WorldWideScience

Sample records for high-dose-rate intraoperative radiation

  1. High-dose-rate intraoperative radiation therapy: the nuts and bolts of starting a program

    Science.gov (United States)

    Moningi, Shalini; Armour, Elwood P.; Terezakis, Stephanie A.; Efron, Jonathan E.; Gearhart, Susan L.; Bivalacqua, Trinity J.; Kumar, Rachit; Le, Yi; Kien Ng, Sook; Wolfgang, Christopher L.; Zellars, Richard C.; Ellsworth, Susannah G.; Ahuja, Nita

    2014-01-01

    High-dose-rate intraoperative radiation therapy (HDR-IORT) has historically provided effective local control (LC) for patients with unresectable and recurrent tumors. However, IORT is limited to only a few specialized institutions and it can be difficult to initiate an HDR-IORT program. Herein, we provide a brief overview on how to initiate and implement an HDR-IORT program for a selected group of patients with gastrointestinal and pelvic solid tumors using a multidisciplinary approach. Proper administration of HDR-IORT requires institutional support and a joint effort among physics staff, oncologists, surgeons, anesthesiologists, and nurses. In order to determine the true efficacy of IORT for various malignancies, collaboration among institutions with established IORT programs is needed. PMID:24790628

  2. High-dose rate intra-operative radiation therapy for local advanced and recurrent colorectal cancer

    International Nuclear Information System (INIS)

    Harrison, L.B.; Mychalczak, B.; Enker, W.; Anderson, L.; Cohen, A.E.; Minsky, B.

    1996-01-01

    In an effort to improve the local control for advanced and recurrent cancers of the rectum, we have integrated high-dose rate intra-operative radiation therapy (HDR-IORT) into the treatment program. Between 11/92 and 10/95, 47 patients (pts) were treated. There were 26 males and 21 females whose ages ranged from 30-80 (median = 62) years. There were 19 pts with primary unresectable rectal cancer, and 28 pts who were treated for recurrent rectal cancer. Histology was adenocarcinoma - 45 pts, squamous cancer - 2 pts. The range of follow-up is 1-34 months (median = 14 months). The majority of primary unresectable pts received pre-operative radiation therapy (4500-5040 cGy) with chemotherapy (5-FU with Leucovorin) 4-6 weeks later, they underwent resection + HDR-IORT (1200 cGy). For the 28 pts with recurrent cancer, the majority received surgery and HDR-IORT alone because they had received prior RT. For the pts with primary unresectable disease, actuarial 2-year local control was 77%, actuarial distant metastasis-free survival was 71%, disease free survival was 66%, and overall survival was 84%. For those pts with recurrent disease, actuarial 2-year local control rate was 65%, distant metastasis-free survival was 65%, disease free survival was 47%, and overall survival was 61%. Complications occurred in 36%. There were no cases where the anatomical distribution of disease, or technical limitations prevented the adequate delivery of HDR-IORT. We conclude that this technique was most versatile, and enabled all appropriate pts to receive IORT. The preliminary data in terms of local control are encouraging, even for the poor prognostic sub-group of pts with recurrent cancer

  3. Measurements of surgeons' exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy.

    Science.gov (United States)

    Lee, Kisung; Lee, Kyoung Min; Park, Moon Seok; Lee, Boram; Kwon, Dae Gyu; Chung, Chin Youb

    2012-06-15

    Measurement of radiation dose from C-arm fluoroscopy during a simulated intraoperative use in spine surgery. OBJECTIVE.: To investigate scatter radiation doses to specific organs of surgeons during intraoperative use of C-arm fluoroscopy in spine surgery and to provide practical intraoperative guidelines. There have been studies that reported the radiation dose of C-arm fluoroscopy in various procedures. However, radiation doses to surgeons' specific organs during spine surgery have not been sufficiently examined, and the practical intraoperative radioprotective guidelines have not been suggested. Scatter radiation dose (air kerma rate) was measured during the use of a C-arm on an anthropomorphic chest phantom on an operating table. Then, a whole body anthropomorphic phantom was located besides the chest phantom to simulate a surgeon, and scatter radiation doses to specific organs (eye, thyroid, breast, and gonads) and direct radiation dose to the surgeon's hand were measured using 4 C-arm configurations (standard, inverted, translateral, and tube translateral). The effects of rotating the surgeon's head away from the patient and of a thyroid shield were also evaluated. Scatter radiation doses decreased as distance from the patient increased during C-arm fluoroscopy use. The standard and translateral C-arm configurations caused lower scatter doses to sensitive organs than inverted and tube translateral configurations. Scatter doses were highest for breast and lowest for gonads. The use of a thyroid shield and rotating the surgeon's head away from the patient reduced scatter radiation dose to the surgeon's thyroid and eyes. The direct radiation dose was at least 20 times greater than scatter doses to sensitive organs. The following factors could reduce radiation exposure during intraoperative use of C-arm; (1) distance from the patient, (2) C-arm configuration, (3) radioprotective equipments, (4) rotating the surgeons' eyes away from the patient, and (5) avoiding

  4. Retrospective analysis of dose delivery in intra-operative high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Oh, M.; Avadhani, J.S.; Malhotra, H.K.; Cunningham, B.; Tripp, P.; Jaggernauth, W.; Podgorsak, M.B.

    2007-01-01

    Background. This study was performed to quantify the inaccuracy in clinical dose delivery due to the incomplete scatter conditions inherent in intra-operative high dose rate (IOHDR) brachytherapy. Methods. Treatment plans of 10 patients previously treated in our facility, which had irregular shapes of treated areas, were used. Treatment geometries reflecting each clinical case were simulated using a phantom assembly with no added build-up on top of the applicator. The treatment planning geometry (full scatter surrounding the applicator) was subsequently simulated for each case by adding bolus on top of the applicator. Results. For geometries representing the clinical IOHDR incomplete scatter environment, measured doses at the 5 mm and 10 mm prescription depths were lower than the corresponding prescribed doses by about 7.7% and 11.1%, respectively. Also, for the two prescription methods, an analysis of the measured dose distributions and their corresponding treatment plans showed average decreases of 1.2 mm and 2.2 mm in depth of prescription dose, respectively. Conclusions. Dosimetric calculations with the assumption of an infinite scatter environment around the applicator and target volume have shown to result in dose delivery errors that significantly decrease the prescription depth for IOHDR treatment.(author)

  5. Radical surgical resection and high-dose intraoperative radiation therapy (HDR-IORT) in patients with recurrent gynecologic cancers

    International Nuclear Information System (INIS)

    Gemignani, Mary L.; Alektiar, Kaled M.; Leitao, Mario; Mychalczak, Boris; Chi, Dennis; Venkatraman, Ennapadam; Barakat, Richard R.; Curtin, John P.

    2001-01-01

    Objective: To determine the outcome for patients with recurrent gynecologic tumors treated with radical resection and combined high-dose intraoperative radiation therapy (HDR-IORT). Methods and Materials: Between November 1993 and June 1998, 17 patients with recurrent gynecologic malignancies underwent radical surgical resection and high-dose-rate brachytherapy. The mean age of the study group was 49 years (range 28-72 years). The site of the primary tumor was the cervix in 9 (53%) patients, the uterus in 7 (41%) patients, and the vagina in 1 (6%) patient. The treatment for the primary disease was surgery with or without adjuvant radiation in 14 (82%) patients and definitive radiation in 3 (18%) patients. The current surgery consisted of exenterative surgery in 10 (59%) patients and tumor resection in 7 (41%) patients. Complete gross resection was achieved in 13 (76%) patients. The mean HDR-IORT dose was 14 Gy (range 12-15). Additional radiation in the form of permanent Iodine-125 implant was given to 3 of 4 patients with gross residual disease. The median peripheral dose was 140 Gy. Results: With a median follow-up of 20 months (range 3-65 months), the 3-year actuarial local control (LC) rate was 67%. In patients with complete gross resection, the 3-year LC rate was 83%, compared to 25% in patients with gross residual disease, p<0.01. The 3-year distant metastasis disease-free and overall survival rates were 54% and 54%, respectively. The complications were as follows: gastrointestinal obstruction, 4 (24%); wound complications, 4 (24%); abscesses, 3 (18%); peripheral neuropathy, 3 (18%); rectovaginal fistula, 2 (12%); and ureteral obstruction, 2 (12%). Conclusion: Radical surgical resection and combined IORT for patients with recurrent gynecologic tumors seems to provide a reasonable local-control rate in patients who have failed prior surgery and/or definitive radiation. Patient selection is very important, however, as only those patients with complete gross

  6. Attenuation measurements show that the presence of a TachoSil surgical patch will not compromise target irradiation in intra-operative electron radiation therapy or high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Sarmento, Sandra; Costa, Filipa; Pereira, Alexandre; Lencart, Joana; Dias, Anabela; Cunha, Luís; Sousa, Olga; Silva, José Pedro; Santos, Lúcio

    2015-01-01

    Surgery of locally advanced and/or recurrent rectal cancer can be complemented with intra-operative electron radiation therapy (IOERT) to deliver a single dose of radiation directly to the unresectable margins, while sparing nearby sensitive organs/structures. Haemorrhages may occur and can affect the dose distribution, leading to an incorrect target irradiation. The TachoSil (TS) surgical patch, when activated, creates a fibrin clot at the surgical site to achieve haemostasis. The aim of this work was to determine the effect of TS on the dose distribution, and ascertain whether it could be used in combination with IOERT. This characterization was extended to include high dose rate (HDR) intraoperative brachytherapy, which is sometimes used at other institutions instead of IOERT. CT images of the TS patch were acquired for initial characterization. Dosimetric measurements were performed in a water tank phantom, using a conventional LINAC with a hard-docking system of cylindrical applicators. Percentage Depth Dose (PDD) curves were obtained, and measurements made at the depth of dose maximum for the three clinically used electron energies (6, 9 and 12MeV), first without any attenuator and then with the activated patch of TS completely covering the tip of the IOERT applicator. For HDR brachytherapy, a measurement setup was improvised using a solid water phantom and a Farmer ionization chamber. Our measurements show that the attenuation of a TachoSil patch is negligible, both for high energy electron beams (6 to 12MeV), and for a HDR 192 Ir brachytherapy source. Our results cannot be extrapolated to lower beam energies such as 50 kVp X-rays, which are sometimes used for breast IORT. The TachoSil surgical patch can be used in IORT procedures using 6MeV electron energies or higher, or HDR 192 Ir brachytherapy

  7. Attenuation measurements show that the presence of a TachoSil surgical patch will not compromise target irradiation in intra-operative electron radiation therapy or high-dose-rate brachytherapy.

    Science.gov (United States)

    Sarmento, Sandra; Costa, Filipa; Pereira, Alexandre; Lencart, Joana; Dias, Anabela; Cunha, Luís; Sousa, Olga; Silva, José Pedro; Santos, Lúcio

    2015-01-09

    Surgery of locally advanced and/or recurrent rectal cancer can be complemented with intra-operative electron radiation therapy (IOERT) to deliver a single dose of radiation directly to the unresectable margins, while sparing nearby sensitive organs/structures. Haemorrhages may occur and can affect the dose distribution, leading to an incorrect target irradiation. The TachoSil (TS) surgical patch, when activated, creates a fibrin clot at the surgical site to achieve haemostasis. The aim of this work was to determine the effect of TS on the dose distribution, and ascertain whether it could be used in combination with IOERT. This characterization was extended to include high dose rate (HDR) intraoperative brachytherapy, which is sometimes used at other institutions instead of IOERT. CT images of the TS patch were acquired for initial characterization. Dosimetric measurements were performed in a water tank phantom, using a conventional LINAC with a hard-docking system of cylindrical applicators. Percentage Depth Dose (PDD) curves were obtained, and measurements made at the depth of dose maximum for the three clinically used electron energies (6, 9 and 12MeV), first without any attenuator and then with the activated patch of TS completely covering the tip of the IOERT applicator. For HDR brachytherapy, a measurement setup was improvised using a solid water phantom and a Farmer ionization chamber. Our measurements show that the attenuation of a TachoSil patch is negligible, both for high energy electron beams (6 to 12MeV), and for a HDR (192)Ir brachytherapy source. Our results cannot be extrapolated to lower beam energies such as 50 kVp X-rays, which are sometimes used for breast IORT. The TachoSil surgical patch can be used in IORT procedures using 6MeV electron energies or higher, or HDR (192)Ir brachytherapy.

  8. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.

    1984-03-01

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  9. Phase II trial of combined surgical resection, high dose rate intraoperative radiation therapy, and external beam radiotherapy for malignant pleural mesothelioma

    International Nuclear Information System (INIS)

    Raben, A.; Rusch, V.; Mychalczak, B.; Ginsberg, R.; Burt, M.; Bains, M.; Francois, Damien; Harrison, L.B.

    1997-01-01

    Purpose: To determine the feasibility of combining extrapleural pneumonectomy (EPP) or pleurectomy / decortication (PD), high dose rate intraoperative radiation therapy (HDR-IORT) and postoperative external beam radiation hemithoracic radiation (EBHRT) to treat malignant pleural mesothelioma (MPM). Materials and Methods: From 3/94 through 9/94, 15 patients (pts) were enrolled on this trial. This included 3 females and 12 males with a median age of 59 (Range: 45-75). Eligibility criteria included biopsy proven MPM, no evidence of T4 or N3 disease by exam/CT/MRI, no evidence of metastatic disease, no previous treatment, and a Karnofsky performance status of ≥ 80%. Pts with pulmonary function tests permitting EPP, underwent EPP and HDR-IORT (N=7). The rest underwent PD/HDR-IORT (N=4). An intraoperative dose of 15 Gy was prescribed to a depth of 5 mm in tissue to the ipsilateral mediastinum, diaphragm, and chest wall. Postoperatively, 54 Gy of EBHRT was prescribed to the hemithorax, surgical scar and surgical drain site. The median surgical procedure time, median IORT time and median overall operating time was 554 minutes, 240 minutes, and 649 minutes respectively. The median dose of EBHRT was 50.4 Gy (Range 50-54 Gy). The median follow-up time is 8 months (Range: 3.5 to 28 months). Four of 15 pts had unresectable disease at the time of surgery and were taken off study. Results are presented in crude and actuarial analysis. Results: A complete resection of all visible gross disease was accomplished in 10 pts. One pt had a single focus of gross residual disease (less than 5 mm in size) left behind in the chest wall. The overall complication rate was 54%. Treatment related mortality occurred in 2 pts (18%) at 1 and 7 months respectively. This was attributed to ARDS in 1 pt (EPP/HDR-IORT) and radiation pneumonitis combined with a tracheoesophageal fistula in 1 pt (PD/HDR-IORT). Of the 6 remaining pts undergoing EPP/HDR-IORT, 2 pts developed a postoperative empyema with

  10. Transperineal high-dose-rate interstitial radiation therapy in the management of gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Itami, Jun; Hara, Ryuseke; Kozuka, Takuyou; Yamashita, Hideomi; Nakajima, Kaori; Shibata, Kouji; Abe, Yoshihisa; Fuse, Masashi; Ito, Masashi [International Medical Center of Japan, Tokyo (Japan). Dept. of Radiation Therapy and Oncology

    2003-11-01

    Background: High-dose-rate interstitial radiation therapy is a newly introduced modality, and its role in the management of gynecologic malignancies remains to be studied. Clinical experience in high-dose-rate interstitial radiation therapy was retrospectively investigated. Patients and Methods: Eight patients with primary and nine with recurrent gynecologic malignancies underwent high-dose-rate interstitial radiation therapy with/without external-beam irradiation. Fractional dose of the high-dose-rate interstitial radiation therapy ranged between 4 and 6 Gy with total doses of 15-54 Gy. Interstitial irradiation was performed twice daily with an interval of > 6 h. Results: 2-year local control rate was 75% for primary treatment and 47% for treatment of recurrence (p = 0.46). Maximum tumor size had a statistically significant impact on local control (p < 0.002). Grade 2 and 4 late complications were seen in five patients, and the incidence was significantly higher in patients with a larger volume enclosed by the prescribed fractional dose of high-dose-rate interstitial radiation therapy. The incidence of grade 2 and 4 complications at 18 months was 78% and 0% with a volume > 100 cm{sup 3} and {<=} 100 cm{sup 3}, respectively (p < 0.04). Conclusion: Although high-dose-rate interstitial radiation therapy is a promising modality, it must be applied cautiously to patients with bulky tumors because of the high incidence of serious complications. (orig.)

  11. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  12. A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial

    International Nuclear Information System (INIS)

    Showalter, Shayna L.; Petroni, Gina; Trifiletti, Daniel M.; Libby, Bruce; Schroen, Anneke T.; Brenin, David R.; Dalal, Parchayi; Smolkin, Mark; Reardon, Kelli A.; Showalter, Timothy N.

    2016-01-01

    Purpose: Existing intraoperative radiation therapy (IORT) techniques are criticized for the lack of image guided treatment planning and energy deposition with, at times, poor resultant dosimetry and low radiation dose. We pioneered a novel method of IORT that incorporates customized, computed tomography (CT)-based treatment planning and high-dose-rate (HDR) brachytherapy to overcome these drawbacks: CT-HDR-IORT. Methods and Materials: A phase 1 study was conducted to demonstrate the feasibility and safety of CT-HDR-IORT. Eligibility criteria included age ≥50 years, invasive or in situ breast cancer, tumor size <3 cm, and N0 disease. Patients were eligible before or within 30 days of breast-conserving surgery (BCS). BCS was performed, and a multilumen balloon catheter was placed. CT images were obtained, a customized HDR brachytherapy plan was created, and a dose of 12.5 Gy was delivered to 1-cm depth from the balloon surface. The catheter was removed, and the skin was closed. The primary endpoints were feasibility and acute toxicity. Feasibility was defined as IORT treatment interval (time from CT acquisition until IORT completion) ≤90 minutes. The secondary endpoints included dosimetry, cosmetic outcome, quality of life, and late toxicity. Results: Twenty-eight patients were enrolled. The 6-month follow-up assessments were completed by 93% of enrollees. The median IORT treatment interval was 67.2 minutes (range, 50-108 minutes). The treatment met feasibility criteria in 26 women (93%). The dosimetric goals were met in 22 patients (79%). There were no Radiation Therapy Oncology Group grade 3+ toxicities; 6 patients (21%) experienced grade 2 events. Most patients (93%) had good/excellent cosmetic outcomes at the last follow-up visit. Conclusions: CT-HDR-IORT is feasible and safe. This promising approach for a conformal, image-based, higher-dose breast IORT is being evaluated in a phase 2 trial.

  13. A Novel Form of Breast Intraoperative Radiation Therapy With CT-Guided High-Dose-Rate Brachytherapy: Results of a Prospective Phase 1 Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Shayna L., E-mail: snl2t@virginia.edu [Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Petroni, Gina [Division of Translation Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Trifiletti, Daniel M.; Libby, Bruce [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Schroen, Anneke T.; Brenin, David R. [Division of Surgical Oncology, Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Dalal, Parchayi [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Smolkin, Mark [Division of Translation Research and Applied Statistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Reardon, Kelli A.; Showalter, Timothy N. [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States)

    2016-09-01

    Purpose: Existing intraoperative radiation therapy (IORT) techniques are criticized for the lack of image guided treatment planning and energy deposition with, at times, poor resultant dosimetry and low radiation dose. We pioneered a novel method of IORT that incorporates customized, computed tomography (CT)-based treatment planning and high-dose-rate (HDR) brachytherapy to overcome these drawbacks: CT-HDR-IORT. Methods and Materials: A phase 1 study was conducted to demonstrate the feasibility and safety of CT-HDR-IORT. Eligibility criteria included age ≥50 years, invasive or in situ breast cancer, tumor size <3 cm, and N0 disease. Patients were eligible before or within 30 days of breast-conserving surgery (BCS). BCS was performed, and a multilumen balloon catheter was placed. CT images were obtained, a customized HDR brachytherapy plan was created, and a dose of 12.5 Gy was delivered to 1-cm depth from the balloon surface. The catheter was removed, and the skin was closed. The primary endpoints were feasibility and acute toxicity. Feasibility was defined as IORT treatment interval (time from CT acquisition until IORT completion) ≤90 minutes. The secondary endpoints included dosimetry, cosmetic outcome, quality of life, and late toxicity. Results: Twenty-eight patients were enrolled. The 6-month follow-up assessments were completed by 93% of enrollees. The median IORT treatment interval was 67.2 minutes (range, 50-108 minutes). The treatment met feasibility criteria in 26 women (93%). The dosimetric goals were met in 22 patients (79%). There were no Radiation Therapy Oncology Group grade 3+ toxicities; 6 patients (21%) experienced grade 2 events. Most patients (93%) had good/excellent cosmetic outcomes at the last follow-up visit. Conclusions: CT-HDR-IORT is feasible and safe. This promising approach for a conformal, image-based, higher-dose breast IORT is being evaluated in a phase 2 trial.

  14. Intraoperative radiation therapy for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Matsutani, Masao; Tanaka, Yoshiaki; Matsuda, Tadayoshi

    1986-01-01

    Intraoperative radiation therapy (IOR) is quite applicable for radioresistant malignant gliomas, because of precise demarcations of the treatment volume under direct vision, minimum damage to surrounding normal tissues, and a high target absorbed dose of 1500 to 2000 rad. Fifteen patients with glioblatoma were treated with IOR, and the 2-year survival rate was 61.1 %. The result apparently indicate that areas adjacent to the margin of almost complete removal should be irradated with a sufficient dose to sterilize the remaining malignant remnants, and IOR is one of the logical treatment modalities for local control of malignant gliomas. (author)

  15. Intraoperative radiation therapy in patients with bladder cancer. A review of techniques allowing improved tumor doses and providing high cure rates without loss of bladder function

    International Nuclear Information System (INIS)

    Shipley, W.U.; Kaufman, S.D.; Prout, G.R. Jr.

    1987-01-01

    Conventional external beam irradiation, using modern megavoltage techniques and doses that do not harm bladder function, will permanently eradicate local bladder cancer in 30% to 50% of patients, compared with 70% to 90% with cystectomy. In appropriately chosen patients, open surgery can safely provide excellent exposure for the selective delivery of more radiant energy directly to the tumor and less to the uninvolved portion of the bladder. Intraoperative radiation therapy, by either a removable radium or iridium implant or a large single dose of electrons, has been reported to be safe and can permanently cure the bladder of cancer and also preserve bladder function in more than 75% of patients with solitary tumors that invade into but not beyond the bladder muscle. With the increasing interest in and availability of intraoperative radiation therapy in the US, this curative and bladder-sparing treatment for operable patients with bladder cancer invading the trigone is appropriate for careful clinical trial. 13 references

  16. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  17. Intraoperative high-dose-rate brachytherapy for the treatment of pediatric tumors: the Ohio State University experience

    International Nuclear Information System (INIS)

    Nag, Subir; Tippin, Douglas; Ruymann, Frederick B.

    2001-01-01

    Purpose: To determine whether intraoperative high-dose-rate brachytherapy (IO-HDRBT) can be used to decrease the dose of external beam radiotherapy (EBRT) in the treatment of children with soft-tissue sarcomas and, thereby, reduce morbidity without compromising local control. Methods and Materials: From March 1992 through April 1999, 13 pediatric patients were treated with IO-HDRBT, low-dose EBRT, chemotherapy, and radical surgery at 21 sites that were not amenable to intraoperative electron beam therapy. The IO-HDRBT dose at 5 mm depth was 10 to 12.5 Gy for close margins/microscopic disease at 14 sites and 12.5 to 15 Gy for gross disease at 7 sites. The treatment volumes ranged from 4 to 96 cm 3 (mean 27). The EBRT dose was limited to 27-30 Gy in most cases to minimize growth retardation and preserve normal organ function. Results: After a median follow-up of 47 months (range 12-97), 11 patients were alive and without evidence of disease (overall survival rate 85%, 4-year actuarial survival rate 77%). Of the 2 who died, 1 had Stage III pulmonary blastoma with a sacral recurrence; the other had Stage IV undifferentiated synovial sarcoma with a pulmonary recurrence. One local failure occurred in a patient with gross residual disease after incomplete resection for Stage IV pulmonary blastoma. The local control rate was 95%, and morbidity was observed in 3 patients (23%). One patient developed impaired orbital growth with mild ptosis. Another patient required orthopedic pinning of her femoral subcapital epiphysis and construction of a neobladder secondary to urethral obstruction. The third patient required reimplantation of her autotransplanted kidney secondary to chronic urinary tract infection and ureteral reflux. Conclusions: IO-HDRBT allowed for reduction in EBRT without compromising local control or disease-free survival in children with soft-tissue sarcomas. Tumor beds inaccessible to electron beam methods could be satisfactorily encompassed with IO

  18. The role of intraoperative radiation therapy in patients with pancreatic cancer.

    Science.gov (United States)

    Palta, Manisha; Willett, Christopher; Czito, Brian

    2014-04-01

    Intraoperative radiation therapy (IORT) techniques allow for the delivery of high doses of radiation therapy while excluding part or all of the nearby dose-limiting sensitive structures. Therefore, the effective radiation dose is increased and local tumor control potentially improved. This is pertinent in the case of pancreatic cancer because local failure rates are as high as 50%-80% in patients with resected and locally advanced disease. Available data in patients receiving IORT after pancreaticoduodenectomy reveal an improvement in local control, though overall survival benefit is unclear. Series of patients with locally advanced pancreatic cancer also suggest pain relief, and in select studies, improved survival associated with the inclusion of IORT. At present, no phase III data clearly supports the use of IORT in the management of pancreatic cancer. © 2013 Published by Elsevier Inc.

  19. Radiation safety program in a high dose rate brachytherapy facility

    International Nuclear Information System (INIS)

    Rodriguez, L.V.; Hermoso, T.M.; Solis, R.C.

    2001-01-01

    The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. Several accidents, however, have been reported involving high dose-rate brachytherapy system. These events, together with the desire to address the concerns of radiation workers, and the anticipated adoption of the International Basic Safety Standards for Protection Against Ionizing Radiation (IAEA, 1996), led to the development of the radiation safety program at the Department of Radiotherapy, Jose R. Reyes Memorial Medical Center and at the Division of Radiation Oncology, St. Luke's Medical Center. The radiation safety program covers five major aspects: quality control/quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. Measures for evaluation of effectiveness of the program include decreased unnecessary exposures of patients and staff, improved accuracy in treatment delivery and increased department efficiency due to the development of staff vigilance and decreased anxiety. The success in the implementation required the participation and cooperation of all the personnel involved in the procedures and strong management support. This paper will discuss the radiation safety program for a high dose rate brachytherapy facility developed at these two institutes which may serve as a guideline for other hospitals intending to install a similar facility. (author)

  20. High dose rate intraoperative radiation therapy (HDR-IORT) as part of the management strategy for locally advanced primary and recurrent rectal cancer

    International Nuclear Information System (INIS)

    Harrison, Louis B.; Minsky, Bruce D.; Enker, Warren E.; Mychalczak, Borys; Guillem, Jose; Paty, Philip B.; Anderson, Lowell; White, Carol; Cohen, Alfred M.

    1998-01-01

    Purpose: Primary unresectable and locally advanced recurrent rectal cancer presents a significant clinical challenge. Local failure rates are high in both situations. Under such circumstances, there is a significant need to safely deliver tumoricidal doses of radiation in an attempt to improve local control. For this reason, we have incorporated a new approach utilizing high dose rate intraoperative radiation therapy (HDR-IORT). Methods and Materials: Between 11/92-12/96, a total of 112 patients were explored, of which 68 patients were treated with HDR-IORT, and 66 are evaluable. The majority of the 44 patients were excluded for unresectable disease or for distant metastases which eluded preoperative imaging. There were 22 patients with primary unresectable disease, and 46 patients who presented with recurrent disease. The histology was adenocarcinoma in 64 patients, and squamous cell carcinoma in four patients. In general, the patients with primary unresectable disease received preoperative chemotherapy with 5-fluorouracil (5-FU) and leucovorin, and external beam irradiation to 4500-5040 cGy, followed by surgical resection and HDR-IORT (1000-2000 cGy). In general , the patients with recurrent disease were treated with surgical resection and HDR-IORT (1000-2000 cGy) alone. All surgical procedures were done in a dedicated operating room in the brachytherapy suite, so that HDR-IORT could be delivered using the Harrison-Anderson-Mick (HAM) applicator. The median follow-up is 17.5 months (1-48 mo). Results: In primary cases, the actuarial 2-year local control is 81%. For patients with negative margins, the local control was 92% vs. 38% for those with positive margins (p = 0.002). The 2-year actuarial disease-free survival was 69%; 77% for patients with negative margins vs. 38% for patients with positive margins (p = 0.03). For patients with recurrent disease, the 2-year actuarial local control rate was 63%. For patients with negative margins, it was 82%, while it was

  1. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  2. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Cantinha, Rebeca S.; Nakano, Eliana; Silva, Luanna R.S.

    2009-01-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of 60 Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD 50 obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  3. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    Science.gov (United States)

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases

  4. Definitive intraoperative very high-dose radiotherapy for localized osteosarcoma in the extremities

    International Nuclear Information System (INIS)

    Oya, Natsuo; Kokubo, Masaki; Mizowaki, Takashi; Shibamoto, Yuta; Nagata, Yasushi; Sasai, Keisuke; Nishimura, Yasumasa; Tsuboyama, Tadao; Toguchida, Junya; Nakamura, Takashi; Hiraoka, Masahiro

    2001-01-01

    Purpose: To evaluate the outcome and adverse effects in patients with osteosarcoma treated with very high-dose definitive intraoperative radiotherapy (IORT), with the intention of saving the affected limb. Methods and Materials: Thirty-nine patients with osteosarcoma in their extremities were treated with definitive IORT. The irradiation field included the tumor plus an adequate wide margin and excluded the major vessels and nerves. Forty-five to 80 Gy of electrons or X-rays were delivered. The median follow-up of the surviving patients was 124 months. Results: The cause-specific and relapse-free 5-year survival rate was 50% and 43%, respectively. Distant metastasis developed in 23 patients; 19 died and 4 were alive for >10 years. Nine local recurrences were found 4-29 months after IORT in the affected limb. No radiation-induced skin reaction or nerve palsy was observed in the patients treated with X-rays. Experiments using phantoms also confirmed that the scatter dose was below the toxic level in the IORT setting with X-rays. Conclusions: Very high-dose definitive IORT combined with preventive nailing and chemotherapy appeared to be a promising quality-of-life-oriented alternative to treating patients with osteosarcomas in the extremities, although the problem of recurrences from the surrounding unirradiated soft tissue remains to be solved

  5. Radiation safety program in high dose rate brachytherapy facility at INHS Asvini

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Brachytherapy concerns primarily the use of radioactive sealed sources which are inserted into catheters or applicators and placed directly into tissue either inside or very close to the target volume. The use of radiation in treatment of patients involves both benefits and risks. It has been reported that early radiation workers had developed radiation induced cancers. These incidents lead to continuous work for the improvement of radiation safety of patients and personnel The use of remote afterloading equipment has been developed to improve radiation safety in the delivery of treatment in brachytherapy. The widespread adoption of high dose rate brachytherapy needs appropriate quality assurance measures to minimize the risks to both patients and medical staff. The radiation safety program covers five major aspects: quality control, quality assurance, radiation monitoring, preventive maintenance, administrative measures and quality audit. This paper will discuss the radiation safety program developedfor a high dose rate brachytherapy facility at our centre which may serve as a guideline for other centres intending to install a similar facility.

  6. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  7. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  8. A Clinical phase I/II trial to investigate preoperative dose-escalated intensity-modulated radiation therapy (IMRT and intraoperative radiation therapy (IORT in patients with retroperitoneal soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Roeder Falk

    2012-07-01

    Full Text Available Abstract Background Local control rates in patients with retroperitoneal soft tissue sarcoma (RSTS remain disappointing even after gross total resection, mainly because wide margins are not achievable in the majority of patients. In contrast to extremity sarcoma, postoperative radiation therapy (RT has shown limited efficacy due to its limitations in achievable dose and coverage. Although Intraoperative Radiation Therapy (IORT has been introduced in some centers to overcome the dose limitations and resulted in increased outcome, local failure rates are still high even if considerable treatment related toxicity is accepted. As postoperative administration of RT has some general disadvantages, neoadjuvant approaches could offer benefits in terms of dose escalation, target coverage and reduction of toxicity, especially if highly conformal techniques like intensity-modulated radiation therapy (IMRT are considered. Methods/design The trial is a prospective, one armed, single center phase I/II study investigating a combination of neoadjuvant dose-escalated IMRT (50–56 Gy followed by surgery and IORT (10–12 Gy in patients with at least marginally resectable RSTS. The primary objective is the local control rate after five years. Secondary endpoints are progression-free and overall survival, acute and late toxicity, surgical resectability and patterns of failure. The aim of accrual is 37 patients in the per-protocol population. Discussion The present study evaluates combined neoadjuvant dose-escalated IMRT followed by surgery and IORT concerning its value for improved local control without markedly increased toxicity. Trial registration NCT01566123

  9. A Clinical phase I/II trial to investigate preoperative dose-escalated intensity-modulated radiation therapy (IMRT) and intraoperative radiation therapy (IORT) in patients with retroperitoneal soft tissue sarcoma

    International Nuclear Information System (INIS)

    Roeder, Falk; Hensley, Frank W; Buechler, Markus W; Debus, Juergen; Koch, Moritz; Weitz, Juergen; Bischof, Marc; Schulz-Ertner, Daniela; Nikoghosyan, Anna V; Huber, Peter E; Edler, Lutz; Habl, Gregor; Krempien, Robert; Oertel, Susanne; Saleh-Ebrahimi, Ladan

    2012-01-01

    Local control rates in patients with retroperitoneal soft tissue sarcoma (RSTS) remain disappointing even after gross total resection, mainly because wide margins are not achievable in the majority of patients. In contrast to extremity sarcoma, postoperative radiation therapy (RT) has shown limited efficacy due to its limitations in achievable dose and coverage. Although Intraoperative Radiation Therapy (IORT) has been introduced in some centers to overcome the dose limitations and resulted in increased outcome, local failure rates are still high even if considerable treatment related toxicity is accepted. As postoperative administration of RT has some general disadvantages, neoadjuvant approaches could offer benefits in terms of dose escalation, target coverage and reduction of toxicity, especially if highly conformal techniques like intensity-modulated radiation therapy (IMRT) are considered. The trial is a prospective, one armed, single center phase I/II study investigating a combination of neoadjuvant dose-escalated IMRT (50–56 Gy) followed by surgery and IORT (10–12 Gy) in patients with at least marginally resectable RSTS. The primary objective is the local control rate after five years. Secondary endpoints are progression-free and overall survival, acute and late toxicity, surgical resectability and patterns of failure. The aim of accrual is 37 patients in the per-protocol population. The present study evaluates combined neoadjuvant dose-escalated IMRT followed by surgery and IORT concerning its value for improved local control without markedly increased toxicity. NCT01566123

  10. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  11. Debate: Pro intraoperative radiation therapy in breast cancer; Debat: pour la radiotherapie peroperatoire dans le cancer du sein

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J.B.; Lemanski, C.; Azria, D. [Departement de radiotherapie, CRLC Val-d' Aurelle-Paul-Lamarque, 208, rue des Apothicaires, 34298 Montpellier cedex 5 (France); Gutowski, M.; Rouanet, P.; Saint-Aubert, B. [Departement de chirurgie, CRLC Val-d' Aurelle-Paul-Lamarque, 208, rue des Apothicaires, 34298 Montpellier cedex 5 (France)

    2011-10-15

    The use of intraoperative radiation therapy in breast cancer patients started about 20 years ago. Several retrospective and prospective studies have been published. Intraoperative radiation therapy was initially given as a boost to the tumour bed, followed by whole-breast irradiation. These studies have demonstrated the feasibility of the technique, with local control rates and cosmetic results similar to those obtained with standard treatments. Accelerated partial breast irradiation yields local recurrence rates as low as those observed after whole-breast irradiation. Intraoperative radiation therapy as a single irradiation modality with a unique dose has been investigated in recent prospective studies showing satisfactory local results. Intraoperative radiation therapy can be proposed either as a boost or as a unique treatment in selected cases (tumour size, nodal and hormonal status, patient's age). Intraoperative radiation therapy can be delivered by orthovoltage (50 kV) X-rays from mobile generators, or by electrons from linear accelerators, mobile or fixed, dedicated or not to intraoperative radiation therapy. (authors)

  12. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  13. Intraoperative electron beam radiation therapy (IOEBRT) for carcinoma of the exocrine pancreas

    International Nuclear Information System (INIS)

    Dobelbower, R.R. Jr.; Konski, A.A.; Merrick, H.W. III; Bronn, D.G.; Schifeling, D.; Kamen, C.

    1991-01-01

    The abdominal cavities of 50 patients were explored in a specially constructed intraoperative radiotherapy operating amphitheater at the Medical College of Ohio. Twenty-six patients were treated with intraoperative and postoperative precision high dose external beam therapy, 12 with intraoperative irradiation but no external beam therapy, and 12 with palliative surgery alone. All but two patients completed the postoperative external beam radiation therapy as initially prescribed. The median survival time for patients treated with palliative surgery alone was 4 months, and that for patients treated with intraoperative radiotherapy without external beam therapy was 3.5 months. Patients undergoing intraoperative irradiation and external beam radiation therapy had a median survival time of 10.5 months. Four patients died within 30 days of surgery and two patients died of gastrointestinal hemorrhage 5 months posttreatment

  14. Biological impact of high-dose and dose-rate radiation exposure

    International Nuclear Information System (INIS)

    Maliev, V.; Popov, D.; Jones, J.; Gonda, S.; Prasad, K.; Viliam, C.; Haase, G.; Kirchin, V.; Rachael, C.

    2006-01-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  15. Biological impact of high-dose and dose-rate radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Maliev, V.; Popov, D. [Russian Academy of Science, Vladicaucas (Russian Federation); Jones, J.; Gonda, S. [NASA -Johnson Space Center, Houston (United States); Prasad, K.; Viliam, C.; Haase, G. [Antioxida nt Research Institute, Premier Micronutrient Corporation, Novato (United States); Kirchin, V. [Moscow State Veterinary and Biotechnology Acade my, Moscow (Russian Federation); Rachael, C. [University Space Research Association, Colorado (United States)

    2006-07-01

    Experimental anti-radiation vaccine is a power tool of immune - prophylaxis of the acute radiation disease. Existing principles of treatment of the acute radiation dis ease are based on a correction of developing patho-physiological and biochemical processes within the first days after irradiation. Protection from radiation is built on the general principles of immunology and has two main forms - active and passive immunization. Active immunization by the essential radiation toxins of specific radiation determinant (S.D.R.) group allows significantly reduce the lethality and increase duration of life among animals that are irradiated by lethal and sub-lethal doses of gamma radiation.The radiation toxins of S.D.R. group have antigenic properties that are specific for different forms of acute radiation disease. Development of the specific and active immune reaction after intramuscular injection of radiation toxins allows optimize a manifestation of a clinical picture and stabilize laboratory parameters of the acute radiation syndromes. Passive immunization by the anti-radiation serum or preparations of immune-globulins gives a manifestation of the radioprotection effects immediately after this kind of preparation are injected into organisms of mammals. Providing passive immunization by preparations of anti-radiations immune-globulins is possible in different periods of time after radiation. Providing active immunization by preparations of S.D.R. group is possible only to achieve a prophylaxis goal and form the protection effects that start to work in 18 - 35 days after an injection of biological active S.D.R. substance has been administrated. However active and passive immunizations by essential anti-radiation toxins and preparations of gamma-globulins extracted from a hyper-immune serum of a horse have significantly different medical prescriptions for application and depend on many factors like a type of radiation, a power of radiation, absorption doses, a time of

  16. Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation

    International Nuclear Information System (INIS)

    Garcia-Vazquez, Veronica; Marinetto, Eugenio; Guerra, Pedro; Valdivieso-Casique, Manlio Fabio; Calvo, Felipe Angel

    2017-01-01

    Intraoperative electron radiation therapy (IOERT) involves irradiation of an unresected tumour or a post-resection tumour bed. The dose distribution is calculated from a preoperative computed tomography (CT) study acquired using a CT simulator. However, differences between the actual IOERT field and that calculated from the preoperative study arise as a result of patient position, surgical access, tumour resection and the IOERT set-up. Intraoperative CT imaging may then enable a more accurate estimation of dose distribution. In this study, we evaluated three kilovoltage (kV) CT scanners with the ability to acquire intraoperative images. Our findings indicate that current IOERT plans may be improved using data based on actual anatomical conditions during radiation. The systems studied were two portable systems (''O-arm'', a cone-beam CT [CBCT] system, and ''BodyTom'', a multislice CT [MSCT] system) and one CBCT integrated in a conventional linear accelerator (LINAC) (''TrueBeam''). TrueBeam and BodyTom showed good results, as the gamma pass rates of their dose distributions compared to the gold standard (dose distributions calculated from images acquired with a CT simulator) were above 97% in most cases. The O-arm yielded a lower percentage of voxels fulfilling gamma criteria owing to its reduced field of view (which left it prone to truncation artefacts). Our results show that the images acquired using a portable CT or even a LINAC with on-board kV CBCT could be used to estimate the dose of IOERT and improve the possibility to evaluate and register the treatment administered to the patient.

  17. Fiber optics in high dose radiation fields

    International Nuclear Information System (INIS)

    Partin, J.K.

    1985-01-01

    A review of the behavior of state-of-the-art optical fiber waveguides in high dose (greater than or equal to 10 5 rad), steady state radiation fields is presented. The influence on radiation-induced transmission loss due to experimental parameters such as dose rate, total dose, irradiation history, temperature, wavelength, and light intensity, for future work in high dose environments are given

  18. Treatment results by uneven fractionated irradiation, low-dose rate telecobalt therapy as a boost, and intraoperative irradiation for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shogo; Takai, Yoshihiro; Nemoto, Kenji; Ogawa, Yoshihiro; Kakuto, Yoshihisa; Hoshi, Akihiko; Sakamoto, Kiyohiko; Kayama, Takamasa; Yoshimoto, Takashi (Tohoku Univ., Sendai (Japan). School of Medicine)

    1992-08-01

    The prognosis of malignant glioma is extremely poor. We applied conventionally fractionated irradiation combined with 1-(4-aminio-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea (ACNU), uneven fractionated irradiation with ACNU, low dose rate telecobalt therapy as a boost, and intraoperative irradiation against 110 malignant gliomas to investigate the efficacy of these methods as alternative treatments for malignant glioma. Although local tumor control by uneven fractionated irradiation was better than that by the other methods, no significant improvement was obtained in survival rates. As a result of multiple regression analysis, age and histology were major factors for survival rates, and the difference of treatment methods was not important. Both low-dose rate telecobalt therapy as a boost and intraoperative irradiation showed little advantage because of the high risk of brain necrosis associated with them. (author).

  19. Dose rate effect on material aging due to radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shin-ichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Hayakawa, Chikara; Takeya, Chikashi

    1982-12-01

    Although many reports have been presented on the radiation aging of the organic materials for electric cables, those have been based on the experiments carried out at high dose rate near 1 x 10/sup 6/ rad/h, assuming that aging effect depends on only radiation dose. Therefore, to investigate the aging behaviour in low dose rate range is an important subject to predict their practical life time. In this report, the results of having investigated the aging behaviour of six types of materials are described, (polyethylene for general insulation purpose, chemically cross-linked polyethylene, fire-retardant chemically cross-linked polyethylene, fire-retardant ethylene-propylene rubber, fire-retardant chloro-sulfonated polyethylene for sheaths, and fire-retardant, low hydrochloric acid, special heat-resistant vinyl for insulation purpose or chloroclean). They were irradiated with /sup 60/Co ..gamma..-ray at the dose from 5 x 10/sup 3/ to 1 x 10/sup 6/ rad/h, and their deterioration was tested for the items of elongation, tensile strength, resistivity, dielectric tangent and gel fraction. The aging mechanism and dose rate effect were also considered. The dose rate effect appeared or did not appear depending on the types of materials and also their properties. The materials that showed the dose rate effect included the typical ones whose characteristics degraded with the decreasing dose rate, and the peculiar ones whose deterioration of characteristics did not appear constantly. Aging mechanism may vary in the case of high dose rate and low dose rate. Also, if the life time at respective dose rate in relatively higher dose rate region is clarified, the life time in low dose rate region may possibly be predicted.

  20. Radiation response of industrial materials: Dose-rate and morphology implications

    International Nuclear Information System (INIS)

    Berejka, Anthony J.

    2007-01-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 x 10 -3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing

  1. Assessment of intraoperative 3D imaging alternatives for IOERT dose estimation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Vazquez, Veronica; Marinetto, Eugenio [Instituto de Investigacion Sanitaria Gregorio Maranon, Madrid (Spain); Guerra, Pedro [Univ. Politecnica de Madrid (Spain). Dept. de Ingenieria Electronica; Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza (Spain); Valdivieso-Casique, Manlio Fabio [GMV SA, Madrid (Spain); Calvo, Felipe Angel [Instituto de Investigacion Sanitaria Gregorio Maranon, Madrid (Spain); Hospital General Univ. Gregorio Maranon, Madrid (Spain). Dept. de Oncologia; Univ. Complutense de Madrid (Spain). Facultad de Medicina; Alvarado-Vazquez, Eduardo [Instituto de Investigacion Sanitaria Gregorio Maranon, Madrid (Spain); Hospital General Univ. Gregorio Maranon, Madrid (Spain). Servicio de Oncologia Radioterapica; Sole, Claudio Vicente [Instituto de Investigacion Sanitaria Gregorio Maranon, Madrid (Spain); Instituto de Radiomedicina, Santiago (Chile). Service of Radiation Oncology; Vosburgh, Kirby Gannett [Harvard Medical School, Brigham and Women' s Hospital, Boston, MA (United States). Department of Radiology; Desco, Manuel; Pascau, Javier [Instituto de Investigacion Sanitaria Gregorio Maranon, Madrid (Spain); Univ. Carlos III de Madrid (Spain). Dept. de Bioingenieria e Ingenieria Aeroespacial; Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid (Spain)

    2017-10-01

    Intraoperative electron radiation therapy (IOERT) involves irradiation of an unresected tumour or a post-resection tumour bed. The dose distribution is calculated from a preoperative computed tomography (CT) study acquired using a CT simulator. However, differences between the actual IOERT field and that calculated from the preoperative study arise as a result of patient position, surgical access, tumour resection and the IOERT set-up. Intraoperative CT imaging may then enable a more accurate estimation of dose distribution. In this study, we evaluated three kilovoltage (kV) CT scanners with the ability to acquire intraoperative images. Our findings indicate that current IOERT plans may be improved using data based on actual anatomical conditions during radiation. The systems studied were two portable systems (''O-arm'', a cone-beam CT [CBCT] system, and ''BodyTom'', a multislice CT [MSCT] system) and one CBCT integrated in a conventional linear accelerator (LINAC) (''TrueBeam''). TrueBeam and BodyTom showed good results, as the gamma pass rates of their dose distributions compared to the gold standard (dose distributions calculated from images acquired with a CT simulator) were above 97% in most cases. The O-arm yielded a lower percentage of voxels fulfilling gamma criteria owing to its reduced field of view (which left it prone to truncation artefacts). Our results show that the images acquired using a portable CT or even a LINAC with on-board kV CBCT could be used to estimate the dose of IOERT and improve the possibility to evaluate and register the treatment administered to the patient.

  2. A photocurrent compensation method of bipolar transistors under high dose rate radiation and its experimental research

    International Nuclear Information System (INIS)

    Yin Xuesong; Liu Zhongli; Li Chunji; Yu Fang

    2005-01-01

    Experiment using discrete bipolar transistors has been performed to verify the effect of the photocurrent compensation method. The theory of the dose rate effects of bipolar transistors and the photocurrent compensation method are introduced. The comparison between the response of hardened and unhardened circuits under high dose rate radiation is discussed. The experimental results show instructiveness to the hardness of bipolar integrated circuits under transient radiation. (authors)

  3. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  4. Low-dose-rate intraoperative brachytherapy combined with external beam irradiation in the conservative treatment of soft tissue sarcoma

    International Nuclear Information System (INIS)

    Delannes, M.; Thomas, L.; Martel, P.; Bonnevialle, P.; Stoeckle, E.; Chevreau, Ch.; Bui, B.N.; Daly-Schveitzer, N.; Pigneux, J.; Kantor, G.

    2000-01-01

    Purpose: Conservative treatment of soft tissue sarcomas most often implies combination of surgical resection and irradiation. The aim of this study was to evaluate low-dose-rate intraoperative brachytherapy, delivered as a boost, in the local control of primary tumors, with special concern about treatment complications. Methods and Materials: Between 1986 and 1995, 112 patients underwent intraoperative implant. This report focuses on the group of 58 patients with primary sarcomas treated by combination of conservative surgery, intraoperative brachytherapy, and external irradiation. Most of the tumors were located in the lower limbs (46/58--79%). Median size of the tumor was 10 cm, most of the lesions being T2-T3 (51/58--88%), Grade 2 or 3 (48/58--83%). The mean brachytherapy dose was 20 Gy and external beam irradiation dose 45 Gy. In 36/58 cases, iridium wires had to be placed on contact with neurovascular structures. Results: With a median follow-up of 54 months, the 5-year actuarial survival was 64.9%, with a 5-year actuarial local control of 89%. Of the 6 patients with local relapse, 3 were salvaged. Acute side effects, essentially wound healing problems, occurred in 20/58 patients, late side effects in 16/58 patients (7 neuropathies G2 to G4). No amputation was required. The only significant factor correlated with early side effects was the location of the tumor in the lower limb (p = 0.003), and with late side effects the vicinity of the tumor with neurovascular structures (p = 0.009). Conclusion: Brachytherapy allows early delivery of a boost dose in a reduced volume of tissue, precisely mapped by the intraoperative procedure. Combined with external beam irradiation, it is a safe and efficient treatment technique leading to high local control rates and limited functional impairment

  5. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  6. High-dose preoperative radiation for cancer of the rectum: Impact of radiation dose on patterns of failure and survival

    International Nuclear Information System (INIS)

    Ahmad, N.R.; Mohiuddin, M.; Marks, G.

    1993-01-01

    A variety of dose-time schedules are currently used for preoperative radiation therapy of rectal cancer. An analysis of patients treated with high-dose preoperative radiation therapy was undertaken to determine the influence of radiation dose on the patterns of failure, survival, and complications. Two hundred seventy-five patients with localized rectal cancer were treated with high-dose preoperative radiation therapy. One hundred fifty-six patients received 45 Gy (low-dose group). Since 1985, 119 patients with clinically unfavorable cancers were given a higher dose, 55 Gy using a shrinking field technique (high-dose group). All patients underwent curative resection. Median follow-up was 66 months in the low-dose group and 28 months in the high-dose group. Patterns of failure, survival, and complications were analyzed as a function of radiation dose. Fourteen percent of the total group developed a local recurrence; 20% in the low-dose group as compared with 6% in the high-dose group. The actuarial local recurrence rate at 5 years was 20% for the low-dose group and 8% for the high-dose group, and approached statistical significance with p = .057. For tethered/fixed tumors the actuarial local recurrence rates at 5 years were 28% and 9%, respectively, with p = .05. Similarly, for low-lying tumors (less than 6 cm from the anorectal junction) the rates were 24% and 9%, respectively, with p = .04. The actuarial rate of distant metastasis was 28% in the low-dose group and 20% in the high-dose group and was not significantly different. Overall actuarial 5-year survival for the total group of patients was 66%. No significant difference in survival was observed between the two groups, despite the higher proportion of unfavorable cancers in the high-dose group. The incidence of complications was 2%, equally distributed between the two groups. High-dose preoperative radiation therapy for rectal cancer results in excellent local control rates. 27 refs., 2 figs., 8 tabs

  7. Peripheral nerve and ureteralo tolerance to intraoperative radiation therapy; Clinical and dose-response analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, E.G.; Gunderson, L.L.; Martin, J.K.; Baers, R.W.; Nagorney, D.M.; Podratz, K.C. (Mayo Clinic, Rochester, MN (USA))

    1990-07-01

    Between April 1981 and July 1984, 51 received intraoperative radiation therapy (IORT) as a component of therapy for the management of primary of recurrent pelvic malignancies which were initially unresectable for cure. For these patients, curative surgical alternatives did not exist, or would have involved extensive procedures such as pelvic exenteration, distal sacrectomy, hemipelvectomy, or hemicorporectemy. The primary disease was colorectal in 38 patients. Treatment consisted of external beam radiation (range 3000 to 6890 cGy, median 5040 cGy), surgical debulking when feasible, and an intraoperative electron beam boost to the gross of microscopic residual desease (dose range 1000 to 2500 cGy, median 1750 cGy) utilizing 9-18 MeV electrons. The most common IORT associated toxicities were peripheral neurophaty and ureteral obstruction. None were life-threatening or fatal in severity. Of the 50 patients evaluable for neurotoxicity analysis, 16 (32%) developed peripheral neurophaty consisting of pain in 16 patients, numbness and tingling in 11, and weakness in 8. The pain, numbness and tingling resolved in about 40% of patients, while weakness resolved in only 1 of 8. Sixteen ureters were initially unobstructed by tumor at the time of IORT. Of these, 10 (63%) subsequently showed evidence of obstruction and hydronephrosis. The development of neurotoxicity was more common at IORT doses of 1500 cGy or more versus 1000 cGy. Ureteral obstruction with hydronephrosis occurred more frequently at IORT doses of 1250 cGy or more compared to 1000 cGy. There was no relationship between the likelihood of developing complications and the total external beam dose. The observed dependence of human nerve toxicity primarily on the IORT dose is consistent with data generated form animal experiments. (author). 21 refs.; 4 tabs.

  8. SU-F-J-45: Sparing Normal Tissue with Ultra-High Dose Rate in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y [DCH Reg. Medical Center, Tuscaloosa, AL (United States)

    2016-06-15

    Purpose: To spare normal tissue by reducing the location uncertainty of a moving target, we proposed an ultra-high dose rate system and evaluated. Methods: High energy electrons generated with a linear accelerator were injected into a storage ring to be accumulated. The number of the electrons in the ring was determined based on the prescribed radiation dose. The dose was delivered within a millisecond, when an online imaging system found that the target was in the position that was consistent with that in a treatment plan. In such a short time period, the displacement of the target was negligible. The margin added to the clinical target volume (CTV) could be reduced that was evaluated by comparing of volumes between CTV and ITV in 14 cases of lung stereotactic body radiation therapy (SBRT) treatments. A design of the ultra-high dose rate system was evaluated based clinical needs and the recent developments of low energy (a few MeV) electron storage ring. Results: This design of ultra-high dose rate system was feasible based on the techniques currently available. The reduction of a target volume was significant by reducing the margin that accounted the motion of the target. ∼50% volume reduction of the internal target volume (ITV) could be achieved in lung SBRT treatments. Conclusion: With this innovation of ultra-high dose rate system, the margin of target is able to be significantly reduced. It will reduce treatment time of gating and allow precisely specified gating window to improve the accuracy of dose delivering.

  9. Tolerance of retroperitoneal structures to intraoperative radiation

    International Nuclear Information System (INIS)

    Sindelar, W.F.; Tepper, J.; Travis, E.L.; Terrill, R.

    1982-01-01

    In conjunction with the clinical development of intraoperative radiotherapy, a study was undertaken in dogs to define the tolerance of normal anatomic structures in the retroperitoneum to radiation delivered during operation. Twenty adult dogs were subjected to laparotomy and intraoperative 11 MeV electron irradiation in single doses ranging from 0.to 5000 rad. Animals were followed regularly with clinical observation, blood count, serum chemistries, pyelography, and angiography. Animals were sacrificed and autopsied at regular intervals up to 12 months following treatment to assess radiation-induced complications or tissue damage. Irradiation field in all dogs consisted of a 4 X 15 cm rectangle extending in the retroperitoneum from the level of the renal vessels to the bifurcation of aorta and vena cava. The field included aorta, vena cava, inferior portion of left kidney, and distal portion of left ureter. No complications or histologic changes occurred in any animal given doses of 2000 rad, with a follow-up in excess of 18 months. A dose of 3000 rad was well tolerated, except for left ureteral occlusion in one animal. Mild vascular fibrosis was present inthe aorta and vena cava, and significant ureteral fibrosis developed by six months after doses of 4000 or 5000 rad. All animals that received 5000 rad died of radiation-related complications, including ureteral obstruction and rectal perforation. It was concluded that major vessels tolerate intraoperative irradiation well up to and including 3000 rad and that no clinically significant vascular problems develop after 4000 and 5000 rad, although some fibrosis does occur. The ureter and kidney appear to be the most radiosensitive structures inthe retroperitoneum, showing progressive changes at 300 rad or greater and showing the potential for serious complications after doses of 4000 rad or more

  10. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  11. Dose optimization of intra-operative high dose rate interstitial brachytherapy implants for soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Jamema Swamidas

    2009-01-01

    Full Text Available Objective : A three dimensional (3D image-based dosimetric study to quantitatively compare geometric vs. dose-point optimization in combination with graphical optimization for interstitial brachytherapy of soft tissue sarcoma (STS. Materials and Methods : Fifteen consecutive STS patients, treated with intra-operative, interstitial Brachytherapy, were enrolled in this dosimetric study. Treatment plans were generated using dose points situated at the "central plane between the catheters", "between the catheters throughout the implanted volume", at "distances perpendicular to the implant axis" and "on the surface of the target volume" Geometrically optimized plans had dose points defined between the catheters, while dose-point optimized plans had dose points defined at a plane perpendicular to the implant axis and on the target surface. Each plan was graphically optimized and compared using dose volume indices. Results : Target coverage was suboptimal with coverage index (CI = 0.67 when dose points were defined at the central plane while it was superior when the dose points were defined at the target surface (CI=0.93. The coverage of graphically optimized plans (GrO was similar to non-GrO with dose points defined on surface or perpendicular to the implant axis. A similar pattern was noticed with conformity index (0.61 vs. 0.82. GrO were more conformal and less homogeneous compared to non-GrO. Sum index was superior for dose points defined on the surface of the target and relatively inferior for plans with dose points at other locations (1.35 vs. 1.27. Conclusions : Optimization with dose points defined away from the implant plane and on target results in superior target coverage with optimal values of other indices. GrO offer better target coverage for implants with non-uniform geometry and target volume.

  12. Brachytherapy. High dose rate brachytherapy - Radiation protection: medical sheet ED 4287

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2010-02-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing high-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  13. Collection of radiation resistant characteristics reports for instruments and materials in high dose rate environment

    International Nuclear Information System (INIS)

    Kusano, Joichi

    2008-03-01

    This document presents the collected official reports of radiation irradiation study for the candidate materials to be used in high dose rate environment as J-PARC facility. The effect of radiation damage by loss-beam or secondary particle beam of the accelerators influences the performance and the reliability of various instruments. The knowledge on the radiation resistivity of the materials is important to estimate the life of the equipments, the maintenance interval and dose evaluation for the personnel at the maintenance period. The radiation damage consists with mechanical property, electrical property and gas-evolution property. (author)

  14. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  15. Phase space determination from measured dose data for intraoperative electron radiation therapy.

    Science.gov (United States)

    Herranz, E; Herraiz, J L; Ibáñez, P; Pérez-Liva, M; Puebla, R; Cal-González, J; Guerra, P; Rodríguez, R; Illana, C; Udías, J M

    2015-01-07

    A procedure to characterize beams of a medical linear accelerator for their use in Monte Carlo (MC) dose calculations for intraoperative electron radiation therapy (IOERT) is presented. The procedure relies on dose measurements in homogeneous media as input, avoiding the need for detailed simulations of the accelerator head. An iterative algorithm (EM-ML) has been employed to extract the relevant details of the phase space (PHSP) of the particles coming from the accelerator, such as energy spectra, spatial distribution and angle of emission of particles. The algorithm can use pre-computed dose volumes in water and/or air, so that the machine-specific tuning with actual data can be performed in a few minutes. To test the procedure, MC simulations of a linear accelerator with typical IOERT applicators and energies, have been performed and taken as reference. A solution PHSP derived from the dose produced by the simulated accelerator has been compared to the reference PHSP. Further, dose delivered by the simulated accelerator for setups not included in the fit of the PHSP were compared to the ones derived from the solution PHSP. The results show that it is possible to derive from dose measurements PHSP accurate for IOERT MC dose estimations.

  16. Recovery and permanent radiation damage of plastic scintillators at different dose rates

    International Nuclear Information System (INIS)

    Bicken, B.; Holm, U.; Marckmann, T.; Wick, K.; Rhode, M.

    1990-01-01

    This paper reports on the radiation stability of plastic scintillators and wavelength shifters for the calorimeter of the ZEUS detector by irradiating them with protons, a 60 Co-source, and depleted uranium. Changes in light yield, absorption length and absorption coefficient have been measured for storage in inert and oxygen atmospheres during and after irradiation. Radiation doses up to 40 kGy with dose rates of 30 up to 2000 Gy/h have been applied. The polystyrene based scintillator SCSN-38 and the wavelength shifters Y-7 and K-27 in PMMA show an additional absorption but a recovery in air to a low permanent damage (at 10 kGy) which is proportional to the applied dose. Series investigations on samples of all production cycles of the ZEUS scintillators with high dose rates show only minor differences in radiation hardness. The recovery is described by a simple oxygen diffusion model for high and medium dose rates down to 30 Gy/h. During long term irradiations at low dose rates (<100 Gy/h) of 3 mm thick SCSN-38 in air the radiation damage recovers to a permanent damage which does not depend on the dose rate. On the other hand the radiation damage at very low dose rates (17 Gy/a) seems to be higher than expected for the accumulated dose

  17. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  18. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  19. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  20. Dose optimisation for intraoperative cone-beam flat-detector CT in paediatric spinal surgery

    International Nuclear Information System (INIS)

    Petersen, Asger Greval; Eiskjaer, Soeren; Kaspersen, Jon

    2012-01-01

    During surgery for spinal deformities, accurate placement of pedicle screws may be guided by intraoperative cone-beam flat-detector CT. The purpose of this study was to identify appropriate paediatric imaging protocols aiming to reduce the radiation dose in line with the ALARA principle. Using O-arm registered (Medtronic, Inc.), three paediatric phantoms were employed to measure CTDI w doses with default and lowered exposure settings. Images from 126 scans were evaluated by two spinal surgeons and scores were compared (Kappa statistics). Effective doses were calculated. The recommended new low-dose 3-D spine protocols were then used in 15 children. The lowest acceptable exposure as judged by image quality for intraoperative use was 70 kVp/40 mAs, 70 kVp/80 mAs and 80 kVp/40 mAs for the 1-, 5- and 12-year-old-equivalent phantoms respectively (kappa = 0,70). Optimised dose settings reduced CTDI w doses 89-93%. The effective dose was 0.5 mSv (91-94,5% reduction). The optimised protocols were used clinically without problems. Radiation doses for intraoperative 3-D CT using a cone-beam flat-detector scanner could be reduced at least 89% compared to manufacturer settings and still be used to safely navigate pedicle screws. (orig.)

  1. Investigations on commercial semiconductor diodes as possible high dose rate radiation detectors

    International Nuclear Information System (INIS)

    Breitenhuber, L.; Kindl, P.; Obenaus, B.

    1992-12-01

    Investigations concerning the relevant properties of commercial semiconductor diodes such as their sensitivity and its dependence on accumulated dose, dose rate, energy, temperature and direction have been made in order to obtain their usefullness as radiation detectors. (authors)

  2. Low dose radiation enhance the anti-tumor effect of high dose radiation on human glioma cell U251

    International Nuclear Information System (INIS)

    Wang Chang; Wang Guanjun; Tan Yehui; Jiang Hongyu; Li Wei

    2008-01-01

    Objective: To detect the effect on the growth of human glioma cell U251 induced by low dose irradiation and low dose irradiation combined with large dose irradiation. Methods: Human glioma cell line U251 and nude mice carried with human glioma were used. The tumor cells and the mice were treated with low dose, high dose, and low dose combined high dose radiation. Cells growth curve, MTT and flow cytometry were used to detect the proliferation, cell cycle and apoptosis of the cells; and the tumor inhibition rate was used to assess the growth of tumor in vivo. Results: After low dose irradiation, there was no difference between experimental group and control group in cell count, MTT and flow cytometry. Single high dose group and low dose combined high dose group both show significantly the suppressing effect on tumor cells, the apoptosis increased and there was cell cycle blocked in G 2 period, but there was no difference between two groups. In vivo apparent anti-tumor effect in high dose radiation group and the combining group was observed, and that was more significant in the combining group; the prior low dose radiation alleviated the injury of hematological system. There was no difference between single low dose radiation group and control. Conclusions: There is no significant effect on human glioma cell induced by low dose radiation, and low dose radiation could not induce adaptive response. But in vivo experience, low dose radiation could enhance the anti-tumor effect of high dose radiation and alleviated the injury of hematological system. (authors)

  3. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  4. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  5. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  6. High dose rate versus low dose rate interstitial radiotherapy for carcinoma of the floor of mouth

    International Nuclear Information System (INIS)

    Inoue, Takehiro; Inoue, Toshihiko; Yamazaki, Hideya; Koizumi, Masahiko; Kagawa, Kazufumi; Yoshida, Ken; Shiomi, Hiroya; Imai, Atsushi; Shimizutani, Kimishige; Tanaka, Eichii; Nose, Takayuki; Teshima, Teruki; Furukawa, Souhei; Fuchihata, Hajime

    1998-01-01

    Purpose: Patients with cancer of the floor of mouth are treated with radiation because of functional and cosmetic reasons. We evaluate the treatment results of high dose rate (HDR) and low dose rate (LDR) interstitial radiation for cancer of the floor of mouth. Methods and Materials: From January 1980 through March 1996, 41 patients with cancer of the floor of mouth were treated with LDR interstitial radiation using 198 Au grains, and from April 1992 through March 1996 16 patients with HDR interstitial radiation. There were 26 T1 tumors, 30 T2 tumors, and 1 T3 tumor. For 21 patients treated with interstitial radiation alone, a total radiation dose of interstitial therapy was 60 Gy/10 fractions/6-7 days in HDR and 85 Gy within 1 week in LDR. For 36 patients treated with a combination therapy, a total dose of 30 to 40 Gy of external radiation and a total dose of 48 Gy/8 fractions/5-6 days in HDR or 65 Gy within 1 week in LDR were delivered. Results: Two- and 5-year local control rates of patients treated with HDR interstitial radiation were 94% and 94%, and those with LDR were 75% and 69%, respectively. Local control rate of patients treated with HDR brachytherapy was slightly higher than that with 198 Au grains (p = 0.113). For late complication, bone exposure or ulcer occurred in 6 of 16 (38%) patients treated with HDR and 13 of 41 (32%) patients treated with LDR. Conclusion: HDR fractionated interstitial brachytherapy can be an alternative to LDR brachytherapy for cancer of the floor of mouth and eliminate radiation exposure for the medical staff

  7. Survey of environmental radiation dose rates in Tokushima prefecture

    International Nuclear Information System (INIS)

    Sakama, Minoru; Imura, Hiroyoshi; Akou, Natsuki; Takeuchi, Emi; Morihiro, Yukinori

    2004-01-01

    Survey of environmental radiation dose rates in Tokushima prefecture has been carried out using a portable NaI (Tl) scintillation survey meter and a CsI(Tl) pocket type one. To our knowledge, previous several surveys in Tokushima, for example by Abe et al. (1982) and Yoshino et al. (1991), have remained to report the environmental radiation dose rates merely about the major cities, that is Tokushima City and others along the Pacific. Up to now, there have been few efforts to survey the environmental radiation dose rates about mountain valleys in Tokushima. In this work, it is remarkable that we have for the first time made surveys of environmental radiation dose rates on the 6 routes across the Sanuki mountains and inside the pier of Onaruto Bridge, 'Naruto Uzu-no-michi', in the northern area of Tokushima. In the course of present surveys, the maximum value of the environmental radiation dose rates was 0.117±0.020 μGy/h at Higetouge in Sanuki City, and then it was found that the radiation dose rates across the Sanuki mountains tend to increase slightly with approaching Kagawa area from Tokushima one. Considering geological formation around the northern side of Sanuki mountains, there are mainly geological layers of granodiorite containing in the substantial amount of naturally occurring radionuclides, 40 K, U-series, and Th-series, than other geological rocks and it was found that the terrestrial gamma-rays have effect on the environmental radiation dose rates according to the geological formation. (author)

  8. Radiation dose in the high background radiation area in Kerala, India.

    Science.gov (United States)

    Christa, E P; Jojo, P J; Vaidyan, V K; Anilkumar, S; Eappen, K P

    2012-03-01

    A systematic radiological survey has been carried out in the region of high-background radiation area in Kollam district of Kerala to define the natural gamma-radiation levels. One hundred and forty seven soil samples from high-background radiation areas and five samples from normal background region were collected as per standard sampling procedures and were analysed for (238)U, (232)Th and (40)K by gamma-ray spectroscopy. External gamma dose rates at all sampling locations were also measured using a survey meter. The activities of (238)U, (232)Th and (40)K was found to vary from 17 to 3081 Bq kg(-1), 54 to 11976 Bq kg(-1) and BDL (67.4 Bq kg(-1)) to 216 Bq kg(-1), respectively, in the study area. Such heterogeneous distribution of radionuclides in the region may be attributed to the deposition phenomenon of beach sand soil in the region. Radium equivalent activities were found high in several locations. External gamma dose rates estimated from the levels of radionuclides in soil had a range from 49 to 9244 nGy h(-1). The result of gamma dose rate measured at the sampling sites using survey meter showed an excellent correlation with dose rates computed from the natural radionuclides estimated from the soil samples.

  9. Physiological and immunological changes following exposure to low versus high-dose ionizing irradiation; comparative analysis with dose rate and cumulative dose

    International Nuclear Information System (INIS)

    Heesun, Kim; Heewon, Jang; Soungyeon, Song; Shinhye, Oh; Cukcheul, Shin; Meeseon, Jeong; Chasoon, Kim; Kwnaghee, Yang; Seonyoung, Nam; Jiyoung, Kim; Youngwoo, Jin; Changyoung, Cha

    2008-01-01

    Full text: While high-dose of ionizing radiation is generally harmful and causes damage to living organisms some reports suggest low-dose of radiation may not be as damaging as previously thought. Despite increasing evidence regarding the protective effect of low-dose radiation, no studies have directly compared the exact dose-response pattern by high- and low-dose of radiation exposed at high-and low-dose rate. This study aims to explore the cellular and molecular changes in mice exposed to low- and high-dose of radiation exposed at low- and high-dose rate. When C57BL/6 mice (Female, 6 weeks) were exposed at high-dose rate, 0.8 Gy/min, no significant change on the level of WBC, RBC, or platelets was observed up to total dose of 0.5 Gy. However, 2 Gy of radiation caused dramatic reduction in the level of white blood cells (WBC) and platelets. This reduction was accompanied by increased DNA damage in hematopoietic environments. The reduction of WBC was mainly due to the reduction in the number of CD4+ T cells and CD19+ B cells. CD8+ T cells and NK cells appeared to be relatively resistant to high-dose of radiation. This change was also accompanied by the reduction of T- and B- progenitor cells in the bone marrow. In contrast, no significant changes of the number of CD4+ T, CD8+ T, NK, and B cells were observed in the spleen of mice exposed at low-dose-rate (0.7 m Gy/h or 3.95 mGy/h) for up to 2 Gy, suggesting that low-dose radiation does not alter cellular distribution in the spleen. Nevertheless, mice exposed to low-dose radiation exhibited elevation of VEGF, MCP-1, IL-4, Leptin, IL-3, and Tpo in the peripheral blood and slight increases in MIP-2, RANTES, and IL-2 in the spleen. This suggests that chronic γ-radiation can stimulate immune function without causing damage to the immune components of the body. Taken together, these data indicate hormesis of low-dose radiation, which could be attributed to the stimulation of immune function. Dose rate rather than total

  10. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2015-01-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. (paper)

  11. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  12. Radiation protection for an intraoperative X-ray source compared to C-arm fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Frank; Clausen, Sven; Jahnke, Anika; Steil, Volker; Wenz, Frederik [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Radiation Oncology; Bludau, Frederic; Obertacke, Udo [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Trauma Surgery; Suetterlin, Marc [Heidelberg Univ., University Medical Center Mannheim (Germany). Dept. of Obstetrics and Gynaecology

    2014-10-01

    Background: Intraoperative radiotherapy (IORT) using the INTRABEAM {sup registered} system promises a flexible use regarding radiation protection compared to other approaches such as electron treatment or HDR brachytherapy with {sup 192}Ir or {sup 60}Co. In this study we compared dose rate measurements of breast- and Kypho-IORT with C-arm fluoroscopy which is needed to estimate radiation protection areas. Materials and Methods: C-arm fluoroscopy, breast- and Kypho-IORTs were performed using phantoms (silicon breast or bucket of water). Dose rates were measured at the phantom's surface, at 30 cm, 100 cm and 200 cm distance. Those measurements were confirmed during 10 Kypho-IORT and 10 breast-IORT patient treatments. Results: The measured dose rates were in the same magnitude for all three paradigms and ranges from 20 μSv/h during a simulated breast-IORT at two meter distance up to 64 mSv/h directly at the surface of a simulated Kypho-IORT. Those measurements result in a circle of controlled area (yearly doses > 6 mSv) for each paradigm of about 4 m ± 2 m. Discussion/Conclusions: All three paradigms show comparable dose rates which implies that the radiation protection is straight forward and confirms the flexible use of the INTRABEAM {sup registered} system. (orig.)

  13. Dose-rate dependent stochastic effects in radiation cell-survival models

    International Nuclear Information System (INIS)

    Sachs, R.K.; Hlatky, L.R.

    1990-01-01

    When cells are subjected to ionizing radiation the specific energy rate (microscopic analog of dose-rate) varies from cell to cell. Within one cell, this rate fluctuates during the course of time; a crossing of a sensitive cellular site by a high energy charged particle produces many ionizations almost simultaneously, but during the interval between events no ionizations occur. In any cell-survival model one can incorporate the effect of such fluctuations without changing the basic biological assumptions. Using stochastic differential equations and Monte Carlo methods to take into account stochastic effects we calculated the dose-survival rfelationships in a number of current cell survival models. Some of the models assume quadratic misrepair; others assume saturable repair enzyme systems. It was found that a significant effect of random fluctuations is to decrease the theoretically predicted amount of dose-rate sparing. In the limit of low dose-rates neglecting the stochastic nature of specific energy rates often leads to qualitatively misleading results by overestimating the surviving fraction drastically. In the opposite limit of acute irradiation, analyzing the fluctuations in rates merely amounts to analyzing fluctuations in total specific energy via the usual microdosimetric specific energy distribution function, and neglecting fluctuations usually underestimates the surviving fraction. The Monte Carlo methods interpolate systematically between the low dose-rate and high dose-rate limits. As in other approaches, the slope of the survival curve at low dose-rates is virtually independent of dose and equals the initial slope of the survival curve for acute radiation. (orig.)

  14. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    Science.gov (United States)

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  15. ALARA-based strengthening of radiation protection in a high dose rate nuclear power plant: A practical overview

    International Nuclear Information System (INIS)

    Lips, Marcel

    2008-01-01

    In the first years of operation the dose rates at Goesgen nuclear power plant increased more strongly than expected. Co-60 has been the main radiation contributor from the beginning. As an immediate step, investigations were initiated to find and remove unknown cobalt sources. System modifications and optimization in water chemistry were carried out to reduce material and activity transport within the primary system. As a result the dose rates were stabilized after a couple of years -unfortunately on a high level. To reduce the dose rate levels and the occupational radiation exposure, further long term measures were implemented. System decontamination and source replacement were considered as well as the implementation of enhanced shielding procedures and a more source oriented chemistry. As a result the dose rates have reduced significantly and the occupational radiation exposure has been decreased by more than a factor of 2 over the last two decades. The reduction of the mean individual dose turned out even better and was cut by a factor of 5. On terms of plant and personal safety, Goesgen nuclear power plant decided to improve radiation protection using a smooth step by step action plan and has been very successful with it. Currently the technical possibilities have been developed to a high standard. Further improvements will be selective only. In future the focus will be set to personal behavior and human performance, using enhanced target settings, briefings, debriefings, experience feedback and (international) experience exchange. Nevertheless it will be essential to avoid unnecessary administrative and counterproductive short term hurdles. Strengthening of radiation protection is and will be a long term and continuous process. Goesgen nuclear power plant will continue to introduce further actions one by one. (author)

  16. Study on the evaluation method of radiation dose rate around spent fuel shipping casks

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1986-01-01

    This study aims at developing a simple calculation method which can evaluate radiation dose rate around casks with high accuracy in a short time. The method is based on a concept of the radiation shielding characteristics of cask walls. The concept was introduced to replace for ordinary radiation shielding calculation which requires a long calculation time and a large memory capacity of a computer in the matrix calculation. For the purpose of verifying the accuracy and reliability of the new method, it was applied to the analysis of the dose rate distribution around actual casks, which had been measured. The results of the analysis revealed that the newly proposed method was excellent for the forecast of radiation dose rate distribution around casks in view of the accuracy and calculation time. The short calculation time and high accuracy by the proposed method were attained by dividing the whole procedure of ordinary fine radiation shielding calculation into the calculation of radiation dose rate on a cask surface by the matrix expression of the characteristic function and the calculation of dose rate distribution using the simple analytical expression of dose rate distribution around casks. The effect of the heterogeneous array of spent fuel in different burnup state on dose rate distribution around casks was evaluated by this method. (Kako, I.)

  17. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  18. A method for radiobiological investigations in radiation fields with different LET and high dose rates

    International Nuclear Information System (INIS)

    Grundler, W.

    1976-01-01

    For investigations: 1. Performed in the field of radiobiology with different LET-radiation and a relatively high background dose rate of one component (e.g. investigations with fast and intermediate reactor neutrons) 2. Concerning radiation risk studies within a wide range 3. Of irradiations, covering a long time period (up to 100 days) a test system is necessary which on the one hand makes it possible to analyze the influence of different LET radiation and secondly shows a relative radiation resistant behaviour and allows a simple cell cycle regulation. A survey is given upon the installed device of a simple cell observation method, the biological test system used and the analysis of effects caused by dose, repair and LET. It is possible to analyze the behaviour of the nonsurvival cells and to demonstrate different reactions of the test parameters to the radiation of different LET. (author)

  19. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  20. Occurrence of chronic esophageal ulcer after high dose rate intraluminal radiation therapy for esophageal cancer

    International Nuclear Information System (INIS)

    Soejima, Toshinori; Hirota, Saeko; Okamoto, Yoshiaki; Obayashi, Kayoko; Takada, Yoshiki

    1995-01-01

    Ninety-eight patients with esophageal cancer were treated by high dose rate intraluminal radiation therapy at the Department of Radiology of the Hyogo Medical Center for Adults between January 1982 and December 1993. Twenty patients with complete response after intraluminal radiation therapy, who were followed up with esophageal fiberscopy in our institute, were reviewed. The one-year cumulative rate of occurrence of esophageal ulcers was 81%, and in 69% of the cases the ulcers occurred from 4 to 8 months after completion of intraluminal radiation therapy. We graded esophageal ulcer by fiberscopic findings. Grade 0 was defined as no ulcer, grade 1 as superficial ulcer, grade 2 as deep ulcer, grade 3 as circumferencial ulcer, and severe stenosis. Factors related to grade were studied, and shorter distances from the source to the surface of the mucosa and lower surface doses of intraluminal radiation therapy appear to reduce the severity as graded on the above scale, of the esophageal ulcer. Four of the five 2-year recurrence-free patients suffered esophageal ulcers, which were cured from 15 to 22 months after intraluminal radiation therapy. However ulcers recurred in two patients, ong term care was thought to be necessary. (author)

  1. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  2. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  3. Improved long-term survival after intra-operative single high-dose ATG-Fresenius induction in renal transplantation: a single centre experience.

    Science.gov (United States)

    Kaden, Jürgen; May, Gottfried; Völp, Andreas; Wesslau, Claus

    2009-01-01

    In organ grafts donor-specific sensitization is initiated immediately after revascularization. Therefore, in 1990 we introduced the intra-operative single high-dose ATG-Fresenius (ATG-F) induction in addition to standard triple drug therapy (TDT) consisting of steroids, azathioprine and cyclosporin. A total of 778 first renal transplantations from deceased donors, performed between 1987 and 1998, were included in this evaluation. This retrospective analysis of clinic records and electronic databases presents data of all recipients of first kidney grafts who received two different ATG-F inductions (1(st) group: 9 mg/kg body weight as single high-dose intra-operatively, n=484; 2(nd) group: 3 mg/kg body weight on 7 or 8 consecutive days as multiple-dose starting also intra-operatively, n=78) and standard TDT alone (3(rd) group: TDT alone, n=216). The 10-year patient survival rates were 72.6+/-2.6% (TDT + ATG-F single high-dose), 79.5+/-5.1% (TDT + ATG-F multiple-dose) and 67.2+/-3.7%% (TDT alone; Kaplan-Meier estimates with standard errors; ATG-F vs TDT alone, p=0.001). The 10-year graft survival rates with censoring of patients that died with a functioning graft were 73.8+/-2.4%, 57.7+/-5.8% and 58.4+/-3.6% (Kaplan-Meier estimates with standard errors; 1(st) vs 2(nd )and 3(rd) group, respectively, p<0.001) and the 10-year graft survival rates with patient death counted as graft failure were 58.3+/-2.7%, 55.7+/-5.8% and 48.2+/-3.5% (Kaplan-Meier estimates with standard errors; ATG-F single high-dose vs TDT, p=0.023). In pre-sensitized recipients there were also significant differences in favour of ATG-F, more notably in the single high-dose ATG-F induction. A total of 69% of the patients in the two cohorts receiving ATG-F did not experience any transplant rejections compared to 56% in patients undergoing TDT alone (p=0.018). The incidence of infectious complications was comparable across all groups. According to evidence obtained from the routine documentation of 778

  4. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  5. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Buchori; Dadong Iskandar

    2007-01-01

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  6. Intraoperative radiation exposure in spinal scoliosis surgery for pediatric patients using the O-arm® imaging system.

    Science.gov (United States)

    Kobayashi, Kazuyoshi; Ando, Kei; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Tanaka, Satoshi; Machino, Masaaki; Ota, Kyotaro; Ishiguro, Naoki; Imagama, Shiro

    2018-05-01

    The O-arm ® navigation system allows intraoperative CT imaging that can facilitate highly accurate instrumentation surgery, but radiation exposure is higher than with X-ray radiography. This is a particular concern in pediatric surgery. The purpose of this study is to examine intraoperative radiation exposure in pediatric spinal scoliosis surgery using O-arm. The subjects were 38 consecutive patients (mean age 12.9 years, range 10-17) with scoliosis who underwent spinal surgery with posterior instrumentation using O-arm. The mean number of fused vertebral levels was 11.0 (6-15). O-arm was performed before and after screw insertion, using an original protocol for the cervical, thoracic, and lumbar spine doses. The average scanning range was 6.9 (5-9) intervertebral levels per scan, with 2-7 scans per patient (mean 4.0 scans). Using O-arm, the dose per scan was 92.5 (44-130) mGy, and the mean total dose was 401 (170-826) mGy. This dose was 80.2% of the mean preoperative CT dose of 460 (231-736) mGy (P = 0.11). The total exposure dose and number of scans using intraoperative O-arm correlated strongly and significantly with the number of fused levels; however, there was no correlation with the patient's height. As the fused range became wider, several scans were required for O-arm, and the total radiation exposure became roughly the same as that in preoperative CT. Use of O-arm in our original protocol can contribute to reduction in radiation exposure.

  7. An energy-independent dose rate meter for beta and gamma radiation

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Keller, M.

    1986-01-01

    An easy to handle dose rate meter has been developed at the Juelich Nuclear Research Centre with a small probe for the energy-independent determination of the dose rate in mixed radiation fields. The dose rate meter contains a small ionisation chamber with a volume of 15.5 cm 3 . The window of the ionisation chamber consists of an aluminised plastic foil of 7 mg.cm -2 . The dose rate meter is suitable for determining the dose rate in skin. With a supplementary depth dose cap, the dose rate can be determined in tissue at a depth of 1 cm. The dose rate meter is energy-independent within +-20% for 147 Pm, 204 Tl and 90 Sr/ 90 Y beta radiation and for gamma radiation in the energy range above 35 keV. (author)

  8. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  9. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Damkaer, D.M.; Dey, D.B.; Heron, G.A.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm/sup -2/sub((DNA)) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm/sup -2/sub((DNA)). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation.

  10. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  11. Effects of low dose gamma radiation on the early growth of red pepper and the resistance to subsquent high dose of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Baek, M. H.; Kim, D. H.; Lee, Y. K. [KAERI, Taejon (Korea, Republic of); Lee, Y. B. [Chungnam National Univ., Taejon (Korea, Republic of)

    2001-05-01

    Red pepper (capsicum annuum L. cv. Jokwang and cv. Johong) seeds were irradiated with the dose of 0{approx}50 Gy to investigated the effect of the low dose gamma radiation on the early growth and resistance to subsequent high dose of radiation. The effect of the low dose gamma radiation on the early growth and resistance to subsequenct high dose of radiation were enhanced in Johong cultivar but not in Jokwang cultivar. Germination rate and early growth of Johong cultivar were noticeably increased at 4 Gy-, 8 Gy- and 20 Gy irradiation group. Resistance to subsequent high dose of radiation of Johong cultivar were increased at almost all of the low dose irradiation group. Especially it was highest at 4 Gy irradiation group. The carotenoid contents and enzyme activity on the resistance to subsequent high dose of radiation of Johong cultivar were increased at the 4 Gy and 8 Gy irradiation group.

  12. Single high dose intraoperative electrons for advanced stage pancreatic cancer: Phase I pilot study

    International Nuclear Information System (INIS)

    Goldson, A.L.; Ashaveri, E.; Espinoza, M.C.

    1981-01-01

    Phase I toxicity studies with intraoperative radiotherapy proved to be a feasible adjunct to surgery for unresectable malignancies of the pancreas at Howard University Hospital. There have been minimal side effects or complications related to the combination of limited surgical decompression and intraoperative radiotherapy alone. The toxic effects of intraoperative radiotherapy on normal tissues is being assessed on a dose volume basis. Doses of 2000 to 2500 rad in a single exposure to include the pancreas, regional nodes and duodenum are acceptable if the total treatment volume is less than or equal to 100 cm. The tumoricidal effects on the cancer are demonstratable when one reviews the pathological specimens that illustrate massive tumor necrosis and fibros replacement, but in all cases reviewed, viable cancer was noted. Intraoperative radiotherapy, therefore, represents a significant boost dose for resectable, partially resectable or non-resectable tumors when added to conventional external beam irradiation and/or chemotherapy. Preliminary clinical data and minimal toxicity justifies further investigation

  13. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  14. Intensity Modulated Radiation Therapy With Dose Painting to Treat Rhabdomyosarcoma

    International Nuclear Information System (INIS)

    Yang, Joanna C.; Dharmarajan, Kavita V.; Wexler, Leonard H.; La Quaglia, Michael P.; Happersett, Laura; Wolden, Suzanne L.

    2012-01-01

    Purpose: To examine local control and patterns of failure in rhabdomyosarcoma patients treated with intensity modulated radiation therapy (RT) with dose painting (DP-IMRT). Patients and Methods: A total of 41 patients underwent DP-IMRT with chemotherapy for definitive treatment. Nineteen also underwent surgery with or without intraoperative RT. Fifty-six percent had alveolar histologic features. The median interval from beginning chemotherapy to RT was 17 weeks (range, 4-25). Very young children who underwent second-look procedures with or without intraoperative RT received reduced doses of 24-36 Gy in 1.4-1.8-Gy fractions. Young adults received 50.4 Gy to the primary tumor and lower doses of 36 Gy in 1.8-Gy fractions to at-risk lymph node chains. Results: With 22 months of median follow-up, the actuarial local control rate was 90%. Patients aged ≤7 years who received reduced overall and fractional doses had 100% local control, and young adults had 79% (P=.07) local control. Three local failures were identified in young adults whose primary target volumes had received 50.4 Gy in 1.8-Gy fractions. Conclusions: DP-IMRT with lower fractional and cumulative doses is feasible for very young children after second-look procedures with or without intraoperative RT. DP-IMRT is also feasible in adolescents and young adults with aggressive disease who would benefit from prophylactic RT to high-risk lymph node chains, although dose escalation might be warranted for improved local control. With limited follow-up, it appears that DP-IMRT produces local control rates comparable to those of sequential IMRT in patients with rhabdomyosarcoma.

  15. SMART, Radiation Dose Rates on Cask Surface

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1989-01-01

    1 - Description of program or function: SMART calculates radiation dose rate at the center of each cask surface by using characteristic functions for radiation shielding ability and for radiation current back-scattered from cask wall and cask cavity of each cask, once cask-type is specified. 2 - Method of solution: Matrix Calculation

  16. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  17. Intraoperative use of low-dose recombinant activated factor VII during thoracic aortic operations.

    Science.gov (United States)

    Andersen, Nicholas D; Bhattacharya, Syamal D; Williams, Judson B; Fosbol, Emil L; Lockhart, Evelyn L; Patel, Mayur B; Gaca, Jeffrey G; Welsby, Ian J; Hughes, G Chad

    2012-06-01

    Numerous studies have supported the effectiveness of recombinant activated factor VII (rFVIIa) for the control of bleeding after cardiac procedures; however safety concerns persist. Here we report the novel use of intraoperative low-dose rFVIIa in thoracic aortic operations, a strategy intended to improve safety by minimizing rFVIIa exposure. Between July 2005 and December 2010, 425 consecutive patients at a single referral center underwent thoracic aortic operations with cardiopulmonary bypass (CPB); 77 of these patients received intraoperative low-dose rFVIIa (≤60 μg/kg) for severe coagulopathy after CPB. Propensity matching produced a cohort of 88 patients (44 received intraoperative low-dose rFVIIa and 44 controls) for comparison. Matched patients receiving intraoperative low-dose rFVIIa got an initial median dose of 32 μg/kg (interquartile range [IQR], 16-43 μg/kg) rFVIIa given 51 minutes (42-67 minutes) after separation from CPB. Patients receiving intraoperative low-dose rFVIIa demonstrated improved postoperative coagulation measurements (partial thromboplastin time 28.6 versus 31.5 seconds; p=0.05; international normalized ratio, 0.8 versus 1.2; pproduct transfusions (2.5 versus 5.0 units; p=0.05) compared with control patients. No patient receiving intraoperative low-dose rFVIIa required postoperative rFVIIa administration or reexploration for bleeding. Rates of stroke, thromboembolism, myocardial infarction, and other adverse events were equivalent between groups. Intraoperative low-dose rFVIIa led to improved postoperative hemostasis with no apparent increase in adverse events. Intraoperative rFVIIa administration in appropriately selected patients may correct coagulopathy early in the course of refractory blood loss and lead to improved safety through the use of smaller rFVIIa doses. Appropriately powered randomized studies are necessary to confirm the safety and efficacy of this approach. Copyright © 2012 The Society of Thoracic Surgeons

  18. measurement of high dose radiation using yellow perspex dosimeter

    International Nuclear Information System (INIS)

    Thamrin, M Thoyib; Sofyan, Hasnel

    1996-01-01

    Measurement of high dose radiation using yellow perspex dosemeter has been carried out. Dose range used was between 0.1 to 3.0 kGy. Measurement of dose rate against Fricke dosemeter as a standard dose meter From the irradiation of Fricke dosemeter with time variation of 3,6,9,12,15 and 18 minute, it was obtained average dose rate of 955.57 Gy/hour, linear equation of dose was Y= 2.333+15.776 X with its correlation factor r = 0.9999. Measurement result using yellow perspex show that correlation between net optical density and radiation dose was not linear with its equation was ODc exp. [Bo + In(dose).Bi] Value of Bo = -0.215 and Bi=0.5020. From the experiment it was suggested that routine dosimeter (yellow perspex) should be calibrated formerly against standard dosemeters

  19. Low dose rate radiation favors apoptosis as a mechanism of cell death

    International Nuclear Information System (INIS)

    Murtha, Albert D.; Rupnow, Brent; Knox, Susan J.

    1997-01-01

    Purpose/Objective: Radioimmunotherapy (RIT) has demonstrated promising results in the treatment of chemotherapy refractory non-Hodgkin's lymphoma. The radiation associated with this therapy is emitted in a continuous fashion at low dose rates (LDR). Results from studies comparing the relative efficacy of LDR radiation and high dose rate (HDR) radiation on malignant cell killing have been variable. This variability may be due in part to the relative contribution of different mechanisms of cell killing (apoptosis or necrosis) at different dose rates. Materials and Methods: In order to test this hypothesis, the relative efficacy of LDR (16.7 cGy/hr) and HDR radiation (422 cGy/min) were compared using a human B cell lymphoma cell line (PW) and a PW clone (c26) stably transfected to overexpress the anti-apoptotic gene Bcl-2. The endpoints evaluated included the relative amount of cell killing, the fraction of cell killing attributable to apoptosis versus necrosis, and the impact of Bcl-2 overexpression on both overall cell killing and the fraction of killing attributable to apoptosis. Results: HDR and LDR radiation resulted in similar overall cell killing in the PW wild type cell line. In contrast, killing of clone c26 cells was dose rate dependent. One third less killing was seen following LDR irradiation of c26 cells compared with equivalent doses of HDR radiation. Analysis of the relative mechanisms of killing following LDR irradiation revealed a relative increase in the proportion of killing attributable to apoptosis. Conclusion: These findings support the hypothesis that in PW cells, LDR radiation appears to be highly dependent on apoptosis as a mechanism of cell death. These findings may have implications for the selection of patients for RIT, and for the treatment of tumors that overexpress Bcl-2. They may also help form the basis for future rational design of effective combined modality therapies utilizing RIT

  20. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  1. Dose rate and fractionation: Relative importance in radiation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Tarbell, N.J.; Rosenblatt, M.; Mauch, P.; Hellman, S.

    1987-01-01

    The optimal dose rate and fractionation schedules for total body irradiation (TBI) in bone marrow transplantation (BMT) are presently unknown. This study compares several fractionation and dose rate schedules that are currently in clinical use. C/sub 3/H/HeJ were given TBI and the bone marrow survival fraction was calculated using the CFU's assay. Irradiation was given as low dose rate (LDR) at 5 cGy/min or high dose rate (HDR) at 80 cGy/min, in single fraction (SF) and fractionated (FX) regimens. These results indicate no increase in survival for the normal bone marrow stem cells with fractionation either at high or low dose-rates. In fact, fractionation seemed to decrease the bone marrow survival over single fraction radiation

  2. Threshold dose for peripheral neuropathy following intraoperative radiotherapy (IORT) in a large animal model

    International Nuclear Information System (INIS)

    Kinsella, T.J.; DeLuca, A.M.; Barnes, M.; Anderson, W.; Terrill, R.; Sindelar, W.F.

    1991-01-01

    Radiation injury to peripheral nerve is a dose-limiting toxicity in the clinical application of intraoperative radiotherapy, particularly for pelvic and retroperitoneal tumors. Intraoperative radiotherapy-related peripheral neuropathy in humans receiving doses of 20-25 Gy is manifested as a mixed motor-sensory deficit beginning 6-9 months following treatment. In a previous experimental study of intraoperative radiotherapy-related neuropathy of the lumbro-sacral plexus, an approximate inverse linear relationship was reported between the intraoperative dose (20-75 Gy range) and the time to onset of hind limb paresis (1-12 mos following intraoperative radiotherapy). The principal histological lesion in irradiated nerve was loss of large nerve fibers and perineural fibrosis without significant vascular injury. Similar histological changes in irradiated nerves were found in humans. To assess peripheral nerve injury to lower doses of intraoperative radiotherapy in this same large animal model, groups of four adult American Foxhounds received doses of 10, 15, or 20 Gy to the right lumbro-sacral plexus and sciatic nerve using 9 MeV electrons. The left lumbro-sacral plexus and sciatic nerve were excluded from the intraoperative field to allow each animal to serve as its own control. Following treatment, a complete neurological exam, electromyogram, and nerve conduction studies were performed monthly for 1 year. Monthly neurological exams were performed in years 2 and 3 whereas electromyogram and nerve conduction studies were performed every 3 months during this follow-up period. With follow-up of greater than or equal to 42 months, no dog receiving 10 or 15 Gy IORT shows any clinical or laboratory evidence of peripheral nerve injury. However, all four dogs receiving 20 Gy developed right hind limb paresis at 8, 9, 9, and 12 mos following intraoperative radiotherapy

  3. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  4. Radiation exposure for 'caregivers' during high-dose outpatient radioiodine therapy

    International Nuclear Information System (INIS)

    Marriott, C. J.; Webber, C. E.; Gulenchyn, K. Y.

    2007-01-01

    On 27 occasions, radiation doses were measured for a family member designated as the 'caregiver' for a patient receiving high-dose radioiodine outpatient therapy for differentiated thyroid carcinoma. For 25 of the administrations, patients received 3.7 GBq of 131 I. Radiation doses for the designated caregivers were monitored on an hourly basis for 1 week using electronic personal dosemeters. The average penetrating dose was 98±64 μSv. The maximum penetrating dose was 283 μSv. Measured dose rate profiles showed that, on average, one-third of the caregiver dose was received during the journey home from hospital. The mean dose rate profile showed rapid clearance of 131 I with three distinct phases. The corresponding clearance half-times were 131 I contaminating the home. (authors)

  5. Injury of the blood-testies barrier after low-dose-rate chronic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Hoon; Bae Min Ji; Lee, Chang Geun; Yang, Kwang Mo; Jur, Kyu; Kim, Jong Sun [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-04-15

    The systemic effect of radiation increases in proportionally with the dose and dose rate. Little is known concerning the relationships between harmful effects and accumulated dose, which is derived from continuous low-dose rate radiation exposure. Recent our studies show that low-dose-rate chronic radiation exposure (3.49 mGy/h) causes adverse effects in the testis at a dose of 2 Gy (6 mGy/h). However, the mechanism of the low-dose-rate 2 Gy irradiation induced testicular injury remains unclear. The present results indicate that low-dose rate chronic radiation might affect the BTB permeability, possibly by decreasing levels of ZO-1, Occludin-1, and NPC-2. Furthermore, our results suggest that there is a risk of male infertility through BTB impairment even with low-dose-rate radiation if exposure is continuous.

  6. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography.

    Science.gov (United States)

    Laspas, Fotios; Tsantioti, Dimitra; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John

    2011-04-01

    Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR ≤65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure.

  7. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  8. Manufacture research of the test equipment to measure the dose rate in high radiation medium

    International Nuclear Information System (INIS)

    Phan Luong Tuan; Nguyen Van Sy; Nguyen Xuan Vinh; Dang Quang Bao; Nguyen Thanh Hung; Pham Minh Duc; Nguyen Xuan Truong

    2017-01-01

    Photodiode BPW34 is operated as a low voltage counter tubes. When the radiation rays go into the BPW34,they will create a pairs of electron and hole. If setting the reverse bias in to the BPW34, a pulse is achieved and it can be amplified and processed. The STM32 is the microcontroller family which is developed base on ARM processors. The STM32 incorporated many new features such as ADC, I2C, etc. With the connectional ability to other devices, the STM32 is proving its advantages in the development of equipment.The application of irradiation technology in the economy-society increases widespread as food irradiation, mutant irradiation, etc. Until now the calculation the high dose rate at Hanoi Irradiation Center is identified by the Fricke, ECB dosimeters. The dosimeters must be destroyed in order to serve for dose rate determination. Manufacture research the equipment for dose rate calculation support to determine dose rate directly through the equipment’s signal and this equipment can be used multiple. This equipment can be connected to other devices to control the irradiation process better via signals. (author)

  9. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  10. Preliminary results of concurrent chemotherapy and radiation therapy using high-dose-rate brachytherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ja; Lee, Ji Hye; Lee, Re Na; Suh, Hyun Suk [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    2006-09-15

    To determine the efficacy and safety of concurrent chemotherapy and radiation therapy with high-dose-rate brachytherapy for cervical cancer. From January 2001 to December 2002, 30 patients with cervical cancer were treated with concurrent chemotherapy (cisplatin and 5-FU) and definitive radiation therapy. The median age was 58 (range 34 {approx} 74) year old. The pathology of the biopsy sections was squamous cell carcinoma in 29 patients and one was adenocarcinoma. The distribution to FIGO staging system was as follow: stage IB, 7 (23%); IIA, 3 (10%); IIB, 12 (40%); IIIA, 3 (10%); IIIB, 5 (17%). All patients received pelvic external beam irradiation (EBRT) to a total dose of 45 {approx} 50.4 Gy (median: 50.4 Gy) over 5 {approx} 5.5 weeks. Ir-192 HDR intracavity brachytherapy (ICBT) was given after a total dose of 41.1 Gy. HDR-ICBT was performed twice a week, with a fraction point. A dose of 4 Gy and median dose to point A was 28 Gy (range: 16 {approx} 32 Gy) in 7 fractions. The median cumulative biologic effective dose (BED) at point A (EBRT + ICBT) was 88 Gy{sub 10} (range:77 {approx} 94 Gy{sub 10}). The median cumulative BED at ICRU 38 reference point (EBRT + ICBT) was 131 Gy{sub 3} (range: 122 {approx} 140 Gy{sub 3}) at point A, 109 Gy{sub 3} (range:88{approx} 125 Gy{sub 3}) at the rectum and 111 Gy{sub 3} (range: 91 {approx} 123 Gy{sub 3}) at the urinary bladder. Cisplatin (60 mg/m{sup 2}) and 5-FU (1,000 mg/m{sup 2}) was administered intravenously at 2 weeks interval from the first day of radiation for median 5 (range:2 {approx} 6) cycles. The assessment was performed at 1 month after completion of radiation therapy by clinical examination and CT scan. The median follow-up time was 36 months (range:8{approx} 50 months). The complete response rate after concurrent chemo radiation therapy was 93.3%. The 3-yr actuarial pelvic control rate was 87% and 3-yr actuarial overall survival and disease-free survival rate was 93% and 87%, respectively. The local failure

  11. Preliminary results of concurrent chemotherapy and radiation therapy using high-dose-rate brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Lee, Kyung Ja; Lee, Ji Hye; Lee, Re Na; Suh, Hyun Suk

    2006-01-01

    To determine the efficacy and safety of concurrent chemotherapy and radiation therapy with high-dose-rate brachytherapy for cervical cancer. From January 2001 to December 2002, 30 patients with cervical cancer were treated with concurrent chemotherapy (cisplatin and 5-FU) and definitive radiation therapy. The median age was 58 (range 34 ∼ 74) year old. The pathology of the biopsy sections was squamous cell carcinoma in 29 patients and one was adenocarcinoma. The distribution to FIGO staging system was as follow: stage IB, 7 (23%); IIA, 3 (10%); IIB, 12 (40%); IIIA, 3 (10%); IIIB, 5 (17%). All patients received pelvic external beam irradiation (EBRT) to a total dose of 45 ∼ 50.4 Gy (median: 50.4 Gy) over 5 ∼ 5.5 weeks. Ir-192 HDR intracavity brachytherapy (ICBT) was given after a total dose of 41.1 Gy. HDR-ICBT was performed twice a week, with a fraction point. A dose of 4 Gy and median dose to point A was 28 Gy (range: 16 ∼ 32 Gy) in 7 fractions. The median cumulative biologic effective dose (BED) at point A (EBRT + ICBT) was 88 Gy 10 (range:77 ∼ 94 Gy 10 ). The median cumulative BED at ICRU 38 reference point (EBRT + ICBT) was 131 Gy 3 (range: 122 ∼ 140 Gy 3 ) at point A, 109 Gy 3 (range:88∼ 125 Gy 3 ) at the rectum and 111 Gy 3 (range: 91 ∼ 123 Gy 3 ) at the urinary bladder. Cisplatin (60 mg/m 2 ) and 5-FU (1,000 mg/m 2 ) was administered intravenously at 2 weeks interval from the first day of radiation for median 5 (range:2 ∼ 6) cycles. The assessment was performed at 1 month after completion of radiation therapy by clinical examination and CT scan. The median follow-up time was 36 months (range:8∼ 50 months). The complete response rate after concurrent chemo radiation therapy was 93.3%. The 3-yr actuarial pelvic control rate was 87% and 3-yr actuarial overall survival and disease-free survival rate was 93% and 87%, respectively. The local failure rate was 13% and distant metastatic rate was 3.3%. The crude rate of minor hematologic

  12. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Laspas, Fotios; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John; Tsantioti, Dimitra

    2011-01-01

    Background: Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. Purpose: To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Material and Methods: Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Results: Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR =65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Conclusion: Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure

  13. Using RADFET for the real-time measurement of gamma radiation dose rate

    Science.gov (United States)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  14. Using RADFET for the real-time measurement of gamma radiation dose rate

    International Nuclear Information System (INIS)

    Andjelković, Marko S; Ristić, Goran S; Jakšić, Aleksandar B

    2015-01-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h −1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose. (paper)

  15. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    Science.gov (United States)

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  16. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Taeko; Morishima, Hiroshige [Kinki Univ., Atomic Energy Research Institute, Osaka (Japan); Tatsumi, Kusuo [Kinki Univ., Life Science Research Institute, Osaka (Japan); Nakai, Sayaka; Sugahara, Tsutomu [Health Research Foundation, Kyoto (Japan); Yuan Yongling [Labor Hygiene Institute of Hunan Prov. (China); Wei Luxin [Laboratory of Industorial Hygiene, Ministry of Health (China)

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: (1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. (2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  17. Dose measurement, its distribution and individual external dose assessments of inhabitants on high background radiation area in China

    International Nuclear Information System (INIS)

    Koga, Taeko; Morishima, Hiroshige; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2001-01-01

    As a part of the China-Japan cooperative research on the natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external to natural radiation in the high background radiation area (HBRA) of Yangjiang in Guangdong province and in the control area (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by the personal dosimeters, an indirect method was applied to estimate the exposed dose rates from the environmental radiation dose rates measured by survey meters and the occupancy factors of each hamlet. An individual radiation dose roughly correlates with the environmental radiation dose and the life style of the inhabitant. We have analyzed the environmental radiation doses in the hamlets and the variation of the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and the several hamlets of the different level doses in HBRA and Hampizai hamlet in CA. With these parameters, we made estimations of individual dose rates and compared them with those obtained from the direct measurement using dosimeters carried by selected individuals. The results obtained are as follows: 1) The environmental radiation dose rates are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiation. The indoor radiation dose rates were due to the exposure from the natural radioactive nuclides in the building materials and they were about twice higher than the outdoor radiation dose rates. This difference was not observed in CA. 2) The occupancy factor was affected by the age of individuals and the seasons of a year. Indoor occupancy factors were higher for infants and aged individuals than for other age groups. This lead to higher

  18. Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions

    Science.gov (United States)

    McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.

    2012-01-01

    Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.

  19. Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter

    International Nuclear Information System (INIS)

    Borg, J.; Christensen, P.

    1995-01-01

    The extrapolation chamber measurement method is the basic method for the determination of dose rates in beta radiation fields and the method has been used for the establishment of beta calibration fields. The paper describes important details of the method and presents results from the measurements of depth-dose profiles from different beta radiation fields with E max values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value of the dose rate. (Author)

  20. Treatment of carcinoma of uterine cervix with high-dose-rate intracavitary irradiation using Ralstron

    International Nuclear Information System (INIS)

    Suh, C.O.; Kim, G.E.; Loh, J.J.K.

    1988-01-01

    From May 1979 through December 1981, a total of 530 patients with carcinoma of the uterine cervix were treated with radiation therapy with curative intent. Of the 530 patients, 365 were treated with a high-dose-rate remote-controlled afterloading system (RALS) using a cobalt source, and 165 patients received a low dose rate using a radium source. External pelvic irradiation with a total of 40-50 Gy to the whole pelvis followed by intracavitary radiation (ICR) with a total dose of 30-39 Gy in ten to 13 fractions to point A was the treatment protocol. ICR was given three times a week with a dose of 3 Gy per fraction. Five-year actuarial survival rate with high-dose-rate ICR by stage was as follows: stage I:82.7% (N = 19) stage II:69.6% (N = 184), and stage III:52.2% (N = 156). The above results were comparable with those with conventional low-dose-rate ICR treatment, and late complications were far less. The application of high-dose-rate ICR was technically simple and easily performed on an outpatient basis without anesthesia, and the patients tolerated it very well. Radiation exposure to personnel was virtually none as compared with that of low-dose-rate ICR. Within a given period of time, more patients can be treated with high-dose-rate ICR because of the short treatment time. The authors therefore conclude that high-dose-rate ICR is suitable for a cancer center where a large number of patients are to be treated

  1. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Hirata, Toshifumi; Nishimura, Yasuaki; Miwa, Yoshiaki; Shimizu, Kotoyuki; Yanagawa, Shigeo [Gifu Univ. (Japan). Faculty of Medicine

    1991-11-01

    Intraoperative radiation therapy (IORT) was used as part of the initial therapy for malignant glioma in 32 of 73 patients with histologically verified anaplastic astrocytoma (grade III astrocytoma) and glioblastoma multiforme. The initial treatment for all cases was subtotal or total tumor resection combined with external irradiation and chemotherapy. IORT was performed 1 week after tumor resection, with doses of 10-50 Gy (mean 26.7 Gy) in one session. Fourteen of 32 cases had IORT two times because of tumor recurrence. The IORT patients had survival rates at 24 and 36 months after initial treatment of 57.1 and 33.5% (median survival 26.2 months). The other 41 patients had 23.6 and 13.1% survivals (median survival 20.7 months), which were significantly lower (p<0.01). Tumor recurrence within the original lesion site was suspected because of clinical condition, computed tomography, and magnetic resonance imaging studies in 65.6% of the IORT group (21 cases) 12 months after initial treatment. Twenty cases of death in the IORT group, including five autopsy cases, demonstrated regional tumor recurrence with a high incidence of intraventricular tumor invasion. The authors consider IORT is beneficial for selected malignant glioma patients, including tumor recurrence, because of prolonged survival. (author).

  2. Intraoperative radiation therapy for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Noboru; Yamada, Hiromu; Andoh, Takashi; Takada, Mitsuaki; Hirata, Toshifumi; Funakoshi, Takashi; Doi, Hidetaka; Yanagawa, Shigeo [Gifu Univ. (Japan). Faculty of Medicine

    1989-04-01

    Intraoperative radiation therapy (IOR) is an ideal means of exterminating residual tumor after surgical resection. In this study, the clinical results of IOR using a Scanditronix Microtron MM-22 were evaluated in 14 patients with malignant glioma, five of whom had recurrent tumors. Between July, 1985 and October, 1986, 11 patients with glioblastoma multiforme (GB) were irradiated 18 times (mean, 1.6 times/case), and three with astrocytoma (Kernohan grade III) underwent IOR once each. The target-absorbed dose at 1 to 2 cm deeper than the tumor resection surface was 15 to 50 Gy. During irradiation, a cotton bolus was placed in the dead space after over 91% of the tumor had been resected. As a rule, external irradiation therapy was also given postoperatively at a dose of 30 to 52 Gy. One patient died of pneumonia and disseminated intravascular coagulation syndrome 1 month postoperatively. The 1- and 2-year survival rates of the ramaining 13 patients were 84.6% and 61.5%, respectively; among the 10 with GB, they were 80% and 50%. Generally, the smaller the tumor size, the better the results. There were no adverse effects, despite the dose 15 to 50 Gy applied temporally to the tumor bed. IOR was especially effective against small, localized tumors, but was not always beneficial in cases of large tumors, particularly those with a contralateral focus. The improved survival rate in this series demonstrates that IOR is significantly effective in the 'induction of remission' following surgical excision of malignant gliomas. (author).

  3. The effects of radiation dose-rate and quality on the induction of dominant lethals in mouse spermatids

    International Nuclear Information System (INIS)

    Searle, A.G.; Beechey, G.V.

    1981-01-01

    Hybrid male mice were given 3 Gy (300 rad) doses of X- or γ-irradiation at dose-rates of either 0.6 or 0.002 Gy/min for each radiation. Germ-cells treated as spermatids were tested for dominant lethality. Effects on spermatogonia were evaluated by studying testis-weight, sperm-count and sperm abnormalities. The rate of induction of dominant lethal mutations was 2.1 times as high after acute X-irradiation as after protracted γ-irradiation. Most of this difference resulted from the change in radiation quality, since the relative effectiveness of X- versus γ-irradiation was 1.9 at low and 1.6 at high dose rates. For each radiation, however, fewer dominant lethals were induced at low dose-rates than at high (low/high ratios of 0.8 and 0.9 respectively) although differences did not reach a significant level. There were no statistically significant effects of dose rate on testis-weight of sperm-count in the X-ray series, but there were significantly less severe effects on both with protraction of the γ-irradiation. Evidence for effects of radiation quality on these characters was conflicting. Frequencies of abnormal spermatozoa were markedly increased 7 weeks after irradiation but there were no consistent effects of radiation intensity or quality. (orig.)

  4. Survey of environmental radiation dose rates in Kyoto and Shiga prefectures, Japan

    International Nuclear Information System (INIS)

    Minamia, Kazuyuki; Shimo, Michikuni; Oka, Mitsuaki; Ejiri, Kazutaka; Sugino, Masato; Minato, Susumu; Hosoda, Masahiro; Yamada, Junya; Fukushi, Masahiro

    2008-01-01

    We have measured environmental radiation dose rates in several Prefectures, such as Ai chi Prefecture, Gifu Prefecture, and Mie Prefecture, in central Japan. Recently, we measured the environmental radiation dose rates in Kyoto and Shiga Prefectures that are also located in central Japan with a car-borne survey system. At the time of measurement, Kyoto Prefecture (area: 4,613 km 2 ) had a total of 36 districts, and Shiga Prefecture (area: 3,387 km 2 ) a total of 26. Terrestrial gamma ray dose rates and secondary cosmic ray dose rates were measured by a 2 inches ψ x 2 inches NaI(Tl) scintillation counter and a handy-type altimeter (GPS eTrex Legend by Gamin), respectively. The following factors were taken into consideration the shielding effect of the car body, the effect of the road pavement, radon progeny borne by precipitation, and increases in tunnels and near the walls. Terrestrial gamma ray dose rates in Kyoto and Shiga Prefectures were estimated to be 51.7 ± 6.0 n Gy/h (district average: 52.4 ± 4.7 n Gy/h), 52.2 ± 10.5 n Gy/h (district average: 51.9 ± 8.1 n Gy/h), respectively. Secondary cosmic ray dose rates in Kyoto and Shiga Prefectures were 30.0 ± 0.6 n Gy/h (district average: 29.9 ±0.3 n Gy/h), 30.1 ± 0.3 n Gy/h (district average: 30.0 ± 0.2 n Gy/h), respectively. The environmental radiation dose rates due to the sum dose rates of terrestrial gamma ray and secondary cosmic ray in Kyoto and Shiga Prefectures were 81.7 ± 6.2 n Gy/h (district average: 82.3 ± 4.8 n Gy/h), 82.3 ± 10.6 n Gy/h (district average: 82.0 ± 8.1 n Gy/h), respectively. We confirmed that the environmental radiation dose rates in Kyoto and Shiga Prefectures mainly depended on the change of the terrestrial gamma ray dose rates, since the secondary cosmic ray dose rates had little change. Therefore, radiation dose-rate maps of the terrestrial gamma rays as well as maps of the environmental radiation dose-rate were drawn. (author)

  5. Risks to health from radiation at low dose rates

    International Nuclear Information System (INIS)

    Gentner, N.E.; Osborne, R.V.

    1997-01-01

    Our focus is on whether, using a balance-of-evidence approach, it is possible to say that at a low enough dose, or at a sufficiently low dose rate, radiation risk reduces to zero in a population. We conclude that insufficient evidence exists at present to support such a conclusion. In part this reflects statistical limitations at low doses, and in part (although mechanisms unquestionably exist to protect us against much of the damage induced by ionizing radiation) the biological heterogeneity of human populations, which means these mechanisms do not act in all members of the population at all times. If it is going to be possible to demonstrate that low doses are less dangerous than we presently assume, the evidence, paradoxically, will likely come from studies of higher dose and dose rate scenarios than are encountered occupationally. (author)

  6. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  7. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  8. Tolerance of bile duct to intraoperative irradiation

    International Nuclear Information System (INIS)

    Sindelar, W.F.; Tepper, J.; Travis, E.L.

    1982-01-01

    In order to determine the effects of intraoperative radiation therapy of the bile duct and surrounding tissues, seven adult dogs were subjected to laparotomy and intraoperative irradiation with 11 MeV electrons. Two animals were treated at each dose level of 2000, 3000, and 4500 rads. A single dog which received a laparotomy and sham irradiation served as a control. The irradiation field consisted of a 5 cm diameter circle encompassing the extrahepatic bile duct, portal vein, hepatic artery, and lateral duodenal wall. The animals were followed clinically for mor than 18 months after treatment, and autopsies were performed on dogs that died to assess radiation-induced complications or tissue damage. All dogs developed fibrosis and mural thickening of the common duct, which appeared by 6 weeks following irradiation and which was dose-related, being mild at low doses and more severe at high doses. Hepatic changes were seen as early as 6 weeks after irradiation, consisting of periportal inflammation and fibrosis. The hepatic changes appeared earliest at the highest doses. Frank biliary cirrhosis eventually developed at all dose levels. Duodenal fibrosis appeared in the irradiation portal, being most severe at the highest doses and in some animals resulting in duodenal obstruction. No changes were observed in irradiated portions of portal vein and hepatic artery at any dose level. It was concluded that intraoperative radiation therapy delivered to the region of the common duct leads to ductal fibrosis, partial biliary obstruction with secondary hepatic changes, and duodenal fibrosis if bowel wall is included in the field. Clinical use of intraoperative radiation therapy to the bile duct in humans may require routine use of biliary and duodenal bypass to prevent obstructive complications

  9. Modeling of transient ionizing radiation effects in bipolar devices at high dose-rates

    International Nuclear Information System (INIS)

    FJELDLY, T.A.; DENG, Y.; SHUR, M.S.; HJALMARSON, HAROLD P.; MUYSHONDT, ARNOLDO

    2000-01-01

    To optimally design circuits for operation at high intensities of ionizing radiation, and to accurately predict their a behavior under radiation, precise device models are needed that include both stationary and dynamic effects of such radiation. Depending on the type and intensity of the ionizing radiation, different degradation mechanisms, such as photoelectric effect, total dose effect, or single even upset might be dominant. In this paper, the authors consider the photoelectric effect associated with the generation of electron-hole pairs in the semiconductor. The effects of low radiation intensity on p-II diodes and bipolar junction transistors (BJTs) were described by low-injection theory in the classical paper by Wirth and Rogers. However, in BJTs compatible with modem integrated circuit technology, high-resistivity regions are often used to enhance device performance, either as a substrate or as an epitaxial layer such as the low-doped n-type collector region of the device. Using low-injection theory, the transient response of epitaxial BJTs was discussed by Florian et al., who mainly concentrated on the effects of the Hi-Lo (high doping - low doping) epilayer/substrate junction of the collector, and on geometrical effects of realistic devices. For devices with highly resistive regions, the assumption of low-level injection is often inappropriate, even at moderate radiation intensities, and a more complete theory for high-injection levels was needed. In the dynamic photocurrent model by Enlow and Alexander. p-n junctions exposed to high-intensity radiation were considered. In their work, the variation of the minority carrier lifetime with excess carrier density, and the effects of the ohmic electric field in the quasi-neutral (q-n) regions were included in a simplified manner. Later, Wunsch and Axness presented a more comprehensive model for the transient radiation response of p-n and p-i-n diode geometries. A stationary model for high-level injection in p

  10. Dose rate effects of low-LET ionizing radiation on fish cells

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Nguyen T.K. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); Seymour, Colin B.; Mothersill, Carmel E. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); McMaster University, Department of Biology, Hamilton, ON (Canada)

    2017-11-15

    Radiobiological responses of a highly clonogenic fish cell line, eelB, to low-LET ionizing radiation and effects of dose rates were studied. In acute exposure to 0.1-12 Gy of gamma rays, eelB's cell survival curve displayed a linear-quadratic (LQ) relationship. In the LQ model, α, β, and α/β ratio were 0.0024, 0.037, and 0.065, respectively; for the first time that these values were reported for fish cells. In the multi-target model, n, D{sub o}, and D{sub q} values were determined to be 4.42, 2.16, and 3.21 Gy, respectively, and were the smallest among fish cell lines being examined to date. The mitochondrial potential response to gamma radiation in eelB cells was at least biphasic: mitochondria hyperpolarized 2 h and then depolarized 5 h post-irradiation. Upon receiving gamma rays with a total dose of 5 Gy, dose rates (ranging between 83 and 1366 mGy/min) had different effects on the clonogenic survival but not the mitochondrial potential. The clonogenic survival was significantly higher at the lowest dose rate of 83 mGy/min than at the other higher dose rates. Upon continuous irradiation with beta particles from tritium at 0.5, 5, 50, and 500 mGy/day for 7 days, mitochondria significantly depolarized at the three higher dose rates. Clearly, dose rates had differential effects on the clonogenic survival of and mitochondrial membrane potential in fish cells. (orig.)

  11. Clinical phase I/II trial to investigate neoadjuvant intensity-modulated short term radiation therapy (5 × 5 gy) and intraoperative radiation therapy (15 gy) in patients with primarily resectable pancreatic cancer - NEOPANC

    International Nuclear Information System (INIS)

    Roeder, Falk; Debus, Juergen; Huber, Peter E; Werner, Jens; Timke, Carmen; Saleh-Ebrahimi, Ladan; Schneider, Lutz; Hackert, Thilo; Hartwig, Werner; Kopp-Schneider, Annette; Hensley, Frank W; Buechler, Markus W

    2012-01-01

    The current standard treatment, at least in Europe, for patients with primarily resectable tumors, consists of surgery followed by adjuvant chemotherapy. But even in this prognostic favourable group, long term survival is disappointing because of high local and distant failure rates. Postoperative chemoradiation has shown improved local control and overalls survival compared to surgery alone but the value of additional radiation has been questioned in case of adjuvant chemotherapy. However, there remains a strong rationale for the addition of radiation therapy considering the high rates of microscopically incomplete resections after surgery. As postoperative administration of radiation therapy has some general disadvantages, neoadjuvant and intraoperative approaches theoretically offer benefits in terms of dose escalation, reduction of toxicity and patients comfort especially if hypofractionated regimens with highly conformal techniques like intensity-modulated radiation therapy are considered. The NEOPANC trial is a prospective, one armed, single center phase I/II study investigating a combination of neoadjuvant short course intensity-modulated radiation therapy (5 × 5 Gy) in combination with surgery and intraoperative radiation therapy (15 Gy), followed by adjuvant chemotherapy according to the german treatment guidelines, in patients with primarily resectable pancreatic cancer. The aim of accrual is 46 patients. The primary objectives of the NEOPANC trial are to evaluate the general feasibility of this approach and the local recurrence rate after one year. Secondary endpoints are progression-free survival, overall survival, acute and late toxicity, postoperative morbidity and mortality and quality of life. http://www.clinicaltrials.gov/ct2/show/NCT01372735

  12. Results of radiation therapy for uterine cervical cancer using high dose rate remote after loading system

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro; Nemoto, Kenji

    2003-01-01

    In Japan, radiotherapy with high dose rate remote after loading system (HDR-RALS) for intracavitary brachytherapy is the standard treatment for more than 30 years. This report showed the usefulness of HDR-RALS for uterine cervical cancer. From 1980 through 1999, 442 patients with uterine cervical cancers (stage I: 66, stage II: 161, stage III: 165, stage IV: 50) were treated. Radiotherapy was performed both external teletherapy and HDR-RALS. Overall survival rate at 5 years was 60.2%. The 5-year actuarial incidence of all complications was 16.4%. The 5-year actuarial incidence of all complications in cases treated with the sum doses of whole pelvic irradiation (without central shield) and RALS up to 49 Gy, 50 to 59 Gy or larger doses were 7.5%, 11.0% and 25.2%, respectively. Radiation therapy using HDR-RALS was very effective. While the dose of whole pelvic irradiation was increased, the actuarial incidence of all complications was increased. (author)

  13. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  14. Progress in high-dose radiation dosimetry

    International Nuclear Information System (INIS)

    Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.; Chadwick, K.H.

    1981-01-01

    The last decade has witnessed a deluge of new high-dose dosimetry techniques and expanded applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Reference systems also include a number of chemical dose meters: ferrous sulphate, ferrous-cupric sulphate, and ceric sulphate acidic aqueous solutions. Requirements for stable and reliable transfer dose meters have led to further developments of several important high-dose systems: amino acids and saccharides analysed by ESR or lyoluminescence, thermoluminescent materials, radiochromic dyes and plastics, ceric-cerous solutions analysed by potentiometry, and ethanol-chlorobenzene solutions analysed by high-frequency oscillometry. A number of other prospective dose meters are also treated in this review. In addition, an IAEA programme of high-dose standardization and intercomparison for industrial radiation processing is described. (author)

  15. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men: (specific-locus mutations/dose-rate effect/doubling dose/risk estimation)

    International Nuclear Information System (INIS)

    Russell, W.L.; Kelly, E.M.

    1982-01-01

    Estimation of the genetic hazards of ionizing radiation in men is based largely on the frequency of transmitted specific-locus mutations induced in mouse spermatogonial stem cells at low radiation dose rates. The publication of new data on this subject has permitted a fresh review of all the information available. The data continue to show no discrepancy from the interpretation that, although mutation frequency decreases markedly as dose rate is decreased from 90 to 0.8 R/min (1 R = 2.6 X 10 -4 coulombs/kg) there seems to be no further change below 0.8 R/min over the range from that dose rate to 0.0007 R/min. Simple mathematical models are used to compute: (a) a maximum likelihood estimate of the induced mutation frequency at the low dose rates, and (b) a maximum likelihood estimate of the ratio of this to the mutation frequency at high dose rates in the range of 72 to 90 R/min. In the application of these results to the estimation of genetic hazards of radiation in man, the former value can be used to calculate a doubling dose - i.e., the dose of radiation that induces a mutation frequency equal to the spontaneous frequency. The doubling dose based on the low-dose-rate data compiled here is 110 R. The ratio of the mutation frequency at low dose rate to that at high dose rate is useful when it becomes necessary to extrapolate from experimental determinations, or from human data, at high dose rates to the expected risk at low dose rates. The ratio derived from the present analysis is 0.33

  16. A case of central type early stage lung cancer receiving 60Co high dose-rate postoperative endobronchial radiation

    International Nuclear Information System (INIS)

    Nakamori, Syouji; Kodama, Ken; Kurokawa, Eiji; Doi, Osamu; Terasawa, Toshio; Chatani, Masashi; Inoue, Toshihiko; Tateishi, Ryuhei

    1985-01-01

    Right middle-lower lobectomy and mediastinal lymph node dissection were performed for a case of central type early stage lung cancer. Tumor extended very closely to the line of incision margin of the resected specimen, appearing as carcinoma in situ. To inprove curativity, postoperative radiation therapy was performed with 60 Co high dose-rate endobronchial radiation by a remote afterloading system. A total dose of 40Gy was administered to the target area without any severe side effects. The patient is healthy and has no evidence of metastasis. This procedure is considered to be an effective treatment for postoperative lung cancer with possible residual malignancy. (author)

  17. A non-docking intraoperative electron beam applicator system

    International Nuclear Information System (INIS)

    Palta, J.R.; Suntharalingam, N.

    1989-01-01

    A non-docking intraoperative radiation therapy electron beam applicator system for a linear accelerator has been designed to minimize the mechanical, electrical, and tumor visualization problems associated with a docking system. A number of technical innovations have been used in the design of this system. These include: (a) a new intraoperative radiation therapy cone design that gives a better dose uniformity in the treatment volume at all depths; (b) a collimation system which reduces the leakage radiation dose to tissues outside the intraoperative radiation therapy cone; (c) a non-docking system with a translational accuracy of 2 mm and a rotational accuracy of 0.5 degrees; and (d) a rigid clamping system for the cones. A comprehensive set of dosimetric characteristics of the intraoperative radiation therapy applicator system is presented

  18. The efficacy of low and high dose (99m)Tc-MIBI protocols for intraoperative identification of hyperplastic parathyroid glands in secondary hyperparathyroidism.

    Science.gov (United States)

    Gencoglu, Esra Arzu; Aktas, Ayse

    2014-01-01

    The aim of this study was to compare the efficacy of low- and high-dose (99m)Tc-MIBI protocols for intraoperative identification of hyperplastic parathyroid glands via gamma probe in secondary hyperparathyroidism. This retrospective study was conducted using a prospective database of 59 patients who had undergone radioguided subtotal parathyroidectomy between 2004-2012. The patients were studied in 2 groups. Group 1 (n=31) received 37 MBq (99m)Tc-MIBI intravenously in the surgical room approximately 10 min before the beginning of the intervention and surgery was performed under gamma probe guidance. Group 2 (n=28) received 555 MBq (99m)Tc- MIBI intravenously 2h before surgery, which was also performed under gamma probe guidance. Intraoperative gamma probe findings, laboratory findings, and histopathological findings were evaluated together. Using acceptance of the histopathological findings as gold standard, sensitivity and specificity of intraoperative gamma probe for identifying hyperplastic parathyroid glands was 98% and 100%, respectively, in both groups. In the light of these findings, it is concluded that the low-dose (99m)Tc-MIBI protocol might be preferable for intraoperative identification of hyperplastic parathyroid glands in secondary hyperparathyroidism patients because it was observed to be as effective as the high-dose (99m)Tc-MIBI protocol. Furthermore, the low-dose protocol does not have the disadvantages that are associated with the high-dose protocol. Copyright © 2014 Elsevier España, S.L. and SEMNIM. All rights reserved.

  19. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Woloschak, G.E.

    1994-01-01

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  20. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  1. Intraoperative radiation in the canine para-aortic abdomen

    International Nuclear Information System (INIS)

    Hoopes, P.J.; Gillette, E.L.

    1984-01-01

    Twenty adult beagle dogs received intraoperatively delivered 6 MeV electrons to the para-aortic abdomen and bladder. The dogs were equally divided into 4 dose groups receiving 22 Gy, 30 Gy, 38.5 Gy and 47 Gy. The 5 cm x 8 cm radiation field included a variable portion of the left kidney, the left ureter, the abdominal aorta and vena cava, the base of the bladder and the left sciatic and femoral nerves. The lesions observed were fibroelastic proliferation of the aortic intima, severe renal atrophy and fibrosis, ureteral stenosis, bladder fibrosis and demyelinating peripheral neuropathies. Histologic, morphometric and dose response analyses are compared with responses of dogs receiving more conventional fractionated doses to a total of 60 Gy, 70 Gy or 80 Gy x-ray in 6 weeks

  2. Influence of radiation dose and dose-rate on modification of barley seed radiosensitivity by post-treatment with caffeine

    International Nuclear Information System (INIS)

    Sharma, G.J.

    1987-01-01

    Influence of radiation doses (100, 150 and 200 Gy) and dose-rates (1.27-0.023 Gy/Sec) on the modification of oxic and anoxic radiation damage by caffeine at different concentrations has been investigated using metabolizing barley seeds as test system. As the radiation dose increases from 100 to 200 Gy, the magnitude of oxic and anoxic damages increase at all the dose-rates. Caffeine is able to afford partial radioprotection against the oxic damage, at the same time potentiating the anoxic damage. However, caffeine effect against the oxic and anoxic components of damage depend largely upon the dose of radiation applied and also on the dose-rate used. The possible mechanism of action of caffeine in bringing about the differential modification of oxic and anoxic damages has been discussed. 19 refs., 2 tables. (author)

  3. High dose rate (HDR) and low dose rate (LDR) interstitial irradiation (IRT) of the rat spinal cord

    International Nuclear Information System (INIS)

    Pop, Lucas A.M.; Plas, Mirjam van der; Skwarchuk, Mark W.; Hanssen, Alex E.J.; Kogel, Albert J. van der

    1997-01-01

    Purpose: To describe a newly developed technique to study radiation tolerance of rat spinal cord to continuous interstitial irradiation (IRT) at different dose rates. Material and methods: Two parallel catheters are inserted just laterally on each side of the vertebral bodies from the level of Th 10 to L 4 . These catheters are afterloaded with two 192 Ir wires of 4 cm length each (activity 1-2.3 mCi/cm) for the low dose rate (LDR) IRT or connected to the HDR micro-Selectron for the high dose rate (HDR) IRT. Spinal cord target volume is located at the level of Th 12 -L 2 . Due to the rapid dose fall-off around the implanted sources, a dose inhomogeneity across the spinal cord thickness is obtained in the dorso-ventral direction. Using the 100% reference dose (rate) at the ventral side of the spinal cord to prescribe the dose, experiments have been carried out to obtain complete dose response curves at average dose rates of 0.49, 0.96 and 120 Gy/h. Paralysis of the hind-legs after 5-6 months and histopathological examination of the spinal cord of each irradiated rat are used as experimental endpoints. Results: The histopathological damage seen after irradiation is clearly reflected the inhomogeneous dose distribution around the implanted catheters, with the damage predominantly located in the dorsal tract of the cord or dorsal roots. With each reduction in average dose rate, spinal cord radiation tolerance is significantly increased. When the dose is prescribed at the 100% reference dose rate, the ED 50 (induction of paresis in 50% of the animals) for the HDR-IRT is 17.3 Gy. If the average dose rate is reduced from 120 Gy/h to 0.96 or 0.49 Gy/h, a 2.9- or 4.7-fold increase in the ED 50 values to 50.3 Gy and 80.9 Gy is observed; for the dose prescribed at the 150% reference dose rate (dorsal side of cord) ED 50 values are 26.0, 75.5 and 121.4 Gy, respectively. Using different types of analysis and in dependence of the dose prescription and reference dose rate, the

  4. Radiation-induced attenuation in polarization maintaining fibers: low dose rate response, stress, and materials effects

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Friebele, E.J.; Hickey, S.J.; Brambani, L.A.; Onstott, J.R.

    1989-01-01

    The loss induced in polarization-maintaining (PM) fibers by low dose rate <0.01 Gy/h, where 1 Gy = 100 rads(Si) radiation exposure has been found to vary from <0.4 to ∼6 dB/km-10 Gy, depending on the wavelength of measurement and the fiber. Correlations have been established between low dose rate response and the ''permanent'' induced loss determined by fitting the recovery of the induced loss following high dose rate exposure to nth-order kinetics. Using this technique, both 0.85- and 1.3-μm PM fibers have been found which show virtually no permanent incremental loss and would therefore appear to be resistant to low dose rate radiation environments. The asymmetric stress inherent in PM fibers has been shown to reduce the permanent induced loss, while the recovery of the radiation-induced attenuation was found to be enhanced in fibers with Ge-F-doped silica clads

  5. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  6. Intra-operative radiation treatment of cancers

    International Nuclear Information System (INIS)

    Dubois, J.B.; Joyeux, H.; Solassol, C.; Pujol, H.

    1986-01-01

    Intra-operative radiation treatment (I.O.R.T.) is concerning the treatment either of an unresectable tumor or of tumor bed after complete excision of a primary tumor and its first draining lymph nodes. We describe X-ray and electrons techniques and we discuss the delivered doses according to experimental and clinical data. According to the residual disease (macroscopic or microscopic), to the healthy tissues in the target volume, and the histological type, single doses from 20 Gy to 40 Gy can be delivered. Our preliminary results are reported: 25 patients with resectable tumors of the cardia, the stomach and the pancreas, 5 patients with pelvic recurrences of colon and rectum carcinomas. Therapeutic results of the I.O.R.T. providing from the literature are discussed. The I.O.R.T. indications are defined as palliative (unresectable tumors) and curative (irradiation of tumor bed after complete excision of the tumor) [fr

  7. Radiation-induced cell mutations as a function of dose rate

    International Nuclear Information System (INIS)

    Kiefer, J.

    1987-01-01

    A brief review of the data in the literature is presented and forms the background of the experimental data given by the author obtained with exponential long-term cultures of V79 hamster cells exposed over a period of up to 35 days to different dose rates of gamma radiation. The experimental results show that at a dose rate of 40 mGy/hour the number of induced mutations is reduced, - which is in agreement with literature data - , but a dose rate of less than 30 mGy/hour makes the induced mutations leap to a value clearly higher than those induced by acute irradiation. As in addition to the mutations recombination is a significant factor of the radiation risk, experiments with a heterozygotic yeast strain have been made, as there is to date no reliable mammalian cell system available for this kind of research. Long-term radiation exposure of the yeast cells over a period of six weeks drastically increased the rate of recombinations, to a value higher by a factor of about 4 than that induced by acute irradiation. (orig.) [de

  8. Dose Response Model of Biological Reaction to Low Dose Rate Gamma Radiation

    International Nuclear Information System (INIS)

    Magae, J.; Furikawa, C.; Hoshi, Y.; Kawakami, Y.; Ogata, H.

    2004-01-01

    time, and that dose rate effect changes as a function of dose-rate and irradiation time. Many epidemiological and experimental studies have been demonstrated that biological responses to radiation at low dose/low dose rate does not follow LNT. Our study supports their observations with sufficient statistical power. Threshold of radiation risk will be discussed. (Author)

  9. ''Low dose'' and/or ''high dose'' in radiation protection: A need to setting criteria for dose classification

    International Nuclear Information System (INIS)

    Sohrabi, M.

    1997-01-01

    The ''low dose'' and/or ''high dose'' of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; ''What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?''. This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. (author)

  10. Intraoperative electron beam radiation therapy: technique, dosimetry, and dose specification: report of task force 48 of the radiation therapy committee, American association of physicists in medicine

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Biggs, Peter J.; Hazle, John D.; Huq, M. Saiful; Dahl, Robert A.; Ochran, Timothy G.; Soen, Jerry; Dobelbower, Ralph R.; McCullough, Edwin C.

    1995-01-01

    Intraoperative radiation therapy (IORT) is a treatment modality whereby a large single dose of radiation is delivered to a surgically open, exposed cancer site. Typically, a beam of megavoltage electrons is directed at an exposed tumor or tumor bed through a specially designed applicator system. In the last few years, IORT facilities have proliferated around the world. The IORT technique and the applicator systems used at these facilities vary greatly in sophistication and design philosophy. The IORT beam characteristics vary for different designs of applicator systems. It is necessary to document the existing techniques of IORT, to detail the dosimetry data required for accurate delivery of the prescribed dose, and to have a uniform method of dose specification for cooperative clinical trials. The specific charge to the task group includes the following: (a) identify the multidisciplinary IORT team, (b) outline special considerations that must be addressed by an IORT program, (c) review currently available IORT techniques, (d) describe dosimetric measurements necessary for accurate delivery of prescribed dose, (e) describe dosimetric measurements necessary in documenting doses to the surrounding normal tissues, (f) recommend quality assurance procedures for IORT, (g) review methods of treatment documentation and verification, and (h) recommend methods of dose specification and recording for cooperative clinical trials

  11. Relationships betwen mitotic delay and the dose rate of X radiation

    International Nuclear Information System (INIS)

    Yi, P.N.; Rha, C.K.; Evans, H.H.; Beer, J.Z.

    1994-01-01

    Upon exposure of cells to radiation delivered at a continuous low dose rate, cell proliferation may be sustained with the cells exhibiting a constant doubling time that is independent of the total dose. The doubling time or mitotic delay under these conditions has been shown to depend on the dose rate in HeLa, V79 and P388F cells. Reanalysis of the data for these particular cell lines shows that there is a threshold dose rate for mitotic delay, and that above the threshold there is a linear relationship between the length of mitotic delay and the logarithm of the dose rate which is referred to as the dose-rate response. We have observed the same relationships for L5178Y (LY)-R and LY-S cells exposed to low-dose-rate radiation. The threshold dose rates for LY-R, LY-S and P388F cells are similar (0.01-0.02 Gy/h) and are much lower than for V79 and HeLa cells. The slope of the dose-rate response curve is the greatest for HeLa cells, followed in order by LY-S, V79 and P388F cells, and finally by LY-R cells. The slopes for HeLa and LY-R cells differ by a factor of 35. 20 refs., 3 figs., 1 tab

  12. Intraoperative irradiation in advanced cervical cancer

    International Nuclear Information System (INIS)

    Delgado, G.; Goldson, A.L.; Ashayeri, E.; Petrilli, E.S.

    1987-01-01

    Conventional treatment of cervical cancer, such as radical hysterectomy with lymphadenectomy or pelvic exenteration, is limited to the pelvis. Standard radio-therapeutic treatment is a combination of external-beam radiotherapy to the pelvis and intracavitary applications. However, there is a group of patients for whom external radiotherapy alone has limitations. This group consists primarily of patients with large pelvic lymph nodes containing metastatic cancer, metastatically involved paraaortic lymph nodes outside the usual pelvic radiation field, or large central tumors with parametrial involvement. In patients with cancer of the cervix, the incidence of metastasis to paraaortic lymph nodes is high. Attempts to treat paraaortic nodes with external radiotherapy have resulted in high complication rates because the treatment field includes the highly sensitive gastrointestinal tract. External radiation therapy after retroperitoneal exploration of lymph nodes does not seem to improve survival. In an attempt to circumvent the morbidity and mortality associated with conventional external-beam irradiation, the authors initiated a pilot study of intraoperative electron-beam irradiation of the paraaortic nodes and of the large metastatic lymph nodes in the pelvis. The intraoperative boost was followed by conventional fractionated external-beam irradiation. The theoretical advantages of this procedure include a higher radiation tumor dose without a concomitant increase in treatment morbidity and mortality

  13. Television system for verification and documentation of treatment fields during intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Fraass, B.A.; Harrington, F.S.; Kinsella, T.J.; Sindelar, W.F.

    1983-01-01

    Intraoperative radiation therapy (IORT) involves direct treatment of tumors or tumor beds with large single doses of radiation. The verification of the area to be treated before irradiation and the documentation of the treated area are critical for IORT, just as for other types of radiation therapy. A television system which allows the target area to be directly imaged immediately before irradiation has been developed. Verification and documentation of treatment fields has made the IORT television system indispensable

  14. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Felcher, P.; Chang-Liu, Chin-Mei

    1992-01-01

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  15. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.; O'Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h -1 (1 rad d -1 ). A dose rate no greater than 0.4 mGy h -1 to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h -1 will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted

  16. Dose-rate effects on mammalian cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Mitchell, J.B.

    1978-01-01

    The effect of irradiation on the life cycle and on cell survival was studied for a range of different dose rates. Log phase, plateau phase and synchronized cultures of different mammalian cells were used. Cell cycle redistribution during the radiation exposure was found to be a very important factor in determining the overall dose-rate effect for log phase and synchronized cells. In fact, cell cycle redistribution during the exposure, in some instances, resulted in a lower dose rate being more effective in cell killing per unit dose than a higher dose rate. For plateau phase cultures, where cell cycle times are greatly lengthened, the effects of redistribution in regard to cell killing was virtually eliminated. Both fed and unfed plateau phase cultures exhibited a dose-rate effect, but it was found that below dose rates of 154 rad/h there is no further loss in effectiveness

  17. Calibration of high-dose radiation facilities (Handbook)

    International Nuclear Information System (INIS)

    Gupta, B.L.; Bhat, R.M.

    1986-01-01

    In India at present several high intensity radiation sources are used. There are 135 teletheraphy machines and 65 high intensity cobalt-60 sources in the form of gamma chambers (2.5 Ci) and PANBIT (50 Ci). Several food irradiation facilities and a medical sterilization plant ISOMED are also in operation. The application of these high intensity sources involve a wide variation of dose from 10 Gy to 100 kGy. Accurate and reproducible radiation dosimetry is essential in the use of these sources. This handbook is especially compiled for calibration of high-dose radiation facilities. The first few chapters discuss such topics as interaction of radiation with matter, radiation chemistry, radiation processing, commonly used high intensity radiation sources and their special features, radiation units and dosimetry principles. In the chapters which follow, chemical dosimeters are discussed in detail. This discussion covers Fricke dosimeter, FBX dosimeter, ceric sulphate dosimeter, free radical dosimetry, coloured indicators for irrdiation verification. A final chapter is devoted to practical hints to be followed in calibration work. (author)

  18. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates.

    Science.gov (United States)

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2018-02-08

    In this work, we irradiated a high-definition (HD) industrial camera based on a commercial-off-the-shelf (COTS) CMOS image sensor (CIS) with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR) versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB). The work is valuable and can provide suggestion for camera users in the radiation field.

  19. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  20. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, Antonio Cassio Assis, E-mail: acapellizzon@hcancer.org.br [A.C. Camargo Cancer Center, Sao Paulo, SP (Brazil). Departamento de Radioterapia

    2016-05-15

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. (author)

  1. Remote Sensing of Radiation Dose Rate by Customizing an Autonomous Robot

    International Nuclear Information System (INIS)

    Kobayashi, T; Nakahara, M; Morisato, K; Takashina, T; Kanematsu, H

    2012-01-01

    Distribution of radiation dose was measured by customizing an autonomous cleaning robot 'Roomba' and a scintillation counter. The robot was used as a vehicle carrying the scintillation survey meter, and was additionally equipped with an H8 micro computer to remote-control the vehicle and to send measured data. The data obtained were arranged with position data, and then the distribution map of the radiation dose rate was produced. Manual, programmed and autonomous driving tests were conducted, and all performances were verified. That is, for each operational mode, the measurements both with moving and with discrete moving were tried in and outside of a room. Consequently, it has been confirmed that remote sensing of radiation dose rate is possible by customizing a robot on market.

  2. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    Science.gov (United States)

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  3. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  4. Calculation of radiation dose rates from a spent nuclear fuel shipping cask

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Radiation doses from a spent nuclear fuel cask are usually from various phases of operations during handling, shipping, and storage of the casks. Assessment of such doses requires knowledge of external radiation dose rates at various locations surrounding a cask. Under current practices, dose rates from gamma photons are usually estimated by means of point- or line-source approaches incorporating the conventional buildup factors. Although such simplified approaches may at times be easy to use, their accuracy has not been verified. For example, those simplified methods have not taken into account influencing factors such as the geometry of the cask and the presence of the ground surface, and the effects of these factors on the calculated dose rates are largely unknown. Moreover, similar empirical equations for buildup factors currently do not exist for neutrons. The objective of this study is to use a more accurate approach in calculating radiation dose rates for both neutrons and gamma photons from a spent fuel cask. The calculation utilizes the more sophisticated transport method and takes into account the geometry of the cask and the presence of the ground surface. The results of a detailed study of dose rates in the near field (within 20 meters) are presented and, for easy application, the cask centerline dose rates are fitted into empirical equations at cask centerline distances up to 2000 meters from the surface of the cask

  5. Problems of dose rate in radiation protection regulation

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    2001-01-01

    Some modern problems of Radiation Safety Standards are discussed. It is known that Standards are based on the Linear-Non-Threshold Concept (LNTC) of radiation risk, which is now called by many experts as conservative. It is thought it is necessary to include in the Standards such factor as dose rate or duration of irradiation. Some model of effects of radiation exposure with taking into account the reparation of cell damage is presented. The practical method for assessment of effects of duration of irradiation on detriments is proposed.(author)

  6. Survey of Gamma Dose and Radon Exhalation Rate from Soil Surface of High Background Natural Radiation Areas in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Rouhollah Dehghani

    2013-09-01

    Full Text Available Background: Radon is a radioactive gas and the second leading cause of death due to lung cancer after smoking. Ramsar is known for having the highest levels of natural background radiation on earth. Materials and Methods: In this research study, 50 stations of high radioactivity areas of Ramsar were selected in warm season of the year. Then gamma dose and radon exhalation rate were measured.Results: Results showed that gamma dose and radon exhalation rate were in the range of 51-7100 nSv/hr and 9-15370 mBq/m2s, respectively.Conclusion: Compare to the worldwide average 16 mBq/m2s, estimated average annual effective of Radon exhalation rate in the study area is too high.

  7. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates

    Directory of Open Access Journals (Sweden)

    Congzheng Wang

    2018-02-01

    Full Text Available In this work, we irradiated a high-definition (HD industrial camera based on a commercial-off-the-shelf (COTS CMOS image sensor (CIS with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB. The work is valuable and can provide suggestion for camera users in the radiation field.

  8. The choice of food consumption rates for radiation dose assessments

    International Nuclear Information System (INIS)

    Simmonds, J.R.; Webb, G.A.M.

    1981-01-01

    The practical problem in estimating radiation doses due to radioactive contamination of food is the choice of the appropriate food intakes. To ensure compliance or to compare with dose equivalent limits, higher than average intake rates appropriate to critical groups should be used. However for realistic estimates of health detriment in the whole exposed population, average intake rates are more appropriate. (U.K.)

  9. Prospective Study of Local Control and Late Radiation Toxicity After Intraoperative Radiation Therapy Boost for Early Breast Cancer

    International Nuclear Information System (INIS)

    Chang, David W.; Marvelde, Luc te; Chua, Boon H.

    2014-01-01

    Purpose: To report the local recurrence rate and late toxicity of intraoperative radiation therapy (IORT) boost to the tumor bed using the Intrabeam System followed by external-beam whole-breast irradiation (WBI) in women with early-stage breast cancer in a prospective single-institution study. Methods and Materials: Women with breast cancer ≤3 cm were recruited between February 2003 and May 2005. After breast-conserving surgery, a single dose of 5 Gy IORT boost was delivered using 50-kV x-rays to a depth of 10 mm from the applicator surface. This was followed by WBI to a total dose of 50 Gy in 25 fractions. Patients were reviewed at regular, predefined intervals. Late toxicities were recorded using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring systems. Results: Fifty-five patients completed both IORT boost and external-beam WBI. Median follow-up was 3.3 years (range, 1.4-4.1 years). There was no reported locoregional recurrence or death. One patient developed distant metastases. Grade 2 and 3 subcutaneous fibrosis was detected in 29 (53%) and 8 patients (15%), respectively. Conclusions: The use of IORT as a tumor bed boost using kV x-rays in breast-conserving therapy was associated with good local control but a clinically significant rate of grade 2 and 3 subcutaneous fibrosis

  10. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    Full text: Because of biological responses to ionizing radiation are dependent on irradiation time or dose rate as well as dose, simultaneous inclusion of dose and dose rate is required to evaluate the risk of long term irradiation at low dose rates. We previously published a novel statistical model for dose rate effect, modified exponential (MOE) model, which predicts irradiation time-dependent biological response to low dose rate ionizing radiation, by analyzing micronucleus formation and growth inhibition in a human osteosarcoma cell line, exposed to wide range of doses and dose rates of gamma-rays. MOE model demonstrates that logarithm of median effective dose exponentially increases in low dose rates, and thus suggests that the risk approaches to zero at infinitely low dose rate. In this paper, we extend the analysis in various kinds of human cell lines exposed to ionizing radiation for more than a year. We measured micronucleus formation and [ 3 H]thymidine uptake in human cell lines including an osteosarcoma, a DNA-dependent protein kinase-deficient glioma, a SV40-transformed fibroblast derived from an ataxia telangiectasia patient, a normal fibroblast, and leukemia cell lines. Cells were exposed to gamma-rays in irradiation room bearing 50,000 Ci of cobalt-60. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide. The number of binuclear cells bearing a micronucleus was counted under a fluorescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [ 3 H] thymidine was pulsed for 4 h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk. While dose and dose rate relationship cultured within one month followed MOE model in cell lines holding wild-type DNA repair system, dose rate effect was greatly impaired in DNA repair-deficient cell lines

  11. Evaluation of dose equivalent rate distribution in JCO critical accident by radiation transport calculation

    CERN Document Server

    Sakamoto, Y

    2002-01-01

    In the prevention of nuclear disaster, there needs the information on the dose equivalent rate distribution inside and outside the site, and energy spectra. The three dimensional radiation transport calculation code is a useful tool for the site specific detailed analysis with the consideration of facility structures. It is important in the prediction of individual doses in the future countermeasure that the reliability of the evaluation methods of dose equivalent rate distribution and energy spectra by using of Monte Carlo radiation transport calculation code, and the factors which influence the dose equivalent rate distribution outside the site are confirmed. The reliability of radiation transport calculation code and the influence factors of dose equivalent rate distribution were examined through the analyses of critical accident at JCO's uranium processing plant occurred on September 30, 1999. The radiation transport calculations including the burn-up calculations were done by using of the structural info...

  12. Modified Exponential (MOE) Models: statistical Models for Risk Estimation of Low dose Rate Radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Furukawa, C.; Kawakami, Y.; Magae, J.

    2004-01-01

    Simultaneous inclusion of dose and dose-rate is required to evaluate the risk of long term irradiation at low dose-rates, since biological responses to radiation are complex processes that depend both on irradiation time and total dose. Consequently, it is necessary to consider a model including cumulative dose,dose-rate and irradiation time to estimate quantitative dose-response relationship on the biological response to radiation. In this study, we measured micronucleus formation and (3H) thymidine uptake in U2OS, human osteosarcoma cell line, as indicators of biological response to gamma radiation. Cells were exposed to gamma ray in irradiation room bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and propidium iodide. The number of binuclear cells bearing a micronucleus was counted under a florescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and (3h) thymidine was pulsed for 4h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk at low dose/dose-rate. (Author)

  13. SSDL quality assurance for environmental dose/dose rate monitoring of photon radiation

    International Nuclear Information System (INIS)

    1987-01-01

    Member states of IAEA have recently approved an expanded Nuclear Safety Programme and two International Conventions have been signed. One concerns early notification of a nuclear accident, and the other concerns assistance in the case of a nuclear accident or radiological emergency. In the course of the implementation of these conventions an international system will be established by the Agency for the reception and dissemination of data following a nuclear accident. Such data should include the results of radiation measurements obtained by radiation monitoring. These data must be reliable, and comparable. This assures that numerical values of measured quantities obtained at different times, sites and countries, and with different instruments, can be compared in order that the competent authorities may draw conclusions. Such measurements may also have legal consequences. This implies that the instruments used for the measurement should comply with the relevant international specifications, and that the readings of these instruments be traceable to the international measurement system. At a meeting of an expert working group on International Cooperation in Nuclear Safety and Radiation Protection held in November 1986, a proposal to produce a technical document on ''The role of SSDLs in the quality assurance programme relating to the use of dose and dose rate meters for personal and environmental measurements'' received high priority, and at a subsequent meeting of the Board of Governors the proposal was approved. Prior to these proposals the SSDL Scientific Committee at its annual meeting in May 1986 also advised the IAEA to promote measures to ensure world wide reliability and traceability of dose measurements in the field of radiation protection. On 26-30 January 1987 an Advisory Group Meeting on ''The role of SSDLs in the dosimetry of unintentional radiation exposures'' was organized by the IAEA. This Advisory Group assisted the Agency in the formulation of a

  14. Use of virtual reality to estimate radiation dose rates in nuclear plants

    International Nuclear Information System (INIS)

    Augusto, Silas C.; Mol, Antonio C.A.; Jorge, Carlos A.F.; Couto, Pedro M.

    2007-01-01

    Operators in nuclear plants receive radiation doses during several different operation procedures. A training program capable of simulating these operation scenarios will be useful in several ways, helping the planning of operational procedures so as to reduce the doses received by workers, and to minimize operations' times. It can provide safe virtual operation training, visualization of radiation dose rates, and estimation of doses received by workers. Thus, a virtual reality application, a free game engine, has been adapted to achieve the goals of this project. Simulation results for Argonauta research reactor of Instituto de Engenharia Nuclear are shown in this paper. A database of dose rate measurements, previously performed by the radiological protection service, has been used to display the dose rate distribution in the region of interest. The application enables the user to walk in the virtual scenario, displaying at all times the dose accumulated by the avatar. (author)

  15. Determination of dose rates in beta radiation fields using extrapolation chamber and GM counter

    DEFF Research Database (Denmark)

    Borg, J.; Christensen, P.

    1995-01-01

    of depth-dose profiles from different beta radiation fields with E(max) values down to 156 keV. Results are also presented from studies of GM counters for use as survey instruments for monitoring beta dose rates at the workplace. Advantages of GM counters are a simple measurement technique and high...... sensitivity. GM responses were measured from exposures in different beta radiation fields using different filters in front of the GM detector and the paper discusses the possibility of using the results from GM measurements with two different filters in an unknown beta radiation field to obtain a value...

  16. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  17. Effect of radiation doses rate on SOS response induction in irradiated Escherichia coli Cells

    International Nuclear Information System (INIS)

    Cuetara Lugo, Elizabeth B.; Fuentes Lorenzo, Jorge L.; Almeida Varela, Eliseo; Prieto Miranda, Enrique F.; Sanchez Lamar, Angel; Llagostera Casal, Montserrat

    2005-01-01

    The present work is aimed to study the effect of radiation dose rate on the induction of SOS response in Escherichia coli cells. We measured the induction of sul A reporter gene in PQ-37 (SOS Chromotest) cells. Lead devises were built with different diameter and these were used for diminishing the dose rate of PX- -30M irradiator. Our results show that radiation doses rate significantly modifies the induction of SOS response. Induction factor increases proportionally to doses rate in Escherichia coli cells defective to nucleotide excision repair (uvrA), but not in wild type cells. We conclude that the dose rate affects the level of induction of SOS response

  18. 106Ru and 125I radiation dose rate gauge

    International Nuclear Information System (INIS)

    Machaj, B.; Swistowski, E.; Do Hoang Cuong

    2002-01-01

    Pulse count rate from plastic scintillator is a measure of the dose rate. Low dead time of measured channel and digital processing of measuring head signal with compensation of dead time enables correct registration of very high pulse count rate. The radiation source is set with an accuracy not worse than 0.1 mm in relation to the scintillator, and the movement of the source in horizontal and vertical direction is done with the accuracy of 0.01 mm. Additionally the gauge permits to measure the source activity and to check the uniform distribution of the radioactive material on the source surface. Random error due to pulse count rate fluctuation is negligible. The error due to instability of PTM gain is approx. 1,5% for 106 Ru and 5% for 125 I. (author)

  19. establishment of background radiation dose rate in the vicinity

    African Journals Online (AJOL)

    nb

    radiation dose rate data prior to commencement of uranium mining activities. Twenty stations in seven ... and geological structures of soil and rocks. (Florou and Kritids 1992, ... Selection of Sampling Points and location of. Field Dosimeters.

  20. Lifetime radiation risks from low-dose rate radionuclides in beagles

    International Nuclear Information System (INIS)

    Goldman, M.; Rosenblatt, L.S.

    1985-01-01

    One of the largest, long-term (25-yr) animal studies on the effects of low-dose internal irradiation is almost completed. Some 335 beagles were given continuous exposure to graded 90 Sr [low linear energy transfer (LET)] in their diets (D-dogs) through adulthood. A second group (R-dogs) was given fractionated doses of 225 Ra (high LET) as young adults. A third group of 44 was given a single injection of 90 Sr as adults (S-dogs) to compare single to continuous dosages. All dogs were followed through their lifetimes. Only one of the 848 dogs is still alive. The animals were whole-body counted over their entire life span and were examined frequently for assessment of medical status. There were no acute radiation lethalities. Analyses of the large data base from these dogs have begun and preliminary indications are that 90 Sr, which was tested over a 1500-fold skeletal dose rate range, does not cause significant life shortening at average accumulation skeletal doses of ∼2500 rads (25 Gy) and that a curvilinear dose response curve for life shortening was seen at higher accumulation doses. The data will be discussed in terms of modern epidemiological concepts and quantifications will be related to certain parameters of human risk from acute or chronic radiation exposures

  1. Terrestrial Gamma Radiation Dose Rate of West Sarawak

    Science.gov (United States)

    Izham, A.; Ramli, A. T.; Saridan Wan Hassan, W. M.; Idris, H. N.; Basri, N. A.

    2017-10-01

    A study of terrestrial gamma radiation (TGR) dose rate was conducted in west of Sarawak, covering Kuching, Samarahan, Serian, Sri Aman, and Betong divisions to construct a baseline TGR dose rate level data of the areas. The total area covered was 20,259.2 km2, where in-situ measurements of TGR dose rate were taken using NaI(Tl) scintillation detector Ludlum 19 micro R meter NaI(Tl) approximately 1 meter above ground level. Twenty-nine soil samples were taken across the 5 divisions covering 26 pairings of 9 geological formations and 7 soil types. A hyperpure Germanium detector was then used to find the samples' 238U, 232Th, and 40K radionuclides concentrations producing a correction factor Cf = 0.544. A total of239 measured data were corrected with Cf resulting in a mean Dm of 47 ± 1 nGy h-1, with a range between 5 nGy h-1 - 103 nGy h-1. A multiple regression analysis was conducted between geological means and soil types means against the corrected TGR dose rate Dm, generating Dg,s= 0.847Dg+ 0.637Ds- 22.313 prediction model with a normalized Beta equation of Dg,s= 0.605Dg+ 0.395Ds. The model has an 84.6% acceptance of Whitney- Mann test null hypothesis when tested against the corrected TGR dose rates.

  2. Influence of dose, dose rate, and radiation quality on radiation carcinogenesis and life shortening in RFM and BALB/C mice

    International Nuclear Information System (INIS)

    Ullrich, R.L.; Storer, J.B.

    1978-01-01

    The effects produced by 137 Cs gamma rays delivered at a high (45 rads/min) or intermediate (8.2 rads/day) dose rate and the effect of fission neutrons at a high (25 rads/min) and low (1 rad/day) rate in a population of nearly 30,000 RFM and 11,000 BALB/c mice have been studied. Gamma ray doses ranged from 10 to 400 rads with the RFM's and from 50-400 rads with the BALB/c's, while neutron doses ranged from 5 to 200 rads with both strains. The present paper will present an overview of these data and the general findings while subsequent publications will present detailed analyses of each aspect. A variety of neoplasms were sensitive to induction after radiation exposure, including tumors of both reticular tissue origin (leukemia, lymphoma, etc.) and solid tumors. For the RFM, thymic lymphomas were the dominant reticular tissue neoplasm while the majority of solid tumors were either lung adenomas or fit into the broad category of endocrine related tumors, including ovarian, pituitary, harderian, and uterine tumors. The BALB/c was much less sensitive to induction of reticular tissue neoplasms. The tumors that were most sensitive to induction included malignant lung carcinomas, mammary adenocarcinomas and ovarian tumors. In general for both life shortening and tumor induction after gamma ray exposures, when the low to intermediate dose range was sufficiently defined, linearity could be rejected and a dose squared or linear-dose squared relationship adequately fit the data. For neutron exposures, on the other hand, linear relationships were the general finding. The RBE for neutrons varied with tumor type and total dose level. For gamma ray irradiation, the intermediate dose rate resulted in a decreased effectiveness in all cases, while for neutron exposures the dose rate relationships were more complex

  3. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Krokosz, Anita [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland)]. E-mail: krokosz@biol.uni.lodz.pl; Koziczak, Renata [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland); Gonciarz, Marta [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland); Szweda-Lewandowska, Zofia [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland)

    2006-01-15

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with {gamma}-rays at three dose-rates of 66.7, 36.7, 25 Gy min{sup -1} in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  4. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    International Nuclear Information System (INIS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect

  5. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Gustafson, Gary; Gonzalez, Jose; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-01-01

    Purpose: To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Methods and Materials: Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level ≥10.0 ng/mL, Gleason score ≥7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. Results: The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p<0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p=0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Conclusion: Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause

  6. Gynecological brachytherapy - from low-dose-rate to high-tech. Gynaekologische Brachytherapie - von Low-dose-rate zu High-tech

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, T. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Christen, N. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Alheit, H.D. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany))

    1993-03-01

    The transition from low-dose-rate (LDR) brachytherapy to high-dose-rate (HDR) afterloading treatment is in progress in most centres of radiation therapy. First reports of studies comparing HDR and LDR treatment in cervix cancer demonstrate nearly equal local control. In our own investigations on 319 patients with primary irradiated carcinoma of the cervix (125 HDR/194 LDR) we found the following control rates: Stage FIGO I 95.4%/82.9% (HDR versus LDR), stage FIGO II 71.4%/73.7%, stage FIGO III 57.9%/38.5%. The results are not significant. The side effects - scored after EORT/RTOG criteria - showed no significant differences between both therapies for serious radiogenic late effects on intestine, bladder and vagina. The study and findings from the literature confirm the advantage of the HDR-procedure for patient and radiooncologist and for radiation protection showing at least the same results as in the LDR-area. As for radiobiolgical point of view it is important to consider that the use of fractionation in the HDR-treatment is essential for the sparing of normal tissues and therefore a greater number of small fractionation doses in the brachytherapy should be desirable too. On the other hand the rules, which are true for fractionated percutaneous irradiation therapy (overall treatment time as short as possible to avoid reppopulation of tumor cells) should be taken into consideration in combined brachy-teletherapy regime in gynecologic tumors. The first step in this direction may be accelerated regime with a daily application of both treatment procedures. The central blocking of the brachytherapy region from the whole percutaneous treatment target volume should be critically reflected, especially in the case of advanced tumors. (orig.)

  7. Calibration procedure for thermoluminescent dosemeters in water absorbed doses for Iridium-192 high dose rate sources

    International Nuclear Information System (INIS)

    Reyes Cac, Franky Eduardo

    2004-10-01

    Thermoluminescent dosimeters are used in brachytherapy services quality assurance programs, with the aim of guaranteeing the correct radiation dose supplied to cancer patients, as well as with the purpose of evaluating new clinical procedures. This work describes a methodology for thermoluminescent dosimeters calibration in terms of absorbed dose to water for 192 Ir high dose rate sources. The reference dose used is measured with an ionization chamber previously calibrated for 192 Ir energy quality, applying the methodology proposed by Toelli. This methodology aims to standardizing the procedure, in a similar form to that used for external radiotherapy. The work evolves the adaptation of the TRS-277 Code of the International Atomic Energy Agency, for small and big cavities, through the introduction for non-uniform experimental factor, for the absorbed dose in the neighborhood of small brachytherapy sources. In order to simulate a water medium around the source during the experimental work, an acrylic phantom was used. It guarantees the reproducibility of the ionization chamber and the thermoluminescent dosimeter's location in relation to the radiation source. The values obtained with the ionization chamber and the thermoluminescent dosimeters, exposed to a 192 Ir high dose rate source, were compared and correction factors for different source-detector distances were determined for the thermoluminescent dosimeters. A numeric function was generated relating the correction factors and the source-detector distance. These correction factors are in fact the thermoluminescent dosimeter calibration factors for the 192 Ir source considered. As a possible application of this calibration methodology for thermoluminescent dosimeters, a practical range of source-detector distances is proposed for quality control of 192 Ir high dose rate sources. (author)

  8. Dose rate effect on the yield of radiation induced response with thermal fading

    International Nuclear Information System (INIS)

    Chernov, V.; Rogalev, B.; Barboza-Flores, M.

    2005-01-01

    A model describing the dependences of the accumulation of thermally unstable radiation induced defects on the dose and dose rate is proposed. The model directly takes into account the track nature of the ionizing radiation represented as accumulation processes of defects in tracks averaged over a crystal volume considering various degrees of overlapping in space and time. The accumulation of the defects in the tracks is phenomenologically described. General expressions are obtained that allows radiation yield simulation of defects involving known creation and transformation processes. The cases considered, of linear accumulation (constant increment of the defects in tracks) and accumulation with saturation (complete saturation of the defects in one track), lead to a set of linear dose dependences with saturation, which are routinely used in luminescence and ESR dating. The accumulation, with increase of sensitivity in regions overlapped by two or more tracks, gave a set of dose dependences, from linear-sublinear-linear-saturation, distinctive of quartz up to linear-supralinear-linear-saturation. It is shown that the effect of the dose rate on dose dependences is determined by a dimensionless parameter a=Pτ/D0, where P is the dose rate, τ is the defect lifetime and D0 is the track dose. At a-bar 1 the dose rate influences basically the accumulation of thermally unstable defects. In the reverse case the dose dependences did not seems to be influenced by the dose rate

  9. High dose radiation damage in nuclear energy structural materials investigated by heavy ion irradiation simulation

    International Nuclear Information System (INIS)

    Zheng Yongnan; Xu Yongjun; Yuan Daqing

    2014-01-01

    Structural materials in ITER, ADS and fast reactor suffer high dose irradiations of neutrons and/or protons, that leads to severe displacement damage up to lOO dpa per year. Investigation of radiation damage induced by such a high dose irradiation has attracted great attention along with the development of nuclear energy facilities of new generation. However, it is deeply hampered for the lacking of high dose neutron and proton sources. Irradiation simulation of heavy ions produced by accelerators opens up an effective way for laboratory investigation of high dose irradiation induced radiation damage encountered in the ITER, ADS, etc. Radiation damage is caused mainly by atomic displacement in materials. The displacement rate of heavy ions is about lO 3 ∼10 7 orders higher than those of neutrons and protons. High displacement rate of heavy ions significantly reduces the irradiation time. The heavy ion irradiation simulation technique (HIIS) technique has been developed at China Institute of Atomic Energy and a series of the HIIS experiments have been performed to investigate radiation damage in stainless steels, tungsten and tantalum at irradiation temperatures from room temperature to 800 ℃ and in the irradiation dose region up to 100 dpa. The experimental results show that he radiation swelling peak for the modified stainless steel appears in the temperature region around 580 ℃ and the radiation damage is more sensitive to the temperature, the size of the radiation induced vacancy cluster or void increase with the increasing of the irradiation dose, and among the three materials the home-made modified stainless steel has the best radiation resistant property. (authors)

  10. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  11. Assessment of terrestrial gamma radiation dose rate (TGRD) of Kelantan State, Malaysia. Relationship between the geological formation and soil type to radiation dose rate

    International Nuclear Information System (INIS)

    Garba, N.N.; Gabdo, H.T.; Federal College of Education, Yola

    2014-01-01

    Terrestrial gamma radiation dose rates (TGRD) of Kelantan State were measured in situ using a portable [NaI(TI)] micro roentgen (μR) survey meter. The TGRD rates ranged between 44 and 500 nGy h -1 with a mean value of 209 ± 8 nGy h -1 . The distribution of these measurements in various districts of the state shows the statistically the influence of geology and soil types on the dose rate values. The data obtained could be used in formulating safety standard and radiological guidelines. (author)

  12. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  13. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    Science.gov (United States)

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation

    International Nuclear Information System (INIS)

    DeWeese, Theodore L.; Walsh, Jonathan C.; Dillehay, Larry E.; Kessis, Theodore D.; Hedrick, Lora; Cho, Kathleen R.; Nelson, William G.

    1997-01-01

    Purpose: Low-dose-rate radiation therapy has been widely used in the treatment of urogenital malignancies. When continuously exposed to low-dose-rate ionizing radiation, target cancer cells typically exhibit abnormalities in replicative cell-cycle progression. Cancer cells that arrest in the G2 phase of the cell cycle when irradiated may become exquisitely sensitive to killing by further low-dose-rate radiation treatment. Oncogenic human papillomaviruses (HPVs), which play a major role in the pathogenesis of uterine cervix cancers and other urogenital cancers, encode E6 and E7 transforming proteins known to abrogate a p53-dependent G1 cell-cycle checkpoint activated by conventional acute-dose radiation exposure. This study examined whether expression of HPV E6 and E7 oncoproteins by cancer cells alters the cell-cycle redistribution patterns accompanying low-dose-rate radiation treatment, and whether such alterations in cell-cycle redistribution affect cancer cell killing. Methods and Materials: RKO carcinoma cells, which contain wild-type P53 alleles, and RKO cell sublines genetically engineered to express HPV E6 and E7 oncoproteins, were treated with low-dose-rate (0.25-Gy/h) radiation and then assessed for p53 and p21WAF1/CIP1 polypeptide induction by immunoblot analysis, for cell-cycle redistribution by flow cytometry, and for cytotoxicity by clonogenic survival assay. Results: Low-dose-rate radiation of RKO carcinoma cells triggered p53 polypeptide elevations, p21WAF1/CIP1 induction, and arrest in the G1 and G2 phases of the cell cycle. In contrast, RKO cells expressing E6 and E7 transforming proteins from high-risk oncogenic HPVs (HPV 16) arrested in G2, but failed to arrest in G1, when treated with low-dose-rate ionizing radiation. Abrogation of the G1 cell-cycle checkpoint activated by low-dose-rate radiation exposure appeared to be a characteristic feature of transforming proteins from high-risk oncogenic HPVs: RKO cells expressing E6 from a low

  15. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    Science.gov (United States)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  16. Evaluation of LiF:Mg,Ti (TLD-100 for Intraoperative Electron Radiation Therapy Quality Assurance.

    Directory of Open Access Journals (Sweden)

    Raffaele Liuzzi

    Full Text Available Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs response to intraoperative electron radiation therapy (IOERT beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters.LiF:Mg,Ti dosimeters (TLD-100 were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2 Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy.The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05.This study demonstrates that the TLD dose response, for doses ≤10 Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.

  17. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  18. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  19. Controversies in external beam and high dose rate brachytherapy of oesophageal cancer

    International Nuclear Information System (INIS)

    Sur, R.K.; Levin, V.C.; Malas, Simon; Donde, Bernard

    1994-01-01

    Various controversies in the treatment of oesophageal carcinoma with external beam radiotherapy and high dose rate intracavitary irradiation have been reviewed. Conflicting results from different parts of the world has made it difficult to optimize the radiation dose that may give the best results. More studies and longer follow-up are needed before a definite conclusion can be made on the optimization of dose. (author). 18 refs., 2 tabs

  20. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures

  1. Conventional external beam radiation therapy and high dose rate afterloading brachytherapy as a boost for patients older than 70 years

    International Nuclear Information System (INIS)

    Pellizzon, Antonio Cassio Assis; Salvajoli, Joao Vitor; Fogaroli, Ricardo Cesar; Novaes, Paulo Eduardo R.S.; Maia, Maria Aparecida Conte; Ferrigno, Robson

    2005-01-01

    The treatment options for patients with non metastatic prostate cancer range from observation, radical prostatectomy, radiation therapy, hormonal therapy to various combination of some to all of them. Objective: we evaluated the impact on biochemical control of disease (bNED), acute and late intestinal (GI) and urological (GU) morbidity for a group of patients older than 70 years presenting initial or locally advanced prostate cancer treated with fractionated high dose rate brachytherapy (HDRB) as a boost to conventional external beam radiation therapy (RT) at the Department of Radiation Oncology from Hospital do Cancer A. C. Camargo, Sao Paulo, Brazil. Methods: a total of 56 patients older than 70 were treated from March, 1997 to June, 2002. All patients had prior to HDRB a course of RT to a median dose of 45 Gy. HDRB doses ranged from 16 Gy to 20 Gy, given in 4 fractions. Results: the median age of the patients was 74.4 years (range 70-83) and the median follow-up 33 months (range 24 to 60). The 5-year actuarial bNED rate was 77%. Acute GU and GI morbidity G1-2 were seen in 17.8% and 7.1% of patients, respectively. Late G1 or G2 GU morbidity was seen in 10.7% of the patients, while late G3 morbidity was observed in 7.1% of the patients, represented by urethral strictures. Conclusion: this group of patients had similar bNED rates when compared to literature, with acceptable morbidity rates. (author)

  2. Radiation Protection Considerations about gamma probe-guided intraoperative sentinel lymph node surgery

    International Nuclear Information System (INIS)

    Rodriguez, C.; Jimenez-Hoyuela Garcia, J. L.; Rebollo Aguirre, J. M.; Custodio, A.

    2002-01-01

    The sentinel node concept is based on the sequential dissemination hypothesis. According to it, there's a lymph node (named sentinel node) which is the first receiving cancer cells metastasizing from a primary tumor. Further, others nodes sequentially located might be affected. Surgical performance for several types of cancer includes the complete removal of the tumor and a complete local lymph node dissection (LND). so removing and analyzing the sentinel node may avoid the complete LND. To locate the sentinel node, it's usual the local administration (intradermal injection) of a radiopharmaceutical Tc-99, sulfur colloid (activity about 1 mCi( several hours prior to surgery, and using an intraoperative gamma probe very sensitive to the gamma radiation. Although the activity is injected by the Nuclear Medicine staff, and be exposed to the gamma radiation. In this study we estimated maximum possible doses that would be received by personnel (surgical staff during surgery and pathologists during lumpectomy of the sentinel node). For the surgical staff, to avoid dose errors due to the very low residual activities and not to interfere with the personnel in the surgery room, we estimated doses by taking into account only the physical decay of Tc99m injected. for the pathologists, we estimated the residual activity in the sentinel node with the gamma probe. The highest effective dose rate found was to the surgeon (o,44 μSv/h, respectively. so a surgeon could perform 407 hours/yr, and a pathologist 1717 hours/yr, dedicated exclusively to sentinel node biopsy, before being classified as professionally exposed to radiation, and 4070 and 17170 hours per year, respectively, to surpass the annual limits (national regulations of the European Communities). In short, radiation doses to clinical staff involved in the technique are low, and in normal conditions, by establishing appropriate procedures (precautions during surgery, during manipulation surgical specimen...) control

  3. Dependence of total dose response of bipolar linear microcircuits on applied dose rate

    International Nuclear Information System (INIS)

    McClure, S.; Will, W.; Perry, G.; Pease, R.L.

    1994-01-01

    The effect of dose rate on the total dose radiation hardness of three commercial bipolar linear microcircuits is investigated. Total dose tests of linear bipolar microcircuits show larger degradation at 0.167 rad/s than at 90 rad/s even after the high dose rate test is followed by a room temperature plus a 100 C anneal. No systematic correlation could be found for degradation at low dose rate versus high dose rate and anneal. Comparison of the low dose rate with the high dose rate anneal data indicates that MIL-STD-883, method 1019.4 is not a worst-case test method when applied to bipolar microcircuits for low dose rate space applications

  4. Audits in high dose rate brachytherapy in Brazil

    International Nuclear Information System (INIS)

    Marechal, M.H.; Rosa, L.A.; Velasco, A.; Paiva, E. de; Goncalves, M.; Castelo, L.C.

    2002-01-01

    The lack of well established dosimetry protocols for HDR sources is a point of great concern regarding the uniformity of procedures within a particular country. The main objective of this paper is to report the results of an implementation of the audit program in dosimetry of high dose rate brachytherapy sources used by the radiation therapy centers in Brazil. In Brazil, among 169 radiotherapy centers, 35 have HDR brachytherapy systems. This program started in August 2001 and until now eight radiotherapy services were audited. The audit program consists of the visit in loco to each center and the evaluation of the intensity of the source with a well type chamber specially design for HDR 192 Ir sources. The measurements was carried out with a HDR1000PLUS Brachytherapy Well Type Chamber and a MAX 4000 Electrometer, both manufactured by Standard Imaging Inc. The chamber was calibrated in air kerma strength by the Accredited Dosimetry Calibration Laboratory, Department of Medical Physics, University of Wisconsin in the USA. The same chamber was calibrated in Brazil using a 192 lr high dose rate source whose intensity was determined by 60 Co gamma rays and 250 kV x rays interpolation methodology. The Nk of 60 Co and 250 kV x rays were provided by the Brazilian National Standard Laboratory for Ionizing Radiation (LMNRI)

  5. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products

    International Nuclear Information System (INIS)

    Vargas, J.; Vivanco, M.; Castro, E.

    2014-08-01

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  6. Intraoperative radiation therapy in gynecologic cancer: update of the experience at a single institution

    International Nuclear Information System (INIS)

    Garton, Graciela R.; Gunderson, Leonard L.; Webb, Maurice J.; Wilson, Timothy O.; Cha, Stephen S.; Podratz, Karl C.

    1997-01-01

    Purpose: To update the Mayo Clinic experience with intraoperative radiation therapy (IORT) in patients with gynecologic cancer. Methods and Materials: Between January 1983 and June 1991, 39 patients with recurrent or locally advanced gynecologic malignancies received intraoperative radiation therapy with electrons. The anatomical area treated was pelvis (side walls or presacrum) or periaortic nodes or a combination of both. In addition to intraoperative radiation therapy, 28 patients received external beam irradiation (median dose, 45 Gy; range, 0.9 to 65.7 Gy), and 13 received chemotherapy preoperatively. At the time of intraoperative radiation therapy and after maximum debulking operation, 23 patients had microscopic residual disease and 16 had gross residual disease up to 5 cm in thickness. Median follow-up for surviving patients was 43.4 months (range, 27.1 to 125.4 months). Results: The 5-year actuarial local control with or without central control was 67.4%, and the control within the IORT field (central control) was 81%. The risk of distant metastases at 5 years was 52% (82% in patients with gross residual disease and 33% in patients with only microscopic disease postoperatively). Actuarial 5-year overall survival and disease-free survival was 31.5 and 40.5%, respectively. Patients with microscopic disease had 5-year disease-free and overall survival of 55 and 50%, respectively. Grade 3 toxicity was directly associated with IORT in six patients (15%). Conclusion: Patients with local, regionally recurrent gynecologic cancer may benefit from maximal surgical debulking and IORT with or without external beam irradiation, especially those with microscopic residual disease

  7. A basic study of intraoperative radiation on the stomach

    International Nuclear Information System (INIS)

    Aoki, Tetsuya

    1978-01-01

    In a basic study of intraoperative radiation on the stomach, adult dogs were laparotomized, and radiated on the stomach and gastroduodenal anastomosed part with an electron beam to 1,000 - 4,000 rads to observed its effects on hematologic and histologic findings. 1) No leukopenia occurred with the radiation, but secondary effects such as anemia and hypoproteinemia were noted. 2) On the gastric wall, the mucosa was most severely effected by the radiation, presenting such changes as erosion, atrophy, disappearance of glandular tissue, and fibrosis with the lapse of time. 3) The radiation on the stomach to 3,000 rads was followed by ulceration in one month, by the start of repair of the ulceration in three months, and by its healing in eight months. Histologic examination disclosed no evident damages to the blood vessels by the radiation. 4) Delayed healing of the anastomosed part was noted as an effect of the radiation on this part. 5) The findings in this experiment appear to suggest that the single tolerable dose of electron beam radiation on the stomach and the gastroduodenal anastomosed part should be 3,000 rads. (author)

  8. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  9. Postoperative vaginal irradiation with high dose rate afterloading technique in endometrial carcinoma stage I

    International Nuclear Information System (INIS)

    Sorbe, B.G.; Smeds, A.C.

    1990-01-01

    A high dose rate ( 60 Co) afterloading technique was used for postoperative prophylactic vaginal irradiation in a series of 404 women with endometrial carcinoma Stage I. The total recurrence rate was 3.7% with 0.7% vaginal deposits. The crude 5-year survival rate for the complete series was 91.8% compared to 13.3% for those with recurrences. Depth of myometrial infiltration (greater than 1/3 of the uterine wall) and nuclear grade were the most important prognostic factors. Clinically significant late radiation reactions (bladder and/or rectum) were recorded in 6.9%. Dose per fraction and the size of the target volume were highly significantly related to the occurrence of both early and late radiation reactions. Vaginal shortening is closely related to the dose per fraction, length of the reference isodose, and the applicator diameter. The shape of the vaginal applicator versus the isodoses and the importance of the source train geometry and relative activity for dose gradient inhomogeneities within the target volume are discussed. Cumulative radiation effect (CRE) and linear-quadratic (LQ) calculations have been performed and related to tissue reactions within the target volume and in the risk organs. An alpha-beta quotient of 8.8 for vaginal shrinkage effect and 2.0 for late rectal complications are suggested on the basis of calculations using a maximum likelihood method for quantal radiation data

  10. Dose measurement, its distribution and individual external dose assessments of inhabitants in the high background radiation areas in China

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2000-01-01

    As a part of the China-Japan cooperative research on natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external exposure to natural radiation in the high background radiation areas (HBRA) of Yangjiang in Guangdong province and in the control areas (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by personal dosimeters, an indirect method was applied in which the exposed individual doses were estimated from the environmental radiation doses measured by survey meters and the occupancy factors of each hamlet. We analyzed the dose in the hamlets and the variation in the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and several hamlets of different dose levels in HBRA and Hampizai hamlet in CA. With these parameters, we estimated individual dose rates and compared them with those obtained from direct measurement using dosimeters carried by selected individuals. The results obtained are as follows. The environmental radiation doses are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiations. The indoor radiation doses were due to exposure from the natural radioactive nuclides in the building materials and were about two times as large as the outdoor radiation doses. The difference between indoor and outdoor doses was not observed in CA. The occupancy factor was influenced by the age of individuals and by the season of the year. The occupancy factor was higher for infants and aged individuals than for other age groups. This lead to higher dose rates of exposure to those age groups. A good correlation was observed between the dose assessed indirectly and that measured directly and the

  11. Dose measurement, its distribution and individual external dose assessments of inhabitants in the high background radiation areas in China

    Energy Technology Data Exchange (ETDEWEB)

    Morishima, Hiroshige; Koga, Taeko [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.; Tatsumi, Kusuo; Nakai, Sayaka; Sugahara, Tsutomu; Yuan Yongling; Wei Luxin

    2000-10-01

    As a part of the China-Japan cooperative research on natural radiation epidemiology, we have carried out a dose-assessment study to evaluate the external exposure to natural radiation in the high background radiation areas (HBRA) of Yangjiang in Guangdong province and in the control areas (CA) of Enping prefecture since 1991. Because of the difficulties in measuring the individual doses of all inhabitants directly by personal dosimeters, an indirect method was applied in which the exposed individual doses were estimated from the environmental radiation doses measured by survey meters and the occupancy factors of each hamlet. We analyzed the dose in the hamlets and the variation in the occupancy factors to obtain the parameters of dose estimation on the inhabitants in selected hamlets; Madi and several hamlets of different dose levels in HBRA and Hampizai hamlet in CA. With these parameters, we estimated individual dose rates and compared them with those obtained from direct measurement using dosimeters carried by selected individuals. The results obtained are as follows. The environmental radiation doses are influenced by the natural radioactive nuclide concentrations in building materials, the age of the building and the arrangement of the houses in a hamlet. There existed a fairly large and heterogeneous distribution of indoor and outdoor environmental radiations. The indoor radiation doses were due to exposure from the natural radioactive nuclides in the building materials and were about two times as large as the outdoor radiation doses. The difference between indoor and outdoor doses was not observed in CA. The occupancy factor was influenced by the age of individuals and by the season of the year. The occupancy factor was higher for infants and aged individuals than for other age groups. This lead to higher dose rates of exposure to those age groups. A good correlation was observed between the dose assessed indirectly and that measured directly and the

  12. Characterization of a team intraoperative Radiation therapy and measurement of dose in skin with film radiochromic

    International Nuclear Information System (INIS)

    Onses Segarra, A.; Sancho Kolster, I.; Eraso Urien, A.; Pla Farnos, M. J.; Picon Olmos, C.

    2015-01-01

    This paper presents the results of the initial reference state of intraoperative radiotherapy equipment lntraBeam, for performing breast treatments are analyzed. To the initial reference team was established for the following dosimetric and geometric beam parameters: percentage depth dose, beam quality, isotropy, linearity and mechanical and geometric integrity for both the source RX as for different spherical applicators of the team. Based on these checks, a program of periodic quality control was established. One of the exclusion criteria for this treatment is that the tumor is less than l cm of the skin, yaque give doses received in this organ can be high. For this reason it is important to know exactly the absorbed dose in skin during these treatments. In this regard we have implemented a system for measuring the skin dose during treatment with Radiochromic film, placing 4 film segments in fixed positions of the skin around the surgical incision. It .ha obtained calibration curve of sterilized films and compared the results with a calibration beam megavoltage. The results of the skin dose measurements are compared with theoretical estimates given by the planning system equipment. The results indicate the need to measure individually the skin dose for these treatments. (Author)

  13. Analysis of radiation risk to patients from intra-operative use of the mobile X-ray system (C-arm

    Directory of Open Access Journals (Sweden)

    Yang-Sub Lee

    2015-01-01

    Full Text Available Background: The aim of this study was to investigate clinical applications of mobile C-arms and consequent radiation risk, to increase medical attention on radiation protection, and to provide basic data for safe radiation use in the operating room. Materials and Methods: In this study, a total of 374 surgical operations, conducted using a portable fluoroscopic X-ray system from January to March of 2013, were analyzed. Dose summaries produced by the General Electric C-arm and data elements in digital imaging and communications in the medicine header of Ziehm C-arm, fluoroscopy time were used to obtain dose-area product (DAP and effective dose. Corresponding mean and maximum values were calculated, and the resulting data on the frequency of application, fluoroscopy time, DAP, and effective dose were compared and analyzed in terms of surgical specialty and operation types. Results: Orthopedic surgery was the most frequent with 165 cases (44.1%. The highest DAP value and effective dose were found in liver transplant among surgical specialty fields, with mean values of 2.90 ± 3.76 mGy∙m 2 and 58 ± 75.2 mSv, respectively (P = 0.0001. The highest DAP value and effective dose were observed in intra-operative mesenteric portography among types of surgery, showing mean values of 2.90 ± 3.81 mGy∙m 2 and 58.03 ± 76.24 mSv, respectively (P = 0.0001. Conclusion: Because DAP varies significantly across surgical specialties and types of operation, aggressive efforts to understand the effects of radiation dose is critical for radiation protection from intra-operative use of mobile C-arms.

  14. Salvage high-dose-rate brachytherapy for local prostate cancer recurrence after radical radiotherapy

    Directory of Open Access Journals (Sweden)

    V. A. Solodkiy

    2016-01-01

    Full Text Available Studies salvage interstitial radiation therapy for recurrent prostate cancer, launched at the end of the XX century. In recent years, more and more attention is paid to high-dose-rate brachytherapy (HDR-BT as a method of treating local recurrence.The purpose of research – preliminary clinical results of salvage high-dose-rate brachytherapy applied in cases of suspected local recurrence or of residual tumour after radiotherapy.Preliminary findings indicate the possibility of using HDR-BT, achieving local tumor control with low genitourinary toxicity.

  15. Comparison of the measured radiation dose-rate by the ionization chamber and G (Geiger-Mueller) counter after radioactive lodine therapy in differentiated thyroid cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kwang Hun [Dept. of Nuclear Medicine, Kyungbuk National University Hospital, Daegu (Korea, Republic of); Kim, Kgu Hwan [Dept. of Radiological Technology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    Radioactive iodine(131I) treatment reduces recurrence and increases survival in patients with differentiated thyroid cancer. However, it is important in terms of radiation safety management to measure the radiation dose rate generated from the patient because the radiation emitted from the patient may cause the exposure. Research methods, it measured radiation dose-rate according to the elapsed time from 1 m from the upper abdomen of the patient by intake of radioactive iodine. Directly comparing the changes over time, high dose rate sensitivity and efficiency is statistically significant, and higher chamber than GM counter(p<0.05). Low dose rate sensitivity and efficiency in the chamber had lower levels than gm counter, but not statistically significant(p>0.05). In this study confirmed the characteristics of calibrated ionization chamber and GM counter according to the radiation intensity during high-dose radioactive iodine therapy by measuring the accurate and rapid radiation dose rate to the patient explains, discharged patients will be reduced to worry about radiation hazard of family and others person.

  16. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  17. Study on intraoperative radiotherapy of brain tumors

    International Nuclear Information System (INIS)

    Uozumi, Akimasa

    1990-01-01

    Effects of a single large dose radiation on the brain of dogs were investigated for the purpose of determining the optimal dose and radiation field in intraoperative radiotherapy. The right parietal lobe of dogs (three groups, four dogs in each) were radiated at the dose of 30, 40 and 50 Gy respectively at the depth of 1.5 cm by 11 Nev electron beam with field size of 2 cm. CT and histopathological study were performed 2, 6, 12 and 24 months after radiation. L-hemiparesis developed 14 months after radiation in the 30 Gy group and 8 months in the 40 Gy group, 6 months in the 50 Gy group. All animals in the 40 Gy and 50 Gy groups died before 15 months of radiation. CT showed delayed radiation necrosis in all groups. Brain swelling and ventricular displacement in the radiated hemisphere and contralateral ventricular dilatation were depicted on plain CT. Diffuse heterogeneous contrast enhancement (CE) was observed on CE-CT. CT revealed disappearance of radiation necrosis in the 30 Gy group 24 months of radiation, suggesting that radiation necrosis may be dependent on the term after radiation. Histological findings of radiation necrosis were similar in all animals, and the vascular change preceding the parechymal necrosis was not observed. This supports the theory that the vascular alternation dose not play a major role in the production of radiation necrosis. The necrotic area grossly reflected the isodose curve and was observed in the radiation field with 15 to 20 Gy at the depth of 3 to 4.5 cm. Thus, the intraoperative radiotherapy should be planned on the basis of two such factors as electron beam energy and the field size, and the area out of the target should not be radiated at the dose of more than 15 Gy. The author believes that the information would contribute to safer and more effective application of intraoperative radiotherapy on malignant brain tumors. (J.P.N.) 63 refs

  18. A consideration of distributions and treatment schedules in high dose rate intracavitary therapy of carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Sakata, Suoh; Sato, Sigehiro; Nakano, Masao; Iida, Koyo; Yui, Nobuharu

    1979-01-01

    A remotely controlled afterloading device for high dose rate intracavitary radiation, the remote afterloader Shimadzu Ralstron MTSW-20, was installed at Chiba Cancer Center Hospital in 1973 and put into clinical use for the treatment of carcinoma of the uterine cervix. Before the clinical use, isodose distributions and treatment schedules were investigated, compared with the low dose rate intracavitary radiation by linear sources of 137 Cs used hitherto. The isodose distributions, calculated by using an electronic computer, for various combinations of the length of uterine canal and the separation of vaginal applicators, were the same as those obtained with linear sources. As for the treatment schedules, by using PT (partial tolerance) which was derived from NSD concept of Ellis, a number of fractional radiation regimes with high dose rate, equivalent to continuous low dose rate radiation, was calculated. From these, a dose of 600 rad per fraction to point A every week has been chosen as the standard radiation schedule. The number of fractions has been varied with the clinical stages. Furthermore, some changes of total dose or small modification of dose distribution have been made for individual lesions. According to the preliminary results, three-year cumulative survival rate was 68.7% and complication rate was 15.2%. Comparing these results with those of the treatment at low dose rate, the former is nearly equal, while the latter is lower. The reduction of complication rate is probably due to the improvement of therapeutic techniques such as continuous observation by fractionated intracavitary radiation, variety of isodose distributions and accuracy of source placement by a short treatment time. (author)

  19. Pre-installation empirical testing of room shielding for high dose rate remote afterloaders

    International Nuclear Information System (INIS)

    Klein, E.E.; Grigsby, P.W.; Williamson, J.F.; Meigooni, A.S.

    1993-01-01

    PURPOSE: Many facilities are acquiring high dose rate remote afterloading units. It is economical that these units be placed in existing shielded teletherapy rooms. Scatter-radiation barriers marginally protect uncontrolled areas from a high dose rate source especially in a room that houses a non-dynamic Cobalt-60 unit. In addition the exact thickness and material composition of the barriers are unknown and therefore, a calculation technique may give misleading results. Also, it would be impossible to evaluate an entire wall barrier by taking isolated core samples in order to assist in the calculations. A quick and inexpensive measurement of dose equivalent using a rented high activity 192Ir source evaluates the barriers and locates shielding deficiencies. METHODS AND MATERIALS: We performed transmission calculations for primary and scattered radiation based on National Council on Radiation Protection and Measurements Reports 49 and 51, respectively. We then rented a high activity 21.7 Ci (8.03 x 10(11) Bq) Ir-192 source to assess our existing teletherapy room shielding for adequacy and voids. This source was placed at the proposed location for clinical high dose rate treatment and measurements were performed. RESULTS: No deficiencies were found in controlled areas surrounding the room, but large differences were found between the calculated and measured values. Our survey located a region in the uncontrolled area above the room requiring augmented shielding which was not predicted by the calculations. A canopy shield was designed to potentially augment the shielding in the ceiling direction. CONCLUSION: Pre-installation testing by measurement is an invaluable method for locating shielding deficiencies and avoiding unnecessary enhancement of shielding particularly when there is lack of information of the inherent shielding

  20. An experimental attenuation plate to improve the dose distribution in intraoperative electron beam radiotherapy for breast cancer.

    Science.gov (United States)

    Oshima, T; Aoyama, Y; Shimozato, T; Sawaki, M; Imai, T; Ito, Y; Obata, Y; Tabushi, K

    2009-06-07

    Intraoperative electron beam radiotherapy (IOERT) is a technique in which a single-fraction high dose is intraoperatively delivered to subclinical tumour cells using an electron beam after breast-conserving surgery. In IOERT, an attenuation plate consisting of a pair of metal disks is commonly used to protect the normal tissues posterior to the breast. However, the dose in front of the plate is affected by backscatter, resulting in an unpredictable delivered dose to the tumour cells. In this study, an experimental attenuation plate, termed a shielding plate, was designed using Monte Carlo simulation, which significantly diminished the electron beam without introducing any backscatter radiation. The plate's performance was verified by measurements. It was made of two layers, a first layer (source side) of polymethyl methacrylate (PMMA) and a second layer of copper, which was selected from among other metals (aluminium, copper and lead) after testing for shielding capability and the range and magnitude of backscatter. The optimal thicknesses of the PMMA (0.71 cm) and copper (0.3 cm) layers were determined by changing their thicknesses during simulations. On the basis of these results, a shielding plate was prototyped and depth doses with and without the plate were measured by radiophotoluminescence glass dosimeters using a conventional stationary linear accelerator and a mobile linear accelerator dedicated for IOERT. The trial shielding plate functioned as intended, indicating its applicability in clinical practice.

  1. Monitoring of dose rates and radiation flux density in working rooms

    International Nuclear Information System (INIS)

    Krajtor, S.N.

    1980-01-01

    The problems of determining the neutron field characteristics (dose equivalent rate and flux density) in relation to the environmental monitoring by radiation protection services. The measurement devices used for measuring dose equivalent rate and neutron flux density RUS-U8 multi-purpose scintillation radiometer and RUP-1 multi-purpose transportable radiometer as well as measurement technique are described. Recommendations are given for checking measuring devices calibration, registering measurement results [ru

  2. The evaluation the magnitude radiation exposure dose rate in digital radiography room design

    Science.gov (United States)

    Dwiyanto, Agung; Setia Budi, Wahyu; Hardiman, Gagoek

    2017-12-01

    This study discusses the dose rate in digital radiography room, buit according to meet the provisions of KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation of BAPETEN No. 8 / 2011. The provisions primary concern of radiation safety, not comfort, by considering the space design. There are five aspects to consider in designing the space: functionality, comfort, security, movement activities and aesthetics. However provisions only met three aspects of the design, which are a function, security and movement activity. Therefore, it is necessary to evaluate digital radiography room in terms of its ability to control external radiation exposure to be safe and comfortable The dose rate is measured by the range of primary and secondary radiation in the observation points by using Surveymeter. All data are obtained by the preliminary survey prior to the study. Furthermore, the review of digital radiography room is done based on architectural design theory. The dose rate for recommended improvement room is recalculated using the same method as the actual room with the help of computer modeling. The result of dose rate calculation at the inner and outer part of digital radiography observation room shows that in-room dose for a week at each measuring point exceeds the allowable dose limit both for staff and public. During a week of observation, the outdoor dose at some measuring points exceeds the dose limit set by the KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation BEPETEN No 8/2011. Meanwhile, the result of dose rate calculation in the inner and outer part of the improved digital radiography room can meet the applicable regulations better.

  3. Dose volume relationships for intraoperatively irradiated saphenous nerve

    International Nuclear Information System (INIS)

    Gillette, E.L.; Powers, B.E.; Gillette, S.M.; Thames, H.D.; Childs, G.; Vujaskovic, Z.; LaRue, S.M.

    1995-01-01

    Purpose/Objective: Intraoperative radiation therapy (IORT) is used to deliver high single doses of radiation to the tumor bed following surgical removal of various abdominal malignancies. The advantage of IORT is the ability to remove sensitive normal tissues from the treatment field and to limit the volume of normal tissue irradiated. The purpose of this study was to determine dose-volume relationships for retroperitoneal tissues. Materials and methods: 134 adult beagle dogs were irradiated to the surgically exposed paraaortic area. Normal tissues included in the treatment field were aorta, peripheral nerve, ureter, bone and muscle. Groups of 4 - 8 dogs were irradiated to doses ranging from 18 - 54 Gy for a 2x5 cm field, from 12 - 46 Gy for a 4x5 cm field, and 12 - 42 Gy to an 8x5 cm field. The radiations were done using 6 MeV electrons from a linear accelerator. Dogs were observed for three years after radiation. Electrophysiologic procedures were done prior to irradiation and annually following irradiation. The procedures included electromyography of the pelvic limb and paralumbar muscles supplied by the L1 to S1 spinal nerves to determine presence and degree of motor unit disease. Motor nerve conduction velocities of the proximal and distal sciatic nerves were determined. Sensory nerve conduction velocities of the saphenous nerve were also determined. Evoked lumbosacral and thoraco-lumbar spinal cord potentials were evaluated following stimulation of the left sciatic nerve. In addition to electrophysiologic studies, neurologic examinations were done prior to treatment and at six month intervals for the three year observation period. At the three year time period, dogs were euthanatized, sections of peripheral nerve taken, routinely processed, stained with Masson's trichrome and evaluated histomorphometrically using point count techniques. Results: Twenty-two dogs were euthanatized prior to the three year observation period due to peripheral nerve damage

  4. Australian high-dose-rate brachytherapy protocols for gynaecological malignancy

    International Nuclear Information System (INIS)

    MacLeod, C.; Dally, M.; Stevens, M.; Thornton, D.; Carruthers, S.; Jeal, P.

    2001-01-01

    There is no consensus over the optimal dose fractionation schedules for high-dose-rate (HDR) brachytherapy used for gynaecological malignancy. In Australian public hospital departments of radiation oncology, HDR brachytherapy for gynaecological cancer is being more commonly used. A survey of public departments that are using this technology, or that plan to introduce this technology, was performed. Their current protocols are presented. In general, protocols are similar biologically; however, the practical aspects such as the number of fractions given do vary and may reflect resource restrictions or, alternatively, differences in interpretations of the literature and of the best protocols by clinicians. Copyright (2001) Blackwell Science Pty Ltd

  5. Factors impacting short and long-term kidney graft survival: modification by single intra-operative -high-dose induction with ATG-Fresenius.

    Science.gov (United States)

    Kaden, Jürgen; May, Gottfried; Völp, Andreas; Wesslau, Claus

    2011-01-01

    A majority of recipients benefited from the intra-operative single high-dose induction (HDI) with ATG-Fresenius (ATG-F) still leaving a group of recipients who did not profit from this kind of induction. Therefore the aim of this retrospective analysis was 1st to identify the risk factors impacting short and long-term graft survival, and 2nd to assess the efficacy of this type of induction in kidney graft recipients with or without these risk factors. A total of 606 recipients receiving two different immunosuppressive treatment regimens (1st: Triple drug therapy [TDT, n=196] consisting mainly of steroids, azathioprine and cyclosporine; 2nd: TDT + 9 mg/kg ATG-F intra-operatively [HDI, n=410]) were included in this analysis and grouped according to their kidney graft survival time (short GST: ≤1 yr, n=100 and long GST: >5 yrs, n=506). The main risk factors associated with a shortened graft survival were pre-transplant sensitization, re-transplantation, rejections (in particular vascular or mixed ones) and the necessity of a long-term anti-rejection therapy. Adding ATG-F single high dose induction to TDT was more efficient in prolonging kidney graft survival than TDT alone not only in recipients without any risk factors (p<0.005) but also in recipients with at least one risk factor (p<0.021). Only in 4.6% of recipients having two or more risk factors this effect could not be demonstrated. The intra-operative single high-dose induction with ATG-F significantly improves the kidney graft survival in recipients with or without risk factors and can therefore be recommended.

  6. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia

    International Nuclear Information System (INIS)

    Sanusi, M.S.M.; Ramli, A.T.; Gabdo, H.T.; Garba, N.N.; Heryanshah, A.; Wagiran, H.; Said, M.N.

    2014-01-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h −1 to 500 nGy h −1 . The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h −1 . This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h −1 (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. - Highlights: • A methodology is presented to reduce terrestrial gamma dose rate field survey. • Geological background of acid intrusive of granitic type has the highest dose rates. • The mean dose rate is 2 times higher than the world average. • Isodose map of terrestrial gamma radiation for Selangor, Kuala Lumpur and Putrajaya was produced

  7. Predicting radiation effects on the development of leukemic stem cells based on studies of leukemias induced by high- and low-dose-rate radiation

    International Nuclear Information System (INIS)

    Hirouchi, Tokuhisa

    2012-01-01

    One of the most important causes of radiation-induced cancers, particularly leukemia, is gene mutations resulting from single and double strand breaks in the DNA. Tanaka et al. (2003) reported life shortening in specific pathogen free male and female B6C3F1 mice continuously exposed to γ rays at a low dose rate of 20 mGy/22 h/d for 400 days from 8 weeks of age. Early death due to cancer, mostly malignant lymphomas, was observed in both sexes. A significant increase in the incidence of myeloid leukemia, resulting in early death, was also reported in males. It is expected however, that at 20 mGy/22 h/d, which is equivalent to a dose of 15 μGy/min, DNA strand breaks induced in these cells are repaired soon after they occur. Murine leukemias induced by high-dose-rate radiation were also found in males, and 80% of the mice with leukemia had hemizygous deletions in chromosome 2 around the PU.1 gene and they appeared to be derived from DNA strand breaks. Majority of these leukemia showing hemizygous deletions in chromosome 2 revealed point mutations in the remaining alleles resulting in PU.1 inactivation, which was reported to be related to leukemogenesis. These point mutations are assumed to be independent of DNA strand breaks that occur immediately after irradiation, as they appear at later time after irradiation. This review discusses the effect of radiation-induced DNA strand breaks and also mutagenesis induced independently of DNA strand breaks in hematopoietic cells contributing to the development of the first leukemic stem cell. (author)

  8. Problems Concerning Dose Assessments in Epidemiology of High Background Radiation Areas of Yangjiang, China (invited paper)

    International Nuclear Information System (INIS)

    Wei, L.X.; Yuan, Y.L.

    1998-01-01

    The purpose of this study on radiation levels and dose assessments in the epidemiology of a high background radiation area (HBRA) and the control area (CA) is to respond to the needs of epidemiology in these areas, where the inhabitants are continuously exposed to low dose, low dose rate ionising radiation. A brief description is given of how the research group evaluated the feasibility of the investigation by analysing the population size and the radiation levels, how simple reliable methods were used to get the individual annual dose for every cohort member, and how the cohort members were classified into various dose groups for dose-effect relationship analysis. Finally, the use of dose group classification for cancer mortality studies is described. (author)

  9. Delivery of intraoperative radiation therapy after pneumonectomy: experimental observations and early clinical results

    International Nuclear Information System (INIS)

    Pass, H.I.; Sindelar, W.F.; Kinsella, T.J.

    1987-01-01

    Intraoperative radiation therapy (IORT) is capable of delivering high doses of radiation to mediastinal structures while sparing lung parenchyma, heart, and other locoregional tissues. A canine model of pulmonary resection and IORT was investigated by performing a pneumonectomy in 15 adult foxhounds followed by 0 cGy, 2000 cGy, 3000 cGy, 4000 cGy. No clinical complications developed in 4 animals in the 2000-cGy group. However, 2 of the 8 animals given a high dose died of esophageal hemorrhage or carinal necrosis. Esophagitis occurred in 10 of 12 animals, and none of the animals experienced bronchial stump dehiscence. In a limited Phase I protocol, 4 patients with non-small cell lung cancer were treated with resection and 2500 cGy of IORT to two separate ports encompassing the superior and inferior mediastinum. Two patients experienced life-threatening bronchopleural fistulas, and 2 patients died as a consequence of esophageal problems. One patients had recurrence with brain metastases, and the 1 long-term survivor is free from disease. As opposed to the animal model of thoracic IORT, the clinical study demonstrated major toxicity with respiratory and esophageal morbidity. The therapeutic usefulness of thoracic IORT in the management of lung cancer must be questioned in view of this small but consistent series of patients. Further carefully designed clinical studies using lower doses of IORT are needed

  10. The short term effects of Low-dose-rate Radiation on EL4 Lymphoma Cell

    International Nuclear Information System (INIS)

    Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chull; Choi, Moo Hyun; Choi, Seung Jin; Kim, Hee Sun; Lee, Kyung Mi

    2012-01-01

    To determine the biological effects of low-dose-rate radiation ( 137 Cs, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

  11. The short term effects of Low-dose-rate Radiation on EL4 Lymphoma Cell

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chull; Choi, Moo Hyun; Choi, Seung Jin; Kim, Hee Sun [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Seoul (Korea, Republic of); Lee, Kyung Mi [Global Research Lab, BAERI Institute, Dept. of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2012-06-15

    To determine the biological effects of low-dose-rate radiation ({sup 137}Cs, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

  12. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  13. Clastogenic effects in human lymphocytes exposed to low and high dose rate X-ray irradiation and vitamin C

    International Nuclear Information System (INIS)

    Konopacka, M; Rogolinski, J.

    2011-01-01

    In the present work we investigated the ability of vitamin C to modulate clastogenic effects induced in cultured human lymphocytes by X-irradiation delivered at either high (1 Gy/min) or low dose rate (0.24 Gy/min). Biological effects of the irradiation were estimated by cytokinesis-block micronucleus assay including the analysis of the frequency of micronuclei (MN) and apoptotic cells as well as calculation of nuclear division index (NDI). The numbers of micronucleated binucleate lymphocytes (MN-CBL) were 24.85 ± 2.67% and 32.56 ± 3.17% in cultures exposed to X-rays (2 Gy) delivered at low and high dose rates, respectively. Addition of vitamin C (1-20 μg/ml) to the medium of cultures irradiated with the low dose rate reduced the frequency of micronucleated lymphocytes with multiple MN in a concentration-dependent manner. Lymphocytes exposed to the high dose rate radiation showed a U-shape response: low concentration of vitamin C significantly reduced the number of MN, whereas high concentration influenced the radiation-induced total number of micronucleated cells insignificantly, although it increased the number of cells with multiple MN. Addition of vitamin C significantly reduced the fraction of apoptotic cells, irrespective of the X-ray dose rate. These results indicate that radiation dose rate is an important exposure factor, not only in terms of biological cell response to irradiation, but also with respect to the modulating effects of antioxidants. (authors)

  14. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  15. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  16. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  17. High-dose amrinone is required to accelerate rewarming from deliberate mild intraoperative hypothermia for neurosurgical procedures.

    Science.gov (United States)

    Inoue, Satoki; Kawaguchi, Masahiko; Sakamoto, Takanori; Kitaguchi, Katsuyasu; Furuya, Hitoshi; Sakaki, Toshisuke

    2002-07-01

    group were significantly faster and lower, respectively, than in the control group. Systemic vascular resistance in the AMR 15 group was smaller than in the control group throughout the study; on the other hand, only the value after the start of rewarming in the ReAMR group was smaller than in the control group. Amrinone at an infusion rate of 15 or 5 microg x kg(-1) x min(-1) with a reloading at the beginning of rewarming accelerated the rewarming rate of core temperature during deliberate mild hypothermia. This suggests that high-dose amrinone is required to accelerate rewarming from deliberate mild intraoperative hypothermia for neurosurgical procedures.

  18. HIGH-DOSE RATE BRACHYTHERAPY IN CARCINOMA CERVIX STAGE IIIB

    Directory of Open Access Journals (Sweden)

    Sathya Maruthavanan

    2016-07-01

    Full Text Available INTRODUCTION Radiotherapy is the standard treatment in locally advanced (IIB-IVA and early inoperable cases. The current standard of practice with curable intent is concurrent chemoradiation in which intracavitary brachytherapy is an integral component of radiotherapy. This study aims at assessing the efficacy of HDR ICBT (High-dose rate intracavitary brachytherapy in terms local response, normal tissue reactions, and feasibility. METHODS AND MATERIALS A total of 20 patients of stage IIIB cancer of the uterine cervix were enrolled in the study and were planned to receive concurrent chemotherapy weekly along with EBRT (external beam radiotherapy to a dose of 50 Gy/25 Fr. Suitability for ICBT was assessed at 40 Gy/20 Fr. 6/20 patients were suitable at 40 Gy and received HDR ICBT with a dose of 5.5 Gy to point A in 4 sessions (5.5 Gy/4 Fr. The remaining 14/20 patients completed 50 Gy and received HDR ICBT with a dose of 6 Gy to point A in 3 sessions (6 Gy/3 Fr. RESULTS A total of 66 intracavitary applications were done and only one application required dose modification due to high bladder dose, the pelvic control rate was 85% (17/20. 10% (2/20 had stable disease and 5% (1/20 had progressive disease at one year of follow up. When toxicity was considered only 15% developed grade I and grade II rectal complications. Patient compliance and acceptability was 100%. Patients were very comfortable with the short treatment time as compared with patients on LDR ICBT (low-dose rate intracavitary brachytherapy treatment interviewed during the same period. CONCLUSION This study proves that HDR brachytherapy is efficacious and feasible in carcinoma of cervix stage IIIB. It also proves that good dose distribution can be achieved with HDR intracavitary facility by the use of dose optimization. The short treatment time in HDR ICBT makes it possible to maintain this optimised dose distribution throughout the treatment providing a gain in the therapeutic ratio and

  19. Response of human fibroblasts to low dose rate gamma irradiation

    International Nuclear Information System (INIS)

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-01-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to γ radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D 0 ) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury

  20. Cancer and low dose responses in vivo: implications for radiation protection

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.

    2006-01-01

    Full text: Radiation protection practices assume that cancer risk is linearly proportional to total dose, without a threshold, both for people with normal cancer risk and for people who may be genetically cancer prone. Mice heterozygous for the Tp 53 gene are cancer prone, and their increased risk from high doses was not different from Tp 53 normal mice. However, in either Tp 53 normal or heterozygous mice, a single low dose of low LET radiation given at low dose rate protected against both spontaneous and radiation-induced cancer by increasing tumor latency. Increased tumor latency without a cancer frequency change implies that low doses in vivo primarily slow the process of genomic instability, consistent with the elevated capacity for correct DSB rejoining seen in low dose exposed cells. The in vivo animal data indicates that, for low doses and low dose rates in both normal and cancer prone adult mice, risk does not increase linearly with dose, and dose thresholds for increased risk exist. Below those dose thresholds (which are influenced by Tp 53 function) overall risk is reduced below that of unexposed control mice, indicating that Dose Rate Effectiveness Factors (DREF) may approach infinity, rather than the current assumption of 2. However, as dose decreases, different tissues appear to have different thresholds at which detriment turns to protection, indicating that individual tissue weighting factors (Wt) are also not constant, but vary from positive values to zero with decreasing dose. Measurements of Relative Biological Effect between high and low LET radiations are used to establish radiation weighting factors (Wr) used in radiation protection, and these are also assumed to be constant with dose. However, since the risk from an exposure to low LET radiation is not constant with dose, it would seem unlikely that radiation-weighting factors for high LET radiation are actually constant at low dose and dose rate

  1. Evaluation of the impact of a system for real-time visualisation of occupational radiation dose rate during fluoroscopically guided procedures

    International Nuclear Information System (INIS)

    Sandblom, V; Almén, A; Cederblad, A.; Båth, M; Lundh, C; Mai, T; Rystedt, H

    2013-01-01

    Optimisation of radiological protection for operators working with fluoroscopically guided procedures has to be performed during the procedure, under varying and difficult conditions. The aim of the present study was to evaluate the impact of a system for real-time visualisation of radiation dose rate on optimisation of occupational radiological protection in fluoroscopically guided procedures. Individual radiation dose measurements, using a system for real-time visualisation, were performed in a cardiology laboratory for three cardiologists and ten assisting nurses. Radiation doses collected when the radiation dose rates were not displayed to the staff were compared to radiation doses collected when the radiation dose rates were displayed. When the radiation dose rates were displayed to the staff, one cardiologist and the assisting nurses (as a group) significantly reduced their personal radiation doses. The median radiation dose (H p (10)) per procedure decreased from 68 to 28 μSv (p = 0.003) for this cardiologist and from 4.3 to 2.5 μSv (p = 0.001) for the assisting nurses. The results of the present study indicate that a system for real-time visualisation of radiation dose rate may have a positive impact on optimisation of occupational radiological protection. In particular, this may affect the behaviour of staff members practising inadequate personal radiological protection. (paper)

  2. Feasibility and radiation dose of high-pitch acquisition protocols in patients undergoing dual-source cardiac CT.

    Science.gov (United States)

    Sommer, Wieland H; Albrecht, Edda; Bamberg, Fabian; Schenzle, Jan C; Johnson, Thorsten R; Neumaier, Klement; Reiser, Maximilian F; Nikolaou, Konstatin

    2010-12-01

    The objective of this study was to compare image quality and radiation dose between high-pitch and established retrospectively and prospectively gated cardiac CT protocols using an Alderson-Rando phantom and a set of patients. An anthropomorphic Alderson-Rando phantom equipped with thermoluminiscent detectors and a set of clinical patients underwent the following cardiac CT protocols: high-pitch acquisition (pitch 3.4), prospectively triggered acquisition, and retrospectively gated acquisition (pitch 0.2). For patients with sinus rhythm below 65 beats per minute (bpm), high-pitch protocol was used, whereas for patients in sinus rhythm between 65 and 100 bpm, prospective triggering was used. Patients with irregular heart rates or heart rates of ≥ 100 bpm, were examined using retrospectively gated acquisition. Evaluability of coronary artery segments was determined, and effective radiation dose was derived from the phantom study. In the phantom study, the effective radiation dose as determined with thermoluminescent detector (TLD) measurements was lowest in the high-pitch acquisition (1.21, 3.12, and 11.81 mSv, for the high-pitch, the prospectively triggered, and the retrospectively gated acquisition, respectively). There was a significant difference with respect to the percentage of motion-free coronary artery segments (99%, 87%, and 92% for high-pitch, prospectively triggered, and retrospectively gated, respectively (p pitch protocol (p pitch scans have the potential to reduce radiation dose up to 61.2% and 89.8% compared with prospectively triggered and retrospectively gated scans. High-pitch protocols lead to excellent image quality when used in patients with stable heart rates below 65 bpm.

  3. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies.

    Science.gov (United States)

    Van Hoeck, Arne; Horemans, Nele; Nauts, Robin; Van Hees, May; Vandenhove, Hildegarde; Blust, Ronny

    2017-04-01

    Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    Science.gov (United States)

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  5. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  6. Beta induced Bremsstrahlung dose rate in concrete shielding

    International Nuclear Information System (INIS)

    Manjunatha, H.C.

    2013-01-01

    Dosimetric study of beta-induced Bremsstrahlung in concrete is importance in the field of radiation protection. The efficiency, intensity and dose rate of beta induced Bremsstrahlung by 113 pure beta nuclides in concrete shielding is computed. The Bremsstrahlung dosimetric parameters such as the efficiency (yield), Intensity and dose rate of Bremsstrahlung are low for 199 Au and high for 104 Tc in concrete. The efficiency, Intensity and dose rate of Bremsstrahlung increases with maximum energy of beta nuclide (Emax) and modified atomic number (Zmod) of the target. The estimated Bremsstrahlung efficiency, Intensity and dose rate are useful in the calculations photon track-length distributions. These parameters are useful to determine the quality and quantity of the radiation (known as the source term). Precise estimation of this source term is very important in planning of radiation shielding. (author)

  7. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  8. Radiation graft copolymerization of styrene with m/e and styrene with acrylic acid at highthyl methacryl dose rate

    International Nuclear Information System (INIS)

    Aliev, R.Eh.; Kabanov, B.Ya.

    1984-01-01

    Comparative investigation of radiation graft copolymerization of styrene with methyl methacrylate (MMA) and styrene with acrylic acid (AA) is carried out at considerably differing radiation dose rates. The monomer mixture was grafted to PE low density films at dose rates of 0.16, 0.25 Gy/s (1 MeV electron acceleration). The value of graft was 3-6 and 5-10%, respectively, for the styrene-MMA and styrene-AA systems. An essential difference in the dependences of the formed copolymer composition on initial monomer mixture composition is noticed. Difference in composition of graft polymers prepared at different dose rates is less for the systems with AA, than for systems with MMA. It is shown that at high dose rates in difference with low ones not only radical graft copolymerization of the styrene mixture with AA takes place, but a contribution of the graft styrene polymerization according to cation mechanism as well

  9. SU-F-T-654: Pacemaker Dose Estimate Using Optically Stimulated Luminescent Dosimeter for Left Breast Intraoperative Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Goenka, A; Sharma, A; Wang, L; Cao, Y; Jamshidi, A [Northwell Health, Lake Success, NY (United States)

    2016-06-15

    Purpose: To assess and report the in vivo dose for a patient with a pacemaker being treated in left breast intraoperative radiation therapy (IORT). The ZEISS Intrabeam 50 kVp X-ray beam with a spherical applicator was used. Methods: The optically stimulated luminescent dosimeters (OSLDs) (Landauer nanoDots) were employed and calibrated under the conditions of the Intrabeam 50 kVp X-rays. The nanoDots were placed on the patient at approximately 15 cm away from the lumpectomy cavity both under and above a shield of lead equivalence 0.25 mm (RayShield X-Drape D-110) covering the pacemaker area during IORT with a 5 cm spherical applicator. Results: The skin surface dose near the pacemaker during the IORT with a prescription of 20 Gy was measured as 4.0±0.8 cGy. The dose behind the shield was 0.06±0.01 Gy, demonstrating more than 98% dose reduction. The in vivo skin surface doses during a typical breast IORT at a 4.5 cm spherical applicator surface were further measured at 5, 10, 15, and 20 cm away to be 159±11 cGy, 15±1 cGy, 6.6±0.5 cGy, and 1.8±0.1 cGy, respectively. A power law fit to the dose versus the distance z from the applicator surface yields the dose fall off at the skin surface following z^-2.5, which can be used to estimate skin doses in future cases. The comparison to an extrapolation of depth dose in water reveals an underestimate of far field dose using the manufactory provided data. Conclusion: The study suggests the appropriateness of OSLD as an in vivo skin dosimeter in IORT using the Intrabeam system in a wide dose range. The pacemaker dose measured during the left breast IORT was within a safe limit.

  10. Brachytherapy treatment with high dose rate

    International Nuclear Information System (INIS)

    Santana Rodriguez, Sergio Marcelino; Rodriguez Rodriguez, Lissi Lisbet; Ciscal Chiclana, Onelio Alberto

    2009-01-01

    Retrospectively analyze results and prognostic factors of cervical cancer patients treated with radio concomitant cisplatin-based chemotherapy, radiation therapy combined modality. Methods: From January 2003 to December 2007, 198 patients with invasive cervical cancer were treated at the Oncology Department of Hospital Robau Celestino Hernandez (brachytherapy performed at INOR). The most common age group was 31 to 40 years. The histology in squamous cell carcinoma accounted for 84.3% of cases. The treatment consisted of external pelvic irradiation and vaginal brachytherapy, high dose rate. Concomitant chemotherapy consisted of cisplatin 40 mg/m2 weekly with a maximum of 70 mg for 5 weeks. Results: 66.2% of patients completed 5 cycles of chemotherapy. The median overall survival was 39 months, overall survival, disease-free survival and survival free of locoregional recurrence at 5 years of 78%, 76% and 78.6% respectively .. We found that clinical stage, histological type (adenocarcinoma worst outcome) were statistically related to level of response. Conclusions: Treatment with external pelvic radiation, brachytherapy and concurrent weekly cisplatin in patients with stage IIIB cervical cancer is feasible in the Chilean public health system, well tolerated and results comparable to international literature. (Author)

  11. Intracavitary irradiation of prostatic carcinoma by a high dose-rate afterloading technique

    Energy Technology Data Exchange (ETDEWEB)

    Odelberg-Johnson, O.; Underskog, I.; Johansson, J.E.; Bernshaw, D.; Sorbe, B.; Persson, J.E. (Oerebro Medical Center Hospital (Sweden). Dept. of Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Urology Oerebro Medical Center Hospital (Sweden). Dept. of Gynecologic Oncology Oerebro Medical Center Hospital (Sweden). Dept. of Radiation Physics)

    1991-01-01

    A high dose-rate ({sup 60}Co) afterloading technique was evaluated in a series of 73 patients with prostatic carcinoma stages I-IV. The intraurethral irradiation was combined with external pelvic radiotherapy. A minimum total dose of 78 Gy was delivered to the target volume. In a subgroup of patients extramustine (Estracyt) was given as adjuvant chemohormonal therapy during irradiation. The median follow-up for the whole group was 63 months. The crude 5-year survival rate was 60% and the corrected survival rate 90%. Survival was related to the tumor grade. Local pelvic recurrences were recorded in 17.8%. 'Viable cells' in posttherapy aspiration biopsy were not associated with tumor recurrences or survival. Four patients (5%) had grade 3 late radiation reactions with urethral structure or bladder fibrosis. Urinary tract infections and prior transurethral resections were not associated with a higher frequency of reactions. Concurrent estramustine therapy seemed to increase the frequency of both acute and chronic radiation reactions. Local control, recurrence, and survival were not affected by chemohormonal therapy. The use of tomography, magnetic resonance, and ultrasound as aids to computerized dosimetry may improve local dose distribution and reduce the irradiated volume. (orig.).

  12. Scintillator performance at low dose rates and low temperatures for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Ricci-Tam, Francesca

    2018-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance, especially for forward calorimetry, and highlights the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. The upgrade includes both electromagnetic and hadronic components, with the latter using a mixture of silicon sensors (in the highest radiation regions at high pseudorapidity) and scintillator as its active components. The scintillator will nevertheless receive large doses accumulated at low dose rates, and will have to operate at low temperature - around -30 degrees Celsius. We discuss measurements of scintillator radiation tolerance, from in-situ measurements from the current CMS endcap calorimeters, and from measurements at low temperature and low dose-rate at gamma sources in the laboratory.

  13. Impact of doped boron concentration in emitter on high- and low-dose-rate damage in lateral PNP transistors

    International Nuclear Information System (INIS)

    Zheng Yuzhan; Lu Wu; Ren Diyuan; Wang Yiyuan; Wang Zhikuan; Yang Yonghui

    2010-01-01

    The characteristics of radiation damage under a high or low dose rate in lateral PNP transistors with a heavily or lightly doped emitter is investigated. Experimental results show that as the total dose increases, the base current of transistors would increase and the current gain decreases. Furthermore, more degradation has been found in lightly-doped PNP transistors, and an abnormal effect is observed in heavily doped transistors. The role of radiation defects, especially the double effects of oxide trapped charge, is discussed in heavily or lightly doped transistors. Finally, through comparison between the high- and low-dose-rate response of the collector current in heavily doped lateral PNP transistors, the abnormal effect can be attributed to the annealing of the oxide trapped charge. The response of the collector current, in heavily doped PNP transistors under high- and low-dose-rate irradiation is described in detail. (semiconductor integrated circuits)

  14. Study of the Radiochromic Film for High Dose Measurement in Radiation Processing

    Directory of Open Access Journals (Sweden)

    CHEN Yi-zhen

    2016-02-01

    Full Text Available To establish the radiochromic film dosimeter for high dose level measurement during radiation processing, By corresponding formula and its preparation process research, batches of radiochromic film dosimeters were prepared using nylon as substrate and pararosaniline cyanide as dye. In Co-60 gamma reference radiation field, dosimetry response performance of radiochromic film was studied and results showed that the repeatability was good to 1.0%. The response curves demonstrated good linearity in the dose range of 5-210 kGy, and the signal of radiochromic film dosimeters after irradiation under the condition of low temperature storage within 2 weeks was stable. In addition, the radiochromic film dosimeters were not found to have noticeable dose rate dependence in the range of this experiment. In the linear dose range, radiochromic film dosimeter measures the absorbed dose, with extended uncertainty 4.2% (k=2 for Co-60 gamma rays. The film was suitable as dosimeters for the parameters measurement of the electron beam on the accelerator.

  15. Radiation-thermal degradation of PE and PVC: Mechanism of synergism and dose rate effects

    Science.gov (United States)

    Clough, Roger L.; Gillen, Kenneth T.

    Polyethylene insulation and polyvinyl chloride jacketing materials that had been in use in a nuclear application were recently found to be substantially deteriorated. The damage had occurred under conditions where both the total estimated dose (about 2.5 Mrad) and the operating temperatures (about 43°C average) seemed relatively moderate. These results prompted us to initiate a program to study polyvinyl chloride and polyethylene degradation under conditions of combined γ-radiation and elevated temperature environments. A number of interesting aging effects were observed, including 1) a striking synergism between radiation and temperature and 2) strong dose-rate dependent effects which occur over a wide range of dose rates. The aging effects are explained in terms of a chain branching degradation mechanism involving thermally induced breakdown of peroxides which are formed in reactions initiated by the radiation. Evidence for this mechanism is derived from infrared spectra, from sequential radiation-elevated temperature experiments including experiments under inert atmosphere, from activation energy estimates and from a new technique involving treatment of intact samples with PH 3 for chemical reduction of peroxides. The results of our studies raise significant doubts about the utility of earlier compilations which purportedly serve as radiation life expectancy guides by indicating "tolerable radiation doses" for a variety of polymers.

  16. Germline mutation rates in families residing in high level natural radiation areas of Kerala coast in southwest India

    International Nuclear Information System (INIS)

    Das, Birajalaxmi; Ghosh, Anu; Ahmad, Shazia; Saini, DivyaIakshmi; Chauhan, P.S.; Seshadri, M.

    2010-01-01

    For this study, 200 nuclear families have been analyzed using over 40 mini- and microsatellite markers. Cord blood samples for the child and peripheral blood samples for the parent(s) were collected in EDTA vacuutainers from the hospital units located in High Level Natural Radiation Areas (HLNRA) and Normal Level Natural Radiation Areas (NLNRA). Both the parents of the newborn were exposed to the background dose. The families were grouped into four distinct dose groups - NLNRA group 5.00 mGy/year. An overall mutation rate of 2.08 X 10 -3 per cell per generation was observed for NLNRA and 2.12 X 10 -3 per cell per generation for HLNRA families. No radiation induced dose response was observed for the stratified groups. Thus, this study shows that mutation rates at mini- and microsatellites in the off springs of the parents living in the high background radiation areas of Kerala does not vary with radiation exposure. This is the first report to understand germline mutation rates at hypervariable loci in families residing in high level natural radiation areas of the world

  17. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  18. Anticoagulation and high dose liver radiation. A preliminary report

    International Nuclear Information System (INIS)

    Lightdale, C.J.; Wasser, J.; Coleman, M.; Brower, M.; Tefft, M.; Pasmantier, M.

    1979-01-01

    Two groups of patients were observed for evidence of acute radiation hepatitis during high dose radiation to the liver. The first group of 18 patients with metastatic liver disease received an average of 4,050 rad to the whole liver. Half received anticoagulation with warfarin. One patient on anticoagulation developed evidence of acute radiation hepatitis while 2 patients did so without anticoagulation. Eleven patients with Hodgkin's disease received 4,000 rad to the left lobe of the liver during extended field radiation. Four of these 11 patients were anticoagulated to therapeutic range. Only one of the fully anticoagulated patients showed changes on liver scan consistent with radiation hepatitis whereas three did so without anticoagulation. No serious sequelae from anticoagulation occurred in either group. These preliminary data suggest that anticoagulation may be safely administered with high dose hepatic radiation and that further trials with anticoagulation are warranted

  19. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  20. Serial measurement of radiation leakage dose rates in safekeeping at the Gammaknife room

    International Nuclear Information System (INIS)

    Baba, Sadaaki; Nozaki, Kenichi; Toyoda, Tatsuya; Wakamatsu, Osamu; Machida, Toru

    2006-01-01

    We report the serial measurement of leakage dose rates in safekeeping at the Gammaknife room during the past 4 years and 9 months by scintillation survey meter. The leakage dose rates at the radiation boundaries were the same as the natural background levels. Leakage dose rates at each shield calculation point from two 90 Sr calibration sources contained in the storehouse were negligible compared with those from 60 Co sources of the Gammaknife. 60 Co sources of the Gammaknife are arranged in 201 pieces at 10 degree interval on the circumference and in five lines within an arc of 35 degrees. Its shield container is made of iron at least 43 cm thick. We got leakage dose rates less than 40% of the calculated values. We think it is caused by the difference of each actual distance and shield thickness because 60 Co sources are usually considered as a point source in the shield calculation. There are shutters opening up and down when patients go in and out to the direction of the couch. The leakage values to this direction were about twice as much as the calculated value. So, we knew the thickness of those shutters was thinner than 43 cm. The half life time of 60 Co source calculated from the serial measurements of leakage dose rates was 4.93 years on average. It is 94% of the physical half life value of 5.27 years. We judged it was acceptable considering the difficulty of measuring low dose rate level with the radiation survey meter. Very strong correlation was observed between the decrease of 60 Co dose rate acquired from one minute measurement at the center of 18 cm diameter polysterene phantom gotten from December 2000 to August 2005 and that of computation based on the physical half life time. Likewise there was strong and more correlation with leakage dose rate in the Gammaknife room. From this, we deduce the leakage dose rate decreases according to the theory of the disintegration of radioactivity with passage of time. Revised radiation related laws took effect

  1. Analysis and radiation dose rate measurement of the Al-1050 capsule on the rabbit system facility

    International Nuclear Information System (INIS)

    Sarwani; Sutrisno; H, Saleh; Rohidi; M, Kawkab

    2000-01-01

    Aluminium is a kind of light metal with density of 2.7 gram /cm exp 3,regarding to the aluminium is characteristic such as easy to fabricated,has a good corrosion resistant and radiation heat resistant, therefore aluminum is selected to be used as a material for sample irradiation capsule with high neutron fluency. Analysis using neutron activation method and capsule irradiation by using high neutron fluency and dose radiation rate measurement was done. The analysis result show that impurities in the Al-1050 capsule are Fe, Cu, Mg, Sb, Zn, and Mn. The capsule irradiated at 15 MW during 6 Hours with neutron fluency of 2,8 x 10 exp 17 n/cm exp 2. The radiation doses rate after 24 hours decay is 220 mrad/h at 0-meter distance and 60 mrad/h at 1-meter distance. Respectively. From the analysis results and measurement show that the Al-1050 capsule has no high neutron absorption element and available to get continuing irradiation at 15 MW as far as 6 hours. Due to the personal safety, therefore the capsule handling could be carried out in the hot cell

  2. Terrestrial gamma radiation dose rate in Ryukyu Islands, subtropical region of Japan

    International Nuclear Information System (INIS)

    Furukawa, M.; Shiroma, M.; Motomura, D.; Fujioka, S.; Kawakami, T.; Yasuda, Y.; Arakawa, K.; Fukahori, K.; Jyunicho, M.; Ishikawa, S.; Ohomoto, T.; Kina, S.; Shiroma, Y.; Masuda, N.; Hiraoka, H.; Shingaki, R.; Akata, N.; Zhuo, W.; Tokonami, S.

    2015-01-01

    In order to explain the distribution of natural radiation level in the Asia, in situ measurements of dose rate in air due to terrestrial gamma radiation have been conducted in a total of 21 islands that belong to Ryukyu Islands (Ryukyu Archipelago), subtropical rejoin of southwest Japan. Car-borne surveys have also been carried out in Okinawa-jima, the biggest island of the archipelago. Based on the results for these measurements, arithmetic mean, the maximum and the minimum of the dose rates at 1 m in height from the unpaved soil ground in the archipelago were estimated to be 47, 165 and 8 nGy h -1 , respectively. A comparative study of car-borne data obtained prior to and subsequent to the 2011 Fukushima nuclear accident, as for Okinawa-jima, indicated that the nuclear accident has no impact on the environmental radiation at the present time. (authors)

  3. Radiation proctitis after the high dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Kitano, Masashi; Katsumata, Tomoe; Satoh, Takefumi

    2006-01-01

    We reviewed the medical records of 12 patients treated for rectal bleeding after high-dose rate brachytherapy for prostate cancer. All patients developed grade 2 proctitis according to the Common Terminology Criteria for Adverse Events (CTCAC) and no patients needed blood transfusion. The patients were treated with argon plasma coagulation (APC) and/or steroid suppositories. The bleeding stopped or improved in 11 patients. Although re-bleeding was noticed in 7 patients the same treatment was effective in 5 patients. (author)

  4. Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice

    Science.gov (United States)

    Yu, Kanglun; Doherty, Alison H.; Genik, Paula C.; Gookin, Sara E.; Roteliuk, Danielle M.; Wojda, Samantha J.; Jiang, Zhi-Sheng; McGee-Lawrence, Meghan E.; Weil, Michael M.; Donahue, Seth W.

    2017-11-01

    During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions. This study was designed to investigate the skeletal effects of low-dose rate gamma irradiation (8.5 cGy gamma radiation per day for 20 days, amounting to a total dose of 1.7 Gy) when administered simultaneously to disuse from HLS. The goal was to determine whether continuous, low-dose rate radiation administered during disuse would exacerbate bone loss in a murine HLS model. Four groups of 16 week old female C57BL/6 mice were studied: weight bearing + no radiation (WB+NR), HLS + NR, WB + radiation exposure (WB+RAD), and HLS+RAD. Surprisingly, although HLS led to cortical and trabecular bone loss, concurrent radiation exposure did not exacerbate these effects. Our results raise the possibility that mechanical unloading has larger effects on the bone loss that occurs during spaceflight than low-dose rate radiation.

  5. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Howe, G.R.

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  6. Dose rate-dependent marrow toxicity of TBI in dogs and marrow sparing effect at high dose rate by dose fractionation.

    Science.gov (United States)

    Storb, R; Raff, R F; Graham, T; Appelbaum, F R; Deeg, H J; Schuening, F G; Sale, G; Seidel, K

    1999-01-01

    We evaluated the marrow toxicity of 200 and 300 cGy total-body irradiation (TBI) delivered at 10 and 60 cGy/min, respectively, in dogs not rescued by marrow transplant. Additionally, we compared toxicities after 300 cGy fractionated TBI (100 cGy fractions) to that after single-dose TBI at 10 and 60 cGy/min. Marrow toxicities were assessed on the basis of peripheral blood cell count changes and mortality from radiation-induced pancytopenia. TBI doses studied were just below the dose at which all dogs die despite optimal support. Specifically, 18 dogs were given single doses of 200 cGy TBI, delivered at either 10 (n=13) or 60 (n=5) cGy/min. Thirty-one dogs received 300 cGy TBI at 10 cGy/min, delivered as either single doses (n=21) or three fractions of 100 cGy each (n=10). Seventeen dogs were given 300 cGy TBI at 60 cGy/min, administered either as single doses (n=5) or three fractions of 100 cGy each (n=10). Within the limitations of the experimental design, three conclusions were drawn: 1) with 200 and 300 cGy single-dose TBI, an increase of dose rate from 10 to 60 cGy/min, respectively, caused significant increases in marrow toxicity; 2) at 60 cGy/min, dose fractionation resulted in a significant decrease in marrow toxicities, whereas such a protective effect was not seen at 10 cGy/min; and 3) with fractionated TBI, no significant differences in marrow toxicity were seen between dogs irradiated at 60 and 10 cGy/min. The reduced effectiveness of TBI when a dose of 300 cGy was divided into three fractions of 100 cGy or when dose rate was reduced from 60 cGy/min to 10 cGy/min was consistent with models of radiation toxicity that allow for repair of sublethal injury in DNA.

  7. Development of 'Dose Rate Meter' android app for radiation detection using camera of smartphones and tablet

    International Nuclear Information System (INIS)

    Shaikh, Aatef; Sharma, M.K.; Kulkarni, M.S.; Romal, Jis; Gupta, A.; Chaudhury, P.

    2018-01-01

    An android app 'Dose Rate Meter' for gamma radiation field measurement over wide range using smart phone has been developed. The android app implements the cluster counting and high delta algorithm. The high delta algorithm processes multiple images captured by the camera. It is more sensitive at lower dose rates but it saturates at higher dose rates of the order of 1Gy/h and its response starts decreasing. Since, this algorithm analyses a number of images to compute the dose rate, it takes few minutes to process on a typical smart phone with 1 GB RAM, dual core processor and a clock in the range of 1GHz. However, the cluster count algorithm computes the results in a few seconds only as it operates on a single image but it can be used to measure dose rate only in the range of 5 mGy/h and above. Therefore, we have implemented the two algorithms in such a way that initially, the control goes to the cluster count algorithm and in case the dose rate is below 5mGy/h, it has provision to invoke the high delta algorithm, thereby covering a dose rate measurement range from μGy/h to Gy/h

  8. Radiation processing and high-dose dosimetry at ANSTO

    International Nuclear Information System (INIS)

    Gant, G.J.; Saunders, M.; Banos, C.; Mo, L.; Davies, J.; Evans, O.

    2001-01-01

    The Radiation Technology group at ANSTO is part of the Physics Division and provides services and advice in the areas of gamma irradiation and high-dose dosimetry. ANSTO's irradiation facilities are designed for maximum dose uniformity and provide a precision irradiation service unique in Australia. Radiation Technology makes and sells reference and transfer standard dosimeters which are purchased by users and suppliers of commercial irradiation services in Australia and the Asia-Pacific region. A calibration service is also provided for dosimeters purchased from other suppliers

  9. Ion exchange resins as high-dose radiation dosimeters

    International Nuclear Information System (INIS)

    Alian, A.; Dessouki, A.; El-Assay, N.B.

    1984-01-01

    This paper reports on the possibility of using various types of ion exchange resins as high-dose radiation dosimeters, by analysis of the decrease in exchange capacity with absorbed dose. The resins studied are Sojuzchim-export-Moscow Cation Exchanger KU-2 and Anion Exchanger AV-17 and Merck Cation Exchanger I, and Merck Anion Exchangers II and III. Over the dose range 1 to 100 kGy, the systems show linearity between log absorbed dose and decrease in resin ion exchange capacity. The slope of this response function differs for the different resins, depending on their ionic form and degree of cross-linking. The radiation sensitivity increases in the order KU-2; Exchanger I; AV-17; Exchanger II; Exchanger III. Merck resins with moisture content of 21% showed considerably higher radiation sensitivity than those with 2 to 3% moisture content. The mechanism of radiation-induced denaturing of the ion exchanger resins involves cleavage and decomposition of functional substituents, with crosslinking playing a stabilizing role, with water and its radiolytic products serving to inhibit radical recombination and interfering with the protection cage effect of crosslinking. (author)

  10. Responses of rat R-1 cells to low dose rate gamma radiation and multiple daily dose fractions

    International Nuclear Information System (INIS)

    Kal, H.B.; Bijman, J.Th.

    1981-01-01

    Multifraction irradiation may offer the same therapeutic gain as continuous irradiation. Therefore, a comparison of the efficacy of low dose rate irradiation and multifraction irradiation was the main objective of the experiments to be described. Both regimens were tested on rat rhabdomyosarcoma (R-1) cells in vitro and in vivo. Exponentially growing R-1 cells were treated in vitro by a multifraction irradiation procedure with dose fractions of 2 Gy gamma radiation and time intervals of 1 to 3 h. The dose rate was 1.3 Gy.min -1 . The results indicate that multifractionation of the total dose is more effective with respect to cell inactivation than continuous irradiation. (Auth.)

  11. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells.

    Science.gov (United States)

    Laschinsky, Lydia; Karsch, Leonhard; Leßmann, Elisabeth; Oppelt, Melanie; Pawelke, Jörg; Richter, Christian; Schürer, Michael; Beyreuther, Elke

    2016-08-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10(10) Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone.

  12. Radiobiological influence of megavoltage electron pulses of ultra-high pulse dose rate on normal tissue cells

    International Nuclear Information System (INIS)

    Laschinsky, Lydia; Karsch, Leonhard; Schuerer, Michael; Lessmann, Elisabeth; Beyreuther, Elke; Oppelt, Melanie; Pawelke, Joerg; Richter, Christian

    2016-01-01

    Regarding the long-term goal to develop and establish laser-based particle accelerators for a future radiotherapeutic treatment of cancer, the radiobiological consequences of the characteristic short intense particle pulses with ultra-high peak dose rate, but low repetition rate of laser-driven beams have to be investigated. This work presents in vitro experiments performed at the radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance). This accelerator delivered 20-MeV electron pulses with ultra-high pulse dose rate of 10"1"0 Gy/min either at the low pulse frequency analogue to previous cell experiments with laser-driven electrons or at high frequency for minimizing the prolonged dose delivery and to perform comparison irradiation with a quasi-continuous electron beam analogue to a clinically used linear accelerator. The influence of the different electron beam pulse structures on the radiobiological response of the normal tissue cell line 184A1 and two primary fibroblasts was investigated regarding clonogenic survival and the number of DNA double-strand breaks that remain 24 h after irradiation. Thereby, no considerable differences in radiation response were revealed both for biological endpoints and for all probed cell cultures. These results provide evidence that the radiobiological effectiveness of the pulsed electron beams is not affected by the ultra-high pulse dose rates alone. (orig.)

  13. Terrestrial gamma radiation dose rates and radiological mapping of Terengganu state, Malaysia

    International Nuclear Information System (INIS)

    Garba, N.N.

    2015-01-01

    Measurement of terrestrial gamma radiation dose (TGRD) rates in Terengganu state, Malaysia was carried out from 145 different locations using NaI[Tl] micro roentgen survey meter. The measured TGRD rates ranged from 35 to 340 nGy h -1 with mean value of 150 nGy h -1 . The annual effective dose to population was found to be 0.92 mSv y -1 . The data obtained were used in constructing the gamma isodose map using ArcGis 9.3 which shows the distribution of TGRD rates across the state. (author)

  14. Low dose rate and high dose rate intracavitary treatment for cervical cancer

    International Nuclear Information System (INIS)

    Hareyama, Masato; Oouchi, Atsushi; Shidou, Mitsuo

    1997-01-01

    From 1984 through 1993, 144 previous untreated patients with carcinoma of uterine cervix were treated with either low dose rate 137 Cs therapy (LDR) or high dose rate 60 Co therapy (HDR). The local failure rates for more than 2-years for the primary lesions were 11.8% (8 of 63 patients) for LDR and 18.0% (11 of 61 patients). Rectal complication rates were significantly lower for HDR versus LDR (14.3% VS. 32.8%. p<0.01). Also, bladder complication rates were significantly lower for HDR versus LDR (0% VS. 10.4%, p<0.005). Treatment results in term of local control were equivalent for HDR and LDR treatment. However, the incidence of complications was higher for the LDR group than for the HDR group. (author)

  15. Tolerance of canine anastomoses to intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Tepper, J.E.; Sindelar, W.; Travis, E.L.; Terrill, R.; Padikal, T.

    1983-01-01

    Radiation has been given intraoperatively to various abdominal structures in dogs, using a fixed horizontal 11 MeV electron beam at the Armed Forces Radiobiologic Research Institute. Animals were irradiated with single doses of 2000, 3000 and 4500 rad to a field which extended from the bifurcation of the aorta to the rib cage. All animals were irradiated during laparotomy under general anesthesia. Because the clinical use of intraoperative radiotherapy in cancer treatment will occasionally require irradiation of anastomosed large vessels and blind loops of bowel, the tolerance of aortic anastomoses and the suture lines of blind loops of jejunum to irradiation were studied. Responses in these experiments were scored at times up to one year after irradiation. In separate experiments both aortic and intestinal anastomoses were performed on each animal for evaluation of short term response. The dogs with aortic anastomoses showed adequate healing at all doses with no evidence of suture line weakening. On long-term follow-up one animal (2000 rad) had stenosis at the anastomosis and one animal (4500 rad) developed an arteriovenous fistula. Three of the animals that had an intestinal blind loop irradiated subsequently developed intussusception, with the irradiated loop acting as the lead point. One week after irradiation, bursting pressure of an intestinal blind loop was normal at 3000 rad, but markedly decreased at 4500 rad. No late complications were noted after the irradiation of the intestinal anastomosis. No late complicatons were observed after irradiation of intestinal anastomoses, but one needs to be cautious with regards to possible late stenosis at the site of an irradiated vascular anastomosis

  16. Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster

    Science.gov (United States)

    Lei, Huang; Fanjun, Kong; Sun, Yeqing

    For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.

  17. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  18. Assessing patient characteristics and radiation-induced non-targeted effects in vivo for high dose-rate (HDR) brachytherapy.

    Science.gov (United States)

    Pinho, Christine; Timotin, Emilia; Wong, Raimond; Sur, Ranjan K; Hayward, Joseph E; Farrell, Thomas J; Seymour, Colin; Mothersill, Carmel

    2015-01-01

    To test whether blood, urine, and tissue based colony-forming assays are a useful clinical detection tool for assessing fractionated treatment responses and non-targeted radiation effects in bystander cells. To assess patients' responses to radiation treatments, blood serum, urine, and an esophagus explant-based in vivo colony-forming assay were used from oesophageal carcinoma patients. These patients underwent three fractions of high dose rate (HDR) intraluminal brachytherapy (ILBT). Human keratinocyte reporters exposed to blood sera taken after the third fraction of brachytherapy had a significant increase in cloning efficiency compared to baseline samples (p fractions for the blood sera data only. Patient characteristics such as gender had no statistically significant effect (p > 0.05). Large variability was observed among the patients' tissue samples, these colony-forming assays showed no significant changes throughout fractionated brachytherapy (p > 0.05). Large inter-patient variability was found in the urine and tissue based assays, so these techniques were discontinued. However, the simple blood-based assay had much less variability. This technique may have future applications as a biological dosimeter to predict treatment outcome and assess non-targeted radiation effects.

  19. Radiation dose rate meter

    International Nuclear Information System (INIS)

    Kronenberg, S.; Siebentritt, C.R.

    1981-01-01

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts

  20. Postoperative vaginal irradiation by a high dose-rate afterloading technique in endometrial carcinoma stage I

    International Nuclear Information System (INIS)

    Sorbe, B.; Smeds, A.C.

    1989-01-01

    A high dose-rate (cobalt-60) afterloading technique was used for postoperative vaginal irradiation in a series of 404 women with endometrial carcinoma stage I. The total recurrence rate was 3.7% with 0.7% vaginal lesions. The crude 5-year survival rate for the complete series was 91.8% compared to 13.3% for those with recurrences. Depth of myometrical infiltration (>1/3 of the uterine wall) and nuclear grade were the most important prognostic factors. Clinically significant late radiation reactions (bladder and/or rectum) were recorded in 6.9%. The absorbed dose per fraction and the size of the treatment volume were significantly related to the occurrence of both early and late radiation reactions. Vaginal shortening was closely related to the dose per fraction, length of the referce isodose and the applicator diameter. The shape of the vaginal applicator versus the isodose contours and the importance of the source train geometry and relative activity for absorbed dose inhomogeneitis within the treatment volume are discussed. Cumulative radiation effect (CRE) and linear-quadratic (LQ) calculations have been performed and related to tissue reactions within the target volume and in the risk organs. An alpha-beta quotient of 8.8 Gy for vaginal shrinkage effect and 2.0 Gy for late rectal complications are suggested on the basis of calculations using a maximum likelihood method for quantal radiation data. (orig.)

  1. Effect of different ionizing radiation dose rates on the Staphylococcal enterotoxin in mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    Azevedo, Heliana de; Brito, Poliana de Paula; Fukuma, Henrique Takuji; Roque, Claudio Vitor; Custodio, Wilson; Kodama, Yasko; Miya, Norma Terugo Nago; Pereira, Jose Luiz

    2009-01-01

    Samples weighing 50g each were prepared from allotments of back with skin MDCM, to the EEB contamination or not (control). Each sample of MDCM contaminated or not with EEB was conditioned in low density polyethylene bag, frozen (-18 ± 1 deg C) for one night in a tunnel and irradiated with gamma rays from 60 Co source in this state with doses of 0.0 kGy (control), 1.5 kGy (5.7 kGy.h -1 - higher dose rate, 1.8 kGy.h -1 - intermediary dose rate and 0.6 kGy.h -1 - lower dose rate) and 3.0 kGy (8.4 kGy.h - '1 - higher dose rate, 2.4 kGy.h -1 - intermediary dose rate and 0.6 kGy.h -1 - lower dose rate). Irradiated or non irradiated MDCM samples were processed to the EEB extraction, according to the VIDAS Staph enterotoxin II kit (bioMerieux) manufacturer protocol. The calculation to determinate the MDCM EEB recovery after the sample (control or irradiated) processing were carried out applying the principle of mass balance, along the whole process. Described experiment was performed in triplicate. Results showed that the irradiation process was effective to remove the MDCM EEB, to both 1.5 kGy and 3.0 kGy. According to the expected, doses of 3.0 kGy showed the highest values of MDCM EEB removal. Regarding the effect of dose rate of radiation on the removal of EEB of the MDCM, it could be observed only for samples irradiated with 1.5 kGy radiation dose; in these processing conditions, the highest value of EEB removal was obtained for samples processed with low radiation dose rate. (author)

  2. Measurement of radiocesium concentration in trees using cumulative gamma radiation dose rate detection systems - A simple presumption for radiocesium concentration in living woods using glass-badge based gamma radiation dose rate detection system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, T.; Hashida, S.N. [Plant Molecular Biology, Laboratory of Environmental Science, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194 (Japan); Kawachi, N.; Suzui, N.; Yin, Y.G.; Fujimaki, S. [Radiotracer Imaging Gr., Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagao, Y.; Yamaguchi, M. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-07-01

    Radiocesium from the severe accident at the Fukushima Dai-ichi Nuclear Power Plant on 11 March 2011 contaminates large areas. After this, a doubt for forest products, especially of mushroom, is indelible at the areas. Pruned woody parts and litters are containing a considerable amount of radiocesium, and generates a problem at incineration and composting. These mean that more attentive survey for each subject is expected; however, the present survey system is highly laborious/expensive and/or non-effective for this purpose. On the other hand, we can see a glass-badge based gamma radiation dose rate detection system. This system always utilized to detect a personal cumulative radiation dose, and thus, it is not suitable to separate a radiation from a specific object. However, if we can separate a radiation from a specific object and relate it with the own radiocesium concentration, it would enable us to presume the specific concentration with just an easy monitoring but without a destruction of the target nature and a complicated process including sampling, pre-treatment, and detection. Here, we present the concept of the measurement and results of the trials. First, we set glass-badges (type FS, Chiyoda Technol Corp., Japan) on a part of bough (approximately 10 cm in diameter) of Japanese flowering cherry trees (Prunus x yedoensis cv. Somei-Yoshino) with four different settings: A, a direct setting without any shield; B, a setting with an aluminum shield between bough and the glass-badge; C, a setting with a lead shield between bough and the glass-badge; D, a setting with a lead shield covering the glass-badge to shut the radiation from the surrounding but from bough. The deduction between the amount of each setting should separate a specific radiation of the bough from unlimited radiation from the surrounding. Even if the hourly dose rate is not enough to count the difference, a moderate cumulative dose would clear the difference. In fact, results demonstrated a

  3. Comparative influence of dose rate and radiation nature, on lethality after big mammals irradiation

    International Nuclear Information System (INIS)

    Destombe, C.; Le Fleche, Ph.; Grasseau, A.; Reynal, A.

    1997-01-01

    For the same dose and the 30 days lethality as biological criterion, the dose rate influence is more important than the radiation nature on the results of an big mammals total body irradiation. (authors)

  4. A case of lumbar pain after intraoperative radiotherapy

    International Nuclear Information System (INIS)

    Shimizu, Wakako; Ogino, Takashi; Murakami, Koji; Nawano, Shigeru; Moriyama, Noriyuki; Ryu, Munemasa; Kawano, Nariaki

    1996-01-01

    We report a case of abnormal magnetic resonance imaging (MRI) findings after intraoperative radiotherapy. A 53-year-old woman with cancer of the papilla of Vater was treated with pancreatoduodenectomy and 20 Gy of intraoperative radiotherapy by electron beam to the tumor bed. Three months later the patient complained of lumbar pain. A change of signal intensity on MRI was detected in the anterior half of the vertebral body within the irradiated field. The signal was of high intensity but was not enhanced by Gd-DTPA on T1-weighted images, was isointense on T2-weighted images and of low intensity with the fat-suppression method. The radiation dose to the lumbar spine and the surrounding soft tissue was calculated to be 16 Gy. Histologic changes in bone after irradiation may include depletion of bone marrow cells and fat degeneration. The MRI findings were compatible with these changes. The radiation dose that can be tolerated by soft tissue is lower than that tolerated by bone. Therefore, late radiation injury of the soft tissue might have been the cause of the patient's lumbar pain. (author)

  5. ALARA review of the maintenance and repair jobs of repetitive high radiation dose at Kori Unit 3 and 4

    International Nuclear Information System (INIS)

    Cho, Y.H.; Moon, J.H.; Kang, C.S.; Lee, J.S.; Lee, D.H.

    2003-01-01

    The policy of maintaining occupational radiation dose (ORD) as low as reasonably achievable (ALARA) requires the effective reduction of ORD in the phases of design as well as operation of nuclear power plants. It has been identified that a predominant portion of ORD arises during maintenance and repair operations at nuclear power plants. The cost-effective reduction of ORD cannot be achieved without a comprehensive analysis of accumulated ORD data of existing nuclear power plants. To identify the jobs of repetitive high ORD, the ORD data of Kori Units 3 and 4 over 10-year period from 1986 to 1995 were compiled into the PC-based ORD database program. As the radiation job classification structure, 26 main jobs are considered, most of which are further subdivided into detailed jobs. According to the order of the collective dose values for 26 main jobs, 10 jobs of high collective dose are identified. As an ALARA review, then, top 10 jobs of high collective dose are statistically analyzed with regard to 1) dose rate, 2) crew number and 3) job frequency that are the factors determining the collective dose for the radiation job of interest. Through the ALARA review, main reasons causing to high collective dose values are identified as follows. The high collective dose of RCP maintenance job is mainly due to the large crew number and the high job frequency. The characteristics of refueling job are similar to those of RCP maintenance job. However, the high collective doses of SG-related jobs such as S/G nozzle dam job, S/G man-way job and S/G tube maintenance job are mainly due to high radiation dose rate. (author)

  6. High-dose superselective intra-arterial cisplatin and concomitant radiation therapy for carcinoma of the oral cavity

    International Nuclear Information System (INIS)

    Suzuki, Gen; Tanaka, Norimitsu; Ogo, Etuyo

    2007-01-01

    The purpose of this study was to evaluate the effect of high-dose superselective intra-arterial cisplatin and concomitant radiation therapy for carcinoma of the oral cavities. The subjects consisted of 18 patients with carcinoma of the oral, and cavity treated with superselective intra-arterial infusion of high dose cisplatin (100 mg/body) concomitant with delivery of external beam radiotherapy (median total dose, 60.8 Gy) between 2001 and 2004. Sodium thiosulfate was administered intravenously to provide effective cisplatin neutlization. They were International Union Against Cancer (UICC)1997 stage II-IV (stage II: 4 patients, stage III: 4 patients, stage IV: 10 patients). Patients ranged from 43-81 years of age, with a median of 60 years, and included 14 men and 4 women. A follow-up period was 6 months minimum from the atart of the radiation therapy, the median follow up period at 28 months. The three-year overall survival rate was 71%. The three-year disease free rate and local control rate were 60% and 65%, respectively. Three-year local control rate of the T2-3 was achieved at 83%, and that for T4 at 50%. There was borderline significant difference in local control rate between T2-3 and T4 (p=0.05). We conclude that the high-dose superselective intra-arterial cisplatin and concomitant radiation therapy provides effective results in organ preservation for cancer of oral cavities. Further studies are also required to determine the validity of this method. (author)

  7. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  8. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age ≥18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function

  9. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  10. Assessment of absorbed dose rate from terrestrial gamma radiation in Red Sea State

    International Nuclear Information System (INIS)

    Abdalrahman, H. E. K.

    2012-09-01

    This study is primarily conducted to contribute in the overall strategic objective of producing Sudan radiation map which will include natural radiation levels and the resultant absorbed dose rate in air. The part covered by this study is the Red Sea State. Soil samples were collected from locations lie between latitudes 17.03 ° and the 20.18 ° N and longitudes 36.06 ° E during September 2007. Activity concentrations of the primordial radionuclides, 226 Ra, 232 Th, and 40 K in the samples were measured using gamma-ray spectrometry equipped with Nal (Tl) detector. Absorbed dose rates in air a height of 1 from the ground level and the corresponding annual effective doses were calculated from the measured activities using Dose Rate Conversion Factors (DRCFs). On the average, the activity concentrations were 19.22±13.13 Bq kg -1 ( 232 Th), 17.91±15.44 Bq kg -1 ( 226 Ra) and (507.13±161.67) Bq kg -1 for 40 K. The obtained results were found to be within the global values reported in the UNSCEAR publication for normal background areas with the exception of the samples taken from Arbaat area. The absorbed dose rate in air as calculated using UNSCEAR conversion factor averaged 40.93 n Gy h -1 which corresponds to annual effective dose of 50.23 μSvy -1 . The major contribution to the total absorbed dose rate comes from 40 K, which amounts to 53.36%. Using Geographical Information System (GIS), predication maps for activity concentrations levels of the measured radionuclides in the Red Sea state was prepared to show their respective spatial distributions. Similarly, GIS predictive map was produced for annual effective dose.(Author)

  11. Safety handling manual for high dose rate remote afterloading system

    International Nuclear Information System (INIS)

    1999-01-01

    This manual is mainly for safety handling of 192 Ir-RALS (remote afterloading system) of high dose rate and followings were presented: Procedure and document format for the RALS therapy and for handling of its radiation source with the purpose of prevention of human errors and unexpected accidents, Procedure for preventing errors occurring in the treatment schedule and operation, and Procedure and format necessary for newly introducing the system into a facility. Consistency was intended in the description with the quality assurance guideline for therapy with small sealed radiation sources made by JASTRO (Japan Society for Therapeutic Radiology and Oncology). Use of the old type 60 Co-RALS was pointed out to be a serious problem remained and its safety handling procedure was also presented. (K.H.)

  12. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s{sup −1}

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse B. [Cornell University, Ithaca, NY 14853 (United States); Mulichak, Anne M.; Keefe, Lisa J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States)

    2012-02-01

    Approximately half of global radiation damage to thaumatin crystals can be outrun at 260 K if data are collected in less than 1 s. Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s{sup −1}. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s{sup −1} can be outrun by collecting data at 680 kGy s{sup −1}. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.

  13. Effects of intraoperative irradiation (IORT) and intraoperative hyperthermia (IOHT) on canine sciatic nerve : Histopathological and morphometric studies

    NARCIS (Netherlands)

    Vujaskovic, Z; Powers, BE; Paardekoper, G; Gillette, SM; Gillette, EL; Colacchio, TA

    1999-01-01

    Purpose/Objective: Peripheral neuropathies have emerged as the major dose-limiting complication reported after intraoperative radiation therapy (IORT). The combination of IORT with hyperthermia may further increase the risk of peripheral nerve injury. The objective of this study was to evaluate

  14. Intraoperative Radiotherapy for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Eleanor E. R. Harris

    2017-12-01

    Full Text Available Intraoperative radiotherapy (IORT for early stage breast cancer is a technique for partial breast irradiation. There are several technologies in clinical use to perform breast IORT. Regardless of technique, IORT generally refers to the delivery of a single dose of radiation to the periphery of the tumor bed in the immediate intraoperative time frame, although some protocols have performed IORT as a second procedure. There are two large prospective randomized trials establishing the safety and efficacy of breast IORT in early stage breast cancer patients with sufficient follow-up time on thousands of women. The advantages of IORT for partial breast irradiation include: direct visualization of the target tissue ensuring treatment of the high-risk tissue and eliminating the risk of marginal miss; the use of a single dose coordinated with the necessary surgical excision thereby reducing omission of radiation and the selection of mastectomy for women without access to a radiotherapy facility or unable to undergo several weeks of daily radiation; favorable toxicity profiles; patient convenience and cost savings; radiobiological and tumor microenvironment conditions which lead to enhanced tumor control. The main disadvantage of IORT is the lack of final pathologic information on the tumor size, histology, margins, and nodal status. When unexpected findings on final pathology such as positive margins or positive sentinel nodes predict a higher risk of local or regional recurrence, additional whole breast radiation may be indicated, thereby reducing some of the convenience and low-toxicity advantages of sole IORT. However, IORT as a tumor bed boost has also been studied and appears to be safe with acceptable toxicity. IORT has potential efficacy advantages related to overall survival related to reduced cardiopulmonary radiation doses. It may also be very useful in specific situations, such as prior to oncoplastic reconstruction to improve accuracy of

  15. A review of data on the effects of low and low dose-rate radiation with special reference to the dose limit problem

    International Nuclear Information System (INIS)

    Matsudaira, Hiromichi

    1977-01-01

    This is a review of data pertaining to detection and quantification of the effects after exposure to low LET radiations delivered at low and low dose-rate, i.e., at a level of maximum permissible dose for the radiation workers, on experimental materials ranging from plant to rodents and on some human populations. Irradiation at a dose of a few rad is reported to induce mutation or malignant transformation in some selected model systems, with a linear dose-effect relationship. Moreover, the incidence of the chromosome aberrations in spermatocytes is reported to be elevated in the scorpiones (Tityus bahiensis) collected in a region of high natural background radiations (several rem/year). An increase in the incidence of childhood malignancies is reported among children exposed in utero to diagnostic X-rays. Appreciable increase in the incidence of genetic diseases due possibly to chromosome aberrations is also reported among population living in a region of high natural background radiations. Points are raised and discussed as to the interpretation and particularly application of these data to the estimation of somatic and genetic risks of human population from man-made radiations. Recent attempts of risk-benefit analysis with populations subjected to mass X-ray examination of the chest and stomac are referred to. Since we are unaware of the actual injuries due to the exposure even at the level of radiation workers (5 rem/year), it is out of the capacity of a biologist to afford the basis for the decision of limiting the exposure of general population due to the light water reactor operation to 5 mrem/year. (auth.)

  16. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  17. The influence of geology on terrestrial gamma radiation dose rate in Pahang state, Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Ramli, A.T.; Sanusi, M.S.; Garba, N.N.; Saleh, M.A.

    2015-01-01

    Terrestrial gamma radiation dose (TGRD) rate measurements have been made in Pahang state, Malaysia. Significant variations were found between TGRD measurements and the underlying geological formations. In some cases revealing significant elevations of TGRD. The acid-intrusive geological formation has the highest mean TGRD measurement of 367 nGy/h -1 . This is more than six times the world average value of 59 nGy/h -1 , while the quaternary geological formation has the lowest mean gamma radiation dose rate of 99 nGy h -1 . The annual effective dose equivalent outdoor to the population was 0.216 mSv. The lifetime equivalent dose and relative lifetime cancer risks for an individual living in Pahang state were 81 mSv and 4.7 x 10 -3 respectively. These values are more than two times the world average of 34 mSv and 1.95 x 10 -3 respectively. (author)

  18. Implementation of microsource high dose rate (mHDR) brachytherapy in developing countries

    International Nuclear Information System (INIS)

    2001-11-01

    Brachytherapy using remote afterloading of a single high dose rate 192 Ir microsource was developed in the 1970s. After its introduction to clinics, this system has spread rapidly among developed Member States and has become a highly desirable modality in cancer treatment. This technique is now gradually being introduced to the developing Member States. The 192 Ir sources are produced with a high specific activity. This results in a high dose rate (HDR) to the tumour and shorter treatment times. The high specific activity simultaneously results in a much smaller source (so-called micro source, around I mm in diameter) which may be easily inserted into tissue through a thin delivery tube, the so-called interstitial treatment, as well as easily inserted into body cavities, the so-called intracavitary or endoluminal treatment. Another advantage is the ability to change dwell time (the time a source remains in one position) of the stepping source which allows dose distribution to match the target volume more closely. The purpose of this TECDOC is to advise radiation oncologists, medical physicists and hospital administrators in hospitals which are planning to introduce 192 Ir microsource HDR (mHDR) remote afterloading systems. The document supplements IAEA-TECDOC-1040, Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, and will facilitate implementation of this new brachytherapy technology, especially in developing countries. The operation of the system, 'how to use the system', is not within the scope of this document. This TECDOC is based on the recommendations of an Advisory Group meeting held in Vienna in April 1999

  19. Endorectal high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Devic, S.; Vuong, T.; Evans, M.; Podgorsak, E.

    2008-01-01

    We describe our quality assurance method for preoperative high dose rate (HDR) brachytherapy of endorectal tumours. Reproduction of the treatment planning dose distribution on a daily basis is crucial for treatment success. Due to the cylindrical symmetry, two types of adjustments are necessary: applicator rotation and dose distribution shift along the applicator axis. (author)

  20. The health effects of low-dose ionizing radiation

    International Nuclear Information System (INIS)

    Dixit, A.N.; Dixit, Nishant

    2012-01-01

    It has been established by various researches, that high doses of ionizing radiation are harmful to health. There is substantial controversy regarding the effects of low doses of ionizing radiation despite the large amount of work carried out (both laboratory and epidemiological). Exposure to high levels of radiation can cause radiation injury, and these injuries can be relatively severe with sufficiently high radiation doses. Prolonged exposure to low levels of radiation may lead to cancer, although the nature of our response to very low radiation levels is not well known at this time. Many of our radiation safety regulations and procedures are designed to protect the health of those exposed to radiation occupationally or as members of the public. According to the linear no-threshold (LNT) hypothesis, any amount, however small, of radiation is potentially harmful, even down to zero levels. The threshold hypothesis, on the other hand, emphasizes that below a certain threshold level of radiation exposure, any deleterious effects are absent. At the same time, there are strong arguments, both experimental and epidemiological, which support the radiation hormesis (beneficial effects of low-level ionizing radiation). These effects cannot be anticipated by extrapolating from harmful effects noted at high doses. Evidence indicates an inverse relationship between chronic low-dose radiation levels and cancer incidence and/or mortality rates. Examples are drawn from: 1) state surveys for more than 200 million people in the United States; 2) state cancer hospitals for 200 million people in India; 3) 10,000 residents of Taipei who lived in cobalt-60 contaminated homes; 4) high-radiation areas of Ramsar, Iran; 5) 12 million person-years of exposed and carefully selected control nuclear workers; 6) almost 300,000 radon measurements of homes in the United States; and 7) non-smokers in high-radon areas of early Saxony, Germany. This evidence conforms to the hypothesis that

  1. A graphical review of radiogenic animal cancer data using the 'dose and dose-rate map'

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Hoshi, Yuko; Sakai, Kazuo

    2008-01-01

    We have been investigating the effects of low dose or low dose rate irradiation on mice, using our low dose-rate irradiation facilities. In these studies, we found that the effects were highly dependent on both total dose and dose rate. To show this visually, we proposed the 'dose/dose rate map', and plotted the results of our laboratory and our co-workers. The map demonstrated that dose/dose rate plane could be divided into three areas; 1) An area where harmful effects are observed, 2) An area where no harmful effects are observed, and 3) Another area, between previous two areas, where certain protective functions are enhanced. As this map would be a powerful tool to find some trend among the vast numbers of data relating the biological effects of ionizing radiation, we have developed a computer program which plots the collected data on the dose/dose rate map sorting by experimental conditions. In this study, we graphically reviewed and analyzed the data relating to the lifespan studies of animals with a view to determining the relationships between doses and dose rates of ionizing radiation and cancer incidence. The data contains about 800 sets of experiments, which concerns 187,000 animals exposed to gamma ray or X-ray and their 112,000 controls, and total of about 30,000 cancers in exposed animals and 14,000 cancers in controls. About 800 points of data were plotted on the dose/dose rate map. The plot showed that 1) The divided three areas in the dose/dose rate map were generally confirmed by these 800 points of data, and 2) In some particular conditions, e.g. sarcoma by X-rays, the biologically effective area is extended to relatively high dose/dose rate area. (author)

  2. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  3. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  4. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  5. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Demanes, D. Jeffrey; Martinez, Alvaro A.; Ghilezan, Michel; Hill, Dennis R.; Schour, Lionel; Brandt, David; Gustafson, Gary

    2011-01-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography–defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis–free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  6. Survival of tumor cells after proton irradiation with ultra-high dose rates

    International Nuclear Information System (INIS)

    Auer, Susanne; Hable, Volker; Greubel, Christoph; Drexler, Guido A; Schmid, Thomas E; Belka, Claus; Dollinger, Günther; Friedl, Anna A

    2011-01-01

    Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >10 9 Gy s -1 may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly

  7. The Effect of Dose Rate on Composite Durability When Exposed to a Simulated Long-Term Lunar Radiation Environment

    Science.gov (United States)

    Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William

    2011-01-01

    Human exploration of space beyond low Earth orbit (LEO) requires a safe living and working environment for crew. Composite materials are one type of material being investigated by NASA as a multi-functional structural approach to habitats for long-term use in space or on planetary surfaces with limited magnetic fields and atmosphere. These materials provide high strength with the potential for decreased weight and increased radiation protection of crew and electronics when compared with conventional aluminum structures. However, these materials have not been evaluated in a harsh radiation environment, as would be experienced outside of LEO or on a planetary surface. Thus, NASA has been investigating the durability of select composite materials in a long-term radiation environment. Previously, NASA exposed composite samples to a simulated, accelerated 30-year radiation treatment and tensile stresses similar to those of a habitat pressure vessel. The results showed evidence of potential surface oxidation and enhanced cross-linking of the matrix. As a follow-on study, we performed the same accelerated exposure alongside an exposure with a decreased dose rate. The slower dose ]rate is comparable to a realistic scenario, although still accelerated. Strain measurements were collected during exposure and showed that with a fastdose rate, the strain decreased with time, but with a slow ]dose rate, the strain increased with time. After the radiation exposures, samples were characterized via tensile tests, flexure tests, Fourier Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). The results of these tests will be discussed.

  8. Brachytherapy optimization using radiobiological-based planning for high dose rate and permanent implants for prostate cancer treatment

    Science.gov (United States)

    Seeley, Kaelyn; Cunha, J. Adam; Hong, Tae Min

    2017-01-01

    We discuss an improvement in brachytherapy--a prostate cancer treatment method that directly places radioactive seeds inside target cancerous regions--by optimizing the current standard for delivering dose. Currently, the seeds' spatiotemporal placement is determined by optimizing the dose based on a set of physical, user-defined constraints. One particular approach is the ``inverse planning'' algorithms that allow for tightly fit isodose lines around the target volumes in order to reduce dose to the patient's organs at risk. However, these dose distributions are typically computed assuming the same biological response to radiation for different types of tissues. In our work, we consider radiobiological parameters to account for the differences in the individual sensitivities and responses to radiation for tissues surrounding the target. Among the benefits are a more accurate toxicity rate and more coverage to target regions for planning high-dose-rate treatments as well as permanent implants.

  9. Monte Carlo design, dosimetry and radiation protection studies for a new mobile electron accelerator for intraoperative radiation therapy (IORT)

    International Nuclear Information System (INIS)

    Wysocka-Rabin, A.

    2013-01-01

    Intraoperative radiation therapy (IORT) delivers a large, single fraction dose of radiation to a surgically exposed tumor or tumor bed. This presentation reviews the design concept and dosimetry characteristics of an electron beam forming system for an IORT accelerator, with special emphasis on beam flatness, X-ray contamination and protecting personnel from dose delivered outside the treatment field. The Monte Carlo code, BEAMnrc/EGSnrc, was used to design, verify and optimize the electron beam forming system for two different docking methods with circular metallic applicators. Calculations of therapeutic beam characteristics were performed at the patient surface. Findings were obtained for initially mono-energetic electron beams with an energy range from 4 to 12 MeV, SSD equal to 60 cm, and circular applicators with diameters from 3 to 12 cm. The aim was to build an electron beam forming system (collimators, scattering-flattening foils, applicators) that is universal for all beam energy and field diameters described above

  10. Radiation dose rates from adult patients undergoing nuclear medicine investigations

    International Nuclear Information System (INIS)

    Mountford, P.J.; O'Doherty, M.J.; Forge, N.I.; Jeffries, A.; Coakley, A.J.

    1991-01-01

    Adult patients undergoing nuclear medicine investigations may subsequently come into close contact with members of the public and hospital staff. In order to expand the available dosimetry and derive appropriate recommendations, dose rates were measured at 0.1, 0.5 and 1.0 m from 80 adult patients just before they left the nuclear medicine department after undergoing one of eight 99 Tc m studies, an 123 I thyroid, an 111 In leucocyte or a 201 Tl cardiac scan. The maximum departure dose rates at these distances of 150, 30 and 7.3 μSv h -1 were greater than those found in similar published studies of adult and paediatric patients. To limit the dose to an infant to less than 1 mSv, an 111 In leucocyte scan is the only investigation for which it may be necessary to restrict close contact between the infant and a radioactive parent, depending on the dose rate near the surface of the patient, the parent's habits and how fretful is the infant. It is unlikely that a ward nurse will receive a dose of 60 μSv in a working day if caring for just one radioactive adult patient, unless the patient is classified as totally helpless and had undergone a 99 Tc m marrow, bone or brain scan. The data and revised calculations of effective exposure times based on a total close contact time of 9 h in every 24 h period should allow worst case estimates of radiation dose to be made and recommendations to be formulated for other circumstances, including any future legislative changes in dose limits or derived levels. (author)

  11. Reference Dose Rates for Fluoroscopy Guided Interventions

    International Nuclear Information System (INIS)

    Geleijns, J.; Broerse, J.J.; Hummel, W.A.; Schalij, M.J.; Schultze Kool, L.J.; Teeuwisse, W.; Zoetelief, J.

    1998-01-01

    The wide diversity of fluoroscopy guided interventions which have become available in recent years has improved patient care. They are being performed in increasing numbers, particularly at departments of cardiology and radiology. Some procedures are very complex and require extended fluoroscopy times, i.e. longer than 30 min, and radiation exposure of patient and medical staff is in some cases rather high. The occurrence of radiation-induced skin injuries on patients has shown that radiation protection for fluoroscopy guided interventions should not only be focused on stochastic effects, i.e. tumour induction and hereditary risks, but also on potential deterministic effects. Reference dose levels are introduced by the Council of the European Communities as an instrument to achieve optimisation of radiation protection in radiology. Reference levels in conventional diagnostic radiology are usually expressed as entrance skin dose or dose-area product. It is not possible to define a standard procedure for complex interventions due to the large inter-patient variations with regard to the complexity of specific interventional procedures. Consequently, it is not realistic to establish a reference skin dose or dose-area product for complex fluoroscopy guided interventions. As an alternative, reference values for fluoroscopy guided interventions can be expressed as the entrance dose rates on a homogeneous phantom and on the image intensifier. A protocol has been developed and applied during a nationwide survey of fluoroscopic dose rate during catheter ablations. From this survey reference entrance dose rates of respectively 30 mGy.min -1 on a polymethylmethacrylate (PMMA) phantom with a thickness of 21 cm, and of 0.8 μGy.s -1 on the image intensifier have been derived. (author)

  12. Natural radiation dose to Gammarus from Hudson river

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Wrenn, M.E.; Eisenbud, M.

    1979-01-01

    The purpose of this investigation is to evaluate the natural radiation dose rate to whole body and components of the Gammarus species, a zooplankton which occurs in the Hudson River among other places, and to compare the results with the upper limits of dose rates from man-made sources. The alpha dose rates to the exoskeleton and soft tissues are about 10 times the average alpha dose rate to the whole body, assuming uniform distribution of 226 Ra. The natural alpha radiation dose rate to Gammarus represents only about 5% of the total natural dose to the organism, i.e., 492 mrad/yr. The external dose rate due to 40 K, 238 U plus daughters and 232 Th plus daughters accumulated in the sediments comprise 91% of that total natural dose rate, the remaining percentage being due to natural internal beta emitters and cosmic radiation. Man-made sources can cause an external dose rate up to 224 mrad/yr, which comprises roughly 1/3 of the total dose rate (up to 716 mrad/yr; natural plus man-made) to the Gammarus of Hudson River in front of Indian Point Nuclear Power Station. However, in terms of dose-equivalent the natural sources of radiation would contribute more than 75% of the total dose to Gammarus

  13. Comparison of Radiation Dose Rates with the Flux to Dose Conversion Factors Recommended in ICRP-74 and ICRP-116

    International Nuclear Information System (INIS)

    Jeong, Hae Sun; Kil, A Reum; Lee, Jo Eun; Jeong, Hyo Joon; Kim, Eun Han; Han, Moon Hee; Hwang, Won Tae

    2016-01-01

    The evaluation of radiation shielding has been performed for the design and maintenance of various facilities using radioactive sources such as nuclear fuel, accelerator, and radionuclide. The conversion of flux to dose mainly used in nuclear and radiation fields has been generally made with the dose coefficients presented in ICRP Publication 74 (ICRP- 74), which are produced based on ICRP Publication 60. On the other hand, ICRP Publication 116 (ICRP-116), which adopts the protection system of ICRP Publication 103, has recently been published and provides the dose conversion coefficients calculated with a variety of Monte Carlo codes. The coefficients have more than an update of those in ICRP-74, including new particle types and a greatly expanded energy range. In this study, a shielding evaluation of a specific container for neutron and gamma sources was performed with the MCNP6 code. The dose rates from neutron and gamma-ray sources were calculated using the MCNP6 codes, and these results were based on the flux to dose conversion factors recommended in ICRP-74 and ICRP-116. As a result, the dose rates evaluated with ICRP-74 were generally shown higher than those with ICRP-116. For neutrons, the difference is mainly occurred by the decrease of radiation weighting factors in a part of energy ranges in the ICRP-116 recommendations. For gamma-rays, the ICRP-74 recommendation applied with the kerma approximation leads to overestimated results than the other assessment

  14. Intraoperative radiotherapy for cancer of the pancreas

    International Nuclear Information System (INIS)

    Manabe, Tadao; Nagai, Toshihiro; Tobe, Takayoshi; Shibamoto, Yuta; Takahashi, Masaharu; Abe, Mitsuyuki

    1985-01-01

    Seven patients treated by intraoperative radiotherapy for cancer of the pancreas were evaluated. Three patients undergoing pancreaticoduodenectomy for cancer of the head of the pancreas received a dose of 2,500--3,000 rad (6--10 MeV Betatron) intraoperatively with or without external beam irradiation at a dose of 2,520 rad (10 MeV lineac X-ray). One patient developed radiation pancreatitis and died 0.8 month after surgery. Autopsy revealed the degeneration of cancer cells in the involved superior mesenteric artery. One died of hepatic metastasis 8.5 months after surgery, however, recurrence was not found in the irradiation field. The other patient who had external beam irradiation combined with intraoperative radiotherapy is alive 7.5 months after surgery. Four patients with unresectable cancer of the body of the pancreas received a dose of 2,500--3,000 rad (13--18 MeV Betatron) intraoperatively with or without external beam irradiation at a dose of 1,500--5,520 rad (10 MeV lineac X-ray). One patient died of peritonitis carcinomatosa 3.0 months after surgery. One patient died of DIC 0.6 month after surgery. Two patients are alive 1.0 and 6.5 months after surgery. In these patients with intraoperative radiotherapy for unresectable cancer of the pancreas, remarkable effects on relief of pain and shrinkage of tumor were obtained. Further pursuit of intraoperative and external beam radiotherapies in combination with pancreatectomy should be indicated in an attempt to prolong survival of patient with cancer of the pancreas. (author)

  15. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  16. Quality control of 192Ir high dose rate after loading brachytherapy dose veracity

    International Nuclear Information System (INIS)

    Feng Zhongsu; Xu Xiao; Liu Fen

    2008-01-01

    Recently, 192 Ir high dose rate (HDR) afterloading are widely used in brachytherapy. The advantage of using HDR systems over low dose rate systems are shorter treatment time and higher fraction dose. To guarantee the veracity of the delivery dose, several quality control methods are deseribed in this work. With these we can improve the position precision, time precision and dose precision of the brachytherapy. (authors)

  17. High versus low dose-rate intracavitary irradiation for adenocarcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Kim, Woo Chul; Kim, Gwi Eon; Chung, Eun Ji; Suh, Chang Ok; Hong, Soon Won; Cho, Young Kap; Loh, John Jk

    1999-01-01

    The incidence of adenocarcinoma of the uterine cervix is low. Traditionally, Low Dose Rate (LDR) brachytherapy has been used as a standard modality in the treatment for patients with carcinoma of the uterine cervix. The purpose of this report is to evaluate the effects of the High Dose Rate (HDR) brachytherapy in the patients with adenocarcinoma of the uterine cervix compared with the LDR. From January 1971 to December 1992, 106 patients of adenocarcinoma of uterine cervix were treated with radiation therapy in the Department of Radiation Oncology, Yonsei University with curative intent. LDR brachytherapy was carried out on 35 patients and 71 patients were treated with HDR brachytherapy. In LDR Group, 8 patients were in stage I, 18 in stage II and 9 in stage III. external radiation therapy was delivered with 10 MV X-ray, daily 2 Gy fractionation, total dose 40-46 Gy (median 48 Gy). And LDR Radium intracavitary irradiation was performed with Henschke applicator, 22-56 Gy to point A (median 43 Gy). In HDR Group, there were 16 patients in stage I, 38 in stage II and 17 in stage III. The total dose of external radiation was 40-61 Gy (median 45 Gy), daily 1.8-2.0 Gy. HDR Co-60 intracavitary irradiation was performed with RALS(Remote Afterloading System), 30-57 Gy (median 39 Gy) to point A, 3 times a week, 3 Gy per fraction. The 5-year overall survival rate in LDR Group was 72.9%, 61.9%, 45.0% in stage I, II, III, respectively and corresponding figures for HDR were 87.1%, 58.3%, 41.2%, respectively (p>0.05). There was no statistical difference in terms of the 5-year overall survival rate between HDR Group and LDR Group in adenocarcinoma of the uterine cervix. There was 11% of late complication rates in LDR Group and 27% in HDR Group. There were no prognostic factors compared HDR with LDR group. The incidence of the late complication rate in HDR Group stage II, III was higher than that in LDR Group (16.7% vs. 31.6% in stage II, 11.1% vs. 35.3% in stage III, p>0

  18. High versus low dose rate intracavitary irradiation for adenocarcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Kim, Woo-Chul; Loh, John J.K.; Kim, Gwi-Eon; Suh, Chang-Ok

    2001-01-01

    Traditionally, low dose rate (LDR) brachytherapy has been used as a standard modality in the treatment of patients with carcinoma of the uterine cervix. The purpose of this work was to evaluate the effects of high dose rate (HDR) brachytherapy on patients with adenocarcinoma of the uterine cervix and to compare them with the effects of LDR brachytherapy. From January 1971 to December 1992, 104 patients suffering from adenocarcinoma of the uterine cervix were treated with radiation therapy in the Department of Radiation Oncology, Yonsei University. LDR brachytherapy was carried out on 34 patients and HDR brachytherapy on 70 patients. In the LDR group, eight patients were in stage IB, six in IIA, 12 in IIB, three in IIIA and five in IIIB. External radiation therapy was delivered with 10 MV X-rays, 2 Gy fraction per day, total dose of whole pelvis 36-52 Gy (median 46 Gy). LDR radium intracavitary irradiation was performed with a Henschke applicator, 37-59 Gy targeted at point A (median 43 Gy). In the HDR group, there were 16 patients in stage IB, six in IIA, 32 in IIB and 16 in IIIB. The total whole pelvis dose of external radiation was 40-50 Gy (median 44 Gy), daily 1.8-2.0 Gy. HDR Co-60 intracavitary irradiation was performed with a remotely controlled after-loading system (RALS), 30-48 Gy (median 39 Gy) targeted at point A, three times per week, 3 Gy per fraction. The 5-year overall survival rate in the LDR group was 72.9, 61.9 and 35.7% in stage I, II and III, respectively and the corresponding figures for HDR were 87.1, 58.3 and 43.8% (p 0.05). No prognostic factors were evident in the comparison between the two groups. There was no difference in terms of 5-year survival rate in the patients with adenocarcinoma of the uterine cervix between those treated with HDR and those treated with LDR brachytherapy. Even though late complication rates were higher in the HDR group, most of them were classified as grade I. This retrospective study suggests that HDR

  19. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  20. Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Van; Little, Mark P. [National Cancer Institute, Radiation Epidemiology Branch, Rockville, MD (United States)

    2017-11-15

    Murine experiments were conducted at the JANUS reactor in Argonne National Laboratory from 1970 to 1992 to study the effect of acute and protracted radiation dose from gamma rays and fission neutron whole body exposure. The present study reports the reanalysis of the JANUS data on 36,718 mice, of which 16,973 mice were irradiated with neutrons, 13,638 were irradiated with gamma rays, and 6107 were controls. Mice were mostly Mus musculus, but one experiment used Peromyscus leucopus. For both types of radiation exposure, a Cox proportional hazards model was used, using age as timescale, and stratifying on sex and experiment. The optimal model was one with linear and quadratic terms in cumulative lagged dose, with adjustments to both linear and quadratic dose terms for low-dose rate irradiation (<5 mGy/h) and with adjustments to the dose for age at exposure and sex. After gamma ray exposure there is significant non-linearity (generally with upward curvature) for all tumours, lymphoreticular, respiratory, connective tissue and gastrointestinal tumours, also for all non-tumour, other non-tumour, non-malignant pulmonary and non-malignant renal diseases (p < 0.001). Associated with this the low-dose extrapolation factor, measuring the overestimation in low-dose risk resulting from linear extrapolation is significantly elevated for lymphoreticular tumours 1.16 (95% CI 1.06, 1.31), elevated also for a number of non-malignant endpoints, specifically all non-tumour diseases, 1.63 (95% CI 1.43, 2.00), non-malignant pulmonary disease, 1.70 (95% CI 1.17, 2.76) and other non-tumour diseases, 1.47 (95% CI 1.29, 1.82). However, for a rather larger group of malignant endpoints the low-dose extrapolation factor is significantly less than 1 (implying downward curvature), with central estimates generally ranging from 0.2 to 0.8, in particular for tumours of the respiratory system, vasculature, ovary, kidney/urinary bladder and testis. For neutron exposure most endpoints, malignant and

  1. Dose rate measuring device and dose rate measuring method using the same

    International Nuclear Information System (INIS)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-01-01

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  2. Dose rate measuring device and dose rate measuring method using the same

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-11-13

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  3. Monitoring of high-radiation areas for the assessment of operational and body doses

    International Nuclear Information System (INIS)

    Chen, T.J.; Tung, C.J.; Yeh, W.W.; Liao, R.Y.

    2004-01-01

    The International Commission on Radiological Protection (ICRP) recommended a system of dose limits for the protection of ionizing radiation. This system was established based on the effective dose, E, and the equivalent dose to an organ or tissue, H T , to assess stochastic and deterministic effects. In radiation protection monitoring for external radiation, operational doses such as the deep dose equivalent index, H I,d , shallow dose equivalent index, H I,s , ambient dose equivalent [1,4-6], H*, directional dose equivalent, H', individual dose equivalent-penetrating, H p , and individual dose equivalent-superficial, H s , are implemented. These quantities are defined in an International Commission on Radiation Units and Measurements (ICRU) sphere and in an anthropomorphic phantom under simplified irradiation conditions. They are useful when equivalent doses are below the corresponding limits. In the case of equivalent doses far below the limits, the exposure or air kerma is commonly applied. For workers exposed to high levels of radiation, accurate assessments of effective doses and equivalent doses may be needed in order to acquire legal and health information. In the general principles of monitoring for radiation protection of workers, ICRP recommended that: 'A graduated response is advocated for the monitoring of the workplace and for individual monitoring - graduated in the sense that a greater degree of monitoring is deemed to be necessary as doses increase of as unpredictability increases. Gradually more complex or realistic procedures should be adopted as doses become higher. Thus, at low dose equivalents (corresponding say to those within Working Condition B) dosimetric quantities might be used directly to assess exposure, since accuracy is not crucial. At intermediate dose equivalents (corresponding say to Working Condition A and slight overexposures) somewhat greater accuracy is warranted, and the conversion coefficients from dosimetric to radiation

  4. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    Science.gov (United States)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  5. Low rate doses effects of gamma radiation on glycoproteins of transmembrane junctions in fibroblasts

    International Nuclear Information System (INIS)

    Bringas, J.E.; Caceres, J.L.

    1996-01-01

    Glycoproteins of trans-membrane junctions are molecules that help to bind cells with the extracellular matrix. Integrins are the most important trans-membrane molecules among others. The damage of gamma radiation on those proteins could be an important early event that causes membrane abnormalities which may lead to cell malfunction and cancer induced by radiation due to cell dissociation. Randomized blocks with 3 repetitions of mouse embryo fibroblast cultures, were irradiated with Cobalt-60 gamma rays, during 20 days. Biological damage to glycoproteins and integrins was evaluated by cellular growth and fibroblast proliferative capacity. Integrins damage was studied by isolation by column immunoaffinity chromatography migrated on SDS-Page under reducing and non reducing conditions, and inhibition of integrins extracellular matrix adhesion by monoclonal antibodies effect. The dose/rate (0.05 Gy/day-0.2 Gy/day) of gamma given to cells did not show damage evidence on glycoproteins and integrins. If damage happened, it was repaired by cells very soon, was delayed by continuous cellular division or by glycoproteins characteristic of being multiple extracellular ligatures. Bio effects became more evident with an irradiation time greater than 20 days or a high dose/rate. (authors). 6 refs

  6. Brachytherapy. Pulsed dose rate brachytherapy - Radiation protection: medical sheet ED 4250

    International Nuclear Information System (INIS)

    Celier, D.; Aubert, B.; Vidal, J.P.; Biau, A.; Lahaye, T.; Gauron, C.; Barret, C.; Boisserie, G.; Branchet, E.; Gambini, D.; Gondran, C.; Le Guen, B.; Guerin, C.; Nguyen, S.; Pierrat, N.; Sarrazin, T.; Donnarieix, D.

    2009-06-01

    After having indicated the required authorization to implement brachytherapy techniques, this document presents the various aspects and measures related to radiation protection when performing pulsed-dose-rate brachytherapy treatments. It presents the concerned personnel, describes the operational process, indicates the associated hazards and the risk related to ionizing radiation, and describes how the risk is to be assessed and how exposure levels are to be determined (elements of risk assessment, delimitation of controlled and monitored areas, personnel classification, and choice of the dose monitoring method). It describes the various components of a risk management strategy (risk reduction, technical measures regarding the installation and the personnel, training and information, prevention and medical monitoring). It briefly presents how risk management is to be assessed, and mentions other related risks (biological risk, handling and posture, handling of heavy loads, mental workload, chemical risk)

  7. Analysis of the spatial rates dose rates during dental panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jong Kyung [Dept. of Radiation Safety Management Commission, Daegu Health College, Daegu (Korea, Republic of); Park, Myeong Hwan [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of); Kim, Yong Min [Dept. of Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2016-12-15

    A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a 45°, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is 3,840 μSv/h, which is four times higher than the lowest level 778 μSv/h. Furthermore, the spatial dose rate was 408 μSv/h on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

  8. Relationship between increased radiation dose rate in air and rainfall, 3

    International Nuclear Information System (INIS)

    Suzuki, Osamu

    1985-01-01

    The influence of snow on dose rate in air (DRA) was analyzed. Attenuatin ratio of DRA due to snow depends on the amount of water per surface area. When snow reaches one m, DRA does not seem to be influenced by radioactivity from the ground, but seems to be only influenced by natural radioactivity of buildings. A method was examined to estimate background radiation doses during the snow season with counting rates of peak areas of 1.765 MeV for Bi-214 and 2.614 MeV for Tl-208. In serial measurements of environmental gamma rays, the method of measuring spectra is far superior to other methods in view of the collection of much more information. (Namekawa, K.)

  9. Fiber optical dose rate measurement based on the luminescence of beryllium oxide

    Directory of Open Access Journals (Sweden)

    Teichmann Tobias

    2018-01-01

    Full Text Available This work presents a fiber optical dose rate measurement system based on the radioluminescence and optically stimulated luminescence of beryllium oxide. The system consists of a small, radiation sensitive probe which is coupled to a light detection unit with a long and flexible light guide. Exposing the beryllium oxide probe to ionizing radiation results in the emission of light with an intensity which is proportional to the dose rate. Additionally, optically stimulated luminescence can be used to obtain dose and dose rate information during irradiation or retrospectively. The system is capable of real time dose rate measurements in fields of high dose rates and dose rate gradients and in complex, narrow geometries. This enables the application for radiation protection measurements as well as for quality control in radiotherapy. One inherent drawback of fiber optical dosimetry systems is the generation of Cherenkov radiation and luminescence in the light guide itself when it is exposed to ionizing radiation. This so called “stem” effect leads to an additional signal which introduces a deviation in the dose rate measurement and reduces the spatial resolution of the system, hence it has to be removed. The current system uses temporal discrimination of the effect for radioluminescence measurements in pulsed radiation fields and modulated optically stimulated luminescence for continuous irradiation conditions. This work gives an overview of the major results and discusses new-found obstacles of the applied methods of stem discrimination.

  10. Recent international regulations: low dose-low rate radiation protection and the demise of reason.

    Science.gov (United States)

    Okkalides, Demetrios

    2008-01-01

    The radiation protection measures suggested by the International Committee for Radiation Protection (ICRP), national regulating bodies and experts, have been becoming ever more strict despite the decrease of any information supporting the existence of the Linear no Threshold model (LNT) and of any adverse effects of Low Dose Low Rate (LDLR) irradiation. This tendency arises from the disproportionate response of human society to hazards that are currently in fashion and is unreasonable. The 1 mSv/year dose limit for the public suggested by the ICRP corresponds to a 1/18,181 detriment-adjusted cancer risk and is much lower than other hazards that are faced by modern societies such as e.g. driving and smoking which carry corresponding rate risks of 1/2,100 and 1/2,000. Even worldwide deadly work accidents rate is higher at 1/ 8,065. Such excessive safety measures against minimal risks from man made radiation sources divert resources from very real and much greater hazards. In addition they undermine research and development of radiation technology and tend to subjugate science and the quest for understanding nature to phobic practices.

  11. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    International Nuclear Information System (INIS)

    Kageji, Teruyoshi; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-01-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively

  12. Agriculture-related radiation dose calculations

    International Nuclear Information System (INIS)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs

  13. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko; Furukawa, Souhei; Kakimoto, Naoya

    2003-01-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  14. The status of low dose rate and future of high dose rate Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F.; Chuba, P.J.; Fontanesi, J.

    1997-12-01

    This work describes the current status of the US low dose rate (LDR) Cf-252 brachytherapy program. The efforts undertaken towards development of a high dose rate (HDR) remotely after loaded Cf-252 source, which can accommodate 1 mg or greater Cf-252, are also described. This HDR effort is a collaboration between Oak Ridge National Laboratory (ORNL), commercial remote after loader manufactures, the Gershenson Radiation Oncology Center (ROC), and Wayne State University. To achieve this goal, several advances in isotope chemistry and source preparation at ORNL must be achieved to yield a specific material source loading of greater than or equal 1 mg Cf-252 per mm3. Development work with both radioactive and non-radioactive stand-ins for Cf-252 have indicated the feasibility of fabricating such sources. As a result, the decreased catheter diameter and computer controlled source placement will permit additional sites (e.g. brain, breast, prostate, lung, parotid, etc.) to be treated effectively with Cf-252 sources. Additional work at the Radiochemical Engineering and Development Center (REDC) remains in source fabrication, after loader modification, and safe design. The current LDR Cf-252 Treatment Suite at the ROC is shielded and licensed to hold up to 1 mg of Cf-252. This was designed to maintain cumulative personnel exposure, both external to the room and in direct isotope handling, at less than 20 microSv/hr. However, cumulative exposure may be greatly decreased if a Cf-252 HDR unit is employed which would eliminate direct isotope handling and decrease treatment times from tilde 3 hours to an expected range of 3 to 15 minutes. Such a Cf-252 HDR source will also demonstrate improved dose distributions over current LDR treatments due to the ability to step the point-like source throughout the target volume and weight the dwell time accordingly

  15. Intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Dobelbower Junior, R.R.

    1987-01-01

    A briefly history of intraoperative radiotherapy is presented. The equipment used is described and the treatment with superficial X-ray beams, orthovoltage X-ray beams and megavoltage electron beams are discussed. The effect on normal tissues and the clinical use of intraoperative radiotherapy in several Kind of cancer is studied. (M.A.C.) [pt

  16. Effective treatment of Stage I uterine papillary serous carcinoma with high dose-rate vaginal apex radiation (192Ir) and chemotherapy

    International Nuclear Information System (INIS)

    Turner, Bruce C.; Knisely, Jonathan P. S.; Kacinski, Barry M.; Haffty, Bruce G.; Gumbs, Andrew A.; Roberts, Kenneth B.; Frank, Alex H.; Peschel, Richard E.; Rutherford, Thomas J.; Edraki, Babak; Kohorn, Ernest I.; Chambers, Setsuko K.; Schwartz, Peter E.; Wilson, Lynn D.

    1998-01-01

    Purpose: Uterine papillary serous carcinoma (UPSC) is a morphologically distinct variant of endometrial carcinoma that is associated with a poor prognosis, high recurrence rate, frequent clinical understaging, and poor response to salvage treatment. We retrospectively analyzed local control, actuarial overall survival (OS), actuarial disease-free survival (DFS), salvage rate, and complications for patients with Federation International of Gynecology and Obstetrics (FIGO) (1988) Stage I UPSC. Methods and Materials: This retrospective analysis describes 38 patients with FIGO Stage I UPSC who were treated with the combinations of radiation therapy, chemotherapy, total abdominal hysterectomy, and bilateral salpingo-oophorectomy (TAH/BSO), with or without a surgical staging procedure. Twenty of 38 patients were treated with a combination of low dose-rate (LDR) uterine/vaginal brachytherapy using 226 Ra or 137 Cs and conventional whole-abdomen radiation therapy (WART) or whole-pelvic radiation therapy (WPRT). Of 20 patients (10%) in this treatment group, 2 received cisplatin chemotherapy. Eighteen patients were treated with high dose-rate (HDR) vaginal apex brachytherapy using 192 Ir with an afterloading device and cisplatin, doxorubicin, and cyclophosphamide (CAP) chemotherapy (5 of 18 patients). Only 6 of 20 UPSC patients treated with combination LDR uterine/vaginal brachytherapy and conventional external beam radiotherapy underwent complete surgical staging, consisting of TAH/BSO, pelvic/para-aortic lymph node sampling, omentectomy, and peritoneal fluid analysis, compared to 15 of 18 patients treated with HDR vaginal apex brachytherapy. Results: The 5-year actuarial OS for patients with complete surgical staging and adjuvant radiation/chemotherapy treatment was 100% vs. 61% for patients without complete staging (p = 0.002). The 5-year actuarial OS for all Stage I UPSC patients treated with postoperative HDR vaginal apex brachytherapy and systemic chemotherapy was 94

  17. Calculation of radiation dose rate arisen from radionuclide contained in building materials

    International Nuclear Information System (INIS)

    Lai Tien Thinh; Nguyen Hao Quang

    2008-01-01

    This paper presents some results that we used MCNP5 program to calculate radiation dose rate arisen from radionuclide in building materials. Since then, the limits of radionuclide content in building materials are discussed. The calculation results by MCNP are compared with those calculated by analytical method. (author)

  18. Intraoperative radiation therapy for patients with pancreatic carcinoma

    International Nuclear Information System (INIS)

    Abe, Tetsuo; Itoh, Kei; Agawa, Senichiro; Ishihara, Yukio; Konishi, Toshiro

    2001-01-01

    We studied the efficacy and complications of intraoperative radiation therapy (IORT) in 40 subjects with unresected pancreatic carcinoma (Group A) and 8 with resected pancreatic carcinoma (Group B). These 2 groups were compared to groups not treated by IORT; 59 subjects with unresected pancreatic carcinoma (Group C) and 55 with resected pancreatic carcinoma (Group D). The 6-month survival in Group A was 55%, and 1-year survival 26% compared to 20% 6-month survival and 9% 1-year survival in Group C with a median survival of 7 months in Group A and 4 months in group C; all statistically significant. Pain control was 81.8% in Group A, reduction in tumor size was 50% and reduction of tumor marker, CA19-9 was 56.3% in Group A. Survival in Groups B and D did not differ significantly. The histological efficacy of IORT in Group A was confirmed in autopsy of fibrosis and scar formation in radiation fields of the pancreas. Two patients in Group B had major morbidity leading to death; 1 from leakage in the pancreatojejunal anastomosis accompanied by pancreatic necrosis and the other from duodenal perforation with rupture of the portal vein and hepatic artery. This study demonstrates the efficacy of IORT in patients with unresected pancreatic carcinoma. Prophylactic bypass and shielding of the residual pancreas with lead or reducing the IORT or external beam radiation therapy (EBRT) dose should be considered in patients with unresected or resected pancreatic carcinoma, however, to prevent serious complications due to radiation injury of the duodenum and pancreas. (author)

  19. Estimation of radiation risks at low dose

    International Nuclear Information System (INIS)

    1990-04-01

    The report presents a review of the effects caused by radiation in low doses, or at low dose rates. For the inheritable (or ''genetic''), as well as for the cancer producing effects of radiation, present evidence is consistent with: (a) a non-linear relationship between the frequency of at least some forms of these effects, with comparing frequencies caused by doses many times those received annually from natural sources, with those caused by lower doses; (b) a probably linear relationship, however, between dose and frequency of effects for dose rates in the region of that received from natural sources, or at several times this rate; (c) no evidence to indicate the existence of a threshold dose below which such effects are not produced, and a strong inference from the mode of action of radiation on cells at low dose rates that no such thresholds are likely to apply to the detrimental, cancer-producing or inheritable, effects resulting from unrepaired damage to single cells. 19 refs

  20. Tolerance of canine portal vein anastomosis to intraoperative X-irradiation

    International Nuclear Information System (INIS)

    Ohara, K.; Takeshima, T.

    1987-01-01

    Tolerance of surgical portal vein anatomosis to intraoperative radiation therapy (IORT) was studied in dogs after single doses of zero, 10, 20 and 40 Gy (290 kVp X-rays). Portal venography was performed prior to IORT and before sacrificing. The dogs were sacrificed 3 and 12 months respectively after irradiation. Portal venography revealed no radiation induced anastomotic stenosis. Autopys disclosed macroscopic periportal fibrosis in all dogs, independent of radiation dose and observation periods. Microscopically, the three tunicas of the vein did not show any pathological changes after any dose level. (orig.)

  1. Comparison of high dose rate (HDR) and low dose rate (LDR) brachytherapy in the treatment of stage IIIB cervix cancer with radiation therapy alone. The preliminary results

    International Nuclear Information System (INIS)

    Trippe, Nivaldo; Novaes, P.E.; Ferrigno, R.; Pellizzon, A.C.; Salvajoli, J.V.; Fogaroli, R.C.; Maia, M.A.C.; Baraldi, H.E.

    1996-01-01

    Purpose/Objective: To compare the results between HDR and LDR brachytherapy in the treatment of stage IIIB cervix cancer with radiation therapy alone through a prospective and randomized trial. Materials and Methods: From September 1992 to December 1993, 65 patients with stage IIIB cervical cancer were randomized to one of the following treatment schedule according to the brachytherapy used to complement the dose of external beam radiotherapy (EBRT): 1 - High dose rate (HDR) - 36 patients - 4 weekly insertions of 6,0 Gy at point A 2 - Low dose rate (LDR) - 29 patients - 2 insertions two weeks apart of 17,5 Gy at point A The External Beam radiotherapy was performed through a Linac 4MV, in box arrangement for whole pelvis and in AP-PA fields for parametrial complementation of dose. The dose at the whole pelvis was 45 Gy in 25 fractions of 1,8 Gy and the parametrial dose was 16 Gy. The brachytherapy was realized with Fletcher colpostats and intrauterine tandem, in both arms. The HDR brachytherapy was realized through a Micro-Selectron device, working with Iridium-192 with initial activity of 10 Ci and started ten days after the beginning of EBRT. The total treatment time was shortened in two weeks for this group. The LDR brachytherapy started only after the end of EBRT. Results: With the minimum follow up of 24 months and medium of 31 months, the disease free survival was 50% among the 36 patients in HDR group and 47,8% among the 29 patients in LDR group. Local failures occurred in 50% and 52,8% respectively. Grade I and II complications were restricted to rectites and cistites and the incidence of them was 8,3% for HDR group and 13% for LDR group. Until the time of evaluation there were no grade III complications in any group. Conclusions: Although the number of patients is small and the time of follow up still short, these preliminary results suggest that the HDR brachytherapy has an equivalent efficiency in local control as the LDR in the treatment of stage IIIB

  2. Health hazards of low doses of ionizing radiations. Vo. 1

    International Nuclear Information System (INIS)

    El-Naggar, M.A.

    1996-01-01

    Exposure to high doses of ionizing radiation results in clinical manifestations of several disease entities that may be fatal. The onset and severity of these acute radiation syndromes are deterministic in relation to dose magnitude. Exposure to ionizing radiations at low doses and low dose rates could initiate certain damage in critical molecules of the cell, that may develop in time into serious health effects. The incidence of such delayed effects in low, and is only detectable through sophisticated epidemiological models carried out on large populations. The radiation damage induced in critical molecules of cells may develop by stochastic biochemical mechanisms of repair, residual damage, adaptive response, cellular transformation, promotion and progression into delayed health effects, the most important of which is carcinogenesis. The dose response relationship of probabilistic stochastic delayed effects of radiation at low doses and low dose rates, is very complex indeed. The purpose of this review is to provide a comprehensive understanding of the underlying mechanisms, the factors involved, and the uncertainties encountered. Contrary to acute deterministic effects, the occurrence of probabilistic delayed effects of radiation remains to be enigmatic. 7 figs

  3. Estimation of individual doses from external exposures and dose-group classification of cohort members in high background radiation area in Yangjiang, China

    International Nuclear Information System (INIS)

    Yuan Yongling; Shen Hong; Sun Quanfu; Wei Luxin

    1999-01-01

    Objective: In order to estimate annual effective doses from external exposures in the high background radiation area (HBRA) and in the control area (CA) , the authors measured absorbed dose rates in air from terrestrial gamma radiation with different dosimeters. A dose group classification was an important step for analyzing the dose effects relationship among the cohort members in the investigated areas. The authors used the hamlet specific average annual effective doses of all the 526 hamlets in the investigated areas. A classification of four dose groups was made for the cohort members (high, moderate, low and control) . Methods: For the purpose of studying the dose effect relationships among the cohort members in HBRA and CA, it would be ideal that each subject has his own record of individual accumulated doses received before the evaluation. However, rt is difficult to realize it in practice (each of 106517 persons should wear TLD for a long time) . Thus the authors planned two sets of measurements. Firstly, to measure the environmental dose rates (outdoor, indoor, over the bed) in every hamlet of the investigated area (526 hamlets) , considering the occupancy factors for males and females of different age groups to convert to the annual effective dose from the data of dose rates. Secondly, to measure the individual cumulative dose with TLD for part of the subjects in the investigated areas. Results: Based on the two sets of measurements, the estimates of average annual effective doses in HBRA were 211.86 and 206.75 x 10 -5 Sv/a, respectively, 68.60 and 67.11 x 10 -5 Sv/a, respectively(gamma radiation only) . The intercomparison between these two sets of measurement showed that they were in good correlation. Thus the authors are able to yield the equations of linear regression: Y = 0.9937 + 6.0444, r = 0.9949. Conclusions: The authors took the value obtained from direct measurement as 'standard' , and 15 % for uncertainty of measurement. Since the estimates of

  4. Study of the radiation levels in low dose rate brachytherapy zones of the National Institute of Neoplastic Illnesses

    International Nuclear Information System (INIS)

    Figueroa J, N.; Mora Y, B.

    2006-01-01

    The present study has as objective to evaluate the radiation levels of the Brachytherapy work areas of low dose rate (Gammateque, nurses station and of hospitalization rooms of patients RIC of 4th, 5th Floor-East) and to estimate the effective dose of the occupationally exposed personnel and the public in general. The measurements of the dose rate in these areas, were registered with a radiations monitor Inspector trademark, during a period of 60 days, without altering the routinary work conditions. The more high levels of environmental dose equivalent rate registered in the different work areas its are of 1.41 and 47.78 μSv/h rooms 1 and 2 in the Gammateque environments, in the hospitalization rooms of the 4th and 5th floor in the point 1 are of 40.77 and 23.67, μSv/h respectively and in the point 2 are of 129.19 and 39.93, μSv/h respectively, and in the nurses station of the 4th and 5th floor its are respectively of 7.62 u Sv/h and 0.45 u Sv/h. According to the carried out measurements and the permanency in the work place is possible to estimate the effective dose involved to the occupationally exposed personnel. The personnel that works in Gammateque could be receiving respectively as maximum dose 0.61 mSv/month, and the personnel that works in the nurses station of 13.17 and 0.78 mSv/year in the 4th and 5th floor. These registered differences among the two floors are due to that the 5th floor counts with the shielding systems (screen) contrary to the 4th, another of the factors is the distribution form of the patient beds RIC. We should have present that the radiation levels although in some cases it is very high, however, they are below of the permissible limits according to standards, but it is still possible to reduce even more, the radiation levels in the critical points fulfilling with the ALARA principle. (Author)

  5. Braquiterapia de alta taxa de dose no Brasil High-dose rate brachytherapy in Brazil

    Directory of Open Access Journals (Sweden)

    Sérgio Carlos Barros Esteves

    2004-10-01

    Full Text Available A braquiterapia de alta taxa de dose foi introduzida em nosso meio em janeiro de 1991. Desde então, houve uma mudança significativa na abordagem das neoplasias malignas em relação às vantagens do novo método, e também resolução da demanda reprimida de braquiterapia para as neoplasias ginecológicas. Nos primeiros dez anos de atividade, o Brasil tratou, em 31 serviços, 26.436 pacientes com braquiterapia, sendo mais de 50% das pacientes portadoras de neoplasias do colo uterino. Este estudo mostra o número e o perfil de pacientes tratados com esse método e a sua distribuição no território nacional, deixando explícito o benefício da braquiterapia de alta taxa de dose para o Brasil.High-dose rate brachytherapy was first introduced in Brazil in January 1991. Significant changes in the management of malignant neoplasms were observed since utilization of high-dose rate brachytherapy. The high number of gynecological patients awaiting for brachytherapy also decreased during this period. In the first ten years 26,436 patients were treated with high-dose rate brachytherapy. More than 50% of these patients presented neoplasms of the uterine cervix. In this study we present the number and profile of the patients treated with high-dose rate brachytherapy as well as the distribution of these patients in the Brazilian territory, proving the benefit of the use of high-dose rate brachytherapy in Brazil.

  6. Dyed grafted films for large-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rehim, F; El-Sawy, N M; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1993-07-01

    By radiation-induced polymerization of acrylic acid onto poly(ethylene-tetrafluoroethylene) (ET) copolymer film and reacting the resulted grafted film with both Rhodamine B (RB) and Malachite Green (MG), new dosimeter films have been developed for high-dose gamma radiation applications in the range of absorbed doses from 10 to 180 kGy. The radiation-induced color bleaching has been analysed with visible spectrophotometry, either at the maximum of the absorption band peaking at 559 nm (for ETRB) or that peaking at 627 nm (for ETMG). The effects of different conditions of absorbed dose rate, temperature and relative humidity during irradiation and post-irradiation storage on dosimeter performance are discussed. (author).

  7. Study on intraoperative radiotherapy applying hyperthermia together with radiation sensitizers for progressive local carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Abe, M; Takahashi, M; Ono, K; Hiraoka, M [Kyoto Univ. (Japan). Faculty of Medicine

    1980-08-01

    Intraoperative radiotherapy for gastric cancer, colonic cancer, pancreatic cancer, cancer of the biliary tract, prostatic carcinoma, cerebral tumor, tumor of soft tissues, and osteosarcoma and its clinical results were described. Basic and clinical studies on effects of both hyperthermia and radiation sensitizers to elevate radiation sensitivity were also described, because effects of intraoperative radiotherapy were raised by applying hyperthermia and hypoxic cell sensitizers.

  8. High dose rate brachytherapy in treatment of high grade astrocytomas

    International Nuclear Information System (INIS)

    Garcia-Alejo, R.; Delgado, J.M.; Cerro, E. del; Torres, J.J.; Martinez, R.

    1996-01-01

    From May 1994 to June 1995, 18 patients with high grade astrocytomas were entered prospectively on a selective protocol combining surgery, external beam radiotherapy, stereotactic interstitial implantation with HDR Iridium 192 and chemotherapy. Only those patients with tumor size 100cc or less average dimension, high grade astrocytoma, Karnofsky 70 or greater, unilateral, circumscribed, unifocal, tumor stable or responding to external radiation and supratentorial were included in the study. Ages ranged from 16 to 69 years. There were 13 males and 5 females. Surgery consisted of biopsy only in 3 patients, subtotal resection in 11, and gross total resection in 4 patients. Focal external beam radiation portals included the contrast enhancing mass on CT scan plus a 3 cm margin. The protocol called for minimum tumor dose of 60 Gy to be given in 2 Gy daily fractions. An interstitial brachytherapy boost was to be performed two weeks after the conclusion of external beam radiation. The dose was 30 Gy in 4 fractions. The authors analyze on basis on their personal experience, the possibilities and the limits offered by this therapeutic procedure in neuro-oncology. Using stereotactic techniques, interstitial brachytherapy of brain tumors was technically possible with negligible acute morbidity and mortality, and appeared to be effective and may provide for an increase in tumor control in selected cases

  9. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    Science.gov (United States)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly

  10. Experimental study of the intra-operative radiation therapy for pancreatic cancer

    International Nuclear Information System (INIS)

    Kodera, Taro; Matsuno, Seiki; Kobari, Masao; Akaishi, Satoshi; Sakamoto, Kiyohiko

    1988-01-01

    The radiosensitivity of pancreatic cancer, optimum dose of irradiation and the effect of 1-[4'-Hydroxy-2'-Butenoxy) Methyl]-2-Nitrosoimidaole (RK-28) on irradiation were investigated using an experimental pancreatic cancer of hamster and the following results were obtained: i) The mean lethal dose (Do) and the 50 % tumor control dose (TCD 50 ) against the pancreatic cancer were 3.5 Gy and 73.7 ± 6.9 Gy, respectively. These results indicate that the pancreatic cancer is resistant to irradiation, which could be explained by the existence of hypoxic cells consisting of 35 % of the tumor. ii) The dose of intraoperative irradiation (10 - 40 Gy) seemed to be insufficient to bring long-term anti-tumor effect and long-term survival since that dose resulted in only temporary regression of the tumor. iii) The hypoxic cell sensitizer (RK28), which is known to specifically enhance the sensitivity of hypoxic cells to irradiation, lowered TCD 50 of the pancreatic cancer to 53.8 ± 1.57 Gy. Therefore, RK-28 was effective in the treatment of the experimental pancreatic cancer (the enhancement ratio : 1.37). When combined with 30 or 40 Gy of irradiation, which is applicable to intraoperative irradiation, RK-28 induced a longer period of tumor suppression and a higher tumor regression ratio than irradiation alone. These results indicate that RK-28 significantly increases the effect of intraoperative irradiation and this combination therapy could possibly induce remarkable effect on tumor regression and long-term survival. (author)

  11. High dose rate intracavitary afterloading irradiation in malignant inoperable obturation of bile ducts

    Energy Technology Data Exchange (ETDEWEB)

    Itami, J.; Saegusa, K.; Mamiya, T.; Miyoshi, T.; Arimizu, N.; Tsuchiya, Y.; Ohto, M.

    1986-02-01

    After decompression of the bile duct with PTCD, seven patients with carcinomas of the bile ducts were submitted to an intracavitary Ir-afterloading irradiation performed according to the high-dose-rate method with a Buchler device. Most of the patients were irradiated with 30 Gy in two fractions. Five patients were also exposed to percutaneous radiation with 40 to 50 Gy. Local control was achieved in six patients. One patient developed a locoregional recurrence which was possibly due to a so-called 'geographic miss'. In one patient a benign fibrotic stenosis of the bile duct was found at the site of most intensive irradiation. Intracavitary irradiation is very important in the treatment of malignant of bile ducts. However, there is an urgent need of research with regard to the combined method with percutaneous irradiation and to the optimum fractionation of intracavitary high dose rate irradiation.

  12. Recommended de minimis radiation dose rates for Canada

    International Nuclear Information System (INIS)

    1990-07-01

    A de minimis dose or dose rate as used in this report represents a level of risk which is generally accepted as being of no significance to an individual, or in the case of a population, of no significance to society. The doses corresponding to these levels of risk are based on current scientific knowledge. Dose rates recommended in this report are as follows: a de minimis individual dose rate of 10 μSv a -1 , based on a risk level that would generally be regarded as negligible in comparison with other risks; and a de minimis collective dose rate of 1 person-Sv a -1 , based on an imperceptible increase above the normal incidences of cancer and genetic defects in the exposed population. The concept of de minimis is to be distinguished from 'exempt from regulation' (below regulatory concern). The latter involves broader social and economic factors which encompass but are not limited to the purely risk-based factors addressed by the de minimis dose. De minimis is one of the factors that determine the exemption of sources or practices that may result in doses below or above the de minimis level. Although these de minimis dose rates should be considered in developing criteria and guidelines for deriving quantities and concentrations of radioactive substances that may be exempted from regulation, this document is only concerned with establishing de minimis dose rates, not with exempting sources and practices

  13. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  14. Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL

    International Nuclear Information System (INIS)

    Radev, R.

    2009-01-01

    In June 2007, 10 CFR 835 (1) was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 (2). The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring (3,4,5) including the ambient dose equivalent H*(d) to be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of ±25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up to 22%. The

  15. Practice for characterization and performance of a high-dose radiation dosimetry calibration laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    This practice addresses the specific requirements for laboratories engaged in dosimetry calibrations involving ionizing radiation, namely, gamma-radiation, electron beams or X-radiation (bremsstrahlung) beams. It specifically describes the requirements for the characterization and performance criteria to be met by a high-dose radiation dosimetry calibration laboratory. The absorbed-dose range is typically between 10 and 10 5 Gy. This practice addresses criteria for laboratories seeking accreditation for performing high-dose dosimetry calibrations, and is a supplement to the general requirements described in ISO/IEC 17025. By meeting these criteria and those in ISO/IEC 17025, the laboratory may be accredited by a recognized accreditation organization. Adherence to these criteria will help to ensure high standards of performance and instill confidence regarding the competency of the accredited laboratory with respect to the services it offers

  16. Specific-locus mutation frequencies in mouse stem-cell spermatogonia at very low radiation dose rates, and their use in the estimation of genetic hazards of radiation in man

    International Nuclear Information System (INIS)

    Russell, W.L.; Kelly, E.M.

    1982-01-01

    Experiments were undertaken to augment the information on the lowest radiation dose rates feasible for scoring transmitted induced mutations detected by the specific-locus method in the mouse. This is the type of information most suitable for estimating genetic hazards of radiation in man. The results also aid in resolving conflicting possibilities about the relationship between mutation frequency and radiation dose at low dose rates

  17. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    β-cells against superoxide generated by glycation reaction evoked by high glucose environment. Continuous irradiation at 0.63 mGy/hr from 28 days of age elongates life span, and recovers splenic inflammatory response in Klotho-mice bearing ageing syndrome. The radiation increases anti-oxidants in liver, implicating the prevention of ageing through the suppression of cellular oxidative damages. Our results suggest that low dose/low dose-rate radiation effectively ameliorates diseases related to reactive oxygen species, and elongates life span of animals, at least in part through the stimulation of protective responses against oxidative stress. These findings are important not only for clinical use of low dose/low dose-rate radiation for human diseases, but also for non-cancerous risk estimation at dose and dose rate range argued in legal restrictions. (author)

  18. System for determining absorbed dose and its distribution for high-energy electron radiation

    International Nuclear Information System (INIS)

    Hegewald, H.; Wulff, W.

    1977-01-01

    Taking into account the polarization effect, the dose determination for high-energy electron radiation from particle accelerators depends on the knowledge of the energy dependence of the mass stopping power. Results obtained with thermoluminescent dosemeters agree with theoretical values. For absorbed dose measurements the primary energy of electron radiation has been determined by nuclear photoreactions, and the calculation of the absorbed dose from charge measurements by means of the mass stopping power is described. Thus the calibration of ionization chambers for high-energy electron radiation by absolute measurements with the Faraday cage and chemical dosemeters has become possible. (author)

  19. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  20. Radioactivities (dose rates) of rocks in Japan

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Minato, Susumu

    1995-01-01

    The radioactive distribution (radiation doses) of major rocks in Japan was monitored to clarify the factors influencing terrestrial gamma-ray absorbed dose rates. The rock samples were reduced to powder and analyzed by well-type NaI(Tl) scintillation detector and pulse height analyzer. Terrestrial gamma-ray dose rates were estimated in terms of gamma radiation dose rate 1 m above the ground. The radioactivity concentration was highest in acidic rock which contains much SiO 2 among igneous rock, followed by neutral rock, basic rock, and ultrabasic rock. The radioactive concentration was 30-40% lower in acidic and clastic rocks than those of the world average concentration. Higher radioactive concentration was observed in soils than the parent rocks of sedimentary rock and metamorphic rock. The gamma radiation dose rate was in proportion to the radioactive concentration of the rocks. To clarify the radioactive effect in the change course of rocks into soils, comparative measurement of outcrop and soil radioactive concentrations is important. (S.Y.)

  1. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) Practice Guideline for the Performance of High-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Erickson, Beth A.; Demanes, D. Jeffrey; Ibbott, Geoffrey S.; Hayes, John K.; Hsu, I-Chow J.; Morris, David E.; Rabinovitch, Rachel A.; Tward, Jonathan D.; Rosenthal, Seth A.

    2011-01-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal, breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.

  2. Dose-rate and the reciprocity law: TL response of Ge-doped SiO2 optical fibers at therapeutic radiation doses

    International Nuclear Information System (INIS)

    Abdul Rahman, A.T.; Nisbet, A.; Bradley, D.A.

    2011-01-01

    An investigation has been made on commercially available Ge-doped SiO 2 optical fibers as a novel thermoluminescence system for radiotherapy dosimetry. This dosimeter has previously been shown by the group to provide sensitive dosimetry over a wide range of electron and photon dose, suitable for the needs of radiotherapy. In addition the optical fiber offers small physical size (125 μm diameter) and hence high spatial resolution. The reciprocity between thermoluminescence (TL) yield of Ge-doped SiO 2 optical fibers and dose has been investigated for fixed radiation dose for a range of photon and electron dose rates. For electron beams of nominal energies in the range of 9-20 MeV, we have investigated the TL response of these fibers for dose rates between 100 and 1000 cGy min -1 . For photon beams of nominal energies in the range of 6-15 MV, we have used dose rates of 100-600 cGy min -1 . Reproducibility and fading at fixed absorbed dose (3 Gy) and dose rate for the optical fibers were also investigated. At fixed dose rates, the TL optical fibers were found to produce a flat TL yield within 4% (1σ) and 3% (1σ) for electron and photon beams, respectively. The optical fibers demonstrated good reproducibility (±1.5%), low residual signal for a readout temperature of 300 o C and negligible fading. A weak dependence on dose-rate has been observed in the range of 3.4-3.9% for electrons (with an associated uncertainty of 4%) and 2.4-2.9% for photons (with an associated uncertainty of <4%). For electron and photon energies we note a consistent trend towards lower response in the TL yield of between 3.4-3.9% and 2.4-2.7%, respectively, at the higher dose rates in comparison with the response at lower dose rates. In addition we note an appreciable systematic energy dependence for both electron and photon beams. It is important to take such factors into account for providing precise and accurate radiotherapy dosimetry. It is also apparent that the optical fibers can be re

  3. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: Long-term results of a radiation dose escalation study

    International Nuclear Information System (INIS)

    Kong, F.-M.; Haken, Randall K. ten; Schipper, Matthew J.; Sullivan, Molly A.; Chen, Ming; Lopez, Carlos; Kalemkerian, Gregory P.; Hayman, James A.

    2005-01-01

    Purpose: To determine whether high-dose radiation leads to improved outcomes in patients with non-small-cell lung cancer (NSCLC). Methods and Materials: This analysis included 106 patients with newly diagnosed or recurrent Stages I-III NSCLC, treated with 63-103 Gy in 2.1-Gy fractions, using three-dimensional conformal radiation therapy (3D-CRT) per a dose escalation trial. Targets included the primary tumor and any lymph nodes ≥1 cm, without intentionally including negative nodal regions. Nineteen percent of patients (20/106) received neoadjuvant chemotherapy. Patient, tumor, and treatment factors were evaluated for association with outcomes. Estimated median follow-up was 8.5 years. Results: Median survival was 19 months, and 5-year overall survival (OS) was 13%. Multivariate analysis revealed weight loss (p = 0.011) and radiation dose (p = 0.0006) were significant predictors for OS. The 5-year OS was 4%, 22%, and 28% for patients receiving 63-69, 74-84, and 92-103 Gy, respectively. Although presence of nodal disease was negatively associated with locoregional control under univariate analysis, radiation dose was the only significant predictor when multiple variables were included (p = 0.015). The 5-year control rate was 12%, 35%, and 49% for 63-69, 74-84, and 92-103 Gy, respectively. Conclusions: Higher dose radiation is associated with improved outcomes in patients with NSCLC treated in the range of 63-103 Gy

  4. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus, E-mail: pirus.ghadjar@insel.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Bojaxhiu, Beat [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Simcock, Mathew [Swiss Group for Clinical Cancer Research Coordinating Center, Bern (Switzerland); Terribilini, Dario; Isaak, Bernhard [Division of Medical Radiation Physics, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M. [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland)

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  5. A Phase I/II Trial of Intensity Modulated Radiation (IMRT) Dose Escalation With Concurrent Fixed-dose Rate Gemcitabine (FDR-G) in Patients With Unresectable Pancreatic Cancer

    International Nuclear Information System (INIS)

    Ben-Josef, Edgar; Schipper, Mathew; Francis, Isaac R.; Hadley, Scott; Ten-Haken, Randall; Lawrence, Theodore; Normolle, Daniel; Simeone, Diane M.; Sonnenday, Christopher; Abrams, Ross; Leslie, William; Khan, Gazala; Zalupski, Mark M.

    2012-01-01

    Purpose: Local failure in unresectable pancreatic cancer may contribute to death. We hypothesized that intensification of local therapy would improve local control and survival. The objectives were to determine the maximum tolerated radiation dose delivered by intensity modulated radiation with fixed-dose rate gemcitabine (FDR-G), freedom from local progression (FFLP), and overall survival (OS). Methods and Materials: Eligibility included pathologic confirmation of adenocarcinoma, radiographically unresectable, performance status of 0-2, absolute neutrophil count of ≥1500/mm 3 , platelets ≥100,000/mm 3 , creatinine 2 /100 min intravenously) was given on days −22 and −15, 1, 8, 22, and 29. Intensity modulated radiation started on day 1. Dose levels were escalated from 50-60 Gy in 25 fractions. Dose-limiting toxicity was defined as gastrointestinal toxicity grade (G) ≥3, neutropenic fever, or deterioration in performance status to ≥3 between day 1 and 126. Dose level was assigned using TITE-CRM (Time-to-Event Continual Reassessment Method) with the target dose-limiting toxicity (DLT) rate set to 0.25. Results: Fifty patients were accrued. DLTs were observed in 11 patients: G3/4 anorexia, nausea, vomiting, and/or dehydration (7); duodenal bleed (3); duodenal perforation (1). The recommended dose is 55 Gy, producing a probability of DLT of 0.24. The 2-year FFLP is 59% (95% confidence interval [CI]: 32-79). Median and 2-year overall survival are 14.8 months (95% CI: 12.6-22.2) and 30% (95% CI 17-45). Twelve patients underwent resection (10 R0, 2 R1) and survived a median of 32 months. Conclusions: High-dose radiation therapy with concurrent FDR-G can be delivered safely. The encouraging efficacy data suggest that outcome may be improved in unresectable patients through intensification of local therapy.

  6. Intraoperative radiation therapy for locally advanced gynecological malignancies

    International Nuclear Information System (INIS)

    Haddock, M.G.; Petersen, I.A.; Webb, M.J.; Wilson, T.O.; Podratz, K.C.; Gunderson, L.L.

    1996-01-01

    Purpose: Evaluate disease control and survival in patients with locally advanced gynecological malignancies who received intraoperative radiation therapy with electrons (IOERT) as a component of treatment. Methods and Materials: Between March 1983 and June 1995, 63 patients (pts) with locally advanced primary (9 pts) or recurrent (54 pts) gynecological malignancies received IOERT as a component of attempted curative therapy. The site of origin was uterine cervix in 40 pts, uterine corpus in 16 pts, vagina in 5 pts, and ovary in 2 pts. Thirty-eight patients with recurrent disease had been previously irradiated (median prior RT dose 5040 cGy, range 900-8400). External beam radiotherapy (EBRT) was given to 43 of 63 pts either before or after IOERT (900-6570 cGy, median 4960 cGy). Chemotherapy was given to 21 pts prior to IOERT and following IOERT in 2 pts. IOERT doses ranged from 800 cGy to 2500 cGy with a median of 1750 cGy. The median IOERT dose was 2000 cGy in 20 patients with gross residual disease and 1500 cGy in 43 patients with microscopic residual disease. Endpoints included central control within the IOERT cone, local control, distant failure, disease free survival and overall survival. Variables evaluated for impact on disease outcome included tumor grade, primary site, prior RT, IOERT dose, EBRT dose, residual disease at time of IOERT, and use of chemotherapy. Results: Survival and disease control data are presented in the table below. There was no impact of any disease or treatment related variable on local or central failure. Pts with microscopic residual disease at the time of IOERT had significantly fewer distant metastases than pts with gross residual (5 yr 31% vs. 77%, p = 0.001) and improved survival (5 yr 37% vs. 10%, p = 0.02). Patients with recurrent disease after previous RT had survival and disease control rates which were similar to those seen in pts without priot RT. Toxicity ≥ grade 3 due to IOERT was observed in 11 pts (17%). Conclusion: A

  7. A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer.

    Science.gov (United States)

    Ben-Josef, Edgar; Schipper, Mathew; Francis, Isaac R; Hadley, Scott; Ten-Haken, Randall; Lawrence, Theodore; Normolle, Daniel; Simeone, Diane M; Sonnenday, Christopher; Abrams, Ross; Leslie, William; Khan, Gazala; Zalupski, Mark M

    2012-12-01

    Local failure in unresectable pancreatic cancer may contribute to death. We hypothesized that intensification of local therapy would improve local control and survival. The objectives were to determine the maximum tolerated radiation dose delivered by intensity modulated radiation with fixed-dose rate gemcitabine (FDR-G), freedom from local progression (FFLP), and overall survival (OS). Eligibility included pathologic confirmation of adenocarcinoma, radiographically unresectable, performance status of 0-2, absolute neutrophil count of ≥ 1,500/mm(3), platelets ≥ 100,000/mm(3), creatinine CRM (Time-to-Event Continual Reassessment Method) with the target dose-limiting toxicity (DLT) rate set to 0.25. Fifty patients were accrued. DLTs were observed in 11 patients: G3/4 anorexia, nausea, vomiting, and/or dehydration (7); duodenal bleed (3); duodenal perforation (1). The recommended dose is 55 Gy, producing a probability of DLT of 0.24. The 2-year FFLP is 59% (95% confidence interval [CI]: 32-79). Median and 2-year overall survival are 14.8 months (95% CI: 12.6-22.2) and 30% (95% CI 17-45). Twelve patients underwent resection (10 R0, 2 R1) and survived a median of 32 months. High-dose radiation therapy with concurrent FDR-G can be delivered safely. The encouraging efficacy data suggest that outcome may be improved in unresectable patients through intensification of local therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    Science.gov (United States)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  9. Basic study of intraoperative radiation on the stomach. With particular reference to histopathologic study

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T [Tokyo Medical Coll. (Japan)

    1978-07-01

    In a basic study of intraoperative radiation on the stomach, adult dogs were laparotomized, and radiated on the stomach and gastroduodenal anastomosed part with an electron beam to 1,000 to 4,000 rads to observe its effects on hematologic and histologic findings. 1) No leukopenia occurred with the radiation, but secondary effects such as anemia and hypoproteinemia were noted. 2) On the gastric wall, the mucosa was most severely effected by the radiation, presenting such changes as erosion, atrophy, disappearance of glandular tissue, and fibrosis with the lapse of time. 3) The radiation on the stomach to 3,000 rads was followed by ulceration in one month, by the start of repair of the ulceration in three months, and by its healing in eight months. Histologic examination disclosed no evident damages to the blood vessels by the radiation. 4) Delayed healing of the anastomosed part was noted as an effect of the radiation on this part. 5) The findings in this experiment appear to suggest that the single tolerable dose of electron beam radiation on the stomach and the gastroduodenal anastomosed part should be 3,000 rads.

  10. On-Line High Dose-rate Gamma Irradiation Test of the Profibus/DP module

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Kim, Chang Hoi; Koo, In Soo; Hong, Seok Boong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The field bus data communication is considered for application in nuclear environments. The nuclear facilities, including nuclear power plants, high radioactivity waste disposals, reprocessing plants and thermonuclear fusion installations can benefit from the unique advantages of the field bus communication network for the smart field instruments and controls. A major problem which arises when dealing with one in these nuclear environments, in special circumstances such as the RCS (reactor coolant system) area, is the presence of high gamma-ray irradiation fields. Radioactive constraints for the DBA(design basis accident) qualification of the RTD transmitter installed in the inside of the RCS pump are typically on the order of 4kGy/h with total doses up to 10kGy. In order to use an industrial field bus communication network as an ad-hoc sensor data link in the vicinity of the RCS area of the nuclear power plant, the robust survivability of these system in such intense gamma-radiation fields therefore needs to be verified. We have conducted high dose-rate (up to 4kGy) gamma irradiation experiments on a profibus/DP communication module. In this paper we describe the evolution of its basic characteristics with high dose-rate gamma irradiation and shortly explain the observed phenomena.

  11. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  12. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  13. Dose-response relationships and risk estimates for the induction of cancer due to low doses of low-LET radiation

    International Nuclear Information System (INIS)

    Elaguppillai, V.

    1981-01-01

    Risk estimates for radiation-induced cancer at low doses can be obtained only by extrapolation from the known effects at high doses and high dose rates, using a suitable dose-response model. The applicability of three different models, linear, sublinear and supralinear, are discussed in this paper. Several experimental studies tend to favour a sublinear dose-response model (linear-quadratic model) for low-LET radiation. However, human epidemiological studies do not exclude any of the dose-response relationships. The risk estimates based on linear and linear quadratic dose-response models are compared and it is concluded that, for low-LET radiation, the linear dose-response model would probably over-estimate the actual risk of cancer by a factor of two or more. (author)

  14. On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy

    Science.gov (United States)

    Götz, Th I.; Ermer, M.; Salas-González, D.; Kellermeier, M.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.

    2017-10-01

    High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni—or bi—modal heavy—tailed distributions. The latter are well represented by α—stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.

  15. The effect of low dose rate on metabolomic response to radiation in mice

    International Nuclear Information System (INIS)

    Goudarzi, Maryam; Mak, Tytus D.; Chen, Congju; Smilenov, Lubomir B.; Brenner, David J.; Fornace, Albert J.

    2014-01-01

    Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment. (orig.)

  16. Phase I/II trial of single-fraction high-dose-rate brachytherapy-boosted hypofractionated intensity-modulated radiation therapy for localized adenocarcinoma of the prostate.

    Science.gov (United States)

    Myers, Michael A; Hagan, Michael P; Todor, Dorin; Gilbert, Lynn; Mukhopadhyay, Nitai; Randolf, Jessica; Heimiller, Jeffrey; Anscher, Mitchell S

    2012-01-01

    A Phase I/II protocol was conducted to examine the toxicity and efficacy of the combination of intensity-modulated radiation therapy (IMRT) with a single-fraction high-dose-rate (HDR) brachytherapy implant. From 2001 through 2006, 26 consecutive patients were treated on the trial. The primary objective was to demonstrate a high rate of completion without experiencing a treatment-limiting toxicity. Eligibility was limited to patients with T stage ≤2b, prostate-specific antigen (PSA) ≤20, and Gleason score ≤7. Treatment began with a single HDR fraction of 6Gy to the entire prostate and 9Gy to the peripheral zone, followed by IMRT optimized to deliver in 28 fractions with a normalized total dose of 70Gy. Patients received 50.4Gy to the pelvic lymph node. The prostate dose (IMRT and HDR) resulted in an average biologic equivalent dose >128Gy (α/β=3). Patients whose pretreatment PSA was ≥10ng/mL, Gleason score 7, or stage ≥T2b received short-term androgen ablation. Median followup was 53 months (9-68 months). There were no biochemical failures by either the American Society of Therapeutic Radiology and Oncology or the Phoenix definitions. The median nadir PSA was 0.32ng/mL. All the 26 patients completed the treatment as prescribed. The rate of Grade 3 late genitourinary toxicity was 3.8% consisting of a urethral stricture. There was no other Grade 3 or 4 genitourinary or gastrointestinal toxicities. Single-fraction HDR-boosted IMRT is a safe effective method of dose escalation for localized prostate cancer. Copyright © 2012 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. Dose rate of restroon in facilities using radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Gwi [Dept. of uclear Medicine, Inha University hospital, Incheon (Korea, Republic of); An, Seong Min [Dept. of Radiology, Gachon University, Incheon (Korea, Republic of)

    2016-06-15

    This study is therefore aimed at measuring the surface dose rate and the spatial dose rate in and outside the radionuclide facility in order to ensure safety of the patients, radiation workers and family care-givers in their use of such equipment and to provide a basic framework for further research on radiation protection. The study was conducted at 4 restrooms in and outside the radionuclide facility of a general hospital in Incheon between May 1 and July 31, 2014. During the study period, the spatial contamination dose rate and the surface contamination dose rate before and after radiation use were measured at the 4 places−thyroid therapy room, PET center, gamma camera room, and outpatient department. According to the restroom use survey by hospitals, restrooms in the radionuclide facility were used not only by patients but also by family care-givers and some of radiation workers. The highest cumulative spatial radiation dose rate was 8.86 mSv/hr at camera room restroom, followed by 7.31 mSv/hr at radioactive iodine therapy room restroom, 2.29 mSv/hr at PET center restroom, and 0.26 mSv/hr at outpatient department restroom, respectively. The surface radiation dose rate measured before and after radiation use was the highest at toilets, which are in direct contact with patient's excretion, followed by the center and the entrance of restrooms. Unsealed radioactive sources used in nuclear medicine are relatively safe due to short half lives and low energy. A patient who received those radioactive sources, however, may become a mobile radioactive source and contaminate areas the patient contacts−camera room, sedation room, and restroom−through secretion and excretion. Therefore, patients administered radionuclides should be advised to drink sufficient amounts of water to efficiently minimize radiation exposure to others by reducing the biological half-life, and members of the public−family care-givers, pregnant women, and children−be as far away from

  18. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  19. A novel theory of radiation damage at high doses

    International Nuclear Information System (INIS)

    Seeger, A.; Stuttgart Univ.

    1989-01-01

    Deviations of radiation damage (in the case of metals usually monitored by the residual electrical resistivity) from proportionality with the irradiation dose have so far been analysed almost exclusively in terms of extensions of models originally developed for small doses. The present theory considers the opposite limit i.e. the quasi-saturated state. It is argued that at high doses the Lueck-Sizmann effect may result in a self-organization of clusters of vacancies and self-interstitials, forming a heterogeneous froth. Possible structures of this froth and its effect on the electrical resistivity of metals are discussed. The model is shown to account for the dependence of the ''saturation resistivity'' on the nature of the irradiation as well as for several other hitherto poorly explained observations. Among them are the electrical-resistivity variation induced by high-dose irradiation with heavy ions, the amorphization of certain alloys by high-dose electron irradiation, and the occurrence of ordered arrays of stacking-fault tetrahedra after in-situ irradiations in high-voltage electron microscopes. (author)

  20. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    International Nuclear Information System (INIS)

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang Yonggang; Yu, Hsiang-Hsuan M.; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-01-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 μg per 17 g of body weight, 24 hours and 4 hours before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection

  1. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  2. Low dose radiation exposure and atherosclerosis in ApoE-/- mice

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Hasu, M.; Bugden, M.; Wyatt, H.; Little, M.; Hildebrandt, G.; Priest, N.D.; Whitman, S.C.

    2010-01-01

    The hypothesis that single low dose exposures (0.025-0.5 Gy) to low LET radiation, given at either high (240 mGy/min) or low (1 mGy/min) dose rate, would promote aortic atherosclerosis was tested in female C57BI/6 mice genetically predisposed to this disease (ApoE-/-). Mice were exposed either at early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (8 months of age) and examined 2 or 4 months later. Compared to unexposed controls, all doses given at low or high dose rate at early stage disease had significant inhibitory effects on lesion growth and, at 25 or 50 mGy, on lesion frequency. No dose given at low dose rate had any effect on total serum cholesterol, but this was elevated by every dose given at high dose rate. Exposures at low dose rate had no effect on the percentage of lesion lipids contained within macrophages, and, at either high or low dose rate, had no significant effect on lesion severity. Exposure at late stage disease, to any dose at high dose rate, had no significant effect on lesion frequency, but at low dose rate some doses produced a small transient increase in this frequency. Exposure to low doses at low, but not high dose rate, significantly, but transiently reduced average lesion size, and at either dose rate transiently reduced lesion severity. Exposure to any dose at low dose rate (but not high dose rate) resulted in large and persistent decreases in serum cholesterol. These data indicate that a single low dose exposure, depending on dose and dose rate, generally protects against various measures of atherosclerosis in genetically susceptible mice. This result contrasts with the known, generally detrimental effects of high doses on this disease in the same mice, suggesting that a linear extrapolation of risk from high doses is not appropriate. (author)

  3. Dose to radiation therapists from activation at high-energy accelerators used for conventional and intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Rawlinson, J. Alan; Islam, Mohammad K.; Galbraith, Duncan M.

    2002-01-01

    The increased beam-on times which characterize intensity-modulated radiation therapy (IMRT) could lead to an increase in the dose received by radiation therapists due to induced activity. To examine this, gamma ray spectrometry was used to identify the major isotopes responsible for activation at a representative location in the treatment room of an 18 MV accelerator (Varian Clinac 21EX). These were found to be 28 Al, 56 Mn, and 24 Na. The decay of the dose rate measured at this location following irradiation was analyzed in terms of the known half-lives to yield saturation dose rates of 9.6, 12.4, and 6.2 μSv/h, respectively. A formalism was developed to estimate activation dose (μSv/week) due to successive patient irradiation cycles, characterized by the number of 18 MV fractions per week, F, the number of MU per fraction, M, the in-room time between fractions, t d (min), and the treatment delivery time t r ' (min). The results are represented by the sum of two formulas, one for the dose from 28 Al≅1.8x10 -3 F M (1-e -0.3t r ' )/t r ' and one for the dose from the other isotopes ≅1.1x10 -6 F 1.7 Mt d . For conventional therapy doses are about 60 μ Sv/week for an 18 MV workload of 60 000 MU/week. Irradiation for QA purposes can significantly increase the dose. For IMRT as currently practiced, lengthy treatment delivery times limit the number of fractions that can be delivered per week and hence limit the dose to values similar to those in conventional therapy. However for an IMRT regime designed to maximize patient throughput, doses up to 330 μSv/week could be expected. To reduce dose it is recommended that IMRT treatments should be delivered at energies lower than 18 MV, that in multienergy IMRT, high-energy treatments should be scheduled in the latter part of the day, and that equipment manufacturers should strive to minimize activation in the design of high-energy accelerators

  4. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    International Nuclear Information System (INIS)

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Brömme, Jens O.; Geretschläger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-01-01

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3–23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  5. Implementation of a High-Dose-Rate Brachytherapy Program for Carcinoma of the Cervix in Senegal: A Pragmatic Model for the Developing World

    International Nuclear Information System (INIS)

    Einck, John P.; Hudson, Alana; Shulman, Adam C.; Yashar, Catheryn M.; Dieng, Mamadou M.; Diagne, Magatte; Gueye, Latifatou; Gningue, Fama; Gaye, Pape M.; Fisher, Brandon J.; Mundt, Arno J.; Brown, Derek W.

    2014-01-01

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single 60 Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in the developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries

  6. Implementation of a High-Dose-Rate Brachytherapy Program for Carcinoma of the Cervix in Senegal: A Pragmatic Model for the Developing World

    Energy Technology Data Exchange (ETDEWEB)

    Einck, John P., E-mail: jeinck@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Hudson, Alana [Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Shulman, Adam C. [Overlook Medical Center, Summit, New Jersey (United States); Yashar, Catheryn M. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Dieng, Mamadou M.; Diagne, Magatte; Gueye, Latifatou; Gningue, Fama; Gaye, Pape M. [Départemént de Radiothérapie, Institut Joliot-Curie, Hôpital Aristide Le Dantec, Dakar (Senegal); Fisher, Brandon J. [GammaWest Cancer Services, Salt Lake City, Utah (United States); Mundt, Arno J. [Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California (United States); Brown, Derek W. [Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada)

    2014-07-01

    West Africa has one of the highest incidence rates of carcinoma of the cervix in the world. The vast majority of women do not have access to screening or disease treatment, leading to presentation at advanced stages and to high mortality rates. Compounding this problem is the lack of radiation treatment facilities in Senegal and many other parts of the African continent. Senegal, a country of 13 million people, had a single {sup 60}Co teletherapy unit before our involvement and no brachytherapy capabilities. Radiating Hope, a nonprofit organization whose mission is to provide radiation therapy equipment to countries in the developing world, provided a high-dose-rate afterloading unit to the cancer center for curative cervical cancer treatment. Here we describe the implementation of high-dose-rate brachytherapy in Senegal requiring a nonstandard fractionation schedule and a novel treatment planning approach as a possible blueprint to providing this technology to other developing countries.

  7. Influence of clouds on the cosmic radiation dose rate on aircraft

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Goncalez, Odair L.; Cortes-Giraldo, Miguel A.; Quesada, Jose Manuel M.; Palomo, Francisco R.; Pinto, Marcos Luiz de A.

    2014-01-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. The paper presents first-order calculation about the influence of Cumulonimbus clouds on the flux and dose rate due to cosmic neutrons in the atmosphere, at aircraft flight altitudes. The simulations show variations of the order of 5.5 % in the neutrons flux and 3.6 % of the dose rate due to the presence of the cloud. Such variations can extend up to ∼1.5 km from the edge of the cloud. The spectrum of neutrons within a cloud formation was observed undergo changes due to the neutron absorption and scattering processes with the water content inside the cloud. To accomplish these simulations, it is important to have a proper knowledge of the data libraries and nuclear models to be applied, since the simulation processes are strongly dependent on these factors. These results emphasise the importance of conducting more detailed studies on this topic, since the influence of clouds can change the dose and flux on aircraft overflying such formations, as well as could explain some of the fluctuations in the experimental dose rate data obtained in aircraft flights. Future studies should extend such simulations to different types of

  8. Rectal Bleeding After High-Dose-Rate Brachytherapy Combined With Hypofractionated External-Beam Radiotherapy for Localized Prostate Cancer: The Relationship Between Dose-Volume Histogram Parameters and the Occurrence Rate

    International Nuclear Information System (INIS)

    Okamoto, Masahiko; Ishikawa, Hitoshi; Ebara, Takeshi; Kato, Hiroyuki; Tamaki, Tomoaki; Akimoto, Tetsuo; Ito, Kazuto; Miyakubo, Mai; Yamamoto, Takumi; Suzuki, Kazuhiro; Takahashi, Takeo; Nakano, Takashi

    2012-01-01

    Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose–volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy × five times in 3 days or 7 Gy × three, 10.5 Gy × two, or 9 Gy × two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2 or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED 3 at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED 3–5% and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED 3–5% was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.

  9. Air dose rate in Aichi Prefecture

    International Nuclear Information System (INIS)

    Ohnuma, Shoko; Chaya, Kunio; Tomita, Banichi; Aoyama, Kan; Yamada, Naoki; Yamada, Masuo; Hamamura, Norikatsu

    1985-01-01

    We have carried out the observations of air dose rate during 1964--1983 at the fixed points of Aichi Prefecture and investigated the distribution of air dose rate in this prefecture during 1979--1983. The results of these researches are as follows. 1) The apparent half time of radiation dose from the earth and the atmosphere during the last 20 years was about 9.7 years and it was longer than the apparent half time of fallout total β radioactivity in every rainfall that was about 3.2 years. 2) The influence of nuclear explosion test in China on the measurements of air does rate did not existed directly during the latter half of 20 years, not so as during the former and it was keeping decreasing. It was expected that the air dose rate would begin to indicate the natural radiation dose from the earth and the atmosphere in the near future. 3) The distribution of air dose rate in this prefecture depended strongly on the geology. The maximum value was 5.6 μR/hr (except cosmic rays) in Fujioka Cho, the minimum value was 1.9 μR/hr (except cosmic rays) in Tahara Cho and the average in the whole prefecture was 3.5+-0.7 μR/hr (except cosmic rays). 4) It was estimated that the radiation dose which the inhabitants received from the earth and the atmosphere was 17--52 m rem a year and the average was 31 m rem a year. (author)

  10. Air dose rate in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Chaya, Kunio; Tomita, Banichi; Aoyama, Kan; Yamada, Naoki; Yamada, Masuo; Hamamura, Norikatsu

    1985-03-01

    We have carried out the observations of air dose rate during 1964-1983 at the fixed points of Aichi Prefecture and investigated the distribution of air dose rate in this prefecture during 1979-1983. The results of these researches are as follows. 1) The apparent half time of radiation dose from the earth and the atmosphere during the last 20 years was about 9.7 years and it was longer than the apparent half time of fallout total ..beta.. radioactivity in every rainfall that was about 3.2 years. 2) The influence of nuclear explosion test in China on the measurements of air does rate did not existed directly during the latter half of 20 years, not so as during the former and it was keeping decreasing. It was expected that the air dose rate would begin to indicate the natural radiation dose from the earth and the atmosphere in the near future. 3) The distribution of air dose rate in this prefecture depended strongly on the geology. The maximum value was 5.6 ..mu..R/hr (except cosmic rays) in Fujioka Cho, the minimum value was 1.9 ..mu..R/hr (except cosmic rays) in Tahara Cho and the average in the whole prefecture was 3.5 +- 0.7 ..mu..R/hr (except cosmic rays). 4) It was estimated that the radiation dose which the inhabitants received from the earth and the atmosphere was 17-52 m rem a year and the average was 31 m rem a year.

  11. Prostate-specific antigen bounce after high-dose rate brachytherapy with external beam radiation therapy for prostate cancer patients

    International Nuclear Information System (INIS)

    Sakamoto, Naotaka; Kakinoki, Hiroaki; Tsutsui, Akio; Yoshikawa, Masahiro; Iguchi, Atsushi; Matsunobu, Toru; Uehara, Satoru

    2008-01-01

    Prostate-specific antigen (PSA) bounce after high-dose rate (HDR) brachytherapy with external beam radiation therapy (EBRT) for prostate cancer patients was evaluated. Sixty-one patients treated with HDR-brachytherapy followed by EBRT had a minimum follow-up of 12 months (median, 24 months) in our institute. A PSA bounce was defined as a rise of at least 0.1 ng/ml greater than a previous PSA level, with a subsequent decline equal to, or less than, the initial nadir. A PSA bounce was noted in 16 (26.2%) of 61 patients (one patient had a PSA bounce twice). Median time to develop a PSA bounce was 18 months, but 23.5% developed a PSA bounce after 24 months. Median duration of PSA bounce was 6 months and 11.8% had increased PSA within a period of 12 months. Median bounce height was 0.2 ng/ml (range, 0.1 to 3.39 ng/ml). A bounce height of gerater than 2 ng/ml was seen in 11.8%. Clinical characteristics (age, prostate volume, neoadjuvant endocrine therapy, risk classification, stage, pretreatment PSA, Gleason score) do not predict whether or not there will be a PSA bounce. In patients treated with HDR-brachytherapy followed by EBRT, the incidence and characteristics of PSA bounce were similar to those in patients treated with low-dose rate brachytherapy. Physicians should be aware of the possibility of PSA bounce following HDR-brachytherapy with EBRT. (author)

  12. High-dose-rate brachytherapy using molds for oral cavity cancer. The technique and its limitations

    International Nuclear Information System (INIS)

    Nishimura, Yasumasa; Yokoe, Yoshihiko; Nagata, Yasushi; Okajima, Kaoru; Nishida, Mitsuo; Hiraoka, Masahiro

    1998-01-01

    With the availability of a high-dose-rate (HDR) remote afterloading device, a Phase I/II protocol was initiated at our institution to assess the toxicity and efficacy of HDR intracavitary brachytherapy, using molds, in the treatment of squamous cell carcinomas of the oral cavity. Eight patients with squamous cell carcinoma of the oral cavity were treated by the technique. The primary sites of the tumors were the buccal mucosa, oral floor, and gingiva. Two of the buccal mucosal cancers were located in the retromolar trigon. For each patient, a customized mold was fabricated, in which two to four afterloading catheters were placed for an 192 Ir HDR source. Four to seven fractions of 3-4 Gy, 5 mm below the mold surface, were given following external radiation therapy of 40-60 Gy/ 2 Gy. The total dose of HDR brachytherapy ranged from 16 to 28Gy. Although a good initial complete response rate of 7/8 (88%) was achieved, there was local recurrence in four of these seven patients. Both of the retromolar trigon tumors showed marginal recurrence. No serious (e.g., ulcer or bone exposure) late radiation damage has been observed thus far in the follow up period of 15-57 months. High-dose-rate brachytherapy using the mold technique seems a safe and useful method for selected early and superficial oral cavity cancer. However, it is not indicated for thick tumors and/or tumors located in the retromolar trigon. (author)

  13. ESR dating of elephant teeth and radiation dose rate estimation in soil

    International Nuclear Information System (INIS)

    Taisoo Chong; Ohta, Hiroyuki; Nakashima, Yoshiyuki; Iida, Takao; Saisho, Hideo

    1989-01-01

    Chemical analysis of 238 U, 232 Th and 40 K in the dentine as well as enamel of elephant tooth fossil has been carried out in order to estimate the internal absorbed dose rate of the specimens, which was estimated to be (39±4) mrad/y on the assumption of early uptake model of radionuclides. The external radiation dose rate in the soil including the contribution from cosmic rays was also estimated to be (175±18) mrad/y with the help of γ-ray spectroscopic techniques of the soil samples in which the specimens were buried. The 60 Co γ-ray equivalent accumulated dose of (2±0.2) x 10 4 rad for the tooth enamel gave ''ESR age'' of (9±2) x 10 4 y, which falls in the geologically estimated range between 3 x 10 4 and 30 x 10 4 y before the present. (author)

  14. Biological effects of low-dose radiation on human population living in high-background radiation areas of Kerala coast

    International Nuclear Information System (INIS)

    Das, Birajalaxmi

    2016-01-01

    High-level natural radiation areas (HLNRA) of Kerala coast is densely populated and known for its wide variation in background radiation dose levels due to uneven distribution of monazite in the beach sand. The background radiation dose varies from 1 to 45 mGv/y. The areas with >1.5mGy/y is considered as HLNRA. Human population inhabiting in this area are exposed to low-dose chronic radiation since generations. Hence, this population provides an ideal situation to study dose response and adaptive response, if any, due to natural chronic low-dose exposure. It has been investigated extensively to study the biological and health effects of long-term low-dose/low-dose radiation exposure. So far over 150, 000 newborns monitored from hospital-based study did not reveal any significant difference in the incidence of any of the malformations and stillbirth between HLNRA and adjacent control areas. A case-control study on cleft lip/palate and mental retardation did not show any association with background radiation dose. Cytogenetic investigation of over 27,000 newborns did not show any significant increase in the frequency of chromosome aberrations and karyotype anomalies. DNA damage endpoints, such as micronuclei, telomere length and DNA strand breaks, did not reveal any significant difference between control and exposed population. Studies on DNA damage and repair revealed efficient repair of DNA strand breaks in HLNRA individuals. Molecular studies using high throughput microarray analysis indicated a large number of genes involved in various molecular and cellular pathways. Indications of in vivo radioadaptive response due to natural chronic low-dose exposure in this population have important implications to human health. (author)

  15. Low dose irradiation reduces cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    2000-01-01

    Low doses of ionizing radiation stimulate development, growth, memory, sensual acuity, fecundity, and immunity (Luckey, T.D., ''Radiation Hormesis'', CRC Press, 1991). Increased immune competence reduces cancer mortality rates and provides increased average lifespan in animals. Decreased cancer mortality rates in atom bomb victims who received low dose irradiation makes it desirable to examine populations exposed to low dose irradiation. Studies with over 300,000 workers and 7 million person-years provide a valid comparison of radiation exposed and control unclear workers (Luckey, T.D., Nurture with Ionizing Radiation, Nutrition and Cancer, 34:1-11, 1999). Careful selection of controls eliminated any ''healthy worker effect''. The person-year corrected average indicated the cancer mortality rate of exposed workers was only 51% that of control workers. Lung cancer mortality rates showed a highly significant negative correlation with radon concentrations in 272,000 U.S. homes (Cohen, B.L., Health Physics 68:157-174, 1995). In contrast, radon concentrations showed no effect on lung cancer rates in miners from different countries (Lubin, J.H. Am. J. Epidemiology 140:323-332, 1994). This provides evidence that excessive lung cancer in miners is caused by particulates (the major factor) or toxic gases. The relative risk for cancer mortality was 3.7% in 10,000 Taiwanese exposed to low level of radiation from 60 Co in their steel supported homes (Luan, Y.C. et al., Am. Nuclear Soc. Trans. Boston, 1999). This remarkable finding needs further study. A major mechanism for reduced cancer mortality rates is increased immune competence; this includes both cell and humoral components. Low dose irradiation increases circulating lymphocytes. Macrophage and ''natural killer'' cells can destroy altered (cancer) cells before the mass becomes too large. Low dose irradiation also kills suppressor T-cells; this allows helper T-cells to activate killer cells and antibody producing cells

  16. Dose-rate and the reciprocity law: TL response of Ge-doped SiO{sub 2} optical fibers at therapeutic radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Rahman, A.T., E-mail: a.t.abdulrahman@surrey.ac.uk [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom); School of Physics and Material Studies, Faculty of Applied Sciences, Universiti Teknologi MARA Malaysia (UiTM), Campus of Negeri Sembilan, 72000 Kuala Pilah (Malaysia); Nisbet, A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom); Departments of Medical Physics, the Royal Surrey County Hospital (RSCH) NHS Trust, Edgerton Road, Guildford GU2 7XX, Surrey (United Kingdom); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom)

    2011-10-01

    An investigation has been made on commercially available Ge-doped SiO{sub 2} optical fibers as a novel thermoluminescence system for radiotherapy dosimetry. This dosimeter has previously been shown by the group to provide sensitive dosimetry over a wide range of electron and photon dose, suitable for the needs of radiotherapy. In addition the optical fiber offers small physical size (125 {mu}m diameter) and hence high spatial resolution. The reciprocity between thermoluminescence (TL) yield of Ge-doped SiO{sub 2} optical fibers and dose has been investigated for fixed radiation dose for a range of photon and electron dose rates. For electron beams of nominal energies in the range of 9-20 MeV, we have investigated the TL response of these fibers for dose rates between 100 and 1000 cGy min{sup -1}. For photon beams of nominal energies in the range of 6-15 MV, we have used dose rates of 100-600 cGy min{sup -1}. Reproducibility and fading at fixed absorbed dose (3 Gy) and dose rate for the optical fibers were also investigated. At fixed dose rates, the TL optical fibers were found to produce a flat TL yield within 4% (1{sigma}) and 3% (1{sigma}) for electron and photon beams, respectively. The optical fibers demonstrated good reproducibility ({+-}1.5%), low residual signal for a readout temperature of 300 {sup o}C and negligible fading. A weak dependence on dose-rate has been observed in the range of 3.4-3.9% for electrons (with an associated uncertainty of 4%) and 2.4-2.9% for photons (with an associated uncertainty of <4%). For electron and photon energies we note a consistent trend towards lower response in the TL yield of between 3.4-3.9% and 2.4-2.7%, respectively, at the higher dose rates in comparison with the response at lower dose rates. In addition we note an appreciable systematic energy dependence for both electron and photon beams. It is important to take such factors into account for providing precise and accurate radiotherapy dosimetry. It is also

  17. Shutdown dose rates at ITER equatorial ports considering radiation cross-talk from torus cryopump lower port

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Pampin, Raul [F4E, Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Levesy, Bruno [ITER Organization, 13115 Route de Vinon sur Verdon, St Paul Lez Durance (France); Moro, Fabio [ENEA, Via Enrico Fermi 45, Frascati, Rome (Italy); Suarez, Alejandro [ITER Organization, 13115 Route de Vinon sur Verdon, St Paul Lez Durance (France); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)

    2015-11-15

    Shutdown dose rates for planned maintenance purposes is an active research field in ITER. In this work the radiation (neutron and gamma) cross-talk between ports in the most conservative case foreseen in ITER is investigated: the presence of a torus cryopump lower port, mostly empty for pumping efficiency reasons. There will be six of those ports: #4, #6, #10, #12, #16 and #18. The equatorial ports placed above them will receive a significant amount of additional radiation affecting the shutdown dose rates during in situ maintenance activities inside the cryostat, and particularly in the port interspace area. In this study a general situation to all the equatorial ports placed above torus cryopump lower ports is considered: a generic diagnostics equatorial port placed above the torus cryopump lower port (LP#4). In terms of shutdown dose rates at equatorial port interspace after 10{sup 6} s of cooling time, 405 μSv/h has been obtained, of which 160 μSv/h (40%) are exclusively due to radiation cross-talk from a torus cryopump lower port. Equatorial port activation due to only “local neutrons” contributes 166 μSv/h at port interspace, showing that radiation cross-talk from such a lower port is a phenomenon comparable in magnitude to the neutron leakage though the equatorial port plug.

  18. Anticipated Intraoperative Electron Beam Boost, External Beam Radiation Therapy, and Limb-Sparing Surgical Resection for Patients with Pediatric Soft-Tissue Sarcomas of the Extremity: A Multicentric Pooled Analysis of Long-Term Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Claudio V., E-mail: cvsole@uc.cl [Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); School of Medicine, Complutense University, Madrid (Spain); Service of Radiation Oncology, Instituto de Radiomedicina, Santiago (Chile); Calvo, Felipe A. [Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); School of Medicine, Complutense University, Madrid (Spain); Polo, Alfredo [Service of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid (Spain); Cambeiro, Mauricio [Service of Radiation Oncology, Clínica Universidad de Navarra, Pamplona (Spain); Alvarez, Ana; Gonzalez, Carmen [Service of Radiation Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Gonzalez, Jose [Service of Pediatric Orthopedics and Traumatology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); San Julian, Mikel [Service of Orthopedics and Traumatology, Clínica Universidad de Navarra, Pamplona (Spain); Martinez-Monge, Rafael [Service of Radiation Oncology, Clínica Universidad de Navarra, Pamplona (Spain)

    2014-09-01

    Purpose: To perform a joint analysis of data from 3 contributing centers within the intraoperative electron-beam radiation therapy (IOERT)-Spanish program, to determine the potential of IOERT as an anticipated boost before external beam radiation therapy in the multidisciplinary treatment of pediatric extremity soft-tissue sarcomas. Methods and Materials: From June 1993 to May 2013, 62 patients (aged <21 years) with a histologic diagnosis of primary extremity soft-tissue sarcoma with absence of distant metastases, undergoing limb-sparing grossly resected surgery, external beam radiation therapy (median dose 40 Gy) and IOERT (median dose 10 Gy) were considered eligible for this analysis. Results: After a median follow-up of 66 months (range, 4-235 months), 10-year local control, disease-free survival, and overall survival was 85%, 76%, and 81%, respectively. In multivariate analysis after adjustment for other covariates, tumor size >5 cm (P=.04) and R1 margin status (P=.04) remained significantly associated with local relapse. In regard to overall survival only margin status (P=.04) retained association on multivariate analysis. Ten patients (16%) reported severe chronic toxicity events (all grade 3). Conclusions: An anticipated IOERT boost allowed for external beam radiation therapy dose reduction, with high local control and acceptably low toxicity rates. The combined radiosurgical approach needs to be tested in a prospective trial to confirm these results.

  19. Anticipated Intraoperative Electron Beam Boost, External Beam Radiation Therapy, and Limb-Sparing Surgical Resection for Patients with Pediatric Soft-Tissue Sarcomas of the Extremity: A Multicentric Pooled Analysis of Long-Term Outcomes

    International Nuclear Information System (INIS)

    Sole, Claudio V.; Calvo, Felipe A.; Polo, Alfredo; Cambeiro, Mauricio; Alvarez, Ana; Gonzalez, Carmen; Gonzalez, Jose; San Julian, Mikel; Martinez-Monge, Rafael

    2014-01-01

    Purpose: To perform a joint analysis of data from 3 contributing centers within the intraoperative electron-beam radiation therapy (IOERT)-Spanish program, to determine the potential of IOERT as an anticipated boost before external beam radiation therapy in the multidisciplinary treatment of pediatric extremity soft-tissue sarcomas. Methods and Materials: From June 1993 to May 2013, 62 patients (aged <21 years) with a histologic diagnosis of primary extremity soft-tissue sarcoma with absence of distant metastases, undergoing limb-sparing grossly resected surgery, external beam radiation therapy (median dose 40 Gy) and IOERT (median dose 10 Gy) were considered eligible for this analysis. Results: After a median follow-up of 66 months (range, 4-235 months), 10-year local control, disease-free survival, and overall survival was 85%, 76%, and 81%, respectively. In multivariate analysis after adjustment for other covariates, tumor size >5 cm (P=.04) and R1 margin status (P=.04) remained significantly associated with local relapse. In regard to overall survival only margin status (P=.04) retained association on multivariate analysis. Ten patients (16%) reported severe chronic toxicity events (all grade 3). Conclusions: An anticipated IOERT boost allowed for external beam radiation therapy dose reduction, with high local control and acceptably low toxicity rates. The combined radiosurgical approach needs to be tested in a prospective trial to confirm these results

  20. Evaluation of multimodality treatment for advanced pancreatic cancer. Special reference to intraoperative vs. external radiation therapy

    International Nuclear Information System (INIS)

    Wakasugi, Hideyuki; Funakoshi, Akihiro; Seo, Yousuke; Iguchi, Haruo; Wada, Susumu

    1999-01-01

    Intraoperative radiation therapy (IORT)+postoperative external beam radiation therapy (ERT) with chemotherapy and ERT alone with chemotherapy have been performed in our hospital for unresectable, especially locally advanced, pancreatic cancer. We compared the former method with the latter. Chemotherapy was performed together with radiation, using 5-FU, CDDP, and MMC. IORT+ERT was successful in only half of the treated patients, while ERT alone was successful in almost all of the patients. As a result, the doses of radiation were often shorter in patients treated by the former method compared to the latter method. Both methods, when completed for locally advanced pancreatic cancer (stage IVa), produced good effects on tumor markers, tumor size and pain. Furthermore, the latter method was better than the former in improving the survival time and quality of life (QOL). Therefore, ERT is a practical and useful method for patients with locally advanced pancreatic cancer. (author)

  1. Area monitoring of ambient dose rates in parts of South-Western Nigeria using a GPS-integrated radiation survey meter

    International Nuclear Information System (INIS)

    Okeyode, I.C.; Rabiu, J.A.; Alatise, O.O.; Makinde, V.; Akinboro, F.G.; Mustapha, A.O.; Al-Azmi, D.

    2017-01-01

    A radiation monitoring system comprising a Geiger-Muller counter connected to a smart phone via Bluetooth was used for a dose rate survey in some parts of south-western Nigeria. The smart phone has the Geographical Positioning System, which provides the navigation information and saves it along with the dose rate data. A large number of data points was obtained that shows the dose rate distribution within the region. The results show that the ambient dose rates in the region range from 60 to 520 nSv -1 and showed a bias that is attributable to the influence of geology on the ambient radiation dose in the region. The geology influence was demonstrated by superimposing the dose rate plot and the geological map of the area. The potential applications of the device in determining baseline information and in area monitoring, e.g. for lost or abandoned sources, radioactive materials stockpiles, etc., were discussed in the article, particularly against the background of Nigeria's plan to develop its nuclear power program. (authors)

  2. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  3. Dose-rate and humidity effects upon the gamma-radiation response of nylon-based radiachromic film dosimeters

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.; Proksch, E.

    1979-10-01

    At dose-rates typical for 60 Co gamma irradiation sources, the radiation response of hexahydroxyethyl pararosaniline cyanide/ 50μm nylon radiachromic films is dependent upon dose-rate as well as upon the moisture content of the films, or the relative humidity of the surrounding atmosphere, respectively. Under equilibrium moisture conditions, the response measured at 606 nm 24 hours after end of irradiation shows its highest dose-rate dependence at about 32 % r.h. A decrease in dose-rate from 2.8 to 0.039 Gy.s -1 results in a decrease in response by 17%. At higher humidities, the sensitivity of the film as well as the rate dependence decreases and at 86% r.h. no discernible dose-rate effect could be found. At lower humidities than 32% a flat maximum in response follows. At nominal 0% r.h. a second absorption band at 412 nm appears which is converted completely to an additional 606 nm absorption by exposure to a humid atmosphere. After that procedure the resultant response is somewhat lower than but shows almost the same dose-rate dependence as at 32% r.h. or else to eliminate the dose-rate effect by an extrapolation procedure based on the fact that the rate dependence vanishes at zero dose. (author)

  4. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    International Nuclear Information System (INIS)

    Reynaldo, S. R.; Benavente C, J. A.; Da Silva, T. A.

    2015-10-01

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the 90 Sr/ 90 Y and 85 Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the 90 Sr/ 90 Y and -0.3% for the 85 Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  5. Problems in radiation absorbed dose estimation from positron emitters

    International Nuclear Information System (INIS)

    Powell, G.F.; Harper, P.V.; Reft, C.S.; Chen, C.T.; Lathrop, K.A.

    1986-01-01

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO 2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO 2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm 3 ). 15 references, 7 figures, 6 tables

  6. Concept and computation of radiation dose at high energies

    International Nuclear Information System (INIS)

    Sarkar, P.K.

    2010-01-01

    Computational dosimetry, a subdiscipline of computational physics devoted to radiation metrology, is determination of absorbed dose and other dose related quantities by numbers. Computations are done separately both for external and internal dosimetry. The methodology used in external beam dosimetry is necessarily a combination of experimental radiation dosimetry and theoretical dose computation since it is not feasible to plan any physical dose measurements from inside a living human body

  7. High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo

    2005-01-01

    A 12 year-old girl was treated with prophylactic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylactic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed. (author)

  8. High-dose radiation-induced meningioma following prophylactic cranial irradiation for acute lymphoblastic leukaemia

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Ryosuke; Nikaido, Yuji; Yamada, Tomonori; Mishima, Hideaki; Tamaki, Ryo [National Hospital Organization Osaka Minami Medical Center, Kawachinagano (Japan)

    2005-03-01

    A 12 year-old girl was treated with prophylactic cranial irradiation for acute lymphoblastic leukaemia (ALL). At the age of 39, she was admitted to our hospital for status epilepticus. Computed tomography demonstrated two, enhancing bilateral sided intracranial tumors. After surgery, this patient presented meningiomas which histologically, were of the meningothelial type. The high cure rate in childhood ALL, attributable to aggressive chemotherapy and prophylactic cranial irradiation, is capable of inducing secondary brain tumor. Twelve cases of high-dose radiation-induced meningioma following ALL are also reviewed. (author)

  9. Comprehensive evaluation of occupational radiation exposure to intraoperative and perioperative personnel from 18F-FDG radioguided surgical procedures

    International Nuclear Information System (INIS)

    Povoski, Stephen P.; Martin, Edward W.; Sarikaya, Ismet; Hall, Nathan C.; Knopp, Michael V.; White, William C.; Marsh, Steven G.; Hinkle, George H.

    2008-01-01

    The purpose of the current study was to comprehensively evaluate occupational radiation exposure to all intraoperative and perioperative personnel involved in radioguided surgical procedures utilizing 18 F-fluorodeoxyglucose ( 18 F-FDG). Radiation exposure to surgeon, anesthetist, scrub technologist, circulating nurse, preoperative nurse, and postoperative nurse, using aluminum oxide dosimeters read by optically stimulated luminescence technology, was evaluated during ten actual radioguided surgical procedures involving administration of 18 F-FDG. Mean patient dosage of 18 F-FDG was 699 ± 181 MBq (range 451-984). Mean time from 18 F-FDG injection to initial exposure of personnel to the patient was shortest for the preoperative nurse (75 ± 63 min, range 0-182) followed by the circulating nurse, anesthetist, scrub technologist, surgeon, and postoperative nurse. Mean total time of exposure of the personnel to the patient was longest for the anesthetist (250 ± 128 min, range 69-492) followed by the circulating nurse, scrub technologist, surgeon, postoperative nurse, and preoperative nurse. Largest deep dose equivalent per case was received by the surgeon (164 ± 135 μSv, range 10-580) followed by the anesthetist, scrub technologist, postoperative nurse, circulating nurse, and preoperative nurse. Largest deep dose equivalent per hour of exposure was received by the preoperative nurse (83 ± 134 μSv/h, range 0-400) followed by the surgeon, anesthetist, postoperative nurse, scrub technologist, and circulating nurse. On a per case basis, occupational radiation exposure to intraoperative and perioperative personnel involved in 18 F-FDG radioguided surgical procedures is relatively small. Development of guidelines for monitoring occupational radiation exposure in 18 F-FDG cases will provide reassurance and afford a safe work environment for such personnel. (orig.)

  10. Influence of Parotid from Various Dose Rate in Intensity Modulated Radiation Therapy Planning for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Hong, Joo Wan; Jeong, Yun Ju; Won, Hui Su; Chang, Nam Jun; Choi, Ji Hun; Seok, Jin Yong

    2010-01-01

    There are various beam parameter in intensity modulated radiation therapy (IMRT). The aim of this study is to investigate how various dose rate affect the parotid in treatment plan of IMRT. Materials and Methods: The study was performed on 10 nasopharyngeal carcinoma patients who have undergone IMRT. CT images were scanned 3 mm of thickness in the same condition and the treatment plan was performed by Eclipse (Ver.7.1, Varian, Palo Alto, USA). The parameters for planning used 6 MV energy and 8 beams under the same dose volume constraint. The variation of dose rates were used 300, 400, 500 MU/min. The mean dose of both parotid was accessed from the calculated planning among the 10 patients. The mean dose of parotid was verificated by 2D diode array (Mapcheck from Sun Nuclear Corporation, Melbourne, Florida). Also, Total monitor unit (MU) and beam-on time was analysed. Results: According to the dose rate, the mean dose of parotid was increased by 0.8%, 2.0% each, when dose rate was changed from 300 MU/min to 400, 500 MU/min, moreover Total MU was increased by 5.4% and 10.6% each. There was also a dose upward trend in the dose measurement of parotid by 2D diode array. However, beam - on time difference of 1-2 minutes was no significant in the dose rate increases. From this study, when the dose rates increase, there was a significant increase of Total MU and the parotid dose accordingly, however the shortened treatment time was not significant. Hence, it is considered that there is a significant decrease of late side effect in parotid radiation therapy, if the precise dose rate in IMRT is used.

  11. Nuclear Enterprises portable dose rate meter type PDR 2

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1978-06-01

    This instrument is a portable battery powered dose rate meter covering the dose rate range from 0.05 to 500 mrad h -1 . It is designed to measure X- and γ-radiation dose rates over the energy range from 35 keV to 3 MeV. The radiation detector is an MX 164/S GM tube provided with a compensation sheath. The report describes the instrument under the headings: facilities and controls; radiation characteristics; electrical characteristics; environmental characteristics; mechanical characteristics; the manual; summary of performance. (U.K.)

  12. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer

    International Nuclear Information System (INIS)

    Oliveira, Jetro Pereira de; Batista, Delano Valdivino Santos; Bardella, Lucia Helena; Carvalho, Arnaldo Rangel

    2009-01-01

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  13. Epidemiological studies on disturbances of human fetal development in areas with various doses of natural background radiation. I. Relationship between incidences of Down's syndrome or visible malformation and gonad dose equivalent rate of natural background radiation

    International Nuclear Information System (INIS)

    Ujeno, Y.

    1985-01-01

    The relationship between environmental radiation to the gonads and incidences of Down's syndrome and visible malformation was analyzed using Kendall's rank correlation method. The subjects, studied during a 3-yr period (1979-1981), were inhabitants of 46 prefectures in Japan that had various dose rates of natural background ionizing radiation. Results showed that the natural background very low-dose radiation rate was not a predominant factor responsible for inducing Down's syndrome or other visible malformations

  14. Determination of radiation dose rates and urinary activity of patients received Sodium Iodide-131 for treatment of differentiated thyroid carcinoma

    International Nuclear Information System (INIS)

    Beiki, D.; Shahhosseini, S.; Dadashzadeh, S.; Eftekhari, M.; Tayebi, H.; Moosazadeh-Rashti, G.

    2004-01-01

    Sodium Iodide-131 is administrated for treatment of hyperthyroidism and thyroid cancer. Iodine-131 has multiple routs of excretion (urine, saliva, sweat, milk, feces, exhalation) from the body. Patients receiving Sodium Iodide-131 therapy exposes other persons and the environment to unwanted radiation and contamination. The major sources of radiation dose from administration of Iodine-131 is external radiation , also there is a potential for exposure via contamination.Precautions are necessary to limit the radiation dose to family members, nursing staff and members of public and waste treatment workers to less than 1mSv. Patients received Sodium Iodide-131 may come into close contact with other persons. In order to derive appropriate recommendations, dose rates were measured from the anterior mid-trunk of 29 patients in the upright position with 15 minutes post-dose administration at 3 meters and just before they left the nuclear medicine department at 0.5, 1, and 3 meters. We have also measured urinary iodide excretion in 29 patients to estimate Sodium Iodide-131 urinary excretion pattern in iranian patients. Based on results, the maximum cumulative dose to nursing staff was on third day (leaving day) still less than recommended dose bye ICRP. The cumulative dose family members will be more but regarding the time and distance in close contact it will be also less than recommended dose by ICRP.Radiation dose rate was decreased significantly on third day. The urinary excretion patterns in all patients were similar. The urinary excretion rate-time curve in all patients showed multiple peaks due to retention and redistribution of Iodine-131 or enterohepatic cycle of radioiodinated thyroid hormones, which didn't allow calculation of urinary excretion rate constant. The results also showed that 67 hours post administration of Sodium Iodide-131 about 70% of radiopharmaceutical was excreted through urine, 28% physically decayed or eliminated through other biological

  15. Bladder–Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Bhavana [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Patel, Firuza D., E-mail: firuzapatel@gmail.com [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Chakraborty, Santam; Sharma, Suresh C.; Kapoor, Rakesh [Department of Radiotherapy and Oncology, Regional Cancer Centre, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Aprem, Abi Santhosh [Corporate R and D Division, HLL Lifecare Limited, Karamana, Trivandrum (India)

    2013-04-01

    Purpose: To compare bladder and rectum doses with the use of a bladder–rectum spacer balloon (BRSB) versus standard gauze packing in the same patient receiving 2 high-dose-rate intracavitary brachytherapy fractions. Methods and Materials: This was a randomized study to compare the reduction in bladder and rectum doses with the use of a BRSB compared with standard gauze packing in patients with carcinoma of the cervix being treated with high-dose-rate intracavitary brachytherapy. The patients were randomized between 2 arms. In arm A, vaginal packing was done with standard gauze packing in the first application, and BRSB was used in the second application. Arm B was the reverse of arm A. The International Commission for Radiation Units and Measurement (ICRU) point doses and doses to 0.1-cm{sup 3}, 1-cm{sup 3}, 2-cm{sup 3}, 5-cm{sup 3}, and 10-cm{sup 3} volumes of bladder and rectum were compared. The patients were also subjectively assessed for the ease of application and the time taken for application. Statistical analysis was done using the paired t test. Results: A total of 43 patients were enrolled; however, 3 patients had to be excluded because the BRSB could not be inserted owing to unfavorable local anatomy. Thus 40 patients (80 plans) were evaluated. The application was difficult in 3 patients with BRSB, and in 2 patients with BRSB the application time was prolonged. There was no significant difference in bladder doses to 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, and 10 cm{sup 3} and ICRU bladder point. Statistically significant dose reductions to 0.1-cm{sup 3}, 1-cm{sup 3}, and 2-cm{sup 3} volumes for rectum were observed with the BRSB. No significant differences in 5-cm{sup 3} and 10-cm{sup 3} volumes and ICRU rectum point were observed. Conclusion: A statistically significant dose reduction was observed for small high-dose volumes in rectum with the BRSB. The doses to bladder were comparable for BRSB and gauze packing. Transparent balloons of

  16. The analogy research study on gamma radiation dose rate of radioisotopes 131Ba and 131I

    International Nuclear Information System (INIS)

    Hu Youhua; Feng Guangwen

    2013-01-01

    Analogy is a inference method ,according some properties of a class of things to inferring the similar things should also have the similar properties. The analogy of same radionuclides is widely used in radioisotope logging environment impact assessment so far. This paper is to provide fFor future providing a theoretical calculation method and analogy method between different radionuclides in radioisotope logging environment impact assessment. In this paper, using the latest decay scheme, through theoretical modeling, the aim is the the establishment of 131 Ba and 131 I radioisotopes gamma radiation dose rate calculation method, and try to carry out analogy research on gamma radiation dose rate of different radioisotopes with the same activity. The results show that the analogy of different radionuclides is feasible, which provides the new method reference for carrying out such radiation environmental impact assessment in future. (authors)

  17. Intraoperative high-field magnetic resonance imaging, multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas.

    Science.gov (United States)

    Li, Fang-Ye; Chen, Xiao-Lei; Xu, Bai-Nan

    2016-09-01

    To determine the beneficial effects of intraoperative high-field magnetic resonance imaging (MRI), multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas. Twelve patients with 13 supratentorial cavernomas were prospectively enrolled and operated while using a 1.5 T intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. All cavernomas were deeply located in subcortical areas or involved critical areas. Intraoperative high-field MRIs were obtained for the intraoperative "visualization" of surrounding eloquent structures, "brain shift" corrections, and navigational plan updates. All cavernomas were successfully resected with guidance from intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. In 5 cases with supratentorial cavernomas, intraoperative "brain shift" severely deterred locating of the lesions; however, intraoperative MRI facilitated precise locating of these lesions. During long-term (>3 months) follow-up, some or all presenting signs and symptoms improved or resolved in 4 cases, but were unchanged in 7 patients. Intraoperative high-field MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring are helpful in surgeries for the treatment of small deeply seated subcortical cavernomas.

  18. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  19. Time- and dose-dependent effects of total-body ionizing radiation on muscle stem cells

    Science.gov (United States)

    Masuda, Shinya; Hisamatsu, Tsubasa; Seko, Daiki; Urata, Yoshishige; Goto, Shinji; Li, Tao-Sheng; Ono, Yusuke

    2015-01-01

    Exposure to high levels of genotoxic stress, such as high-dose ionizing radiation, increases both cancer and noncancer risks. However, it remains debatable whether low-dose ionizing radiation reduces cellular function, or rather induces hormetic health benefits. Here, we investigated the effects of total-body γ-ray radiation on muscle stem cells, called satellite cells. Adult C57BL/6 mice were exposed to γ-radiation at low- to high-dose rates (low, 2 or 10 mGy/day; moderate, 50 mGy/day; high, 250 mGy/day) for 30 days. No hormetic responses in proliferation, differentiation, or self-renewal of satellite cells were observed in low-dose radiation-exposed mice at the acute phase. However, at the chronic phase, population expansion of satellite cell-derived progeny was slightly decreased in mice exposed to low-dose radiation. Taken together, low-dose ionizing irradiation may suppress satellite cell function, rather than induce hormetic health benefits, in skeletal muscle in adult mice. PMID:25869487

  20. A Phase I/II Trial of Intensity Modulated Radiation (IMRT) Dose Escalation With Concurrent Fixed-dose Rate Gemcitabine (FDR-G) in Patients With Unresectable Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Josef, Edgar, E-mail: edgar.ben-josef@uphs.upenn.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Schipper, Mathew [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Francis, Isaac R. [Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Hadley, Scott; Ten-Haken, Randall; Lawrence, Theodore; Normolle, Daniel [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Simeone, Diane M.; Sonnenday, Christopher [Department of Surgery, University of Michigan, Ann Arbor, Michigan (United States); Abrams, Ross [Department of Radiation Oncology, Rush Medical Center, Chicago, Illinois (United States); Leslie, William [Division of Hematology Oncology, Department of Internal Medicine, Rush Medical Center, Chicago, Illinois (United States); Khan, Gazala; Zalupski, Mark M. [Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (United States)

    2012-12-01

    Purpose: Local failure in unresectable pancreatic cancer may contribute to death. We hypothesized that intensification of local therapy would improve local control and survival. The objectives were to determine the maximum tolerated radiation dose delivered by intensity modulated radiation with fixed-dose rate gemcitabine (FDR-G), freedom from local progression (FFLP), and overall survival (OS). Methods and Materials: Eligibility included pathologic confirmation of adenocarcinoma, radiographically unresectable, performance status of 0-2, absolute neutrophil count of {>=}1500/mm{sup 3}, platelets {>=}100,000/mm{sup 3}, creatinine <2 mg/dL, bilirubin <3 mg/dL, and alanine aminotransferase/aspartate aminotransferase {<=}2.5 Multiplication-Sign upper limit of normal. FDR-G (1000 mg/m{sup 2}/100 min intravenously) was given on days -22 and -15, 1, 8, 22, and 29. Intensity modulated radiation started on day 1. Dose levels were escalated from 50-60 Gy in 25 fractions. Dose-limiting toxicity was defined as gastrointestinal toxicity grade (G) {>=}3, neutropenic fever, or deterioration in performance status to {>=}3 between day 1 and 126. Dose level was assigned using TITE-CRM (Time-to-Event Continual Reassessment Method) with the target dose-limiting toxicity (DLT) rate set to 0.25. Results: Fifty patients were accrued. DLTs were observed in 11 patients: G3/4 anorexia, nausea, vomiting, and/or dehydration (7); duodenal bleed (3); duodenal perforation (1). The recommended dose is 55 Gy, producing a probability of DLT of 0.24. The 2-year FFLP is 59% (95% confidence interval [CI]: 32-79). Median and 2-year overall survival are 14.8 months (95% CI: 12.6-22.2) and 30% (95% CI 17-45). Twelve patients underwent resection (10 R0, 2 R1) and survived a median of 32 months. Conclusions: High-dose radiation therapy with concurrent FDR-G can be delivered safely. The encouraging efficacy data suggest that outcome may be improved in unresectable patients through intensification of local

  1. Gynogenesis with high doses of gamma radiation in tomatoes -Lycopersicum esculentum Mill. (L.)

    International Nuclear Information System (INIS)

    Dryanovska, O.A.

    1983-01-01

    The behaviour of male chromatin at the germination of gamma irradiated pollen from the stigma to the embrio sac in tomatoes was investigated in connection with the induced gynogenesis and the transfer of genetic information from one species to another. Two male-sterile longistil varieties of Deva and Hera were used as mothers, while mixed pollen from cultivated varieties and Lycopersicum peruvianum (L.) was irradiated at doses of 1, 5, 10 and 200 Kr with a dose rate of up to 1500 R/min. The experiment was carried out in 6 replications, with between 3 and 15 flowers for each variant and variety. The irradiated male chromatin of L. peruvianum remains in the pollen tube that has grown close to the embryo sac and stimulates the development of the embryo and endosperm. The absense of anthocyanin and the normal diploid chromosome count were the two markers for characterizing the plants obtained at high doses of gamma radiation as secondarily diploidized gynogenetic diplo-haploids during embryogenesis. It is assumed that the highly damaged male chromatin and the cytoplasm of the pollen tube retain their stimulating function under the influence of the high doses. A decisive role may be placed by certain fragments with genes from the male chromatin. The mitochondria which retain their respirative capacity and are promptly restored even after irradiation may have a stimmulating influence at the induced haploidy. The secondary diploidization normalizes the development of the organism of haploid origin and makes it possible to overcome the poor viability and the higher sterility. The genes responsible for the synthesis of anthocyanin in the irradiated male chromatin are restroyed by the high radiation doses, and this is the reason for the absence of anthocyanin in the diplo-haploid plants

  2. APPLICATION OF THE SPECTROMETRIC METHOD FOR CALCULATING THE DOSE RATE FOR CREATING CALIBRATION HIGHLY SENSITIVE INSTRUMENTS BASED ON SCINTILLATION DETECTION UNITS

    Directory of Open Access Journals (Sweden)

    R. V. Lukashevich

    2017-01-01

    Full Text Available Devices based on scintillation detector are highly sensitive to photon radiation and are widely used to measure the environment dose rate. Modernization of the measuring path to minimize the error in measuring the response of the detector to gamma radiation has already reached its technological ceiling and does not give the proper effect. More promising for this purpose are new methods of processing the obtained spectrometric information. The purpose of this work is the development of highly sensitive instruments based on scintillation detection units using a spectrometric method for calculating dose rate.In this paper we consider the spectrometric method of dosimetry of gamma radiation based on the transformation of the measured instrumental spectrum. Using predetermined or measured functions of the detector response to the action of gamma radiation of a given energy and flux density, a certain function of the energy G(E is determined. Using this function as the core of the integral transformation from the field to dose characteristic, it is possible to obtain the dose value directly from the current instrumentation spectrum. Applying the function G(E to the energy distribution of the fluence of photon radiation in the environment, the total dose rate can be determined without information on the distribution of radioisotopes in the environment.To determine G(E by Monte-Carlo method instrumental response function of the scintillator detector to monoenergetic photon radiation sources as well as other characteristics are calculated. Then the whole full-scale energy range is divided into energy ranges for which the function G(E is calculated using a linear interpolation.Spectrometric method for dose calculation using the function G(E, which allows the use of scintillation detection units for a wide range of dosimetry applications is considered in the article. As well as describes the method of calculating this function by using Monte-Carlo methods

  3. Polyethylene glycol hydrogel rectal spacer implantation in patients with prostate cancer undergoing combination high-dose-rate brachytherapy and external beam radiotherapy.

    Science.gov (United States)

    Yeh, Jekwon; Lehrich, Brandon; Tran, Carolyn; Mesa, Albert; Baghdassarian, Ruben; Yoshida, Jeffrey; Torrey, Robert; Gazzaniga, Michael; Weinberg, Alan; Chalfin, Stuart; Ravera, John; Tokita, Kenneth

    2016-01-01

    To present rectal toxicity rates in patients administered a polyethylene glycol (PEG) hydrogel rectal spacer in conjunction with combination high-dose-rate brachytherapy and external beam radiotherapy. Between February 2010 and April 2015, 326 prostate carcinoma patients underwent combination high-dose-rate brachytherapy of 16 Gy (average dose 15.5 Gy; standard deviation [SD] = 1.6 Gy) and external beam radiotherapy of 59.4 Gy (average dose 60.2 Gy; SD = 2.9 Gy). In conjunction with the radiation therapy regimen, each patient was injected with 10 mL of a PEG hydrogel in the anterior perirectal fat space. The injectable spacer (rectal spacer) creates a gap between the prostate and the rectum. The rectum is displaced from the radiation field, and rectal dose is substantially reduced. The goal is a reduction in rectal radiation toxicity. Clinical efficacy was determined by measuring acute and chronic rectal toxicity using the National Cancer Center Institute Common Terminology Criteria for Adverse Events v4.0 grading scheme. Median followup was 16 months. The mean anterior-posterior separation achieved was 1.6 cm (SD = 0.4 cm). Rates of acute Grade 1 and 2 rectal toxicity were 37.4% and 2.8%, respectively. There were no acute Grade 3/4 toxicities. Rates of late Grade 1, 2, and 3 rectal toxicity were 12.7%, 1.4%, and 0.7%, respectively. There were no late Grade 4 toxicities. PEG rectal spacer implantation is safe and well tolerated. Acute and chronic rectal toxicities are low despite aggressive dose escalation. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    Science.gov (United States)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate

  5. Effect of radiation dose rate and cyclophosphamide on pulmonary toxicity after total body irradiation in a mouse model

    International Nuclear Information System (INIS)

    Safwat, Akmal; Nielsen, Ole S.; El-Badawy, Samy; Overgaard, Jens

    1996-01-01

    Purpose: Interstitial pneumonitis (IP) is still a major complication after total body irradiation (TBI) and bone marrow transplantation (BMT). It is difficult to determine the exact role of radiation in this multifactorial complication, especially because most of the experimental work on lung damage was done using localized lung irradiation and not TBI. We have thus tested the effect of radiation dose rate and combining cyclophosphamide (CTX) with single fraction TBI on lung damage in a mouse model for BMT. Methods and Materials: TBI was given as a single fraction at a high dose rate (HDR, 0.71 Gy/min) or a low dose rate (LDR, 0.08 Gy/min). CTX (250 mg/kg) was given 24 h before TBI. Bone marrow transplantation (BMT) was performed 4-6 h after the last treatment. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days (LD (50(28))-180 ). Results: The LD 50 for lung damage, ± standard error (SE), increased from 12.0 (± 0.2) Gy using single fraction HDR to 15.8 (± 0.6) Gy using LDR. Adding CTX shifted the dose-response curves towards lower doses. The LD 50 values for the combined treatment were 5.3 (± 0.2) and 3.5 (± 0.2) Gy for HDR and LDR, respectively. This indicates that the combined effect of CTX and LDR was more toxic than that of combined CTX and HDR. Lung damage evaluated by VR demonstrated two waves of VR increase. The first wave of VR increase occurred after 6 weeks using TBI only and after 3 weeks in the combined CTX-TBI treatment, irrespective of total dose or dose rate. The second wave of VR elevation resembled the IP that follows localized thoracic irradiation in its time of occurrence. Conclusions: Lung damage following TBI could be spared using LDR. However, CTX markedly enhances TBI-induced lung damage. The combination of CTX and LDR is more toxic to the lungs than combining CTX and HDR

  6. Intraoperative radiotherapy in combined treatment of sinonasal malignant tumors

    Science.gov (United States)

    Novikov, V. A.; Gribova, O. V.; Vasiljev, R. V.; Choynzonov, E. L.; Shtin, V. I.; Shiianova, A. A.; Surkova, P. V.; Starceva, Zh. A.; Shilova, O. G.

    2017-09-01

    Obvious advantage of IORT (intraoperative radiotherapy) is that the radiation source is delivered directly to the bed of the tumor during surgery, thus avoiding the negative impact on the skin, subcutaneous tissue and reducing the risk of fibrosis. Sinonasal tumors—a convenient object for intraoperative radiotherapy application (surface location, relatively small size tumors, good operational access). The surface location and comparatively small size of neoplasms, good operational access provide an efficient and accurate transfer of the electron beam to the postoperative cavity to increase the irradiation dose in the areas of the most probable recurrence, which makes the tumors of this localization a convenient object for the use of the intraoperative radiation therapy. The treatment was conducted using a mobile compact betatron (MIB-6E), 10-12 Gy single dose. IORT session extends surgery period by 30 min. There were no pathological clinical and laboratory reactions on IORT in the early postoperative period. Carrying out the procedure is possible in various standard operating rooms. It does not require special security measures for the patients and the staff. IORT with the help of electron beam allows avoiding post-radiation reactions and achieving a 5-year—disease-free survival of 66% of the patients. IORT session is possible through a minimal incision during organ preservation surgeries. Evident economic feasibility provides the prospects of applying IORT in the clinical practice.

  7. Biology of dose rate in brachytherapy

    International Nuclear Information System (INIS)

    Brenner, David J.

    1995-01-01

    Purpose: This course is designed for practitioners and beginners in brachytherapy. The aim is to review biological principles underlying brachytherapy, to understand why current treatment regimes are the way they are, and to discuss what the future may hold in store. Brachytherapy has a long history. It was suggested as long ago as 1903 by Alexander Graham Bell, and the optimal application of this technique has been a subject of debate ever since. 'Brachy' means 'short', and the essential features of conventional brachytherapy are: positioning of the source a short distance from, or in, the tumor, allowing good dose distributions; short overall treatment times, to counter tumor repopulation; low dose rate, enabling a good therapeutic advantage between tumor control and damage to late-responding tissue. The advantages of good dose distributions speak for themselves; in some situations, as we shall see, computer-based dose optimization can be used to improve them still further. The advantages of short overall times stem from the fact that accelerated repopulation of the tumor typically begins a few weeks after the start of a radiation treatment. If all the radiation can be crammed in before that time, the risks of tumor repopulation can be considerably reduced. In fact even external-beam radiotherapy is moving in this direction, with the use of highly accelerated protocols. The advantages of low dose rate stem from the differential response to fractionation of early- and late-responding tissues. Essentially, lowering the dose rate spares late-responding tissue more than it does early-responding tissue such as tumors. We shall also discuss some recent innovations in the context of the general principles that have been outlined. For example, High dose rate brachytherapy, particularly for the uterine cervix: Does it work? If so, when and why? Use of Ir-192 sources, with a half life of 70 days: Should corrections be made for changing biological effectiveness as the dose

  8. An Innovative Tool for Intraoperative Electron Beam Radiotherapy Simulation and Planning: Description and Initial Evaluation by Radiation Oncologists

    Energy Technology Data Exchange (ETDEWEB)

    Pascau, Javier, E-mail: jpascau@mce.hggm.es [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Departamento de Bioingenieria e Ingenieria Aeroespacial, Universidad Carlos III de Madrid, Madrid (Spain); Santos Miranda, Juan Antonio [Servicio de Oncologia Radioterapica, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain); Calvo, Felipe A. [Servicio de Oncologia Radioterapica, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain); Departamento de Oncologia, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Bouche, Ana; Morillo, Virgina [Consorcio Hospitalario Provincial de Castellon, Castellon (Spain); Gonzalez-San Segundo, Carmen [Servicio de Oncologia Radioterapica, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain); Ferrer, Carlos; Lopez Tarjuelo, Juan [Consorcio Hospitalario Provincial de Castellon, Castellon (Spain); and others

    2012-06-01

    Purpose: Intraoperative electron beam radiation therapy (IOERT) involves a modified strategy of conventional radiation therapy and surgery. The lack of specific planning tools limits the spread of this technique. The purpose of the present study is to describe a new simulation and planning tool and its initial evaluation by clinical users. Methods and Materials: The tool works on a preoperative computed tomography scan. A physician contours regions to be treated and protected and simulates applicator positioning, calculating isodoses and the corresponding dose-volume histograms depending on the selected electron energy. Three radiation oncologists evaluated data from 15 IOERT patients, including different tumor locations. Segmentation masks, applicator positions, and treatment parameters were compared. Results: High parameter agreement was found in the following cases: three breast and three rectal cancer, retroperitoneal sarcoma, and rectal and ovary monotopic recurrences. All radiation oncologists performed similar segmentations of tumors and high-risk areas. The average applicator position difference was 1.2 {+-} 0.95 cm. The remaining cancer sites showed higher deviations because of differences in the criteria for segmenting high-risk areas (one rectal, one pancreas) and different surgical access simulated (two rectal, one Ewing sarcoma). Conclusions: The results show that this new tool can be used to simulate IOERT cases involving different anatomic locations, and that preplanning has to be carried out with specialized surgical input.

  9. Intraoperative radiation therapy (IORT) for adenocarcinoma of the pancreas

    International Nuclear Information System (INIS)

    Yasue, Mitsunori

    1988-01-01

    Between April 1980 and August 1987, a total of 54 patients with pancreatic adenocarcinoma were treated with intraoperative radiation therapy (IORT). Thirty-five patients underwent IORT with palliative intent (Group I), and the remaining 19 underwent it as an adjuvant therapy for pancreatectomy (Group II). The dosage of electron beams ranged from 12 to 30 Gy in Group I and from 20 to 30 Gy in Group II. Intractable back pain that was observed in 25 patients was relieved in 20 patients (80 %) within one week after IORT. The median survival was 5.3 months in Group I and 9.4 months in Group II. The longest survival (6 years and 10 months) was attained in a patient undergoing absolute non-curative distal pancreatectomy, followed by 20 Gy of IORT. In comparing patients treated before and after the introduction of IORT, both survival rate and staying-home survival rate were significantly better in the era of IORT during which background factors were rather worse. (Namekawa, K.)

  10. Intraoperative radiation therapy (IORT) for adenocarcinoma of the pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Yasue, Mitsunori

    1988-04-01

    Between April 1980 and August 1987, a total of 54 patients with pancreatic adenocarcinoma were treated with intraoperative radiation therapy (IORT). Thirty-five patients underwent IORT with palliative intent (Group I), and the remaining 19 underwent it as an adjuvant therapy for pancreatectomy (Group II). The dosage of electron beams ranged from 12 to 30 Gy in Group I and from 20 to 30 Gy in Group II. Intractable back pain that was observed in 25 patients was relieved in 20 patients (80 %) within one week after IORT. The median survival was 5.3 months in Group I and 9.4 months in Group II. The longest survival (6 years and 10 months) was attained in a patient undergoing absolute non-curative distal pancreatectomy, followed by 20 Gy of IORT. In comparing patients treated before and after the introduction of IORT, both survival rate and staying-home survival rate were significantly better in the era of IORT during which background factors were rather worse. (Namekawa, K.).

  11. Effect of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Takanori; Shirata, Katsutoshi; Yamada, Yutaka; Saitou, Mikio; Izumi, Jun; Tanaka, Satoshi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    2000-07-01

    For evaluation of effects of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice, SPF C3H/HeN female mice were irradiated with {sup 137}Cs {gamma}-rays with doses of 1-4 Gy at the dose rate of 20 mGy/22h-day. After irradiation, the number of hemopoietic cells contained in spleen was determined by the methods of CFU-S and CFU-GM assay, and the number of peripheral blood cells was counted. It was shown that the number of CFU-S colonies on day 12, which is in the earlier stage of differentiation, decreased as dose increased. No remarkable changes in the number of peripheral blood cells, however, were observed. (author)

  12. Levels of external natural radiation and doses to population in Heilongjiang province

    International Nuclear Information System (INIS)

    Liang Yicheng; He Yongjiang; Wang Lu

    1985-01-01

    The external natural radiation level in Heilongjiang Province was measured by using China-made FD-71 scintillation radiometers and RSS-111 high pressure ionization chambers. The doses of external radiation to population were also calculated. The population-weighted average value of the absorbed dose rate from terrestrial γ-radiation was 7.2 x 10 -8 Gy.h -1 for outdoors, and 10.8 x 10 -8 Gy.h -1 for indoors. The population-weighted average absorbed dose rate in air from cosmic rays was 3.3 x 10 -8 Gy.h -1 . The annual population-weighted average effective dose equivalent and the annual collective effective dose equivalent from the environmental γ-radiation were 620 μSv and 20.1 x 10 3 man.Sv, respectively. The corresponding figures from cosmic rays were 260 μSv and 8.7 x 10 3 man.Sv, respectively

  13. Novel high dose rate lip brachytherapy technique to improve dose homogeneity and reduce toxicity by customized mold

    International Nuclear Information System (INIS)

    Feldman, Jon; Appelbaum, Limor; Sela, Mordechay; Voskoboinik, Ninel; Kadouri, Sarit; Weinberger, Jeffrey; Orion, Itzhak; Meirovitz, Amichay

    2014-01-01

    The purpose of this study is to describe a novel brachytherapy technique for lip Squamous Cell Carcinoma, utilizing a customized mold with embedded brachytherapy sleeves, which separates the lip from the mandible, and improves dose homogeneity. Seven patients with T2 lip cancer treated with a “sandwich” technique of High Dose Rate (HDR) brachytherapy to the lip, consisting of interstitial catheters and a customized mold with embedded catheters, were reviewed for dosimetry and outcome using 3D planning. Dosimetric comparison was made between the “sandwich” technique to “classic” – interstitial catheters only plan. We compared dose volume histograms for Clinical Tumor Volume (CTV), normal tissue “hot spots” and mandible dose. We are reporting according to the ICRU 58 and calculated the Conformal Index (COIN) to show the advantage of our technique. The seven patients (ages 36–81 years, male) had median follow-up of 47 months. Four patients received Brachytherapy and External Beam Radiation Therapy, 3 patients received brachytherapy alone. All achieved local control, with excellent esthetic and functional results. All patients are disease free. The Customized Mold Sandwich technique (CMS) reduced the high dose region receiving 150% (V150) by an average of 20% (range 1–47%), The low dose region (les then 90% of the prescribed dose) improved by 73% in average by using the CMS technique. The COIN value for the CMS was in average 0.92 as opposed to 0.88 for the interstitial catheter only. All differences (excluding the low dose region) were statistically significant. The CMS technique significantly reduces the high dose volume and increases treatment homogeneity. This may reduce the potential toxicity to the lip and adjacent mandible, and results in excellent tumor control, cosmetic and functionality

  14. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  15. Low dose radiation exposure and atherosclerosis in ApoE{sup -/-} mice

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Hasu, M. [Univ. of Ottawa, Department of Pathology and Lab. Medicine, and Cellular and Molecular Medicine, Ottawa, ON (Canada); Univ. of Ottawa Heart Inst., Vascular Biology Group, Ottawa, ON (Canada); Bugden, M.; Wyatt, H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Little, M. [Imperial Coll., Faculty of Medicine, St. Marys Campus, London (United Kingdom); Hildebrandt, G. [Univ. Hospital, Dept. of Radiotherapy, Rostock (Germany); Priest, N.D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Whitman, S.C. [Univ. of Ottawa, Department of Pathology and Lab. Medicine, and Cellular and Molecular Medicine, Ottawa, ON (Canada); Univ. of Ottawa Heart Inst., Vascular Biology Group, Ottawa, ON (Canada)

    2010-07-01

    The hypothesis that single low dose exposures (0.025-0.5 Gy) to low LET radiation, given at either high (240 mGy/min) or low (1 mGy/min) dose rate, would promote aortic atherosclerosis was tested in female C57BI/6 mice genetically predisposed to this disease (ApoE-/-). Mice were exposed either at early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (8 months of age) and examined 2 or 4 months later. Compared to unexposed controls, all doses given at low or high dose rate at early stage disease had significant inhibitory effects on lesion growth and, at 25 or 50 mGy, on lesion frequency. No dose given at low dose rate had any effect on total serum cholesterol, but this was elevated by every dose given at high dose rate. Exposures at low dose rate had no effect on the percentage of lesion lipids contained within macrophages, and, at either high or low dose rate, had no significant effect on lesion severity. Exposure at late stage disease, to any dose at high dose rate, had no significant effect on lesion frequency, but at low dose rate some doses produced a small transient increase in this frequency. Exposure to low doses at low, but not high dose rate, significantly, but transiently reduced average lesion size, and at either dose rate transiently reduced lesion severity. Exposure to any dose at low dose rate (but not high dose rate) resulted in large and persistent decreases in serum cholesterol. These data indicate that a single low dose exposure, depending on dose and dose rate, generally protects against various measures of atherosclerosis in genetically susceptible mice. This result contrasts with the known, generally detrimental effects of high doses on this disease in the same mice, suggesting that a linear extrapolation of risk from high doses is not appropriate. (author)

  16. Biological effects of α-radiation exposure by 241Am in Arabidopsis thaliana seedlings are determined both by dose rate and 241Am distribution

    International Nuclear Information System (INIS)

    Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-01-01

    Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, 241 Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by 241 Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that 241 Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and 241 Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health. - Highlights: • Arabidopsis thaliana was exposed hydroponically to a range of 241 Am concentrations. • Effects at molecular, morphological and physiological level were observed. • Effects were dependent on both dose rate and 241 Am distribution.

  17. Natural terrestrial radiation exposure in Hong Kong. A survey on environmental gamma absorbed dose rate in air

    International Nuclear Information System (INIS)

    Wong, M.C.; Poon, H.T.; Chan, Y.K.; So, C.K.

    2000-01-01

    Hong Kong is a metropolitan city located on the southern coast of China with a population of some six million. About 90% of the population is concentrated in heavily built-up residential and commercial areas, which accounts for less than 50% of the total area in the territory. Hong Kong Observatory, 134A Nathan Road, Kowloon, Hong Kong, China. In order to understand the spatial variations in the environmental radiation levels in Hong Kong, the Hong Kong Observatory (HKO) in early 1999 conducted a study of the environmental gamma absorbed dose rate in air. The study combined data collected by the HKO radiation monitoring network (RMN) and data from a comprehensive territory-wide radiological survey conducted in January and February 1999. The RMN of ten stations each equipped with a Reuter-Stokes Model RSS-1013 HPIC has been in operation since 1987 to continuously monitor the environmental radiation levels over the territory as part of the emergency monitoring programme for response to nuclear accidents at a nearby nuclear power station. The terrestrial component of the environmental radiation field was estimated by subtracting from the measurements the cosmic contribution, which is determined to be about 39 nGy/h from measurements conducted over two large fresh water reservoirs. The RMN data with the long history was analysed to derive the seasonal variations in the environmental radiation levels. On average the environmental gamma absorbed dose rate in air in January and February is 1.03 times of the annual figure. This seasonal correction was applied to the results of the year 1999 survey. As the radiation field in the heavily built-up areas is enhanced by contribution from buildings, in the territory-wide survey measurements were made both in the open field and built-up areas. The territory of Hong Kong was divided into 42 grid boxes of 5 km x 5 km for open field and 61 grid boxes of 2.5 km x 2.5 km for built-up areas according to the population and land use. A

  18. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Energy Technology Data Exchange (ETDEWEB)

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  19. Panthere V2: Multipurpose Simulation Software for 3D Dose Rate Calculations

    Science.gov (United States)

    Penessot, Gaël; Bavoil, Éléonore; Wertz, Laurent; Malouch, Fadhel; Visonneau, Thierry; Dubost, Julien

    2017-09-01

    PANTHERE is a multipurpose radiation protection software developed by EDF to calculate gamma dose rates in complex 3D environments. PANTHERE takes a key role in the EDF ALARA process, enabling to predict dose rates and to organize and optimize operations in high radiation environments. PANTHERE is also used for nuclear waste characterization, transport of nuclear materials, etc. It is used in most of the EDF engineering units and their design service providers and industrial partners.

  20. Enhancement of viability of radiosensitive (PBMC and resistant (MDA-MB-231 clones in low-dose-rate cobalt-60 radiation therapy

    Directory of Open Access Journals (Sweden)

    Patrícia Lima Falcão

    2015-06-01

    Full Text Available Abstract Objective: In the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231 cells line and radiosensitive peripheral blood mononuclear cells (PBMC, as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and Methods: The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results: Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation. Conclusion: Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer.

  1. Dose rate correction in medium dose rate brachytherapy for carcinoma cervix

    International Nuclear Information System (INIS)

    Patel, F.D.; Negi, P.S.; Sharma, S.C.; Kapoor, R.; Singh, D.P.; Ghoshal, S.

    1998-01-01

    Purpose: To establish the magnitude of brachytherapy dose reduction required for stage IIB and III carcinoma cervix patients treated by external radiation and medium dose rate (MDR) brachytherapy at a dose rate of 220±10 cGy/h at point A.Materials and methods: In study-I, at the time of MDR brachytherapy application at a dose rate of 220±10 cGy/h at point A, patients received either 3060 cGy, a 12.5% dose reduction (MDR-12.5), or 2450 cGy, a 30% dose reduction (MDR-30), to point A and they were compared to a group of previously treated LDR patients who received 3500 cGy to point A at a dose rate of 55-65 cGy/h. Study-II was a prospective randomized trial and patients received either 2450 cGy, a 30% dose reduction (MDR-II (30)) or 2800 cGy, a 20% dose reduction (MDR-II (20)), at point A. Patients were evaluated for local control of disease and morbidity. Results: In study-I the 5-year actuarial local control rate in the MDR-30 and MDR-12.5 groups was 71.7±10% and 70.5±10%, respectively, compared to 63.4±10% in the LDR group. However, the actuarial morbidity (all grades) in the MDR-12.5 group was 58.5±14% as against 34.9±9% in the LDR group (P 3 developed complication as against 62.5% of those receiving a rectal BED of (140 3 (χ 2 =46.43; P<0.001). Conclusion: We suggest that at a dose rate of 220±10 cGy/h at point A the brachytherapy dose reduction factor should be around 30%, as suggested by radiobiological data, to keep the morbidity as low as possible without compromising the local control rates. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Postoperative high dose rate vaginal apex brachytherapy in stage I endometrial adenocarcinoma

    International Nuclear Information System (INIS)

    Turner, B.; Knisely, J.; Kacinski, B.; Roberts, K.; Peschel, R.; Gumbs, A.; Rutherford, T.; Edraki, B.; Schwartz, P.; Chambers, J.; Kohorn, E.; Wilson, L.

    1996-01-01

    Introduction: Patients with stage I endometrial adenocarcinoma have traditionally been treated with TAH/BSO and radiation. The reported incidence of local recurrence in surgically treated patients with Figo stage IA or IB endometrial adenocarcinoma is 4-10% at 2 years. Combined surgery and radiation has resulted in a reduction of recurrence to 2-6%. We report the presentation, local and distant control, salvage rate, survival and complications for patients undergoing high dose rate (HDR) vaginal apex brachytherapy following surgery. Methods: Between 1985 and 1994 a total of 302 patients with Figo stage I endometrial carcinoma were treated with HDR Ir-192 vaginal apex brachytherapy to a total dose of 21 Gy in 3 fractions at 0.5 cm from the vaginal mucosa. The pathologic stage by treatment group was IA: 31%, IB: 68%, and IC: 1%. The histologic grade of the patient's tumors was grade 1: 69%, 2: 27%, and 3: 4%. The median time from surgery to radiation was 33 days (range 14-66 days). The median follow-up for 300 patients with stage IA (91 patients), IB (205 patients), and IC (4 patients) was respectively 36, 34 and 40 months (2 patients lost to follow-up prior to 6 months). Results: Patients presented with vaginal bleeding (94%) or abnormal pap smear (6%) at a median age for stage IA and IB, of 55 and 64 years, respectively. The crude overall survival of the patient population at 2 years is 95%. Median overall time to failure is 19.5 months (range 10-36 months). The overall failure rate was 2.7% (8 patients), local failure only 1.0% (38% of failed group), distant failure only 0.3% (12% of failed group) and combined local/distant failure 1.3% (50% of failed group). The local failure rate for pathologic stage IA patients was 1.0% and no distant disease was observed. The local failure rate for pathologic stage IB patients was 3.4% 7/205 and distant failure was 2.4% 5/205. The majority of patients with recurrence had grade 2 histologic changes 5/8. The overall salvage rate

  3. Development of transmission dose estimation algorithm for in vivo dosimetry in high energy radiation treatment

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Hun, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2004-01-01

    In vivo dosimetry is very important for quality assurance purpose in high energy radiation treatment. Measurement of transmission dose is a new method of in vivo dosimetry which is noninvasive and easy for daily performance. This study is to develop a tumor dose estimation algorithm using measured transmission dose for open radiation field. For basic beam data, transmission dose was measured with various field size (FS) of square radiation field, phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. By using regression analysis of measured basic beam data, a transmission dose estimation algorithm was developed. Accuracy of the algorithm was tested with flat solid phantom with various thickness in various settings of rectangular fields and various PCD. In our developed algorithm, transmission dose was equated to quadratic function of log(A/P) (where A/P is area-perimeter ratio) and the coefficients of the quadratic functions were equated to tertiary functions of PCD. Our developed algorithm could estimate the radiation dose with the errors within ±0.5% for open square field, and with the errors within ±1.0% for open elongated radiation field. Developed algorithm could accurately estimate the transmission dose in open radiation fields with various treatment settings of high energy radiation treatment. (author)

  4. Phase II trial of combined surgical resection, intraoperative high dose rate brachytherapy (IORT), and external beam radiation therapy (EBRT) for malignant pleural mesothelioma (MPM)

    International Nuclear Information System (INIS)

    Raben, A.; Rusch, V.; Mychalczak, B.; Schupak, K.; Ginsburg, R.; Burt, M.; Bains, M.; Harrison, L.B.

    1996-01-01

    The purpose of this study was to determine the feasibility of combining extrapleural pneumonectomy (EPP) or pleurectomy/decortication (PD), IORT and postoperative EBRT to treat MPM. From (3(94)) through (9(94)), 16 patients (pts) were enrolled on this trial; 2 females and 14 males with a median age of 59 (range: 45 - 75). Eligibility criteria included biopsy proven MPM, no evidence of T4 or N3 disease by exam/CT scan, no evidence of metastatic disease, no previous treatment, and a Karnofsky performance status of ≥ 80%. Pts with pulmonary function tests permitting EPP, underwent EPP and IORT (15 Gy prescribed to a depth of 5 mm in tissue to the mediastinum, diaphragm and chestwall) with postoperative EBRT (54 Gy to entire hemithorax, surgical scar and surgical drain site). Pts ineligible for EPP due to marginal pulmonary function underwent PD and IORT (15 Gy to mediastinum, diaphragm and chestwall), with EBRT (54 Gy to entire hemithorax with customized lung blocking). The median surgical procedure time, median IORT time and median overall operating time was 554 minutes, 240 minutes and 649 minutes respectively. The median dose of EBRT was 50.4 Gy (range 50-54 Gy). The median follow-up time is 8 months (range: 3 - 17 months). Four of 16 pts had unresectable disease at the time of surgery and were taken off study. Eight pts underwent EPP/IORT and 4 patients underwent PD/IORT. A complete resection of all gross disease was obtained in 11pts. One pt had a single focus of gross residual disease (less than 5 mm in size) left behind. The overall actuarial local control at 1 year for resected patients is 66%. The crude local control rate and distant control rate for pts undergoing EPP was 75% and 50% respectively. The crude local control rate and distant control rate for PD pts was 50% and 75%. The overall distant metastasis rate at 1 year was 42%. The overall complication rate was 58% ((7(12))). Of the 8 pts undergoing EPP and IORT, 1 patient developed postoperative acute

  5. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Skorobogatov, P.K.

    1996-01-01

    The adequacy of laser based simulation of the flash X-ray effects in microcircuits may be corrupted mainly due to laser radiation shadowing by the metallization and the non-linear absorption in a high intensity range. The numerical joint solution of the optical equations and the fundamental system of equations in a two-dimensional approximation were performed to adjust the application range of laser simulation. As a result the equivalent dose rate to laser intensity correspondence was established taking into account the shadowing as well as the high intensity effects. The simulation adequacy was verified in the range up to 4·10 11 rad(Si)/s with the comparative laser test of a specially designed test structure

  6. Changes in the Number of Double-Strand DNA Breaks in Chinese Hamster V79 Cells Exposed to γ-Radiation with Different Dose Rates

    Directory of Open Access Journals (Sweden)

    Andreyan N. Osipov

    2013-07-01

    Full Text Available A comparative investigation of the induction of double-strand DNA breaks (DSBs in the Chinese hamster V79 cells by γ-radiation at dose rates of 1, 10 and 400 mGy/min (doses ranged from 0.36 to 4.32 Gy was performed. The acute radiation exposure at a dose rate of 400 mGy/min resulted in the linear dose-dependent increase of the γ-H2AX foci formation. The dose-response curve for the acute exposure was well described by a linear function y = 1.22 + 19.7x, where “y” is an average number of γ-H2AX foci per a cell and “x” is the absorbed dose (Gy. The dose rate reduction down to 10 mGy/min lead to a decreased number of γ-H2AX foci, as well as to a change of the dose-response relationship. Thus, the foci number up to 1.44 Gy increased and reached the “plateau” area between 1.44 and 4.32 Gy. There was only a slight increase of the γ-H2AX foci number (up to 7 in cells after the protracted exposure (up to 72 h to ionizing radiation at a dose rate of 1 mGy/min. Similar effects of the varying dose rates were obtained when DNA damage was assessed using the comet assay. In general, our results show that the reduction of the radiation dose rate resulted in a significant decrease of DSBs per cell per an absorbed dose.

  7. Stimulation effect of early growth in crops by low dose radiation

    International Nuclear Information System (INIS)

    Kim, J.S.; Song, H.S.; Kim, J.K.; Lee, Y.K.; Lee, Y.B.

    1998-01-01

    Germination rate and early growth in crop such as rice,soybean,and perilla were observed after irradiation of γ-ray (Co-60) in order to determine the effects of low does radiation. The low dose radiation was able to improve the early growth in crops and their agricultural characters. Germination rate of 2Gy-irradiatied rice seeds was high and also were seeding height and fresh weight of the 0.5 Gy-irradiated. Germination rate and early growth of soybean were high in 4Gy-irradiated group. Perilla gew of so promisingly after after low dose irradiation, however there slightly increasing effects on germination rate, seeding height and fresh weight at 2Gt-, 1Gy-, and 1Gy irradiated group, respectively. (author)

  8. Influence of the dose rate in the PVDF degradation processes

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Adriana S.M.; Pereira, Claubia, E-mail: adriananuclear@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Gual, Maritza R., E-mail: maritzargual@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InsTEC), Departamento de Ingenieria Nuclear, La Habana (Cuba); Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from gamma radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation by products such as peroxide degradation. Radiation cross-linking technologies include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, polymer recycling, hydrogels etc. The degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to obtained under smaller dose rates. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h and 2,592 kGy/h), with doses ranging from 100 kGy to 3,000 kGy. Different dose rate determine the prevalence of the processes being evaluated in this work by thermal measurements and infrared spectroscopy. It is shown that the degradation processes involve chain scissions and crosslink formation. The formation of oxidation products was shown at the surface of the irradiated film. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. Thermogravimetric studies reveal that the irradiation induced the increasing residues and decrease of the temperature of the decomposition start. (author)

  9. Influence of the dose rate in the PVDF degradation processes

    International Nuclear Information System (INIS)

    Batista, Adriana S.M.; Pereira, Claubia; Gual, Maritza R.; Faria, Luiz O.

    2015-01-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from gamma radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation by products such as peroxide degradation. Radiation cross-linking technologies include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, polymer recycling, hydrogels etc. The degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to obtained under smaller dose rates. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h and 2,592 kGy/h), with doses ranging from 100 kGy to 3,000 kGy. Different dose rate determine the prevalence of the processes being evaluated in this work by thermal measurements and infrared spectroscopy. It is shown that the degradation processes involve chain scissions and crosslink formation. The formation of oxidation products was shown at the surface of the irradiated film. The FTIR data revealed absorption bands at 1730 and 1853 cm -1 which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm -1 which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm -1 which were associated with NH stretch of NH 2 and OH. Thermogravimetric studies reveal that the irradiation induced the increasing residues and decrease of the temperature of the decomposition start. (author)

  10. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    International Nuclear Information System (INIS)

    Richardson, Susan; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-01-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction. The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm 3 (range, 0.01-1.32 cm 3 ). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.

  11. Radiation dose distributions due to sudden ejection of cobalt device

    International Nuclear Information System (INIS)

    Abdelhady, Amr

    2016-01-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. - Highlights: • This study aims to calculate the dose rate profiles after cobalt device ejection from open-pool-type reactor core. • MicroShield code was used to evaluate the dose rates inside the reactor control room. • McSKY code was used to evaluate the dose rates outside the reactor building. • The calculated dose rates for workers are higher than the permissible limits after 18 s from device ejection.

  12. Potential gonadal dose from leakage radiation?

    International Nuclear Information System (INIS)

    Nicholson, R.A.

    1995-01-01

    The author draws attention to the potential dangers of leakage radiation from mobile image intensifier units, and points out that during interventional urological procedures, radiation from below the urologist's knees may irradiate male gonads without being intercepted by protective aprons. Results are presented for a Shimatzu WHA mobile II, phantom doses being measured with an ionization chamber. Dose rates measured in the male gonad position were compared with rates at waist level behind a 0.35 mm lead equivalent shielding and dose rates at collar level outside the lead apron. Results are also presented of a study on the effect on gonad dose of a) adding 0.7 mm lead shielding to the tube housing and b) adding 0.7 mm lead and removing the spacer cone to reduce scatter. Results show that it is possible for gonad doses to be comparable with those assumed for the eyes, rather than the body. (Author)

  13. Comparison of occupational radiation dose exposures in nuclear medicine and PET

    International Nuclear Information System (INIS)

    White, S.A.; Binns, D.S.; Johnston, V.K.; Fawcett, M.F.; Greer, B.; Hicks, R.J.

    1999-01-01

    Full text: With the increasing use of high-dose 64 Ga, 201 TI and 18 F-fluorodeoxyglucose (FDG) PET for scanning in oncology in our centre, a radiation dose survey was performed to determine the impact on staff exposure in a multi-modality department. This study was set up in part to counter 'radio-phobia' (the fear of working with radioactive patients) in allied health professionals. The patients were measured using a hand-held radiation monitor at various distances and times which replicate typical patient contact scenarios in the Diagnostic Imaging Department. An average exposure rate per hour was calculated and thus the relative radiation hazard was determined for staff who will interact with the patient outside of the hot laboratory. We present our findings from the survey and the implications these have on staff radiation exposure. In conclusion, these data suggest that emerging oncologic techniques such as PET, high-dose 67 Ga and high-dose 201 Tl do not represent a significantly greater occupational radiation hazard than conventional nuclear medicine procedures

  14. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  15. Intraoperative radiotherapy in primary rectal cancer; Intraoperative Radiotherapie des primaeren Rektumkarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Mund, Christian

    2013-06-17

    According to the results of several studies intraoperative radiotherapy seems to influence local control for primary rectal cancer in UICC-Stage II / III positively, though recommendations in therapy cannot be given as studies of high evidence level do not exist. As IORT is rarely available and makes patient recruitment difficult, prospective randomised trials have not been carried out yet. This emphasizes the importance of non-randomised trials for an evaluation of IORT. A comparison of 21 patients with locally advanced rectal cancer who had been treated with intraoperative radiation therapy and 21 similar cases without an application of IORT could not show any significant improvements in prognosis (recurrences, metastases and disease-specific survival). Nevertheless the employment of intraoperative radiation showed a trend in improvement of local control. This hast been shown by several other studies before. Thus the application of IORT in patients with locally advanced rectal cancer is considered a useful part in multimodal treatment and should further be evaluated in specialized centres. In case-control studies 1:1-matching leads to a good comparability of groups and renders conclusions of high internal validity possible. To gain a sufficient power, this type of trials should however primarily be carried out by centres with a high number of cases.

  16. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    Science.gov (United States)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  17. Stability of a mobile electron linear accelerator system for intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Beddar, A. Sam

    2005-01-01

    The flexibility of mobile electron accelerators, which are designed to be transported to an operating room and plugged into a normal 3-phase outlet, make them ideal for use in intraoperative radiation therapy. However, their transportability may cause trepidation among potential users, who may question the stability of such an accelerator over a period of use. In order to address this issue, we have studied the short-term stability of the Mobetron system over 20 daily quality assurance trials. Variations in output generally varied within ±2% for the four energies produced by the unit (4, 6, 9, and 12 MeV) and changes in energy produced an equivalent shift of less than 1 mm on the depth-dose curve. Hours of inactivity, with the Mobetron powered on for use either throughout the day or overnight, led to variations in output of about 1%. Finally, we have tested the long-term stability of the absolute dose output of the Mobetron, which showed a change of about 1% per year

  18. Dose measurement techniques for high-energy photon and electron radiation

    International Nuclear Information System (INIS)

    Hohlfeld, K.; Roos, M.

    1992-08-01

    By law the Federal Institute of Physics and Technology (PTB) has been assigned the tasks of representing, preserving and passing on dose units. The analogous continuation of these tasks consists in improving, at the user level, dosimetry techniques in radiation therapy for the benefit of patients. The PTB had an essential share in working out the scientific foundations of dosimetry for high-energy radiation, and the corresponding DIN standards were established with the PTB playing a prominent part. The seminar aimed at presenting the measuring techniques fixed in the new DIN standard 6800 part 2 'Dose measurement techniques according to the probe method - ionization dosimetry', to discuss their physical background and practical implications resulting from them. (orig.) [de

  19. Radiation doses in alternative commercial high-level waste management systems

    International Nuclear Information System (INIS)

    Schneider, K.J.; Pelto, P.J.; Lavender, J.C.; Daling, P.M.; Fecht, B.A.

    1986-01-01

    In the commercial high-level waste management system, potential changes are being considered that will augment the benefits of an integral monitored retrievable storage (MRS) facility. The US Department of Energy (DOE) has recognized that alternative options could be implemented in the authorized waste management system (i.e., without an integral MRS facility) to potentially achieve some of the same beneficial effects of the integral MRS system. This paper summarizes those DOE-sponsored analyses related to radiation doses resulting from changes in the waste management system. This report presents generic analyses of aggregated radiation dose impacts to the public and occupational workers, of nine postulated changes in the operation of a spent-fuel management system without an MRS facility

  20. The annual terrestrial gamma radiation dose to the population of the urban Christchurch area

    International Nuclear Information System (INIS)

    Chapman, R.H.

    1983-01-01

    Natural terrestrial gamma radiation dose rates were measured with a high pressure ionization chamber at 70 indoor (195 site measurements) and 58 outdoor locations in the metropolitan Christchurch area. Based on these site measurements, the average gonad dose rate to the population from natural terrestrial gamma radiation was estimated to be 273+-56 microgray per annum. (auth)

  1. Three-dimensional dose-response models of risk for radiation injury carcinogenesis

    International Nuclear Information System (INIS)

    Raabe, O.G.

    1988-01-01

    The use of computer graphics in conjunction with three-dimensional models of dose-response relationships for chronic exposure to ionizing radiation dramaticly clarifies the separate and interactive roles of competing risks. The three dimensions are average dose rate, exposure time, and risk. As an example, the functionally injurious and carcinogenic responses after systemic uptake of Ra-226 by beagles, mice and people with consequent alpha particle irradiation of the bone are represented by three-dimensional dose-rate/time/response surfaces that demonstrate the contributions with the passage of time of the competing deleterious responses. These relationships are further evaluated by mathematical stripping with three-dimensional illustrations that graphically show the resultant separate contribution of each effect. Radiation bone injury predominates at high dose rates and bone cancer at intermediate dose rates. Low dose rates result in spontaneous deaths from natural aging, yielding a type of practical threshold for bone cancer induction. Risk assessment is benefited by the insights that become apparent with these three-dimensional models. The improved conceptualization afforded by them contributes to planning and evaluating epidemiological analyses and experimental studies

  2. Effect of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Takanori; Shirata, Katsutoshi; Saitou, Mikio; Tanaka, Satoshi; Onodera, Junichi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Department of Radiobiology, Rokkasho, Aomori (Japan)

    1999-07-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice, SPF C3H/HeN female mice were irradiated by {sup 137}Cs {gamma}-rays with doses of 1-8 Gy at the dose rate of 20 mGy (22 h-day){sup -1}. After irradiation, the number of hemopoietic cells contained in bone marrow was determined by the methods of CFU-S and CFU-GM assay, and the number of peripheral blood cells was counted. It was shown that the day 12-CFU-S, which is in the earlier stage of differentiation, decreased as the dose increased. Decreases of the numbers of day 7-CFU-S and CFU-GM were also observed. However, there were no remarkable changes in the number of peripheral blood cells. (author)

  3. External exposure rates from terrestrial radiation at Guarapari and Meaipe in Brazil

    International Nuclear Information System (INIS)

    Fujinami, N.; Koga, T.; Morishima, H.

    2000-01-01

    Recently epidemiological and cytogenetic studies on inhabitants living in high background radiation areas have been carried out in order to examine health effects of exposure to low dose radiation. Guarapari and Meaipe are towns built on the monazite sand region along the Atlantic coast in Brazil, which is one of the widely known high background radiation areas in the world. As an initial step toward studies on health effects of high background radiation on inhabitants living in Guarapari and Meaipe, we surveyed absorbed dose rates in air in these towns with a portable NaI(Tl) scintillation detector in September 1998. Sand and soil were also sampled there so as to determine the concentrations of Th-232 and Ra-226 in them. In Guarapari and Meaipe, dose rates in the streets ranged from 0.1 to 0.4 μ Gy/h except for a few places such as near the Areia Preta beach and Meaipe beach. Dose rates inside houses were lower than 0.2 μ Gy/h except that two houses attained a dose rate of 0.4 μ Gy/h. Our effective dose rate from external terrestrial irradiation (outdoors and indoors) was 0.17 μ Sv/h on the average, during the period of our three day stay in Guarapari and Meaipe. From comparison of our present values with those observed in the 1960s, which were cited in UNSCEAR reports, it is indicated that dose rate levels have decreased clearly in downtown, while the levels have scarcely changed in beaches and unpaved beach streets which have not been developed yet. This fact suggests that the natural radiation environment of Guarapari and Meaipe has varied with urbanization which brought paved streets, and changes in the structure and building materials of houses. A detailed survey is necessary in order to evaluate present absorbed dose rates in air in this area. (author)

  4. Intraoperative Radiation Therapy for Locally Advanced and Recurrent Soft-Tissue Sarcomas in Adults

    International Nuclear Information System (INIS)

    Tran, Phuoc T.; Hara, Wendy; Su Zheng; Lin, H. Jill; Bendapudi, Pavan K.; Norton, Jeffrey; Teng, Nelson; King, Christopher R.; Kapp, Daniel S.

    2008-01-01

    Purpose: To analyze the outcomes of and identify prognostic factors for patients treated with surgery and intraoperative radiotherapy (IORT) for locally advanced and recurrent soft-tissue sarcoma in adults from a single institution. Methods and Materials: We retrospectively reviewed 50 consecutive patients treated with IORT to 62 sites of disease. Primary sites included retroperitoneum-pelvis (78%), extremity (8%), and other (14%). Seventy percent of patients had recurrent disease failing prior surgery (70%) and/or radiation (32%). Mean disease-free interval (DFI) before IORT was 1.9 years (range, 2 weeks-5.4 years). The IORT was delivered with orthovoltage X-rays using individually sized beveled cone applicators. Clinical characteristics were as follows: mean tumor size, 10 cm (range, 1-25 cm); high-grade histologic subtype (72%); and mean dose, 1,159 cGy (range, 600-1,600 cGy). Postoperative radiation or chemotherapy was administered to 37% of IORT Sites and 32% of patients, respectively. Outcomes measured were infield control (IFC), locoregional control (LRC), distant metastasis-free survival (DMFS), disease-specific survival (DSS), and treatment-related complications. Mean and median follow-up of alive patients were 59 and 35 months, respectively. Results: Kaplan-Meier 5-year IFC, LRC, DMFS, and DSS probabilities for the entire group were 55%, 26%, 51%, and 25%, respectively. Prognostic factors found to be significant (p < 0.05) on multivariate analysis were prior DFI and tumor size for LRC, extremity location and leiomyosarcoma histologic subtype for DMFS, and prior DFI for DSS. Our cohort had five Grade 3/4 complications associated with treatment or a 5-year Kaplan-Meier Grade 3/4 complication-free survival rate of 85%. Conclusions: IORT after tumor reductive surgery is well tolerated and seems to confer IFC in carefully selected patients

  5. Radiation doses to Finns

    International Nuclear Information System (INIS)

    Rantalainen, L.

    1996-01-01

    The estimated annual radiation doses to Finns have been reduced in the recent years without any change in the actual radiation environment. This is because the radiation types have been changed. The risk factors will probably be changed again in the future, because recent studies show discrepancies in the neutron dosimetry concerning the city of Hiroshima. Neutron dosimetry discrepancy has been found between the predicted and estimated neutron radiation. The prediction of neutron radiation is calculated by Monte Carlo simulations, which have also been used when designing recommendations for the limits of radiation doses (ICRP60). Estimation of the neutron radiation is made on the basis of measured neutron activation of materials in the city. The estimated neutron dose beyond 1 km is two to ten, or more, times as high as the predicted dose. This discrepancy is important, because the most relevant distances with respect to radiation risk evaluation are between 1 and 2 km. Because of this discrepancy, the present radiation risk factors for gamma and neutron radiation, which rely on the Monte Carlo calculations, are false, too. The recommendations of ICRP60 have been adopted in a few countries, including Finland, and they affect the planned common limits of the EU. It is questionable whether happiness is increased by adopting false limits, even if they are common. (orig.) (2 figs., 1 tab.)

  6. Low-dose-rate radiation exposure leads to testicular damage with decreases in DNMT1 and HDAC1 in the murine testis

    International Nuclear Information System (INIS)

    Gong, Eun Ji; Son, Tae Gen; Yang, Kwangmo; Heo, Kyu; Kim, Joong Sun; Shin, In Sik

    2014-01-01

    This study examined the effects of continuous low-dose-rate radiation exposure (3.49 mGy/h) of gamma rays on mice testicles. C57BL/6 mice were divided into sham and radiation groups (n = 8 each), and were exposed to either sham irradiation or 2 Gy for 21 days, 0.2 Gy for 2 days, or 0.02 Gy for 6 h of low-dose-rate irradiation. Testicular weight, seminiferous tubular diameter, and seminiferous epithelial depth were significantly decreased in the mice irradiated with 2 Gy at 1 and 9 days after exposure. Moreover, the low-dose-rate radiation exposure induced an increase in malondialdehyde levels, and a decrease in superoxide dismutase activity in the testis of mice irradiated with 2 Gy at 1 and 9 days after exposure. The sperm count and motility in the epididymis also decreased in mice irradiated with 2 Gy at 1 and 9 days after exposure, whereas there was no significant effect on the proportion of abnormal sperm. The expressions of DNA methlytransferases-1 and histone deacetylases 1 in testes irradiated with 2 Gy were significantly decreased compared with the sham group. In conclusion, the damage exerted on the testes and epididymis largely depended on the total dose of low-dose-rate radiation. (author)

  7. Use of glasses as radiation detectors for high doses

    International Nuclear Information System (INIS)

    Caldas, L.

    1989-08-01

    Glass samples were tested in relation to the possibility of use in high dose dosimetry in medical and industrial areas. The main characteristics were determined: detection threshold, reproducibility, response to gamma radiation of 137 Cs and 6 Co and thermal decay at ambient temperature, with the use of optical absorption and thermoluminesce techniques. (author) [pt

  8. Dose and dose rate monitor

    International Nuclear Information System (INIS)

    Novakova, O.; Ryba, J.; Slezak, V.; Svobodova, B.; Viererbl, L.

    1984-10-01

    The methods are discussea of measuring dose rate or dose using a scintillation counte. A plastic scintillator based on polystyrene with PBD and POPOP activators and coated with ZnS(Ag) was chosen for the projected monitor. The scintillators were cylindrical and spherical in shape and of different sizes; black polypropylene tubes were chosen as the best case for the probs. For the counter with different plastic scintillators, the statistical error 2σ for natural background was determined. For determining the suitable thickness of the ZnS(Ag) layer the energy dependence of the counter was measured. Radioisotopes 137 Cs, 241 Am and 109 Cd were chosen as radiation sources. The best suited ZnS(Ag) thickness was found to be 0.5 μm. Experiments were carried out to determine the directional dependence of the detector response and the signal to noise ratio. The temperature dependence of the detector response and its compensation were studied, as were the time stability and fatigue manifestations of the photomultiplier. The design of a laboratory prototype of a dose rate and dose monitor is described. Block diagrams are given of the various functional parts of the instrument. The designed instrument is easiiy portable, battery powered, measures dose rates from natural background in the range of five orders, i.e., 10 -2 to 10 3 nGy/s, and allows to determine a dose of up to 10 mGy. Accouracy of measurement in the energy range of 50 keV to 1 MeV is better than +-20%. (E.S.)

  9. Tritium β-radiation induction of chromosomal damage: a calibration curve for low dose, low dose rate exposures of human cells to tritiated water

    International Nuclear Information System (INIS)

    Morrison, D.P.; Gale, K.L.; Lucas, J.N.

    1997-01-01

    Radiation exposures from tritium contribute to the occupational radiation exposures associated with CANDU reactors. Tritiated water is of particular interest since it is readily taken up by human cells and its elimination from the body, and, consequently, the radiation exposure of the cells, is spread over a period of days. Occupational exposures to tritiated water result in what are effectively chronic β-radiation exposures. The doses and dose rates ordinarily used in the definition of cellular responses to radiation in vitro, for use in biological dosimetry (the assessment of radiation exposures based on the observed levels of changes in the cells of exposed individuals), are usually much higher than for most occupational exposures and involve radiations other than tritium β-rays. As a result, their use in assessing the effects from tritiated water exposures may not be appropriate. We describe here an in vitro calibration curve for chronic tritium β-radiation induction of reciprocal chromosomal translocations in humn peripheral blood lymphocytes (PBLs) for use in biodosimetry. (author)

  10. Hit-size effectiveness theory applied to high doses of low LET radiation for pink mutations in Tradescantia

    International Nuclear Information System (INIS)

    Varma, M.N.; Bond, V.P.; Matthews, G.

    1985-01-01

    A hit-size effectiveness function which represents the probability of inducing a pink mutation in Tradescantia as a function of lineal energy density has been obtained (1) using observed pink mutation data for seven different radiation qualities and their respective single event microdosimetric spectra. In obtaining this function only the linear portions of dose-response curves were used. A significant improvement of the concepts embodied in the proposed hit-size effectiveness theory would be the demonstration of its applicability at high doses (where multiple hits are produced) and high dose rates (at which no significant biological repair takes place). In this article details are given on preliminary calculations of the pink mutation frequency in Tradescantia at 1, 5, 10, 20, and 60 rads for 250 kVp x rays, using the multi-hit spectra and the hit-size effectiveness function obtained on the basis of single hit microdosimetric spectra as outline in (1). A comparison of the calculated and observed pink mutation frequencies indicate excellent agreement and suggests the possibility of obtaining the hit-size effectiveness function from high dose biological-effect data obtained using low-LET radiations. 6 refs., 3 figs., 3 tabs

  11. Late complications after high-dose-rate interstitial brachytherapy for tongue cancer

    International Nuclear Information System (INIS)

    Shimizutani, Kimishige; Inoue, Takehiro; Inoue, Toshihiko; Yoshioka, Yasuo; Teshima, Teruki; Kakimoto, Naoya; Murakami, Shumei; Furukawa, Souhei; Fuchihata, Hajime

    2005-01-01

    The objectives of this study was to analyze the treatment results and late complications of high-dose-rate (HDR) interstitial brachytherapy (ISBT) for early (T1N0, T2N0) mobile tongue cancer using the microSelectron-HDR. From January 1993 through April 2001, a total of 72 patients with early squamous cell carcinomas of the mobile tongue were treated with microSelectron-HDR interstitial brachytherapy at the Department of Radiology, Osaka University Hospital. Of the patients, 18% were treated with a combination of prior external radiation and HDR-ISBT, and 82% were treated with HDR-ISBT alone. For HDR-ISBT alone, all cases were treated with a total dose of 54 Gy/9 fractions every 5 days or 60 Gy/10 fractions every 8 days. In combined therapy with an external dose of 30 to 40 Gy, HDR-ISBT was given at a total dose of 42-50 Gy. The Brinkman and alcohol indexes were used to analyze the incidence of late complications after HDR-ISBT. The 2- and 5-year local control rates were 85% and 82%, respectively. Fifteen of 72 patients (21%) treated with HDR-ISBT had late complications. Ten of 15 patients (67%) with late complications had a Brinkman index exceeding 600. HDR-ISBT is useful and easily applied under local anesthesia to early or superficial lesions of the mobile tongue. However, we found an increase in late complications, such as soft-tissue ulcers and bone exposure, after irradiation of tongue cancer with 60 Gy HDR-ISBT in patients with a Brinkman index greater than 600. (author)

  12. Dose Rate Effect on Grafting by Gamma Radiation of DMAEMA onto Flexible PVC

    International Nuclear Information System (INIS)

    Panzarini, L.C.G.A.; Araujo, F.D.C.; Martinello, V.C.; Somesari, E.; Manzoli, J.E.; Silveira, C.; Paes, H.A.; Moura, E.

    2009-01-01

    Intravenous tubing, blood bags and catheters stays in contact with blood and body fluids. They are normally made by flexible PVC. The contact of PVC with this fluid is not possible for long periods and there is the necessity of addition of non-thrombogenic substances into blood. This work shows the radiation grafting process to produce copolymer PVC-g-DMAEMA, a new material that allows a future grafting of Heparin on it, and will have the perspective of avoiding undesirable substances additions to blood or body fluid contact. In this preliminary work, only radiation dose rate effect on grafting was studied

  13. Tissue responses to low protracted doses of high LET radiations or photons: Early and late damage relevant to radio-protective countermeasures

    Science.gov (United States)

    Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.

    Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for γ-radiation. When total doses of 96 or 247 cGy of neutrons or γ rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and γ-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. After high single doses of neutrons or γ rays, a significant age- and radiation-related deficiency

  14. Chronic action of gamma-radiation on growing cell population of the yeast Saccharomyces cerevisiae at various dose rates

    International Nuclear Information System (INIS)

    Zyuzikov, N.A.; Petin, V.G.

    1996-01-01

    Experimental data on the processes of division and death of haploid and diploid yeast Saccharomyces cerevisiae of wild type and of their radiosensitive mutants exposed under optimal for reproduction conditions to chronic gamma-radiation at various dose rates are presented. It is shown that the dependence of the integral division/death process in time was exponential for all the studied strains. With dose rate increasing, the duration of the lag period and the probability of cell inactivation increased, while the multiplication rate decreased. These processes, for equal dose rates, were more expressed for the radiosensitive mutants

  15. Radiation-induced polymerization of water-saturated styrene in a wide range of dose rate

    International Nuclear Information System (INIS)

    Takezaki, J.; Okada, T.; Sakurada, I.

    1978-01-01

    Radiation-induced polymerization of water-saturated styrene (water content 3.5 x 10 -2 mole/liter) was carried out in a wide range of dose rate between 1.2 x 10 3 and 1.8 x 10 7 rad/sec, and compared with the polymerization of the moderately dried styrene (water content 3.2 x 10 -3 mole/liter). Molecular weight distribution curves of the polymerization products showed that they were generally consisted of four parts, namely, oligomers, radical, cationic, and super polymers. Contributions of the four constituents to the polymerization and the number average degrees of polymerization (DP) of the four kinds of polymers were calculated by the graphical analysis of the curves. The rate of radical polymerization and DP of radical polymers are independent of the water content; the dose rate dependences of the polymerization rate and DP agree with the well known square root and inverse square root laws, respectively, of the radical polymerization of styrene. The rate of ionic polymerization is directly proportional to the dose rate, but it decreases, at a given dose rate, inversely proportional to the water content of styrene. DP of ionic polymer is independent of the dose rate but decreases with increasing water content. The super polymer of DP about 10 4 is not formed in the case of the moderately dried styrene. G values for the initiating radical and ion formation are calculated to be independently of the dose rate and water content, 0.66 and 0.027, respectively. It was suggested that oligomer was formed in the early stage by the interaction of cation with anion and only those cations which had survived underwent polymerization. 10 figures, 4 tables

  16. Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johore

    International Nuclear Information System (INIS)

    Ramli, A.T.; Hussein, A.W.M.A.; Lee, M.H.

    2001-01-01

    Measurements of environmental terrestrial gamma radiation dose-rate (TGRD) have been made in Johore, Malaysia. The focus is on determining a relationship between geological type and TGRD levels. Data were compared using the one way analysis of variance (ANOVA), in some instances revealing significant differences between TGRD measurements and the underlying geological structure

  17. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  18. Pre-irradiation at a low dose-rate blunted p53 response

    International Nuclear Information System (INIS)

    Takahashi, A.; Ohnishi, K.; Asakawa, I.; Tamamoto, T.; Yasumoto, J.; Yuki, K.; Ohnishi, T.; Tachibana, A.

    2003-01-01

    Full text: We have studied whether the p53-centered signal transduction pathway induced by acute radiation is interfered with chronic pre-irradiation at a low dose-rate in human cultured cells and whole body of mice. In squamous cell carcinoma cells, we found that a challenge irradiation with X-ray immediately after chronic irradiation resulted in lower levels of p53 than those observed after the challenge irradiation alone. In addition, the induction of p53-centered apoptosis and the accumulation of its related proteins after the challenge irradiation were strongly correlated with the above-mentioned phenomena. In mouse spleen, the induction of apoptosis and the accumulation of p53 and Bax were observed dose-dependently at 12 h after a challenge irradiation. In contrast, we found significant suppression of them induced by challenge irradiation at a high dose-rate when mice were pre-irradiated with chronic irradiation at a low dose-rate. These findings suggest that chronic pre-irradiation suppressed the p53 function through radiation-induced p53-dependent signal transduction processes. There are numerous papers about p53 functions in apoptosis, radiosensitivity, genomic instability and cancer incidence in cultured cells or animals. According to our data and other findings, since p53 can prevent carcinogenesis, pre-irradiation at a low dose-rate might enhance the predisposition to cancer. Therefore, it is possible that different maximal permissible dose equivalents for the public populations are appropriate. Furthermore, concerning health of human beings, studies of the adaptive responses to radiation are quite important, because the radiation response strongly depends on experience of prior exposure to radiation

  19. Influence of dose and its distribution in time on dose-response relationships for low-LET radiation

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This book examines the influence of dose rate and magnitude on the genetic and carcinogenic effects of radiation exposure in animals and man. It systematically examines a broad range of biological effects in simple systems, plants, laboratory animals, and man with special attention given to the effects of prenatal irradiation, changes in life span, and tumorigenesis. An enormous volume of data is provided about human tumorigenesis and the data and shortcomings are summarized. There is an extended general discussion of the consideration in quantitative dose and dose rate relationships and of the limitations of the data and analyses which have led to a linear interpolation of risk at low doses and dose rates. An argument is made for dose rate dependence in tumorigenesis as being consistent with all other radiation effects and for the applicability of Dose Rate Effectiveness Factors (DREF) in providing a more realistic assessment of the risk of radiation carcinogenesis. The report is documented with 24 pages of references. There are numerous graphs and tables, all clear and to the point. This book is a superb review and summary of the data on radiation risks

  20. Construction of radioelement and dose rate baseline maps by combining ground and airborne radiometric data

    International Nuclear Information System (INIS)

    Rybach, L.; Medici, F.; Schwarz, G.F.

    1997-01-01

    For emergency situations like nuclear accidents, lost isotopic sources, debris of reactor-powered satellites etc. well-documented baseline information is indispensable. Maps of cosmic, terrestrial natural and artificial radiation can be constructed by assembling different datasets such as ground and airborne gamma spectrometry, direct dose rate measurements, and soil/rock samples. The in situ measurements were calibrated using the soil samples taken at/around the field measurement sites, the airborne measurements by a combination of in situ, and soil/rock sample data. The radioelement concentrations (Bq/kg) were in turn converted to dose-rate (nSv/h). First, the cosmic radiation map was constructed from a digital terrain model, averaging topographic heights within cells of 2 km X 2 km size. For the terrestrial radiation a total of 1615 ground data points were available, in addition to the airborne data. The artificial radiation map (Chernobyl and earlier fallout) has the smallest data base (184 data points from airborne and ground measurements). The dose rate map was constructed by summing up the above-mentioned contributions. It relies on a data base which corresponds to a density of about 1 point per 25 km 2 . The cosmic radiation map shows elevated dose rates in the high parts of the Swiss Alps. The cosmic dose rate ranges from 40 to 190 nSv/h, depending on altitude. The terrestrial dose rate maps show general agreement with lithology: elevated dose rates (100 to 200 nSv/h) characterize the Central Massifs of the Alps where crystalline rocks give a maximum of 370 nSv/h, whereas the sedimentary northern Alpine Foreland (Jura, Molasse basin) shows consistently lower dose rates (40-100 nSv/h). The artificial radiation map has its maximum value in the southern part of Switzerland (90 nSv/h). The map of total dose rate exhibits values from 55 to 570 nSv/h. These values are considerably higher than reported in the Radiation Atlas (''Natural Sources of Ionising

  1. Limb sparing surgery and boost with high dose rate interstitial brachytherapy in treatment of soft tissue sarcoma

    International Nuclear Information System (INIS)

    Koike, P.; Miziara, M.; Soares, C.; Fogaroli, R.; Baraldi, H.; Pellizoni, A.; Borba, G.

    2003-01-01

    Soft tissue sarcoma, a rare neoplasia with high aggressively, accounts for approximately 0,7% of the malignant tumors and occurs more often with youngest. Because of the potential risk of local recurrence, theoretically surgical resection, encompassing macroscopic tumor with a margin of macroscopically noninvolved tissue is the right way to perform, with a wide 'en bloc' resection, amputation, with bad functional results. The aim of conservative treatment is combined modality therapy as surgical resection and irradiation to obtain a local control rate as high as possible while preserving functional results. A retrospective review of 31 patients treated with high dose rate (HDR) Brachytherapy in the Radiotherapy Department Arnaldo Vieira de Carvalho Cancer Institute. Methods: Between April 1995 and August 1999, 31 patients who underwent a combine therapy; examined the results on multivariate analysis of conservative surgery and brachytherapy follow/or not by external beam radiation (EBRT). The 31 patients treated, 17 ( 54,8%) females and 14(45,2%) males have a median age of 48 years ( range,19 to 77 years). Most of the tumors was located in the lower limb (17/31 - 54,8%) . The other sites were the upper limb (10/31-32,3%), thoracic wall and abdomen (3/31-9,7%).Classification of the tumors, according to the International Union Against Cancer (UICC) staging was T1 5 patients (16%), T2 (24/31-77%). Median size of the tumors was 9,2cm ( ranged, 2,5 to 24cm). Most of the tumors being malignant fibrous histiocytomas (9/31-29%) and the histological grade II (14/31-45%). Twenty-two (71%) patients had intraoperative implants and the insertion of the radioactive source was delayed 24 to 120 hours. Eight patients (25,8%) had postoperative and received HDRB 45 to 60 days after the surgery . Guide needles were placed in the tumor bed, perpendicular to the scar, systematically in a single plane, the implant volume being defined by radiotherapist . A minimum safety margin of 2 cm

  2. Comparison of responses of thermoluminescent dosemeters irradiated by soft x-rays at very low and very high dose rate levels

    International Nuclear Information System (INIS)

    Pietrikova-Farnikova, M.; Krasa, J.; Juha, L.

    1994-01-01

    Recent great progress in construction and application of bright sources of soft X-rays gave a strong impetus for the development of methods of their dosimetric diagnostics. The soft X-ray sources are primarily represented by synchrotron radiation sources and by sources based on laser-produced plasma, including X-ray lasers. Their characteristics spread over a very wide region of photon energies, peak and average powers and densities. From our preliminary experiments it follows that thermoluminescent dosemeters can serve as a suitable tool for the determination of these characteristics. Problem lies in the fact that routine use of the thermoluminescent dosemeters for the dosimetry of soft X-rays requires their spectral calibration, which can be carried out with low peak power sources (synchrotron radiation and radionuclide sources). On the contrary, many important sources, especially these based on laser-produced plasmas, exhibit a very high peak power, i.e. dosemeters are irradiated at extremely high dose rate. In comparative experiments carried out with laser-produced plasmas and radionuclides using TLD 200 (CaF 2 :Dy) and GR 200A (LiF:Mg,Cu,P) it was satisfactorily proven that total thermoluminescent signals are independent of the dose rate. Dependence of glow curve shapes on the dose, dose rate and photon energy were equally determined

  3. Nuclear energy and health: and the benefits of low-dose radiation hormesis.

    Science.gov (United States)

    Cuttler, Jerry M; Pollycove, Myron

    2009-01-01

    Energy needs worldwide are expected to increase for the foreseeable future, but fuel supplies are limited. Nuclear reactors could supply much of the energy demand in a safe, sustainable manner were it not for fear of potential releases of radioactivity. Such releases would likely deliver a low dose or dose rate of radiation, within the range of naturally occurring radiation, to which life is already accustomed. The key areas of concern are discussed. Studies of actual health effects, especially thyroid cancers, following exposures are assessed. Radiation hormesis is explained, pointing out that beneficial effects are expected following a low dose or dose rate because protective responses against stresses are stimulated. The notions that no amount of radiation is small enough to be harmless and that a nuclear accident could kill hundreds of thousands are challenged in light of experience: more than a century with radiation and six decades with reactors. If nuclear energy is to play a significant role in meeting future needs, regulatory authorities must examine the scientific evidence and communicate the real health effects of nuclear radiation. Negative images and implications of health risks derived by unscientific extrapolations of harmful effects of high doses must be dispelled.

  4. ELDRS Characterization for a Very High Dose Mission

    Science.gov (United States)

    Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Kenna, Aaron J.; Thorbourn, Dennis O.; Clark, Karla B.; Yan, Tsun-Yee

    2010-01-01

    Evaluation of bipolar linear parts which may have Enhanced Low Dose Rate Sensitivity (ELDRS) is problematic for missions that have very high dose radiation requirements. The accepted standards for evaluating parts that display ELDRS require testing at a very low dose rate which could be prohibitively long for very high dose missions. In this work, a methodology for ELDRS characterization of bipolar parts for mission doses up to 1 Mrad(Si) is evaluated. The procedure employs an initial dose rate of 0.01 rad(Si)/s to a total dose of 50 krad(Si) and then changes to 0.04 rad(Si)/s to a total dose of 1 Mrad(Si). This procedure appears to work well. No change in rate of degradation with dose has been observed when the dose rate is changed from 0.01 to 0.04 rad(Si)/s. This is taken as an indication that the degradation due to the higher dose rate is equivalent to that at the lower dose rate at the higher dose levels, at least for the parts studied to date. In several cases, significant parameter degradation or functional failure not observed at HDR was observed at fairly high total doses (50 to 250 krad(Si)) at LDR. This behavior calls into question the use of dose rate trend data and enhancement factors to predict LDR performance.

  5. Radiation distribution sensor with optical fibers for high radiation fields

    International Nuclear Information System (INIS)

    Takada, Eiji; Kimura, Atsushi; Hosono, Yoneichi; Takahashi, Hiroyuki; Nakazawa, Masaharu

    1999-01-01

    Radiation distribution sensors with their feasibilities have been described in earlier works. However, due to large radiation induced transmission losses in optical fibers, especially in the visible wavelength region, it has been difficult to apply these techniques to high radiation fields. In this study, we proposed a new concept of optical fiber based radiation distribution measurements with near infrared (IR) emission. Near IR scintillators were attached to the ends of optical fibers, where the fibers were bundled and connected to an N-MOS line sensor or a cooled CCD camera. From the measurements of each area density, the radiation levels at the positions of the scintillators can be known. The linearity between the gamma dose rate at each scintillator and the registered counts has been examined. For correcting the radiation induced loss effects, we applied the Optical Time Domain Reflectometry technique to measure the loss distribution and from the results, a possibility for correction of the loss effect has been demonstrated. The applicable dose rate range was evaluated to be from 0.1 to 10 3 Gy/h. This system can be a promising tool as a flexible dose rate distribution monitor in radiation facilities like nuclear plants and accelerator facilities. (author)

  6. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    Science.gov (United States)

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  7. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  8. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  9. Treatment of localized prostate cancer using a combination of high dose rate lridium-192 brachytherapy and external beam irradiation: Initial Australian experience

    International Nuclear Information System (INIS)

    Stevens, M.J.; Stricker, P.D.; Brenner, P.C.; Kooner, R.; O'Neil, G.F.A.; Duval, P.J.; Jagavkar, R.S.; Cross, P.; Saalfeld, J.; Martland, J.

    2003-01-01

    Combination high dose rate brachytherapy (HDRB) and external beam radiation therapy is technically and clinically feasible as definitive treatment for localized prostate cancer. We report the first large Australian experience using this technique of radiation dose escalation in 82 patients with intermediate- and high-risk disease. With a median follow up of 3 years (156 weeks), complications were low and overall prostate-specific antigen progression-free survival was 91% using the American Society for Therapeutic Radiology and Oncology consensus definition. The delivery of hypofractionated radiation through the HDRB component shortens overall treatment time and is both biologically and logistically advantageous. As a radiation boost strategy, HDRB is easy to learn and could be introduced into most facilities with brachytherapy capability. Copyright (2003) Blackwell Science Pty Ltd

  10. Radiation-damage studies, irradiations and high-dose dosimetry for LHC detectors

    CERN Document Server

    Coninckx, F; León-Florián, E; Leutz, H; Schönbacher, Helmut; Sonderegger, P; Tavlet, Marc; Sopko, B; Henschel, H; Schmidt, H U; Boden, A; Bräunig, D; Wulf, F; Cramariuc, R; Ilie, D; Fattibene, P; Onori, S; Miljanic, S; Paic, G; Razen, B; Razem, D; Rendic, D; CERN. Geneva. Detector Research and Development Committee

    1991-01-01

    The proposal is divided into a main project and special projects. The main project consists of a service similar to the one given in the past to accelerator construction projects at CERN (ISR,SPS,LEP) on high-dose dosimetry, material irradiations, irradiations tests, standardization of test procedures and data compilations. Large experience in this field and numerous radiation damage test data of insulating and structural materials are available. The special projects cover three topics which are of specific interest for LHC detector physicists and engineers at CERN and in other high energy physics institutes, namely: Radiation effects in scintillators; Selection of radiation hard optical fibres for data transmission; and Selection and testing of radiation hard electronic components.

  11. NIST high-dose calibration services

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1989-01-01

    There is a need for the standardization of high-dose measurements used in the radiation-processing industry in order to provide assured traceability to national standards. NIST provides dosimetry calibration services to this industry. One of these services involves administration of known absorbed doses of gamma rays to customer-supplied dosimeters. The dosimeters are packaged to provide electron equilibrium conditions and are irradiated in a standard 60 Co calibration facility; this provides a calibration of that batch of dosimeters. Another service consists of supplying to a customer calibrated transfer dosimeters for irradiation with the customer's radiation source. The irradiated transfer dosimeters are then returned to NIST for analysis; the results are reported to the customer, providing a calibration of the dose rate of the customer's source. (orig.)

  12. Targeted Intraoperative Radiotherapy for Breast Cancer in Patients in Whom External Beam Radiation Is Not Possible

    International Nuclear Information System (INIS)

    Keshtgar, Mohammed R.S.; Vaidya, Jayant S.; Tobias, Jeffrey S.; Wenz, Frederik; Joseph, David; Stacey, Chris; Metaxas, Marinos G.; Keller, Anke; Corica, Tammy; Williams, Norman R.; Baum, Michael

    2011-01-01

    Purpose: External beam radiation therapy (EBRT) following wide local excision of the primary tumor is the standard treatment in early breast cancer. In some circumstances this procedure is not possible or is contraindicated or difficult. The purpose of this study was to determine the safety and efficacy of targeted intraoperative radiotherapy (TARGIT) when EBRT is not feasible. Methods and Materials: We report our experience with TARGIT in three centers (Australia, Germany, and the United Kingdom) between 1999 and 2008. Patients at these centers received a single radiation dose of 20 Gy to the breast tissue in contact with the applicator (or 6 Gy at 1-cm distance), as they could not be given EBRT and were keen to avoid mastectomy. Results: Eighty patients were treated with TARGIT. Reasons for using TARGIT were 21 patients had previously received EBRT, and 31 patients had clinical reasons such as systemic lupus erythematosus, motor neuron disease, Parkinson's disease, ankylosing spondylitis, morbid obesity, and cardiovascular or severe respiratory disease. Three of these patients received percutaneous radiotherapy without surgery; 28 patients were included for compelling personal reasons, usually on compassionate grounds. After a median follow-up of 38 months, only two local recurrences were observed, an annual local recurrence rate of 0.75% (95% confidence interval, 0.09%-2.70%). Conclusions: While we await the results of the randomized trial (over 2,000 patients have already been recruited), TARGIT is an acceptable option but only in highly selected cases that cannot be recruited in the trial and in whom EBRT is not feasible/possible.

  13. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Pershenkov, V.S.; Cherepko, S.V.; Maslov, V.B.; Belyakov, V.V.; Sogoyan, A.V.; Ulimov, N.; Emelianov, V.V.

    1999-01-01

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  14. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  15. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    International Nuclear Information System (INIS)

    Renis, M.; Malfa, G.; Tomasello, B.; Borghesi, M.; Schettino, G.; Favetta, M.; Romano, F.; Cirrone, G. A. P.; Manti, L.

    2013-01-01

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  16. Investigations of DNA damage induction and repair resulting from cellular exposure to high dose-rate pulsed proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Renis, M.; Malfa, G.; Tomasello, B. [Drug Sciences Department, University of Catania, Catania (Italy); Borghesi, M.; Schettino, G. [Queen' s University Belfast, Northern Ireland (United Kingdom); Favetta, M.; Romano, F.; Cirrone, G. A. P. [National Institute for Nuclear Physics (INFN-LNS), Catania (Italy); Manti, L. [Physics Science Department, University of Naples Federico II, Naples, and National Institute for Nuclear Physics (INFN), Naples (Italy)

    2013-07-26

    Studies regarding the radiobiological effects of low dose radiation, microbeam irradiation services have been developed in the world and today laser acceleration of protons and heavy ions may be used in radiation therapy. The application of different facilities is essential for studying bystander effects and relating signalling phenomena in different cells or tissues. In particular the use of ion beams results advantageous in cancer radiotherapy compared to more commonly used X-rays, since the ability of ions in delivering lethal amount of doses into the target tumour avoiding or limiting damage to the contiguous healthy tissues. At the INFN-LNS in Catania, a multidisciplinary radiobiology group is strategically structured aimed to develop radiobiological research, finalised to therapeutic applications, compatible with the use of high dose laser-driven ion beams. The characteristic non-continuous dose rates with several orders of magnitude of laser-driven ion beams makes this facility very interesting in the cellular systems' response to ultra-high dose rates with non-conventional pulse time intervals cellular studies. Our group have projected to examine the effect of high dose laser-driven ion beams on two cellular types: foetal fibroblasts (normal control cells) and DU145 (prostate cancer cells), studying the modulation of some different bio-molecular parameters, in particular cell proliferation and viability, DNA damage, redox cellular status, morphological alterations of both the cytoskeleton components and some cell organelles and the possible presence of apoptotic or necrotic cell death. Our group performed preliminary experiments with high energy (60 MeV), dose rate of 10 Gy/min, doses of 1, 2, 3 Gy and LET 1 keV/μm on human foetal fibroblasts (control cells). We observed that cell viability was not influenced by the characteristics of the beam, the irradiation conditions or the analysis time. Conversely, DNA damage was present at time 0, immediately

  17. Dose response relationship for unstable-type chromosome aberration rate of spleen cells from mice continuously exposed to low-dose-rate gamma-rays

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Khoda, Atsushi; Ichinohe, Kazuaki; Oghiso, Yoichi

    2007-01-01

    It has been reported that people who are chronically exposed to radiation such as nuclear facility workers and medical radiologists have slightly higher incidences of chromosome aberrations than non-exposed people. However, chronological changes of chromosome aberration rates related to accumulated doses and dose-rates for low dose-rate radiation exposures have not been well studied. Precise analyses of human populations are quite limited because confounding factors influence the results. For this reason, animal experiments are important for analyses. Mice were continuously exposed to gamma-rays at 400 mGy/22 hr/day for 10 days, 20 mGy/22 hr/day for about 400 days, and 1 mGy/22 hr/day for about 615 days under SPF conditions. Chronological changes of unstable-type chromosome aberration rates of spleen cells were observed along with accumulated doses at the middle dose rate and the two low-dose rates by conventional Giemsa-staining method. Aberrations such as dicentric chromosome, ring chromosome and fragment increased in a two-phase manner within 0-1.2 Gy and 2-8 Gy at 20 mGy/22 hr/day. They slightly increased up to 0.5 Gy at 1 mGy/22 hr/day. Aberration rates for 1, 2, 8 Gy at the 20 mGy/22 hr/day and for 0.5 Gy at 1 mGy/22 hr/day were 5.1, 9.6, 13.9 and 2.2 times higher than those of age-matched, non-irradiated control mice, respectively. Chromosome aberration rates at 400 mGy/22 hr/day were 2.7 times higher than that of 20 mGy/22 hr/day for the same total dose of 1.2 Gy. The results that unstable-type chromosome aberrations increased with accumulated dose of the low-dose rate radiation will be important to establish biological dosimetry for people who are chronically exposed to radiation. (author)

  18. Radiation dose rate map interpolation in nuclear plants using neural networks and virtual reality techniques

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos A.; Pereira, Claudio Marcio N.A.; Freitas, Victor Goncalves G.; Jorge, Carlos Alexandre F.

    2011-01-01

    This paper reports the most recent development results of a simulation tool for assessment of radiation dose exposition by nuclear plant's personnel, using artificial intelligence and virtual reality technologies. The main purpose of this tool is to support training of nuclear plants' personnel, to optimize working tasks for minimisation of received dose. A finer grid of measurement points was considered within the nuclear plant's room, for different power operating conditions. Further, an intelligent system was developed, based on neural networks, to interpolate dose rate values among measured points. The intelligent dose prediction system is thus able to improve the simulation of dose received by personnel. This work describes the improvements implemented in this simulation tool.

  19. Studying and measuring the gamma radiation doses in Homs city

    International Nuclear Information System (INIS)

    Sofaan, A. H.

    2001-01-01

    The gamma radiation dose was measured in Homs city by using many portable dosimeters (electronic dosimeter and Geiger-Muller). The measurements were carried out in the indoor and outdoor buildings, for different time period, through one year (1999-2000). High purity germanium detector with low back ground radiation (HpGe) was used to determine radiation element contained in some building and the surrounding soil. The statistical analysis laws were applied to make sure that the measured dose distribution around average value is normal distribution. The measurement indicates that the gamma indoor dose varies from 312μSv/y to 511μSv/y, with the average annual dose of 385μSv/y. However the gamma outdoor dose rate varies from 307μSv/y to 366μSv/y with an average annual dose 385μSv/y. The annual outdoor gamma radiation dose is about %16 lower than the outdoor dose in Homs City. These measurements have indicated that environmental gamma doses in Homs City are relatively low. This is because that most of the soils and rocks in the area are limestone. (author)

  20. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR