts gave distinct photovoltaic properties to the designed cells. The results show that a single sheet of MoS2 could considerably improve the power conversion efficacy of the device from 10.41% for a hole transport material (HTM)-free device to 20.43% for a device prepared with a 0.67 nm thick MoS2 layer as a HTM. On the back, Ag and Al collected the carriers more efficiently than Au due to the value of their metal contact work function with the TiO2 conduction band. The present work proposes a new architecture for the fabrication of low-cost, durable and efficient perovskite solar cells made from a low-cost and robust inorganic HTM and electron transport material.

  6. CdTe quantum dots for an application in the life sciences

    International Nuclear Information System (INIS)

    Thuy, Ung Thi Dieu; Toan, Pham Song; Chi, Tran Thi Kim; Liem, Nguyen Quang; Khang, Dinh Duy

    2010-01-01

    This report highlights the results of the preparation of semiconductor CdTe quantum dots (QDs) in the aqueous phase. The small size of a few nm and a very high luminescence quantum yield exceeding 60% of these materials make them promisingly applicable to bio-medicine labeling. Their strong, two-photon excitation luminescence is also a good characteristic for biolabeling without interference with the cell fluorescence. The primary results for the pH-sensitive CdTe QDs are presented in that fluorescence of CdTe QDs was used as a proton sensor to detect proton flux driven by adenosine triphosphate (ATP) synthesis in chromatophores. In other words, these QDs could work as pH-sensitive detectors. Therefore, the system of CdTe QDs on chromatophores prepared from the cells of Rhodospirillum rubrum and the antibodies against the beta-subunit of F0F1–ATPase could be a sensitive detector for the avian influenza virus subtype A/H5N1

  7. High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005

    Energy Technology Data Exchange (ETDEWEB)

    Guha, S.; Yang, J.

    2005-10-01

    The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

  8. Numerical modelling of high efficiency InAs/GaAs intermediate band solar cell

    Science.gov (United States)

    Imran, Ali; Jiang, Jianliang; Eric, Debora; Yousaf, Muhammad

    2018-01-01

    Quantum Dots (QDs) intermediate band solar cells (IBSC) are the most attractive candidates for the next generation of photovoltaic applications. In this paper, theoretical model of InAs/GaAs device has been proposed, where we have calculated the effect of variation in the thickness of intrinsic and IB layer on the efficiency of the solar cell using detailed balance theory. IB energies has been optimized for different IB layers thickness. Maximum efficiency 46.6% is calculated for IB material under maximum optical concentration.

  9. Development and prospects of CdS/CdTe solar cell

    International Nuclear Information System (INIS)

    Vaillant, L.

    2008-01-01

    Based on the n-CdS/p-CdTe heterojunction solar cell to thin films, both polycrystalline materials, started to be studied at beginning of the 1970s. However, since the 1960s were structures in which the active material was CdTe. Since then, in almost all proposed cell designs, the main problems encountered related to two important points: recombination losses associated with the main interface and the difficulty to obtain a low resistance ohmic contact with the p-CdTe. For decades, the efficiency of the cell was to rise as I studied and perfected the same from a macroscopic view of the device. Slowly they proposed, manufactured and studied structures responding with higher conversion efficiency. However, in recent years emphasis has been on the need to understand the microscopic mechanisms responsible for the transformations that occur in the device during the manufacturing process of the same. This fact has caused a deepening in the study of polycrystalline nature of the materials making up the cell, using techniques for solving micro and Nano. Special attention have been the borders of grain in the CdTe and studies related to the main junction between CdTe and CdS. This article will attempt to reflect an analysis of the evolution in the design of this type of cell, from its beginnings up to our times.

  10. Cd-Te-In oxide thin films as possible transparent buffer layer in CdTe based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Rodriguez, R; Camacho, J M; Pena, J L [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310, Merida, Yucatan (Mexico); Martel, A; Mendez-Gamboa, J, E-mail: romano@mda.cinvestav.m [Facultad de Ingenieria, Universidad Autonoma de Yucatan. AP 150 Cordemex, 97310 Merida, Yucatan (Mexico)

    2009-05-01

    Cd-Te-In-oxide thin films were grown by Pulsed Laser Deposition (PLD) technique using CdTe powder embedded in a matrix of indium metallic as target. The films were deposited at different oxygen pressures (P{sub o2}) from 15 to 50 mTorr at substrate temperature of 420{sup 0}C. Sheet resistance (R{sub sheet}) and transmission spectrum were measured as a function of P{sub o2}. From measurements of optical transmission, the Photonic Flux Density (PFD) spectrum were obtained and the integral of these PFD for each film were evaluated between energy range of 1.5 eV and 2.4 eV for obtain the amount of photons that can be transferred across the film in this range of solar energy spectrum. These values were evaluated over the R{sub sheet} to be used as a figure of merit. The best choice in our conditions was the films with P{sub o2} =28.5 mTorr, where the figure of merit reaches the maximum value.

  11. Development of Deposition and Characterization Systems for Thin Film Solar Cells

    Science.gov (United States)

    Cimaroli, Alexander J.

    Photovoltaic (PV) devices are becoming more important due to a number of economic and environmental factors. PV research relies on the ability to quickly fabricate and characterize these devices. While there are a number of deposition methods that are available in a laboratory setting, they are not necessarily able to be scaled to provide high throughput in a commercial setting. A close-space sublimation (CSS) system was developed to provide a means of depositing thin films in a very controlled and scalable manner. Its viability was explored by using it to deposit the absorber layer in Zn3P2 and CdTe solar cell devices. Excellent control over morphology and growth conditions and a high level of repeatability was demonstrated in the study of textured Zn3P2 thin films. However, some limitations imposed by the structure of Zn3P 2-based PV devices showed that CSS may not be the best approach for depositing Zn3P2 thin films. Despite the inability to make Zn3P2 solar cell devices, high efficiency CdTe solar cells were fabricated using CSS. With the introduction of Perovskite-based solar cell devices, the viability of data collected from conventional J-V measurements was questioned due to the J-V hysteresis that Perovskite devices exhibited. New methods of solar cell characterization were developed in order to accurately and quickly assess the performance of hysteretic PV devices. Both J-V measurements and steady-state efficiency measurements are prone to errors due to hysteresis and maximum power point drift. To resolve both of these issues, a maximum power point tracking (MPPT) system was developed with two algorithms: a simple algorithm and a predictive algorithm. The predictive algorithm showed increased resistance to the effects of hysteresis because of its ability to predict the steady-state current after a bias step with a double exponential decay model fit. Some publications have attempted to quantify the degree of J-V hysteresis present in fabricated Perovskite

  12. Highly efficient perovskite solar cells with crosslinked PCBM interlayers

    KAUST Repository

    Qiu, W.

    2017-01-09

    Commercially available phenyl-C-butyric acid methyl ester (PCBM) is crosslinked with 1,6-diazidohexane (DAZH), resulting in films resistant to common solvents used in perovskite solar cell processing. By using crosslinked PCBM as an interlayer and (HC(NH))(CHNH)PbIBr as the active layer, we achieve small area devices and modules with a maximum steady-state power conversion efficiency of 18.1% and 14.9%, respectively.

  13. High efficiency polymer solar cells with vertically modulated nanoscale morphology

    International Nuclear Information System (INIS)

    Kumar, Ankit; Hong Ziruo; Yang Yang; Li Gang

    2009-01-01

    Nanoscale morphology has been shown to be a critical parameter governing charge transport properties of polymer bulk heterojunction (BHJ) solar cells. Recent results on vertical phase separation have intensified the research on 3D morphology control. In this paper, we intend to modify the distribution of donors and acceptors in a classical BHJ polymer solar cell by making the active layer richer in donors and acceptors near the anode and cathode respectively. Here, we chose [6,6]-phenyl- C 61 -butyric acid methyl ester (PCBM) to be the acceptor material to be thermally deposited on top of [poly(3-hexylthiophene)] P3HT: the PCBM active layer to achieve a vertical composition gradient in the BHJ structure. Here we report on a solar cell with enhanced power conversion efficiency of 4.5% which can be directly correlated with the decrease in series resistance of the device.

  14. Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance

    Science.gov (United States)

    Skhouni, Othmane; El Manouni, Ahmed; Mari, Bernabe; Ullah, Hanif

    2016-05-01

    At present most of II-VI semiconductor based solar cells use the CdTe material as an absorber film. The simulation of its performance is realized by means of various numerical modelling programs. We have modelled a solar cell based on zinc telluride (ZnTe) thin film as absorber in substitution to the CdTe material, which contains the cadmium element known by its toxicity. The performance of such photovoltaic device has been numerically simulated and the thickness of the absorber layer has been optimized to give the optimal conversion efficiency. A photovoltaic device consisting of a ZnTe layer as absorber, CdS as the buffer layer and ZnO as a window layer was modelled through Solar Cell Capacitance Simulator Software. Dark and illuminated I-V characteristics and the results for different output parameters of ZnO/CdS/ZnTe solar cell were analyzed. The effect of ZnTe absorber thickness on different main working parameters such as: open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, photovoltaic conversion efficiency η was intensely studied in order to optimize ZnTe film thickness. This study reveals that increasing the thickness of ZnTe absorber layer results in higher efficiency until a maximum value and then decreases slightly. This maximum was found to be 10% at ZnTe optimum thickness close to 2 µm. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  15. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    Science.gov (United States)

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  16. Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells

    Science.gov (United States)

    Gupta, Vinay; Kyaw, Aung Ko Ko; Wang, Dong Hwan; Chand, Suresh; Bazan, Guillermo C.; Heeger, Alan J.

    2013-01-01

    We report Barium (Ba) cathode layer for bulk-heterojunction solar cells which enhanced the fill factor (FF) of p-DTS(FBTTh2)2/PC71BM BHJ solar cell up to 75.1%, one of the highest value reported for an organic solar cell. The external quantum efficiency exceeds 80%. Analysis of recombination mechanisms using the current-voltage (J–V) characteristics at various light intensities in the BHJ solar cell layer reveals that Ba prevents trap assisted Shockley-Read-Hall (SRH) recombination at the interface and with different thicknesses of the Ba, the recombination shifts towards bimolecular from monomolecular. Moreover, Ba increases shunt resistance and decreases the series resistance significantly. This results in an increase in the charge collection probability leading to high FF. This work identifies a new cathode interlayer which outclasses the all the reported interlayers in increasing FF leading to high power conversion efficiency and have significant implications in improving the performance of BHJ solar cells. PMID:23752562

  17. Microstructure of absorber layers in CdTe/CdS solar cells

    International Nuclear Information System (INIS)

    Cousins, M.A.

    2001-04-01

    This work concerns the microstructure of CSS-grown CdTe layers used for CdTe/CdS solar cells. Particular attention is given to how the development of microstructure on annealing with CdCl 2 may correlate with increases in efficiency. By annealing pressed pellets of bulk CdTe powder, it is shown that microstructural change does occur on heating the material, enhanced by the inclusion of CdCl 2 flux. However, the temperature required to cause significant effects is demonstrated to be higher than that at which heavy oxidation takes place. The dynamics of this oxidation are also examined. To investigate microstructural evolution in thin-films of CdTe, bi-layers of CdTe and CdS are examined by bevelling, thus revealing the microstructure to within ∼1 μm of the interface. This allows optical microscopy and subsequent image analysis of grain structure. The work shows that the grain-size, which is well described by the Rayleigh distribution, varies linearly throughout the layer, but is invariant under CdCl 2 treatment. Electrical measurements on these bi-layers, however, showed increased efficiency, as is widely reported. This demonstrates that the efficiency of these devices is not dictated by the bulk microstructure. Further, the region within 1 μm of the interface, of similar bi-layers to above, is examined by plan-view TEM. This reveals five-fold grain-growth on CdCl 2 treatment. Moreover, these grains show a considerably smaller grain size than expected from extrapolating the linear trend in the bulk. These observations are explained in terms of the pinning of the CdTe grain size to the underlying CdS, and the small grain size this causes. A simple model was proposed for a link between the grain-growth to the efficiency improvement. The study also examines the behaviour of defects within grains upon CdCl 2 treatment provided the first direct evidence of recovery on CdCl 2 treatment in this system. Finally, a computer model is presented to describe the evolution of

  18. Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material.

    Science.gov (United States)

    Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard

    2017-09-25

    Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.

  19. Advanced interface modelling of n-Si/HNO3 doped graphene solar cells to identify pathways to high efficiency

    Science.gov (United States)

    Zhao, Jing; Ma, Fa-Jun; Ding, Ke; Zhang, Hao; Jie, Jiansheng; Ho-Baillie, Anita; Bremner, Stephen P.

    2018-03-01

    In graphene/silicon solar cells, it is crucial to understand the transport mechanism of the graphene/silicon interface to further improve power conversion efficiency. Until now, the transport mechanism has been predominantly simplified as an ideal Schottky junction. However, such an ideal Schottky contact is never realised experimentally. According to literature, doped graphene shows the properties of a semiconductor, therefore, it is physically more accurate to model graphene/silicon junction as a Heterojunction. In this work, HNO3-doped graphene/silicon solar cells were fabricated with the power conversion efficiency of 9.45%. Extensive characterization and first-principles calculations were carried out to establish an advanced technology computer-aided design (TCAD) model, where p-doped graphene forms a straddling heterojunction with the n-type silicon. In comparison with the simple Schottky junction models, our TCAD model paves the way for thorough investigation on the sensitivity of solar cell performance to graphene properties like electron affinity. According to the TCAD heterojunction model, the cell performance can be improved up to 22.5% after optimizations of the antireflection coatings and the rear structure, highlighting the great potentials for fabricating high efficiency graphene/silicon solar cells and other optoelectronic devices.

  20. Full Solar Spectrum Light Driven Thermocatalysis with Extremely High Efficiency on Nanostructured Ce Ion Substituted OMS-2 Catalyst for VOCs Purification

    DEFF Research Database (Denmark)

    Hou, J.T.; Li, Y.Z.; Mao, M.Y.

    2015-01-01

    solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel...... in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full...... mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed....

  1. Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells

    KAUST Repository

    Jagadamma, Lethy Krishnan; Hu, Hanlin; Kim, Taesoo; Ngongang Ndjawa, Guy Olivier; Mansour, Ahmed; El Labban, Abdulrahman; Faria, Jorge C.D.; Munir, Rahim; Anjum, Dalaver H.; McLachlan, Martyn A.; Amassian, Aram

    2016-01-01

    Solution-manufacturing of organic solar cells with best-in-class power conversion efficiency (PCE) will require all layers to be solution-coated without compromising solar cell performance. To date, the hole transporting layer (HTL) deposited on top

  2. Economic efficiency of application of solar window

    Science.gov (United States)

    Shapoval, Stepan

    2017-12-01

    Priority and qualitatively new direction in the fuel and energy sector is renewable energy. This paper describes a feasibility study of using solar window in the system of solar heat supply. The article presents literature data about the effectiveness of the use of solar systems in other countries. The results confirm a sufficient efficiency of solar heat supply with using solar Windows. Insights based on practical experience and mathematical calculations, which are aimed at a detailed explanation of economic efficiency of the proposed construction.

  3. Feasibility study on BNCT-SPECT using a CdTe detector

    International Nuclear Information System (INIS)

    Murata, Isao; Mukai, Taiki; Ito, Masao; Miyamaru, Hiroyuki; Yoshida, Shigeo

    2011-01-01

    There is no doubt that boron neutron capture therapy (BNCT) is a promising cancer therapy in the near future. At present, one of the severest problems to solve is monitoring of the treatment effect during neutron irradiation. It is known to be difficult in real time. So far, activation foils, small detectors and so on were used to measure the thermal neutron fluence in a certain place of the tumor. The dose distribution is thus estimated from the measured result and prediction with a transport code. In the present study, 478 keV gamma-rays emitted from the excited state of 7 Li produced by 10 B(n,α) 7 Li reaction are directly measured to realize real time monitoring of the treatment effect of BNCT. In this paper, the result of the feasibility study carried out using a Monte Carlo transport code is summarized. We used CdTe detectors with a quite narrow collimator to obtain a BNCT image keeping good spatial resolution. The intensity of capture gamma-rays of 2223 keV produced by 1 H(n,γ) 2 H reaction is very much higher than that of 478 keV. We thus adjusted the detector efficiency by selecting an appropriate thickness so as to optimize the efficiency ratio between 478 and 2223 keV. From the result of the detector response calculation, in case of 20 mm thick CdTe detector with the collimator of 2 mm in diameter, sufficient net count of ∼1000 for 478 keV in 30 min. was realized. It means an efficient and high-resolution BNCT-SPECT image could be obtained. (author)

  4. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  5. Spectral resolution and high-flux capability tradeoffs in CdTe detectors for clinical CT.

    Science.gov (United States)

    Hsieh, Scott S; Rajbhandary, Paurakh L; Pelc, Norbert J

    2018-04-01

    Photon-counting detectors using CdTe or CZT substrates are promising candidates for future CT systems but suffer from a number of nonidealities, including charge sharing and pulse pileup. By increasing the pixel size of the detector, the system can improve charge sharing characteristics at the expense of increasing pileup. The purpose of this work is to describe these considerations in the optimization of the detector pixel pitch. The transport of x rays through the CdTe substrate was simulated in a Monte Carlo fashion using GEANT4. Deposited energy was converted into charges distributed as a Gaussian function with size dependent on interaction depth to capture spreading from diffusion and Coulomb repulsion. The charges were then collected in a pixelated fashion. Pulse pileup was incorporated separately with Monte Carlo simulation. The Cramér-Rao lower bound (CRLB) of the measurement variance was numerically estimated for the basis material projections. Noise in these estimates was propagated into CT images. We simulated pixel pitches of 250, 350, and 450 microns and compared the results to a photon counting detector with pileup but otherwise ideal energy response and an ideal dual-energy system (80/140 kVp with tin filtration). The modeled CdTe thickness was 2 mm, the incident spectrum was 140 kVp and 500 mA, and the effective dead time was 67 ns. Charge summing circuitry was not modeled. We restricted our simulations to objects of uniform thickness and did not consider the potential advantage of smaller pixels at high spatial frequencies. At very high x-ray flux, pulse pileup dominates and small pixel sizes perform best. At low flux or for thick objects, charge sharing dominates and large pixel sizes perform best. At low flux and depending on the beam hardness, the CRLB of variance in basis material projections tasks can be 32%-55% higher with a 250 micron pixel pitch compared to a 450 micron pixel pitch. However, both are about four times worse in variance

  6. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation

    KAUST Repository

    Wang, Yuchao

    2016-01-22

    Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.

  7. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation

    KAUST Repository

    Wang, Yuchao; Zhang, Lianbin; Wang, Peng

    2016-01-01

    Given the emerging energy and water challenges facing the mankind, solar-driven water evaporation has been gaining renewed research attention from both academia and industry as an energy efficient means of wastewater treatment and clean water production. In this project, a bi-layered material, consisting of a top self-floating hydrophobic CNT membrane and a bottom hydrophilic macroporous silica substrate, was rationally designed and fabricated for highly energy-efficient solar driven water evaporation based on the concept of interfacial heating. The top thin CNT membrane with excellent light adsorption capability, acted as photothermal component, which harvested and converted almost the entire incident light to heat for exclusively heating of interfacial water. On the other hand, the macroporous silica substrate provided multi-functions toward further improvement of operation stability and water evaporation performance of the material, including water pumping, mechanical support and heat barriers. The silica substrate was conducive in forming the rough surface structures of the CNT top layers during vacuum filtration and thus indirectly contributed to high light adsorption by the top CNT layers. With optimized thicknesses of the CNT top layer and silica substrate, a solar thermal conversion efficiency of 82 % was achieved in this study. The bi-layered material also showed great performance toward water evaporation from seawater and contaminated water, realizing the separation of water from pollutants, and indicating its application versatility.

  8. Possible use of CdTe detectors in kVp monitoring of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Krmar, M.; Bucalovic, N.; Baucal, M.; Jovancevic, N.

    2010-01-01

    It has been suggested that kVp of diagnostic X-ray devices (or maximal energy of X-ray photon spectra) should be monitored routinely; however a standardized non-invasive technique has yet to be developed and proposed. It is well known that the integral number of Compton scattered photons and the intensities of fluorescent X-ray lines registered after irradiation of some material by an X-ray beam are a function of the maximal beam energy. CdTe detectors have sufficient energy resolution to distinguish individual X-ray fluorescence lines and high efficiency for the photon energies in the diagnostic region. Our initial measurements have demonstrated that the different ratios of the integral number of Compton scattered photons and intensities of K and L fluorescent lines detected by CdTe detector are sensitive function of maximal photon energy and could be successfully applied for kVp monitoring.

  9. Electrochemical Determination of Uric Acid at CdTe Quantum Dot Modified Glassy Carbon Electrodes.

    Science.gov (United States)

    Pan, Deng; Rong, Shengzhong; Zhang, Guangteng; Zhang, Yannan; Zhou, Qiang; Liu, Fenghai; Li, Miaojing; Chang, Dong; Pan, Hongzhi

    2015-01-01

    Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of uric acid (UA) at a CdTe quantum dot (QD) modified the glassy carbon electrode (GCE). CdTe QDs, as new semiconductor nanocrystals, can greatly improve the peak current of UA. The anodic peak current of UA was linear with its concentration between 1.0×10(-6) and 4.0×10(-4) M in 0.1 M pH 5.0 phosphate buffer solution. The LOD for UA at the CdTe electrode (1.0×10(-7) M) was superior to that of the GCE. In addition, we also determined the effects of scan rate, pH, and interferences of UA for the voltammetric behavior and detection. The results indicated that modified electrode possessed excellent reproducibility and stability. Finally, a new and efficient electrochemical sensor for detecting UA was developed.

  10. Fractal features of CdTe thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinpanahi, Fayegh, E-mail: f.hosseinpanahi@yahoo.com [Department of Physics, Payame Noor University, P.O. Box 19395-4697, Tehran (Iran, Islamic Republic of); Raoufi, Davood [Department of Physics, University of Bu Ali Sina, P.O. Box 65174, Hamedan (Iran, Islamic Republic of); Ranjbarghanei, Khadijeh [Department of Physics, Plasma Physics Research Center, Science & Research Branch Islamic Azad University, Tehran (Iran, Islamic Republic of); Karimi, Bayan [Department of Physics, Payame Noor University, P.O. Box 19395-4697, Tehran (Iran, Islamic Republic of); Babaei, Reza [Department of Physics, Plasma Physics Research Center, Science & Research Branch Islamic Azad University, Tehran (Iran, Islamic Republic of); Hasani, Ebrahim [Department of Physics, University of Bu Ali Sina, P.O. Box 65174, Hamedan (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • CdTe thin films were deposited on glass substrates by RF magnetron sputtering at room temperature with different deposition time 5, 10 and 15 min. • Nanostructure of CdTe layer indicates that CdTe films are polycrystalline and have zinc blende structure, irrespective of their deposition time. • Complexity and roughness of the CdTe films and strength of multifractality increase with increasing deposition time. • Detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe films have multifractal nature. - Abstract: Cadmium telluride (CdTe) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature (RT). The film deposition was performed for 5, 10, and 15 min at power of 30 W with a frequency of 13.56 MHz. The crystal structure of the prepared CdTe thin films was studied by X-ray diffraction (XRD) technique. XRD analyses indicate that the CdTe films are polycrystalline, having zinc blende structure of CdTe irrespective of their deposition time. All CdTe films showed a preferred orientation along (1 1 1) crystalline plane. The surface morphology characterization of the films was studied using atomic force microscopy (AFM). The quantitative AFM characterization shows that the RMS surface roughness of the prepared CdTe thin films increases with increasing the deposition time. The detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe thin films have multifractal nature. The complexity, roughness of the CdTe thin films and strength of the multifractality increase as deposition time increases.

  11. Fractal features of CdTe thin films grown by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Hosseinpanahi, Fayegh; Raoufi, Davood; Ranjbarghanei, Khadijeh; Karimi, Bayan; Babaei, Reza; Hasani, Ebrahim

    2015-01-01

    Graphical abstract: - Highlights: • CdTe thin films were deposited on glass substrates by RF magnetron sputtering at room temperature with different deposition time 5, 10 and 15 min. • Nanostructure of CdTe layer indicates that CdTe films are polycrystalline and have zinc blende structure, irrespective of their deposition time. • Complexity and roughness of the CdTe films and strength of multifractality increase with increasing deposition time. • Detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe films have multifractal nature. - Abstract: Cadmium telluride (CdTe) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature (RT). The film deposition was performed for 5, 10, and 15 min at power of 30 W with a frequency of 13.56 MHz. The crystal structure of the prepared CdTe thin films was studied by X-ray diffraction (XRD) technique. XRD analyses indicate that the CdTe films are polycrystalline, having zinc blende structure of CdTe irrespective of their deposition time. All CdTe films showed a preferred orientation along (1 1 1) crystalline plane. The surface morphology characterization of the films was studied using atomic force microscopy (AFM). The quantitative AFM characterization shows that the RMS surface roughness of the prepared CdTe thin films increases with increasing the deposition time. The detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe thin films have multifractal nature. The complexity, roughness of the CdTe thin films and strength of the multifractality increase as deposition time increases.

  12. Aqueous-Containing Precursor Solutions for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Liu, Dianyi; Traverse, Christopher J; Chen, Pei; Elinski, Mark; Yang, Chenchen; Wang, Lili; Young, Margaret; Lunt, Richard R

    2018-01-01

    Perovskite semiconductors have emerged as competitive candidates for photovoltaic applications due to their exceptional optoelectronic properties. However, the impact of moisture instability on perovskite films is still a key challenge for perovskite devices. While substantial effort is focused on preventing moisture interaction during the fabrication process, it is demonstrated that low moisture sensitivity, enhanced crystallization, and high performance can actually be achieved by exposure to high water content (up to 25 vol%) during fabrication with an aqueous-containing perovskite precursor. The perovskite solar cells fabricated by this aqueous method show good reproducibility of high efficiency with average power conversion efficiency (PCE) of 18.7% and champion PCE of 20.1% under solar simulation. This study shows that water-perovskite interactions do not necessarily negatively impact the perovskite film preparation process even at the highest efficiencies and that exposure to high contents of water can actually enable humidity tolerance during fabrication in air.

  13. Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions.

    Science.gov (United States)

    Zhou, Yangen; Zhang, Shun; Ding, Yu; Zhang, Leyuan; Zhang, Changkun; Zhang, Xiaohong; Zhao, Yu; Yu, Guihua

    2018-06-14

    Simultaneous solar energy conversion and storage is receiving increasing interest for better utilization of the abundant yet intermittently available sunlight. Photoelectrodes driving nonspontaneous reversible redox reactions in solar-powered redox cells (SPRCs), which can deliver energy via the corresponding reverse reactions, present a cost-effective and promising approach for direct solar energy harvesting and storage. However, the lack of photoelectrodes having both high conversion efficiency and high durability becomes a bottleneck that hampers practical applications of SPRCs. Here, it is shown that a WO 3 -decorated BiVO 4 photoanode, without the need of extra electrocatalysts, can enable a single-photocatalyst-driven SPRC with a solar-to-output energy conversion efficiency as high as 1.25%. This SPRC presents stable performance over 20 solar energy storage/delivery cycles. The high efficiency and stability are attributed to the rapid redox reactions, the well-matched energy level, and the efficient light harvesting and charge separation of the prepared BiVO 4 . This demonstrated device system represents a potential alternative toward the development of low-cost, durable, and easy-to-implement solar energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. All-inorganic perovskite nanocrystal assisted extraction of hot electrons and biexcitons from photoexcited CdTe quantum dots.

    Science.gov (United States)

    Mondal, Navendu; De, Apurba; Samanta, Anunay

    2018-01-03

    Excitation of semiconductor quantum dots (QDs) by photons possessing energy higher than the band-gap creates a hot electron-hole pair, which releases its excess energy as waste heat or under certain conditions (when hν > 2E g ) produces multiple excitons. Extraction of these hot carriers and multiple excitons is one of the key strategies for enhancing the efficiency of QD-based photovoltaic devices. However, this is a difficult task as competing carrier cooling and relaxation of multiple excitons (through Auger recombination) are ultrafast processes. Herein, we study the potential of all-inorganic perovskite nanocrystals (NCs) of CsPbX 3 (X = Cl, Br) as harvesters of these short-lived species from photo-excited CdTe QDs. The femtosecond transient absorption measurements show CsPbX 3 mediated extraction of both hot and thermalized electrons of the QDs (under a low pump power) and (under a high pump fluence) extraction of multiple excitons prior to their Auger assisted recombination. A faster timescale of thermalized electron transfer (∼2 ps) and a higher extraction efficiency of hot electrons (∼60%) are observed in the presence of CsPbBr 3 . These observations demonstrate the potential of all-inorganic perovskite NCs in the extraction of these short-lived energy rich species implying that complexes of the QDs and perovskite NCs are better suited for improving the efficiency of QD-sensitized solar cells.

  15. First-principles-based analysis of the influence of Cu on CdTe electronic properties

    International Nuclear Information System (INIS)

    Krasikov, D.; Knizhnik, A.; Potapkin, B.; Selezneva, S.; Sommerer, T.

    2013-01-01

    The maximum voltage of CdTe solar cells is limited by low majority carrier concentration and doping difficulty. Copper that enters from the back contact can form both donors and acceptors in CdTe. It is empirically known that the free carrier concentration is several orders lower than the total Cu concentration. Simplified thermodynamic models of defect compensation after Cu introduction can be found in literature. We present a first-principles-based analysis of kinetics of defect formation upon Cu introduction, and show that Cu i is mobile at room temperature. Calculations of properties of Cu i –V Cd and Cu i –Cu Cd complexes show that the neutral Cu i –Cu Cd complex is mobile at elevated temperatures, while formation of the V Cd –Cu i complex is unlikely because it transforms into the Cu Cd defect. - Highlights: ► First-principles calculations of copper defects in CdTe are performed. ► Formation of Cd vacancy + Cu interstitial(Cu i ) complex is unlikely. ► Cu i defect is mobile at room temperature. ► Cu i + Cu on Cd-site (Cu Cd ) complex is mobile at elevated temperature. ► Cu Cd defect forms by kicking-out of the regular lattice Cd by Cu i

  16. Materials and Light Management for High-Efficiency Thin-Film Silicon Solar Cells

    OpenAIRE

    Tan, H.

    2015-01-01

    Direct conversion of sunlight into electricity is one of the most promising approaches to provide sufficient renewable energy for humankind. Solar cells are such devices which can efficiently generate electricity from sunlight through the photovoltaic effect. Thin-film silicon solar cells, a type of photovoltaic (PV) devices which deploy the chemical-vapor-deposited hydrogenated amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si:H) and their alloys as the absorber layers and doped ...

  17. Using high haze (> 90%) light-trapping film to enhance the efficiency of a-Si:H solar cells

    Science.gov (United States)

    Chu, Wei-Ping; Lin, Jian-Shian; Lin, Tien-Chai; Tsai, Yu-Sheng; Kuo, Chen-Wei; Chung, Ming-Hua; Hsieh, Tsung-Eong; Liu, Lung-Chang; Juang, Fuh-Shyang; Chen, Nien-Po

    2012-07-01

    The high haze light-trapping (LT) film offers enhanced scattering of light and is applied to a-Si:H solar cells. UV glue was spin coated on glass, and then the LT pattern was imprinted. Finally, a UV lamp was used to cure the UV glue on the glass. The LT film effectively increased the Haze ratio of glass and decreased the reflectance of a-Si:H solar cells. Therefore, the photon path length was increased to obtain maximum absorption by the absorber layer. High Haze LT film is able to enhance short circuit current density and efficiency of the device, as partial composite film generates broader scattering light, thereby causing shorter wave length light to be absorbed by the P layer so that the short circuit current density decreases. In case of lab-made a-Si:H thin film solar cells with v-shaped LT films, superior optoelectronic performances have been found (Voc = 0.74 V, Jsc = 15.62 mA/cm2, F.F. = 70%, and η = 8.09%). We observed ~ 35% enhancement of the short-circuit current density and ~ 31% enhancement of the conversion efficiency.

  18. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems

    International Nuclear Information System (INIS)

    Eisen, Y.; Shor, A.; Mardor, I.

    1999-01-01

    CdTe and CdZnTe X-ray and gamma ray detectors in the form of single elements or as segmented monolithic detectors have been shown to be useful in medical and industrial imaging systems. These detectors possess inherently better energy resolution than scintillators coupled to either photodiodes or photomultipliers, and together with application specific integrated circuits they lead to compact imaging systems of enhanced spatial resolution and better contrast resolution. Photopeak efficiencies of these detectors is greatly affected by a relatively low hole mobility-lifetime product. Utilizing these detectors as highly efficient good spectrometers, demands use of techniques to improve their charge collection properties, i.e., correct for variations in charge losses at different depths of interaction in the detector. The corrections for the large hole trapping are made either by applying electronic techniques or by fabricating detector or electrical contacts configurations which differ from the commonly used planar detectors. The following review paper is divided into three parts: The first part discusses detector contact configurations for enhancing photopeak efficiencies and the single carrier collection approach which leads to improved energy resolutions and photopeak efficiencies at high gamma ray energies. The second part demonstrates excellent spectroscopic results using thick CdZnTe segmented monolithic pad and strip detectors showing energy resolutions less than 2% FWHM at 356 keV gamma rays. The third part discusses advantages and disadvantages of CdTe and CdZnTe detectors in imaging systems and describes new developments for medical diagnostics imaging systems

  19. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    Science.gov (United States)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a

  20. Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss.

    Science.gov (United States)

    Zhang, Yinan; Stokes, Nicholas; Jia, Baohua; Fan, Shanhui; Gu, Min

    2014-05-13

    The cost-effectiveness of market-dominating silicon wafer solar cells plays a key role in determining the competiveness of solar energy with other exhaustible energy sources. Reducing the silicon wafer thickness at a minimized efficiency loss represents a mainstream trend in increasing the cost-effectiveness of wafer-based solar cells. In this paper we demonstrate that, using the advanced light trapping strategy with a properly designed nanoparticle architecture, the wafer thickness can be dramatically reduced to only around 1/10 of the current thickness (180 μm) without any solar cell efficiency loss at 18.2%. Nanoparticle integrated ultra-thin solar cells with only 3% of the current wafer thickness can potentially achieve 15.3% efficiency combining the absorption enhancement with the benefit of thinner wafer induced open circuit voltage increase. This represents a 97% material saving with only 15% relative efficiency loss. These results demonstrate the feasibility and prospect of achieving high-efficiency ultra-thin silicon wafer cells with plasmonic light trapping.

  1. A Feasible and Effective Post-Treatment Method for High-Quality CH3NH3PbI3 Films and High-Efficiency Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yaxiao Jiang

    2018-01-01

    Full Text Available The morphology control of CH3NH3PbI3 (MAPbI3 thin-film is crucial for the high-efficiency perovskite solar cells, especially for their planar structure devices. Here, a feasible and effective post-treatment method is presented to improve the quality of MAPbI3 films by using methylamine (CH3NH2 vapor. This post-treatment process is studied thoroughly, and the perovskite films with smooth surface, high preferential growth orientation and large crystals are obtained after 10 s treatment in MA atmosphere. It enhances the light absorption, and increases the recombination lifetime. Ultimately, the power conversion efficiency (PCE of 15.3% for the FTO/TiO2/MAPbI3/spiro-OMeTAD/Ag planar architecture solar cells is achieved in combination with this post-treatment method. It represents a 40% improvement in PCE compared to the best control cell. Moreover, the whole post-treatment process is simple and cheap, which only requires some CH3NH2 solution in absolute ethanol. It is beneficial to control the reaction rate by changing the volume of the solution. Therefore, we are convinced that the post-treatment method is a valid and essential approach for the fabrication of high-efficiency perovskite solar cells.

  2. Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core-shell heterojunction nanorods

    Science.gov (United States)

    Kosar, Sonya; Pihosh, Yuriy; Bekarevich, Raman; Mitsuishi, Kazutaka; Mawatari, Kazuma; Kazoe, Yutaka; Kitamori, Takehiko; Tosa, Masahiro; Tarasov, Alexey B.; Goodilin, Eugene A.; Struk, Yaroslav M.; Kondo, Michio; Turkevych, Ivan

    2018-04-01

    Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic-photoelectrochemical (PV-PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core-shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core-shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core-shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I-V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.

  3. Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Akihiro; Tamakoshi, Masato; Fujimoto, Shohei; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Tampo, Hitoshi; Kim, Kang Min; Kim, Shinho; Shibata, Hajime; Niki, Shigeru [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-08-14

    In developing photovoltaic devices with high efficiencies, quantitative determination of the carrier loss is crucial. In conventional solar-cell characterization techniques, however, photocurrent reduction originating from parasitic light absorption and carrier recombination within the light absorber cannot be assessed easily. Here, we develop a general analysis scheme in which the optical and recombination losses in submicron-textured solar cells are evaluated systematically from external quantum efficiency (EQE) spectra. In this method, the optical absorption in solar cells is first deduced by imposing the anti-reflection condition in the calculation of the absorptance spectrum, and the carrier extraction from the light absorber layer is then modeled by considering a carrier collection length from the absorber interface. Our analysis method is appropriate for a wide variety of photovoltaic devices, including kesterite solar cells [Cu{sub 2}ZnSnSe{sub 4}, Cu{sub 2}ZnSnS{sub 4}, and Cu{sub 2}ZnSn(S,Se){sub 4}], zincblende CdTe solar cells, and hybrid perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells, and provides excellent fitting to numerous EQE spectra reported earlier. Based on the results obtained from our EQE analyses, we discuss the effects of parasitic absorption and carrier recombination in different types of solar cells.

  4. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cecilia Stahl Vieira

    2011-03-01

    Full Text Available Semiconductor nanoparticles, such as quantum dots (QDs, were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 μM cadmium telluride (CdTe QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 μM CdTe QDs for up to 72 h (propidium iodide cells, giving no evidence of classical necrosis. Parasites incubated with 2 μM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 μM is optimal for bioimaging, whereas a high concentration (200 μM CdTe could be toxic to cells. Taken together, our data indicate that 2 μM QD can be used for the successful long-term study of the parasite-vector interaction in real time.

  5. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  6. Impurity effects in silicon for high efficiency solar cells

    Science.gov (United States)

    Hopkins, R. H.; Rohatgi, A.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs including, e.g., back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings can produce devices with conversion efficiencies above 20 percent (AM1). To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentration at which cell performance degrades is more than an order of magnitude lower for an 18-percent cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as-grown material can lead to the production of devices with efficiencies aboved 18 percent, as has been verified experimentally.

  7. Characterization and photoluminescence studies of CdTe ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The major objective of this work was to detect the change of photoluminescence (PL) intensity of. CdTe nanoparticles (NPs) before and after transfer from liquid phase to polystyrene (PS) matrix by electro- spinning technique. Thio-stabilized CdTe NPs were first synthesized in aqueous, then enwrapped by cetyl-.

  8. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  9. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  10. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    Science.gov (United States)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  11. Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties.

    Science.gov (United States)

    Bu, Hang-Beom; Kikunaga, Hayato; Shimura, Kunio; Takahasi, Kohji; Taniguchi, Taichi; Kim, DaeGwi

    2013-02-28

    Water soluble nanoparticles (NPs) with a high emission property were synthesized via hydrothermal routes. In this report, we chose thiol ligand N-acetyl-L-cysteine as the ideal stabilizer and have successfully employed it to synthesize readily size-controllable CdTe NPs in a reaction of only one step. Hydrothermal synthesis of CdTe NPs has been carried out in neutral or basic conditions so far. We found out that the pH value of precursor solutions plays an important role in the uniformity of the particle size. Actually, high quality CdTe NPs were synthesized under mild acidic conditions of pH 5. The resultant NPs indicated good visible light-emitting properties and stability. Further, the experimental results showed that the reaction temperature influenced significantly the growth rate and the maximum size of the NPs. The CdTe NPs with a high photoluminescence quantum yield (the highest value: 57%) and narrower half width at half maximum (the narrowest value: 33 nm) were attained in very short time, within 40 minutes, reaching diameters of 2.3 to 4.3 nm. The PL intensity was increased with an increase in the reaction time, reflecting the suppression of nonradiative recombination processes. Furthermore, the formation of CdTe/CdS core-shell structures was discussed from the viewpoint of PL dynamics and X-ray diffraction studies.

  12. Performance of Photovoltaic Modules of Different Solar Cells

    Directory of Open Access Journals (Sweden)

    Ankita Gaur

    2013-01-01

    Full Text Available In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC, has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost, and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.

  13. Facile aqueous synthesis and growth mechanism of CdTe nanorods

    International Nuclear Information System (INIS)

    Gong Haibo; Hao Xiaopeng; Gao Chang; Wu Yongzhong; Du Jie; Xu Xiangang; Jiang Minhua

    2008-01-01

    Single-crystal CdTe nanorods with diameters of 50-100 nm were synthesized under a surfactant-assisted hydrothermal condition. The experimental results indicated that with a temporal dependence the morphologies of CdTe nanocrystallites changed from nanoparticles to smooth surface nanorods. The crystal structure, morphology and optical properties of the products were investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and fluorescence spectrophotometer. Furthermore, the formation mechanisms of the nanorods were investigated and discussed on the basis of the experimental results.

  14. Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability

    Directory of Open Access Journals (Sweden)

    Chin-Yi Tsai

    2014-01-01

    Full Text Available In this work, tandem amorphous/microcrystalline silicon thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability were successfully designed and developed. Several key technologies of passivation, transparent-conducting-oxide films, and cell and segment laser scribing were researched, developed, and introduced into the production line to enhance the performance of these low-voltage modules. A 900 kWp photovoltaic system with these low-voltage panels was installed and its performance ratio has been simulated and projected to be 92.1%, which is 20% more than the crystalline silicon and CdTe counterparts.

  15. Correction of diagnostic x-ray spectra measured with CdTe and CdZnTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M [Osaka Univ., Suita (Japan). Medical School; Kanamori, H; Toragaito, T; Taniguchi, A

    1996-07-01

    We modified the formula of stripping procedure presented by E. Di. Castor et al. We added the Compton scattering and separated K{sub {alpha}} radiation of Cd and Te (23 and 27keV, respectively). Using the new stripping procedure diagnostic x-ray spectra (object 4mm-Al) of tube voltage 50kV to 100kV for CdTe and CdZnTe detectors are corrected with comparison of those spectra for the Ge detector. The corrected spectra for CdTe and CdZnTe detectors coincide with those for Ge detector at lower tube voltage than 70kV. But the corrected spectra at higher tube voltage than 70kV do not coincide with those for Ge detector. The reason is incomplete correction for full energy peak efficiencies of real CdTe and CdZnTe detectors. (J.P.N.)

  16. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications.

    Science.gov (United States)

    Morciano, Matteo; Fasano, Matteo; Salomov, Uktam; Ventola, Luigi; Chiavazzo, Eliodoro; Asinari, Pietro

    2017-09-20

    Technologies for solar steam generation with high performance can help solving critical societal issues such as water desalination or sterilization, especially in developing countries. Very recently, we have witnessed a rapidly growing interest in the scientific community proposing sunlight absorbers for direct conversion of liquid water into steam. While those solutions can possibly be of interest from the perspective of the involved novel materials, in this study we intend to demonstrate that efficient steam generation by solar source is mainly due to a combination of efficient solar absorption, capillary water feeding and narrow gap evaporation process, which can also be achieved through common materials. To this end, we report both numerical and experimental evidence that advanced nano-structured materials are not strictly necessary for performing sunlight driven water-to-vapor conversion at high efficiency (i.e. ≥85%) and relatively low optical concentration (≈10 suns). Coherently with the principles of frugal innovation, those results unveil that solar steam generation for desalination or sterilization purposes may be efficiently obtained by a clever selection and assembly of widespread and inexpensive materials.

  17. Semi-transparent solar cells

    International Nuclear Information System (INIS)

    Sun, J; Jasieniak, J J

    2017-01-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies. (topical review)

  18. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  19. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    Science.gov (United States)

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  20. Recombination mechanisms in highly efficient thin film Zn(S,O)/Cu(In,Ga)S2 based solar cells

    Science.gov (United States)

    Merdes, S.; Sáez-Araoz, R.; Ennaoui, A.; Klaer, J.; Lux-Steiner, M. Ch.; Klenk, R.

    2009-11-01

    Progress in fabricating Cu(In,Ga)S2 based solar cells with Zn(S,O) buffer is presented. An efficiency of 12.9% was achieved. Using spectral response, current-voltage and temperature dependent current-voltage measurements, current transport in this junction was studied and compared to that of a highly efficient CdS/Cu(In,Ga)S2 solar cell with a special focus on recombination mechanisms. Independently of the buffer type and despite the difference in band alignment of the two junctions, interface recombination is found to be the main recombination channel in both cases. This was unexpected since it is generally assumed that a cliff facilitates interface recombination while a spike suppresses it.

  1. FY 1998 annual report on the solar energy technology research and development working group. 19th R and D activity report; 1998 nendo taiyo gijutsu bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by the solar energy R and D working group, extracted from the 19th R and D activity report by NEDO. Mr. Kadoi, a NEDO's director, gave a lecture titled (Expectation on and problems involved in power generation by solar light and wind power), and Mr. Kamon, a managing researcher of NEDO's solar technology development group, reported (Technological development trends of solar technology development group). The other topics reported by the individual groups include development of large-size wind power generation systems, development of techniques for increasing throughputs of high-efficiency, large-area amorphous solar cells, development of techniques for manufacturing high-reliability CdTe solar cell modules, development of techniques for manufacturing CIS solar cell modules, analysis/assessment of thin-film silicon-based solar cells, development of processes for manufacturing silicon of rationalized energy use, R and D of (new multi-layer structure) modules assembled into building materials to form monolithic structures, and development of techniques for manufacturing amorphous thin-film polycrystalline silicon hybrid thin- film solar cells. (NEDO)

  2. Design of a high-power, high-brightness Nd:YAG solar laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  3. A proposed GaAs-based superlattice solar cell structure with high efficiency and high radiation tolerance

    Science.gov (United States)

    Goradia, Chandra; Clark, Ralph; Brinker, David

    1985-01-01

    A solar cell structure is proposed which uses a GaAs nipi doping superlattice. An important feature of this structure is that photogenerated minority carriers are very quickly collected in a time shorter than bulk lifetime in the fairly heavily doped n and p layers and these carriers are then transported parallel to the superlattice layers to selective ohmic contacts. Assuming that these already-separated carriers have very long recombination lifetimes, due to their being across an indirect bandgap in real space, it is argued that the proposed structure may exhibit superior radiation tolerance along with reasonably high beginning-of-life efficiency.

  4. Development of a computer model for polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells. Final subcontract report, 1 January 1991--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J. [Purdue Univ., Lafayette, IN (United States)

    1992-09-01

    This report describes work to develop an accurate numerical model for CuInSe{sub 2} (CIS) and CdTe-based solar cells capable of running on a personal computer. Such a model will aid researchers in designing and analyzing CIS- and CdTe-based solar cells. ADEPT (A Device Emulation Pregrain and Tool) was used as the basis for this model. An additional objective of this research was to use the models developed to analyze the performance of existing and proposed CIS- and CdTe-based solar cells. The development of accurate numerical models for CIS- and CdTe-based solar cells required the compilation of cell performance data (for use in model verification) and the compilation of measurements of material parameters. The development of the numerical models involved implementing the various physical models appropriate to CIS and CdTe, as well as some common window. A version of the model capable of running on an IBM-comparable personal computer was developed (primary code development is on a SUN workstation). A user-friendly interface with pop-up menus is continuing to be developed for release with the IBM-compatible model.

  5. The influence of capping thioalkyl acid on the growth and photoluminescence efficiency of CdTe and CdSe quantum dots

    International Nuclear Information System (INIS)

    Aldeek, Fadi; Lambert, Jacques; Balan, Lavinia; Schneider, Raphael

    2008-01-01

    The influence of thioalkyl acid ligand was evaluated during aqueous synthesis at 100 deg. C and under hydrothermal conditions (150 deg. C) of CdTe and CdSe quantum dots (QDs). Experiments performed with 3-mercaptopropionic acid (MPA), 6-mercaptohexanoic acid (MHA) and 11-mercaptoundecanoic acid (MUA) demonstrated that the use of MHA and MUA allowed for the preparation of very small nanoparticles (0.6-2.5 nm) in carrying out the reaction under atmospheric pressure or in an autoclave and that the photophysical properties of QDs were dependent on the ligand and on the synthesis conditions. The influence of various experimental conditions, including the Te-to-Cd ratio, temperature, and precursor concentration, on the growth rate of CdTe or CdSe QDs has been systematically investigated. The fluorescence intensities of CdTe QDs capped with MPA, MHA, or MUA versus pH were also found to be related to the surface coverage of the nanoparticles.

  6. Interaction of porphyrins with CdTe quantum dots

    International Nuclear Information System (INIS)

    Zhang Xing; Liu Zhongxin; Ma Lun; Hossu, Marius; Chen Wei

    2011-01-01

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  7. Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.

    Science.gov (United States)

    Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia

    2014-06-25

    In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.

  8. Efficiency of solar radiation conversion in photovoltaic panels

    Directory of Open Access Journals (Sweden)

    Kurpaska Sławomir

    2018-01-01

    Full Text Available This paper included analysis the conversion efficiency in photovoltaic panels. The tests were done between February and June at a test stand equipped with three commonly used types of photovoltaic panels: poly- and monocrystalline silicon and with semi-conductive layer made of copper (Cu, indium (In, gallium (Ga and selenium (Se (CIGS. Five days of each month were selected for a detailed analysis. They were close to the so-called recommended day for calculations in solar power engineering. Efficiency, calculated as the yield of electrical energy in relation to solar radiation energy reaching the panels was made conditional upon solar radiation intensity and ambient temperature. It was found that as solar radiation intensity and ambient temperature increase, the efficiency of solar radiation conversion into electricity is reduced. Correlation dependence was determined for the test data obtained, describing temperature change of panels depending on climatic conditions. It was found that as panel temperature increases, the conversion efficiency is reduced. Within the tested scope of experiment conditions, the efficiency was reduced in the range between 20.1 and 22.8%. The authors also determined the average efficiency values in individual test months together with average ambient conditions of the environment where the process of solar radiation conversion took place.

  9. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    KAUST Repository

    Baran, Derya

    2016-11-21

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  10. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

    KAUST Repository

    Baran, Derya; Ashraf, Raja; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Rö hr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain

    2016-01-01

    Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.

  11. A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    N-cetylpyridinium iodide (N-CPI) as a new electric additive for enhancing photovoltaic performance of the dye-sensitized solar cell (DSSC) was studied.It showed high efficiency for enhancing both the open-circuit voltage and the short-circuit current density of DSSC when the suitable amount of N-CPI as 0.02 M was added in liquid electrolyte.The energy conversion effi- ciency of DSSC increased from 4.429% to 6.535%,with 47.55% enhancement.Therefore,it is a highly efficient electric addi- tive for DSSC.The intrinsic reason is owing to the special molecular structure of N-CPI,which contains two different polarity groups.As a surfactant,N-CPI could form ordered arrangement in liquid electrolyte,which affects the diffusing ability and the redox reaction of I-/I3-,and further affects the photovoltaic performance of DSSC.

  12. Excimer laser doping technique for application in an integrated CdTe imaging device

    CERN Document Server

    Mochizuki, D; Aoki, T; Tomita, Y; Nihashi, T; Hatanaka, Y

    1999-01-01

    CdTe is an attractive semiconductor material for applications in solid-state high-energy X-ray and gamma-ray imaging systems because of its high absorption coefficient, large band gap, good mobility lifetime product of holes and stability at normal atmospheric conditions. We propose a new concept for fabricating an integrated CdTe with monolithic circuit configuration for two-dimensional imaging systems suitable for medical, research or industrial applications and operation at room temperature. A new doping technique has been recently developed that employs excimer laser radiation to diffuse impurity atoms into the semiconductor. Accordingly, heavily doped n- and p-type layers with resistivities less than 1 OMEGA cm can be formed on the high resistive CdTe crystals. We have further extended this technique for doping with spatial pattern. We will present the laser doping technique and various results thus obtained. Spatially patterned doping is demonstrated and we propose the use of these doping techniques for...

  13. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin

    Science.gov (United States)

    Shan, Yun; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-07-01

    This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO2 NPs). CdTe/SiO2 NPs were synthesized via the Stöber method and showed black bodies' strong absorption in a wide spectral range without excitonic emission, which made them excellent ECL quenchers. Within the effective distance of energy scavenging, the ECL quenching efficiency was dependent on the number of CdTe QDs doped into the silica NPs. Using ca. 200 CdTe QDs doped silica NPs on average of 40 nm in diameter as ECL quenching labels, attomolar detection of thrombin was successfully realized. The protein detection involves a competition binding event, based on thrombin replacing CdTe/SiO2 NPs labeled probing DNA which is hybridized with capturing aptamer immobilized on a CdS:Mn NCs film modified glassy carbon electrode surface by specific aptamer-protein affinity interactions. It results in the displacement of ECL quenching labels from CdS:Mn NCs film and concomitant ECL signal recovery. Owing to the high-content CdTe QDs in silica NP, the increment of ECL intensity (ΔIECL) and the concentration of thrombin showed a double logarithmic linear correlation in the range of 5.0 aM~5.0 fM with a detection limit of 1aM. And, the aptasensor hardly responded to antibody, bovine serum albumin (BSA), haemoglobin (Hb) and lysozyme, showing good detection selectivity for thrombin. This long-distance energy scavenging could have a promising application perspective in the detection of biological recognition events on a molecular level.This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO2 NPs). CdTe/SiO2 NPs were synthesized via

  14. Influences of the CdS nanoparticles grown strategies on CdTe nanorods array films: A comparison between successive ionic layer absorption and reaction and chemical bath deposition

    International Nuclear Information System (INIS)

    Wang, Jun; Zhou, Xiaoming; Lv, Pin; Yang, Lihua; Ding, Dong; Niu, Jiasheng; Liu, Li; Li, Xue; Fu, Wuyou; Yang, Haibin

    2016-01-01

    The cadmium sulfide (CdS) film is deposited on the surface of cadmium telluride (CdTe) nanorods (NRs) by two different methods, successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The influence of the deposition parameters on the properties of the films is investigated. Compared to SILAR, CBD is a simple and time saving technique, which can ensure full coverage and better growth of CdS on the surface of CdTe NRs. The photovoltaic characteristics of CdS sensitized CdTe films are also investigated. It is found that the CdTe/CBD-CdS thin film demonstrates excellent photoelectrical properties, which is ascribed to the large absorption coefficient of the material, indicating the potential applications in solar cells.

  15. Effect of solar-terrestrial phenomena on solar cell's efficiency

    International Nuclear Information System (INIS)

    Zahee, K. B.; Ansari, W.A.; Raza, S.M.M.

    2012-01-01

    It is assumed that the solar cell efficiency of PV device is closely related to the solar irradiance, consider the solar parameter Global Solar Irradiance (G) and the meteorological parameters like daily data of Earth Skin Temperature (E), Average Temperature (T), Relative Humidity (H) and Dew Frost Point (D), for the coastal city Karachi and a non-coastal city Jacobabad, K and J is used as a subscripts for parameters of Karachi and Jacobabad respectively. All variables used here are dependent on the location (latitude and longitude) of our stations except G. To employ ARIMA modeling, the first eighteen years data is used for modeling and forecast is done for the last five years data. In most cases results show good correlation among monthly actual and monthly forecasted values of all the predictors. Next, multiple linear regression is employed to the data obtained by ARIMA modeling and models for mean monthly observed G values are constructed. For each station, two equations are constructed, the R values are above 93% for each model, showing adequacy of the fit. Our computations show that solar cell efficiency can be increased if better modeling for meteorological predictors governs the process. (author)

  16. Pressure-induced drastic structural change in liquid CdTe

    International Nuclear Information System (INIS)

    Kinoshita, T.; Hattori, T.; Narushima, T.; Tsuji, K.

    2005-01-01

    We investigate the structure of liquid CdTe at pressures up to 6 GPa by synchrotron x-ray diffraction. The structure factor, S(Q), and the pair distribution function, g(r), change drastically within a small pressure interval of about 1 GPa (between 1.8 and 3 GPa). The S(Q),g(r), and other structural parameters, such as the average coordination number, CN, and the ratios of peak positions in S(Q) or g(r), reveal that the change originates from the pressure-induced modification in the local structure from the zinc-blende-like form into the rocksaltlike one. The liquid CdTe shows a high-pressure behavior similar to that in the crystalline counterpart in terms of the sharpness of the structural change and the high-pressure sequence in the local structure

  17. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    Science.gov (United States)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  18. Modulate Organic-Metal Oxide Heterojunction via [1,6] Azafulleroid for Highly Efficient Organic Solar Cells.

    Science.gov (United States)

    Li, Chang-Zhi; Huang, Jiang; Ju, Huanxin; Zang, Yue; Zhang, Jianyuan; Zhu, Junfa; Chen, Hongzheng; Jen, Alex K-Y

    2016-09-01

    By creating an effective π-orbital hybridization between the fullerene cage and the aromatic anchor (addend), the azafulleroid interfacial modifiers exhibit enhanced electronic coupling to the underneath metal oxides. High power conversion efficiency of 10.3% can be achieved in organic solar cells using open-cage phenyl C61 butyric acid methyl ester (PCBM)-modified zinc oxide layer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Growth of CdTe: Al films; Crecimiento de peliculas de CdTe: Al

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, M.; Zapata T, M. [CICATA-IPN, 89600 Altamira, Tamaulipas (Mexico); Melendez L, M. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico); Pena, J.L. [CINVESTAV-IPN, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico)

    2006-07-01

    CdTe: AI films were grown by the close space vapor transport technique combined with free evaporation (CSVT-FE). The Aluminum (Al) evaporation was made by two kinds of sources: one made of graphite and the other of tantalum. The films were deposited on glass substrates. The Al source temperature was varied maintaining the CdTe source temperature fixed as well as the substrate temperature. The films were characterized by x-ray energy dispersive analysis (EDAX), x-ray diffraction and optical transmission. The results showed for the films grown with the graphite source for Al evaporation, the Al did not incorporate in the CdTe matrix, at least to the level of EDAX sensitivity; they maintained the same crystal structure and band gap. For the samples grown with the tantalum source, we were able to incorporate the Al. The x-ray diffraction patterns show that the films have a crystal structure that depends on Al concentration. They were cubic up to 2.16 at. % Al concentration; for 19.65 at. % we found a mixed phase; for Al concentration higher than 21 at. % the films were amorphous. For samples with cubic structure it was found that the lattice parameter decreases and the band gap increases with Al concentration. (Author)

  20. Segmented-spectrum detection mechanism for medical x-ray in CdTe

    Science.gov (United States)

    Shi, Zaifeng; Meng, Qingzhen; Cao, Qingjie; Yao, Suying

    2016-01-01

    This paper presents a segmented X-ray spectrum detection method based on a layered X-ray detector in Cadmium Telluride (CdTe) substrate. We describe the three-dimensional structure of proposed detector pixel and investigate the matched spectrum-resolving method. Polychromatic X-ray beam enter the CdTe substrate edge on and will be absorbed completely in different thickness varying with photon energy. Discrete potential wells are formed under external controlling voltage to collect the photo-electrons generated in different layers, and segmented X-ray spectrum can be deduced from the quantity of photo-electrons. In this work, we verify the feasibility of the segmented-spectrum detection mechanism by simulating the absorption of monochromatic X-ray in a CdTe substrate. Experiments in simulation show that the number of photo-electrons grow exponentially with the increase of incident thickness, and photons with different energy will be absorbed in various thickness. The charges generated in different layers are collected into adjacent potential wells, and collection efficiency is estimated to be about 87% for different incident intensity under the 40000V/cm electric field. Errors caused by charge sharing between neighboring layers are also analyzed, and it can be considered negligible by setting appropriate size of electrodes.

  1. Development of high-performance transparent conducting oxides and their impact on the performance of CdS/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Coutts, T.J.; Wu, X.; Sheldon, P.; Rose, D.H. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper begins with a review of the modeled performance of transparent conducting oxides (TCOs) as a function of their free-carrier concentration, mobility, and film thickness. It is shown that it is vital to make a film with high mobility to minimize the width and height of the free-carrier absorption band, and to optimize the optical properties. The free-carrier concentration must be kept sufficiently small that the absorption band does not extend into that part of the spectrum to which the solar cell responds. Despite this consideration, a high electrical conductivity is essential to minimize series resistance losses. Hence, a high mobility is vital for these materials. The fabrication of thin-films of cadmium stannate is then discussed, and their performance is compared with that of tin oxide, both optically and as these materials influence the performance of CdTe solar cells.

  2. Global map of solar power production efficiency, considering micro climate factors

    Science.gov (United States)

    Hassanpour Adeh, E.; Higgins, C. W.

    2017-12-01

    Natural resources degradation and greenhouse gas emissions are creating a global crisis. Renewable energy is the most reliable option to mitigate this environmental dilemma. Abundancy of solar energy makes it highly attractive source of electricity. The existing global spatial maps of available solar energy are created with various models which consider the irradiation, latitude, cloud cover, elevation, shading and aerosols, and neglect the influence of local meteorological conditions. In this research, the influences of microclimatological variables on solar energy productivity were investigated with an in-field study at the Rabbit Hills solar arrays near Oregon State University. The local studies were extended to a global level, where global maps of solar power were produced, taking the micro climate variables into account. These variables included: temperature, relative humidity, wind speed, wind direction, solar radiation. The energy balance approach was used to synthesize the data and compute the efficiencies. The results confirmed that the solar power efficiency can be directly affected by the air temperature and wind speed.

  3. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  4. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  5. Imaging performance comparison between a LaBr3: Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera.

    Science.gov (United States)

    Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P

    2009-04-01

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  6. Efficient Lightweight AC-AC Power Control for Solar UAV, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A highly efficient and lightweight dual bridge matrix power controller development is proposed that will provide high performance to a solar powered high altitude...

  7. Efficient and Reliable Solar Panels for Small CubeSat Picosatellites

    Directory of Open Access Journals (Sweden)

    Ivo Vertat

    2014-01-01

    Full Text Available CubeSat picosatellites have a limited area of walls for solar cells assembling and the available area has to be effectively shared with other parts, such as planar antennas, optical sensors, camera lens, and access port. With standard size of solar cell strings, it is not possible to construct a reliable solar panel for CubeSat with redundant strings interconnection. Typical solar panels for CubeSat consist of two solar cell strings serially wired with no redundancy in case of solar string failure. The loss of electric energy from one solar panel can cause a serious problem for most picosatellites due to minimum margin in the blueprints of the picosatellite subsystem power budget. In this paper, we propose a new architecture of solar panels for PilsenCUBE CubeSat with a high level of redundancy in the case of solar string failure or following switched power regulator failure. Our solar panels use a high efficiency triple junction GaInP2/GaAs/Ge in the form of small triangle strings from the Spectrolab Company. A suitable technology for precise solar cell assembling is also discussed, because CubeSat picosatellites are usually developed by small teams with limited access to high-end facilities.

  8. Thin film solar cell technology in Germany

    International Nuclear Information System (INIS)

    Diehl, W.; Sittinger, V.; Szyszka, B.

    2005-01-01

    Within the scope of limited nonrenewable energy resources and the limited capacity of the ecosystem for greenhouse gases and nuclear waste, sustainability is one important target in the future. Different energy scenarios showed the huge potential for photovoltaics (PV) to solve this energy problem. Nevertheless, in the last decade, PV had an average growth rate of over 20% per year. In 2002, the solar industry delivered more than 500 MWp/year of photovoltaic generators [A. Jaeger-Waldau, A European Roadmap for PV R and D, E-MRS Spring Meeting, (2003)]. More than 85% of the current production involves crystalline silicon technologies. These technologies still have a high cost reduction potential, but this will be limited by the silicon feedstock. On the other hand the so-called second generation thin film solar cells based on a-Si, Cu(In,Ga)(Se,S 2 (CIGS) or CdTe have material thicknesses of a few microns as a result of their direct band gap. Also, the possibility of circuit integration offers an additional cost reduction potential. Especially in Germany, there are a few companies who focus on thin film solar cells. Today, there are two manufacturers with production lines: the Phototronics (PST) division of RWE-Schott Solar with a-Si thin film technology and the former Antec Solar GmbH (now Antec Solar Energy GmbH) featuring the CdTe technology. A pilot line based on CIGS technology is run by Wuerth Solar GmbH. There is also a variety of research activity at other companies, namely, at Shell Solar, Sulfurcell Solartechnik GmbH, Solarion GmbH and the CIS-Solartechnik GmbH. We will give an overview on research activity on various thin film technologies, as well as different manufacturing and production processes in the companies mentioned above. (Author)

  9. High-efficiency solar cell with earth-abundant liquid-processed absorber

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Teodor K; Reuter, Kathleen B; Mitzi, David B [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)

    2010-05-25

    A composite liquid deposition approach merging the concepts of solution and particle-based coating for multinary chalcogenide materials is demonstrated. Photovoltaic absorbers based on earth-abundant Cu-Zn-Sn-S-Se kesterites show exceptional phase purity and are incorporated into solar cells with power conversion efficiency above 9.6%, bringing the state of the art of kesterite photovoltaic materials to a level suitable for possible commercialization. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    International Nuclear Information System (INIS)

    Huang Qi-Zhang; Zhu Yan-Qing; Shi Ji-Fu; Wang Lei-Lei; Zhong Liu-Wen; Xu Gang

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition. (paper)

  11. ZnO@TiO2 Architectures for a High Efficiency Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    Lei, Jianfei; Liu, Shuli; Du, Kai; Lv, Shijie; Liu, Chaojie; Zhao, Lingzhi

    2015-01-01

    Graphical Abstract: A fast and improved electrochemical process was reported to fabricate ZnO@TiO 2 heterogeneous architectures with enhanced power conversion efficiency (ƞ = 2.16%). This paper focuses on achieving high dye loading via binding noncorrosive TiO 2 nanocones to the outermost layer, while retaining the excellent electron transport behavior of the ZnO-based internal layer. Display Omitted -- Highlights: • Nanoconic TiO 2 particles are loaded on the surface of aligned ZnO NWs successfully by a liquid phase deposition method. • ZnO@TiO 2 architectures exhibit high efficiency of the DSSCs. -- Abstract: Instead of the spin coating step, an improved electrochemical process is reported in this paper to prepare ZnO seeded substrates and ZnO nanowires (ZnO NWs). Vertically aligned ZnO NWs are deposited electrochemically on the ZnO seeded substrates directly forming backbones for loading nanoconic TiO 2 particles, and hence ZnO@TiO 2 heterogeneous architectures are obtained. When used as photoanode materials of the dye-sensitized solar cells (DSSCs), ZnO@TiO 2 architectures exhibit enhanced power conversion efficiency (PCE) of the DSSCs. Results of the solar cell testing show that addition of TiO 2 shells to the ZnO NWs significantly increases short circuit current (from 2.6 to 4.7 mA cm −2 ), open circuit voltage (from 0.53 V to 0.77 V) and fill factor (from 0.30 to 0.59). The PCE jumped from 0.4% for bare ZnO NWs to 2.16% for ZnO@TiO 2 architectures under 100 mW cm −2 of AM 1.5 G illumination

  12. High Efficiency Quantum Well Waveguide Solar Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...

  13. Heavy doping of CdTe single crystals by Cr ion implantation

    Science.gov (United States)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  14. Unified Numerical Solver for Device Metastabilities in CdTe Thin-Film PV

    Energy Technology Data Exchange (ETDEWEB)

    Vasileska, Dragica [Arizona State Univ., Tempe, AZ (United States)

    2017-08-17

    Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. Manufacturers de-vote significant empirical efforts to study these phenomena and to improve semiconduc-tor device stability. Still, understanding the underlying reasons of these instabilities re-mains clouded due to the lack of ability to characterize materials at atomistic levels and the lack of interpretation from the most fundamental material science. The most com-monly alleged causes of metastability in CdTe device, such as “migration of Cu,” have been investigated rigorously over the past fifteen years. Still, the discussion often ended prematurely with stating observed correlations between stress conditions and changes in atomic profiles of impurities or CV doping concentration. Multiple hypotheses sug-gesting degradation of CdTe solar cell devices due to interaction and evolution of point defects and complexes were proposed, and none of them received strong theoretical or experimental confirmation. It should be noted that atomic impurity profiles in CdTe pro-vide very little intelligence on active doping concentrations. The same elements could form different energy states, which could be either donors or acceptors, depending on their position in crystalline lattice. Defects interact with other extrinsic and intrinsic de-fects; for example, changing the state of an impurity from an interstitial donor to a sub-stitutional acceptor often is accompanied by generation of a compensating intrinsic in-terstitial donor defect. Moreover, all defects, intrinsic and extrinsic, interact with the elec-trical potential and free carriers so that charged defects may drift in the electric field and the local electrical potential affects the formation energy of the point defects. Such complexity of interactions in CdTe makes understanding of

  15. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin.

    Science.gov (United States)

    Shan, Yun; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-07-01

    This work reports an aptasensor for ultrasensitive detection of thrombin based on remarkably efficient energy-transfer induced electrochemiluminescence (ECL) quenching from CdS:Mn nanocrystals (NCs) film to CdTe QDs-doped silica nanoparticles (CdTe/SiO(2) NPs). CdTe/SiO(2) NPs were synthesized via the Stöber method and showed black bodies' strong absorption in a wide spectral range without excitonic emission, which made them excellent ECL quenchers. Within the effective distance of energy scavenging, the ECL quenching efficiency was dependent on the number of CdTe QDs doped into the silica NPs. Using ca. 200 CdTe QDs doped silica NPs on average of 40 nm in diameter as ECL quenching labels, attomolar detection of thrombin was successfully realized. The protein detection involves a competition binding event, based on thrombin replacing CdTe/SiO(2) NPs labeled probing DNA which is hybridized with capturing aptamer immobilized on a CdS:Mn NCs film modified glassy carbon electrode surface by specific aptamer-protein affinity interactions. It results in the displacement of ECL quenching labels from CdS:Mn NCs film and concomitant ECL signal recovery. Owing to the high-content CdTe QDs in silica NP, the increment of ECL intensity (ΔI(ECL)) and the concentration of thrombin showed a double logarithmic linear correlation in the range of 5.0 aM∼5.0 fM with a detection limit of 1aM. And, the aptasensor hardly responded to antibody, bovine serum albumin (BSA), haemoglobin (Hb) and lysozyme, showing good detection selectivity for thrombin. This long-distance energy scavenging could have a promising application perspective in the detection of biological recognition events on a molecular level.

  16. High-efficiency perovskite solar cells based on anatase TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yan, E-mail: huangyan@ecust.edu.cn [School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237 (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Wu, Jiamin; Gao, Di [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-01-01

    Perovskite solar cells (PSCs) based on one-dimensional anatase TiO{sub 2} nanotube arrays were prepared by using a two-step deposition method to fill the arrays of TiO{sub 2} nanotubes in different lengths with perovskite. The photovoltaic performance of PSCs was found to be significantly dependent on the length of the TiO{sub 2} nanotubes, and the power conversion efficiency decreased as the length of the TiO{sub 2} nanotubes increased from ~ 0.40 μm to ~ 0.65 and then to ~ 0.93 μm. The PSC fabricated with ~ 0.40 μm-long anatase TiO{sub 2} nanotube arrays yielded a power conversion efficiency of 11.3% and a fill factor of 0.68 under illumination of 100 mW/cm{sup 2} AM 1.5G simulated sunlight, which is significantly higher than previously reported solar cells based on 1-D TiO{sub 2} nanostructures. Incident photon-to-current efficiency and electrochemical impedance spectroscopy measurements indicated that longer TiO{sub 2} nanotubes led to higher recombination losses of charge carriers, possibly due to poor filling of the nanotube arrays with perovskite. - Highlights: • 1D anatase TiO{sub 2} nanotubes were used to fabricate perovskite solar cells. • The best efficiency of 11.3% was achieved with ~ 0.40 μm-long TiO{sub 2} nanotubes. • The efficiency of the devices decreased with increasing TiO{sub 2} nanotube lengths.

  17. Time resolution improvement of Schottky CdTe PET detectors using digital signal processing

    International Nuclear Information System (INIS)

    Nakhostin, M.; Ishii, K.; Kikuchi, Y.; Matsuyama, S.; Yamazaki, H.; Torshabi, A. Esmaili

    2009-01-01

    We present the results of our study on the timing performance of Schottky CdTe PET detectors using the technique of digital signal processing. The coincidence signals between a CdTe detector (15x15x1 mm 3 ) and a fast liquid scintillator detector were digitized by a fast digital oscilloscope and analyzed. In the analysis, digital versions of the elements of timing circuits, including pulse shaper and time discriminator, were created and a digital implementation of the Amplitude and Rise-time Compensation (ARC) mode of timing was performed. Owing to a very fine adjustment of the parameters of timing measurement, a good time resolution of less than 9.9 ns (FWHM) at an energy threshold of 150 keV was achieved. In the next step, a new method of time pickoff for improvement of timing resolution without loss in the detection efficiency of CdTe detectors was examined. In the method, signals from a CdTe detector are grouped by their rise-times and different procedures of time pickoff are applied to the signals of each group. Then, the time pickoffs are synchronized by compensating the fixed time offset, caused by the different time pickoff procedures. This method leads to an improved time resolution of ∼7.2 ns (FWHM) at an energy threshold of as low as 150 keV. The methods presented in this work are computationally fast enough to be used for online processing of data in an actual PET system.

  18. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  19. CdTe Based Hard X-ray Imager Technology For Space Borne Missions

    Science.gov (United States)

    Limousin, Olivier; Delagnes, E.; Laurent, P.; Lugiez, F.; Gevin, O.; Meuris, A.

    2009-01-01

    CEA Saclay has recently developed an innovative technology for CdTe based Pixelated Hard X-Ray Imagers with high spectral performance and high timing resolution for efficient background rejection when the camera is coupled to an active veto shield. This development has been done in a R&D program supported by CNES (French National Space Agency) and has been optimized towards the Simbol-X mission requirements. In the latter telescope, the hard X-Ray imager is 64 cm² and is equipped with 625µm pitch pixels (16384 independent channels) operating at -40°C in the range of 4 to 80 keV. The camera we demonstrate in this paper consists of a mosaic of 64 independent cameras, divided in 8 independent sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique 1 cm² component, juxtaposable on its four sides. Recently, promising results have been obtained from the first micro-camera prototypes called Caliste 64 and will be presented to illustrate the capabilities of the device as well as the expected performance of an instrument based on it. The modular design of Caliste enables to consider extended developments toward IXO type mission, according to its specific scientific requirements.

  20. Influence of EDTA2− on the hydrothermal synthesis of CdTe nanocrystallites

    International Nuclear Information System (INIS)

    Gong Haibo; Hao Xiaopeng; Wu Yongzhong; Cao Bingqiang; Xu Hongyan; Xu Xiangang

    2011-01-01

    Transformation from Te nanorods to CdTe nanoparticles was achieved with the assistance of EDTA as a ligand under hydrothermal conditions. Experimental results showed that at the beginning of reaction Te nucleated and grew into nanorods. With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Finally, nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were obtained. The effects of EDTA on the morphology and formation of CdTe nanoparticles were discussed in consideration of the strong ligand-effect of EDTA, which greatly decreased the concentration of Cd 2+ . Furthermore, the possible formation process of CdTe nanoparticles from Te nanorods was further proposed. The crystal structure and morphology of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). - Graphical Abstract: Firstly, Te nucleated and grew into nanorods in the presence of EDTA 2− . Then CdTe nucleus began to emerge on Te nanorods and finally monodispersed CdTe nanoparticles were obtained. Highlights: ► EDTA serves as a strong ligand with Cd 2+ . ► The existence of EDTA constrains the nucleation of CdTe and promotes the formation of Te nanorods. ► With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. ► Nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were finally obtained.

  1. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.

    Science.gov (United States)

    Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian

    2017-11-23

    Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    Science.gov (United States)

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  3. Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jinbiao; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Tu, Yongguang; Huo, Jinghao; Zheng, Min; Lin, Jianming

    2015-08-15

    Highlights: • A transparent Ni{sub 0.85}Se is prepared by a facile solvothermal reaction. • Ni{sub 0.85}Se electrode has better electrocatalytic activity than Pt electrode. • DSSC with Ni{sub 0.85}Se electrode obtains efficiency of 8.88%, higher than DSSC with Pt. • DSSC with Ni{sub 0.85}Se/mirror electrode achieves an efficiency of 10.19%. - Abstract: A transparent nickel selenide (Ni{sub 0.85}Se) is prepared by a facile solvothermal reaction and used as an efficient Pt-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). Field emission scanning electron microscopy observes that the as-prepared Ni{sub 0.85}Se possesses porous structure. Cyclic voltammogram measurement indicates that Ni{sub 0.85}Se electrode has larger current density than Pt electrode. Electrochemical impedance spectroscopy shows that the Ni{sub 0.85}Se electrode has lower charge-transfer resistance than Pt electrode. Under simulated solar light irradiation with intensity of 100 mW cm{sup −2} (AM 1.5), the DSSC based on the Ni{sub 0.85}Se CE achieves a power conversion efficiency (PCE) of 8.88%, which is higher than the solar cell based on Pt CE (8.13%). Based on the transparency of Ni{sub 0.85}Se, the DSSC with Ni{sub 0.85}Se/mirror achieves a PCE of 10.19%.

  4. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  5. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    Institute of Scientific and Technical Information of China (English)

    Qi-Zhang Huang; Yan-Qing Zhu; Ji-Fu Shi; Lei-Lei Wang; Liu-Wen Zhong; Gang Xu

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module.The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%.Additionally,with the 3D-printed microfluidic device serving as water cooling,the temperature of the DSC can be effectively controlled,which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module.Moreover,the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%.The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.

  6. A new MBE CdTe photoconductor array detector for X-ray applications

    International Nuclear Information System (INIS)

    Yoo, S.S.; Sivananthan, S.; Faurie, J.P.; Rodricks, B.; Bai, J.; Montano, P.A.; Argonne National Lab., IL

    1994-10-01

    A CdTe photoconductor array x-ray detector was grown using Molecular Beam Epitaxially (MBE) on a Si (100) substrate. The temporal response of the photoconductor arrays is as fast as 21 psec risetime and 38 psec Full Width Half Maximum (FWHM). Spatial and energy responses were obtained using x-rays from a rotating anode and synchrotron radiation source. The spatial resolution of the photoconductor was good enough to provide 75 microm FWHM using a 50 microm synchrotron x-ray beam. A substantial number of x-ray photons are absorbed effectively within the MBE CdTe layer as observed from the linear response up to 15 keV. These results demonstrate that MBE grown CdTe is a suitable choice of the detector materials to meet the requirements for x-ray detectors in particular for the new high brightness synchrotron sources

  7. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells

    Directory of Open Access Journals (Sweden)

    B. Conings

    2014-08-01

    Full Text Available Organometal trihalide perovskite solar cells arguably represent the most auspicious new photovoltaic technology so far, as they possess an astonishing combination of properties. The impressive and brisk advances achieved so far bring forth highly efficient and solution processable solar cells, holding great promise to grow into a mature technology that is ready to be embedded on a large scale. However, the vast majority of state-of-the-art perovskite solar cells contains a dense TiO2 electron collection layer that requires a high temperature treatment (>450 °C, which obstructs the road towards roll-to-roll processing on flexible foils that can withstand no more than ∼150 °C. Furthermore, this high temperature treatment leads to an overall increased energy payback time and cumulative energy demand for this emerging photovoltaic technology. Here we present the implementation of an alternative TiO2 layer formed from an easily prepared nanoparticle dispersion, with annealing needs well within reach of roll-to-roll processing, making this technology also appealing from the energy payback aspect. Chemical and morphological analysis allows to understand and optimize the processing conditions of the TiO2 layer, finally resulting in a maximum obtained efficiency of 13.6% for a planar heterojunction solar cell within an ITO/TiO2/CH3NH3PbI3-xClxpoly(3-hexylthiophene/Ag architecture.

  8. High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron Collecting Interlayer

    KAUST Repository

    Xu, Weidong

    2016-05-20

    A novel fulleropyrrolidine derivative, named as FPNOH, was designed, synthesized and utilized as an efficient electron-collecting (EC) layer for inverted organic solar cells (i-OSCs). The grafted diethanolamino-polar moieties can not only trigger its function as an EC interlayer, but also induce orthogonal solubility that guarantees subsequent multi-layer processing without interfacial mixing. A higher power conversion efficiency (PCE) value of 8.34% was achieved for i-OSC devices with ITO/FPNOH EC electrode, compared to that of the sol-gel ZnO based reference devices with an optimized PCE value of 7.92%. High efficiency exceeding 7.7% was still achieved even for the devices with a relatively thick PFNOH film (16.9 nm). It is worthwhile to mention that this kind of material exhibits less thickness dependent performance, in contrast to widely utilized p-type conjugated polyelectrolytes (CPEs) as well as the non-conjugated polyelectrolytes (NCPEs). Further investigation on illuminating intensity dependent parameters revealed the role of FPNOH in reducing interfacial traps-induced recombination at ITO/active layer interface.

  9. High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron Collecting Interlayer

    KAUST Repository

    Xu, Weidong; Yan, Congfei; Kan, Zhipeng; Wang, Yang; Lai, Wen-Yong; Huang, Wei

    2016-01-01

    A novel fulleropyrrolidine derivative, named as FPNOH, was designed, synthesized and utilized as an efficient electron-collecting (EC) layer for inverted organic solar cells (i-OSCs). The grafted diethanolamino-polar moieties can not only trigger its function as an EC interlayer, but also induce orthogonal solubility that guarantees subsequent multi-layer processing without interfacial mixing. A higher power conversion efficiency (PCE) value of 8.34% was achieved for i-OSC devices with ITO/FPNOH EC electrode, compared to that of the sol-gel ZnO based reference devices with an optimized PCE value of 7.92%. High efficiency exceeding 7.7% was still achieved even for the devices with a relatively thick PFNOH film (16.9 nm). It is worthwhile to mention that this kind of material exhibits less thickness dependent performance, in contrast to widely utilized p-type conjugated polyelectrolytes (CPEs) as well as the non-conjugated polyelectrolytes (NCPEs). Further investigation on illuminating intensity dependent parameters revealed the role of FPNOH in reducing interfacial traps-induced recombination at ITO/active layer interface.

  10. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, J.C., E-mail: jean-christophe.pillet@cea.fr [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Département Optique et Photonique, F38054 Grenoble (France); Pierre, F. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA, LETI, Service de Caractérisation des Matériaux et Composants, F38054 Grenoble (France); Jalabert, D. [Univ. Grenoble Alpes, CEA, LETI, MINATEC campus, F38000 Grenoble (France); CEA-INAC/UJF-Grenoble 1 UMR-E, SP2M, LEMMA, Minatec Grenoble F-38054 (France)

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed.

  11. Practical Efficiency of Photovoltaic Panel Used for Solar Vehicles

    Science.gov (United States)

    Koyuncu, T.

    2017-08-01

    In this experimental investigation, practical efficiency of semi-flexible monocrystalline silicon solar panel used for a solar powered car called “Firat Force” and a solar powered minibus called “Commagene” was determined. Firat Force has 6 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor and Commagene has 12 solar PV modules, a maintenance free long life gel battery pack, a regenerative brushless DC electric motor. In addition, both solar vehicles have MPPT (Maximum power point tracker), ECU (Electronic control unit), differential, instrument panel, steering system, brake system, brake and gas pedals, mechanical equipments, chassis and frame. These two solar vehicles were used for people transportation in Adiyaman city, Turkey, during one year (June 2010-May 2011) of test. As a result, the practical efficiency of semi-flexible monocrystalline silicon solar panel used for Firat Force and Commagene was determined as 13 % in despite of efficiency value of 18% (at 1000 W/m2 and 25 °C ) given by the producer company. Besides, the total efficiency (from PV panels to vehicle wheel) of the system was also defined as 9%.

  12. High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Minjin; Kim, Gi-Hwan; Oh, Kyoung Suk; Jo, Yimhyun; Yoon, Hyun; Kim, Ka-Hyun; Lee, Heon; Kim, Jin Young; Kim, Dong Suk

    2017-06-27

    Organic-inorganic hybrid metal halide perovskite solar cells (PSCs) are attracting tremendous research interest due to their high solar-to-electric power conversion efficiency with a high possibility of cost-effective fabrication and certified power conversion efficiency now exceeding 22%. Although many effective methods for their application have been developed over the past decade, their practical transition to large-size devices has been restricted by difficulties in achieving high performance. Here we report on the development of a simple and cost-effective production method with high-temperature and short-time annealing processing to obtain uniform, smooth, and large-size grain domains of perovskite films over large areas. With high-temperature short-time annealing at 400 °C for 4 s, the perovskite film with an average domain size of 1 μm was obtained, which resulted in fast solvent evaporation. Solar cells fabricated using this processing technique had a maximum power conversion efficiency exceeding 20% over a 0.1 cm 2 active area and 18% over a 1 cm 2 active area. We believe our approach will enable the realization of highly efficient large-area PCSs for practical development with a very simple and short-time procedure. This simple method should lead the field toward the fabrication of uniform large-scale perovskite films, which are necessary for the production of high-efficiency solar cells that may also be applicable to several other material systems for more widespread practical deployment.

  13. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    Energy Technology Data Exchange (ETDEWEB)

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  14. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells.

    Science.gov (United States)

    Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei

    2015-09-16

    The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.

  15. Synthesis and characterization of CdTe quantum dots by one-step method

    Directory of Open Access Journals (Sweden)

    H. Li

    2013-09-01

    Full Text Available L-Cysteine (Cys-capped CdTe quantum dots (QDs were prepared when sodium tellurite worked as a tellurium source and sodium borohydride acted as a reductant. The influences of various experimental variables, including pH values, Cd/Te and Cd/Cys molar ratios, on the photoluminescence (PL quantum yield (QY of the obtained CdTe QDs have been systematically investigated. Experimental results indicated that green to red emitting CdTe QDs with maximum quantum yield of 19.4% can be prepared at pH 11.5 and n(Cd2+:n(Te2−:n(Cys = 1:0.07:2.0. X-Ray powder diffraction (XRD and transmission electron microscopy (TEM were used to characterize the crystal structure and shape of CdTe QDs. The results showed that the prepared CdTe QDs were of cubic zinc blend crystal structure in a sphere-like shape.DOI: http://dx.doi.org/10.4314/bcse.v27i3.7

  16. Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates

    KAUST Repository

    Qiu, Weiming; Paetzold, Ulrich W; Gehlhaar, Robert; Smirnov, Vladimir; Boyen, Hans-Gerd; Tait, Jeffrey Gerhart; Conings, Bert; Zhang, Weimin; Nielsen, Christian; McCulloch, Iain; Froyen, Ludo; Heremans, Paul; Cheyns, David

    2015-01-01

    The TiO2 layer made by electron beam (e-beam) induced evaporation is demonstrated as electron transport layer (ETL) in high efficiency planar junction perovskite solar cells. The temperature of the substrate and the thickness of the TiO2 layer can

  17. Low-Cost High-Efficiency Solar Cells with Wafer Bonding and Plasmonic Technologies

    Science.gov (United States)

    Tanake, Katsuaki

    We fabricated a direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs dual-junction cell, to demonstrate a proof-of-principle for the viability of direct wafer bonding for solar cell applications. The bonded interface is a metal-free n+GaAs/n +InP tunnel junction with highly conductive Ohmic contact suitable for solar cell applications overcoming the 4% lattice mismatch. The quantum efficiency spectrum for the bonded cell was quite similar to that for each of unbonded GaAs and InGaAs subcells. The bonded dual-junction cell open-circuit voltage was equal to the sum of the unbonded subcell open-circuit voltages, which indicates that the bonding process does not degrade the cell material quality since any generated crystal defects that act as recombination centers would reduce the open-circuit voltage. Also, the bonded interface has no significant carrier recombination rate to reduce the open circuit voltage. Engineered substrates consisting of thin films of InP on Si handle substrates (InP/Si substrates or epitaxial templates) have the potential to significantly reduce the cost and weight of compound semiconductor solar cells relative to those fabricated on bulk InP substrates. InGaAs solar cells on InP have superior performance to Ge cells at photon energies greater than 0.7 eV and the current record efficiency cell for 1 sun illumination was achieved using an InGaP/GaAs/InGaAs triple junction cell design with an InGaAs bottom cell. Thermophotovoltaic (TPV) cells from the InGaAsP-family of III-V materials grown epitaxially on InP substrates would also benefit from such an InP/Si substrate. Additionally, a proposed four-junction solar cell fabricated by joining subcells of InGaAs and InGaAsP grown on InP with subcells of GaAs and AlInGaP grown on GaAs through a wafer-bonded interconnect would enable the independent selection of the subcell band gaps from well developed materials grown on lattice matched substrates. Substitution of

  18. Interface engineering for efficient fullerene-free organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shivanna, Ravichandran; Narayan, K. S., E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Rajaram, Sridhar, E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  19. Spin dynamics in bulk CdTe at room temperature

    International Nuclear Information System (INIS)

    Nahalkova, P.; Nemec, P.; Sprinzl, D.; Belas, E.; Horodysky, P.; Franc, J.; Hlidek, P.; Maly, P.

    2006-01-01

    In this paper, we report on the room temperature dynamics of spin-polarized carriers in undoped bulk CdTe. Platelets of CdTe with different concentration of preparation-induced dislocations were prepared by combining the mechanical polishing and chemical etching. Using the polarization-resolved pump-probe experiment in transmission geometry, we have observed a systematic decrease of both the signal polarization and the electron spin dephasing time (from 52 to 36 ps) with the increased concentration of defects. We have suggested that the Elliot-Yafet mechanism might be the dominant spin dephasing mechanism in platelets of CdTe at room temperature

  20. Cooled solar PV panels for output energy efficiency optimisation

    International Nuclear Information System (INIS)

    Peng, Zhijun; Herfatmanesh, Mohammad R.; Liu, Yiming

    2017-01-01

    Highlights: • Effects of cooling on solar PV performance have been experimentally investigated. • As a solar panel is cooled down, the electric output can have significant increase. • A cooled solar PV system has been proposed for resident application. • Life cycle assessment suggests the cost payback time of cooled PV can be reduced. - Abstract: As working temperature plays a critical role in influencing solar PV’s electrical output and efficacy, it is necessary to examine possible way for maintaining the appropriate temperature for solar panels. This research is aiming to investigate practical effects of solar PV surface temperature on output performance, in particular efficiency. Experimental works were carried out under different radiation condition for exploring the variation of the output voltage, current, output power and efficiency. After that, the cooling test was conducted to find how much efficiency improvement can be achieved with the cooling condition. As test results show the efficiency of solar PV can have an increasing rate of 47% with the cooled condition, a cooling system is proposed for possible system setup of residential solar PV application. The system performance and life cycle assessment suggest that the annual PV electric output efficiencies can increase up to 35%, and the annual total system energy efficiency including electric output and hot water energy output can increase up to 107%. The cost payback time can be reduced to 12.1 years, compared to 15 years of the baseline of a similar system without cooling sub-system.

  1. Efficient heating of a swimming pool. High-efficiency boiler and solar system at Blaubeuren; Effiziente Freibad-Beheizung. Brennwert-Solartechnik in Blaubeuren

    Energy Technology Data Exchange (ETDEWEB)

    Trobisch, Jens [Bosch Thermotechnik GmbH, Wernau (Germany)

    2009-07-01

    The ''Blautopf'' karst spring near Blaubeuren is a wonder of nature and widely known even across the borders of Baden-Wuerttemberg. Few visitors, however, are aware that just a few steps away, there is another tourist attraction, i.e. the town's new outdoor swimming pool. In May 2008, a modern gas-fuelled high-efficiency boiler combined with a solar system was installed to heat the shower water for about 60,000 visitors per year. Optimised control ensures energy savings of up to 75 percent. The first season was highly successful. (orig.)

  2. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors

    International Nuclear Information System (INIS)

    Chen, Meijie; He, Yurong; Zhu, Jiaqi; Wen, Dongsheng

    2016-01-01

    Highlights: • An analysis coupled with Radiation transfer, Maxwell and Energy equation is developed. • Plasmonic Au and Ag nanofluids show better photo-thermal conversion properties. • Collector height and particle concentration exist optimum solutions for efficiency. - Abstract: A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increase and then reaches a maximum value. An optimum collector height (∼10 mm) and particle concentration (∼0.03%) achieving a collector efficiency of 90% of the maximum efficiency can be obtained under the conditions used in the simulation. However, the collector efficiency decreases as the irradiation time increases owing to the increased heat loss. A high solar flux is desirable to maintain a high efficiency over a wide temperature range, which is beneficial for subsequent energy utilization. The modeling results also show silver and gold nanofluids obtain higher photothermal conversion efficiencies than the titanium dioxide nanofluid because their absorption spectra are similar to the solar radiation spectrum.

  3. FY 1998 annual report on the solar energy technology research and development working group. 19th R and D activity report; 1998 nendo taiyo gijutsu bunkakai. Dai 19 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Summarized herein are the FY 1998 R and D activities by the solar energy R and D working group, extracted from the 19th R and D activity report by NEDO. Mr. Kadoi, a NEDO's director, gave a lecture titled (Expectation on and problems involved in power generation by solar light and wind power), and Mr. Kamon, a managing researcher of NEDO's solar technology development group, reported (Technological development trends of solar technology development group). The other topics reported by the individual groups include development of large-size wind power generation systems, development of techniques for increasing throughputs of high-efficiency, large-area amorphous solar cells, development of techniques for manufacturing high-reliability CdTe solar cell modules, development of techniques for manufacturing CIS solar cell modules, analysis/assessment of thin-film silicon-based solar cells, development of processes for manufacturing silicon of rationalized energy use, R and D of (new multi-layer structure) modules assembled into building materials to form monolithic structures, and development of techniques for manufacturing amorphous thin-film polycrystalline silicon hybrid thin- film solar cells. (NEDO)

  4. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.; Yum, Jun-Ho; Hoke, Eric T.; Jun, Young Chul; Péchy, Peter; Torres, Tomás; Brongersma, Mark L.; Nazeeruddin, Md. Khaja; Grätzel, Michael; McGehee, Michael D.

    2010-01-01

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3

  5. [Oxidative damage effects induced by CdTe quantum dots in mice].

    Science.gov (United States)

    Xie, G Y; Chen, W; Wang, Q K; Cheng, X R; Xu, J N; Huang, P L

    2017-07-20

    Objective: To investigate Oxidative damage effects induced by CdTe Quantum Dots (QDs) in mice. Methods: 40 ICR mice were randomly divided into 5 groups: one control group (normal saline) ; four CdTe QDs (exposed by intravenous injection of 0.2 ml of CdTe QDs at the concentration of 0、0.5、5.0、50.0 and 500.0 nmol/ml respectively) . After 24 h, the mice were decapitated and the blood was collected for serum biochemically indexes、hematology indexes, the activities of SOD、GSH-Px and the concentration of MDA were all detected. Results: The results showed in the four CdTe QDs exposure groups, the level of CRE、PLT and the concentration of MDA were all significantly lower than those of the control group ( P control group ( P <0.01) . Conclusion: It was suggested that CdTe QDs at 0.5 nmol/ml could induce Oxidative damage effects in mice.

  6. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  7. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II Porphyrin and Their Conjugates as Photosensitizers

    Directory of Open Access Journals (Sweden)

    Osnir S. Viana

    2015-05-01

    Full Text Available The application of fluorescent II-VI semiconductor quantum dots (QDs as active photosensitizers in photodymanic inactivation (PDI is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II meso-tetrakis (N-ethyl-2-pyridinium-2-yl porphyrin (ZnTE-2-PyP or ZnP, thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90% in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90% depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10 compared to bare ZnP which showed a high microbicidal activity (~3 log10 when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity.

  8. IDeF-X ECLAIRs: A CMOS ASIC for the Readout of CdTe and CdZnTe Detectors for High Resolution Spectroscopy

    International Nuclear Information System (INIS)

    Gevin, O.; Baron, P.; Coppolani, X.; Delagnes, E.; Lugiez, F.; Daly, F.; Limousin, O.; Meuris, A.; Pinsard, F.; Renaud, D.

    2009-01-01

    The very last member of the IDeF-X ASIC family is presented: IDeF-X ECLAIRs is a 32-channel front end ASIC designed for the readout of Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) Detectors. Thanks to its noise performance (Equivalent Noise Charge floor of 33 e - rms) and to its radiation hardened design (Single Event Latch-up Linear Energy Transfer threshold of 56 MeV.cm 2 .mg -1 ), the chip is well suited for soft X-rays energy discrimination and high energy resolution, 'space proof', hard X-ray spectroscopy. We measured an energy low threshold of less than 4 keV with a 10 pF input capacitor and a minimal reachable sensitivity of the Equivalent Noise Charge (ENC) to input capacitance of less than 7e - /pF obtained with a 6 μs peak time. IDeF-X ECLAIRs will be used for the readout of 6400 CdTe Schottky mono-pixel detectors of the 2D coded mask imaging telescope ECLAIRs aboard the SVOM satellite. IDeF-X ECLAIRs (or IDeF-X V2) has also been designed for the readout of a pixelated CdTe detector in the miniature spectro-imager prototype Caliste 256 that is currently foreseen for the high energy detector module of the Simbol-X mission. (authors)

  9. IDeF-X ECLAIRs: A CMOS ASIC for the Readout of CdTe and CdZnTe Detectors for High Resolution Spectroscopy

    Science.gov (United States)

    Gevin, Olivier; Baron, Pascal; Coppolani, Xavier; Daly, FranÇois; Delagnes, Eric; Limousin, Olivier; Lugiez, Francis; Meuris, Aline; Pinsard, FrÉdÉric; Renaud, Diana

    2009-08-01

    The very last member of the IDeF-X ASIC family is presented: IDeF-X ECLAIRs is a 32-channel front end ASIC designed for the readout of Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) Detectors. Thanks to its noise performance (Equivalent Noise Charge floor of 33 e- rms) and to its radiation hardened design (Single Event Latchup Linear Energy Transfer threshold of 56 MeV.cm2.mg-1), the chip is well suited for soft X-rays energy discrimination and high energy resolution, ldquospace proof,rdquo hard X-ray spectroscopy. We measured an energy low threshold of less than 4 keV with a 10 pF input capacitor and a minimal reachable sensitivity of the Equivalent Noise Charge (ENC) to input capacitance of less than 7 e-/pF obtained with a 6 mus peak time. IDeF-X ECLAIRs will be used for the readout of 6400 CdTe Schottky monopixel detectors of the 2D coded mask imaging telescope ECLAIRs aboard the SVOM satellite. IDeF-X ECLAIRs (or IDeF-X V2) has also been designed for the readout of a pixelated CdTe detector in the miniature spectro-imager prototype Caliste 256 that is currently foreseen for the high energy detector module of the Simbol-X mission.

  10. Landfill waste and recycling: Use of a screening-level risk assessment tool for end-of-life cadmium telluride (CdTe) thin-film photovoltaic (PV) panels

    International Nuclear Information System (INIS)

    Cyrs, William D.; Avens, Heather J.; Capshaw, Zachary A.; Kingsbury, Robert A.; Sahmel, Jennifer; Tvermoes, Brooke E.

    2014-01-01

    Grid-connected solar photovoltaic (PV) power is currently one of the fastest growing power-generation technologies in the world. While PV technologies provide the environmental benefit of zero emissions during use, the use of heavy metals in thin-film PV cells raises important health and environmental concerns regarding the end-of-life disposal of PV panels. To date, there is no published quantitative assessment of the potential human health risk due to cadmium leaching from cadmium telluride (CdTe) PV panels disposed in a landfill. Thus, we used a screening-level risk assessment tool to estimate possible human health risk associated with disposal of CdTe panels into landfills. In addition, we conducted a literature review of potential cadmium release from the recycling process in order to contrast the potential health risks from PV panel disposal in landfills to those from PV panel recycling. Based on the results of our literature review, a meaningful risk comparison cannot be performed at this time. Based on the human health risk estimates generated for PV panel disposal, our assessment indicated that landfill disposal of CdTe panels does not pose a human health hazard at current production volumes, although our results pointed to the importance of CdTe PV panel end-of-life management. - Highlights: • Analysis of possible human health risk posed by disposal of CdTe panels into landfills. • Qualitative comparison of risks associated with landfill disposal and recycling of CdTe panels. • Landfill disposal of CdTe panels does not pose a human health hazard at current production volumes. • There could be potential risks associated with recycling if not properly managed. • Factors other than concerns over toxic substances will likely drive the decisions of how to manage end-of-life PV panels

  11. Novel materials for high-efficiency solar cells

    Science.gov (United States)

    Kojima, Nobuaki; Natori, Masato; Suzuki, Hidetoshi; Inagaki, Makoto; Ohshita, Yoshio; Yamaguchi, Masafumi

    2009-08-01

    Our Toyota Technological Institute group has investigated various novel materials for solar cells from organic to III-V compound materials. In this paper, we report our recent results in conductivity control of C60 thin films by metal-doping for organic solar cells, and mobility improvement of (In)GaAsN compounds for III-V tandem solar cells. The epitaxial growth of Mg-doped C60 films was attempted. It was found that the epitaxial growth of Mg-doped C60 film was enabled by using mica (001) substrate in the low Mg concentration region (Mg/C60 molar ratio defects leads this improvement.

  12. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system (development of technology to manufacture thin film solar cells (surveys and researches on analyzing practical application )). Volume 1; 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to identify and analyze quickly and accurately the technological trends inside and outside the country on thin film solar cells, to reflect the results effectively on research and development of practical application of the thin film solar cells for power use, and to aid the research on practical application of the technology to manufacture the thin film solar cells. This fiscal year introduced the new project of researching and developing the poly-crystal silicon-based thin film solar cells. Discussions were given on designing the solar cells, including setting of thickness of an active layer required to improve efficiency of the silicon-based thin film solar cells, the light confining technology, and surface passivation. Comparisons and discussions were given on the new amorphous/poly-crystal silicon thin film manufacturing method and the conventional plasma CVD process. A research development program was introduced for a super laboratory to aid establishing the practical application technology for the silicon-based thin film solar cells. Chalcopyrite compounds including CuInSe2, and CdTe have not shown deterioration even in a long-term outdoor exposure test, hence they are noted as materials for high-efficiency solar cells and studied actively. Although still small in area, the net conversion efficiency was found in the order of 17%. Technological development has started to search mass production processes and commercialization possibility in the future. (NEDO)

  13. Affordable High Performance Electromagnetically Clean Solar Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an Electromagnetically Clean Solar Array (ECSA) with enhanced performance, in Watts/kg and Watts/m2, using flight proven, high efficiency solar cells. For...

  14. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells

    Science.gov (United States)

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-03-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  15. Silicon-Light: a European FP7 Project Aiming at High Efficiency Thin Film Silicon Solar Cells on Foil

    DEFF Research Database (Denmark)

    Soppe, W.; Haug, F.-J.; Couty, P.

    2011-01-01

    Silicon-Light is a European FP7 project, which started January 1st, 2010 and aims at development of low cost, high-efficiency thin film silicon solar cells on foil. Three main routes are explored to achieve these goals: a) advanced light trapping by implementing nanotexturization through UV Nano...... calculations of ideal nanotextures for light trapping in thin film silicon solar cells; the fabrication of masters and the replication and roll-to-roll fabrication of these nanotextures. Further, results on ITO variants with improved work function are presented. Finally, the status of cell fabrication on foils...

  16. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  17. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong

    2015-01-01

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd 2+ . Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals

  18. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Compounds Containing Carboxyl Groups Using CdTe and CuO Nanoparticles

    OpenAIRE

    Megumi Sakurai; Taro Sato; Jiawei Xu; Soichi Sato; Tatsuya Fujino

    2018-01-01

    Matrix-assisted laser desorption ionization mass spectrometry of compounds containing carboxyl groups was carried out by using semiconductor nanoparticles (CdTe and CuO) as the matrix. Salicylic acid (Sal), glucuronic acid (Glu), ibuprofen (Ibu), and tyrosine (Tyr) were ionized as deprotonated species (carboxylate anions) by using electrons ejected from CdTe after the photoexcitation. When CuO was used as the matrix, the peak intensity of Tyr became high compared with that obtained with CdTe....

  19. An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor.

    Science.gov (United States)

    Cha, Hyojung; Wu, Jiaying; Wadsworth, Andrew; Nagitta, Jade; Limbu, Saurav; Pont, Sebastian; Li, Zhe; Searle, Justin; Wyatt, Mark F; Baran, Derya; Kim, Ji-Seon; McCulloch, Iain; Durrant, James R

    2017-09-01

    A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'″-di(2-octyldodecyl)-2,2';5',2″;5″,2'″-quaterthiophen-5,5'″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC 71 BM solar cells show significant efficiency loss under simulated solar irradiation ("burn in" degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC 71 BM devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lumb, Matthew P. [The George Washington University, 2121 I Street NW, Washington, DC 20037 (United States); Naval Research Laboratory, Washington, DC 20375 (United States); Steiner, Myles A.; Geisz, John F. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Walters, Robert J. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-11-21

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close to the fundamental efficiency limit.

  1. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  2. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Araghi, Houshang, E-mail: araghi@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zabihi, Zabiholah [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ehsani, Mohammad Mahdi [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2016-10-15

    II–VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  3. Recent advances in sensitized mesoscopic solar cells.

    Science.gov (United States)

    Grätzel, Michael

    2009-11-17

    -intensive high vacuum and materials purification steps that are currently employed in the fabrication of all other thin-film solar cells. Organic materials are abundantly available, so that the technology can be scaled up to the terawatt scale without running into feedstock supply problems. This gives organic-based solar cells an advantage over the two major competing thin-film photovoltaic devices, i.e., CdTe and CuIn(As)Se, which use highly toxic materials of low natural abundance. However, a drawback of the current embodiment of OPV cells is that their efficiency is significantly lower than that for single and multicrystalline silicon as well as CdTe and CuIn(As)Se cells. Also, polymer-based OPV cells are very sensitive to water and oxygen and, hence, need to be carefully sealed to avoid rapid degradation. The research discussed within the framework of this Account aims at identifying and providing solutions to the efficiency problems that the OPV field is still facing. The discussion focuses on mesoscopic solar cells, in particular, dye-sensitized solar cells (DSCs), which have been developed in our laboratory and remain the focus of our investigations. The efficiency problem is being tackled using molecular science and nanotechnology. The sensitizer constitutes the heart of the DSC, using sunlight to pump electrons from a lower to a higher energy level, generating in this fashion an electric potential difference, which can exploited to produce electric work. Currently, there is a quest for sensitizers that achieve effective harnessing of the red and near-IR part of sunlight, converting these photons to electricity better than the currently used generation of dyes. Progress in this area has been significant over the past few years, resulting in a boost in the conversion efficiency of the DSC that will be reviewed.

  4. Efficiency improvement of a concentrated solar receiver for water heating system using porous medium

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.

  5. Effects of anodic aluminum oxide membrane on performance of nanostructured solar cells

    Science.gov (United States)

    Dang, Hongmei; Singh, Vijay

    2015-05-01

    Three nanowire solar cell device configurations have been fabricated to demonstrate the effects of the host anodized aluminum oxide (AAO) membrane on device performance. The three configurations show similar transmittance spectra, indicating that AAO membrane has negligible optical absorption. Power conversion efficiency (PCE) of the device is studied as a function of the carrier transport and collection in cell structures with and without AAO membrane. Free standing nanowire solar cells exhibit PCE of 9.9%. Through inclusion of AAO in solar cell structure, interface defects and traps caused by humidity and oxygen are reduced, and direct contact of CdTe tentacles with SnO2 and formation of micro shunt shorts are prevented; hence PCE is improved to 11.1%-11.3%. Partially embedded nanowire solar cells further reduce influence of non-ideal and non-uniform nanowire growth and generate a large amount of carriers in axial direction and also a small quantity of carriers in lateral direction, thus becoming a promising solar cell structure. Thus, including AAO membrane in solar cell structure provides favorable electro-optical properties as well as mechanical advantages.

  6. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2014-10-25

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  7. Synthesis and characterization of TGA-capped CdTe nanoparticles embedded in PVA matrix

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Kaur, Ramneek; Sharma, Mamta

    2015-01-01

    This paper reports the synthesis and characterization of TGA-capped CdTe nanoparticles and its nanocomposite in a PVA matrix prepared by ex situ technique. The crystallite sizes of the CdTe nanoparticles and nanocomposite calculated from X-ray diffraction patterns are 6.07 and 7.75 nm with hexagonal structure, respectively. The spherical nature of the CdTe nanoparticles is confirmed from transmission electron microscopy measurements. Fourier transform infrared spectroscopy shows good interaction between the CdTe nanoparticles and PVA matrix. The absorption and emission spectra have also been studied. The stability of the TGA-capped CdTe nanoparticles increases after dispersion in a PVA matrix. In electrical measurements, the dark conductivity and the steady-state photoconductivity of CdTe nanocomposite thin films have been studied. The effect of temperature and intensity on the transient photoconductivity of CdTe nanocomposite is also studied. The values of differential life time have been calculated from the decay of photocurrent with time. The non-exponential decay of photoconductivity is observed indicating that the traps exist at all the energies in the band gap, making these materials suitable for various optoelectronic devices. (orig.)

  8. Highly fluorescent CdTe quantum dots with reduced cytotoxicity-A Robust biomarker

    Directory of Open Access Journals (Sweden)

    Jandi Kim

    2015-03-01

    Full Text Available l-Cysteine (Cys capped CdTe quantum dots (CdTe@Cys QDs were successfully synthesized in an aqueous medium. The synthesized CdTe@Cys samples were analyzed using Fourier transform infrared (FT-IR spectroscopy, fluorescence (FL spectroscopy, transmission electron microscopy (TEM, confocal microscopy and subsequently subjected to the antibacterial test. Systematic investigations were carried out for the determination of optimal conditions namely the ratios of Cd:Te, CdTe:Cys, pH value and the chemical stability of CdTe@Cys. Moreover, the reactivation of FL intensity in the CdTe@Cys sample was done easily by the addendum of Cys. The introduction of additional cysteine to the CdTe@Cys QDs sample showed an enhancement in terms of the FL intensity and stability along with the reduced antibacterial activity. This was further confirmed through Thiazolyl blue tetrazolium bromide (MTT assays. Both the result of the bio-stability tests namely the antibacterial test and MTT assay displayed similarities between the externally added Cys and cytotoxicity of the bacteria and human HeLa cancer cell lines. Confocal microscopic images were captured for the CdTe@Cys conjugated Escherichia coli.

  9. Industrially feasible, dopant-free, carrier-selective contacts for high-efficiency silicon solar cells

    KAUST Repository

    Yang, Xinbo; Weber, Klaus; Hameiri, Ziv; De Wolf, Stefaan

    2017-01-01

    quality and cell processing, a remarkable efficiency of 22.1% has been achieved using an n-type silicon solar cell featuring a full-area TiO contact. Next, we demonstrate the compatibility of TiO contacts with an industrial contact-firing process, its low

  10. Diffusion and influence of Cu on properties of CdTe thin films and CdTe/CdS cells

    Energy Technology Data Exchange (ETDEWEB)

    Dzhafarov, T.D.; Yesilkaya, S.S.; Yilmaz Canli, N.; Caliskan, M. [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2005-01-31

    The effective diffusion coefficients of Cu for thermal and photodiffusion in the CdTe films have been estimated from resistivity versus duration of thermal or photoannealing curves. In the temperature range 60-200{sup o}C the effective coefficient of thermal diffusion (D{sub t}) and photodiffusion (D{sub ph}) are described as D{sub t}=7.3x10{sup -7}exp(-0.33/kT) and D{sub ph}=4.7x10{sup -8}exp(-0.20/kT). It is found that the diffusion doping of CdTe thin films by Cu at 400{sup o}C results in a sharp decrease of resistivity up to 7 orders of magnitude of p-type material, depending on thickness of Cu film. The comparative study of performance of CdTe(Cu)/CdS and CdTe/CdS cells has been studied. It is shown that the diffusion doping of CdTe film by Cu increases efficiency of CdTe(Cu)/CdS cells from 0.9% to 6.8%. The degradation of photovoltaic parameters of CdTe(Cu)/CdS cell, during testing under forward and reverse bias at room temperature, proceeds at a larger rate than those of CdTe/CdS cell without Cu. The degradation of performance of CdTe(Cu)/CdS cells is tentatively assigned to electrodiffusion of Cu in CdTe, resulting in redistribution of concentration of Cu-related centers in CdTe film and heterojunction region.

  11. Efficiency enhancement using voltage biasing for ferroelectric polarization in dye-sensitized solar cells

    Science.gov (United States)

    Kim, Sangmo; Song, Myoung Geun; Bark, Chung Wung

    2018-01-01

    Dye-sensitized solar cells (DSSCs) are one of the most promising third generation solar cells that have been extensively researched over the past decade as alternative to silicon-based solar cells, due to their low production cost and high energy-conversion efficiency. In general, a DSSC consists of a transparent electrode, a counter electrode, and an electrolyte such as dye. To achieve high power-conversion efficiency in cells, many research groups have focused their efforts on developing efficient dyes for liquid electrolytes. In this work, we report on the photovoltaic properties of DSSCs fabricated using a mixture of TiO2 with nanosized Fe-doped bismuth lanthanum titanate (nFe-BLT) powder). Firstly, nFe-BLT powders were prepared using a high-energy ball milling process and then, TiO2 and nFe-BLT powders were stoichiometrically blended. Direct current (DC) bias of 20 MV/m was applied to lab-made DSSCs. With the optimal concentration of nFe-BLT doped in the electrode, their light-to-electricity conversion efficiency could be improved by ∼64% compared with DSSCs where no DC bias was applied.

  12. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong, E-mail: dayongw@seu.edu.cn

    2015-02-11

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd{sup 2+}. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  13. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads.

    Science.gov (United States)

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-10-21

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.

  14. 18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.

    Science.gov (United States)

    Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong

    2016-05-11

    We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.

  15. Photoluminescence properties of a novel conjugate of water-soluble CdTe quantum dots to guanine

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xuejiao [North-East Normal University, Changchun 130024 (China); Shang, Qingkun, E-mail: shangqk995@nenu.edu.c [North-East Normal University, Changchun 130024 (China); Liu Hongjian [Relia Diagnostic Systems, Burlingame, CA 94010 (United States); Wang Wenlan; Wang Zhidan; Liu Junyu [North-East Normal University, Changchun 130024 (China)

    2010-04-15

    A novel conjugate of water-soluble CdTe quantum dots to a small biomolecule guanine has been obtained in aqueous phase. The photoluminescence property and the stability of the conjugate increased comparing to CdTe QDs. The interaction between CdTe QDs and guanine was studied by TEM, fluorescence microscope and photoluminescence (PL), IR, UV-Vis spectra. The effects of reflux time, pH value, ionic strength, and the ratio of CdTe QDs to guanine on the photoluminescence properties of conjugate were investigated in detail. The results show that guanine has a great influence on both the photoluminescence property and stability of thioglycolic acid-stabilized CdTe QDs. The formation of coordination and hydrogen bond between guanine molecules and CdTe including thioglycolic acid on its surface may effectively enhance the PL intensity and stability of CdTe QDs. The maximum PL intensity of the conjugate was obtained on the condition with lower ionic strength, less than 30 min reflux time, neutral pH value and 6/1 as molar ratio of guanine to CdTe.

  16. Evaluation of Test Method for Solar Collector Efficiency

    DEFF Research Database (Denmark)

    Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon

    The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximat...... and the sky temperature. Based on the investigations, recommendations for change of the test methods and test conditions are considered. The investigations are carried out within the NEGST (New Generation of Solar Thermal Systems) project financed by EU.......The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated...... equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approximation determined as a constant equal to the specific heat of the solar collector fluid at the temperature Tm...

  17. Studies on interaction between CdTe quantum dots and α ...

    Indian Academy of Sciences (India)

    Administrator

    ence of CdTe QDs were also studied. α-Chy can maintain its high activity and stability under different. pH conditions ... creasing attention in the past decade. 1. Because of ... divided into 'poor' and 'good' substrate, depending on their kinetic ...

  18. Self-assembly 2D zinc-phthalocyanine heterojunction: An ideal platform for high efficiency solar cell

    Science.gov (United States)

    Jiang, Xue; Jiang, Zhou; Zhao, Jijun

    2017-12-01

    As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.

  19. High-Efficiency and High-Color-Rendering-Index Semitransparent Polymer Solar Cells Induced by Photonic Crystals and Surface Plasmon Resonance.

    Science.gov (United States)

    Shen, Ping; Wang, Guoxin; Kang, Bonan; Guo, Wenbin; Shen, Liang

    2018-02-21

    Semitransparent polymer solar cells (ST-PSCs) show attractive potential in power-generating windows or building-integrated photovoltaics. However, the development of ST-PSCs is lagging behind opaque PSCs because of the contradiction between device efficiency and transmission. Herein, Ag/Au alloy nanoparticles and photonic crystals (PCs) were simultaneously introduced into ST-PSCs, acting compatibly as localized surface plasmon resonances and distributed Bragg reflectors to enhance light absorption and transmission. As a result, ST-PSCs based on a hybrid PTB7-Th:PC 71 BM active layer contribute an efficiency as high as 7.13 ± 0.15% and an average visible transmission beyond 20%, which are superior to most of the reported results. Furthermore, PCs can partly compensate valley range of transmission by balancing reflection and transmission regions, yielding a high color rendering index of 95. We believe that the idea of two light management methods compatibly enhancing the performance of ST-PSCs can offer a promising path to develop photovoltaic applications.

  20. Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.

    Science.gov (United States)

    Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi

    2018-03-21

    Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.