WorldWideScience

Sample records for high-density polyethylene compositions

  1. Characterization of composite high density polyethylene and layered zirconium phosphate

    International Nuclear Information System (INIS)

    Lino, Adan S.; Silva, Daniela F.; Mendes, Luis C.

    2011-01-01

    Zirconium phosphate (ZrP) (2 w%), synthesized by direct precipitation method, was used in the preparation of composite with high density polyethylene (HDPE), through extrusion processing in the molten state. Wide angle x-ray diffraction (WAXD), stress-strain mechanical analysis and scanning electron microscopy (SEM) techniques were used for ZrP, neat polymer and composite mechanical and morphologic characterization. Although there was a slight increase in the Young modulus, WAXD and SEM analysis showed that the intercalation of the HDPE matrix in the filler galleries did not occur, probably due to the insufficient lamellae spacing to intercalate the polymer chains. Then, a microcomposite was achieved. (author)

  2. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Science.gov (United States)

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  3. Morphology, Mechanical Properties and Dimensional Stability of Biomass Particles/High Density Polyethylene Composites: Effect of Species and Composition

    Directory of Open Access Journals (Sweden)

    Binshan Mu

    2018-03-01

    Full Text Available The utilization of four types of biomass particles, including hardwood (poplar, softwood (radiata pine, crop (wheat straw and bamboo (moso bamboo, as reinforcing fillers in preparing high density polyethylene (HDPE based composites was studied. To improve interfacial compatibility, maleic anhydride grafted polyethylene (MAPE was applied as the coupling agent. The effects of the biomass species on the mechanical and water absorption properties of the resulting composites were evaluated based on chemical composition analysis. A creep-recovery test was conducted in single cantilever mode using a dynamic mechanical analyzer. Results show that the four types of biomass particles had similar chemical compositions but different composition contents. Poplar particles with high cellulose content loading in the HDPE matrix exhibited higher tensile and flexure properties and creep resistance. Fracture morphology analysis indicated a weak particle-matrix interface in wheat straw based composites. Given the high crystallinity and minimum hemicellulose content, the moso bamboo reinforced composite showed high impact strength and better water resistance.

  4. Properties of recycled high density polyethylene and coffee dregs composites

    Directory of Open Access Journals (Sweden)

    Sibele Piedade Cestari

    2013-01-01

    Full Text Available Composites of recycled high density polyethylene (HDPE-R and coffee dregs (COFD were elaborated. The blends were made at the proportions of 100-0, 90-10, 80-20, 70-30, 60-40, 50-50 and 40-60% polymer-filler ratio. The materials were evaluated through scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetry/derivative thermogravimetry (TGA, and compressive resistance test. The compounding was done using a two-stage co-kneader system extruder, and then cylindrical specimens were injection molded. All composites had a fine dispersion of the COFD into the polymeric matrix. The composites degraded in two steps. The first one was in a temperature lower than the neat HDPE, but higher than the average processing temperature of the polymer. The melting temperature and the degree of crystallinity of the composites resulted similar to the neat HDPE ones. The compressive moduli of the composites resulted similar to the neat polymer one. The results show that these composites have interesting properties as a building material.

  5. EFFECT OF ACCELERATED WEATHERING ON TENSILE PROPERTIES OF KENAF REINFORCED HIGH-DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Umar A.H.

    2012-06-01

    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: umarhanan@yahoo.com ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  6. Thermal properties of silica-filled high density polyethylene composites compatibilized with glut palmitate

    Science.gov (United States)

    Samsudin, Dalina; Ismail, Hanafi; Othman, Nadras; Hamid, Zuratul Ain Abdul

    2017-07-01

    A study of thermal properties resulting from the utilization of Glut Palmitate (GP) on the silica filled high density polyethylene (HDPE) composites was carried out. The composites with the incorporation of GP at 0.5, 1.0, 2.0 and 3.0 phr were prepared by using an internal mixer at the temperature 180 °C and the rotor speed of 50 rpm. The thermal behaviours of the composites were then investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the crystallinity and the thermal stability of the composites increased with the incorporation of GP. The highest crystallinity contents and decomposition temperatures were observed at the 1 phr GP loading.

  7. Mechanical Properties of Rice Husk Biochar Reinforced High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Qingfa Zhang

    2018-03-01

    Full Text Available Rice husk biochar was utilized to reinforce high-density polyethylene (HDPE and to prepare biochar/plastic composites (BPC by the extrusion method. Morphologies, non-isothermal crystallization behavior, and mechanical properties of the composites were investigated. The SEM (scanning electron microscope showed that HDPE was embedded into the holes of the rice husk biochar. The DSC (differential scanning calorimeter showed that biochar could reduce the crystallization rate and the higher the content of rice husk biochar, the slower the crystallization rate. Significantly, the bending and tensile strength of BPC could reach 53.7 and 20 MPa, far beyond WPC (wood plastic composites. With the increase of filler content, BPC were still stronger than WPC, although the impact strength of BPC and WPC all showed a general decline in the trend. The strong interaction was achieved by the utilization of rice husk biochar to reinforce HDPE.

  8. Natural rubber/high density polyethylene/ground rubber composites vulcanized by gamma irradiation

    International Nuclear Information System (INIS)

    Shaltout, N.A.; Abou zeid, M.M.; Khalil, A.M.; El Miligy, A.A.

    2010-01-01

    Natural rubber (NR) was blended mechanically with 50 phr high density polyethylene (HDPE). the mechanical, physical and thermal properties of NR/HDPE blend and its composites with different contents of ground tire rubber (GTR) before and after exposure to gamma irradiation to various doses up to 250 kGy were studied. Also, the change in structure morphology of irradiated NR/HDPE blend as well as NR/HDPE/GTR composites was examined by scanning electron microscope (SEM). The results showed that the substitution of a part of virgin NR with GTR decreases the mechanical and physical properties but not to the extent of deterioration . However, it was found that the mechanical and physical properties were improved after gamma irradiation . Composite of NR/GTR/HDPE (75/25/50) showed good properties. Scanning electron microscope showed homogeneity between the irradiated composites ingredients.

  9. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Tan, Guolin; Zhou, Kechao; Huang, Suping; Zhao, Yanzhong; Li, Zhiyou; Huang, Boyun

    2008-06-01

    This study was aimed to evaluate the biocompatibility of Hydroxyapatite/High density polyethylene (HA/ HDPE) nano-composites artificial ossicle. The percentage of S-period cells were detected by flow cytometry after L929 cells being incubated with extraction of the HA/HDPE nano-composites; the titanium materials for clinical application served as the contrast. In addition, both materials were implanted in animals and the histopathological evaluations were conducted. There were no statistically significant differences between the two groups (P >0.05). The results demonstrated that the HA/HDPE nano-composite artificial ossicle made by our laboratory is of a good biocompatibility and clinical application outlook.

  10. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility.

    Science.gov (United States)

    Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit

    2018-05-01

    A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.

  11. Water Absorption Properties of Heat-Treated Bamboo Fiber and High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Lanxing Du

    2014-01-01

    Full Text Available To modify water absorption properties of bamboo fiber (BF and high density polyethylene (HDPE composites, heat treatment of BFs was performed prior to compounding them with HDPE to form the composites. The moisture sorption property of the composites was measured and their diffusion coefficients (Dm were evaluated using a one-dimensional diffusion model. Moisture diffusion coefficient values of all composites were in the range of 0.115x10-8 to 1.267x10-8 cm2/s. The values of Dm decreased with increasing BF heat-treatment temperature, and increased with increasing BF loading level. The Dm value of 40 wt% bamboo fiber/HDPE composites with BFs treated with 100 oC was the greatest (i.e., 1.267x10-8cm2/s. Morphology analysis showed increased fiber-matrix interfacial bonding damage due to fiber swelling and shrinking from water uptaking and drying. The mechanism of water absorption of the composite, indicated a general Fickian diffusion process.

  12. Improvements in processing characteristics and engineering properties of wood flour-filled high density polyethylene composite sheeting in the presence of hollow glass microspheres

    Science.gov (United States)

    Baris Yalcin; Steve E Amos; Andrew S D Souza; Craig M Clemons; I Sedat Gunes; Troy K Ista

    2012-01-01

    Hollow glass microspheres were introduced into wood flour/high density polyethylene composites by melt compounding in a twin-screw extruder. The prepared composites were subsequently converted to extruded profiles in order to obtain composite sheeting. The presence of hollow glass microspheres highly reduced the density of the extruded sheets down to 0.9 g/cc, while...

  13. Mechanical Properties of Wood Flour Reinforced High Density Polyethylene Composites with Basalt Fibers

    Directory of Open Access Journals (Sweden)

    Guojun LU

    2014-12-01

    Full Text Available Basalt fibers (BFs were surface-treated with a vinyl triethoxy silane coupling agent to improve the mechanical properties of wood fiber-reinforced high density polyethylene (HDPE composites. Basalt fibers were characterized with SEM and FT-IR. The effects of the basalt fiber content and apparent morphology on the mechanical properties of the hybrid composites were investigated in this paper. The results show that the BF coated with the vinyl triethoxy silane coupling agent resulted in an improvement in mechanical properties due to the increased interfacial compatibility between the BF and HDPE. The flexural strength and impact properties significantly increased with 4 wt.% modified basalt fibers. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6441

  14. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Feihong Liu

    2015-01-01

    Full Text Available Temperature and relative humidity (RH are two major external factors, which affect equilibrium moisture content (EMC of wood-plastic composites (WPCs. In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP-high density polyethylene (HDPE composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB. The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions.

  15. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    Science.gov (United States)

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour. Published by Elsevier Ltd.

  16. A novel wood flour-filled composite based on microfibrillar high-density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, Hongzhi; Yao, Fei; Xu, Yanjun; Wu, Qinglin

    2010-05-01

    A novel wood flour (WF)-filled composite based on the microfibrillar high-density polyethylene (HDPE) and Nylon-6 co-blend, in which both in situ formed Nylon-6 microfibrils and WF acted as reinforcing elements, was successfully developed using a two-step extrusion method. At the 30wt.% WF loading level, WF-filled composite based on the microfibrillized HDPE/Nylon-6 blend exhibited higher strengths and moduli than the corresponding HDPE-based composite. The incorporation of WF reduced short-term creep response of HDPE matrix and the presence of Nylon-6 microfibrils further contributed to the creep reduction. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  18. Effects of gamma irradiation on polypropylene, polypropylene + high density polyethylene and polypropylene + high density polyethylene + wood flour

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, J.; Albano, C.; Davidson, E.; Poleo, R. [Universidad Central de Venezuela, Caracas (Venezuela). Escuela de Quimica; Gonzalez, J.; Ichazo, M. [Universidad Simon Bolivar, Dept. de Mecanica, Caracas (Venezuela); Chipara, M. [Research Institute for Electrotechnics, Bucharest (Romania)

    2001-04-01

    The effect of the gamma-irradiation on the mechanical properties of the composites, Polypropylene (PP), PP+high density Polyethylene (HDPE), PP+ HDPE+wood flour, where HDPE is virgin and recycled, was studied. This paper discusses the behavior of the composites after exposure to various doses of gamma irradiation (1-7 MRads) in the presence of oxygen. The dependence of mechanical properties on the integral dose for a constant dose rate of 0.48 MRads/h confirms the influence of the irradiation. Strong effects on the elongation at break and break strength is noticed. The mathematical analysis suggests for the PP+r-HDPE a bimolecular process of the elongation at break. On the order hand, for the PP+HDPE a complex process is represented for a three exponential equation. (orig.)

  19. Effects of gamma irradiation on polypropylene, polypropylene + high density polyethylene and polypropylene + high density polyethylene + wood flour

    International Nuclear Information System (INIS)

    Reyes, J.; Albano, C.; Davidson, E.; Poleo, R.; Chipara, M.

    2001-01-01

    The effect of the gamma-irradiation on the mechanical properties of the composites, Polypropylene (PP), PP+high density Polyethylene (HDPE), PP+ HDPE+wood flour, where HDPE is virgin and recycled, was studied. This paper discusses the behavior of the composites after exposure to various doses of gamma irradiation (1-7 MRads) in the presence of oxygen. The dependence of mechanical properties on the integral dose for a constant dose rate of 0.48 MRads/h confirms the influence of the irradiation. Strong effects on the elongation at break and break strength is noticed. The mathematical analysis suggests for the PP+r-HDPE a bimolecular process of the elongation at break. On the order hand, for the PP+HDPE a complex process is represented for a three exponential equation. (orig.)

  20. Preparation and characterization of high density polyethylene and residual fibre of Attalea funifera Mart (piacava) composites

    International Nuclear Information System (INIS)

    Agrela, Sara P.; Guimaraes, Danilo H.; Jose, Nadia M.; Carvalho, Gleidson G.P.; Carvalho, Ricardo F.

    2009-01-01

    The use of natural fiber reinforcement thermoplastic polymer is continuously increasing. This fact is manly due to its advantages as low cost, availability, recyclability, low energy demand and then environmental appeal if compared to synthetics fibers. The composites were prepared in different fiber volume ratios (5%, 10% and 20%) mixed with high density polyethylene (HDPE) and heated at 190 deg C. Thermogravimetric analysis and differential scanning calorimetry were used to investigate thermal stability. The composites structure was characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry. Fiber and residue of piassava (Attalea funifera Mart) chemical composition were determined by Van Soest Method. The results indicate that thermo stability of the composites of HDPE prepared with fiber volume ratios up to 20% is only slightly lowered. (author)

  1. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2015-01-01

    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  2. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  3. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  4. Morphology-Property relationship of high density Polyethylene/Hevea Brasiliensis Leaves/Imperata cylindrica hybrid composite: Impact strength

    Science.gov (United States)

    Rashidi, A. R.; Muhammad, A.; Roslan, A.

    2017-09-01

    This research studies about the Hevea Brasiliensis Leaves and Imperata Cylindrica that was used as filler in High Density Polyethylene (HDPE). The fillers content were varied in the composite by 5 wt%, 15 wt% and 25 wt% respectively. This polymer composite are being studied by using Impact Test and Scanning Electron Microscopy (SEM). The analysis show that the impact strength value increased when the percent of bio filler used is low. The result between pure HDPE and the composites shows an outcome of significant changes in impact energy values, while the values between different composite change slightly. A composite that contained 5 wt% of fillers is the better energy absorber than 15 wt% and 25 wt% according to impact testing. In addition, the morphology studies on the composite sample show that the bio-filler was successfully embedded. Overall, these finding suggest that HBL and IC can be an alternative filler to be incorporated in polymer matrix.

  5. Mechanical, Morphological, and Thermal Properties of Nutshell and Microcrystalline Cellulose Filled High-Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Sevda Boran

    2016-01-01

    Full Text Available Effects of nutshell fiber loadings of 30 wt.% and MCC loadings up to 15 wt.% on some properties of high-density polyethylene composites (HDPE were investigated. The composites were manufactured by a single screw extruder and injection molding. The experimental composite samples were tested for their mechanical performance including tensile strength, tensile modulus, flexural strength, flexural modulus, and impact strength. Thermal and morphological properties of the composites were tested by differential scanning calorimetry-DSC and scanning electron microscopy (SEM, respectively. The maximum tensile strength was obtained from the MCC-filled composites, whereas the maximum flexural strength was achieved with the MCC-nutshell filled composites. The tensile and flexural moduli of the composites were significantly improved with increasing MCC content and the presence of nutshell fibers in polymer matrix. Impact strength decreased using MCC and nutshell fiber in the polymer matrix. Based on the DSC results, there was no remarkable change in the melting point for all composites. The results showed that the incorporation of nutshell fibers and MCC in the polymer matrix had brought about some positive effect on mechanical properties of HDPE composites.

  6. Effects of Boron Compounds on the Mechanical and Fire Properties of Wood-chitosan and High-density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Guo-Fu Wu

    2014-05-01

    Full Text Available Wood-plastic composites (WPCs represent a growing class of durable, low-maintenance construction materials whose use can decrease dependence on petroleum. High-density polyethylene (HDPE, chitosan (CS, wood flour (WF, boric acid (BA, and borax (BX, as well as maleic anhydride grafted polyethylene (MAPE and polyethylene wax (PE wax, were used to develop a durable wood-plastic composite (WPC using the extrusion method. The effects of boron compounds (3%, 6%, 9%, or 12% by weight BA/BX on the mechanical and fire properties of the WPCs were investigated. Mechanical testing indicated that as the percentage weight of boron compounds increased, the flexural modulus, flexural strength, and tensile strength significantly decreased. Cone calorimeter tests were used to characterize the fire performance of the WPCs, and these results suggested that adding BA/BX compounds to WPCs modestly improved the fire performance. As the percentage weight of BA/BX increased from 3% to 9%, the time to ignition (TTI, heat release rate (HRR, total heat release rate (HRR-Total, smoke production rate (SPR, and specific extinction area (SEA of the WPCs were all reduced.

  7. Homocomposites of chopped fluorinated polyethylene fiber with low-density polyethylene matrix

    International Nuclear Information System (INIS)

    Maity, J.; Jacob, C.; Das, C.K.; Alam, S.; Singh, R.P.

    2008-01-01

    Conventional composites are generally prepared by adding reinforcing agent to a matrix and the matrix wherein the reinforcing agents are different in chemical composition with the later having superior mechanical properties. This work presents the preparation and properties of homocomposites consisting of a low-density polyethylene (LDPE) matrix and an ultra high molecular weight polyethylene (UHMWPE) fiber reinforcing phase. Direct fluorination is an important surface modification process by which only a thin upper layer is modified, the bulk properties of the polymer remaining unchanged. In this work, surface fluorination of UHMWPE fiber was done and then fiber characterization was performed. It was observed that after fluorination the fiber surface became rough. Composites were then prepared using both fluorinated and non-fluorinated polyethylene fiber with a low-density polyethylene (LDPE) matrix to prepare single polymer composites. It was found that the thermal stability and mechanical properties were improved for fluorinated fiber composites. X-ray diffraction (XRD) analysis showed that the crystallinity of the composites increased and it is maximum for fluorinated fiber composites. Tensile strength (TS) and modulus also increased while elongation at break (EB) decreased for fiber composites and was a maximum for fluorinated fiber composites. Scanning electron microscopic analysis indicates that that the distribution of fiber into the matrix is homogeneous. It also indicates the better adhesion between the matrix and the reinforcing agent for modified fiber composites. We also did surface fluorination of the prepared composites and base polymer for knowing its application to different fields such as printability wettability, etc. To determine the various properties such as printability, wettability and adhesion properties, contact angle measurement was done. It was observed that the surface energies of surface modified composites and base polymer increases

  8. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Mazatusziha Ahmad

    2012-01-01

    Full Text Available Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P precipitates on the composite surface as proven from SEM and XRD analysis.

  9. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2013-09-01

    Full Text Available The effect of individual and combined talc and glass fibers (GFs on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  10. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance.

    Science.gov (United States)

    Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin

    2013-09-17

    The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  11. A NOVEL FIRE RETARDANT AFFECTS FIRE PERFORMANCE AND MECHANICAL PROPERTIES OF WOOD FLOUR-HIGH DENSITY POLYETHYLENE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Mingzhu Pan,

    2012-02-01

    Full Text Available Wood flour-high density polyethylene (HDPE composites were prepared to investigate the effects of ammonium polyphosphate based fire retardant content (2, 4, 6, 8, and 10-wt%, on the flammability, mechanical, and morphological properties of the wood flour-HDPE composites in this study. Cone calorimetry analysis showed that the addition of fire retardant could decrease the heat release rate (HRR and total smoke release of wood flour-HDPE composites, while it had no obviously effects on effective heat of combustion. Most of the decrease of the HRR occurred with the concentration of the fire retardant up to 4-wt%. With addition of fire retardant, the composites showed a decrease in tensile elongation at break and impact strength, and had no obvious effect on tensile and flexural strength. The scanning electron microscopy observation on the fracture surface of the composites indicated that fire retardant had a uniform dispersion in the wood flour-HDPE composites. However, interfacial bonding would be suggested to improve in wood flour-HDPE composites with ammonium polyphosphate based fire retardant.

  12. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  13. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE Addition

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2013-06-01

    Full Text Available This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs. The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  14. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition.

    Science.gov (United States)

    Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun

    2013-06-18

    This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  15. Novel bio-composite of hydroxyapatite reinforced polyamide and polyethylene: Composition and properties

    International Nuclear Information System (INIS)

    Zuo Yi; Li Yubao; Li Jidong; Zhang Xiang; Liao Hongbing; Wang Yuanyuan; Yang Weihu

    2007-01-01

    A new bio-composite of hydroxyapatite reinforced polyamide 66 and high density polyethylene was prepared using melt mixing in a co-rotation twin screw extruder. Two series of composites with different composition were investigated using scanning electronic microscopy, mechanical testing, water absorption and infrared spectrometer. The results showed that the change of composition influenced significantly the properties of the composites by different mechanism. Polyethylene mixing with polyamide matrix induced different microstructure and adjusted water absorption and manufacturability. Hydrogen bonding between hydroxyapatite and the polar groups of polyamide improved the adhesion of interface

  16. Slow crack growth in post-consumer recycled high-density polyethylene

    OpenAIRE

    Sciammarella, Cesar A.; Yang, Y.

    2015-01-01

    An experimental study of slow crack growth behavior of post-consumer recycled high-density polyethylene blended with virgin high-density polyethylene copolymer has been done. The study has been performed under constant load and in baths of distilled water at 40, 60, 80°C. The specimen used is notched with side grooves. The test results of crack growth have been analyzed using linear fracture mechanics and the rate process theory. The results show that the resistance to crack growth increases ...

  17. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites

    Science.gov (United States)

    Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.

    2018-04-01

    Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.

  18. Preliminary characterization in the development of the nano composite low density polyethylene with attapulgite clay

    International Nuclear Information System (INIS)

    Domingos, Luanda G.; Rego, Jose K.M.A. do; Ito, Edson N.; Acchar, Wilson

    2011-01-01

    The aim of this study was a preliminary study of the physical, thermal and rheological properties of the materials to be used in the development of nano composite low density polyethylene (LDPE) with Brazilian attapulgite clay (ATP), with and without the use of a compatibilizing agent interfacial, polyethylene grafted with maleic anhydride (PE-g-MAH). The materials were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and torque rheometry. The materials were characterized and potentially could be developed polymeric nano composites with technological applications using attapulgite fibers in the nanometer scale. (author)

  19. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    International Nuclear Information System (INIS)

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-01-01

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  20. Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites

    Science.gov (United States)

    Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto

    2010-12-01

    Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.

  1. Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2015-04-01

    Full Text Available Polyurethane (PU is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA. The PE-g-MA-grafted PU/high density polyethylene (HDPE composite was prepared by melt-blending at various concentrations (0–10 phr of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR, and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased.

  2. Development of nanocomposites employing high-density polyethylene and organo clay

    International Nuclear Information System (INIS)

    Lessa, Tathiane C. Rodrigues F.; Tavares, Maria Ines B.; Pita, Vitor J.R.R.

    2009-01-01

    The purpose of this study was to prepare nanocomposites of high-density polyethylene and montmorillonite organoclay by polymer melt intercalation, employing different processing parameters. Effective clay incorporation into polyethylene matrix was observed. The nanocomposites were structurally characterized. Intercalated nanocomposites were obtained from different process parameters, employing polyethylene resin and montmorillonite organoclays. The XRD results and other analysis showed that the processing parameters affect the organoclay delamination. The polyethylene nanocomposite presented the better performance using twin screw extruder, at 90 rpm. The purpose of characterization of polyethylene/organoclay nanocomposite by low-field NMR showed that this technique was important to understand changes in the molecular mobility of polyethylene when organoclay was incorporated. (author)

  3. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dong; Harkin-Jones, Eileen [School of Mechanical and Aerospace Engineering, Queen’s University Belfast, BT9 5AH (United Kingdom); Linton, David [School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT9 5AH (United Kingdom)

    2015-05-22

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

  4. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    International Nuclear Information System (INIS)

    Xiang, Dong; Harkin-Jones, Eileen; Linton, David

    2015-01-01

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites

  5. Electrical and mechanical properties of highly elongated high density polyethylene as cryogenic insulation materials

    International Nuclear Information System (INIS)

    Yoshino, Katsumi; Park, Dae-Hee; Miyata, Kiyomi; Yamaoka, Hitoshi; Itoh, Minoru; Ichihara, Syouji.

    1989-01-01

    Electrical and mechanical properties of highly elongated high density polyethylene were investigated in the temperature range between 4.2 K and 400 K from a viewpoint of electrical insulation at low temperature and the following properties have been clarified. (1) The electrical conductivity of samples decreases with increasing draw ratio, and also decreases at cryogenic temperature. (2) Breakdown strength of highly elongated sample is similar to that of non-elongated sample. It is nearby temperature independent below 300 K but at higher temperature it falls steeply. (3) Mechanical breakdown stress and elastic modulus of high density polyethylene increase with increasing draw ratio. Their values at liquid nitrogen temperature are much higher than that at room temperature. On the other hand, strains decreases at liquid nitrogen temperature. (4) Break of the sample develops in the direction of 45deg from the direction of stress both at room temperature and at cryogenic temperature. (5) The characteristic of mechanical breakdown at liquid nitrogen temperature can be explained by a brittleness fracture process. (6) Toughness of high density polyethylene increases with increasing draw ratio until draw ratio of 5, and it decreased, and increase at higher draw ratio. However at extremely high draw ratio of 10 it again increases. These findings clearly indicate that highly elongated high density polyethylene has good electrical and mechanical properties at cryogenic temperature and can be used as the insulating materials at cryogenic temperature. (author)

  6. Electrical resistivity of carbon black-filled high-density polyethylene (HDPE) composite containing radiation crosslinked HDPE particles

    International Nuclear Information System (INIS)

    Lee, M.-G.; Nho, Y.C.

    2001-01-01

    The room-temperature volume resistivity of high-density polyethylene (HDPE)-carbon black (CB) blends containing previously radiation crosslinked HDPE powder was studied. The results showed that the room-temperature volume resistivity decreases with increasing concentration of crosslinked HDPE powder. It is considered that the crosslinked HDPE particles act as a filler that increases the CB volume fraction in the HDPE matrix. The results of an optical microscope observation indicated that the crosslinked polymer particles are dispersed in the HDPE/CB composite. This effect of the crosslinked particles is attributed to the fact that the crosslinked mesh size of the HDPE particles is so small that the CB particles cannot go inside them. The effect of 60 Co γ-ray and electron beam (EB) irradiation on the positive temperature coefficient, negative temperature coefficient and electrical resistivity behavior of the blends were studied

  7. Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire

    International Nuclear Information System (INIS)

    Zheng Kun; Ma Yong-Mei; Wang Fo-Song; Zhu Jie; Tang Da-Wei

    2014-01-01

    To improve the thermal conductivity of polymeric composites, the numerous interfacial thermal resistance (ITR) inside is usually considered as a bottle neck, but the direct measurement of the ITR is hardly reported. In this paper, a sandwich structure which consists of transducer/high density polyethylene (HDPE)/sapphire is prepared to study the interface characteristics. Then, the ITRs between HDPE and sapphire of two samples with different HDPE thickness values are measured by time-domain thermoreflectance (TDTR) method and the results are ∼ 2 × 10 −7 m 2 ·K·W −1 . Furthermore, a model is used to evaluate the importance of ITR for the thermal conductivity of composites. The model's analysis indicates that reducing the ITR is an effective way of improving the thermal conductivity of composites. These results will provide valuable guidance for the design and manufacture of polymer-based thermally conductive materials. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Enhancement of mechanical strength of TiO2/high-density polyethylene composites for bone repair with silane-coupling treatment

    International Nuclear Information System (INIS)

    Hashimoto, Masami; Takadama, Hiroaki; Mizuno, Mineo; Kokubo, Tadashi

    2006-01-01

    Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO 2 particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO 2 particles. The interfacial morphology and interaction between silanated TiO 2 and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO 2 was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO 2 particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure

  9. High-density polyethylene dosimetry by transvinylene FTIR analysis

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Silverman, J.; Al-Sheikhly, M.

    1999-01-01

    and electrons. The useful dose range of 0.053 cm thick high-density polyethylene film (rho = 0.961 g cm(-3); melt index = 0.8 dg min(-1)), for irradiations by (60)Co gamma radiation and 2.0 and 0.4 MeV electron beams in deaerated atmosphere (Na gas), is about 50-10(3) kGy for FTIR transvinylene......The formation of transvinylene unsaturation, -CH=CH-, due to free-radical or cationic-initiated dehydrogenation by irradiation, is a basic reaction in polyethylene and is useful for dosimetry at high absorbed doses. The radiation-enhanced infrared absorption having a maximum at nu = 965 cm......(-l) (lambda = 10.36 mu m) is stable in air and can be measured by Fourier-transform infrared (FTIR) spectrophotometry. The quantitative analysis is a useful means of product end-point dosimetry for radiation processing with gamma rays and electrons, where polyethylene is a component of the processed product...

  10. Optimization of High Temperature and Pressurized Steam Modified Wood Fibers for High-Density Polyethylene Matrix Composites Using the Orthogonal Design Method

    Directory of Open Access Journals (Sweden)

    Xun Gao

    2016-10-01

    Full Text Available The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.

  11. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

    International Nuclear Information System (INIS)

    Sabet, Maziyar; Soleimani, Hassan

    2014-01-01

    Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research

  12. Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour/high-density polyethylene composites

    Science.gov (United States)

    Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk

    2004-01-01

    In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...

  13. An Facile High-Density Polyethylene - Exfoliated Graphite - Aluminium Hydroxide Composite: Manufacture, Morphology, Structure, Antistatic and Fireproof Properties

    Directory of Open Access Journals (Sweden)

    Jihui LI

    2014-09-01

    Full Text Available Graphite intercalation compounds (GIC and exfoliated graphite (EG as raw materials were prepared with flake graphite, concentrated sulphuric acid (H2SO4, potassium bichromate (K2Cr2O7 and peracetic acid (CH3CO3H and characterized. Then, high-density polyethylene-exfoliated graphite (HDPE-EG composites were fabricated with HDPE and EG via in situ synthesis technique in the different mass ratio, and their resistivity values (ohms/sq were measured. Based on the resistivity values, it was discovered that HDPE-EG composite with the antistatic property could be fabricated while the mass ratio was 5.00 : 0.30. Last, HDPE-EG-aluminium hydroxide (HDPE-EG-Al(OH3 composites were manufactured with HDPE, GIC and Al(OH3 via the in situ synthesis-thermal expansion technique, and their resistivity values and limiting oxygen index (LOI values were measured. Based on the resistivity values and LOI values, it was discovered that HDPE-EG-Al(OH3 composite with the antistatic and fireproof property could be manufactured while HDPE, GICs and Al(OH3 of mass ratio was 5.00 : 0.30 : 1.00. Otherwise, the petal-like morphology and structure of HDPE-EG-Al(OH3 composite were characterized, which consisted of EG, HDPE and Al(OH3. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4275

  14. Properties Evaluation of High Density Polyethylene Composite Filled with Bagasse after Accelerated Weathered

    Directory of Open Access Journals (Sweden)

    Peyvand Darabi

    2013-06-01

    Full Text Available Wood plastic composites (WPCs are produced from a mixture of wood (in different sizes and resin (thermoset or thermoplastic. This product has many applications as structural and non-structural materials and since its emerge in market its use received an increasing trend. Adding wood flour to polymer not only improves its mechanical properties compared to net polymer, but also leads to products with moldability characteristics. With increasing demand of WPCs and reduction in forest harvest according to new protecting law of forestry, and lack of raw materials for producers, other lignocelluloses materials replace wood flour. Agricultural by-products such as hemp, coir, rice husk and bagasse (residual from sugar cane extraction are the examples that can be used in WPCs. As the outdoor application of Wood Plastic Composites (WPCs becomes more widespread, the resistance of its products against weathering, particularly ultraviolet (UV light becomes more concerned. When WPCs are exposed to outdoor, ultraviolet (UV light, rain, snow and atmospheric pollution, they will be degraded which is marked by color fade and loss in mechanical properties. Nowadays many manufactures of WPCs use bagasse as a raw material. Their production in different color and shapes are used as arbors and pergolas and also as decorative applications for outdoor uses. However, so far there has been no research done on the effects of weathering on composites made from bagasse. In present study, composites from bagasse and high density polyethylene, with and without pigments in master batch, have been made through extrusion. Then samples were exposed to accelerated weathering for 1440h. After this period of time samples were removed and their chemical, mechanical and surface qualities were studied. The results have shown that using bagasse as filler can relatively reduce the discoloration of weathered samples. Moreover, adding pigments to WPCs can increase colorstability, while it

  15. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    Science.gov (United States)

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 318-323, 2003

  16. Mechanical and Thermal Properties of R-High Density Polyethylene Composites Reinforced with Wheat Straw Particleboard Dust and Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Min Yu

    2018-01-01

    Full Text Available The effect of individual and combined particleboard dust (PB dust and basalt fibers (BFs on mechanical and thermal expansion performance of the filled virgin and recycled high density polyethylene (HDPE composites was studied. It was shown that the use of PB dust had a positive effect on improving mechanical properties and on reducing linear coefficient of thermal expansion (LCTE values of filled composites, because the adhesive of the particle board held the wheat straw fibers into bundles, which made PB dust have a certain aspect ratio and high strength. Compared with the commonly used commercial WPC products, the flexural strength of PB dust/VHDPE, PB dust/RHDPE, and PB dust/VHDPE/RHDEPE at 40 wt% loading level increased by 79.9%, 41.5%, and 53.9%, respectively. When 40 wt% PB dust was added, the crystallization degree of the composites based on three matrixes decreased to 72.5%, 45.7%, and 64.1%, respectively. The use of PB dust can help lower the composite costs and increase its recyclability. Mechanical properties and LCTE values of composites with combined BF and PB dust fillers varied with PB dust and BF ratio at a given total filler loading level. As the BF portion of the PB dust/BF fillers increased, the LCTE values decreased markedly, which was suggested to be able to achieve a desirable dimensional stability for composites. The process provides a useful route to further recycling of agricultural wastes.

  17. Microbial biodegradable potato starch based low density polyethylene

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Key words: Low density polyethylene, fungi, biodegradable polymer, Pseudomonas aeruginosa. ... particle such as CO2 or water by microorganism's activities. ... package and production of bags, composites and agricultural.

  18. Potential of Using Recycled Low-Density Polyethylene in Wood Composites Board

    Directory of Open Access Journals (Sweden)

    A. C. Igboanugo

    2011-03-01

    Full Text Available The aim of this study was to investigate the suitability of using recycled low density polyethylene (RLDPE in wood board manufacturing. The composite board was produced by compressive moulding by increasing the percentage LDPE from 30 to 50wt% with interval of 10wt% at a temperatures of 140 and 180oC, pressure of 30-40 Kg/cm2 and pressing time 7-13minutes. The microstructure and mechanical properties: modulus of rupture (MOR, modulus of elasticity (MOE, Tensile strength, impact strength properties of boards were determined. The results showed that high modulus of rupture of 20.31N/mm2and MOE of 1363N/mm2 were obtained from board produced at 140oC, 60/40wt% wood particles/LDPE content. The uniform distribution of the particles and the recycled LDPE in the microstructure of the composites board is the major factor responsible for the improvement in the mechanical properties. The results showed that the MOE, MOR meets the minimum requirements of the European standards, for general purpose. The boards produced had tensile strength that is within the requirement. Hence this LDPE can be used in board production for general purpose applications.

  19. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2016-01-01

    Full Text Available The importance of nanoparticles in controlling physical properties of polymeric nanocomposite materials leads us to study effects of these nanoparticles on electric and dielectric properties of polymers in industry In this research, the dielectric behaviour of High-Density Polyethylene (HDPE nanocomposites materials that filled with nanoparticles of clay or fumed silica has been investigated at various frequencies (10 Hz-1 kHz and temperatures (20-60°C. Dielectric spectroscopy has been used to characterize ionic conduction, then, the effects of nanoparticles concentration on the dielectric losses and capacitive charge of the new nanocomposites can be stated. Capacitive charge and loss tangent in high density polyethylene nanocomposites are measured by dielectric spectroscopy. Different dielectric behaviour has been observed depending on type and concentration of nanoparticles under variant thermal conditions.

  20. Raman structural study of melt-mixed blends of isotactic polypropylene with polyethylene of various densities

    Science.gov (United States)

    Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.

    2018-04-01

    We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.

  1. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE composites

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available The influences of filler size and content on the properties (thermal conductivity, impact strength and tensile strength of Al2O3/high density polyethylene (HDPE composites are studied. Thermal conductivity and tensile strength of the composites increase with the decrease of particle size. The dependence of impact strength on the particle size is more complicated. The SEM micrographs of the fracture surface show that Al2O3 with small particle size is generally more efficient for the enhancement of the impact strength, while the 100 nm particles prone to aggregation due to their high surface energy deteriorate the impact strength. Composite filled with Al2O3 of 0.5 µm at content of 25 vol% show the best synthetic properties. It is suggested that the addition of nano-Al2O3 to HDPE would lead to good performance once suitably dispersed.

  2. Interfacial Properties of Bamboo Fiber-Reinforced High-Density Polyethylene Composites by Different Methods for Adding Nano Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2017-11-01

    Full Text Available The focus of this study was to observe the effect of nano calcium carbonate (CaCO3 modification methods on bamboo fiber (BF used in BF-reinforced high-density polyethylene (HDPE composites manufactured by extrusion molding. Two methods were used to introduce the nano CaCO3 into the BF for modification; the first was blending modification (BM and the second was impregnation modification (IM. In order to determine the effects of the modification methods, the water absorption, surface free energy and interfacial properties of the unmodified composites were compared to those of the composites made from the two modification methods. The results revealed that the percentage increase in the weight of the composite treated by nano CaCO3 decreased and that of the IMBF/HDPE composite was the lowest over the seven months of time. The results obtained by the acid-base model according to the Lewis and Owens-Wendt- Rabel-Kaelble (OWRK equations indicated that the surface energy of the composites was between 40 and 50 mJ/m2. When compared to the control sample, the maximum storage modulus (E′max of the BMBF/HDPE and IMBF/HDPE composites increased 1.43- and 1.53-fold, respectively. The values of the phase-to-phase interaction parameter B and the k value of the modified composites were higher than those of the unmodified composites, while the apparent activation energy Ea and interface parameter A were lower in the modified composites. It can be concluded that nano CaCO3 had an effect on the interfacial properties of BF-reinforced HDPE composites, and the interface bonding between IMBF and HDPE was greatest among the composites.

  3. A complete life cycle assessment of high density polyethylene plastic bottle

    Science.gov (United States)

    Treenate, P.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.

  4. Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent

    Science.gov (United States)

    Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak

    2018-04-01

    The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.

  5. Gamma radiation effects on the rheological properties of high and low density polyethylenes

    International Nuclear Information System (INIS)

    Rangel-Nafaile, C.; Garcia-Rejon, A.; Garcia Leon, A.

    1986-01-01

    High energy radiation of polymeric materials is a topic of considerable interest from commercial and scientific points of view. Within an inert atmosphere, irradiation of polyethylene yields a crosslinking effect with a consequent improvement in its mechanical properties in comparison to the virgin materials. Additionally, if irradiated specimens are melted and recrystallized, the radiation-induced crosslinking hinders their crystalline growth altering dramatically their flow properties such as the elasticity. This work portrays the effects of the gamma radiation on the rheological properties of high and low density polyethylenes manufactured by PEMEX and analyzes the implications of theoretical results derived from the Acierno's model when it is implemented with the rheological properties of high energy irradiated polyethylenes. (author)

  6. Linear low density polyethylene (LLDPE) and lamellar zirconium phosphate (Zr P) composites: morphology and mechanical properties

    International Nuclear Information System (INIS)

    Silva, Daniela F.; Mandes, Luis C.; Lino, Adan S.

    2011-01-01

    Composites of linear low density polyethylene (LLDPE) and zirconium phosphate (ZrP) were prepared by extrusion in the molten state, containing 2 (w%) of the lamellar filler. The filler was previously synthesized by direct precipitation method and characterized. After processing, the composite and the pure virgin polymer were molded by compression in order to obtain films of 1 mm thick which were characterized by X-ray diffraction at high angle (WAXD), stress-strain mechanical analysis and scanning electron microscopy (SEM). The WAXD and SEM analysis showed that there was no intercalation of LLDPE in zirconium phosphate, possibly due to the fact that the layers do not have spacing enough to allow the intercalation of polymer chains in the galleries of the filler and thus allow the exfoliation. (author)

  7. Hull Fiber From DDGS and Corn Grain as Alternative Fillers in Polymer Composites with High Density Polyethylene

    Science.gov (United States)

    Pandey, Pankaj

    The steady increase in corn based ethanol production has resulted in a dramatic rise in the supply of its co-product known as distillers' dried grain with solubles (DDGS). Currently, the main outlet for DDGS is the animal feed industry, but the presence of fibers makes them indigestible by non-ruminants such as swine and poultry. Separation of fiber from DDGS would increase the nutritional value of DDGS with higher protein and fat contents and reduced fiber content. The fiber from DDGS can be separated through a physical separation process known as elusieve. The DDGS fiber has the potential to be used as a fiber filler in thermoplastic composites. This research project evaluates DDGS fiber as a filler in thermoplastic composites. The fibers from corn hull and DDGS have been used as fillers at 30% and 50% fiber loading in high density polyethylene (HDPE) composites and compared against a standard oak fiber filler composites at a lab scale. DDGS and corn fiber composites showed comparable mechanical properties as the oak wood fiber HDPE composites. Further evaluation was completed on the performance of composite samples at commercial scale with six combinations of oak fiber, corn hull fiber and DDGS fiber with fiber loading maintained at 50%, and then samples were exposed to UV accelerated weathering for 2000 h. The UV weathering decreased the mechanical properties of all the exposed samples compared to the unexposed samples. Also, UV weathering resulted in a severe chain scission of the HDPE polymer, increasing their crystallinity. The performance of mercerized or sodium hydroxide (NaOH) treated DDGS fiber as filler was investigated by characterizing the effects of treated and untreated DDGS fibers on physical, mechanical, and thermal properties of HDPE composites. The NaOH treated DDGS fiber at 25% loading showed consistent improvement in flexural and tensile modulus of elasticities of the composites compared to the neat HDPE.

  8. Radiation-Induced Grafting with One-Step Process of Waste Polyurethane onto High-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2015-12-01

    Full Text Available The recycling of waste polyurethane (PU using radiation-induced grafting was investigated. The grafting of waste PU onto a high-density polyethylene (HDPE matrix was carried out using a radiation technique with maleic anhydride (MAH. HDPE pellets and PU powders were immersed in a MAH-acetone solution. Finally, the prepared mixtures were irradiated with an electron beam accelerator. The grafted composites were characterized by Fourier transformed infrared spectroscopy (FT-IR, surface morphology, and mechanical properties. To make a good composite, the improvement in compatibility between HDPE and PU is an important factor. Radiation-induced grafting increased interfacial adhesion between the PU domain and the HDPE matrix. When the absorbed dose was 75 kGy, the surface morphology of the irradiated PU/HDPE composite was nearly a smooth and single phase, and the elongation at break increased by approximately three times compared with that of non-irradiated PU/HDPE composite.

  9. MECHANICAL PROPERTIES AND WATER ABSORPTION OF KENAF POWDER FILLED RECYCLED HIGH DENSITY POLYETHYLENE/NATURAL RUBBER BIOCOMPOSITES USING MAPE AS A COMPATIBILIZER

    Directory of Open Access Journals (Sweden)

    Azura A. Rashid

    2011-06-01

    Full Text Available The performance of kenaf powder (KP filled recycled high density polyethylene (rHDPE /natural rubber (NR blends with and without a compatibilizer, maleic anhydride grafted polyethylene (MAPE, were investigated. The composites with different filler loading (0 to 40 phr were prepared with a Haake internal mixer. Increasing the KP loading in rHDPE/NR/KP biocomposites reduced the tensile strength and the elongation at break but increased the stabilization torque and the tensile modulus. The addition of MAPE as a compatibilizer increased the tensile strength, elongation at break, and modulus of the composites. This might be attributed to the enhanced adhesion between the filler and polymer matrix, as evidenced from the morphology, using scanning electron microscopy. The incorporation of compatibilizer also reduced the water absorption of the composites.

  10. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Ahmed M., E-mail: amyoussef27@yahoo.com [Packing and Packaging Materials Department, National Research Center, Dokki, P.C. 12622, Cairo (Egypt); El-Gendy, Ahmed; Kamel, Samir [Cellulose and Paper Department, National Research Center, Dokki, Cairo (Egypt)

    2015-02-15

    Responding to the community demand for disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low-density polyethylene (R-LDPE) and corn husk fibers were prepared by melt compounding and compression molding. These composites were prepared in different concentrations (5, 10, 15, and 20%) of powder corn husk with 125 μ particle size based on R-LDPE matrix. Beside the importance of property improvement, an additional incentive was responding to the social demand for the disposal of environmental problematic agricultural waste. The influence of loading rate on R-LDPE crystallization behavior, mechanical, and swilling properties were investigated. Increasing in fiber loading led to increased moduli and tensile strength while hardness was decreased. X-ray diffraction (XRD) examinations indicated that introducing fiber to R-LDPE matrix did not change characteristic peak position. The thermal stability of the prepared composites was evaluated using differential scanning calorimetry (DSC) which displayed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, indicating higher crystallization rates for R-LDPE. The prepared composites materials can be used in packaging applications. - Highlights: • New composite based on recycled LDPE and corn husk fibers has been prepared. • The prepared composite has a benefit of minimizing solid waste problem. • The prepared composites were characterized using XRD, FTIR and DSC. • Crystallization behaviors, mechanical and swilling properties of the prepared composites were investigated.

  11. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites

    International Nuclear Information System (INIS)

    Youssef, Ahmed M.; El-Gendy, Ahmed; Kamel, Samir

    2015-01-01

    Responding to the community demand for disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low-density polyethylene (R-LDPE) and corn husk fibers were prepared by melt compounding and compression molding. These composites were prepared in different concentrations (5, 10, 15, and 20%) of powder corn husk with 125 μ particle size based on R-LDPE matrix. Beside the importance of property improvement, an additional incentive was responding to the social demand for the disposal of environmental problematic agricultural waste. The influence of loading rate on R-LDPE crystallization behavior, mechanical, and swilling properties were investigated. Increasing in fiber loading led to increased moduli and tensile strength while hardness was decreased. X-ray diffraction (XRD) examinations indicated that introducing fiber to R-LDPE matrix did not change characteristic peak position. The thermal stability of the prepared composites was evaluated using differential scanning calorimetry (DSC) which displayed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, indicating higher crystallization rates for R-LDPE. The prepared composites materials can be used in packaging applications. - Highlights: • New composite based on recycled LDPE and corn husk fibers has been prepared. • The prepared composite has a benefit of minimizing solid waste problem. • The prepared composites were characterized using XRD, FTIR and DSC. • Crystallization behaviors, mechanical and swilling properties of the prepared composites were investigated

  12. Laboratory tests on fungal resistance of wood filled polyethylene composites

    Science.gov (United States)

    Craig M. Clemons; Rebecca E. Ibach

    2002-01-01

    A standard method for determining the durability of structural wood was modified for testing the fungal resistance of composites made from high density polyethylene filled with 50% wood flour. Moisture content, mechanical properties, and weight loss were measured over 12 weeks exposure to brown-and white-rot fungi. Mechanical properties were decreased, but irreversible...

  13. Developing and Evaluating Composites Based on Plantation Eucalyptus Rotary-cut Veneer and High-density Polyethylene Film as Novel Building Materials

    Directory of Open Access Journals (Sweden)

    Wei Song

    2016-02-01

    Full Text Available To achieve value-added utilizations of plantation timbers, eucalyptus veneer/high-density polyethylene film composites were prepared, with process-factors (PF (hot-pressing temperature, HT; hot-pressing duration, HD; hot-pressing pressure, HP; HDPE-film content, HC and composite-properties (CP (water-resistant bonding-strength, BS; modulus of rupture, MOR; modulus of elasticity, MOE investigated. According to thermal analyses, 140 to 180 °C was appropriate for HT. Based on statistical analyses, HD was easier to affect CP, while MOE was easier to be affected by PF. Quantitative relationships between PF and CP were determined by the neural-network (ANN modeling. In ANN simulation surveys, CP displayed Gaussian distributions (R2 > 0.9 when PF changed in current ranges, with positive correlations between BS and MOR (R2 ≈ 0.5. Combining ANN and the genetic-algorithm, optimal processes (HT, 160 °C; HD, 50 s/mm; HP, 1.3 MPa; HC, 6 layers were found, and optimal results (BS, 1.30 MPa; MOR, 86.94 MPa; MOE, 8.33 GPa were comparable to various reported poplar-plywoods. Microscopic images demonstrated that composite interfaces were formed by the mechanical interlocking. The optimal BS attained Chinese standards for water-resistant plywoods, so proposed composites can serve as water-resistant and formaldehyde-free building materials for furniture and interior design.

  14. The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites

    Directory of Open Access Journals (Sweden)

    Ehsan Avazverdi

    2015-02-01

    Full Text Available Polyethylene terephthalate (PET, one of the thermoplastic polymers, is encountered with arduous problems in its recycling. After recycling, its mechanical properties drop dramatically and therefore it cannot be used to produce the products as virgin PET does. Polyethylene is a thermoplastic polymer which can be easily recycled using the conventional recycling processes. The decreased mechanical properties of virgin polyethylene due to the environmental factors can be improved by reinforcing fillers. In this paper, we studied the effects of adding recycled polyethylene terephthalate (rPET as a filler, in various amounts with different sizes, on the physical and mechanical properties of recycled polyethylene. Composite samples were prepared using an internal mixer at temperature 185°C, well below rPET melting point (250°C, and characterized by their mechanical properties. To improve the compatibility between different components, PE grafted with maleic anhydride was added as a coupling agent in all the compositions under study. The mechanical properties of the prepared samples were performed using the tensile strength, impact strength, surface hardness and melt flow index (MFI tests. To check the dispersity of the polyethylene terephthalate powder in the polyethylene matrix, light microscopy was used. The results showed that the addition of rPET improved the tensile energy, tensile modulus and surface hardness of the composites while reduced the melt flow index, elongation-at-yield, tensile strength and fracture energy of impact test. We could conclude that with increasing rPET percentage in the recycled polyethylene matrix, the composite became brittle, in other words it decreased the plastic behavior of recycled polyethylene. Decreasing particle size led to higher surface contacts, increased the mechanical properties and made the composite more brittle. The light microscopy micrographs of the samples showed a good distribution of small r

  15. Evaluation of the radiation resistance of high-density polyethylene

    International Nuclear Information System (INIS)

    Dougherty, D.R.; Adams, J.W.; Barletta, R.R.

    1984-03-01

    Mechanical tests following gamma irradiation and creep tests during irradiation have been conducted on high-density polyethylene (HDPE) to provide data to help assess the adequacy of this material for use in high integrity containers (HICs). Two types of HDPE, a highly cross-linked rotationally molded material and a non-cross-linked blow molded material, were used in these tests. Gamma-ray irradiations were performed at several dose rates in environments of air, Barnwell and Hanford backfill soils, and ion-exchange resins. The results of tensile and bend tests on these materials following irradiation are presented along with results on creep during irradiation. 8 references, 9 figures, 2 tables

  16. Polyethylene/boron-containing composites for radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Wook [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Seo, Yongsok [School of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Woo Nyon [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Hong, Soon Man, E-mail: smhong@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Koo, Chong Min, E-mail: koo@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-06-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B{sub 4}C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B{sub 4}C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B{sub 4}C composites.

  17. Polyethylene/boron-containing composites for radiation shielding

    International Nuclear Information System (INIS)

    Shin, Ji Wook; Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo; Seo, Yongsok; Kim, Woo Nyon; Hong, Soon Man; Koo, Chong Min

    2014-01-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B 4 C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B 4 C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B 4 C composites

  18. THE GRAFTING OF MALEIC-ANHYDRIDE ON HIGH-DENSITY POLYETHYLENE IN AN EXTRUDER

    NARCIS (Netherlands)

    GANZEVELD, KJ; JANSSEN, LPBM

    The grafting of maleic anhydride (MAH) on high density polyethylene in a counter-rotating twin screw extruder has been studied. As the reaction kinetics appear to be affected by mass transfer, good micro mixing in the extruder is important. Due to the competing mechanisms of increasing mixing and

  19. Radicals mediated magnetism in Ar plasma treated high-density polyethylene

    Science.gov (United States)

    Orendáč, M.; Čižmár, E.; Kažiková, V.; Orendáčová, A.; Řezníčková, A.; Kolská, Z.; Švorčík, V.

    2018-05-01

    Electron-spin resonance of high-density polyethylene treated by Ar plasma at 300 K was performed in X-band at temperatures from 2.1 K to 290 K. The observed spectra suggest presence of allyl radicals, whereas the central peak may be attributed to polyenyl radicals or dangled bonds. Pronounced narrowing of the resonance line observed above glassy temperature of polyethylene may be ascribed to thermally activated motional effect with the activation energy Ea /kB = 160 K. The absence of strong exchange interactions is suggested by negligible exchange narrowing found at 2.1 K. The suggestion is supported by the analysis of the temperature dependence of the intensity at low temperatures, which is explicable assuming the coexistence of non-interacting radicals and S = 1/2 dimers with a distribution of antiferromagnetic couplings varying from 2 K to nominally 25 K.

  20. Gamma irradiation effects in low density polyethylene

    International Nuclear Information System (INIS)

    Ono, Lilian S.; Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Lugao, Ademar B.

    2011-01-01

    Low density polyethylene (LDPE) is obtained from ethylene gas polymerization, being one of the most commercialized polymers due to its versatility and low cost. It's a semi-crystalline polymer, usually inactive at room temperature, capable to attain temperatures within a 80 deg C - 100 deg C range, without changing its physical-chemical properties. LDPE has more resistance when compared to its equivalent High Density Polyethylene (HDPE). LDPE most common applications consist in manufacturing of laboratory materials, general containers, pipes, plastic bags, etc. Gamma radiation is used on polymers in order to modify mechanical and physical-chemical features according to utility purposes. This work aims to the study of gamma (γ) radiation interaction with low density polyethylene to evaluate changes in its physical-chemical properties. Polymer samples were exposed to 5, 10, 15, 20 and 30kGy doses, at room temperature. Samples characterization employed Thermal Analysis, Melt Flow Index, Infrared Spectroscopy and Swelling tests. (author)

  1. Influence of Glycidyl Methacrylate Grafting on the Mechanical, Water Absorption, and Thermal Properties of Recycled High-Density Polyethylene/Rubber Seed Shell Particle Composites

    Directory of Open Access Journals (Sweden)

    Kaimeng Xu

    2016-01-01

    Full Text Available Rubber seed shell (RSS was modified by grafting treatment using glycidyl methacrylate (GMA at various concentrations. The RSS was then used to reinforce high-density polyethylene (HDPE. The effects of modification on the mechanical, water absorption, and thermal properties of the RSS/HDPE composites were studied using a mechanical testing instrument, weighing method, Vicat softening temperature (VST testing, thermogravimetry, and dynamic mechanical analysis. The results showed that the GMA grafting produced an improvement in the flexural and tensile properties of the composites. The water absorption rate of the composites also had an obvious decrease. While a slight increase in VST was found, the various concentrations of GMA showed no improvement in VST. GMA modification also could elevate the thermal stability of the composites at the initial decomposition stage. The optimum grafting concentration of GMA (2.5% led to the lowest thermal weight loss (37.07% and 26.56% during the first and second decomposition stages. The E’ values of the composites had a significant increase with the addition of GMA. There were two peaks of tan δ for the untreated samples, but the modified samples exhibited a shift in the transition peak at higher temperatures; moreover, the second peak disappeared.

  2. Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

    Science.gov (United States)

    Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.

    2017-12-01

    In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

  3. The Effects of CaCO3 Coated Wood Free Paper Usage as Filler on Water Absorption, Mechanical and Thermal Properties of Cellulose-High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Emrah PEŞMAN

    2016-11-01

    Full Text Available In this study some physical, mechanical and thermal characteristics of high density polyethylene (HDPE and CaCO3 coated/pigmented wood free paper fiber composites were investigated. The fillers used in this study were uncoated cellulose, 5.8 %, 11.5 %, 16.5 % and 23.1 % CaCO3 coated wood free paper fibers. Each filler type was mixed with HDPE at 40% by weight fiber loading. In this case, the ratio of CaCO3 in plastic composites were calculated as 0 %, 2.3 %, 4.6 %, 6.6 % and 9.2 % respectively. Increased CaCO3 ratio improved the moisture resistant, flexural and tensile strength of cellulose-HDPE composites. However, the density of the cellulose-HDPE composites increased with CaCO3 addition. Energy Dispersive Spectroscopy on Scanning Electron Microscope analysis demonstrated the uniform distribution of CaCO3 and cellulose fiber in plastic matrix. In addition, the thermal properties of fiber plastic composites were investigated. The results of Differential scanning calorimetry analysis revealed that the crystallinity of the samples decreased with increasing CaCO3 content. Consequently, this work showed that CaCO3 coated waste paper fibers could be used as reinforcing filler against water absorption in thermoplastic matrix.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.14222

  4. Modification of high density polyethylene by gold implantation using different ion energies

    Energy Technology Data Exchange (ETDEWEB)

    Nenadović, M.; Potočnik, J. [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia); Mitrić, M. [INS Vinca, Condensed Matter Physics Laboratory, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia); Štrbac, S. [ICTM Institute of Electrochemistry, University of Belgrade, Njegoseva 12, 11001 Belgrade (Serbia); Rakočević, Z., E-mail: zlatkora@vinca.rs [INS Vinca, Laboratory of Atomic Physics, University of Belgrade, Mike Alasa 12–14, 11001 Belgrade (Serbia)

    2013-11-01

    High density polyethylene (HDPE) samples were modified by Au{sup +} ion implantation at a dose of 5 × 10{sup 15} ions cm{sup −2}, using energies of 50, 100, 150 and 200 keV. The existence of implanted gold in the near-surface region of HDPE samples was confirmed by X-ray diffraction analysis. Surface roughness and Power Spectral Density analyses based on Atomic Force Microscopy (AFM) images of the surface topography revealed that the mechanism of HDPE modification during gold ion implantation depended on the energy of gold ions. Histograms obtained from phase AFM images indicated a qualitative change in the chemical composition of the surface during implantation with gold ions with different energies. Depth profiles obtained experimentally from cross-sectional Force Modulation Microscopy images and ones obtained from a theoretical simulation are in agreement for gold ions energies lower than 100 keV. The deviation that was observed for higher energies of the gold ions is explained by carbon precipitation in the near surface region of the HDPE, which prevented the penetration of gold ions further into the depth of the sample. - Highlights: • HDPE was implanted by Au{sup +} ions using energies of 50, 100, 150 and 200 keV. • Surface composition was analyzed from phase AFM images. • FMM depth profiles are in agreement with theoretical ones for energies up to 100 keV. • A deviation is observed for higher gold ion energies.

  5. Modification of high density polyethylene by gold implantation using different ion energies

    International Nuclear Information System (INIS)

    Nenadović, M.; Potočnik, J.; Mitrić, M.; Štrbac, S.; Rakočević, Z.

    2013-01-01

    High density polyethylene (HDPE) samples were modified by Au + ion implantation at a dose of 5 × 10 15 ions cm −2 , using energies of 50, 100, 150 and 200 keV. The existence of implanted gold in the near-surface region of HDPE samples was confirmed by X-ray diffraction analysis. Surface roughness and Power Spectral Density analyses based on Atomic Force Microscopy (AFM) images of the surface topography revealed that the mechanism of HDPE modification during gold ion implantation depended on the energy of gold ions. Histograms obtained from phase AFM images indicated a qualitative change in the chemical composition of the surface during implantation with gold ions with different energies. Depth profiles obtained experimentally from cross-sectional Force Modulation Microscopy images and ones obtained from a theoretical simulation are in agreement for gold ions energies lower than 100 keV. The deviation that was observed for higher energies of the gold ions is explained by carbon precipitation in the near surface region of the HDPE, which prevented the penetration of gold ions further into the depth of the sample. - Highlights: • HDPE was implanted by Au + ions using energies of 50, 100, 150 and 200 keV. • Surface composition was analyzed from phase AFM images. • FMM depth profiles are in agreement with theoretical ones for energies up to 100 keV. • A deviation is observed for higher gold ion energies

  6. Fabrication and materials properties of high-density polyethylene (HDPE)/biphasic calcium phosphate (BCP) hybrid bone plates

    International Nuclear Information System (INIS)

    Jo, Sun Young; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang

    2010-01-01

    Biphasic calcium phosphate-reinforced high-density polyethylene (BCP/HDPE) hybrid composite is a new orthopedic biomaterial, which was made to simulate a natural bone composition. Calcium phosphate systems and HDPE hybrid composites have been used in biomedical applications without any inflammatory response. Differences in natural bone of both materials have motivated the use of coupling agents to improve their interfacial interfacial interactions. The composites were prepared using medical grade BCP powder and granular polyethylene. This material was produced by replacing the mineral component and collagen soft tissue of the bone with BCP and HDPE, respectively. As expected, increased volume fraction of either reinforcement type over 0 ∼ 50 vol.% resulted in a increased Vickers hardness and Young's modulus. Thus, BCP particle-reinforced HDPE composites possessed improved material and mechanical properties. BCP particles-reinforced composites were anisotropic due to an alignment of the particles in the matrix during a processing. On the other hand, bending and tensile strength was dramatically changed in the matrix. To change the material and mechanical properties of HDPE/BCP composites, the process of a blending was used, and its effect on the microstructure and mechanical proprieties of HDPE/BCP composites were investigated by means of FT-IR/ATR spectroscopy, XRD, FE-SEM, Vickers Hardness Testing Machine, Universal Testing Machine, Mercury Porosimeter and Ultrasonic Flaw Detector at room temperature. For the evaluation of the cell viability and proliferation onto the external surface of HDPE/BCP hybrid plates with a HaCaT cell line, which is a multipotent cell line able to differentiate towards different phenotypes under the action of biological factors, has been evaluated with in vitro studies and quantified by colormetric assays. These findings indicate that the HDPE/BCP hybrid plates are biocompatible and non-toxic

  7. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  8. Sound Transmission Properties of Mineral-filled High-Density Polyethylene (HDPE and Wood-HDPE Composites

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2014-11-01

    Full Text Available Wood plastic composites (WPCs offer various advantages and potential as a competitive alternative to conventional noise barriers. For this purpose, the influence of composite formulation on the sound transmission loss (TL of WPCs needs to be fully understood. In TL testing, stiffness and surface density are major factors influencing the sound insulation property of filled plastics and WPCs. Experimental TL values decreased as sound frequency increased; and the TL values increased after passing a certain frequency level. The comparison of experimental TL curves among filled composites showed that the addition of fillers led to an increase in resonance frequency and TL values. However, at high filling levels, the stiffness decrease led to TL reductions. The experimental TL curves of filled composites, composed of mass law and stiffness law predictions, were well approximated with their combined TL predictions.

  9. Effect of wood flour content on the optical color, surface chemistry, mechanical and morphological properties of wood flour/recycled high density polyethylene (rHDPE) composite

    Science.gov (United States)

    Sheng, Chan Kok; Amin, Khairul Anuar Mat; Kee, Kwa Bee; Hassan, Mohd Faiz; Ali, E. Ghapur E.

    2018-05-01

    In this study, effect of wood flour content on the color, surface chemistry, mechanical properties and surface morphology of wood-plastic composite (WPC) on different mixture ratios of recycled high density polyethylene (rHDPE) and wood flour were investigated in detail. The presence of wood flour in the composite indicates a significant total color change and a decrease of lightness. Functional groups of wood flour in WPC can be seen clearer from the Fourier transform infrared (FTIR) spectra as the wood flour content increases. The mechanical tensile testing shows that the tensile strength of Young's modulus is improved, whereas the strain and elongation at break were reduced by the addition of wood flour. The gap between the wood flour microvoid fibre and rHDPE matrix becomes closer when the wood flour content is increased as observed by scanning electron microscope (SEM) image. This finding implies a significant improvement on the interaction of interfacial adhesion between the rHDPE matrix and wood flour filler in the present WPC.

  10. On the mechanism of charge transport in low density polyethylene

    Science.gov (United States)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  11. Diffusion of multiwall carbon nanotubes (MWCNTs) through a high density polyethylene (HDPE) geomembrane.

    Science.gov (United States)

    Saheli, P T; Rowe, R K; Petersen, E J; O'Carroll, D M

    2017-05-01

    The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10 -15 m 2 /s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.

  12. Effects of welding parameters on friction stir spot welding of high density polyethylene sheets

    International Nuclear Information System (INIS)

    Bilici, Mustafa Kemal; Yukler, Ahmet Irfan

    2012-01-01

    Graphical abstract: (a) Schematic illustration of the cross section of a friction stir spot weld and (b) Geometry of the weld bonded area, x: nugget thickness and y: the thickness of the upper sheet. Highlights: → Welding parameters affect the FSSW nugget formation and the strength of the joint. → Melting of polyethylene occurred in the vicinity of the tool pin. → The joint that fractures with a pull nugget failure mode has a higher strength. -- Abstract: Friction stir spot welding parameters affect the weld strength of thermoplastics, such as high density polyethylene (HDPE) sheets. The effects of the welding parameters on static strength of friction stir spot welds of high density polyethylene sheets were investigated. For maximizing the weld strength, the selection of welding parameters is very important. In lap-shear tests two fracture modes were observed; cross nugget failure and pull nugget failure. The tool rotational speed, tool plunge depth and dwell time were determined to be important in the joint formation and its strength. The joint which had a better strength fails with a pull nugget failure morphology. Weld cross section image analysis of the joints were done with a video spectral comparator. The plunge rate of the tool was determined to have a negligible effect on friction stir spot welding.

  13. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Pomdage, Wanida

    2014-01-01

    Highlights: • We prepared the TPCS/LDPE composites modified by carrageenan and/or cotton fibers. • The IR O–H stretching peak of the modified composites shifts to lower wavenumber. • Stress and Young’s modulus of the modified composites increase significantly. • The modified composites degrade faster than the non-modified composite. - Abstract: Applications of biodegradable thermoplastic starch (TPS) have been restricted due to its poor mechanical properties, limited processability and high water uptake. In order to improve properties and processability, thermoplastic cassava starch (TPCS) was compounded with low-density polyethylene (LDPE). The TPCS/LDPE blend was, then, modified by a natural gelling agent, i.e. carrageenan and natural fibers, i.e. cotton fibers. All composites were compounded and processed using an internal mixer and an injection molding machine, respectively. It was found that stress at maximum load and Young’s modulus of the TPCS/LDPE composites significantly increased by the addition of the carrageenan and/or the cotton fibers. The highest mechanical properties were obtained from the TPCS/LDPE composites modified by both the carrageenan and the cotton fibers. Percentage water absorption of all of the TPCS/LDPE composites was found to be similar. All modified composites were also degraded easier than the non-modified one. Furthermore, all the composites were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM)

  14. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites

    International Nuclear Information System (INIS)

    Cai Yibing; Wei Qufu; Huang Fenglin; Gao Weidong

    2008-01-01

    The halogen-free flame retardant form-stable phase change materials (PCM) based on paraffin/high density polyethylene (HDPE) composites were prepared by using twin-screw extruder technique. The structures and properties of the form-stable PCM composites based on intumescent flame retardant system with expandable graphite (EG) and different synergistic additives, such as ammonium polyphosphate (APP) and zinc borate (ZB) were characterized by scanning electronic microscope (SEM), thermogravimetric analyses (TGA), dynamic Fourier-transform infrared (FTIR) spectra, differential scanning calorimeter (DSC) and Cone calorimeter test. The TGA results showed that the halogen-free flame retardant form-stable PCM composites produced a larger amount of charred residue at 700 deg. C, although the onset of weight loss of the halogen-free flame retardant form-stable PCM composites occurred at a lower temperature due to the thermal decomposition of flame retardant. The DSC measurements indicated that the additives of flame retardant had little effect on the thermal energy storage property, and the temperatures of phase change peaks and the latent heat of the paraffin showed better occurrence during the freezing process. The dynamic FTIR monitoring results revealed that the breakdowns of main chains (HDPE and paraffin) and formations of various residues increased with increasing thermo-oxidation temperature. It was also found from the Cone calorimeter tests that the peak of heat release rate (PHRR) decreased significantly. Both the decrease of the PHRR and the structure of charred residue after combustion indicated that there was a synergistic effect between the EG and APP, contributing to the improved flammability of the halogen-free flame retardant form-stable PCM composites

  15. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite

    Science.gov (United States)

    Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.

    2017-01-01

    In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.

  16. Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties

    International Nuclear Information System (INIS)

    Sari, Ahmet

    2004-01-01

    This paper deals with the preparation of paraffin/high density polyethylene (HDPE) composites as form-stable, solid-liquid phase change material (PCM) for thermal energy storage and with determination of their thermal properties. In such a composite, the paraffin (P) serves as a latent heat storage material and the HDPE acts as a supporting material, which prevents leakage of the melted paraffin because of providing structural strength. Therefore, it is named form-stable composite PCM. In this study, two kinds of paraffins with melting temperatures of 42-44 deg. C (type P1) and 56-58 deg. C (type P2) and latent heats of 192.8 and 212.4 J g -1 were used. The maximum weight percentage for both paraffin types in the PCM composites without any seepage of the paraffin in the melted state were found as high as 77%. It is observed that the paraffin is dispersed into the network of the solid HDPE by investigation of the structure of the composite PCMs using a scanning electronic microscope (SEM). The melting temperatures and latent heats of the form-stable P1/HDPE and P2/HDPE composite PCMs were determined as 37.8 and 55.7 deg. C, and 147.6 and 162.2 J g -1 , respectively, by the technique of differential scanning calorimetry (DSC). Furthermore, to improve the thermal conductivity of the form-stable P/HDPE composite PCMs, expanded and exfoliated graphite (EG) by heat treatment was added to the samples in the ratio of 3 wt.%. Thereby, the thermal conductivity was increased about 14% for the form-stable P1/HDPE and about 24% for the P2/HDPE composite PCMs. Based on the results, it is concluded that the prepared form-stable P/HDPE blends as composite type PCM have great potential for thermal energy storage applications in terms of their satisfactory thermal properties and improved thermal conductivity. Furthermore, these composite PCMs added with EG can be considered cost effective latent heat storage materials since they do not require encapsulation and extra cost to enhance

  17. Performance of water source heat pump system using high-density polyethylene tube heat exchanger wound with square copper wire

    Directory of Open Access Journals (Sweden)

    Xin Wen Zhang

    2015-07-01

    Full Text Available Surface water source heat pump system is an energy-efficient heat pump system. Surface water heat exchanger is an important part of heat pump system that can affect the performance of the system. In order to enhance the performance of the system, the overall heat transfer coefficient (U value of the water exchanger using a 32A square copper coiled high-density polyethylene tube was researched. Comparative experiments were conducted between the performance of the coiled high-density polyethylene tube and the 32A smooth high-density polyethylene tube. At the same time, the coefficient of performance of the heat pump was investigated. According to the result, the U value of the coiled tube was 18% higher than that of the smooth tube in natural convection and 19% higher in forced convection. The coefficient of performance of the heat pump with the coiled tube is higher than that with the smooth tube. The economic evaluation of the coiled tube was also investigated.

  18. Characterisation of Cassava Bagasse and Composites Prepared by Blending with Low-Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fabiane Oliveira Farias

    2014-12-01

    Full Text Available The main objective of this study was to characterise the cassava bagasse and to evaluate its addition in composites. Two cassava bagasse samples were characterised using physicochemical, thermal and microscopic techniques, and by obtaining their spectra in the mid-infrared region and analysing them by using x-ray diffraction. Utilising sorption isotherms, it was possible to establish the acceptable conditions of temperature and relative humidity for the storage of the cassava bagasse. The incorporation of cassava bagasse in a low-density polyethylene (LDP matrix was positive, increasing the elasticity modulus values from 131.90 for LDP to 186.2 for 70% LDP with 30% SP bagasse. These results were encouraging because cassava bagasse could serve as a structural reinforcement, as well as having environmental advantages for its application in packaging, construction and automotive parts.

  19. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P

    2014-11-01

    Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12.

  20. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Hild, Nora; Fuhrer, Roland; Mohn, Dirk; Bubenhofer, Stephanie B; Grass, Robert N; Luechinger, Norman A; Stark, Wendelin J; Feldman, Kirill; Dora, Claudio

    2012-01-01

    Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering. (paper)

  1. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells.

    Science.gov (United States)

    Hild, Nora; Fuhrer, Roland; Mohn, Dirk; Bubenhofer, Stephanie B; Grass, Robert N; Luechinger, Norman A; Feldman, Kirill; Dora, Claudio; Stark, Wendelin J

    2012-10-01

    Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering.

  2. Effect of γ-aminopropyltriethoxy silane (γ-APS) coupling agent on mechanical and morphological properties of high density polyethylene (HDPE)/acrylonitrile butadiene rubber (NBR)/palm pressed fibre (PPF) composites

    Science.gov (United States)

    Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi

    2017-07-01

    The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.

  3. Wax co-cracking synergism of high density polyethylene to alternative fuels

    Directory of Open Access Journals (Sweden)

    Magdy Motawie

    2015-09-01

    Full Text Available Attempts have been made to understand the thermal degradation of high density polyethylene (HDPE and their combined co-cracking using different ratios of HDPE and petroleum wax under nitrogen atmosphere. We have conducted the experiments using HDPE as the raw material and petroleum wax as co-feed by at 400 and 450 °C reaction temperatures. The product distribution was noted along with reaction time of 0.5–3 h for the degradation. Thermal gravimetric analysis (TGA technique was used to measure the weight change of the feedstock as a function of temperature and time. Differential scanning calorimetry (DSC was used to determine the degradation temperature. Products were characterized using gas chromatography (GC and infrared spectroscopy (FTIR, some other standard physical methods were used to determine the main properties of the liquid products. Results show that the mixed plastic-wax samples could be converted into gases, gasoline, and middle distillate depending upon the composition of feed polymer/wax ratio. It was found that the products mostly consisted of paraffin and olefin compounds, with carbon numbers of C1–C4, C5–C9 and C10–C19 in the case of gases, gasoline and middle distillate respectively.

  4. Interfacial Shear Strength Evaluation of Pinewood Residue/High-Density Polyethylene Composites Exposed to UV Radiation and Moisture Absorption-Desorption Cycles

    Directory of Open Access Journals (Sweden)

    Soledad C. Pech-Cohuo

    2016-03-01

    Full Text Available In outdoor applications, the mechanical performance of wood-plastic composites (WPCs is affected by UV radiation, facilitating moisture intake and damaging the wood-polymer interfacial region. The purpose of this study was to evaluate the effect of moisture absorption-desorption cycles (MADCs, and the exposure to UV radiation on the interfacial shear strength (IFSS of WPCs with 40% pinewood residue and 60% high-density polyethylene. One of the WPCs incorporated 5% coupling agent (CA with respect to wood content. The IFSS was evaluated following the Iosipescu test method. The specimens were exposed to UV radiation using an accelerated weathering test device and subsequently subjected to four MADCs. Characterization was also performed by scanning electron microscopy (SEM and Fourier transform infrared spectroscopy (FTIR. The absorption and desorption of moisture was slower in non-UV-irradiated WPCs, particularly in those with the CA. The UV radiation did not significantly contribute to the loss of the IFSS. Statistically, the CA had a favorable effect on the IFSS. Exposure of the samples to MADCs contributed to reduce the IFSS. The FTIR showed lignin degradation and the occurrence of hydrolysis reactions after exposure to MADCs. SEM confirmed that UV radiation did not significantly affect the IFSS.

  5. Study of mechanical and morphological properties of bio-based polyethylene (HDPE) and sponge-gourds (Luffa-cylindrica) agroresidue composites

    Science.gov (United States)

    Escocio, Viviane A.; Visconte, Leila L. Y.; Cavalcante, Andre de P.; Furtado, Ana Maria S.; Pacheco, Elen B. A. V.

    2015-05-01

    Brazil has a remarkable position in the use of renewable energy. The potential of natural resources in Brazil has motivated the use of these renewable resources to make technologies more sustainable. From the large variety of commercially available High Density Polyethylene (HDPE) from different sources, two were chosen for investigation: one produced from sugarcane ethanol, and the other one, a conventional polyethylene, produced from fossil resources. In the preparation of the composites, sponge-gourds also called Luffa cylindrica were selectec. The main application of this product is as bath sponge, whose production generates scraps that are generally burnt. In this work, the composites were prepared by blending the sponge scrap at different proportions (10, 20, 30 and 40% wt/wt) with high density polyethylene (HDPE) from renewable source by extrusion. The melt flow index analysis of the composites was determined and specimens were obtained by injection molding for the assessment of mechanical properties such as tensile (elasticity modulus), flexural and Izod impact strengths. The microstructure of the impact fractured surface of the specimen also was determined. The results showed that the addition of sponge scrap affects positively all the properties studied as compared to HDPE. The results of tensile strength, elasticity modulus and flexural strength were similar to those observed in the literature for composites of HDPE from fossil source. The microstructure corroborates the results of mechanical properties. It was shown that the sponge scrap has potential to be applied as cellulosic filler for renewable polyethylene, providing a totally renewable material with good mechanical properties.

  6. Effects of Kenaf Loading on Processability and Properties of Linear Low-Density Polyethylene/Poly (Vinyl Alcohol/Kenaf Composites

    Directory of Open Access Journals (Sweden)

    Ai Ling Pang

    2015-09-01

    Full Text Available This study was conducted to evaluate the possibility of utilizing kenaf (KNF in LLDPE/PVOH to develop a new thermoplastic composite. The effect of KNF loading on the processability and mechanical, thermal and water absorption properties of linear low-density polyethylene/poly (vinyl alcohol/kenaf (LLDPE/PVOH/KNF composites were investigated. Composites with different KNF loadings (0, 10, 20, 30, and 40 phr were prepared using a Thermo Haake Polydrive internal mixer at a temperature of 150 °C and rotor speed of 50 rpm for 10 min. The results indicate that the stabilization torque, tensile modulus, water uptake, and thermal stability increased, while tensile strength and elongation at break decreased with increasing filler loading. The tensile fractured surfaces observed by scanning electron microscopy (SEM supported the deterioration in tensile properties of the LLDPE/PVOH/KNF composites with increasing KNF loading.

  7. Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene

    International Nuclear Information System (INIS)

    Madi, N.K.

    2013-01-01

    Highlights: ► Recycled high density polyethylene and isotactic polypropylene blends have been prepared by melt compounding. ► Thermal study showed that iPP is not well dispersed into the rHDPE matrix. ► Tensile testing shows that there is strong correlation between the thermal properties and the tensile behavior of rHDPE/ipp blends. - Abstract: Polymer blending has become an important field in polymer research and especially in the area of recycling. In this research the target was to reduce the polymer waste problem. Therefore, recycled high density polyethylene (rHDPE) and virgin isotactic polypropylene (vPP) blends containing upto 30 wt% of vPP have been prepared by melt compounding method using injection molding at 220 °C. The thermal properties, thermal degradation and the mechanical properties of the polymer blends were studied using differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and tensile testing method. DSC study shows that in all the blends there are two melting peaks, one around the melting temperature of rHDPE and another one around the melting point of vPP, indicating that vPP is not well dispersed into the rHDPE matrix. The changes in the heat of fusion for the rHDPE/iPP polymer blends versus vPP content suggests that incorporating vPP affects the crystallinity of the system. TGA analysis of the polymer blends shows that parts of rHDPE with 95/5 upto 80/20 of vPP are mostly stable composition which brings about valuable stabilization to the rHDPE. Tensile testing shows that there is strong correlation between the thermal properties and the tensile behavior of rHDPE/vpp blends

  8. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging

    Science.gov (United States)

    Bonifazi, Giuseppe; Capobianco, Giuseppe; Serranti, Silvia

    2018-06-01

    The aim of this work was to recognize different polymer flakes from mixed plastic waste through an innovative hierarchical classification strategy based on hyperspectral imaging, with particular reference to low density polyethylene (LDPE) and high-density polyethylene (HDPE). A plastic waste composition assessment, including also LDPE and HDPE identification, may help to define optimal recycling strategies for product quality control. Correct handling of plastic waste is essential for its further "sustainable" recovery, maximizing the sorting performance in particular for plastics with similar characteristics as LDPE and HDPE. Five different plastic waste samples were chosen for the investigation: polypropylene (PP), LDPE, HDPE, polystyrene (PS) and polyvinyl chloride (PVC). A calibration dataset was realized utilizing the corresponding virgin polymers. Hyperspectral imaging in the short-wave infrared range (1000-2500 nm) was thus applied to evaluate the different plastic spectral attributes finalized to perform their recognition/classification. After exploring polymer spectral differences by principal component analysis (PCA), a hierarchical partial least squares discriminant analysis (PLS-DA) model was built allowing the five different polymers to be recognized. The proposed methodology, based on hierarchical classification, is very powerful and fast, allowing to recognize the five different polymers in a single step.

  9. Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite

    International Nuclear Information System (INIS)

    Shafiq, Muhammad; Yasin, Tariq

    2012-01-01

    Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses (≤75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature (T m ) and crystallization temperature (T c ) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation. - Highlights: → We have studied the effect of γ radiation on LLDPE containing Mg(OH) 2 and sepiolite. → IR spectra of the irradiated composites show reduction in the intensity of O-H band. → Reduction in OH band show a distinct structural change in Mg(OH) 2 at higher doses. → TGA results show two steps weight loss at low doses and one step at higher doses. → These results confirm that MH gradually loses its OH functionality with irradiation.

  10. Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene

    OpenAIRE

    Jaerger,Silvia; Zimmermann,Ademir; Zawadzki,Sonia Faria; Wypych,Fernando; Amico,Sandro Campos

    2014-01-01

    In this study, polymer composites using low-density polyethylene (LDPE) and layered hydroxide salts (LHS) were synthesized. The following compositions of LHS were obtained Zn5(OH)8(An-)2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3 -) or hydrophobic (A = DDS- – dodecyl sulfate or DBS- – dodecyl benzene sulfonate). Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, th...

  11. Comparative studies on physico-mechanical properties of composite materials of low density polyethylene and raw/calcined kaolin

    Directory of Open Access Journals (Sweden)

    Amit Mallik

    2015-06-01

    Full Text Available The paper describes the preparation of the composite materials of low density polyethylene (LDPE as the base mixed separately with raw kaolin and the same calcined at 800 °C under the same variation in weight percentage using single-screw extruder and a mixing machine operated at a temperature between 190 and 200 °C. Some of the mechanical and physical properties such as Young's modulus, elongation at break, shore hardness and water absorption were determined at different weight fractions of filler (0, 2, 7, 10 and 15%. It was found that the addition of filler increases the mechanical properties. Absorption test was done in water at different immersion times for different composites. The degree of water absorption of composite materials was found to decrease with increasing wt% of kaolin filler (0–15% according to Fick's law. Calcined kaolin produces better mechanical properties than raw kaolin.

  12. Preparation and characterization of high density polyethylene and residual fibre of Attalea funifera Mart (piacava) composites; Preparacao e caracterizacao de compositos de polietileno de alta densidade com residuos de fibras de piacava da especie Attalea funifera Mart

    Energy Technology Data Exchange (ETDEWEB)

    Agrela, Sara P.; Guimaraes, Danilo H.; Jose, Nadia M., E-mail: saraagrela@hotmail.co [Universidade Federal da Bahia (GECIM/IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencias dos Materiais; Carvalho, Gleidson G.P. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola de Medicina Veterinaria. Dept. de Producao Animal; Carvalho, Ricardo F. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Ambiental Urbana

    2009-07-01

    The use of natural fiber reinforcement thermoplastic polymer is continuously increasing. This fact is manly due to its advantages as low cost, availability, recyclability, low energy demand and then environmental appeal if compared to synthetics fibers. The composites were prepared in different fiber volume ratios (5%, 10% and 20%) mixed with high density polyethylene (HDPE) and heated at 190 deg C. Thermogravimetric analysis and differential scanning calorimetry were used to investigate thermal stability. The composites structure was characterized by Fourier Transform Infrared spectroscopy, X-ray diffractometry. Fiber and residue of piassava (Attalea funifera Mart) chemical composition were determined by Van Soest Method. The results indicate that thermo stability of the composites of HDPE prepared with fiber volume ratios up to 20% is only slightly lowered. (author)

  13. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    Energy Technology Data Exchange (ETDEWEB)

    AlMaadeed, M.A., E-mail: m.alali@qu.edu.qa [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Labidi, Sami [Center for Advanced Materials, Qatar University, 2713 Doha (Qatar); Krupa, Igor [QAPCO Polymer Chair, Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar); Karkri, Mustapha [Université Paris-Est CERTES, 61 avenue du Général de Gaulle, 94010 Créteil (France)

    2015-01-20

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  14. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends

    International Nuclear Information System (INIS)

    AlMaadeed, M.A.; Labidi, Sami; Krupa, Igor; Karkri, Mustapha

    2015-01-01

    Highlights: • Expanded graphite (EG) and low melting point (42.3 °C) wax were added to HDPE to form phase change material. • EG was well dispersed in the composites and did not affect the melting or crystallization of the HDPE matrix. • EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. • The addition of a relatively small quantity of EG enhances the heat conduction in the composite. • HDPE/40% RT42 that contained up to 15% EG demonstrated excellent mechanical and thermal properties and can be used as PCM. - Abstract: Phase change materials fabricated from high density polyethylene (HDPE) blended with 40 or 50 wt% commercial wax (melting point of 43.08 °C) and up to 15 wt% expanded graphite (EG) were studied. Techniques including scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and an experimental device to measure diffusivity and conductivity (DICO) were used to determine the microstructural, mechanical and thermal properties of the composites. The composites possessed good mechanical properties. Additionally, no leaching was observed during material processing or characterization. Although the Young’s modulus increased with the addition of EG, no significant changes in tensile strength were detected. The maximum Young’s modulus achieved was 650 MPa for the HDPE/40% wax composite with 15 wt% EG. The EG was well dispersed within the composites and did not affect the melting or crystallization of the HDPE matrix. The incorporation of EG increased the thermal stability of the composites by reducing chain mobility and inhibiting degradation. The intensification of thermal conductivity occurred with increasing fractions of EG, which was attributed to the high thermal conductivity of graphite. The maximum quantity of heat stored by latent heat was found for the HDPE/40% wax composite with EG. The addition of a relatively small quantity

  15. Conjunctivodacryocystorhinostomy using a high-density porous polyethylene-coated tear drain tube.

    Science.gov (United States)

    Pushker, Neelam; Khurana, Saurbhi; Shrey, Dinesh; Bajaj, Mandeep S; Chawla, Bhavna; Chandra, Mahesh

    2013-08-01

    To evaluate the outcome of conjunctivodacryocystorhinostomy using a high-density porous polyethylene (HDPP)-coated tear drain tube. Patients with epiphora due to a proximal lacrimal system block were included in a prospective interventional case study. A total of 22 eyes were treated with lacrimal bypass surgery using the HDPP-coated tube. On follow-up (12-41 months), 21 eyes had a patent well-positioned tube with subjective relief of epiphora. In one eye, a loose sleeve was noted during surgery. The tube dislodged postoperatively and was removed. A high success rate with only a few minor complications is achievable using a HDPP-coated tear drain tube for lacrimal bypass surgery. Long-term follow-up is required to look for tube blockage due to conjunctival or nasal mucosal overgrowth.

  16. Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition

    Science.gov (United States)

    Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ

    2017-10-01

    In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.

  17. Rheo-optical Raman study of microscopic deformation in high-density polyethylene under hot drawing

    OpenAIRE

    Kida, Takumitsu; Hiejima, Yusuke; Nitta, Koh-hei

    2015-01-01

    In situ observation of the microscopic structural changes in high-density polyethylene during hot drawing was performed by incorporating a temperature-controlled tensile machine into a Raman spectroscopy apparatus. It was found that the load sharing and molecular orientation during elongation drastically changed at 50°C. The microscopic stress of the crystalline chains decreased with increasing temperature and diminished around 50°C. Moreover, the orientation of the crystalline chains was gre...

  18. Characteristics of heat shrinkable high density polyethylene crosslinked by γ-irradiation

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang

    2001-01-01

    The effects of γ-irradiation on the crosslinking of high density polyethylene (HDPE) was investigated for the purpose of obtaining a suitable formulation for heat shrinkable materials. In this study the HDPE specimens were prepared by blending with cross linking agents and pressed into a 0.2 mm sheet at 180 .deg. C. γ-irradiation was conducted at 40 to 100 kGy in nitrogen. The heat shrinkable property and thermal mechanical property of the HDPE sheets have been investigated. It was found that the degree of crosslinking of the irradiated HDPE samples were increased with irradiation dose. Compared with the HDPE containing triallylisocyanurate, the HDPE containing trimethlol propane triacrylate shows a slight increase in crosslinking density. The heat transformation and dimension change of HDPE decreased with increasing radiation dose. The heat shrinkage of the samples increased with increasing annealing temperatures. The thermal resistance of HDPE increased upon the crosslinking of HDPE

  19. Effect of high energy electron beam (10 MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Z., E-mail: zhr_soltani@yahoo.com [Health Physics and Radiation Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ziaie, F. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Polymer Group, Golestan University, Golestan (Iran, Islamic Republic of); Beigzadeh, A.M. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10 MeV electron beam at doses of 75 to 250 kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100 °C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  20. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  1. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  2. Investigating the mechanical and barrier properties to oxygen and fuel of high density polyethylene–graphene nanoplatelet composites

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, K., E-mail: honakers@egr.msu.edu; Vautard, F.; Drzal, L.T.

    2017-02-15

    Highlights: • Melt mixing used to investigate high density polyethylene and graphene nanoplatelet composite. • Addition of graphene nanoplatelets resulted in a stiffer polymer matrix. • Presence of graphene nanoplatelets causes a decrease in oxygen and fuel permeation. - Abstract: Graphene nanoplatelets (GnP) of different sizes were investigated for their ability to modify high density polyethylene (HDPE) for potential fuel system applications, focusing on compounding via melt mixing in a twin-screw extruder. Mechanical properties, crystallinity of the polymer, and permeation to oxygen and fuel were assessed as a function of GnP concentration. The surface of GnP acted as a nucleation site for the generation of HDPE crystallites, increasing the crystallinity. The flexural properties were improved, clearly influenced by platelet size and quality of dispersion. A sharp, 46% decrease of the impact resistance was observed, even at low GnP concentration (0.2 wt.%). With a 15 wt.% GnP-M-15 (platelets with a 15 μm diameter), a 73% reduction in oxygen permeation was observed and a 74% reduction in fuel vapor transmission. This correlation was similar throughout the GnP concentration range. The smaller diameter platelets had a lesser effect on the properties.

  3. Conversion of Mixed Plastic Wastes (High Density Polyethylene and Polypropylene) into Liquid Fuel

    International Nuclear Information System (INIS)

    Chaw Su Su Hmwe; Tint Tint Kywe; Moe Moe Kyaw

    2010-12-01

    In this study, mixed plastic wastes were converted into liquid fuels. Mixed plastic wastes used were high density polyethylene (HDPE) and polypropylene (PP). The pyrolysis of mixed plastic waste to liquid fuel was carried out with and without prepared zeolite catalyst.The catalyst was characterized by X-ray Diffraction (XRD). This catalyst was pre-treated for activation. The experiments were carried out at temperature range of 350-410C.Physical properties (density, kinematic, viscosity,refractive index)of prepared liquid fuel samples were measured. From this study, yields of liquid fuel and gas fuel were found to be 41-64% and 15-35% respectively. As for by products, char was obtained as the yield percentages from 9 to 14% and wax (yield% - 1 to 14) was formed during pyrolysis.

  4. The alterations in high density polyethylene properties with gamma irradiation

    Science.gov (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  5. The role of intramolecular crosslinking in the radiolysis of bulk crystallized high density polyethylene

    International Nuclear Information System (INIS)

    Lyons, B.J.

    1986-01-01

    Intramolecular crosslinks have been suggested to occur in bulk crystallized, irradiated, high density polyethylene (HDPE) and to account for the low rates of gel formation, especially those of previously annealed samples when compared with that manifested by the same resin when previously quenched from the melt. Such crosslinks do not contribute to the development of gel and contribute to only a limited extent to the elastic properties above the crystalline melting point when compared with intermolecular crosslinks, but, if the mesh size of the intra- and inter-molecular networks are comparable, are fully reflected in the rupture elongation. The rupture elongations of a wide range of HDPE resins, for a given sol fraction or elastic modulus, are found to be at least as high as and often higher than those of low (LDPE) or linear low (LLDPE) polyethylene resins, indicating that intramolecular crosslinking of this type does not occur to a significantly greater extent in these higher crystallinity resins. Other factors more likely to account for the reduced rates of inter alia gel formation in some HDPE resins are discussed. (author)

  6. Catalytic degradation of waste high-density polyethylene into fuel products using BaCO{sub 3} as a catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jan, M. Rasul; Shah, Jasmin; Gulab, Hussain [Institute of Chemical Sciences, University of Peshawar, N.W.F.P. (Pakistan)

    2010-11-15

    Waste high-density polyethylene (HDPE) was degraded thermally and catalytically using BaCO{sub 3} as a catalyst under different conditions of temperature, cat/pol ratio and time. The oil collected at optimum conditions (450 C, 0.1 cat/pol ratio and 2 h reaction time) was fractionated at different temperatures and fuel property of the fractions and parent oil was evaluated by their physicochemical parameters for fuel tests. The results were compared with the standard values for gasoline, kerosene and diesel oil. Boiling point distribution (BPD) curves were plotted from the gas chromatographic study of the samples and compared with that of the standard gasoline, kerosene and diesel. The oil samples were analyzed using GC/MS in order to find out their composition. The physical parameters and the composition of the parent oil and its fractions support the resemblance of the samples with the standard fuel oils. The light fractions best match with gasoline, the middle fractions match with kerosene and the heavier fractions match with diesel oil in almost all of the characteristic properties. (author)

  7. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua [College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China); Wang, Qingguo, E-mail: wqgyyy@126.com [College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China); Xu, Jing, E-mail: jiaxu@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China)

    2016-11-15

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.

  8. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    International Nuclear Information System (INIS)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-01-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm −1 ) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.

  9. Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks.

    Science.gov (United States)

    del Alamo-Sanza, María; Laurie, V Felipe; Nevares, Ignacio

    2015-04-01

    Porous plastic tanks are permeable to oxygen due to the nature of the polymers with which they are manufactured. In the wine industry, these types of tanks are used mainly for storing wine surpluses. Lately, their use in combination with oak pieces has also been proposed as an alternative to mimic traditional barrel ageing. In this study, the spatial distribution of dissolved oxygen in a wine-like model solution, and the oxygen transfer rate (OTR) of high-density polyethylene tanks (HDPE), was analysed by means of a non-invasive opto-luminescence detector. Also, the chemical and sensory evolution of red wine, treated with oak pieces, and stored in HDPE tanks was examined and compared against traditional oak barrel ageing. The average OTR calculated for these tanks was within the commonly accepted amounts reported for new barrels. With regards to wine evolution, a number of compositional and sensory differences were observed between the wines aged in oak barrels and those stored in HDPE tanks with oak barrel alternatives. The use of HDPE tanks in combination with oak wood alternatives is a viable alternative too for ageing wine. © 2014 Society of Chemical Industry.

  10. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.

    Science.gov (United States)

    Lee, Jongho; Fearing, Ronald S

    2012-10-30

    Biologically inspired adhesives developed for switchable and controllable adhesion often require repetitive uses in general, dirty, environments. Superhydrophobic microstructures on the lotus leaf lead to exceptional self-cleaning of dirt particles on nonadhesive surfaces with water droplets. This paper describes the self-cleaning properties of a hard-polymer-based adhesive formed with high-aspect-ratio microfibers from high-density polyethylene (HDPE). The microfiber adhesive shows almost complete wet self-cleaning of dirt particles with water droplets, recovering 98% of the adhesion of the pristine microfiber adhesives. The low contact angle hysteresis indicates that the surface of microfiber adhesives is superhydrophobic. Theoretical and experimental studies reveal a design parameter, length, which can control the adhesion without affecting the superhydrophobicity. The results suggest some properties of biologically inspired adhesives can be controlled independently by adjusting design parameters.

  11. Mechanical behavior of recycled polyethylene/piassava fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Elzubair, Amal, E-mail: amal@metalmat.ufrj.br [Universidade Federal de Rio de Janeiro, Departamento de Engenharia Metalurgica e de Materiais, Ilha do Fundao, Bloco F, 21941-972 Rio de Janeiro, RJ (Brazil); Praca General Tiburcio, 80, Urca, 22290-270 Rio de Janeiro, RJ (Brazil); Miguez Suarez, Joao Carlos, E-mail: jmiguez@ime.eb.br [Instituto Militar de Engenharia, Secao de Engenharia Mecanica e de Materiais, Praca General Tiburcio, 80, Urca, 22290-270, Rio de Janeiro, RJ (Brazil); Praca General Tiburcio, 80, Urca, 22290-270 Rio de Janeiro, RJ (Brazil)

    2012-11-15

    The use of natural fibers for reinforcement of thermoplastics (which are found in domestic waste) is desirable since it is based on abundant and renewable resources and can be ecologically correct. Leopoldinia piassaba Wallace (commonly known as piassava), a palm tree native of Amazon-Brazil, is cheap, easily found in Brazilian markets and the main component of home appliances and decorative goods. The subject of the present work is a study of mechanical properties of composites of recycled high density polyethylene (HDPE-r) reinforced with untreated, and treated (silane and NaOH) piassava fibers, in proportions varying from 0% to 20% and injection molded under fixed processing conditions. The influence of increasing amounts of piassava fibers and of surface treatment on the mechanical behavior of the composites was investigated by thermogravimetric analysis (TGA), mechanical testing (tensile and flexure) and scanning electron microscopy (SEM). The topography of the fractured surfaces of tested tensile specimens of unfilled and filled recycled HDPE was also observed by SEM and correlated with the mechanical behavior. As the fiber content increases, the composites show a gradual change in the mechanical properties and in the fracture mechanisms. Composites with 15% and 20% of piassava fibers were found to exhibit the best mechanical performance.

  12. Use of gamma radiation for the obtainment of a polyethylene-sugarcane bagasse composite

    International Nuclear Information System (INIS)

    Romero, Guillermo R.; Gonzalez, Maria E.

    2003-01-01

    The preparation and some properties of a composite obtained by reactive extrusion of a medium density polyethylene and sugarcane bagasse fiber previously treated with gamma radiation in the presence of a reactive additive is presented. The proportion of fiber to polyethylene was approximately 50 % w/w. According to the electronic microscopic observation the fibers had a homogeneous distribution and were oriented in a longitudinal sense in the material. The material resulted suitable for processing by extrusion, injection or compression molding. Its water absorption capacity was similar to polyethylene and its flexion modulus was higher by about 60 %. Penetration measurements with a 1-mm penetrometers gave values intermediate between that of pine and polypropylene. (author)

  13. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets

    DEFF Research Database (Denmark)

    Carotenuto, G.; De Nicola, S.; Palomba, M.

    2012-01-01

    The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change...... in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been...

  14. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    Science.gov (United States)

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  15. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2015-11-01

    Full Text Available Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE compatibilized by Chloroprene rubber (CR were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML and maximum torque (MH of blends increased with increasing weight ratio of HDPE while scorch time (ts2 cure time (tc90, compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  16. Rice husk ash – A valuable reinforcement for high density polyethylene

    International Nuclear Information System (INIS)

    Ayswarya, E.P.; Vidya Francis, K.F.; Renju, V.S.; Thachil, Eby Thomas

    2012-01-01

    Highlights: ► RHA is formed from the incineration of rice husk. ► RHA is mainly a mixture of silica with various metallic compounds. ► RHA is a valuable reinforcing material for HDPE. ► RHA can be incorporated into HDPE by the melt blending process. ► The best mechanical properties are observed at 1.5% RHA and 15% compatibilizer. -- Abstract: This paper presents the results of a study on the use of rice husk ash (RHA) for property modification of high density polyethylene (HDPE). Rice husk is a waste product of the rice processing industry. It is used widely as a fuel which results in large quantities of RHA. Here, the characterization of RHA has been done with the help of X-ray diffraction (XRD), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES), light scattering based particle size analysis, Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Most reports suggest that RHA when blended directly with polymers without polar groups does not improve the properties of the polymer substantially. In this study RHA is blended with HDPE in the presence of a compatibilizer. The compatibilized HDPE-RHA blend has a tensile strength about 18% higher than that of virgin HDPE. The elongation-at-break is also higher for the compatibilized blend. TGA studies reveal that uncompatibilized as well as compatibilized HDPE-RHA composites have excellent thermal stability. The results prove that RHA is a valuable reinforcing material for HDPE and the environmental pollution arising from RHA can be eliminated in a profitable way by this technique.

  17. Interfacial stick–slip transition in hydroxyapatite filled high density ...

    Indian Academy of Sciences (India)

    Unknown

    flow curves of composites and that of unfilled system remain identical. Filler addition lowers the .... Injection moulding grade high density polyethylene,. HD6070EA, was ... rheometer (Rosand Precision Ltd., UK) using version. 6⋅10 software. .... Bagley E B, Cabbot I M and West D C 1958 J. Appl. Phys. 29. 109. Blyler L L and ...

  18. Temperature dependence of radiation effects in polyethylene

    International Nuclear Information System (INIS)

    Wu, G; Katsumura, Y.; Kudoh, H.; Morita, Y.; Seguchi, T.

    2000-01-01

    Temperature dependence of crosslinking and gas evolution under γ-irradiation was studied for high-density and low-density polyethylene samples in the 30-360degC range. It was found that crosslinking was the predominant process up to 300degC and the gel point decreased with increasing temperature. At above 300degC, however, the gel fraction at a given dose decreased rapidly with temperature and the action of radiation turned to enhance polyethylene degradation. Yields of H 2 and hydrocarbon gases increased with temperature and the compositions of hydrocarbons were dose dependent. (author)

  19. Tensile properties and water absorption assessment of linear low-Density Polyethylene/Poly (Vinyl Alcohol)/Kenaf composites: effect of eco-friendly coupling agent

    Science.gov (United States)

    Pang, A. L.; Ismail, H.; Abu Bakar, A.

    2018-02-01

    Linear low-density polyethylene (LLDPE)/poly (vinyl alcohol) (PVOH) filled with untreated kenaf (UT-KNF) and eco-friendly coupling agent (ECA)-treated kenaf (ECAT-KNF) were prepared using ThermoHaake internal mixer, respectively. Filler loadings of UT-KNF and ECAT-KNF used in this study are 10 and 40 parts per hundred parts of resin (phr). The effect of ECA on tensile properties and water absorption of LLDPE/PVOH/KNF composites were investigated. Field emission scanning electron microscopy (FESEM) analysis was applied to visualize filler-matrix adhesion. The results indicate LLDPE/PVOH/ECAT-KNF composites possess higher tensile strength and tensile modulus, but lower elongation at break compared to LLDPE/PVOH/UT-KNF composites. The morphological studies of tensile fractured surfaces using FESEM support the increment in tensile properties of LLDPE/PVOH/ECAT-KNF composites. Nevertheless, LLDPE/PVOH/UT-KNF composites reveal higher water absorption compared to LLDPE/PVOH/ECAT-KNF composites.

  20. Enhancement of high density polyethylene high integrity containers at a low level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Sauer, R.E.; Wong, O.P.

    1989-01-01

    High integrity containers (HIC) made of high density polyethylene (HDPE) have been used for disposal in South Carolina since the late seventies. With the recent definitive position taken by the NRC on the suitability of these containers for disposal, alternative means of assuring the structural integrity of the containers for the long term became necessary. The authors' company has developed an utilized reinforced concrete caissons at the Hanford, Washington site as an additional barrier and structural element to assure the long term high integrity function of the current HDPE HIC's also known as Poly HIC's on the market. This paper outlines the background of the HIC's in question, the NRC positions and ruling, and presents technical bases for the applicability of appropriately designed concrete overpacks to augment the structural integrity of HIC's

  1. Characteristics of recycled and electron beam irradiated high density polyethylene samples

    International Nuclear Information System (INIS)

    Cardoso, Jessica R.; Gabriel, Leandro; Geraldo, Aurea B.C.; Moura, Eduardo

    2015-01-01

    Polymers modification by irradiation is a well-known process that allows degradation and cross-linking in concurrent events; this last is expected when an increase of mechanical properties is required. Actually, the interest of recycling and reuse of polymeric material is linked to the increase of plastics ending up in waste streams. Therefore, these both irradiation and recycling process may be conducted to allow a new use to this material that would be discarded by an improvement of its mechanical properties. In this work, the High Density Polyethylene (HDPE) matrix has been recycled five times from original substrate. The electron beam irradiation process was applied from 50 kGy to 200 kGy in both original and recycled samples; in this way, mechanical properties and thermal characteristics were evaluated. The results of applied process and material characterization are discussed. (author)

  2. Characteristics of recycled and electron beam irradiated high density polyethylene samples

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jessica R.; Gabriel, Leandro; Geraldo, Aurea B.C.; Moura, Eduardo, E-mail: jrcardoso@ipen.br, E-mail: lgabriell@gmail.com, E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Polymers modification by irradiation is a well-known process that allows degradation and cross-linking in concurrent events; this last is expected when an increase of mechanical properties is required. Actually, the interest of recycling and reuse of polymeric material is linked to the increase of plastics ending up in waste streams. Therefore, these both irradiation and recycling process may be conducted to allow a new use to this material that would be discarded by an improvement of its mechanical properties. In this work, the High Density Polyethylene (HDPE) matrix has been recycled five times from original substrate. The electron beam irradiation process was applied from 50 kGy to 200 kGy in both original and recycled samples; in this way, mechanical properties and thermal characteristics were evaluated. The results of applied process and material characterization are discussed. (author)

  3. Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Ju

    2014-09-01

    Full Text Available Four kinds of nanosilica particles with different surface modification were employed to fabricate low-density polyethylene (LDPE composites using melt mixing and hot molding methods. The surface chemistry of modified nanosilica was analyzed by X-ray photoelectron spectroscopy. All silica nanoparticles were found to suppress the space charge injection and accumulation, increase the volume resistivity, decrease the permittivity and dielectric loss factor at low frequencies, and decrease the dielectric breakdown strength of the LDPE polymers. The modified nanoparticles, in general, showed better dielectric properties than the unmodified ones. It was found that the carrier mobility, calculated from J–V curves using the Mott-Gurney equation, was much lower for the nanocomposites than for the neat LDPE.

  4. RF plasma cleaning of silicon substrates with high-density polyethylene contamination

    Science.gov (United States)

    Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.

  5. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    International Nuclear Information System (INIS)

    Martínez-Romo, A; Mota, R González; Bernal, J J Soto; Candelas, I Rosales; Reyes, C Frausto

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation

  6. Mechanical and Thermal Properties of Bamboo Pulp Fiber Reinforced Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Wenhan Ren

    2014-05-01

    Full Text Available The purpose of this study was to investigate the mechanical and thermal properties of high-density polyethylene (HDPE composites reinforced by bamboo pulp fibers (BPF. Using a twin-screw extruder, polymer composites were fabricated using BPF and bamboo flour (BF as the reinforcement and HDPE as the matrix. Tensile and flexural tests of the HDPE composites were performed to determine the mechanical properties under different conditions. The thermal properties of HDPE composites were characterized by thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA. The results showed that BPF improved the mechanical and thermal properties of the polymer composites more than did BF. The tensile and flexural strength of composites with 30 wt% BPF were increased by 61.46% and 22.94%, respectively, while the tensile and flexural modulus were increased by 84.52% and 27.30%, respectively. Compared to composites with 50 wt% BF, the T5% of composites with 50 wt% BPF increased by 20.18 °C. As the BPF content increased, the storage modulus (E’ and loss modulus (E” initially increased, followed by a decrease. Compared to the BF/HDPE composites, BPF/HDPE composites reinforced at 30 wt% had a higher storage modulus (E’ and loss modulus (E” and lower damping parameter (tanδ.

  7. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2016-12-01

    Full Text Available In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene on physical-mechanical properties of low density polyethylene (LDPE composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (BS bagasse pulp, unbleached soda (UNS bagasse pulp and raw bagasse fibers (B were prepared. Then, composites with 30wt.% fiber content were manufactured by twin-screw extrusion followed by compression molding processing. The mechanical and physical properties of these composites were analyzed and compared. Results revealed that the chemical pulping dissolved a fraction of lignin and hemicelluloses so that the linkage potential and aspect ratio of bagasse fibers was improved and consequently, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability. The best overall properties were achieved with MEA and AS/AQ fibers. Addition of 5% (wt/wt of coupling agent MAPE resulted in a significant enhancement in the tensile strength, tensile modulus and impact strength in line with the improvement of the fiber-matrix interfacial adhesion making more effective the transfer of stress from the matrix to the rigid reinforcement.

  8. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  9. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE

    Directory of Open Access Journals (Sweden)

    S. S. Cota

    2007-06-01

    Full Text Available This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates.

  10. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE)

    International Nuclear Information System (INIS)

    Cota, S.S.; Vasconcelos, V.; Senne Junior, M.; Carvalho, L.L.; Rezende, D.B.; Correa, R.F.

    2007-01-01

    This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE) samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates. (author)

  11. Static viscoelasticity of biomass polyethylene composites

    Directory of Open Access Journals (Sweden)

    Keyan Yang

    Full Text Available The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA. Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk. Keywords: Biomass, Composites, Calcium carbonate, Static viscoelasticity, Creep, Stress relaxation

  12. Thermal and optical excitation of trapped electrons in high-density polyethylene (HDPE) studied through positron annihilation

    International Nuclear Information System (INIS)

    Nahid, F.; Zhang, J.D.; Yu, T.F.; Ling, C.C.; Fung, S.; Beling, C.D.

    2011-01-01

    Positronium (Ps) formation in high-density polyethylene (HDPE) has been studied below the glass transition temperature. The formation probability increases with positron irradiation time due to an increasing number of inter-track trapped electrons becoming available for positron capture. The temperature variation of the saturated Ps level is discussed in different models. The quenching of trapped electrons by light has been studied and the optical de-trapping cross-section for different photon energies has been estimated over the visible region.

  13. Modification of low density polyethylene, isostatic polypropylene and their blends by gamma radiation

    International Nuclear Information System (INIS)

    Santos Rosa, D. dos

    1991-01-01

    The effects of the gamma radiation (of a 60 Co source), over low density polyethylene, isostatic polypropylene and their blends of low density polyethylene / polypropylene were studied. The structures modifications were attended by infrared spectrometry (IV), differential scanning calorimeter (DSC), strain-strain measurement, density measurement and scanning electron microscope (SEM). (author)

  14. Graphite-high density polyethylene laminated composites with high thermal conductivity made by filament winding

    Directory of Open Access Journals (Sweden)

    W. Lv

    2018-03-01

    Full Text Available The low thermal conductivity of polymers limits their use in numerous applications, where heat transfer is important. The two primary approaches to overcome this limitation, are to mix in other materials with high thermal conductivity, or mechanically stretch the polymers to increase their intrinsic thermal conductivity. Progress along both of these pathways has been stifled by issues associated with thermal interface resistance and manufacturing scalability respectively. Here, we report a novel polymer composite architecture that is enabled by employing typical composites manufacturing method such as filament winding with the twist that the polymer is in fiber form and the filler in form of sheets. The resulting novel architecture enables accession of the idealized effective medium composite behavior as it minimizes the interfacial resistance. The process results in neat polymer and 50 vol% graphite/polymer plates with thermal conductivity of 42 W·m–1·K–1 (similar to steel and 130 W·m–1·K–1 respectively.

  15. Swift heavy ion irradiation effects on carbonyl and trans-vinylene groups in high and low density polyethylene

    International Nuclear Information System (INIS)

    Grosso, M.F. del; Chappa, V.C.; Arbeitman, C.R.; Garcia Bermudez, G.; Behar, M.

    2009-01-01

    In this work, we have studied the effects of swift heavy ion irradiation on the creation of new functional groups in high and low density polyethylene (HDPE and LDPE). Polymers were irradiated with different ions (6.77 MeV He and 47 MeV Li) and fluences. The induced changes were analyzed by Fourier transform infrared (FTIR) spectroscopy. Creation and damage cross sections for some groups were compared for two different types of PE.

  16. Swift heavy ion irradiation effects on carbonyl and trans-vinylene groups in high and low density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.a [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); Chappa, V.C. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); CONICET (Argentina); Arbeitman, C.R. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); Garcia Bermudez, G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA (Argentina); CONICET (Argentina); Escuela de Ciencia y Tecnologia, UNSAM (Argentina); Behar, M. [Instituto de Fisica, UFRGS, Porto Alegre (Brazil)

    2009-10-01

    In this work, we have studied the effects of swift heavy ion irradiation on the creation of new functional groups in high and low density polyethylene (HDPE and LDPE). Polymers were irradiated with different ions (6.77 MeV He and 47 MeV Li) and fluences. The induced changes were analyzed by Fourier transform infrared (FTIR) spectroscopy. Creation and damage cross sections for some groups were compared for two different types of PE.

  17. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene

    International Nuclear Information System (INIS)

    Önal, Eylem; Uzun, Başak Burcu; Pütün, Ayşe Eren

    2014-01-01

    Highlights: • We investigate to see the effect of HDPE addition on thermal decomposition of lignocellulosic materials. • Increasing the proportion of HDPE in mixtures increases the oil yields. • After co-pyrolysis applied, obtained oil is more stable due to having lower oxygen content and higher heating value. • The addition of HDPE to aS has a positive effect on fuel properties of obtained oil. - Abstract: Biomass from almond shell (aS) was co-pyrolyzed with high density polyethylene (HDPE) polymer to investigate the synergistic effects on the product yields and compositions. The pyrolysis temperature was selected as 500 °C, based on results of TGA-DTG. Co-pyrolysis of HDPE-biomass mixtures were pyrolysed with various proportions such as 1:0, 1:1, 1:2, 2:1 and 0:1. The yield of liquids produced during co-pyrolysis enhanced 23%, as the weight ratio of HDPE in the mixture was doubled. Obtained bio-oils were analyzed with using column chromatography, 1 H NMR, GC/MS, and FT-IR. According to analyses results, produced liquids by co-pyrolysis had higher carbon (26% higher) and hydrogen contents (78% higher), lower oxygen content (%86 less) with a higher heating value (38% higher) than those of biomass oil

  18. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  19. Portsmouth On-Site Disposal Cell High Density Polyethylene Geomembrane Longevity

    International Nuclear Information System (INIS)

    Phifer, M.

    2012-01-01

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  20. Radiation-assisted grafting of vinylidene chloride onto high-density polyethylene

    Science.gov (United States)

    Nagesh, N.; Dokhale, P. A.; Bhoraskar, V. N.

    1999-06-01

    6 MeV electrons and Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays were used for grafting vinylidene chloride (VDC) onto high-density polyethylene (HDPE) samples. The HDPE samples were immersed in vinylidene chloride and irradiated either with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays or with 6 MeV electrons. In both cases, the radiation dose was varied in the range 1.25-7.5 kGy. The grafted samples were characterized by IR spectroscopy to obtain information about the chemical bonds and with the 14 MeV neutron activation analysis technique for estimating the number of chlorine atoms. The formation of stable bonds between the VDC molecules and the polymer chains could be achieved either with 6 MeV electrons or with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays. Both the number of chlorine atoms and the sample-surface conductivity increased with the radiation dose but the increases achieved with 6 MeV electrons were greater than those achieved with Co-60 icons/Journals/Common/gamma" ALT="gamma" ALIGN="TOP"/>-rays.

  1. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    Science.gov (United States)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  2. Reinforcement of natural rubber/high density polyethylene blends with electron beam irradiated liquid natural rubber-coated rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Chong, E.L.; Ahmad, Ishak [Polymer Research Center (PORCE), School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia 4, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Dahlan, H.M. [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia); Abdullah, Ibrahim, E-mail: dia@ukm.m [Polymer Research Center (PORCE), School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia 4, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2010-08-15

    Coating of rice husk (RH) surface with liquid natural rubber (LNR) and exposure to electron beam irradiation in air were studied. FTIR analysis on the LNR-coated RH (RHR) exposed to electron beam (EB) showed a decrease in the double bonds and an increase in hydroxyl and hydrogen bonded carbonyl groups arising from the chemical interaction between the active groups on RH surface with LNR. The scanning electron micrograph showed that the LNR formed a coating on the RH particles which transformed to a fine and clear fibrous layer at 20 kGy irradiation. The LNR film appeared as patches at 50 kGy irradiation due to degradation of rubber. Composites of natural rubber (NR)/high density polyethylene (HDPE)/RHR showed an optimum at 20-30 kGy dosage with the maximum stress, tensile modulus and impact strength of 6.5, 79 and 13.2 kJ/m{sup 2}, respectively. The interfacial interaction between the modified RH and TPNR matrix had improved on exposure of RHR to e-beam at 20-30 kGy dosage.

  3. Temperature dependence study of positronium formation in high density polyethylene by positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Nahid, F.; Beling, C.D.; Fung, S.

    2007-01-01

    Positron annihilation lifetime spectroscopy has been used to study the formation of positronium in high density polyethylene as a function of temperature over the range 30 K-350 K. It is observed that the thermal history of the sample, while having no influence on the positronium lifetime, has a strong effect on the formation of positronium. A hysteresis is seen in the positronium formation probability in cooling and heating cycles. This is explained on a two channel formation model, the first channel being through ''blob'' formation and the second through the pick-up of shallow trapped electrons. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Durability of a fin-tube latent heat storage using high density polyethylene as PCM

    Science.gov (United States)

    Zauner, Christoph; Hengstberger, Florian; Etzel, Mark; Lager, Daniel; Hofmann, Rene; Walter, Heimo

    2017-10-01

    Polymers have rarely been used as storage materials in latent heat storages up to now. Thus, we systematically screened all polymers available on a large-scale, selected promising ones based on their theoretical properties and experimentally tested more than 50 candidates. We found that polyethylene, polyoxymethylene and polyamides are promising even as recycled material. Especially high density polyethylene (HDPE) turned out to be suitable as was shown by detailed thermophysical characterization including more than 1000 heating and cooling cycles for INEOS Rigidex HD6070EA. We built a storage with 170 kg HDPE and a total mass of 600 kg based on a fin-tube heat exchanger and characterized its energy capacity, power characteristics and temperature profiles using a thermal oil test rig. In total we performed 30 melting and crystallization cycles where the whole storage was above 100 °C for more than 140 hours. After usage we examined the interior of the storage by cutting it into various pieces. A thin layer of degradation was observed on the surfaces of the PCM which is most likely related to thermo-oxidative degeneration of HDPE. However, the bulk of the PCM is still intact as well as the heat exchanger itself.

  5. Modeling of branching density and branching distribution in low-density polyethylene polymerization

    NARCIS (Netherlands)

    Kim, D.M.; Iedema, P.D.

    2008-01-01

    Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties

  6. Preparation, structure and properties of uniaxially oriented polyethylene-silver nanocomposites

    NARCIS (Netherlands)

    Dirix, Y.J.L.; Bastiaansen, C.W.M.; Caseri, W.R.; Smith, P.

    1999-01-01

    Uniaxially oriented composites of high-density polyethylene and silver nanoparticles were prepared using solution-casting, melt-extrusion and solid-state drawing techniques. The absorption spectrum in the visible wavelength range of the drawn nanocomposites was observed to strongly depend on the

  7. Pengaruh Konsentrasi Maleat Anhidrat Terhadap Derajat Grafting Maleat Anhidrat Pada High Density Polyethylene ( HDPE ) Dengan Inisiator Benzoil Peroksida

    OpenAIRE

    Iwan Pranata Sitepu

    2009-01-01

    Telah dilakukan penelitian tentang pengaruh konsentrasi maleat anhidrat terhadap derajat grafting maleat anhidrat pada High Density Polyethylene ( HDPE ) dengan inisiator Benzoil Peroksida, dilakukan dengan teknik pengolahan reaktif dalam Internal Mixer pada suhu 1450C dan waktu proses selama 60 menit dengan variasi komposisi HDPE:MA:BPO, 95:3:2, 92:6:2, 89:9:2, 86:12:2 dan 83:15:2. Selanjutnya dilakukan penentuan derajat grafting dengan metode titrasi dan analisis spektra FTIR untuk menen...

  8. Grafting functional antioxidants on highly crosslinked polyethylene

    Science.gov (United States)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  9. Effect of wood filler treatment and EBAGMA compatibilizer on morphology and mechanical properties of low density polyethylene/olive husk flour composites

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available This paper deals with plastic-wood composites based on low density polyethylene (LDPE and olive husk flour (OHF. The problem of incompatibility between the hydrophilic wood filler and the LDPE hydrophobic matrix was treated by two methods: a chemical modification of the olive husk flour with maleic anhydride to esterify the free hydroxyl groups of the wood components and the use of a compatibilizer agent, i.e. an ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA terpolymer. The changes in the structure, the morphology, and the properties resulting from these treatments were followed by various techniques, especially FTIR spectroscopy, scanning electron microscopy (SEM, tensile measurements and water absorption. The experimental results indicated that both methods, i.e. the chemical treatment of the olive husk flour with maleic anhydride and the inclusion of EBAGMA terpolymer, improved the interactions between the two composite components and promoted better dispersion of the filler in the matrix. Moreover, ultimate tensile properties were also increased. However, the use of EBAGMA terpolymer as compatibilizer produced better enhancement of the properties of LDPE/OHF composites compared to those treated with maleic anhydride.

  10. Structural, luminescent and thermal properties of blue SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} phosphor filled low-density polyethylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Bem, D.B. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Luyt, A.S. [Department of Chemistry, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, F.B., E-mail: dejenebf@qwa.ufs.ac.z [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 70000, Port Elizabeth 6031 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2009-12-01

    The performance of nanophase luminophors is usually compromised by environmentally induced degradation. In this study, composites of low density polyethylene (LDPE) with various concentrations of the blue-emitting europium and dysprosium co-doped strontium aluminate (SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+}) phosphor were investigated. The blue long-lasting phosphorescence of the composites was observed in the dark after removal of the excitation light. X-ray diffraction analysis revealed the presence of the SrAl{sub 2}O{sub 4} phase in the composites. PL spectra of the composites have two sets of peaks, major broad bands peaking at about 4855 A and minor ones at wavelengths between 4115 and 4175 A, attributed to the 4f-5d transition of Eu{sup 2+}. DSC and TGA results show that the introduction of the phosphor in LDPE matrix caused a slight reduction in the crystallinity of LDPE but a significant increase in the stability of the composites.

  11. Mechanical and morphological study of linear low density polyethylene (LLDPE)/cyperus odoratus (CY) biocomposites

    Science.gov (United States)

    Faris, N. A.; Noriman, N. Z.; Haron, Adli; Sam, S. T.; Hamzah, R.; Shayfull, Z.; Ghazali, M. F.

    2017-09-01

    The potential of Cyperus Odoratus (CY) as a filler was studied. The CY, in a powder form, was mixed with Linear Low Density Polyethylene (LLDPE), prior to being fed into a twin screw extruder and subsequently into an injection moulding machine to produce LLDPY/CY biocomposites. The Scanning Electron Microscope (SEM) was utilized and tensile tests were performed on the test specimens to characterize the structure and properties of the composites. The integration of CY powder and LLDPE resulted in an increment of the modulus of elasticity, but a reduction in tensile strength and elongation at break. The morphology characterization of these composites, determined through the SEM, showed poor interfacial adhesion between the filler and the thermoplastic LLDPE matrix.

  12. On the sensitivity of dimensional stability of high density polyethylene on heating rate

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available Although high density polyethylene (HDPE is one of the most widely used industrial polymers, its application compared to its potential has been limited because of its low dimensional stability particularly at high temperature. Dilatometry test is considered as a method for examining thermal dimensional stability (TDS of the material. In spite of the importance of simulation of TDS of HDPE during dilatometry test it has not been paid attention by other investigators. Thus the main goal of this research is concentrated on simulation of TDS of HDPE. Also it has been tried to validate the simulation results and practical experiments. For this purpose the standard dilatometry test was done on the HDPE speci­mens. Secant coefficient of linear thermal expansion was computed from the test. Then by considering boundary conditions and material properties, dilatometry test has been simulated at different heating rates and the thermal strain versus temper­ature was calculated. The results showed that the simulation results and practical experiments were very close together.

  13. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    International Nuclear Information System (INIS)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-01-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE. (authors)

  14. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    Science.gov (United States)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-08-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE.

  15. Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries

    International Nuclear Information System (INIS)

    Jeong, Hyun-Seok; Choi, Eun-Sun; Kim, Jong Hun; Lee, Sang-Young

    2011-01-01

    Highlights: → Microporous-structured PVdF-HFP/PET composite nonwoven separators for Li-batteries. → Well-developed microporous structure and liquid electrolyte wettability. → Provision of facile ion transport and suppressed growth of cell impedance. → Superior cell performance at high-voltages/high-current densities. - Abstract: We demonstrate potential application of a new composite non-woven separator, which is comprised of a phase inversion-controlled, microporous polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) gel polymer electrolyte and a polyethylene terephthalate (PET) non-woven support, to high-voltage and high-power lithium-ion batteries. In comparison to a commercialized polyethylene (PE) separator, the composite non-woven separator exhibits distinct improvements in microporous structure and liquid electrolyte wettability. Based on the understanding of the composite non-woven separator, cell performances of the separator at challenging charge/discharge conditions are investigated and discussed in terms of ion transport of the separator and AC impedance of the cell. The aforementioned advantageous features of the composite non-woven separator play a key role in providing facile ion transport and suppressing growth of cell impedance during cycling, which in turn contribute to superior cell performances at harsh charge/discharge conditions such as high voltages and high current densities.

  16. Graphite nanoplatelets and carbon nanotubes based polyethylene composites: Electrical conductivity and morphology

    International Nuclear Information System (INIS)

    Haznedar, Galip; Cravanzola, Sara; Zanetti, Marco; Scarano, Domenica; Zecchina, Adriano; Cesano, Federico

    2013-01-01

    Graphite nanoplatelets (GNPs) and/or multiwalled-carbon nanotubes (MWCNTs)/low density polyethylene (LDPE) composites have been obtained either via melt-mixing or solvent assisted methods. Electrical properties of samples obtained through the above mentioned methods are compared and the conductance values as function of filler fraction are discussed. The corresponding percolation thresholds are evaluated. Conductivity maps images are acquired under low-potentials scanning electron microscopy (0.3 KV) and the relationship between the obtained conductivity images and electric properties is highlighted. The synergistic role of CNTs (1D) and GNPs (2D) in improving the conductive properties of the polymer composites has been shown. - Highlights: • Graphite nanoplatelets (GNPs) and GNPs/MWCNT LDPE composites. • Low potential SEM conductivity maps. • Conducting paths between 1D and 2D C-structures (synergistic effect) are obtained. • Composites based on hybrid 1D/2D combinations show lower percolation thresholds

  17. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    International Nuclear Information System (INIS)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-01-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  18. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    Science.gov (United States)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  19. Mechanical Property Characteristics of Butt-Fusion Joint of High Density Polyethylene Pipe for NPP Safety Class Application

    International Nuclear Information System (INIS)

    Oh, Youngjin; Kim, Kyoungsu; Lee, Seunggun; Park, Heungbae; Yu, Jeongho; Kim, Jongsung; Kim, Jeonghyun; Jang, Changheui; Choi, Sunwoong

    2013-01-01

    Several NPPs in United States replaced parts of sea water or raw water system pipes to HDPE (high density polyethylene) pipes, which have outstanding resistance for oxidation and seismic loading. ASME B and PV code committee developed Code Case N-755, which describes rules for the construction of Safety Class 3 polyethylene pressure piping components. Several NPP's in US proposed relief requests in order to apply Code Case N-755. Although US NRC permitted using Code Case N-755 and HDPE materials for Class 3 buried piping, their permission was limited to only 10 years because of several concerns for material performance of HDPE. US NRC's major concerns are about material properties and the quality of fusion zone of HDPE. In this study, material property tests for HDPE fusion zone are conducted with varying standard fusion procedures. Mechanical property tests for fused material for HDPE pipes were conducted. Fused material shows lower toughness than base material and fused material of lower fusion pressure shows higher toughness than that of higher fusion pressure

  20. Shape Memory Polymer Composites of Poly(styrene-b-butadiene-b-styrene Copolymer/Liner Low Density Polyethylene/Fe3O4 Nanoparticles for Remote Activation

    Directory of Open Access Journals (Sweden)

    Yongkun Wang

    2016-11-01

    Full Text Available Magnetically sensitive shape memory poly(styrene-b-butadiene-b-styrene copolymer (SBS/liner low density polyethylene (LLDPE composites filled with various contents of Fe3O4 nanoparticles were prepared. The influence of the Fe3O4 nanoparticles content on the thermal properties, mechanical properties, fracture morphology, magnetic behavior, and shape memory effect of SBS/LLDPE/Fe3O4 composites was systematically studied in this paper. The results indicated that homogeneously dispersed Fe3O4 nanoparticles ensured the uniform heat generation and transfer in the alternating magnetic field, and endowed the SBS/LLDPE/Fe3O4 composites with an excellent magnetically responsive shape memory effect. When the shape memory composites were in the alternating magnetic field (f = 60 kHz, H = 21.21 kA·m−1, the best shape recovery ratio reached 99%, the shape retention ratio reached 99.4%, and the shape recovery speed increased significantly with the increment of Fe3O4 nanoparticles. It is anticipated that tagging products with this novel shape memory composite is helpful for the purpose of an intravascular delivery system in Micro-Electro-Mechanical System (MEMS devices.

  1. Shape stabilised phase change materials (SSPCMs): High density polyethylene and hydrocarbon waxes

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Mulan, E-mail: mmu01@qub.ac.uk, E-mail: m.basheer@qub.ac.uk; Basheer, P. A. M., E-mail: mmu01@qub.ac.uk, E-mail: m.basheer@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, BT9 5AG (United Kingdom); Bai, Yun, E-mail: yun.bai@ucl.ac.uk [Department of Civil, Environmental and Geomatic Engineering, University College London, WC1E 6BT (United Kingdom); McNally, Tony, E-mail: t.mcnally@warwick.ac.uk [WMG, University of Warwick, CV4 7AL (United Kingdom)

    2014-05-15

    Shape stabilised phase change materials (SSPCMs) based on high density polyethylene (HDPE) with high (HPW, T{sub m}=56-58 °C) and low (L-PW, T{sub m}=18-23 °C) melting point waxes were prepared by melt-mixing in a twin-screw extruder and their potential in latent heat thermal energy storage (LHTES) applications for housing assessed. The structure and morphology of these blends were investigated by scanning electron microscopy (SEM). Both H-PW and L-PW were uniformly distributed throughout the HDPE matrix. The melting point and latent heat of the SSPCMs were determined by differential scanning calorimetry (DSC). The results demonstrated that both H-PW and L-PW have a plasticisation effect on the HDPE matrix. The tensile and flexural properties of the samples were measured at room temperature (RT, 20±2 °C) and 70 °C, respectively. All mechanical properties of HDPE/H-PW and HDPE/L-PW blends decreased from RT to 70 °C. In all instances at RT, modulus and stress, irrespective of the mode of deformation was greater for the HDPE/H-PW blends. However, at 70 °C, there was no significant difference in mechanical properties between the HDPE/H-PW and HDPE/L-PW blends.

  2. Rheological characterization of LDPE{sub Al} (low density polyethylene and aluminum) e HDPE (high density polyethylene); Caracterizacao das propriedades reologicas da mistura LDPE{sub Al} (polietileno de baixa densidade e aluminio) e HDPE (polietileno de alta densidade)

    Energy Technology Data Exchange (ETDEWEB)

    Santa Marinha, Ana Beatriz Abreu; Pacheco, Elen Beatriz Acordi Vasques; Monteiro, Elisabeth Ermel da Costa [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    The long life packaging contains paper, polyethylene and aluminum for packaging of food. A few part of total amount produced is recycled and another is discharged in landfills in Brazil. The low density polyethylene and aluminum (LDPE{sub Al}) was obtained from recycling this packaging. The rheological properties of the blends were intermediate to ones of the pure polymers. In a general way, the rheological properties were not modified by the aluminum presence. (author)

  3. Influence of fast neutrons on thermophysical properties of pure and borated low density polyethylene

    International Nuclear Information System (INIS)

    El-Khatib, A. M.; Kassem, M.

    1990-01-01

    The impact of radiation crosslinking on the mechanical, thermomechanical and electrical conductivity properties of LDPE and borated polyethylene have been studied and evaluated. The 8% borated polyethylene samples have added a new advantage where the tensile strength has increased to the maximum and then it became constant at higher crosslink density. Moreover, the electrical conductivity of 8% borated polyethylene is much higher than pure and 4% borated polyethylene. (author). 16 refs., 8 figs

  4. EVALUATION OF ULTRASONIC PHASED-ARRAY FOR DETECTION OF PLANAR FLAWS IN HIGH-DENSITY POLYETHYLENE (HDPE) BUTT-FUSION JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Prowant, Matthew S.; Denslow, Kayte M.; Moran, Traci L.; Jacob, Rick E.; Hartman, Trenton S.; Crawford, Susan L.; Mathews, Royce; Neill, Kevin J.; Cinson, Anthony D.

    2016-09-21

    The desire to use high-density polyethylene (HDPE) piping in buried Class 3 service and cooling water systems in nuclear power plants is primarily motivated by the material’s high resistance to corrosion relative to that of steel and metal alloys. The rules for construction of Class 3 HDPE pressure piping systems were originally published in Code Case N-755 and were recently incorporated into the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME BPVC) Section III as Mandatory Appendix XXVI (2015 Edition). The requirements for HDPE examination are guided by criteria developed for metal pipe and are based on industry-led HDPE research or conservative calculations.

  5. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  6. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    DEFF Research Database (Denmark)

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter

    2005-01-01

    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on th......One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross......-linking on the rheological behaviour of low density polyethylene was investigated by using a combination of creep test and differential scanning calorimeter (DSC) in isotherm condition. The used peroxide was di-cumyl peroxide and its concentration was 2 wt%. The experiments were carried out at 150,160, and 170 degrees C...

  7. The effect of gamma radiation on hardness evolution in high density polyethylene at elevated temperatures

    International Nuclear Information System (INIS)

    Chen, Pei-Yun; Chen, C.C.; Harmon, Julie P.; Lee, Sanboh

    2014-01-01

    This research focuses on characterizing hardness evolution in irradiated high density polyethylene (HDPE) at elevated temperatures. Hardness increases with increasing gamma ray dose, annealing temperature and annealing time. The hardness change is attributed to the variation of defects in microstructure and molecular structure. The kinetics of defects that control the hardness are assumed to follow the first order structure relaxation. The experimental data are in good agreement with the predicted model. The rate constant follows the Arrhenius equation, and the corresponding activation energy decreases with increasing dose. The defects that control hardness in post-annealed HDPE increase with increasing dose and annealing temperature. The structure relaxation of HDPE has a lower energy of mixing in crystalline regions than in amorphous regions. Further, the energy of mixing for defects that influence hardness in HDPE is lower than those observed in polycarbonate (PC), poly(methyl methacrylate) (PMMA) and poly (hydroxyethyl methacrylate) (HEMA). This is due to the fact that polyethylene is a semi-crystalline material, while PC, PMMA and PHEMA are amorphous. - Highlights: • Hardness of HDPE increases with increasing gamma ray dose, annealing time and temperature. • The hardness change arises from defects in microstructure and molecular structure. • Defects affecting hardness follow a kinetics of structure relaxation. • The structure relaxation has a low energy of mixing in crystalline regime

  8. The effect of gamma radiation on hardness evolution in high density polyethylene at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Yun [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Chen, C.C. [Institute of Nuclear Energy Research, Longtan, Taoyuan 325, Taiwan (China); Harmon, Julie P. [Department of Chemistry, University of South Florida, Tampa, FL 33620 (United States); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2014-08-01

    This research focuses on characterizing hardness evolution in irradiated high density polyethylene (HDPE) at elevated temperatures. Hardness increases with increasing gamma ray dose, annealing temperature and annealing time. The hardness change is attributed to the variation of defects in microstructure and molecular structure. The kinetics of defects that control the hardness are assumed to follow the first order structure relaxation. The experimental data are in good agreement with the predicted model. The rate constant follows the Arrhenius equation, and the corresponding activation energy decreases with increasing dose. The defects that control hardness in post-annealed HDPE increase with increasing dose and annealing temperature. The structure relaxation of HDPE has a lower energy of mixing in crystalline regions than in amorphous regions. Further, the energy of mixing for defects that influence hardness in HDPE is lower than those observed in polycarbonate (PC), poly(methyl methacrylate) (PMMA) and poly (hydroxyethyl methacrylate) (HEMA). This is due to the fact that polyethylene is a semi-crystalline material, while PC, PMMA and PHEMA are amorphous. - Highlights: • Hardness of HDPE increases with increasing gamma ray dose, annealing time and temperature. • The hardness change arises from defects in microstructure and molecular structure. • Defects affecting hardness follow a kinetics of structure relaxation. • The structure relaxation has a low energy of mixing in crystalline regime.

  9. Characterization of laser beam transmission through a High Density Polyethylene (HDPE) plate

    Science.gov (United States)

    Genna, S.; Leone, C.; Tagliaferri, V.

    2017-02-01

    Infrared (IR) light propagation in semicrystalline polymers involves mechanisms such as reflection, transmission, absorption and internal scattering. These different rates determine either the interaction mechanism, either the temperatures reached in the IR heating processes. Consequently, the knowledge of these rates is fundamental in the development of IR heating processes in order to avoid the polymer's damage and to increase the process energy efficiency. Aim of this work is to assess a simple procedure to determine the rates of absorbed, reflected, transmitted and scattered energy in the case of an unfilled High Density Polyethylene (HDPE) plate. Experimental tests were performed by exposing a HDPE plate, 3 mm in thickness, to a diode laser source, working at the fundamental wavelength of 975 nm. The transmitted power was measured by power meter, the reflected one by applying the Beer-Lambert law to sample of different thickness. IR thermal images were adopted to measure the absorbed ratio. The scattered ratio was measured by energetic balance, as difference between the incoming power and the other ratios. Finally, IR thermal images were adopted to measure the scattered ratio and to validate the procedure.

  10. Characterization of radiation-cross-linked, high-density polyethylene for thermal energy storage

    International Nuclear Information System (INIS)

    Whitaker, R.B.; Craven, S.M.; Etter, D.E.; Jendrek, E.F.; Nease, A.B.

    1983-01-01

    Electron beam cross-linked high-density polyethylene (HDPE) pellets (DuPont Alathon, 0.93 MI) have been characterized for potential utility in thermal energy storage applications, before and after up to 500 melt-freeze cycles in ethylene glycol. Up to 95% of the HDPE's initial DSC differential scanning calorimetry Δ H/sub f/ value (44.7 cal/g) (at 1.25 0 C/min cooling rates) was retained up to 9.0 Mrad radiation dosage. Form-stability after 500 melt-freeze cycles was very good at this dosage level. X-ray diffraction measurements showed little difference between irradiated HDPE's and the unirradiated control, indicating that cross-linking occurred primarily in the amorphous regions. FTIR spectroscopy showed the pellets to be uniformly reacted. The ratios of the 965-cm -1 absorption band (trans RCH=CRH') to the 909-cm -1 band (RCH=CH 2 ) increased with increasing radiation dosage, up to 18 Mrad. Gel contents reached a maximum of 75% at the 13.5 Mrad dosage, indicating that other reactions, in addition to cross-linking, occurred at the highest (18 Mrad) dosage level. 15 references, 5 figures, 4 tables

  11. Natural fibre high-density polyethylene and lead oxide composites for radiation shielding

    CERN Document Server

    El-Sayed, A; Ismail, M R

    2003-01-01

    Study has been made of the radiation shielding provided by recycled agricultural fibre and industrial plastic wastes produced as composite materials. Fast neutron and gamma-ray spectra behind composites of fibre-plastic (rho = 1.373 g cm sup - sup 3) and fibre-plastic-lead (rho = 2.756 g cm sup - sup 3) have been measured using a collimated reactor beam and neutron-gamma spectrometer with a stilbene scintillator. The pulse shape discriminating technique based on the zero-cross-over method was used to discriminate between neutron and gamma-ray pulses. Slow neutron fluxes have been measured using a collimated reactor beam and BF sub 3 counter, leading to determination of the macroscopic cross-section (SIGMA). The removal cross-sections (SIGMA sub R) of fast neutrons have been determined from measured results and elemental composition of the composites. For gamma-rays, total linear attenuation coefficients (mu) and total mass attenuation coefficients (mu/rho) have been determined from use of the XCOM code and me...

  12. Effect of ionizing radiation on nanocomposites of high density polyethylene with pseudoboehmite obtained by sol-gel process

    International Nuclear Information System (INIS)

    Miranda, Leila F.; Munhoz Junior, Antonio H.; Terence, Mauro C.; Alves, Alexandre P.

    2009-01-01

    Nanocomposites are polymeric hybrid materials where inorganic substances of nanometric dimensions are dispersed in a polymeric matrix. The fillers present area of raised surface, promoting better dispersion in the polymeric matrix and therefore an improvement of the physical properties of the composite that depends on the homogeneity of the material. The nanocomposites preparation with polymeric matrix allows in many cases to find a relation enters a low cost, due to the use of minor amount of filler, and a raised performance level. Nanocomposites were obtained with pseudoboehmite synthesized by sol-gel process and high density polyethylene with different concentrations of pseudoboehmite. The aim of this work was to study the effects of ionizing radiation on the properties of the nanocomposites obtained. The nanocomposites were prepared by melt intercalation technique and subsequently, the samples were molded by injection, irradiated and submitted to thermal and mechanical tests. The mechanical properties (impact strength and tensile strength), temperature of thermal distortion (HDT) and Vicat softening temperature of the non irradiated and irradiated nanocomposites were determined. The irradiation doses were of 30, 50 and 100kGy in a gamma cell. The results showed an increase in the values of tensile strength; a decrease in the impact strength and an increase in the temperature of thermal distortion (HDT) evidencing the interaction of nanofiller with the polymeric matrix. (author)

  13. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-01-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100–300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating–cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase. - Highlights: • Binary blends of HDPE/NBR have been irradiated with 5 MeV accelerated electrons. • Increase of NBR content and irradiation dose improves cross-linking efficiency. • Thermo-shrinkage and residual stresses are investigated for oriented specimens. • Cross-linked HDPE/NBR composites can be successfully used as thermos-shrinkable materials.

  14. Polyethylene-waste tire dust composites via in situ polymerization

    International Nuclear Information System (INIS)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E.; Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R.

    2014-01-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp 2 TiCl 2 ) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  15. Polyethylene-waste tire dust composites via in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E. [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza s/n, 25280 Saltillo, Coahuila (Mexico); Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R., E-mail: ramon.diazdeleon@ciqa.edu.mx [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 40, Col. San Jose de los Cerritos, 25293 Saltillo, Coahuila (Mexico)

    2014-10-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp{sub 2}TiCl{sub 2}) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  16. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets

    International Nuclear Information System (INIS)

    Carotenuto, G; Palomba, M; De Nicola, S; Pullini, D; Horsewell, A; Hansen, T W; Nicolais, L

    2012-01-01

    The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been evaluated by testing nanocomposites made by different manufacturing techniques (compression moulding and blown extrusion). The comparison between the experimental data and the Halpin–Tsai model shows that the orientation of GNPs due to the extrusion process leads to values of tensile modulus higher than that obtained with the randomly oriented disposition resulting from the compression moulding technique. (paper)

  17. Characteristics of Friction Stir Processed UHMW Polyethylene Based Composite

    Science.gov (United States)

    Hussain, G.; Khan, I.

    2018-01-01

    Ultra-high molecular weight polyethylene (UHMWPE) based composites are widely used in biomedical and food industries because of their biocompatibility and enhanced properties. The aim of this study was to fabricate UHMWPE / nHA composite through heat assisted Friction Stir Processing. The rotational speed (ω), feed rate (f), volume fraction of nHA (v) and shoulder temperature (T) were selected as the process parameters. Macroscopic and microscopic analysis revealed that these parameters have significant effects on the distribution of reinforcing material, defects formation and material mixing. Defects were observed especially at low levels of (ω, T) and high levels of (f, v). Low level of v with medium levels of other parameters resulted in better mixing and minimum defects. A 10% increase in strength with only 1% reduction in Percent Elongation was observed at the above set of conditions. Moreover, the resulted hardness of the composite was higher than that of the parent material.

  18. A new look at extensional rheology of low-density polyethylene

    DEFF Research Database (Denmark)

    Huang, Qian; Mangnus, Marc; Alvarez, Nicolas J.

    2016-01-01

    The nonlinear rheology of three selected commercial low-density polyethylenes (LDPE) is measured in uniaxial extensional flow. The measurements are performed using three different devices including an extensional viscosity fixture (EVF), a homemade filament stretching rheometer (DTU-FSR) and a co...

  19. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    Science.gov (United States)

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  20. Thermal Cracking of Low Density Polyethylene (LDPE) Waste into ...

    African Journals Online (AJOL)

    Waste low density polyethylene film (table water sachets) was converted into solid, liquid oil and gaseous products by thermal process in a self- designed stainless steel laboratory reactor. The waste polymer was completely pyrolized within the temperature range of 474 – 520°C and 2hours reaction time. The solid residue ...

  1. INFLUENCE OF COCONUT SHELL ADDITION ON PHYSICO-MECHANICAL PROPERTIES OF WOOD PLASTIC COMPOSITES1

    Directory of Open Access Journals (Sweden)

    Éverton Hillig

    2018-04-01

    Full Text Available ABSTRACT In this study, composites with three types of thermoplastic matrix and cellulosic material in a proportion of 40% were produced. The three thermoplastic matrices were high density polyethylene (HDPE, polypropylene (PP and low density polyethylene (LDPE, and the cellulosic materials were pure wood flour (Pinus taeda L or a mixture of wood flour and coconut shell flour (Cocus nucifera L in equal ratios. The objective was to evaluate the influence of addition of coconut shell on the physico-mechanical properties (density, strength and rigidity and the distribution of the cellulosic material in the thermoplastic matrix of the manufactured composites. It was found that the composites had a satisfactory distribution of wood flour in thermoplastic matrices, but the addition of coconut shell promoted bubble formation in the resulting pieces and, thus, interfered with the material properties. The use of a coupling agent promoted interfacial adhesion (cellulose - thermoplastic matrix, which was better in high density polyethylene composites, followed by polypropylene and low density polyethylene. In general, the coconut shell addition caused a decrease of all properties compared to composites made with Loblolly Pine. In addition, the interactions between thermoplastic type and cellulosic matrix type have been statistically confirmed, which caused variations in the studied properties

  2. Supercritical CO2 foaming of radiation crosslinked polypropylene/high-density polyethylene blend: Cell structure and tensile property

    Science.gov (United States)

    Yang, Chenguang; Xing, Zhe; Zhang, Mingxing; Zhao, Quan; Wang, Mouhua; Wu, Guozhong

    2017-12-01

    A blend of isotactic polypropylene (PP) with high-density polyethylene (HDPE) in different PP/HDPE ratios was irradiated by γ-ray to induce cross-linking and then foamed using supercritical carbon dioxide (scCO2) as a blowing agent. Radiation effect on the melting point and crystallinity were analyzed in detail. The average cell diameter and cell density were compared for PP/HDPE foams prepared under different conditions. The optimum absorbed dose for the scCO2 foaming of PP/HDPE in terms of foaming ability and cell structure was 20 kGy. Tensile measurements showed that the elongation at break and tensile strength at break of the crosslinked PP/HDPE foams were higher than the non-crosslinked ones. Of particular interest was the increase in the foaming temperature window from 4 ℃ for pristine PP to 8-12 ℃ for the radiation crosslinked PP/HDPE blends. This implies much easier handling of scCO2 foaming of crosslinked PP with the addition of HDPE.

  3. Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion

    Science.gov (United States)

    Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...

  4. Thermoluminescence glow curves of irradiated PMMA and low density polyethylene

    International Nuclear Information System (INIS)

    Matsuda, Koji; Nakase, Yoshiaki; Kumakiri, Yasuhito; Tsuji, Yoshio.

    1985-03-01

    Light emission from polymers is observed when polymers preirradiated with ionizing radiation at low temperature are heated gradually. The light emission is supposedly resulted from recombination of electrons with active centers produced in polymers or from some other processes involving charge transfer, but no definite explanation has been given at present on the thermoluminescent centers. This report describes our studies on the effects of impurities contained in polymers and pressure of ambient gases on the thermoluminescent glow curve of PMMA and low density polyethylene, which are often used for plastic film dosimeters. In the glow curve of PMMA, only one peak was observed at 110 K in an H 2 or He atmosphere at 760 Torr, but the intensity of the peak decreased with decreasing the H 2 or He gas pressure. At 10 -5 Torr H 2 or He atmosphere the peak disappered, and two sharp peaks appeared in the temperature range from 200 to 250 K. On the other hand, in the glow curve of low density polyethylene, three peaks were observed at 120 K, 180 K and 250 K in the presence of H 2 or He gas at 760 Torr. The effects of pressure of ambient gases and impurities in the polyethylene on these peaks indicate that the peak at 120 K is due to luminescent center produced on the surface or just below the surface of the matrix by collision of excited atoms or molecules of gases with polymer molecules, the peak at 120 K is originated from impurities in the matrix, and the peak at 250 0 K corresponds to luminescent center produced in polyethylene matrix. (author)

  5. Characterization of the degree of cross-linking in radiation cross-linked low and high density polyethylenes

    International Nuclear Information System (INIS)

    Posselt, K.; Haedrich, W.

    1986-01-01

    In practice the cross-linking of irradiated polyethylene is mostly characterized by solubility and thermomechanical data. The irradiation of samples of a LDPE and a HDPE yields very different gel-dose curves. But for a quantitative comparison the complicated connection between the gel values and the corresponding densities of cross-links, especially the dependence on the initial molecular size distribution, has to take into consideration. The analysis of the solubility data according to the statistical theory of cross-linking developed by Inokuti and Saito shows that at equal doses in both investigated PE types in spite of the different gel values nearly the same densities of cross-links are present. That result is confirmed by the densities of cross-links determined from stress-strain measurements at 423 K. (author)

  6. Investigation of utilization of process of polyethylene waste of low density for creation of competitive materials with application of phenol formaldehyde oligomers

    International Nuclear Information System (INIS)

    Agakishieva, M.A.; Bilalov, Ya. M; Ibragimova, S. M; Dadasheva, G. I; Rezaei, Rudabeh

    2007-01-01

    Full text: The possibility of the utilization of low density polyethylene wastes by means of their modification with phenol formaldehyde oligomers (Ph FO) and PhFO with the thiourathenes has been investigation. Theology properties of the investigated systems showed that the obtained compositions can be able to be processed by the ordinary methods such as extrusion and casting

  7. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001.

    Science.gov (United States)

    Awasthi, Shraddha; Srivastava, Pratap; Singh, Pardeep; Tiwary, D; Mishra, Pradeep Kumar

    2017-10-01

    Biodegradation of plastics, which are the potential source of environmental pollution, has received a great deal of attention in the recent years. We aim to screen, identify, and characterize a bacterial strain capable of degrading high-density polyethylene (HDPE). In the present study, we studied HDPE biodegradation using a laboratory isolate, which was identified as Klebsiella pneumoniae CH001 (Accession No MF399051). The HDPE film was characterized by Universal Tensile Machine (UTM), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Atomic Force Microscope (AFM) before and after microbial incubation. We observed that this strain was capable of adhering strongly on HDPE surface and form a thick biofilm, when incubated in nutrient broth at 30 °C on 120 rpm for 60 days. UTM analysis showed a significant decrease in weight (18.4%) and reduction in tensile strength (60%) of HDPE film. Furthermore, SEM analysis showed the cracks on the HDPE surface, whereas AFM results showed an increase in surface roughness after bacterial incubation. Overall, these results indicate that K. pneumoniae CH001 can be used as potential candidate for HDPE degradation in eco-friendly and sustainable manner in the environment.

  8. Preparation and Characterisation of Linear Low-Density Polyethylene / Thermoplastic Starch Blends Filled with Banana Fibre

    Science.gov (United States)

    Kahar, A. W. M.; Ann, L. Ju

    2017-06-01

    In this study, the influence of banana fibre (BF) loading using sodium hydroxide (NaOH) pre-treated and succinic anhydride-treated (SA) BF on the mechanical properties of linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) matrix is investigated. LLDPE/TPS/BF composites were developed under different BF conditions, with and without chemical modifications with the BF content ranging from 5% to 30% based on the total composite. The tensile strength showed an increase with an increase of fibre content up to 10%, thereby decreasing gradually beyond this level. NaOH pre-treated and SA treated BF added with LLDPE/TPS composite displays a higher tensile strength as compared to untreated BF in LLDPE/TPS composites. Thermal behaviour of the BF incorporated in LLDPE/TPS composite was characterised using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). This showed that SA treated BF exhibits better thermal stability, compared to other composites. This is because of the improvement in interfacial adhesion existing between both the fibre and matrix. In addition, a morphology study confirmed that pre-treated and treated BF had excellent interfacial adhesion with LLDPE/TPS matrix, leading to better mechanical properties of resultant composites.

  9. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic

  10. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. IER 203 CED-2 Report: LLNL Final Design for BERP Ball With a Composite Reflector of Thin Polyethylene Backed by Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, S. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-18

    This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings have resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017.

  12. Effect of Strain Rate on Microscopic Deformation Behavior of High-density Polyethylene under Uniaxial Stretching

    Directory of Open Access Journals (Sweden)

    Kida Takumitsu

    2017-01-01

    Full Text Available The microscopic deformation behaviors such as the load sharing and the molecular orientation of high-density polyethylene under uniaxial stretching at various strain rates were investigated by using in-situ Raman spectroscopy. The chains within crystalline phase began to orient toward the stretching direction beyond the yielding region and the orientation behavior was not affected by the strain rate. While the stretching stress along the crystalline chains was also not affected by the strain rate, the peak shifts of the Raman bands at 1130, 1418, 1440 and 1460 cm-1, which are sensitive to the interchain interactions obviously, depended on the strain rate; the higher strain rates lead to the stronger stretching stress or negative pressure on the crystalline and amorphous chains. These effects of the strain rate on the microscopic deformation was associated with the cavitation and the void formation leading to the release of the internal pressure.

  13. Effect of titanium dioxide (TiO2) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    International Nuclear Information System (INIS)

    Wang, Shichao; Zhang, Jun

    2014-01-01

    Highlights: • HDPE/TiO 2 composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO 2 composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO 2 ) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO 2 particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO 2 particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO 2 particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO 2 particles in HDPE matrix. It was found the rutile TiO 2 could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result

  14. Electron beam cross-linking of natural rubber/linear-low density polyethylene blends

    International Nuclear Information System (INIS)

    Ahmad, A.; Mohd, D. H.; Abdullah, I.

    2005-01-01

    Effects of electron beam irradiation on the mechanical properties and morphological structure of natural rubber/linear-low density polyethylene blend was investigated The natural rubber/linear-low density polyethylene blend was prepared by melt blending in a Haake internal mixer at 140 d ig C , rotor speed of 50 rpm, and in 15 min Liquid natural rubber was incorporated into the blend as a compatibilizer Samples in the form of 1 mm sheets were exposed to 50-300 kGy of electron beam irradiation and analyzed for swelling index and gel content, tensile strength, and surface morphology. The result Indicated that gel content and mechanical properties of the samples increased with radiation dosage. The honey-comb structure of the surface morphology in low dosage irradiated samples slowly transformed into a continuous matrix on increasing radiation dose The variation of mechanical and physical properties was due to Increase in cross-linking density in the rubber and plastic phases and rubber-plastic Interaction on irradiation

  15. Matter composition at high density by effective scaled lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Chang Ho; Min, Dong Pil [Dept. of Physics, Seoul National Univ., Seoul (Korea, Republic of)

    1998-06-01

    We investigate the matter composition at around the neutron star densities with a model lagrangian satisfying Brown-Rho scaling law. We calculate the neutron star properties such as maximum mass, radius, hyperon compositions and central density. We compare our results with those of Walecka model. (orig.)

  16. Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene

    Directory of Open Access Journals (Sweden)

    Silvia Jaerger

    2014-12-01

    Full Text Available In this study, polymer composites using low-density polyethylene (LDPE and layered hydroxide salts (LHS were synthesized. The following compositions of LHS were obtained Zn5(OH8(An-2/n.yH2O, where A was varied in order to obtain hydrophilic (A = NO3- or hydrophobic (A = DDS- - dodecyl sulfate or DBS- - dodecyl benzene sulfonate. Synthesis was carried out by co-precipitation in alkaline medium and drying, being followed by characterization via Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy. A variable amount of filler was then incorporated into the LDPE via extrusion, which was then injection molded to obtain specimens for evaluating tensile properties (Young's modulus, tensile strength, strain at break and toughness. For comparison, the sodium salts of the surfactants (NaDDS and NaDBS were also used as fillers in LDPE. The X-ray diffraction results indicated that the hydrophobic LHS were exfoliated in the polymer matrix, whereas the hydrophilic LHS was only delaminated. In the LDPE composites, melting and crystallization temperatures were nearly constant, along with the crystallinity indexes. The mechanical properties were mainly varied when the organophilic LHS was used. Overall, fillers based on LHS, especially those containing hydrophobic anions, may be interesting alternatives in the production of reinforced thermoplastics.

  17. High performance polyethylene nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2012-12-01

    Full Text Available A high density polyethylene (HDPE matrix was melt compounded with 2 vol% of dimethyldichlorosilane treated fumed silica nanoparticles. Nanocomposite fibers were prepared by melt spinning through a co-rotating twin screw extruder and drawing at 125°C in air. Thermo-mechanical and morphological properties of the resulting fibers were then investigated. The introduction of nanosilica improved the drawability of the fibers, allowing the achievement of higher draw ratios with respect to the neat matrix. The elastic modulus and creep stability of the fibers were remarkably improved upon nanofiller addition, with a retention of the pristine tensile properties at break. Transmission electronic microscope (TEM images evidenced that the original morphology of the silica aggregates was disrupted by the applied drawing.

  18. THE EFFECT OF DIAMETER ON THE MECHANICAL-PROPERTIES OF AMORPHOUS-CARBON FIBERS FROM LINEAR LOW-DENSITY POLYETHYLENE

    NARCIS (Netherlands)

    PENNING, JP; LAGCHER, R; PENNINGS, AJ

    The mechanical properties of amorphous carbon fibers, derived from linear low density polyethylene strongly depend on the fibre diameter, which may be attributed to the presence of a skin/core structure in these fibres. High strength carbon fibres could thus be prepared by using thin precursor

  19. Structure development during isothermal crystallisation of high-density polyethylene: Synchrotron small-angle X-ray scattering study

    International Nuclear Information System (INIS)

    Ślusarczyk, Czesław

    2013-01-01

    Isothermal melt crystallisation in high-density polyethylene (HDPE) was studied using the time-resolved SAXS method with synchrotron radiation over a wide range of crystallisation temperatures. The SAXS profile was analysed by an interface distribution function, g 1 (r), which is a superposition of three contributions associated with the size distributions of crystalline (L C ) and amorphous (L A ) layers and a distribution of long period (LP). The morphological parameters extracted from the g 1 (r) functions show that the lamellar thickness increases with time, obeying a logarithmic time dependence. The time evolution of L C observed for the sample crystallised at 122 °C leads to the conclusion that crystallisation proceeds according to the mechanism of thickening growth. For samples crystallised at lower temperatures (116 °C and 118 °C), the lamellar thickening mechanism has been observed. The rate of lamellar thickening in these cases is much lower than that at 122 °C. At 40 °C, thickening of the crystalline layer does not occur. The interface distribution functions were deconvoluted, and the relative standard deviation σ C /L C obtained in this way is an additional parameter that is varied during crystallisation and can be used for analysis of this process. Time-dependent changes in the σ C /L C at large supercooling (T C =40 °C) indicates that L C presents a broad distribution in which the relative standard deviation increases with time. At lower supercooling (T C =122 °C), L C shows a much sharper distribution. In this case, the relative standard deviation decreases with time. - Highlights: • Isothermal melt crystallisation of high-density polyethylene (HDPE) was studied by time-resolved synchrotron small-angle X-ray scattering (SAXS) over a wide-range of supercoolings. • The SAXS profile was analysed by an interface distribution, g 1 (r), function. • At large supercooling (40 °C) the thickening of the crystalline layer does not occur. At

  20. Mechanical and thermal properties of short-coirfiber-reinforced natural rubber/polyethylene composites

    Science.gov (United States)

    Xu, Zh. H.; Kong, Zh. N.

    2014-07-01

    Natural rubber (NR) and polyethylene (PE) composites were compounded with chemically treated coir fibers by using a heated two-roll mill. Two chemical treatments of the fibers — by silane and sodium hydroxide — were carried out to improve the interfacial adhesion between them and the polyethylene matrix. The mechanical properties of the composites obtained were evaluated and compared with those made from a neat polymer and untreated fibers. The mechanical properties of the composites, such as the tensile strength, Young's modulus, and the elongation at break, were examined, and their shrinkage and flame retardant characteristics were measured. From these experiments, the effect of plasma treatment on the mechanical-physical behavior of coconut-fiberreinforced NR/PE composites was identified. In addition, their thermal characteristics were evaluated, and the results showed a slight decrease in them with increasing content of coir fibers.

  1. Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis -

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho-Wan; Han, Jae-Jun; Kim, Yun-Jae [Korea University, Seoul (Korea, Republic of); Kim, Jong-Sung [Sunchon National University, Suncheon (Korea, Republic of); Kim, Jeong-Hyeon; Jang, Chang-Heui [KAIST, Daejeon (Korea, Republic of)

    2015-04-15

    In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.

  2. Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks.

    Science.gov (United States)

    Maruo, Yukinori; Nishigawa, Goro; Irie, Masao; Yoshihara, Kumiko; Minagi, Shogo

    2015-01-01

    High flexural properties are needed for fixed partial denture or implant prosthesis to resist susceptibility to failures caused by occlusal overload. The aim of this investigation was to clarify the effects of four different kinds of fibers on the flexural properties of fiber-reinforced composites. Polyethylene fiber, glass fiber and two types of carbon fibers were used for reinforcement. Seven groups of specimens, 2 × 2 × 25 mm, were prepared (n = 10 per group). Four groups of resin composite specimens were reinforced with polyethylene, glass or one type of carbon fiber. The remaining three groups served as controls, with each group comprising one brand of resin composite without any fiber. After 24-h water storage in 37°C distilled water, the flexural properties of each specimen were examined with static three-point flexural test at a crosshead speed of 0.5 mm/min. Compared to the control without any fiber, glass and carbon fibers significantly increased the flexural strength (p glass fiber (p glass fibers (p > 0.05). Fibers could, therefore, improve the flexural properties of resin composite and carbon fibers in longitudinal form yielded the better effects for reinforcement.

  3. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    Yuan, Q.; Yang, Y.; Chen, J.; Ramuni, V.; Misra, R.D.K.; Bertrand, K.J.

    2010-01-01

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  4. Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol

    International Nuclear Information System (INIS)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-01-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil–polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane–GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane–GNT/NW composites was observed resulting from the improved surface properties of composites. - Highlights: • Polyurethane–gold nanotubes/nanowires (GNT/NWs) composites were synthesized. • Tan δ, E′ and E″ were increased upon addition of 50 ppm of GNT/NW. • Better cell attachment was observed in composites containing 50 ppm of GNT/NW. • GNT/NWs can make a bridge between the pores of the porous polymeric scaffolds. • GNT/NWs increased the crosslink density of the polymeric matrix

  5. Synthesis and characterization of gold nanotube/nanowire–polyurethane composite based on castor oil and polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman, E-mail: y.ganji@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Kasra, Mehran, E-mail: mkasra@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Salahshour Kordestani, Soheila, E-mail: s.kordestani@aut.ac.ir [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave., Tehran (Iran, Islamic Republic of); Bagheri Hariri, Mohiedin, E-mail: mohibagheri@gmail.com [Materials Science and Engineering Department, Sharif University of Technology, Azadi Ave., Tehran (Iran, Islamic Republic of)

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil–polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane–GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane–GNT/NW composites was observed resulting from the improved surface properties of composites. - Highlights: • Polyurethane–gold nanotubes/nanowires (GNT/NWs) composites were synthesized. • Tan δ, E′ and E″ were increased upon addition of 50 ppm of GNT/NW. • Better cell attachment was observed in composites containing 50 ppm of GNT/NW. • GNT/NWs can make a bridge between the pores of the porous polymeric scaffolds. • GNT/NWs increased the crosslink density of the polymeric matrix.

  6. The Effect of Water Cement Ratio on Cement Brick Containing High Density Polyethylene (HDPE as Sand Replacement

    Directory of Open Access Journals (Sweden)

    Ali Noorwirdawati

    2018-01-01

    Full Text Available Waste disposal can contribute to the problem of environmental pollution. Most of the waste material is plastic based, because the nature of difficult of plastic degradable by itself. In order to overcome the problem, many study has been conducted on the reuse of plastic material into various field such as civil engineering and construction. In this study, municipal solid waste (MSW in the form of High Density Polyethylene (HDPE plastic was used to replace sand in cement sand brick production. The HDPE used in this study was obtained from a recycle factory at Nilai, Negeri Sembilan. 3% of HDPE replacement was applied in this study, with the cement-sand mix design of 1:6 and water-cement ratio 0.35, 0.40, 0.45 and 0.50 respectively. All specimens were tested for compressive strength and water absorption at 7 and 28 days. The density of the bricks was also recorded. The finding show that brick with 3% HDPE content and 0.45 of water-cement ratio at 28 days of age curing show the highest compressive strength, which is 19.5N/mm2 compared to the control specimen of 14.4 N/mm2.

  7. THE ANALYSIS OF PARTIAL DISCHARGE (PD FROM ELECTRICAL TREEING IN LINEAR LOW DENSITY POLYETHYLENE (LLDPE AND HIGH DENSITY POLYETHYLENE (HDPE

    Directory of Open Access Journals (Sweden)

    Hermawan Hermawan

    2012-02-01

    Full Text Available Recently, the transmission of electric energy has been developed by insulated cable. The suitable materialas an insulated cable is LLDPE and HDPE. In order to understand the quality of insulation system, themeasuring of PD has done. PD could begin completely insulation failure (breakdown. Therefore, it is veryimportant to understand the characteristic of PD and the enclose event on it, because PD is a main factorwhich caused insulation failure.This paper presents the result of PD measurement in the laboratory that used needle-plane electrode. Itwas supported by equipments such as osiloskop Digital GDS 2104 GW Instek, HPF, and RC detector.Polymer sample that used in this research is LLDPE (Linier Low Density Polyethylene and HDPE with 20x 4 x 25 mm3 dimension in each. Needle was made by steel (length 50 mm and diameter 1.15 mm, it wasstick to the polymer material. The distance between needle to the plane is 5 mm. The applied voltage foreach sample was 16 kVrms, 18 kVrms, 20 kVrms and 22 kVrms. The Taking of PD data was done in thefirst minute, 10th minute, 20th and so on until 180th minute.The measurement result shows that the characteristic of PD number and maximum charge as a function oftime and as a function of applied voltage inclined increasing both on LLDPE and HDPE. But, PD intensityin HDPE is higher than LLDPE.

  8. Effect of fiber geometry on macroscale friction of ordered low-density polyethylene nanofiber arrays.

    Science.gov (United States)

    Lee, Dae Ho; Kim, Yongkwan; Fearing, Ronald S; Maboudian, Roya

    2011-09-06

    Ordered low-density polyethylene (LDPE) nanofiber arrays are fabricated from silicon nanowire (SiNW) templates synthesized by a simple wet-chemical process based on metal-assisted electroless etching combined with colloidal lithography. The geometrical effect of nanofibrillar structures on their macroscale friction is investigated over a wide range of diameters and lengths under the same fiber density. The optimum geometry for contacting a smooth glass surface is presented with discussions on the compromise between fiber tip-contact area and fiber compliance. A friction design map is developed, which shows that the theoretical optimum design condition agrees well with the LDPE nanofiber geometries exhibiting high measured friction. © 2011 American Chemical Society

  9. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  10. Effect of Heat Drawing Process on Mechanical Properties of Dry-Jet Wet Spun Fiber of Linear Low Density Polyethylene/Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2017-01-01

    Full Text Available Polyethylene is one of the most commonly used polymer materials. Even though linear low density polyethylene (LLDPE has better mechanical properties than other kinds of polyethylene, it is not used as a textile material because of its plastic behavior that is easy to break at the die during melt spinning. In this study, LLDPE fibers were successfully produced with a new approach using a dry-jet wet spinning and a heat drawing process. The fibers were filled with carbon nanotubes (CNTs to improve the strength and reduce plastic deformation. The crystallinity, degree of orientation, mechanical properties (strength to yield, strength to break, elongation at break, and initial modulus, electrical conductivity, and thermal properties of LLDPE fibers were studied. The results show that the addition of CNTs improved the tensile strength and the degree of crystallinity. The heat drawing process resulted in a significant increase in the tensile strength and the orientation of the CNTs and polymer chains. In addition, this study demonstrates that the heat drawing process effectively decreases the plastic deformation of LLDPE.

  11. The improvement of polyethylene prostheses through radiation crosslinking

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Grobbelaar, C.J.; Marais, F.

    1977-01-01

    During the past decade, remarkable progress has been made in the utilization of high-density polyethylene (HDPE) as a material for the manufacture of prostheses used in orthopaedic operations. This polymer contributes largely to the success of total hip replacement. In the case of total knee replacement it was considered imperative that a more hard-wearing polymer should be developed if at all possible, because not only are the cold-flow characteristics of ordinary high-density polyethylene at high pressures a limiting factor, but particle formation from friction can furthermore lead to physiological side-effects which adversely affect the efficacy of joints made from this material, especially so in the case of knee-joints. Bearing in mind the excellent improvements to be obtained through the radiation crosslinking of polyethylene film, the radiation crosslinking of high-density polyethylene prostheses seemed to be a logical avenue to investigate. Experimental details are presented. Gamma radiation was used. Impact strength and tensile strength measurements were made on specimens irradiated over a dose range of 0 to 80 Mrad. The results are discussed. (U.K.)

  12. Synthesis and Properties of High Strength Thin Film Composites of Poly(ethylene Oxide and PEO-PMMA Blend with Cetylpyridinium Chloride Modified Clay

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Ion-conducting thin film composites of polymer electrolytes were prepared by mixing high MW poly(ethylene oxide (PEO, poly(methyl methacrylate (PMMA as a polymer matrix, cetylpyridinium chloride (CPC modified MMT as filler, and different content of LiClO4 by using solution cast method. The crystallinity, ionic conductivity (σ, and mechanical properties of the composite electrolytes and blend composites were evaluated by using XRD, AC impedance, and UTM studies, respectively. The modification of clay by CPC showed enhancement in the d-spacing. The loading of clay has effect on crystallinity of PEO systems. Blend composites showed better mechanical properties. Young’s modulus and elongation at break values showed increase with salt and clay incorporation in pure PEO. The optimum composition composite of PEO with 3.5 wt% of salt and 3.3 wt% of CPMMT exhibited better performance.

  13. Physical properties of drawn very low density polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S. [Yeungnam University, Kyongsan (Korea, Republic of); Lee, J.Y. [Korea Institute of Footwear and Leather Technology, Pusan (Korea, Republic of)

    1998-05-01

    Very low density polyethylene (VLDPE) films were prepared by quenching the pressed melt in ice water. The films were drawn with universal testing machine under constant temperature at four different temperatures, 30, 60, 80, and 110 {sup o} C. Thermal, mechanical properties, grossity, and gas permeability of the drawn VLDPE films as a function of draw ratio were investigated to examine their applicability to packaging. The films showed tow melting peaks, i.e., low temperature endotherm (LTE) and high temperature endotherm (HTE). The melting temperatures were increased with the draw ratio and the drawing temperature. The mechanical properties of the VLDPE film drawn at 80 {sup o} C were superior to those drawn at 110 {sup o} C. The grossity and gas permeability of the VLDPE film drawn at 110 {sup o} C were found to be best among the drawn films.

  14. Study of effects gamma radiation linear low density polyethylene (LLDPE) injected

    International Nuclear Information System (INIS)

    Oliveira, Ana Claudia Feitoza de

    2014-01-01

    The use of package sterilization through gamma radiation aim to reduce the microbiological contamination. The linear low density polyethylene (LLDPE) can be obtained by a process in solution, suspension or gaseous phase, depending on the type of the catalyzer used, that can be heterogeneous, or homogeneous, or metallocenes Ziegler-Natta. According to the literature, the gamma radiation presents a high penetration at polymeric materials causing the appearing of scissions, reticulation, and degradation when oxygen presence. This paper were irradiated with 60 Co with 2000 kCi of activity, in presence of air, samples of LLDPE injected. Utilized doses of 5, 10, 20, 50 or 100 kGy, and about 5 kGy.h -1 dose rates, at room temperature. After irradiation, the samples were heated for 60 min at 100 deg C to promote recombination and annihilation of residual radicals. For characterization of PEBLD were used methods; Melt flow index, swelling, gel fraction, Fourier Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (DRX), Thermogravimetric Analysis (TG), Dynamic Mechanical Analysis (DMA), rheological measurements, Scanning Electronic Microscopy and mechanical tests to identify the effects or gamma radiation in polyethylene. (author)

  15. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    Science.gov (United States)

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  16. Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning

    Science.gov (United States)

    Zhang, Xiaoguang; Qiao, Jiaxin; Zhao, Hang; Huang, Zhaohui; Liu, Yangai; Fang, Minghao; Wu, Xiaowen; Min, Xin

    2018-01-01

    Currently, phase change materials (PCMs) composite fibers are typically prepared by electrospinning. However, electrospinning exhibits safety concerns and a low production rate, which limit its practical applications as a cost-effective fiber fabrication approach. Therefore, a novel, and simple centrifugal spinning technology is employed to extrude fibers from composite solutions using a high-speed rotary and perforated spinneret. The composite fibers based on polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) were prepared by centrifugal spinning. The SEM of PVP/PEG composite fibers indicated that the fibrous morphology is well preserved. The DSC and TGA indicated that PVP/PEG composite fibers exhibit good thermal properties.

  17. Radiation effect on polyethylene tube operational properties

    International Nuclear Information System (INIS)

    Kagan, D.F.; Kantor, L.A.; Sokolov, I.A.; Pogrebetskij, G.E.; Perlova, N.A.; Chumakov, V.V.

    1975-01-01

    The operational properties (stability on prolonged usage and creeping) were determined for pressure pipes made of high-density and low-density polyethylene subjected to γ-radiation. The dependence of the period up to the breaking point on the radiation dosage was extreme in character, with a maximum being near 25 Mrad. With an increase in the irradiation dosage the character of the breaking changes from plastic (at 0-15 Mrad) to brittle (at higher dosages). The plots of creepage, indepent from the amount of radiation, can be described by logarithmic equation epsilon=epsilonsub(0)+K lgt (where, epsilon-deformation of creepage, %; epsilonsub(0)- and K - creepage constants). Therefore creepage can be considered as a criterion determining the carrying capacity of the γ-irradiated polyethylene. It was established that only radiation-grafted high-density polyethylene is suitable for hot water supply pipes

  18. Effect of titanium dioxide (TiO{sub 2}) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shichao; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2014-12-25

    Highlights: • HDPE/TiO{sub 2} composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO{sub 2} composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO{sub 2}) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO{sub 2} particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO{sub 2} particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO{sub 2} particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO{sub 2} particles in HDPE matrix. It was found the rutile TiO{sub 2} could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result.

  19. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  20. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    Science.gov (United States)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Development of a composite polyethylene--fiberglass-reinforced-plastic high-integrity container for disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    Lowenberg, H.; Shaw, M.D.

    1989-01-01

    This paper reports on a program to develop a high-integrity container (HIC) for handling, transportation, and disposal of low-level radioactive wastes. The HIC, made of a composite material, consists of an inner layer of polyethylene bonded to an outer casing of fiberglass-reinforced plastic. Preliminary handmade prototype units containing about 0.22 m 3 , called HIC-7, have been fabricated and exposed to some of the U.S. Nuclear Regulatory Commission (NRC) and state tests. The HICs withstood over twice the external pressure from maximum burial conditions and twice the Type A package internal pressure requirements. In addition, freedrops on compacted soil and an unyielding surface showed no deleterious effects

  2. Experimental investigation of the effect of titanium dioxide and barium titanate additives on DC transient currents in low density polyethylene

    DEFF Research Database (Denmark)

    Khalil, M.S; Henk, Peter O; Henriksen, Mogens

    1988-01-01

    The effect of titanium dioxide as a semiconductive additive and barium titanate as a highly polar additive on the DC transient currents in low-density polyethylene is investigated. Experiments were made using thick specimens under a high electric field (>25×106 V/m) and a constant temperature of 40...

  3. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  4. LDPE/HDPE/Clay Nano composites: Effects of Compatibilizer on the Structure and Dielectric Response

    International Nuclear Information System (INIS)

    David, Z.E.; Ngo, A.D.

    2013-01-01

    PE/clay nano composites were prepared by mixing a commercially available premixed polyethylene/O-MMT master batch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA) as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nano clay and compatibilizer on the structure and dielectric response of PE/clay nano composites has been investigated. The microstructure of PE/clay nano composites was characterized using wide-angle X-ray diffraction (WAXD) and a scanning electron microscope (SEM). Thermal properties were examined using differential scanning calorimetry (DSC). The dielectric response of neat PE was compared with that of PE/clay nano composite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nano composite with the PE-MA compatibilizer was better dispersed. In the nano composite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate f m ax of Maxwell-Wagner-Sillars was found and discussed.

  5. Influence of nanoclay on properties of HDPE/wood composites

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons; Fei Yao; Yanjun Xu

    2007-01-01

    Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-...

  6. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-09-01

    Full Text Available Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE as the matrix and low-density polyethylene (LDPE coated BaO–Nd2O3–TiO2 (BNT ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol% could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz to 11.87 (7 GHz, while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  7. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Science.gov (United States)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  8. Characterization of solidified radioactive waste and container due to the incorporation of high density polyethylene granules and powder in mortar matrices

    International Nuclear Information System (INIS)

    Peric, A.D.

    1999-01-01

    Powder and granules of the high density polyethylene (PEHD) were used to prepare mortar based matrices for immobilization of radioactive waste materials containing 137 Cs, as well as containers for solidified radioactive waste form. Seven types of matrices, differ due to the percentage of granules and filler material added, were investigated. PEHD powder and granules were added to mortar matrix preparations with the objective of improving physico-chemical characteristics of the radwaste-mortar matrix mixtures, in particular the leach-rate of the immobilized radionuclide, as well as mechanical characteristics either of mortar matrix and container. In this paper, only mechanical strength aspect of the investigated mortar and concrete container formulations, is presented. The equivalent diameter of the PEHD granules used was 2.0 mm. PEHD granules were used to replace 100 volume percent of stone granules, sifted size of 2.0 mm, normally used in the matrix preparation, in order to decrease the porosity and density of the mortar matrix and to avoid segregation of the stone particles at the bottom of the immobilized radioactive waste cylindrical form. PEHD powder, particle size of 250 micrometer, was added as filler to the mortar formulation, replacing 5, 8 and 10 wt% of the total cement weight in matrix formulation and 15 and 18 wt% of the total cement weight in container formulation. Cured samples were investigated on mechanical strength, using 150 MPa hydraulic press, in order to determine influence of added polyethylene granules and powder on samples resistance to mechanical forces that solidified waste materials and concrete containers may experience at the disposal site. Results of performed investigations have shown that samples prepared with polyethylene granules, replacing 100 wt% of the stone granules, have almost twice as much mechanical strength than samples prepared with stone aggregate. Samples prepared with PEHD granules and powder have mechanical strength

  9. Degradation of low-density polyethylene in the presence of water and deuterium oxide

    International Nuclear Information System (INIS)

    Sedgwick, R.D.; Al-Sultan, Y.Y.; Abushihada, A.M.

    1981-01-01

    The degradation of low-density polyethylene in the presence of water as the degradative agent was studied at a temperature of 450 0 C and a pressure greater than 160 atm. The experimental work was conducted in an autoclave of 333-mL capacity. The results indicate the presence of paraffins, olefines, dienes, and aromatics in the degradation products. The occurrence of aromatics in the products demonstrates the importance of this degradation procedure for obtaining these valuable materials. The present work (Part 1) is believed to be the first publication to discuss the production of aromatics from polyethylenes degradation

  10. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    International Nuclear Information System (INIS)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C.

    2017-01-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  11. Electron beam irradiation process applied to primary and secondary recycled high density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jéssica R.; Moura, Eduardo de; Geraldo, Áurea B.C., E-mail: ageraldo@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    Plastic bags, packaging and furniture items are examples of plastic utilities always present in life. However, the end-of-life of plastics impacts the environment because of this ubiquity and also often their high degradation time. Recycling processes are important in this scenario because they offer many solutions to this problem. Basically, four ways are known for plastic recycling: primary recycling, which consists in re-extrusion of clean plastic scraps from a production plant; secondary recycling, that uses end-of-life products that generally are reduced in size by extrusion to obtain a more desirable shape for reprocessing (pellets and powder); tertiary recover which is related to thermo-chemical methods to produce fuels and petrochemical feedstock; and quaternary route, that is related to energy recovery and it is done in appropriate reactors. In this work, high density polyethylene (HDPE) was recovered to simulate empirically the primary and secondary recycling ways using materials which ranged from pristine to 20-fold re-extrused materials. The final 20-fold recycled thermoplastic was irradiated in an electron beam accelerator under a dose rate of 22.4 kGy/s and absorbed doses of 50 kGy and 100 kGy. The characterization of HDPE in distinct levels of recovering was performed by infrared spectroscopy (FTIR) and thermogravimetric degradation. In the HDPE recycling, degradation and crosslinking are consecutive processes; degradation is very noticeable in the 20-fold recycled product. Despite this, the 20-fold recycled product presents crosslinking after irradiation process and the post-irradiation product presents similarities in spectroscopic and thermal degradation characteristics of pristine, irradiated HDPE. These results are discussed. (author)

  12. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ferreto, H. F. R., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Parra, D. F., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br; Lugão, A. B., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br [Center of Chemistry and Environment, Institute of Energy and Nuclear Research - IPEN (Brazil); Gaia, R., E-mail: renan-gaia7@hotmail.com [Faculdades Oswaldo Cruz (Brazil)

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  13. Elastomer modified polypropylene–polyethylene blends as matrices for wood flour–plastic composites

    Science.gov (United States)

    Craig Clemons

    2010-01-01

    Blends of polyethylene (PE) and polypropylene (PP) could potentially be used as matrices for wood–plastic composites (WPCs). The mechanical performance and morphology of both the unfilled blends and wood-filled composites with various elastomers and coupling agents were investigated. Blending of the plastics resulted in either small domains of the minor phase in a...

  14. Leak detection in medium density polyethylene (MDPE) pipe using pressure transient method

    Science.gov (United States)

    Amin, M. M.; Ghazali, M. F.; PiRemli, M. A.; Hamat, A. M. A.; Adnan, N. F.

    2015-12-01

    Water is an essential part of commodity for a daily life usage for an average person, from personal uses such as residential or commercial consumers to industries utilization. This study emphasizes on detection of leaking in medium density polyethylene (MDPE) pipe using pressure transient method. This type of pipe is used to analyze the position of the leakage in the pipeline by using Ensemble Empirical Mode Decomposition Method (EEMD) with signal masking. Water hammer would induce an impulse throughout the pipeline that caused the system turns into a surge of water wave. Thus, solenoid valve is used to create a water hammer through the pipelines. The data from the pressure sensor is collected using DASYLab software. The data analysis of the pressure signal will be decomposed into a series of wave composition using EEMD signal masking method in matrix laboratory (MATLAB) software. The series of decomposition of signals is then carefully selected which reflected intrinsic mode function (IMF). These IMFs will be displayed by using a mathematical algorithm, known as Hilbert transform (HT) spectrum. The IMF signal was analysed to capture the differences. The analyzed data is compared with the actual measurement of the leakage in term of percentage error. The error recorded is below than 1% and it is proved that this method highly reliable and accurate for leak detection.

  15. Electrical conductivity of the «polyethylene — vanadium dioxide» composite

    Directory of Open Access Journals (Sweden)

    Antonova E. V.

    2013-06-01

    Full Text Available Samples of the «polyethylene — VO2» composite have been obtained using technologies for manufacturing self-healing polyswitch fuses. The volume fraction of vanadium dioxide in the samples ranged from 0,25 to 0,6. It is shown that the electrical conductivity of the composite is of percolation character. The paper presents research results of the microstructure, the resistance temperature dependence and current-voltage characteristics of polymer composite samples, as well as the impact of the VO2 content on the samples.

  16. Solid-phase photocatalytic degradation of polyethylene-goethite composite film under UV-light irradiation

    International Nuclear Information System (INIS)

    Liu, G.L.; Zhu, D.W.; Liao, S.J.; Ren, L.Y.; Cui, J.Z.; Zhou, W.B.

    2009-01-01

    A novel photodegradable polyethylene-goethite (PE-goethite) composite film was prepared by embedding the goethite into the commercial polyethylene. The degradation of PE-goethite composite films was investigated under ultraviolet light irradiation. The photodegradation activity of the PE plastic was determined by monitoring its weight loss, scanning electron microscopic (SEM) analysis and FT-IR spectroscopy. The weight of PE-goethite (1 wt%) sample steadily decreased and led to the total 16% reduction in 300 h under UV-light intensity for 1 mW/cm 2 . Through SEM observation there were some cavities around the goethite powder in the composite films, but there were few changes except some surface chalking phenomenon in pure PE film. The degradation rate could be controlled by changing the concentration of goethite particles in PE plastic. The degradation of composite plastic initiated on PE-goethite interface and then extended into polymer matrix induced by the diffusion of the reactive oxygen species generated on goethite particle surface. The photocatalytic degradation mechanism of the composite films was briefly discussed.

  17. Fabrication and mechanical properties of self-reinforced poly(ethylene terephthalate composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Self-reinforced poly(ethylene terephthalate (PET composites prepared by using a modified film-stacking technique were examined in this study. The starting materials included a high tenacity PET yarn (reinforcement and a low melting temperature biodegradable polyester resin (matrix, both of which differ in their melting temperatures with a value of 56°C. This experiment produced composite sheets at three consolidation temperatures (Tc: 215, 225, and 235°C at a constant holding time (th: 6.5 min, and three holding times (3, 6.5 and 10 min at a constant consolidation temperature of 225°C. This study observed a significant improvement in the mechanical properties obtained in self-reinforced PET composites compared to the pure polyester resin. The results of tensile, flexural, and Izod impact tests proved that optimal conditions are low consolidation temperature and short holding time. The absorbed impact energy of the best self-reinforced PET composite material was 854.0 J/m, which is 63 times that of pure polyester resin.

  18. The influence of modification of elastomer compositions in polyethylene oxides on their resistance to mineral oils

    Directory of Open Access Journals (Sweden)

    E. P. Uss

    2017-01-01

    Full Text Available The influence of modifying of elastomer compositions based on nitrile rubber in the medium of low molecular weight polyethylene oxide on resistance of rubbers to liquid aggressive mediawas studied. Standard hydrocarbon oils – oil ASTM №1 and ASTM №3, having a constant chemical composition and properties, were used as aggressive fluids. Resistance of elastomer compositions to standard oil was evaluated by change in weight, volume and relative compression set after keeping the samples in these oils at elevated temperatures. The influence of aggressive environment on the degree of swelling and the value of compression set of compositions modified in polyethylene oxides medium was established. It has been shown that the mass/volume of modified rubbers during aging in oil ASTM №1 reduced to a lesser degree compared to unmodified samples, which is probably due to the influence of low molecular weight polyethylene oxides for the formation of vulcanizates structure. At the same time exposure to oil ASTM №3 of elastomer compositions increases the degree of swelling of modified rubber more than unmodified, which can be due to destruction by the action of aggressive medium additional intermolecular bonds between macromolecules of polyethylene oxide and rubber, resulting in increased flexibility of the elastomeric matrix segments. It revealed that modification of rubbers in low molecular weightpolyethylene oxides facilitates preparation of rubber with low compression set after aging in standard oils at elevated temperatures.

  19. Effects of blend ratio between high density polyethylene and biomass on co-gasification behavior in a two-stage gasification system

    KAUST Repository

    Park, Jae Hyun

    2016-08-12

    The co-gasification of a high density polyethylene (HDPE) blended with a biomass has been carried out in a two-stage gasification system which comprises an oxidative pyrolysis reactor and a thermal plasma reactor. The equivalence ratio was changed from 0.38 to 0.85 according to the variation of blend ratio between HDPE and biomass. The highest production yield was achieved to be 71.4 mol/h, when the equivalence ratio was 0.47. A large amount of hydrocarbons was produced from the oxidative pyrolysis reactor as decreasing equivalence ratio below 0.41, while the CO2 concentration significantly increased with a high equivalence ratio over 0.65. The production yield was improved by the thermal plasma reactor due to the conversion of hydrocarbons into syngas in a high temperature region of thermal plasma. At the equivalence ratio of 0.47, conversion selectivities of CO and H2 from hydrocarbons were calculated to be 74% and 44%, respectively. © 2016 Hydrogen Energy Publications LLC.

  20. HDPE (High Density Polyethylene) pipeline and riser design in Guanabara Bay: challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bomfimsilva, Carlos; Jorge, Joao Paulo Carrijo; Schmid, Dominique; Gomes, Rodrigo Klim [INTECSEA, Sao Paulo, SP (Brazil); Lima, Alexander Piraja [GDK, Salvador, BA (Brazil)

    2009-12-19

    Worldwide shipments of plastic pipes are forecasted to increase 5.2% per year since 2008, being commonly used for water supply and sewage disposal. The HDPE (High Density Polyethylene) pipes have been applied recently to deliver potable water and fire fighting water for the main pier of the LNG system in Guanabara Bay, Rio de Janeiro. The system contains three sizes of pipe outside diameter, 110 mm and 160 mm for water supply, and 500 mm for the fire fighting system. The main design challenges of the pipeline system included providing on-bottom stability, a suitable installation procedure and a proper riser design. The on-bottom stability calculations, which are quite different from the conventional steel pipelines, were developed by designing concrete blocks to be assembled on the pipeline in a required spacing to assure long term stability, knowing that plastic pipes are buoyant even in flooded conditions. The installation procedure was developed considering the lay down methodology based on surface towing technique. The riser was designed to be installed together with additional steel support structure to allow the entire underwater system to have the same plastic pipe specification up to the surface. This paper presents the main challenges that were faced during the design of the HDPE pipelines for the LNG system in Guanabara Bay, addressing the solutions and recommendations adopted for the plastic underwater pipeline system.

  1. Application of support vector regression for optimization of vibration flow field of high-density polyethylene melts characterized by small angle light scattering

    Science.gov (United States)

    Xian, Guangming

    2018-03-01

    In this paper, the vibration flow field parameters of polymer melts in a visual slit die are optimized by using intelligent algorithm. Experimental small angle light scattering (SALS) patterns are shown to characterize the processing process. In order to capture the scattered light, a polarizer and an analyzer are placed before and after the polymer melts. The results reported in this study are obtained using high-density polyethylene (HDPE) with rotation speed at 28 rpm. In addition, support vector regression (SVR) analytical method is introduced for optimization the parameters of vibration flow field. This work establishes the general applicability of SVR for predicting the optimal parameters of vibration flow field.

  2. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos

    2004-01-01

    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  3. Phase Behavior of Blends of Linear and Branched Polyethylenes on Micron-Length Scales via Ultra-Small-Angle Neutron Scattering (USANS)

    International Nuclear Information System (INIS)

    Agamalian, M.M.; Alamo, R.G.; Londono, J.D.; Mandelkern, L.; Wignall, G.D.

    1999-01-01

    SANS experiments on blends of linear, high density (HD) and long chain branched, low density (LD) polyethylenes indicate that these systems form a one-phase mixture in the melt. However, the maximum spatial resolution of pinhole cameras is approximately equal to 10 3 and it has therefore been suggested that data might also be interpreted as arising from a bi-phasic melt with large a particle size ( 1 m), because most of the scattering from the different phases would not be resolved. We have addressed this hypothesis by means of USANS experiments, which confirm that HDPEILDPE blends are homogenous in the melt on length scales up to 20 m. We have also studied blends of HDPE and short-chain branched linear low density polyethylenes (LLDPEs), which phase separate when the branch content is sufficiently high. LLDPEs prepared with Ziegler-Natta catalysts exhibit a wide distribution of compositions, and may therefore be thought of as a blend of different species. When the composition distribution is broad enough, a fraction of highly branched chains may phase separate on m-length scales, and USANS has also been used to quantify this phenomenon

  4. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  5. Surface modification of polyethylene by diffuse barrier discharge plasma

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Števiar, M.; Popelka, A.; Chodák, I.; Mosnáček, J.; Špírková, Milena; Janigová, I.; Kleinová, A.; Sedliačik, J.; Šlouf, Miroslav

    2013-01-01

    Roč. 53, č. 3 (2013), s. 516-523 ISSN 0032-3888 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-density polyethylene * plasma discharge * surface modification Subject RIV: JI - Composite Materials Impact factor: 1.441, year: 2013

  6. Oil-Impregnated Polyethylene Films

    Science.gov (United States)

    Mukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad; Berbert, Otacilio; Shi, Shawn; Boreyko, Jonathan

    2017-11-01

    Slippery liquid-infused porous surfaces (SLIPS) minimize the contact angle hysteresis of a wide range of liquids and aqueous food products. Although hydrophobic polymers are often used as the porous substrate for SLIPS, the choice of polymer has been limited to silicone-based or fluorine-based materials. Hydrocarbon-based polymers, such as polyethylene, are cost effective and widely used in food packaging applications where SLIPS would be highly desirable. However, to date there have been no reports on using polyethylene as a SLIPS substrate, as it is considered highly impermeable. Here, we show that thin films of low-density polyethylene can be stably impregnated with carbon-based oils without requiring any surface modification. Wicking tests reveal that oils with sufficient chemical compatibility follow Washburn's equation. The nanometric effective pore size of the polyethylene does result in a very low wicking speed, but by using micro-thin films and a drawdown coater, impregnation can still be completed in under one second. The oil-impregnated polyethylene films promoted ultra-slippery behavior for water, ketchup, and yogurt while remaining durable even after being submerged in ketchup for over one month. This work was supported by Bemis North America (AT-23981).

  7. Development of antifungal films based on low-density polyethylene and thyme oil for avocado packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-10-01

    Full Text Available Trilayer low-density polyethylene (LDPE) films were prepared by incorporating varying concentrations of thyme oil, as the antifungal active additive for avocado packaging. A comprehensive thermal, structural, mechanical, and functional...

  8. Electron beam induced graft-polymerization of methyl methacrylate onto polyethylene films at high dose rates

    International Nuclear Information System (INIS)

    Mori, Koji; Koshiishi, Kenji; Masuhara, Ken-ichi

    1991-01-01

    Electron beam induced graft-polymerization by the mutual irradiation technique of methyl methacrylate on the surface of low density polyethylene films (LD) and high density polyethylene films (HD) was investigated at high dose rates over 10 Mrad per second. Graft-polymerization mechanisms were discussed on the basis of O 2 permeability, tensile strength, elongation at break, and surface tension of the grafted films. As the degree of grafting increased, the O 2 permeability of LD decreased, while that of HD little changed at the grafting up to 4 ∼ 5 %. This indicates that the grafting occurred in the amorphous regions for LD and occurred in the amorphous regions in the neighborhood of crystalline regions for HD. For HD, when the degree of the grafting surpassed 4 ∼ 5 %, the O 2 permeability, tensile strength, elongation at break, and surface tension decreased with an increase in the degree of grafting. It was assumed that rapid grafting in the amorphous regions in the neighborhood of crystalline regions caused the increase in local temperature by the heat of polymerization, and the viscosity of polyethylene in the amorphous regions decreased with an increase in temperature. As a result, the graft chains, which formed micro domain structure, condensed in the amorphous regions and the domain increased in size. (author)

  9. Study of microstructure and fracture properties of blunt notched and sharp cracked high density polyethylene specimens.

    Science.gov (United States)

    Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri

    2017-07-21

    This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.

  10. Tensile mechanical response of polyethylene – clay nanocomposites.

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available In this work we report on the microstructural and the mechanical characteristics of high density polyethylene (HDPE-clay nanocomposites, with particular attention to the creep behaviour. The samples were prepared through melt compounding, using two high-density polyethylenes with different melt flow rate (MFR, two different organo-modified clays, and changing the relative amount of a polyethylene grafted with maleic anhydride (PEgMA compatibilizer. The intercalation process is more effective as the matrix melt viscosity decreases (higher MFR, while the clay interlamellar spacing increases as the compatibilizer amount increases. The relative stiffness of the nanocomposites increases with the addition of clay, with a limited enhancement of the relative yield stress. The better intercalation obtained by the addition of the compatibilizer is not accompanied by a concurrent improvement of the tensile mechanical properties. The creep resistance is enhanced by the introduction of clay, with an appreciable dependence on both the polyethylene and the clay type.

  11. Low-density, high-strength intermetallic matrix composites by XD (trademark) synthesis

    Science.gov (United States)

    Kumar, K. S.; Dipietro, M. S.; Brown, S. A.; Whittenberger, J. D.

    1991-01-01

    A feasibility study was conducted to evaluate the potential of particulate composites based on low-density, L1(sub 2) trialuminide matrices for high-temperature applications. The compounds evaluated included Al22Fe3Ti8 (as a multiphase matrix), Al67Ti25Cr8, and Al66Ti25Mn9. The reinforcement consisted of TiB2 particulates. The TiB2 composites were processed by ingot and powder metallurgy techniques. Microstructural characterization and mechanical testing were performed in the hot-pressed and hot-isostatic-pressed condition. The casting were sectioned and isothermally forged into pancakes. All the materials were tested in compression as a function of temperature, and at high temperatures as a function of strain rate. The test results are discussed.

  12. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  13. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission

    International Nuclear Information System (INIS)

    Hao, Yanling; Gan, Zhixing; Xu, Jiaqing; Wu, Xinglong; Chu, Paul K.

    2014-01-01

    Highlights: • Poly(ethylene glycol)/carbon quantum dots (PEG/CQDs) composite solid films exhibiting strong and tunable blue–red emission were prepared. Successful preparation of tunable emitting CQDs solid films can extend the application of carbon quantum dots in photoelectric devices. • The mechanism of the tunable emission from the PEG/CQDs composite solid films was discussed. • On the basis of the characteristics of the PL from solid films in this work, the complex PL origins of CQDs were further defined. The PL mechanism provides insights into the fluorescence mechanism of CQDs and may promotes their applications. • Poly(ethylene glycol); carbon quantum dots; Strong and tunable blue-red emission; The fluorescent quantum yield of 12.6%. - Abstract: Although carbon quantum dots (CQDs) possess excellent luminescence properties, it is a challenge to apply water-soluble CQDs to tunable luminescent devices. Herein, quaternary CQDs are incorporated into poly(ethylene glycol) to produce poly(ethylene glycol)/CQD composite solid films which exhibit strong and tunable blue–red emission. The fluorescent quantum yield reaches 12.6% which is comparable to that of many liquid CQDs and the photoluminescence characteristics are determined to elucidate the fluorescence mechanism. The CQD solid films with tunable optical properties bode well for photoelectric devices especially displays

  14. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Science.gov (United States)

    Hidalgo-Salazar, Miguel A.; Correa, Juan P.

    2018-03-01

    In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique.

  15. Determination of charge carrier mobility in doped low density polyethylene using DC transients

    DEFF Research Database (Denmark)

    Khalil, M.Salah; Henk, Peter O; Henriksen, Mogens

    1989-01-01

    Charge carrier mobility was determined for plain and doped low-density polyethylene (LDPE) using DC transient currents. Barium titanate was used as a strongly polar dopant and titanium dioxide as a semiconductor dopant. The values of the mobility obtained were on the order of 10-10 cm2 v-1 s-1...

  16. Measurement of radon permeability through polyethylene membrane using scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ashry, A.H.; Abou-Leila, M. [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Abdalla, A.M., E-mail: aymanabdalla62@hotmail.co [Department of Physics, Faculty of Education, Ain Shams University, Cairo (Egypt); Department of Physics, Faculty of Sciences and Arts, Najran University, Najran, P.O. Box. 11001 (Saudi Arabia); Advanced Materials and Nano-Engineering Laboratory (AMNEL), Centre for Advanced Materials and Nano-Engineering (CAMNE), Najran University, Najran, P.O. Box. 11001 (Saudi Arabia)

    2011-01-15

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211]method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  17. Measurement of radon permeability through polyethylene membrane using scintillation detector

    International Nuclear Information System (INIS)

    Ashry, A.H.; Abou-Leila, M.; Abdalla, A.M.

    2011-01-01

    The permeability of Radon 222 through polyethylene membranes has been studied using activated charcoal technique. The permeability constant of Radon 222 through low-density polyethylene, linear low-density Polyethylene and high density polyethylene samples has been measured. There is a considerable agreement between the values obtained by our method and the method suggested by W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211], and SSNTD technique suggested by A. Hafez and G. Somogyi [1986. Determination of radon and thoron permeability through some plastics by track technique. Int. J. Radiat. Appl. Instrum. Nucl. Track Radiat. Meas. 12 (1-6), 697-700]. In this work Radon permeability through different polyethylene membranes has been measured using three different methods, i.e. solid state nuclear track technique, W. Arafa [2002. Permeability of radon 222 through some materials. Radiat. Meas. 35, 207-211] method and our proposed method. In addition to this, in this study, the diffusion coefficient of radon in charcoal as well as solubility of Radon in polyethylene membrane has been taken into consideration.

  18. Effects of chemical and gamma irradiation environments on the mechanical properties of high-density polyethylene (HDPE)

    International Nuclear Information System (INIS)

    Soo, P.

    1988-01-01

    High-density polyethylene (HDPE) is currently being used as a high-integrity container material for low-level wastes. Potential failure/degration modes must be determined for realistic environmental conditions. These include consideration of mechanical stress, gaseous/liquid environments within and external to the container, and the gamma radiation field. A combination of simple inexpensive tests (stressed U-bend samples) and more sophisticated longer-term uniaxial creep tests are being used to define the ranges of conditions for which mechanical failure/degradation is important. Test environments include Igepal CO-630, turbine oil and liquid scintillation fluid as well as air and deionized water, the control environments. Igepal CO-630 is a surfactant specified in standard ASTM tests for environmental stress cracking. Turbine oil is a possible constituent of low-level waste generated at reactor power plants, and is used in the current tests because of its known detrimental behavior to many types of plastic. Liquid scintillation fluids are being evaluated here because they are representative of the class of organiz solvents containing toluene and xylene. As such they will give valuable insights regarding a type of potential failure or degradation mode for HDPE. The effect of gamma irradiation on crack initiation and propagation is also being studied. A description of the work and results are presented. 8 refs., 6 figs., 2 tabs

  19. Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition

    NARCIS (Netherlands)

    Hendriks, H.F.J.; Veenstra, J.; Tol, A. van; Groener, J.E.M.; Schaafsma, G.

    1998-01-01

    Moderate alcohol consumption is associated with a reduced risk of coronary heart disease. In this study, postprandial changes in plasma lipids, high-density lipoprotein (HDL) composition and cholesteryl ester transfer protein (CETP) and lecithin: cholesterol acyltransferase (LCAT) activity levels

  20. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    Science.gov (United States)

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  1. Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable

    International Nuclear Information System (INIS)

    Basfar, A.A.

    2002-01-01

    Various formulations of low-density polyethylene blended with ethylene vinyl acetate were prepared to improve the flame retardancy for wire and cable applications. The prepared formulations were cross-linked by γ-rays to 50, 100, 150 and 200 kGy in the presence of trimethylolpropane triacrylate (TMPTA). The effect of thermal aging on mechanical properties of these formulations were investigated. In addition, the influence of various combinations of aluminum trihydroxide and zinc borate as flame retardant fillers on the flammability was explored. Limiting oxygen index (LOI) and average extent of burning were used to characterize the flammability of investigated formulations. An improved flame retardancy of low density polyethylene was achieved by various combinations of flame ratardant fillers and cross-linking by gamma radiation

  2. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    International Nuclear Information System (INIS)

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-01-01

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm 3 , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm 3 , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm 3 ) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm 3 and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0.05, Tukey's HSD

  3. Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene

    International Nuclear Information System (INIS)

    Chin, Bridgid Lai Fui; Yusup, Suzana; Al Shoaibi, Ahmed; Kannan, Pravin; Srinivasakannan, Chandrasekar; Sulaiman, Shaharin Anwar

    2014-01-01

    Highlights: • Co-pyrolysis of biomass and plastic waste in thermogravimetric analyzer. • Investigation of thermal degradation behavior in different feedstocks. • Synergistic effect of the biomass and plastic waste mixture is investigated. • Kinetic parameters using one step integral method are determined. - Abstract: This paper investigates the thermal degradation behavior of rubber seed shell (RSS), high density polyethylene (HDPE), and the HDPE/RSS mixtures (0.2:0.8 weight ratio) using thermogravimetric analyzer under non-isothermal condition in argon atmosphere at flowrate of 100 ml min −1 . Cellulose, hemicellulose, and lignin are also analyzed in this study for comparison of pyrolysis behavior with RSS. The experiments were conducted at different heating rates of 10, 20, 30, and 50 K min −1 in the temperature range of 323–1173 K. The kinetic data is generated based on first order rate of reaction. It is observed that the thermal degradation behavior of the main components in biomass such as hemicellulose, cellulose, and lignin differs during pyrolysis process due to the structural differences that leads to distinctive pathways of degradation of feedstock. It is found that there are one, two, and three stages of decomposition occurring in HDPE, RSS, and HDPE/RSS mixtures respectively during the pyrolysis process. The remaining solid residue increases with an increase in heating rate regardless of the type of samples used. The activation energies (E A ) for RSS, HDPE, HDPE/RSS mixtures are 46.94–63.21, 242.13–278.14, and 49.14–83.11 kJ mol −1 respectively for the range of heating rate studied

  4. Development of Functional Surfaces on High-Density Polyethylene (HDPE) via Gas-Assisted Etching (GAE) Using Focused Ion Beams.

    Science.gov (United States)

    Sezen, Meltem; Bakan, Feray

    2015-12-01

    Irradiation damage, caused by the use of beams in electron and ion microscopes, leads to undesired physical/chemical material property changes or uncontrollable modification of structures. Particularly, soft matter such as polymers or biological materials is highly susceptible and very much prone to react on electron/ion beam irradiation. Nevertheless, it is possible to turn degradation-dependent physical/chemical changes from negative to positive use when materials are intentionally exposed to beams. Especially, controllable surface modification allows tuning of surface properties for targeted purposes and thus provides the use of ultimate materials and their systems at the micro/nanoscale for creating functional surfaces. In this work, XeF2 and I2 gases were used in the focused ion beam scanning electron microscope instrument in combination with gallium ion etching of high-density polyethylene surfaces with different beam currents and accordingly different gas exposure times resulting at the same ion dose to optimize and develop new polymer surface properties and to create functional polymer surfaces. Alterations in the surface morphologies and surface chemistry due to gas-assisted etching-based nanostructuring with various processing parameters were tracked using high-resolution SEM imaging, complementary energy-dispersive spectroscopic analyses, and atomic force microscopic investigations.

  5. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties.

    Science.gov (United States)

    Rahman, Khandkar-Siddikur; Islam, Md Nazrul; Rahman, Md Mushfiqur; Hannan, Md Obaidullah; Dungani, Rudi; Khalil, Hps Abdul

    2013-01-01

    This study deals with the fabrication of composite matrix from saw dust (SD) and recycled polyethylene terephthalate (PET) at different ratio (w/w) by flat-pressed method. The wood plastic composites (WPCs) were made with a thickness of 6 mm after mixing the saw dust and PET in a rotary type blender followed by flat press process. Physical i.e., density, moisture content (MC), water absorption (WA) and thickness swelling (TS), and mechanical properties i.e., Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were assessed as a function of mixing ratios according to the ASTM D-1037 standard. WA and TS were measured after 24 hours of immersion in water at 25, 50 and 75°C temperature. It was found that density decreased 18.3% when SD content increased from 40% to 70% into the matix. WA and TS increased when the PET content decreased in the matrix and the testing water temperature increased. MOE and MOR were reached to maximum for the fabricated composites (2008.34 and 27.08 N/mm(2), respectively) when the SD content were only 40%. The results indicated that the fabrication of WPCs from sawdust and PET would technically feasible; however, the use of additives like coupling agents could further enhance the properties of WPCs.

  6. Changes in wood flour/HDPE composites after accelerated weathering with and without water spray

    Science.gov (United States)

    Nicole M. Stark

    2005-01-01

    Wood-plastic lumber is promoted as a low-maintenance high-durability product. After weathering, however, wood-plasticcomposites (WPCs) often fide and lose mechanical properties. In the first part ofthis study, 50%wood-flour-filled high-density polyethylene (HDPE) composite samples were injection molded or extruded. Composites were exposed to two accelerated weathering...

  7. Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters.

    Science.gov (United States)

    Rajagopal, Rajinikanth; Torrijos, Michel; Kumar, Pradeep; Mehrotra, Indu

    2013-02-15

    The process kinetics for two upflow anaerobic filters (UAFs) treating high strength fruit canning and cheese-dairy wastewaters as feed were investigated. The experimental unit consisted of a 10-L (effective volume) reactor filled with low-density polyethylene media. COD removal efficiencies of about 80% were recorded at the maximum OLRs of 19 and 17 g COD L(-1) d(-1) for the fruit canning and cheese-dairy wastewaters, respectively. Modified Stover-Kincannon and second-order kinetic models were applied to data obtained from the experimental studies in order to determine the substrate removal kinetics. According to Stover-Kincannon model, U(max) and K(B) values were estimated as 109.9 and 109.7 g L(-1) d(-1) for fruit canning, and 53.5 and 49.7 g L(-1) d(-1) for cheese dairy wastewaters, respectively. The second order substrate removal rate k(2(s)) was found to be 5.0 and 1.93 d(-1) respectively for fruit canning and cheese dairy wastewaters. As both these models gave high correlation coefficients (R(2) = 98-99%), they could be used in predicting the behaviour or design of the UAF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung; Lee, Young Ju [Sunchon National University, Suncheon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Yongin (Korea, Republic of)

    2015-01-15

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions.

  9. Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Lee, Young Ju; Oh, Young Jin

    2015-01-01

    High-density polyethylene (HDPE) piping, which has recently been applied to safety class III piping in nuclear power plants, can be butt-joined through the thermal fusion process, which heats two fused surfaces and then subject to axial pressure. The thermal fusion process generates bead shapes on the butt fusion. The stress concentrations caused by the bead shapes may reduce the fatigue lifetime. Thus, investigating the effect of the thermal butt fusion beads on fatigue behavior is necessary. This study examined the fatigue behavior of thermal butt fusion via a tensile fatigue test under stress-controlled conditions using finite element elastic stress analysis. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low-cycle fatigue region while having a negligible effect in the medium- and high-cycle fatigue regions

  10. Strength and thermal stability of fiber reinforced plastic composites ...

    African Journals Online (AJOL)

    Therefore, the strength properties and thermal stability of plastic composites reinforced with rattan fibers were investigated in this work. Particles of rattan species (Eremospatha macrocarpa (EM) and Laccosperma secundiflorum (LS)) were blended with High-Density Polyethylene (HDPE) to produce fiber reinforced plastic ...

  11. Preparation and tensile properties of linear low density polyethylene/rambutan peels (Nephelium chryseum Blum.) flour blends

    Science.gov (United States)

    Nadhirah, A. Ainatun.; Sam, S. T.; Noriman, N. Z.; Voon, C. H.; Samera, S. S.

    2015-05-01

    The effect of rambutan peels flour (RPF) content on the tensile properties of linear low density polyethylene filled with rambutan peel flour was studied. RPF was melt blended with linear low-density polyethylene (LLDPE). LLDPE/RPF blends were prepared by using internal mixer (brabender) at 160 °C with the flour content ranged from 0 to 15 wt%. The tensile properties were tested by using a universal testing machine (UTM) according to ASTM D638. The highest tensile strength was observed for pure LLDPE while the tensile strength LLDPE/RPF decreased gradually with the addition of rambutan peels flour content from 0% to 15%. Young's modulus of 63 µm to 250 µm rambutan peels blends with LLDPE with the fiber loading of 0 - 15 wt% increased with increasing fiber loading.

  12. Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

    OpenAIRE

    D. Korsacilar; C. Atas

    2014-01-01

    In this study, first thermoplastic composite materials /plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber c...

  13. Study of the formation of polyethylene composites and lignocellulose materials by means of irradiation and extrusion

    International Nuclear Information System (INIS)

    Azevedo, Marcos Bertrand de; Romero, Guillermo R.; Gonzalez, Maria Elisa; Smolko, Eduardo E.

    2000-01-01

    One of the greatest opportunities for using of biomass as a precursor in the production of polymeric materials is the lignocellulose composites that can combine high performance with low costs. This work is a initial study on the production of a lignocellulose reinforced polyethylene composite. A compatibilization made by a induced gamma radiation grafting reaction was used to increase the adhesion between the matrix and the reinforced or filled fibers. The lignocellulose materials were exposed to gamma radiation in order to promote a molecular degradation and increase its reactivity. The polymer, the lignocellulose material and the compatibilization were processed by extrusion and the composite produced by this process were characterized by mechanical tests. (author)

  14. Study of gamma irradiated polyethylenes by temperature modulated differential scanning calorimetry

    International Nuclear Information System (INIS)

    Secerov, B.; Galovic, S.; Trifunovic, S.; Milicevic, D.; Suljovrujic, E.

    2011-01-01

    Complete text of publication follows. The various polyethylenes (PEs) and effects of high energy radiation on theirs structures were widely studied in the past using conventional Differential Scanning Calorimetry (DSC) measurements. In this work, we applied the Temperature Modulated Differential Scanning Calorimetry (TMDSC) technique in order to obtain more information about the influence of initial structural differences and gamma radiation on the evolution in structure and thermal properties of different polyethylenes. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were exposed to gamma radiation, in air, to a wide range of absorbed doses (up to 2400 kGy). The separation of the total heat flow TMDSC signal into a reversing and nonreversing part enabled to observed the low temperature enthalpy relaxation (related to the existence of the 'rigid amorphous phase') and recrystallization processes as well as to follow their and/or radiation-induced evolution of melting in a more revealing manner compared to the case of the conventional DSC. Consequently, our results indicate that TMDSC could improve the understanding of radiation-induced effects in polymers.

  15. Effect of Die Head Temperature at Compounding Stage on the Degradation of Linear Low Density Polyethylene/Plastic Film Waste Blends after Accelerated Weathering

    Directory of Open Access Journals (Sweden)

    S. M. Al-Salem

    2016-01-01

    Full Text Available Accelerated weathering test was performed on blends of linear low density polyethylene (LLDPE and plastic film waste constituting the following percentages of polyolefin polymers (wt.%: LLDPE (46%, low density polyethylene (LDPE, 51%, high density polyethylene (HDPE, 1%, and polypropylene (PP, 2%. Compounded blends were evaluated for their mechanical and physical (optical properties. The impact of photodegradation on the formulated blends was studied, and loss of mechanical integrity was apparent with respect to both the exposure duration to weathering and waste content. The effect of processing conditions, namely, the die head temperature (DHT of the blown-film assembly used, was investigated in this work. It was witnessed that surpassing the melting point of the blends constituting polymers did not always result in a synergistic behaviour between polymers. This was suspected to be due to the loss of amorphous region that polyolefin polymers get subjected to with UV exposure under weathering conditions and the effect of the plastic waste constituents. The total change in colour (ΔE did not change with respect to DHT or waste content due to rapid change degradation on the material’s surface. Haze (% and light transmission (% decreased with the increase in waste content which was attributed to lack of miscibility between constituting polymers.

  16. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    Science.gov (United States)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  17. Investigation on the effect of formulation and process variables of Polyethylene Foams Production

    International Nuclear Information System (INIS)

    Barikani, H.; Sarai, M.

    2001-01-01

    Polyolefin foams such as polyethylene, polypropylene and their copolymers have been extensively used in packaging, automotive, military, marine, cable industries and sports, due to their unique properties namely: light weight, chemical resistance, thermal insulation, inertness, abrasion resistance, buoyancy and low cost. With regards to domestic mass production of polyethylene, replacement of polyurethane with polyethylene foam is very important in some applications from economical point of view. In this research preparation of high density and low density polyethylene foams were studied and the effect of formulation factors such as blowing agent, cross-linker, calcium carbonate, zinc oxide and processing factors such as heat, pressure and reaction time on density and cell size were investigated

  18. Study of high density polyethylene under UV irradiation or mechanical stress by fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Douminge, L.

    2010-05-01

    Due to their diversity and their wide range of applications, polymers have emerged in our environment. For technical applications, these materials can be exposed to aggressive environment leading to an alteration of their properties. The effects of this degradation are linked to the concept of life duration, corresponding to the time required for a property to reach a threshold below which the material becomes unusable. Monitoring the ageing of polymer materials constitute a major challenge. Fluorescence spectroscopy is a technique able to provide accurate information concerning this issue. In this study, emphasis was placed on the use of fluorescence spectroscopy to study the phenomena involved in either the UV radiation or mechanical stresses of a polymer. In the case of high density polyethylene, the lack of intrinsic fluorescent signal leads to the use of a dye. This dye gives a fluorescent response depending on its microenvironment. All modifications in the macromolecular chain generate a shift of the fluorescent peak. This work can be dissociated in two major parts, on one hand the influence of UV aging on the fluorescent response and in another hand the influence of mechanical stresses. In the first part, complementary analyses like FTIR or DSC are used to correlate fluorescent results with known photo degradation mechanisms. The results show the great sensibility of the technique to the microstructural rearrangement in the polymer. In the second part, the dependence between the stress and the fluorescence emission gives opportunity to evaluate internal stresses in the material during cyclic solicitations. (author)

  19. Equal channel angular extrusion of ultra-high molecular weight polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reinitz, Steven D., E-mail: Steven.D.Reinitz.TH@Dartmouth.edu; Engler, Alexander J.; Carlson, Evan M.; Van Citters, Douglas W.

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. - Highlights: • A new processing method for ultra-high molecular weight polyethylene is introduced. • The process produces a highly entangled polyethylene material. • Entanglements are hypothesized to enhance the wear resistance of polyethylene. • This process eliminates the trade-off between mechanical and wear properties.

  20. Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Miguel A. Hidalgo-Salazar

    2018-03-01

    Full Text Available In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique and Epoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique biocomposites were prepared using thermocompression and resin film infusion processes. Neat polymeric matrices and its biocomposites were tested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also, thermal behavior of these materials has been studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. Tensile and flexural test revealed that nonwoven Fique reinforced composites exhibited higher modulus and strength but lower deformation capability as compared with LLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation has an effect on the thermal stability of the composites. On the other hand, Fique fibers did not change the crystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromolecules chains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of considering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture of biocomposites for automotive applications. In addition to the processing test specimens, it was also possible to manufacture a part of LLDPE-Fique, and one part of EP-Fique. Keywords: Biocomposites, Natural materials, Nonwoven Fique fiber mat, LLDPE, Epoxy Resin

  1. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Science.gov (United States)

    Aras, Neny Rasnyanti M.; Arcana, I. Made

    2015-09-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm-1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate

  2. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Aras, Neny Rasnyanti M., E-mail: neny.rasnyanti@gmail.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  3. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    International Nuclear Information System (INIS)

    Aras, Neny Rasnyanti M.; Arcana, I Made

    2015-01-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm −1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  4. Tensile behaviour and properties of a bone analogue composite (HA, HDPE) crosslinked by gamma radiation

    International Nuclear Information System (INIS)

    Romero, G.; Smolko, Eduardo E.

    2005-01-01

    A natural composite material, hydroxyapatite (HA) and high density polyethylene (HDPE) crosslinked by ionizing radiations is been developed as a bioactive analogue material for bone replacement. Mechanical properties of the composites irradiated up to 300 kGy under tensile tests was studied. Gel content and micrographs of different composite fractures are shown. (author)

  5. Development of optimum process for electron beam cross-linking of high density polyethylene thermal energy storage pellets, process scale-up and production of application qualities of material

    Science.gov (United States)

    Salyer, I. O.

    1980-01-01

    The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.

  6. Co(OH)2 nanosheet-decorated graphene–CNT composite for supercapacitors of high energy density

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2014-01-01

    A composite of graphene and carbon nanotubes has been synthesized and characterized for application as supercapacitor electrodes. By coating the nanostructured active material of Co(OH)2 onto one electrode, the asymmetric supercapacitor has exhibited a high specific capacitance of 310 F g−1, energy density of 172 Wh kg−1 and maximum power density of 198 kW kg−1 in ionic liquid electrolyte EMI-TFSI. PMID:27877633

  7. Co(OH2 nanosheet-decorated graphene–CNT composite for supercapacitors of high energy density

    Directory of Open Access Journals (Sweden)

    Qian Cheng

    2014-01-01

    Full Text Available A composite of graphene and carbon nanotubes has been synthesized and characterized for application as supercapacitor electrodes. By coating the nanostructured active material of Co(OH2 onto one electrode, the asymmetric supercapacitor has exhibited a high specific capacitance of 310 F g−1, energy density of 172 Wh kg−1 and maximum power density of 198 kW kg−1 in ionic liquid electrolyte EMI-TFSI.

  8. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites was investigated by Kalaprasad et al [25].Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane...

  9. Repairability of CAD/CAM high-density PMMA- and composite-based polymers.

    Science.gov (United States)

    Wiegand, Annette; Stucki, Lukas; Hoffmann, Robin; Attin, Thomas; Stawarczyk, Bogna

    2015-11-01

    The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments. Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05). Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed. Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate

  10. Degradation behavior of linear low density polyethylene by ultraviolet radiation exposition for agricultural applications

    Energy Technology Data Exchange (ETDEWEB)

    Poveda, Patricia N.S.; Silva, Leonardo G.A., E-mail: lgasilva@ipen.br, E-mail: patricianegrini@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Ciro, Rosemeire, E-mail: rosemeireciro@msn.com [Faculdades Oswaldo Cruz (FOC), Sao Paulo, SP (Brazil); Viana, Hamilton M., E-mail: hmviana@gmail.com [Centro Universitario Fundacao de Santo Andre (FSA/FAENG), Santo Andre, SP (Brazil)

    2013-07-01

    Polyethylene is the most important polymer used in agricultural applications. Polymers are susceptible to changes in their chemical structures that affect their mechanical properties under weather condition. In Polyethylene, photo-oxidation can occur because of impurities or chromophore groups (catalytic residue, mineral fillers, some commercial additives as stabilizers, lubricants, plasticizers, etc.). The critical ageing factors for greenhouse built with LDPE film are: total solar radiation, air temperature, relative humidity, mechanical stress, agrochemicals, air pollution, and combinations of these factors. Exposure of plastics to UV radiation causes a loss in their mechanical properties and/or change in appearance, including reduced ductility, color changes, yellowing and cracking. Additives are added to plastics to enhance the durability of the final product. Today, there are several additive systems (light stabilizers) developed to work according to resin, final application, type of cultivation, and other characteristics. The main types of light stabilizers are: UV absorbers, quenchers and free radicals scavengers. In addition to the conventional organic additives, some inorganic additives were obtained recently with the development of nanotechnology. This study evaluates the different additive systems (HALS, NPCC, nZnO and nTiO{sub 2}), applied 0.25% (in weight) in LLDPE. The samples were mixed by high rotation homogenizer and extrusion. Later, the samples were molded by injection and aged in QUV-B simulating 6 months of exposure to weather. Tests of FT-IR and tensile strength comparing to the non-aged samples were carried out in order to evaluate the performance of several additive systems concerning the degradation behavior of linear low density polyethylene. (author)

  11. Degradation behavior of linear low density polyethylene by ultraviolet radiation exposition for agricultural applications

    International Nuclear Information System (INIS)

    Poveda, Patricia N.S.; Silva, Leonardo G.A.; Ciro, Rosemeire; Viana, Hamilton M.

    2013-01-01

    Polyethylene is the most important polymer used in agricultural applications. Polymers are susceptible to changes in their chemical structures that affect their mechanical properties under weather condition. In Polyethylene, photo-oxidation can occur because of impurities or chromophore groups (catalytic residue, mineral fillers, some commercial additives as stabilizers, lubricants, plasticizers, etc.). The critical ageing factors for greenhouse built with LDPE film are: total solar radiation, air temperature, relative humidity, mechanical stress, agrochemicals, air pollution, and combinations of these factors. Exposure of plastics to UV radiation causes a loss in their mechanical properties and/or change in appearance, including reduced ductility, color changes, yellowing and cracking. Additives are added to plastics to enhance the durability of the final product. Today, there are several additive systems (light stabilizers) developed to work according to resin, final application, type of cultivation, and other characteristics. The main types of light stabilizers are: UV absorbers, quenchers and free radicals scavengers. In addition to the conventional organic additives, some inorganic additives were obtained recently with the development of nanotechnology. This study evaluates the different additive systems (HALS, NPCC, nZnO and nTiO 2 ), applied 0.25% (in weight) in LLDPE. The samples were mixed by high rotation homogenizer and extrusion. Later, the samples were molded by injection and aged in QUV-B simulating 6 months of exposure to weather. Tests of FT-IR and tensile strength comparing to the non-aged samples were carried out in order to evaluate the performance of several additive systems concerning the degradation behavior of linear low density polyethylene. (author)

  12. Effect of Aspergillus versicolor strain JASS1 on low density polyethylene degradation

    Science.gov (United States)

    Gajendiran, A.; Subramani, S.; Abraham, J.

    2017-11-01

    Low density polyethylene (LDPE) waste disposal remains one of the major environmental concerns faced by the world today. In past decades, major focus has been given to enhance the biodegradation of LDPE by microbial species. In this present study, Aspergillus versicolor with the ability to degrade LDPE was isolated from municipal landfill area using enrichment technique. Based on 18S rRNA gene sequencing confirmed its identity as Aspergillus versicolor. The biodegradation study was carried out for 90 d in M1 medium. The degradation behaviour of LDPE films by Aspergillus versicolor strain JASS1 were confirmed by weight loss, CO2 evolution, Scanning electron microscopy (SEM) analysis, Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) technique. From current investigation, it can be concluded that our isolated strain JASS1 had the potential to degrade LDPE films and it can be useful in solving the problem caused by polyethylene in the environment.

  13. A study of gamma-irradiated polyethylenes by temperature modulated differential scanning calorimetry

    Science.gov (United States)

    Galovic, S.; Secerov, B.; Trifunovic, S.; Milicevic, D.; Suljovrujic, E.

    2012-09-01

    Various polyethylenes (PEs) and the effects of high-energy radiation on their structures were widely studied in the past using conventional Differential Scanning Calorimetry (DSC) measurements. In this work, we used the Temperature Modulated Differential Scanning Calorimetry (TMDSC) technique in order to obtain more information about the influence of the initial structural differences and gamma radiation on the evolution in structure and thermal properties of different polyethylenes. For this reason, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) samples were exposed to gamma radiation, in air, to a wide range of absorbed doses (up to 2400 kGy). The separation of the total heat flow TMDSC signal into a reversing and non-reversing part enabled us to observe the low-temperature enthalpy relaxation (related to the existence of the "rigid amorphous phase") and recrystallisation processes, as well as to follow their radiation-induced evolution and/or that of melting in a more revealing manner compared to the case of the conventional DSC. Consequently, our results indicate that TMDSC could improve the understanding of radiation-induced effects in polymers.

  14. Effect of pulse repetition rate and number of pulses in the analysis of polypropylene and high density polyethylene by nanosecond infrared laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leme, Flavio O. [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Godoi, Quienly [Laboratorio de Quimica Analitica ' Henrique Bergamin Filho' , Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); Kiyataka, Paulo H.M. [Centro de Tecnologia de Embalagens, Instituto de Tecnologia de Alimentos, Av. Brasil 2880, 13070-178 Campinas, SP (Brazil); Santos, Dario [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, SP (Brazil); Agnelli, Jose A.M. [Departamento de Engenharia de Materiais, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); and others

    2012-02-01

    Pulse repetition rates and the number of laser pulses are among the most important parameters that do affect the analysis of solid materials by laser induced breakdown spectroscopy, and the knowledge of their effects is of fundamental importance for suggesting analytical strategies when dealing with laser ablation processes of polymers. In this contribution, the influence of these parameters in the ablated mass and in the features of craters was evaluated in polypropylene and high density polyethylene plates containing pigment-based PbCrO{sub 4}. Surface characterization and craters profile were carried out by perfilometry and scanning electron microscopy. Area, volume and profile of craters were obtained using Taylor Map software. A laser induced breakdown spectroscopy system consisted of a Q-Switched Nd:YAG laser (1064 nm, 5 ns) and an Echelle spectrometer equipped with ICCD detector were used. The evaluated operating conditions consisted of 10, 25 and 50 laser pulses at 1, 5 and 10 Hz, 250 mJ/pulse (85 J cm{sup -2}), 2 {mu}s delay time and 6 {mu}s integration time gate. Differences in the topographical features among craters of both polymers were observed. The decrease in the repetition rate resulted in irregular craters and formation of edges, especially in polypropylene sample. The differences in the topographical features and ablated masses were attributed to the influence of the degree of crystallinity, crystalline melting temperature and glass transition temperature in the ablation process of the high density polyethylene and polypropylene. It was also observed that the intensities of chromium and lead emission signals obtained at 10 Hz were two times higher than at 5 Hz by keeping the number of laser pulses constant.

  15. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. This journal is © the Owner Societies 2011

  16. Ultrasonic Characterisation of Epoxy Resin/Polyethylene Terephthalate (PET Char Powder Composites

    Directory of Open Access Journals (Sweden)

    Imran ORAL

    2016-11-01

    Full Text Available This study is carried out in order to determine the elastic properties of the Epoxy Resin (ER / Polyethylene terephthalate (PET Char Powder Composites by ultrasonic wave velocity measurement method. Plastic waste was recycled as raw material for the preparation of epoxy composite materials. The supplied chars were mixed with epoxy resin matrix at weight percentages of 10 %, 20 % and 30 % for preparing ER/PET Char Powder (PCP composites. The effect of PET char powder on the elastic properties of ER/PCP composites were investigated by ultrasonic pulse-echo method. According to the obtained results, the composition ratio of 80:20 is the most appropriate composition ratio, which gave the highest elastic constants values for ER/PCP composites. On the other hand, the best electrical conductivity value was obtained for 70:30 composition ratio. It was observed that ultrasonic shear wave velocity correlated more perfectly than any other parameters with hardness.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12190

  17. Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites.

    Science.gov (United States)

    Craig M. Clemons; Rebecca E. Ibach

    2004-01-01

    The purpose of this study was to clarify the effects of composite processing and moisture sorption on laboratory fungal resistance of wood-plastic composites. A 2-week water soaking or cyclic boiling-drying procedure was used to infuse moisture into composites made from high-density polyethylene filled with 50 percent wood flour and processed by extrusion, compression...

  18. Effect of Modified and Nonmodified Carbon Nanotubes on the Rheological Behavior of High Density Polyethylene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Adewunmi A. Ahmad

    2013-01-01

    Full Text Available This paper reports the results of studies on the rheological behavior of nanocomposites of high density polyethylene (HDPE with pristine multiwall carbon nanotubes (CNT as well as phenol and 1-octadecanol (C18 functionalized CNT at 1, 2, 3, 4, 5, and 7 wt% loading. The viscosity reduction at 1 wt% CNT follows the order, pristine CNT < phenol functionalized CNT < C18 functionalized CNT. As the filler loading increases from 1 to 2, 3, and 4 wt%, neat HDPE and filled HDPE systems show similar moduli and viscosity, particularly in the low frequency region. As the filler loading increases further to 5 and 7 wt%, the viscosity and moduli become greater than the neat HDPE. The storage modulus, tan, and the Cole-Cole plots show that CNT network formation occurs at higher CNT loading. The critical CNT loading or the rheological percolation threshold, where network formation occurs is found to be strongly dependant on the functionalization of CNT. For pristine CNT, the rheological percolation threshold is around 4 wt%, but for functionalized CNT it is around 7 wt%. The surface morphologies of CNT and functionalized CNT at 1 wt% loading showed good dispersion while at 7 wt% loading, dispersion was also achieved, but there are few regions with agglomeration of CNT.

  19. Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments

    Directory of Open Access Journals (Sweden)

    A. Aguilar-Rios

    2014-07-01

    Full Text Available In order to improve the bonding between henequen fibers (Agave fourcroydes and High Density Polyethylene (HDPE, they were treated in an ethylene-dielectric barrier discharge (DBD plasma operating at atmospheric pressure. A 23 factorial experimental design was used to study the effects of the plasma operational parameters, namely, frequency, flow rate and exposure time, over the fiber tensile mechanical properties and its adhesion to HDPE. The fiber-matrix Interfacial Shear Strength (IFSS was evaluated by means of the single fiber pull-out test. The fiber surface chemical changes were assessed by photoacoustic Fourier transform infrared spectroscopy (PAS-FTIR and the changes in surface morphology with scanning electron microscopy (SEM. The results indicate that individual operational parameters in the DBD plasma treatment have different effects on the tensile properties of the henequen fibers and on its bonding to HDPE. The SEM results show that the plasma treatment increased the roughness of the fiber surface. The FTIR result seems to indicate the presence of a hydrocarbon-like polymer film, bearing some vinyl groups deposited onto the fibers. These suggests that the improvement in the henequen-HDPE bonding could be the result of the enhancement of the mechanical interlocking, due the increment in roughness, and the possible reaction of the vinyl groups on the film deposited onto the fiber with the HDPE.

  20. Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared.

    Science.gov (United States)

    Tang, Fuguang; Bao, Peite; Su, Zhaohui

    2016-05-03

    In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.

  1. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chang Zhaorong; Lv Haojie; Tang Hongwei; Li Huaji; Yuan Xiaozi; Wang Haijiang

    2009-01-01

    To achieve a high-energy-density lithium electrode, high-density LiFePO 4 /C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO 4 as a precursor, glucose as a C source, and Li 2 CO 3 as a Li source, in a pipe furnace under an atmosphere of 5% H 2 -95% N 2 . The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO 4 /carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO 4 /carbon composite powder with a carbon content of 7% reached 1.80 g m -3 . The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g -1 , respectively, with a volume capacity of 300.6 mAh cm -3 , at a 0.1C rate. At a rate of 5C, the LiFePO 4 /carbon composite shows a high discharge capacity of 98.3 mAh g -1 and a volume capacity of 176.94 mAh cm -3 .

  2. Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles

    Science.gov (United States)

    Seyedehsan Hosseini; Qi Li; Manish Shrivastava; David R. Weise; David R. Cocker; J. Wayne Miller; Heejung S Jung

    2014-01-01

    Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activities—activities associated with development and care of forests—dry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (

  3. Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites

    Science.gov (United States)

    Liu, Bing; Jin, Yueqiang; Wang, Shuying

    2017-05-01

    This paper investigates the effect of compression and injection molding methods on properties of Silvergrass-HDPE (High Density Polyethylene) composites, with respect to mechanical behaviors. Maleated polyethylene (MAPE) was added in the composite and improved the mechanical property of the composite. The research founds MAPE can improve the mechanical property because it improved the interfacial compatibility as a coupling agent. When added a content of 8% of MAPE, Silvergrass-HDPE composites made from compression molding shows a better mechanical performance in tensile strength and flexural strength than that made from injection molding, with increasing Silvergrass fiber content from 30% to 50%. However, the WPCs (wood plastics composites) made from injection molding had a lower degree of crystallinity with or without MAPE treatment.

  4. Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film

    Science.gov (United States)

    Holmes-Farley, S. R.; Whitesides, G. M.

    1985-12-01

    Brief oxidation of low-density polyethylene film with chromic acid in aqueous sulfuric acid introduced carboxylic acid and ketone and/or aldehyde groups onto the surface of the film. The carboxylic acid moieties can be used to attach more complex functionality to the polymer surface. We are developing this surface-functionalized polyethylene (named polyethylene carboxylic acid, PE-CO2H, to emphasize the functional group that dominates its surface properties) as a substrate with which to study problems in organic surface chemistry--especially wetting, polymer surface reconstruction, and adhesion--using physical-organic techniques. This document describes the preparation, characterization, and fluorescence properties of derivatives of PE-CO2H in which the Dansyl (5-dimethylaminonaphthalene-1-sulfonyl) group has been covalently attached by amide links to the surface carbonyl moieties.

  5. Spatial variations in composition in high-critical-current-density Bi-2223 tapes

    International Nuclear Information System (INIS)

    Holesinger, T. G.; Bingert, J. F.; Teplitsky, M.; Li, Q.; Parrella, R.; Rupich, M. P.; Riley, G. N. Jr.

    2000-01-01

    A detailed compositional analysis of high-critical-current-density (J c ) (55 and 65 kA/cm2 at 77 K) (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) tapes was undertaken by energy dispersive spectroscopy in the transmission electron microscope. Structural features were coupled with characteristic compositions of the Bi-2223 phase. The average of all compositional measurements of the Bi-2223 phase was determined to be Bi 1.88 Pb 0.23 Sr 1.96 Ca 1.95 Cu 2.98 O y . However, spatial variations in the Bi-2223 composition and differing phase equilibria were found throughout the filament structure. In particular, a considerable range of Bi-2223 compositions can be found within a single tape, and the lead content of the Bi-2223 phase is significantly depressed in the vicinity of lead-rich phases. The depletion of lead in the Bi-2223 phase around the 3221 phases may be a current-limiting microstructure in these tapes. (c) 2000 Materials Research Society

  6. Quantitative analysis of the gas evolved from high polymers in γ-irradiation

    International Nuclear Information System (INIS)

    Arakawa, Kazuo; Hayakawa, Naohiro; Kuriyama, Isamu

    1977-09-01

    Polymers are used as insulator of cables in nuclear-reactor radiation field. To estimate the evolution of gases when irradiated, total gas yield and composition were measured for variety of polymers. Samples were irradiated at room temperature in vacuo with 60 Co-γ rays. For ethylene propylene rubber (EPR), irradiation in high-temperature steam was also made. Composition of the gas was determined with a mass spectrometer. G-value of the total gaseous product was 3.2 to 3.4 for low-density polyethylene (LDPE) and 2.5 to 2.7 for high-density polyethylene (HDPE). In both polyethylene, hydrogen gas predominated. When an anti-radiation oil was added to LDPE, gas evolution was reduced drastically. For chloro-sulfonated PE (Hypalon), SO 2 gas was one of the major products even when the polymer contained only about 1% of sulfonyl groups. G-value of the total gas for EPR irradiated in high-temperature steam was 3.1, regardless of the temperature. (auth.)

  7. Process for producing chlorinated polyethylene

    International Nuclear Information System (INIS)

    Nose, Shinji; Takayama, Shin-ichi; Kodama, Takashi.

    1970-01-01

    A process for chlorinated polyethylene by the chlorination of an aqueous suspension of polyethylene without the use catalysts is given, using 5-55% by gel content of cross-linked polyethylene powders. The products have favorable material workability, transparency, impact strength and tensile properties. In the case of peroxide cross-linking, a mixture of peroxides with polyethylene must be ground after heat treatment. The polyethylene may preferably have a gel content of 5-55%. The chlorination temperature may be 40 0 C or more, preferably 60 0 to 160 0 C. In one example, high pressure polymerized fine polyethylene powders of 15μ having a density of 0.935 g/cc, a softening point of 114 0 C, an average molecular weight of 35,000 were irradiated in air with 40 Mrad electron beams from a 2 MV Cockcroft-Walton type accelerator at room temperature. The thus irradiated polyethylene had a gel content of 55% and a softening point of 119 0 C. It was chlorinated upto a chlorine content of 33% at 100 0 C. Products were white crystals having a melting point of 122 0 C and a melting heat value of 32 mcal/mg. A sheet formed from this product showed a tensile strength of 280 kg/cm 2 , an elongation of 370% and a hardness of 90. (Iwakiri, K.)

  8. COMPOSITE POLYMERICADDITIVESDESIGNATED FORCONCRETEMIXES BASED ONPOLYACRYLATES, PRODUCTS OF THERMAL DECOMPOSITION OF POLYAMIDE-6 AND LOW-MOLECULAR POLYETHYLENE

    Directory of Open Access Journals (Sweden)

    Polyakov Vyacheslav Sergeevich

    2012-07-01

    4 the optimal composite additive that increases the time period of stiffening of the cement grout , improves the water resistance and the compressive strength of concrete, represents the composition of polyacrylates and polymethacrylates, products of thermal decomposition of polyamide-6 and low-molecular polyethylene in the weight ratio of 1:1:0.5.

  9. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  10. Plasma Treatment of Agave Fiber Powder and Its Effect on the Mechanical and Thermal Properties of Composites Based on Polyethylene

    Directory of Open Access Journals (Sweden)

    Florentino Soriano Corral

    2016-01-01

    Full Text Available Composites based on low-density polyethylene (LDPE were prepared with Agave fiber powder (AFP that was coated by plasma polymerization process using ethylene gas. Treated and pristine AFP were analyzed by infrared spectroscopy, scanning electron microscopy, and contact water angle for the assessment of surface properties. The polymer composites were prepared by melt mixing using 0, 5, 10, and 20 wt% of AFP and their mechanical and thermal properties were measured. Dispersion evaluation in water confirmed that the AFP treated changed from hydrophilic to hydrophobic behavior and it was also corroborated with water contact angle tests. The addition of treated and untreated AFP (200 mesh at 20 wt% promotes an increase of Young’s modulus of the composites of up to 60% and 32%, respectively, in relation to the neat matrix. Also, an increase of crystallinity of LDPE was observed by the addition of treated and untreated AFP; however no significant effect on the crystallization temperature was observed in LDPE containing AFP.

  11. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    1977-01-01

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  12. A Nanotechnology Approach to Lightweight Multifunctional Polyethylene Composite Materials for Use Against the Space Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene-based composite materials are under consideration as multifunctional structural materials, with the expectation that they can provide radiation...

  13. Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites

    Science.gov (United States)

    White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.

    2010-01-01

    Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629

  14. The Effect of wheat straw particle size on the mechanical and water absorption properties of wheat straw/low density polyethylene biocomposites for packaging applications

    Directory of Open Access Journals (Sweden)

    Behjat Tajeddin

    2017-08-01

    Full Text Available Natural composites with biodegradability properties can be used as a renewable alternative to replacing conventional plastics. Thus, to reduce the plastics applications in the packaging industry, biocomposites content of wheat straw (with 40, 100, 140 mesh as a natural biodegradable composite and low density polyethylene (LDPE as a common synthetic polymer in the packaging industry were prepared and characterized by the mechanical and water absorption properties. Polyethylene-graft-maleic anhydride was used as a compatibilizer material. Morphology of wheat straw flour was studied by optical microscope to obtain the aspect ratio (L/D. The tensile and flexural tests were applied for determining mechanical properties and scanning electron microscope (SEM was used for particles distribution and sample structures. The water absorption of the samples was calculated by weight difference. The results indicated that the particle size of wheat straw four and the L/D amount are Significantly affected on the tensile strength and water absorption of the samples. However, the effect of wheat sraw particle size on the flexural strength was not significant. Overall conclusions show that by increasing the particle size of the filler (wheat straw, can prepare the biocomposite with better tensile strength and less water absorption compared with smaller particle size.

  15. DC Thermal Plasma Design and Utilization for the Low Density Polyethylene to Diesel Oil Pyrolysis Reaction

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2017-06-01

    Full Text Available The exponential increase of plastic production produces 100 million tonnes of waste plastics annually which could be converted into hydrocarbon fuels in a thermal cracking process called pyrolysis. In this research work, a direct current (DC thermal plasma circuit is designed and used for conversion of low density polyethylene (LDPE into diesel oil in a laboratory scale pyrolysis reactor. The experimental setup uses a 270 W DC thermal plasma at operating temperatures in the range of 625 °C to 860 °C for a low density polyethylene (LDPE pyrolysis reaction at pressure = −0.95, temperature = 550 °C with τ = 30 min at a constant heating rate of 7.8 °C/min. The experimental setup consists of a vacuum pump, closed system vessel, direct current (DC plasma circuit, and a k-type thermocouple placed a few millimeters from the reactant sample. The hydrocarbon products are condensed to diesel oil and analyzed using flame ionization detector (FID gas chromatography. The analysis shows 87.5% diesel oil, 1,4-dichlorobenzene (Surr, benzene, ethylbenzene and traces of toluene and xylene. The direct current (DC thermal plasma achieves 56.9 wt. % of diesel range oil (DRO, 37.8 wt. % gaseous products and minimal tar production. The direct current (DC thermal plasma shows reliability, better temperature control, and high thermal performance as well as the ability to work for long operation periods.

  16. Salt-Induced Control of the Grafting Density in Poly(ethylene glycol) Brush Layers by a Grafting-to Approach

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Olsen, Stefan; Thormann, Esben

    2018-01-01

    In this work, a method to obtain control of the grafting density during the formation of polymer brush layers by the grafting-to method of thiolated poly(ethylene glycol) onto gold is presented. The grafting density of the polymer chains was adjusted by adding Na2SO4 in concentrations between 0.......2 and 0.9 M to the aqueous polymer solution during the grafting process. The obtained grafting densities ranged from 0.26 to 1.60 chains nm-2, as determined by surface plasmon resonance. The kinetics of the grafting process were studied in situ by a quartz crystal microbalance with dissipation......, and a mushroom to brush conformational transition was observed when the polymer was grafted in the presence of Na2SO4. The transition from mushroom to brush was only observed for long periods of grafting, highlighting the importance of time to obtain high grafting densities. Finally, the prepared brush layer...

  17. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    Science.gov (United States)

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  18. Assessment of the Resistance to External Factors of Low-Density Polyethylene Modified with Natural Fillers

    Directory of Open Access Journals (Sweden)

    Karolina Głogowska

    2017-12-01

    Full Text Available The study reports the results of investigation of basic processing and thermal properties of low-density polyethylene modified with two types of natural filler: wheat bran and pumpkin seed hulls, their content ranging from 5% to 15% relative to the matrix. In addition, the physical properties of the produced granulates are determined, i.e. the relationship between their density and the applied contents of the tested fillers. Furthermore, the study reports the results concerning the longitudinal shrinkage, abrasion resistance and cold water absorption of injection molded tensile specimens.

  19. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-01

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ˜25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m-1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g-1 at a current density of 2.2 A g-1), energy density (68.6 W h kg-1) and power density (1319 W kg-1) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ˜96% after 1000 charge-discharge cycles.

  20. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites.

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-20

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ∼25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m(-1) at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g(-1) at a current density of 2.2 A g(-1)), energy density (68.6 W h kg(-1)) and power density (1319 W kg(-1)) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge-discharge cycles.

  1. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    International Nuclear Information System (INIS)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kuila, Tapas; Kim, Nam Hoon; Lee, Joong Hee

    2015-01-01

    Co 9 S 8 /reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co 9 S 8 nano-rods on the RGO surfaces. The average crystal size of the Co 9 S 8 nano rods grown on the RGO sheets were ∼25–36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co 9 S 8 /RGO composite was recorded as 1690 S m −1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co 9 S 8 /RGO composites. The Co 9 S 8 /RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g −1 at a current density of 2.2 A g −1 ), energy density (68.6 W h kg −1 ) and power density (1319 W kg −1 ) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge–discharge cycles. (paper)

  2. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP)

    International Nuclear Information System (INIS)

    Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, E.V.

    2007-01-01

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels

  3. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).

    Science.gov (United States)

    Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V

    2007-11-19

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.

  4. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    Science.gov (United States)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  5. Study of positron annihilation lifetime spectroscopy in carbon black-filled HDPE composite

    CERN Document Server

    Zhang Xian Feng; Zhou Xian Yi; Weng Hu Imin; Ye Bang Jiao; Han Rong Dian; Jia Shao Jin; Zhang Zhi Cheng

    2002-01-01

    The variation of the electrical conductivity of high density polyethylene (HDPE) with the carbon black (CB) content was studied using positron annihilation lifetime spectroscopy (PALS) and free-volume model, the crystallinity of HDPE/CB composite and 'percolation' effect were discussed with measurements of conductivity and DSC test

  6. Sintering of ultra high molecular weight polyethylene

    Indian Academy of Sciences (India)

    Abstract. Ultra high molecular weight polyethylene (UHMWPE) is a high performance polymer having low coefficient of friction, good abrasion resistance, good chemical ... In this study, we report our results on compaction and sintering behaviour of two grades of UHMWPE with reference to the powder morphology, sintering ...

  7. Thermal properties of polyethylene reinforced with recycled–poly (ethylene terephthalate) flakes.

    Science.gov (United States)

    Ruqiyah Nik Hassan, Nik; Mazni Ismail, Noor; Ghazali, Suriati; Nuruzzaman, Dewan Muhammad

    2018-04-01

    In this study, recycled plastic bottles (RPET) were used as a filler in high density polyethylene (HDPE) thermoplastic. The plastic sheet of RPET/HDPE was prepared by using hot and cold press machine. The effects of RPET addition and hot press process to the thermal properties of the composite RPET/HDPE were investigated using differential scanning calorimetry (DSC) and thermogravimetric (TGA). Results from DSC analysis show that the melting point of HDPE slightly shifted to a higher temperature for about 2°C to 4°C with the addition of RPET as a filler. The starting degradation temperature of RPET/HDPE composite examined from TGA analysis also seen to be slightly increased. It was observed that the incorporation of recycled PET flakes into HDPE is achievable using hot press process with slight improvement seen in both melting point and thermal stability of the composite compared to the neat HDPE.

  8. Transport properties of natural gas through polyethylene nanocomposites at high temperature and pressure

    DEFF Research Database (Denmark)

    Adewole, Jimoh K.; Jensen, Lars; Al-Mubaiyedh, Usamah A.

    2012-01-01

    High density polyethylene (HDPE)/clay nanocomposites containing nanoclay concentrations of 1, 2.5, and 5 wt% were prepared by a melt blending process. The effects of various types of nanoclays and their concentrations on permeability, solubility, and diffusivity of natural gas in the nanocomposites...... at constant temperature had little influence on the permeability, whereas increasing the temperature from 30 to 70 degrees C significantly increased the permeability of the gas. Additionally, the effect of crystallinity on permeability, solubility, and diffusivity was investigated. Thus, the permeability...

  9. Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites

    Science.gov (United States)

    Ferreira, F. V.; Franceschi, W.; Menezes, B. R. C.; Brito, F. S.; Lozano, K.; Coutinho, A. R.; Cividanes, L. S.; Thim, G. P.

    2017-07-01

    This study presents the effect of dodecylamine (DDA) functionalization of carbon nanotubes (CNTs) on the thermo-physical and mechanical properties of high-density polyethylene (HDPE) based composites. Here, we showed that the functionalization with DDA improved the dispersion of the CNTs as well as the interfacial adhesion with the HDPE matrix via non-covalent interactions. The better dispersion and interaction of CNT in the HDPE matrix as a function of the surface chemistry was correlated with the improved thermo-physical and mechanical properties.

  10. High density polyethylene (HDPE-2) and polystyrene (PS-6) waste plastic mixture turns into valuable fuel energy

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Rashid, Mohammad Mamunor; Rahman, Md. Sadikur; Molla, Mohammed [Department of Research and Development, Natural State Research Inc, Stamford, (United States)

    2011-07-01

    Disposal of waste plastic is a serious concern in USA. Waste plastic generated from different cities and towns is a part of municipal solid waste. It is a matter of concern that disposal of waste plastic is causing many problems such as leaching impact on land and ground water, choking of drains, making land infertile, indiscriminate burning causes environmental hazards etc. Waste plastics being nonbiodegradable it can remain as a long period of landfill. Over 48 million tons of synthetic polymer material is produced in the United States every year. Plastic are made from limited resources such as petroleum. When waste plastic come in contact with light and starts photo degrading, it starts releasing harmful such as carbon, chlorine and sulfur causing the soil around them to decay, contributing many complications for cultivation. Waste plastics also end up in the ocean, where it becomes small particles due to the reaction caused by the sun ray and salt from the ocean. Million of ocean habitants die from consuming these small plastic particles when they mistake them for food. To solve this problem countries are resorting to dumping the waste plastics, which requires a lot of effort and money yet they are only able to recycle a fraction of waste plastics. This developed a new technology which will remove these waste plastics form landfill and ocean and convert them into useful liquid fuels. The fuels show high potential for commercialization due to the fact, its influence to the environment. Keywords: waste plastics, fuel, energy, polystyrene, high density polyethylene, thermal, environmental.

  11. Influence of food matrix on absorption of flavour compounds by linear low-density polyethylene: proteins and carbohydrates

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Voragen, A.G.J.

    2000-01-01

    The influence of oil and food components in real food products on the absorption of four flavour compounds (limonene, decanal, linalool and ethyl 2-methyl butyrate) into linear low-density polyethylene (LLDPE) was studied using a large volume injection GC in vial extraction method. Model food

  12. Core-shell N-doped active carbon fiber@graphene composites for aqueous symmetric supercapacitors with high-energy and high-power density

    Science.gov (United States)

    Xie, Qinxing; Bao, Rongrong; Xie, Chao; Zheng, Anran; Wu, Shihua; Zhang, Yufeng; Zhang, Renwei; Zhao, Peng

    2016-06-01

    Graphene wrapped nitrogen-doped active carbon fibers (ACF@GR) of a core-shell structure were successfully prepared by a simple dip-coating method using natural silk as template. Compared to pure silk active carbon, the as-prepared ACF@GR composites exhibit high specific surface area in a range of 1628-2035 m2 g-1, as well as superior energy storage capability, an extremely high single-electrode capacitance of 552.8 F g-1 was achieved at a current density of 0.1 A g-1 in 6 M KOH aqueous electrolyte. The assembled aqueous symmetric supercapacitors are capable of deliver both high energy density and high power density, for instance, 17.1 Wh kg-1 at a power density of 50.0 W kg-1, and 12.2 Wh kg-1 at 4.7 kW kg-1 with a retention rate of 71.3% for ACF@GR1-based supercapacitor.

  13. Caracterisation des proprietes dielectriques de materiaux composites a base de polyethylene terephtalate recycle

    Science.gov (United States)

    Mebarki, Fouzia

    The aim of this study is to examine the possibility of using thermoplastic composite materials for electrical applications such as supports of automotive engine ignition systems. We are particularly interested in composites based on recycled polyethylene terephtalate (PET). Conventional isolations like PET cannot meet the new prescriptive requirements. The introduction of reinforcement materials, such as glass fibers and mica can improve the mechanical characteristics of these materials. However, this enhancement may also reduce electrical properties especially since these composites have to be used under severe thermal and electric stresses. In order to estimate PET composite insulation lifetimes, accelerated aging tests were carried out at temperatures ranging from room temperature to 140°C and at a frequency of 300Hz. Studies at high temperature will help to identify the service temperature of candidate materials. Dielectric breakdown tests have been made on a large number of samples according to the standard of dielectric strength tests of solid insulating ASTM D-149. These tests have to identify the problematic samples and to check solid insulation quality. The different knowledge gained from this analysis was used to predict material performance. This will give the company the possibility to improve existing formulations and subsequently develop a material having electrical and thermal properties suitable for this application.

  14. Surface characterization of weathered wood-plastic composites produced from modified wood flour

    Science.gov (United States)

    James S. Fabiyi; Armando G. McDonald; Nicole M. Stark

    2007-01-01

    The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...

  15. Synthesis and characterization of high-density LiFePO{sub 4}/C composites as cathode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhaorong [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)], E-mail: czr_56@163.com; Lv Haojie; Tang Hongwei; Li Huaji [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Yuan Xiaozi; Wang Haijiang [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada)

    2009-08-01

    To achieve a high-energy-density lithium electrode, high-density LiFePO{sub 4}/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO{sub 4} as a precursor, glucose as a C source, and Li{sub 2}CO{sub 3} as a Li source, in a pipe furnace under an atmosphere of 5% H{sub 2}-95% N{sub 2}. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO{sub 4}/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO{sub 4}/carbon composite powder with a carbon content of 7% reached 1.80 g m{sup -3}. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g{sup -1}, respectively, with a volume capacity of 300.6 mAh cm{sup -3}, at a 0.1C rate. At a rate of 5C, the LiFePO{sub 4}/carbon composite shows a high discharge capacity of 98.3 mAh g{sup -1} and a volume capacity of 176.94 mAh cm{sup -3}.

  16. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    Science.gov (United States)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  17. A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film

    Directory of Open Access Journals (Sweden)

    Đorđević Nenad

    2016-01-01

    Full Text Available The morphological, thermal and barrier properties of low-density polyethylene/polycaprolactone-modified nanocellulose hybrid materials were investigated in this paper. Nanonocelulose/magnetite (NC-Fe3O4 nanocomposite and maleic acid functionalized NC/magnetite (NCMA-Fe3O4 nanocomposite were prepared and used as filler at various concentrations (5, 10 and 15 wt. % in polycaprolactone (PCL layer. PE was coated with PCL/NC/magnetite layer. The addition of the filler did not unfavorably affect the inherent properties of the polymer, especially its barrier properties. Oxygen permeation measurements show that the oxygen barrier properties of magnetite enriched PCL film were improved due to chemical activity of added material. The highest level of barrier capacity was observed for PE samples coated with PCL based composite with NCMA-Fe3O4 micro/-nanofiller, which implies the significant contribution of nanocellulose surface modification with maleic anhydride residue to improved barrier properties. [Projekat Ministarstva nauke Republike Srbije, br. III45019 i br. OI172013

  18. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    Science.gov (United States)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of

  19. Polyethylene/hydrophilic polymer blends for biomedical applications.

    Science.gov (United States)

    Brynda, E; Houska, M; Novikova, S P; Dobrova, N B

    1987-01-01

    Polyethylene blends with poly(2-hydroxyethyl methacrylate) [poly(HEMA)] or poly(2,3-dihydroxypropyl methacrylate) [poly(DHPMA)] were prepared by swelling polyethylene with HEMA or 2,3-epoxypropyl methacrylate (EPMA) and by polymerization of the respective monomers. Poly(EPMA) in blends was hydrolysed to poly(DHPMA) with acetic acid. The blends had similar surface and bulk compositions. Swelling with water and surface wettability were proportional to the content of the hydrophilic component; at the same content the polyethylene/poly(DHPMA) blends appeared more hydrophilic than those of polyethylene/poly(HEMA). Thrombus formation in contact with blood examined ex vivo and in vivo was considerably slower on the blends than on unmodified polyethylene. The tests indicated optima in composition; the best biological response was achieved with the blends containing about 14% poly(HEMA) or 16% poly(DHPMA).

  20. Effect of Particle Size on Mechanical Properties of Sawdust-High Density Polyethylene Composites under Various Strain Rates

    Directory of Open Access Journals (Sweden)

    Haliza Jaya

    2016-06-01

    Full Text Available There is a need to understand the effect of wood particle size, as it affects the characteristics of wood-based composites. This study considers the effect of wood particle size relative to the dynamic behavior of wood composites. The compression Split Hopkinson Pressure Bar (SHPB was introduced to execute dynamic compression testing at the strain rate of 650 s-1, 900 s-1, and 1100 s-1, whereas a conventional universal testing machine (UTM was used to perform static compression testing at the strain rate of 0.1 s-1, 0.01 s-1, and 0.001 s-1 for four different particle sizes (63 µm, 125 µm, 250 µm, and 500 µm. The results showed that mechanical properties of composites were positively affected by the particle sizes, where the smallest particle size gave the highest values compared to the others. Moreover, the particle size also affected the rate sensitivity and the thermal activation volume of sawdust/HDPE, where smaller particles resulted in lower rate sensitivity. For the post-damage analysis, the applied strain rates influenced deformation behavior differently for all particle sizes of the specimens. In a fractographic analysis under dynamic loading, the composites with large particles experienced severe catastrophic deformation and damages compared to the smaller particles.

  1. Effect of PET functionalization in composites of

    Directory of Open Access Journals (Sweden)

    Cristina Cazan

    2017-03-01

    Full Text Available The functionalization of polyethylene terephthalate (PET from tire rubber–PET–high density polyethylene (HDPE composites represents a key strategy for improving the composite properties. This is a practical and effective method to improve the interface between matrix (waste tire rubber and fillers (waste PET and HDPE. By PET functionalization, adherence and surface properties of composite materials can be controlled. PET functionalization was performed with polyethylene glycol (PEG 400, 1% and sodium dodecyl sulphate (SDS 1%. The characterization of the components and composite are discussed in terms of surface energy values (evaluated from water contact angle measurements and surface morphology by using scanning electron microscopy (SEM. The structural and conformational changes were investigated by Fourier Transform Infrared (FTIR Spectroscopy while the crystalline structure was studied by X-ray diffraction (XRD. The improved interfacial adhesion, thermal stability and mechanical properties (stress–strain, compression and impact resistance of the composites are correlated with the PET functionalization, with non-ionic (PEG and an anionic surfactant (SDS. The results proved that the interface properties are improved by functionalization of PET. The best mechanical properties were recorded at 30 min moulding. The samples with 45% PET–SDS showed the best combination of mechanical properties: tensile strength (1.56 N/mm2, impact strength (43.72 kJ/m2 and compression (158.78 N/mm2.

  2. The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene

    CERN Document Server

    Chen, G; Xie, H K; Banford, H M; Davies, A E

    2003-01-01

    The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...

  3. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath; Beaucage, Gregory B.; Rai, Durgesh K.; Lohse, David J.; Sun, Thomas; Tsou, Andy; Norman, Alexander Iain; Hadjichristidis, Nikolaos

    2012-01-01

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  4. Quantification of branching in model three-arm star polyethylene

    KAUST Repository

    Ramachandran, Ramnath

    2012-01-24

    The versatility of a novel scaling approach in quantifying the structure of model well-defined 3-arm star polyethylene molecules is presented. Many commercial polyethylenes have long side branches, and the nature and quantity of these branches varies widely among the various forms. For instance, low-density polyethylene (LDPE) is typically a highly branched structure with broad distributions in branch content, branch lengths and branch generation (in hyperbranched structures). This makes it difficult to accurately quantify the structure and the inherent structure-property relationships. To overcome this drawback, model well-defined hydrogenated polybutadiene (HPB) structures have been synthesized via anionic polymerization and hydrogenation to serve as model analogues to long-chain branched polyethylene. In this article, model 3-arm star polyethylene molecules are quantified using the scaling approach. Along with the long-chain branch content in polyethylene, the approach also provides unique measurements of long-chain branch length and hyperbranch content. Such detailed description facilitates better understanding of the effect of branching on the physical properties of polyethylene. © 2012 American Chemical Society.

  5. Formulation and characterization of polyethylenes and organo-clays. Barrier properties of the obtained nano-composites; Formulation et caracterisation de polyethylenes charges avec des argiles. Proprietes barriere des nanocomposites obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Wache, R

    2004-10-01

    The particularity of polymer layered silicate nano-composites is based on the exfoliation of the clay platelets in the polymer matrix. Therefore properties may be dramatically modified with very low clay loading. In this work polyethylene and organo-clay have been melt blended. Due to a lack of polarity, the polymer chains do not intercalate the clay stacking. However exfoliation is achieved using maleate polyethylene. We used this polymer as a compatibilizer to promote clay exfoliation in the polyethylene matrix. Partial exfoliation is obtained. Barrier properties of these materials have been characterized. Permeability is higher for the clay reinforced products than their matrix. To understand the poor permeability results a tortuosity model has been developed. The quality of the interface seems to be involved. Several organo-clays and compatibilizers have been tested to improve it. But for the concentrations of these products used polyethylene clay interactions always exist and lead to an increase of diffusion. (author)

  6. Flow and breakup in extension of low-density polyethylene

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Fasano, Andrea

    2018-01-01

    The breakup during the extension of a low-density polyethylene Lupolen 1840D, as observed experimentally by Burghelea et al. (J Non-Newt Fluid Mech 166:1198–1209 2011), was investigated. This was observed during the extension of an circular cylinder with radius R0 = 4 mm and length L0 = 5mm....... The sample was attached to two flat end plates, separated exponentially in time to extend the samples. A numerical method based on a Lagrangian kinematics description in a continuum mechanical framework was used to calculate the extension of an initially cylindrically shaped sample with and without small...... the error bars as reported experimentally by Burghelea et al. (J Non-Newt Fluid Mech 166:1198–1209 2011). At low extensional rates, the measurements were considerably above the calculated ones. A very small relative suppression in the surface (0.1%) was required to achieve an agreement with all measurements...

  7. Experimental study of co-pyrolysis of polyethylene/sawdust mixtures

    Directory of Open Access Journals (Sweden)

    Berrueco Cesar

    2004-01-01

    Full Text Available A study of the behavior of the thermal decomposition of mixtures of biomass and thermoplastics, such as polyethylene, is of interest for processes for the thermal recovery of industrial and urban wastes such as pyrolysis or gasification. No solid residue is formed during the thermal degradation of pure polyethylene. However, the addition of biomass, which generates char can vary the product distribution and increase the heating value of the gas obtained. A study of the thermal degradation of pine sawdust, polyethylene and mixtures of polyethylene and pine sawdust has been carried out in a fluidized bed reactor. Experiments were carried out at five different temperatures: 640, 685, 730, 780, and 850 ºC. The yields and composition of the derived oil, wax, and gas were determined. The addition of polyethylene increases the gas production and decreases the production of waxes and liquids for the different temperatures tested. The main gases produced from the co-pyrolysis process were, at low temperatures, carbon monoxide ethylene, carbon dioxide, propylene, butadiene, methane and pentadiene while at high temperatures the gas composition changed drastically, the main components being carbon monoxide (more than 33 wt.%, ethylene, methane benzene and hydrogen. The analysis of the liquid fraction shows a decrease of the concentration of oxygenated and aliphatic compounds.

  8. Suitability of Recycled Polyethylene/Palm Kernel Shell-Iron Filings Composite for Automobile Application

    Directory of Open Access Journals (Sweden)

    I.A. Samotu

    2015-06-01

    Full Text Available A recycling aimed research was carried out to produce a new composite material and proffer suggestion for the possible use of the newly developed composite material. The empty water sachet (commonly called pure water nylon in Nigeria, was used as a matrix, which was reinforced by carbonized palm kernel shell (CPKS particulate and iron fillings. The percentage composition of iron fillings was maintained at 5 wt%, while that of palm kernel shell ash was varied from 5 wt% - 20 wt% at an interval of 5 %. The composites were compounded and compressively moulded. Physical and mechanical properties of the composites were tested for alongside three conventional car bumper samples, and the results obtained shows that the composite material could be used to produce a car bumper among other parts of automobile like dashboard due to their impact strength and low density. Impact strength - density ratio for the materials gave prime information on the possible application of the developed material. Scanning Electron Microscope (SEM was used to examine the distribution of the reinforcement within the matrix. After results analysis, materials with 5 wt% of CPKS and that with 10 wt% of CPKS were recommended for the car bumper production following their high impact strength - density ratio of 0.26 and 0.19 respectively, which are higher as compared to that of a conventional bumper material measured alongside the composite materials.

  9. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    International Nuclear Information System (INIS)

    Pandiyaraj, K. Navaneetha; Ferraria, Ana Maria; Rego, Ana Maria Botelho do; Deshmukh, Rajendra R.; Su, Pi-Guey; Halleluyah, Jr. Mercy; Halim, Ahmad Sukari

    2015-01-01

    Highlights: • Acrylic acid (AAc) was grafted on LDPE film by in situ plasma polymerization. • Molecules of PEG and chitosan were immobilized on AAc grafted LDPE films. • Surface modified LDPE exhibits excellent hydrophilic property. • Surface modified LDPE resist the adsorption of protein and adhesion of platelets. - Abstract: With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents

  10. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore, 641062 (India); Ferraria, Ana Maria; Rego, Ana Maria Botelho do [Centro de Química- Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon (Portugal); Deshmukh, Rajendra R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. Mercy; Halim, Ahmad Sukari [Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-02-15

    Highlights: • Acrylic acid (AAc) was grafted on LDPE film by in situ plasma polymerization. • Molecules of PEG and chitosan were immobilized on AAc grafted LDPE films. • Surface modified LDPE exhibits excellent hydrophilic property. • Surface modified LDPE resist the adsorption of protein and adhesion of platelets. - Abstract: With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents

  11. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Synthetic boehmite alumina (BA has been incorporated up to 8 wt% in low density polyethylene (LDPE and high density polyethylene (HDPE, respectively, by melt compounding. The primary nominal particle size of these two BA grades was 40 and 60 nm, respectively. The dispersion of the BA in polyethylene (PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM. The thermal (melting and crystallization, thermooxidative (oxidation induction temperature and time, and rheological behaviors of the nanocomposites were determined. It was found that BA is nanoscale dispersed in both LDPE and HDPE without any surface treatment and additional polymeric compatibilizer. BA practically did not influence the thermal (melting and crystallization and rheological properties of the parent PEs. On the other hand, BA worked as a powerful thermooxidative stabilizer for LDPE, and especially for HDPE nanocomposites.

  12. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material

    International Nuclear Information System (INIS)

    Cai, Yibing; Hu, Yuan; Song, Lei; Kong, Qinghong; Yang, Rui; Zhang, Yinping; Chen, Zuyao; Fan, Weicheng

    2007-01-01

    A kind of form stable phase change material (PCM) based on high density polyethylene (HDPE), paraffin, organophilic montmorillonite (OMT) and intumescent flame retardant (IFR) hybrids is prepared by using a twin screw extruder technique. This kind of form stable PCM is made of paraffin as a dispersed phase change material and HDPE as a supporting material. The structure of the montmorillonite (MMT) and OMT is characterized by X-ray diffraction (XRD) and high resolution electron microscopy (HREM). The analysis indicates that the MMT is a kind of lamellar structure, and the structure does not change after organic modification. However, the structure of the hybrid is evidenced by the XRD and scanning electronic microscope (SEM). Its thermal stability, latent heat and flame retardant properties are given by the Thermogravimetry analysis (TGA), differential scanning calorimeter (DSC) method and cone calorimeter, respectively. Synergy is observed between the OMT and IFR. The XRD result indicates that the paraffin intercalates into the silicate layers of the OMT, thus forming a typically intercalated hybrid. The SEM investigation and DSC result show that the additives of OMT and IFR have hardly any effect on the HDPE/paraffin three dimensional netted structure and the latent heat. In TGA curves, although the onset of weight loss of flame-retardant form stable PCMs occur at a lower temperature than that of form stable PCM, flame-retardant form stable PCMs produce a large amount of char residue at 700 o C. The synergy between OMT and IFR leads to the decrease of the heat release rate (HRR), contributing to improvement of the flammability performance

  13. The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2012-07-01

    Full Text Available The impact of nanoclay on the isothermal crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) (PES) is reported. A PES composite (PESNC) containing 5 wt% organically modified montmorillonite, was prepared via solvent...

  14. Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingjian; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Li, Weiwei; Han, Xu; Zhang, Xingxiang, E-mail: zhangpolyu@gmail.com

    2013-10-20

    Graphical abstract: The maximum 50 wt% Brij58 is loaded into the porous MCM-41 networks, and a new peak at 18.8° in XRD patterns confirmed the changes of crystallization behavior of Brij58 against the bulk one. - Highlights: • Poly(ethylene glycol) hexadecyl ether and poly(ethylene glycol) octadecyl ether have the good thermal storage ability. • New peak at 18.8° proved the coexisted confined crystallization and nucleation-induced crystallization. • Poly(ethylene glycol) alkyl ether/MCM-41 PCMs exhibits the good thermal stability. - Abstract: A series of shape-stabilized phase change materials (PCMs), composed of poly(ethylene glycol) hexadecyl ether (Brij58) or poly(ethylene glycol) octadecyl ether (Brij76) and porous silica (MCM-41), were prepared by the physical mixing method. The structure, thermal stability, energy storage ability and crystallization behavior of these composites are deeply investigated and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). Obvious phase transition behavior and energy storage capability are observed for these Brij/MCM-41 composites, and the heat storage efficiency increased with the weight of Brij component. New peak at 18.8° demonstrated that the pore size and the surface adsorption ability of MCM-41 affect the crystallization behavior of Brij molecule. The crystalline structure and energy storage ability of these Brij/MCM-41 composites are discussed based on the crystallization process.

  15. Structural and magnetic characterization of copper sulfonated phthalocyanine grafted onto treated polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, A., E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Kolska, Z. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Faculty of Science, J.E. Purkyne University, 400 96 Usti nad Labem (Czech Republic); Orendac, M.; Cizmar, E. [Faculty of Science, P.J. Safarik University, Park Angelinum 9, 04013 Kosice (Slovakia); Sajdl, P. [Department of Power Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic); Svorcik, V. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28, Prague 6 (Czech Republic)

    2016-08-30

    Highlights: • Polyethylene (PE) surface was activated by argon plasma discharge. • Monolayer of copper phthalocyanine was achieved. • ESR proved that CuPc coated PE surface exhibits magnetic properties. • The studied structures may have potential application in spintronics and data storage. - Abstract: This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with {sup b}CuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.

  16. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2004-01-01

    The use of wood-derived fillers by the thermoplastic industry has been growing, fueled in part by the use of wood-fiber–thermoplastic composites by the construction industry. As a result, the durability of wood-fiber– thermoplastic composites after ultraviolet exposure has become a concern. Samples of 100% high-density polyethylene (HDPE) and HDPE filled with 50% wood-...

  17. Biodegradation of low density polyethylene by the action of a microbial consortium isolated from a landfill, Lima, Peru

    Directory of Open Access Journals (Sweden)

    Diego Uribe

    2011-05-01

    Full Text Available In this paper, we describe the isolation and biodegradation activity of microorganisms on low density polyethylene. The microorganisms were collected from plastic materials with evidence of deterioration from a landfill. The samples were filtered and selected in a mineral salts medium at pH 5.5 and 7 for bacteria and fungi respectively. Six strains were isolated, identified as Pseudomonas sp. Hyalodendron sp., Penicillium sp. and Rhodotorula sp. Microbial activity was evidenced by changes in the infrared spectrum of polyethylene with respect to the polymer without treatment. Reduction of carbonyl index (83.89% at pH 7 and 4.08% at pH 5.5 and double bonds index (19.77% at pH 7 and 6.47% at pH 5.5 were observed. Finally we determined the percentage of weight lost by the polyethylene subjected to activity of the strains, with a decrease of 5.4% at pH 7 and 4.8% at pH5, 5.

  18. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  19. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  20. Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt

    Science.gov (United States)

    Kailiang, Zhu; Jianqiao, Fu

    2017-11-01

    The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.

  1. Effect of Modified Red Pottery Clay on the Moisture Absorption Behavior and Weatherability of Polyethylene-Based Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Qingde Li

    2017-01-01

    Full Text Available Red pottery clay (RPC was modified using a silane coupling agent, and the modified RPC (mRPC was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA and ultraviolet (UV-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence and ΔE* (color reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading.

  2. Gamma irradiation effects on the grafting of low-density polyethylene with diethyl maleate

    International Nuclear Information System (INIS)

    Sanchez, Y.; Albano, C.; Karam, A.; Perera, R.; Silva, P.; Gonzalez, J.

    2005-01-01

    In this work, a low-density polyethylene (LDPE) was grafted with diethyl maleate (DEM) using gamma-rays from a Cobalt-60 source at different absorbed doses and monomer concentrations between 5 and 30 wt.%. This process was carried out in a decalin solution at 10 w/v% to obtain a homogeneous dispersion of the monomer into the polyethylene matrix. It was found that the grafting degree increases with the absorbed doses, as a consequence of the increased amount of energy given to the system, which made the grafting process more favorable. The grafting degree also increases with the concentration of DEM, because a higher concentration makes the insertion easier due to the increased availability of the free monomer. The highest grafting degree was obtained at 200 kGy of absorbed dose and with 30 wt.% of DEM. The melt flow index (MFI) values showed a decreasing trend as the absorbed dose was increased. This fact reveals that crosslinking and grafting are taking place simultaneously, this behavior being remarkable at higher irradiation doses. The results from thermogravimetric analysis (TGA) showed that the initial degradation temperatures remained almost unchanged with the absorbed dose

  3. Electrical properties and features of the crystallization behaviour and the phase morphology of polyethylene blends

    International Nuclear Information System (INIS)

    Kolesov, I.S.; Radusch, H.-J.; Kolesov, S.N.

    1999-01-01

    It was discovered that polyethylene blends show a typical concentration dependence of the specific electrical resistance and the electrical strength measured by the surge voltage method. The concentration dependencies show two local maxima at definite blend compositions (ω LDPE = 0,2 to 0,4 and 0,7 to 0,8). The results of investigation of the melt and crystallization behavior as well as of the supermolecular structure of these blends point out that the changes caused by mixing in topology and packaging density of the inter-phases between the phases and crystallites have an influence on the electrical properties of the polyethylene blends in correspondence to the composition. The changed structure-property relationships are caused essentially by a possible co-crystallization of the components and by the interactions at separate seeds formation. (orig.)

  4. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Manuel; Giraldo, Diego; Murillo, Edwin, E-mail: edwinalbertomurillo@gmail.com [Universidad de Antioquia, Medellin (Colombia); Universidad Francisco de Paula Santander, San Jose de Cucuta (Colombia)

    2017-01-15

    n this work, low density polyethylene (LDPE)/plasticised starch (TPS) blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young's modulus and tensile strength) improved ostensibly. The Young' modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior. (author)

  5. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Manuel Guzmán

    Full Text Available Abstract In this work, low density polyethylene (LDPE/plasticized starch (TPS blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young’s modulus and tensile strength improved ostensibly. The Young’ modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior.

  6. Hyperbranched polyester polyol plasticized tapioca starch/low density polyethylene blends

    International Nuclear Information System (INIS)

    Guzman, Manuel; Giraldo, Diego; Murillo, Edwin

    2017-01-01

    n this work, low density polyethylene (LDPE)/plasticised starch (TPS) blends were prepared. The TPS employed in this study was obtained by plasticization of tapioca starch with a hyperbranched polyester polyol. Differential scanning calorimetry analysis showed that the melting temperature increased with the TPS content. The opposite effect was exhibited in the crystallization temperature and additional changes were not observed during the heating. X-ray diffraction analysis showed a reduction in intensity of the peak at Bragg’s angle 17.5°, proving a diminution on A type crystallinity with the increasing amount of LDPE. Micrographs obtained by scanning electron microscopy exhibited starch granules without destructure. TPS acted as a filler to LDPE, since the mechanical properties (Young's modulus and tensile strength) improved ostensibly. The Young' modulus and tensile strength decreased with the amount of LDPE, however, the elongation at break exhibited an opposite behavior. (author)

  7. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibing; Wang, Jun; Wang, Yan

    2012-01-01

    Graphite nanoplatelets (GnPs), obtained by sonicating the expanded graphite, were employed to simultaneously enhance the thermal (k) and electrical (σ) conductivity of organic form-stable phase change materials (FSPCMs). Using the method of in situ polymerization upon ultrasonic irradiation, GnPs serving as the conductive fillers and polyethylene glycol (PEG) acting as the phase change material (PCM) were uniformly dispersed and embedded inside the network structure of polymethyl methacrylate (PMMA), which contributed to the well package and self-supporting properties of composite FSPCMs. X-ray diffraction and Fourier transform infrared spectroscopy results indicated that the GnPs were physically combined with PEG/PMMA matrix and did not participate in the polymerization. The GnPs additives were able to effectively enhance the k and σ of organic FSPCM. When the mass ratio of GnP was 8%, the k and σ of FSPCM changed up to 9 times and 8 orders of magnitude over that of PEG/PMMA matrix, respectively. The improvements in both k and σ were mainly attributed to the well dispersion and large aspect ratio of GnPs, which were endowed with benefit of forming conducting network in polymer matrix. It was also confirmed that all the prepared specimens possessed available thermal storage density and thermal stability. -- Highlights: ► GnPs were employed to simultaneously enhance the k and σ of organic FSPCMs. ► PEG/PMMA/GnPs composite FSPCMs were prepared by in situ polymerization method. ► The composite FSPCMs exhibited well package and self-supporting properties. ► GnPs additives effectively enhanced the k and σ of composite FSPCMs. ► All the composites possessed available thermal storage density and thermal stability.

  8. POLYETHYLENE ENCAPSULATION

    International Nuclear Information System (INIS)

    Kalb, P.

    2001-01-01

    (NRC, 1991; 1983) Because polyethylene is a relatively new material, it is difficult to predict its long-term durability. However, prior to scale-up of the microencapsulation process, a study was conducted to evaluate potential degradation mechanisms. The study examined potential effects on mechanical integrity from exposure to chemicals and solvents, thermal cycling, saturated environments, microbial attack, and high gamma-radiation fields (Kalb et al., 1991). At ambient temperatures, polyethylene is relatively inert to most chemicals, including organic solvents, acids, and alkaline solutions. Exposure to changes in temperature or saturated soil conditions have been shown to degrade the mechanical integrity of some waste forms, but had little or no measurable impact on polyethylene waste forms. Low-density polyethylene is not susceptible to growth of microbial organisms, a fact that is evidenced by the lack of plastics decomposition in municipal waste landfills. When exposed to gamma-radiation at total doses of up to lo8 rad, additional cross-linking of the polymer occurs, resulting in increased strength and lower leachability

  9. Potential Use of In Situ Material Composites such as Regolith/Polyethylene for Shielding Space Radiation

    Science.gov (United States)

    Theriot, Corey A.; Gersey, Buddy; Bacon, Eugene; Johnson, Quincy; Zhang, Ye; Norman, Jullian; Foley, Ijette; Wilkins, Rick; Zhou, Jianren; Wu, Honglu

    2010-01-01

    NASA has an extensive program for studying materials and methods for the shielding of astronauts to reduce the effects of space radiation when on the surfaces of the Moon and Mars, especially in the use of in situ materials native to the destination reducing the expense of materials transport. The most studied material from the Moon is Lunar regolith and has been shown to be as efficient as aluminum for shielding purposes (1). The addition of hydrogenous materials such as polyethylene should increase shielding effectiveness and provide mechanical properties necessary of structural materials (2). The neutron radiation shielding effectiveness of polyethylene/regolith stimulant (JSC-1A) composites were studied using confluent human fibroblast cell cultures exposed to a beam of high-energy spallation neutrons at the 30deg-left beam line (ICE house) at the Los Alamos Neutron Science Center. At this angle, the radiation spectrum mimics the energy spectrum of secondary neutrons generated in the upper atmosphere and encountered when aboard spacecraft and high-altitude aircraft. Cell samples were exposed in series either directly to the neutron beam, within a habitat created using regolith composite blocks, or behind 25 g/sq cm of loose regolith bulk material. In another experiment, cells were also exposed in series directly to the neutron beam in T-25 flasks completely filled with either media or water up to a depth of 20 cm to test shielding effectiveness versus depth and investigate the possible influence of secondary particle generation. All samples were sent directly back to JSC for sub-culturing and micronucleus analysis. This presentation is of work performed in collaboration with the NASA sponsored Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M.

  10. Biodegradability Study of the Blend Film of High Density Polyethylene and Poly(lactic acid Disposable Packages Flake

    Directory of Open Access Journals (Sweden)

    Elahe Baghi Neirizi

    2016-03-01

    Full Text Available One of the major concerns of using a non-biodegradable polymer product is its disposal at the end of its life cycle. Development of biodegradable plastics promises an alternative solution to combat this problem. Blending of poly(lactic acid with non-biodegradable polymers is a practical and economical method for modifying the biodegradability properties of non-biodegradable polymers. In this study, soil biodegradability of the blends of high density polyethylene (HDPE and variable amounts of recycled poly(lactic acid (r-PLA plastic flakes at 0, 5, 10, 20, 30, 40 and 50 wt% was studied. The behavior of the force-elongation profile of the blends having r-PLA content of lower than 30 wt% was approximately the same as that of pure HDPE while, it was completely different for the other blends. Tearing force and elongation-at-yield-point of the blends films with the 20 to 50 wt% r-PLA were decreased significantly after 60 days of soil biodegradability test. Morphological study showed that biodegradability of the blend films at surface of the samples (deep pores and grooves was increased with extended biodegradability time and higher r-PLA content, while, this variation was significant for the blend films of more than 20 wt% r-PLA content. Thermal properties evaluation by differential scanning calorimetry (DSC curves indicated that the glass transition temperature and enthalpy peaks during the heating stage were eliminated with increasing the biodegradability testing time. Also, reduction in the crystallinity degree of the r-PLA component with increasing the biodegradability testing time coincided with the earlier results.

  11. Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility

    Science.gov (United States)

    Wang, Guixia; Babaahmadi, Vahid; He, Nanfei; Liu, Yixin; Pan, Qin; Montazer, Majid; Gao, Wei

    2017-11-01

    All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scribed graphene oxide layers (LGO) possess three-dimensionally porous structure suitable for electrochemical-double-layer formation. To improve the wash fastness and the flexibility of the as-prepared MSCs, glutaraldehyde (GA) was employed to crosslink the GO layers and PVA-gel electrolyte onto the PET fabric. The resultant all solid-state MSCs exhibited excellent flexibility, high areal specific capacitance (756 μF·cm-2 at 20 mV·s-1), and good rate capability when subject to bending and laundering. Furthermore, the MSC device showed a high power density of about 1.4 W·cm-3 and an energy density of 5.3 × 10-5 Wh·cm-3, and retained 98.3% of its initial capacitance after 1000 cycles at a current density of 0.5 mA·cm-2. This work is the first demonstration of in-plane MSCs on PET fabric surfaces with enhanced durability and flexibility.

  12. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  13. Engineering cartilage substitute with a specific size and shape using porous high-density polyethylene (HDPE) as internal support.

    Science.gov (United States)

    Wu, Yujia; Zhu, Lie; Jiang, Hua; Liu, Wei; Liu, Yu; Cao, Yilin; Zhou, Guangdong

    2010-04-01

    Despite the great advances in cartilage engineering, constructing cartilage of large sizes and appropriate shapes remains a great challenge, owing to limits in thickness of regenerated cartilage and to inferior mechanical properties of scaffolds. This study introduces a pre-shaped polyglycolic acid (PGA)-coated porous high-density polyethylene (HDPE) scaffold to overcome these challenges. HDPE was carved into cylindrical rods and wrapped around by PGA fibres to form PGA-HDPE scaffolds. Porcine chondrocytes were seeded into the scaffolds and the constructs were cultured in vitro for 2 weeks before subcutaneous implantation into nude mice. Scaffolds made purely of PGA with the same size and shape were used as a control. After 8 weeks of implantation, the construct formed cartilage-like tissue and retained its pre-designed shape and size. In addition, the regenerated cartilage grew and completely surrounded the HDPE core, which made the entire cartilage substitute biocompatible to its implanted environment as native cartilage similarly does. By contrast, the shape and size of the constructs in the control group seriously deformed and obvious hollow cavity and necrotic tissue were observed in the inner region. These results demonstrate that the use of HDPE as the internal support of a biodegradable scaffold has the potential to circumvent the problems of limitations in size and shape, with promising implications for the development of engineered cartilage appropriate for clinical applications. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Elaboration of recycled polyethylene foams reticulated by radiation

    International Nuclear Information System (INIS)

    Galicia M, M.

    2000-01-01

    In this work some obtained results are presented to make irradiation tests on recycled polymeric material (polyethylene) as well as mixtures of this with certain additive classes (foaming and reticulating agents) which will be used for the foams elaboration, objective of this work. Two types of foaming basically exist which are elaborated with low density polyethylene base. They are: a) the extruded and, b) the reticulated through ionizing radiation and chemically. Some of the properties that the expanded or foamed polyethylene are: flexibility, resistance, thermal stability, inter medium mechanical properties between the highly flexible foams and rigid among others. All of them determined by the cell type which conform them. Also was carried out the characterization of the obtained material contributing of this manner to diminish the quantity of solid wastes generated. (Author)

  15. Radiation Graft Copolymerization of Butyl methacrylate and Acrylamide onto Low density polyethylene and polypropylene films and its application in wastewater treatment

    International Nuclear Information System (INIS)

    Abdel Ghaffar, A.M.; El-Arnaouty, M.B.; Aboulfotouh, M.E.; Taher, N.H.

    2012-01-01

    Butyl methacrylate and Acrylamide (BMA/AAm) comonomer were grafted onto Low density polyethylene and polypropylene films using direct gamma radiation by grafting technique. The influences of grafting conditions such as solvent, monomer concentration, monomer composition, and irradiation dose on the grafting yield were determined. It was found that, using DMF as a solvent enhanced the copolymerization process. The grafting yield increases with comonomer concentration up to 60 %. . Also it was found that, the degree of grafting of (BMA/AAm) onto LDPE and PP films increases as the AAm content increases till optimum value at (50:50) %. The grafting yield of the comonomer found to be increased with increasing radiation dose. It was observed that the degree of grafting of polyethylene films is higher than that for polypropylene films. Some selected properties of the graft copolymers, such as water uptake and thermal properties determined by using thermogravimetric analysis (TGA) has been carried out. The morphology and structure of grafted films was investigated by using SEM, IR and X-ray diffraction. The improvement in such properties of the prepared copolymers was observed which makes possible uses in some practical applications such as in the removal of some heavy metals from wastewater. It was found that the maximum metal uptake by the copolymer is ordered in the sequence of Cu 2+ > CO 2+ > Ni 2+ ions.

  16. Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites.

    Science.gov (United States)

    Upadhyay, Rahul; Naskar, Sharmistha; Bhaskar, Nitu; Bose, Suryasarathi; Basu, Bikramjit

    2016-05-18

    The uniform dispersion of nanoparticles in a polymer matrix, together with an enhancement of interfacial adhesion is indispensable toward achieving better mechanical properties in the nanocomposites. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. To address these issues, we prepared high-density polyethylene (HDPE) based composites reinforced with graphene oxide (GO) by melt mixing followed by compression molding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, we immobilized polyethylene (PE) onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa), and an outstanding elongation at failure (ca. 70%) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO-reinforced HDPE composites as compared to GO-reinforced composites. To assess the cytocompatibility, we grew osteoblast cell line (MC3T3) and human mesenchymal stem cells (hMSCs) on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell over different time periods in culture for up to 6 days in MC3T3 and 7 days for hMSCs was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (up to 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and

  17. Technical - economical opportunity of replacing rubber coated steel in tubes and reinforcements by polyethylene of high density for corrosive media

    International Nuclear Information System (INIS)

    Alessandrescu, A.; Dogaru, D.

    2004-01-01

    The polyethylene of high density, PEHD, is currently used for methane gas, drinking water (hot and cool) tube systems as well as for interior and exterior installations for domestic and industrial consumers. In this paper one proposes an extension of the range of PEHD utilizations to irrigation grids, transport and distribution of the food and industrial liquids, for coating the optical fibres, replacing the systems of tubes with anti corrosive properties (stainless steels, carbon steels coated with rubber), protection of hot fluid transport tubes, fire extinguishers, etc.). To evidence the advantages of replacing the rubber coated steel tubing by PEHD tubes a comparative technical-economical thorough analysis was conducted in the Heavy Water Plant . The paper presents: - the PEHD, a thermoplastic material for fluid transport under pressure; - physico-chemical and mechanical properties of the PEHD products; - types of characteristic dimensions of the PEHD products; - techniques of joining used in mounting PEHD grids; - tools and devices used in welding. Presented are the general properties and computing elements for tubes, assembling procedures, testing and quality control in the mountings of PEHD tube systems. In conclusion, using PEHD in the fields mentioned is advantageous from both technical and economical point of view as compared with rubber coated tubing

  18. Post-consumer contamination in high-density polyethylene (HDPE) milk bottles and the design of a bottle-to-bottle recycling process.

    Science.gov (United States)

    Welle, F

    2005-10-01

    Six hundred conventional recycled HDPE flake samples, which were recollected and sorted in the UK, were screened for post-consumer contamination levels. Each analysed sample consisted of 40-50 individual flakes so that the amount of analysed individual containers was in the range 24,000-30,000 post-consumer milk bottles. Predominant contaminants in hot-washed flake samples were unsaturated oligomers, which can be also be found in virgin high-density polyethylene (HDPE) pellet samples used for milk bottle production. In addition, the flavour compound limonene, the degradation product of antioxidant additives di-tert-butylphenol and low amounts of saturated oligomers were found in higher concentrations in the post-consumer samples in comparison with virgin HDPE. However, the overall concentrations in post-consumer recycled samples were similar to or lower than concentration ranges in comparison with virgin HDPE. Contamination with other HDPE untypical compounds was rare and was in most cases related to non-milk bottles, which are HDPE and on the high cleaning efficiency of the super-clean recycling process especially for highly volatile compounds, the recycling process investigated is suitable for recycled post-consumer HDPE bottles for direct food-contact applications. However, hand-picking after automatically sorting is recommended to decrease the amount of non-milk bottles. The conclusions for suitability are valid, provided that the migration testing of recyclate contains milk bottles up to 100% and that both shelf-life testing and sensorial testing of the products are successful, which are topics of further investigations.

  19. High field dielectric properties of anisotropic polymer-ceramic composites

    International Nuclear Information System (INIS)

    Tomer, V.; Randall, C. A.

    2008-01-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO 3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems

  20. Characterization of injected linear low density polyethylene (LLDPE) irradiated by gamma-ray

    International Nuclear Information System (INIS)

    Oliveira, Ana C.F.; Parra, Duclerc F.; Ferreto, Helio F.R.; Lugao, Ademar B.

    2013-01-01

    The aim of this paper is to investigate of gamma irradiation effects on linear low density polyethylene (LLDPE) injected. Polymers processed by gamma radiation have new physical-chemical and mechanical properties. The ionizing radiation promotes chain scission and creates free radicals which can recombine, providing their annihilation, for crosslinking or branching. The polymer was irradiated with a source of 60 Co at doses of 5, 10, 20, 50 or 100 kGy at about 5 kGy s -1 rate, at room temperature. The changes in molecular structure of LLDPE were evaluated using melt flow index, gel fraction, differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR) and thermogravimetry analysis (TG). The results showed that the properties depend on dose irradiation. (author)

  1. The effect of radiation dose on the crosslink density of ultra-high molecular weight polyethylene (UHMWPE) measured by a novel swelling method

    International Nuclear Information System (INIS)

    Muratoglu, O.K.; Bragdon, C.R.; O'Connor, D.O.; Jasty, M.; Harris, W.H.

    1998-01-01

    The crosslink density of a polyethylene network structure can be determined by swelling in hot xylene (130 deg C). The Flory's swelling theory is generally used to calculate the crosslink density, dx (ln(l-q -1 )+q -1 +Xq -1 )/(V 1 q -1/3 ), where V 1 is the molar volume of xylene at 130 deg C (136 cc/mol), X is the xylene-polyethylene interaction parameter, and q is the equilibrium volume swelling ratio of cross-linked network in hot xylene. Conventionally, q is measured using gravimetric methods as described in ASTM D2765-95. However, as noted in the ASTM standard, the gravimetric method has a large error factor associated with the measurement of q (as much as 100%). UHMWPE was irradiated (range of 25 to 300 kGy) using an AECL I 10/1 linear electron beam accelerator operated at 1 kW. The irradiated specimens were subsequently melt-annealed at 150 deg C for 2 hours in vacuum. For swelling experiments, 2 mm thin samples were machined using a diamond blade. The sample sizes were kept at around 3x3x2 mm and the bottom and top surfaces were machined parallel to each other. The equilibrium volume swelling ratios were determined using a Perkin-Elmer TMA/DMA 7 (n=3 for each radiation dose level). The samples were placed in a quartz basket-probe assembly and lowered into a xylene/antioxidant bath at room temperature. The xylene was then heated to 130 deg C at 5 deg C/min and held at 130 deg C for 2 hours. The swelling was then recorded with the upward motion of the probe until the equilibrium swelling was achieved. (The experiments were carried out in 3 orthogonal directions which confirmed the isotropy of swelling). (author)

  2. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  3. Multifunctional Carbon Nanotube/Polyethylene Complex Composites for Space Radiation Shielding, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polyethylene (PE), due to its high hydrogen content relative to its weight, has been identified by NASA as a promising radiation shielding material against galactic...

  4. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  5. Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet.

    Science.gov (United States)

    Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner

    2015-01-01

    The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.

  6. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Hung, E-mail: tieamo2002@gmail.com; Wu, Guo-Wei; He, Ju-Liang

    2015-03-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property.

  7. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Ying-Hung; Wu, Guo-Wei; He, Ju-Liang

    2015-01-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property

  8. Study on polyethylene glycol/epoxy resin composite as a form-stable phase change material

    International Nuclear Information System (INIS)

    Fang Yutang; Kang Huiying; Wang Weilong; Liu Hong; Gao Xuenong

    2010-01-01

    Form-stable polyethylene glycol (PEG)/epoxy resin (EP) composite as a novel phase change material (PCM) was prepared using casting molding method. In this new material, PEG acts as the latent heat storage material and EP polymer serves as the supporting material, which provides structural strength and prevents the leakage of the melted PEG. The structure and morphology of the novel composite were observed using Fourier transformation infrared spectroscope (FTIR) and scanning electronic microscope (SEM). The thermo-mechanical property and transition behavior were characterized by polarizing optical microscope (POM), static thermo-mechanical analysis (TMA) and differential scanning calorimeter (DSC). The experimental results show that, as a result of the physical tangled function of the epoxy resin carrier to the PEG segment, the composite macroscopically presents the solid-solid phase change characteristic.

  9. Extraction of CdS pigment from waste polyethylene

    NARCIS (Netherlands)

    Wanrooij, P.H.P.; Agarwal, U.S.; Meuldijk, J.; Kasteren, van J.M.N.; Lemstra, P.J.

    2006-01-01

    Cadmium sulfide has often been used as a pigment in plastics such as high-density polyethylene (HDPE). Removal of CdS after the useful life of plastics is desired since it poses an environmental hazard in the waste phase of these plastics. In this study, a process is investigated to convert the

  10. Development of Composite Made of HDPE and Fiber Reinforced Polymer Dust

    International Nuclear Information System (INIS)

    Muhamad Noor Izwan Ishak; Ismail Mustapha; Mohd Reusmazran Yusof; Yusof Abdullah; Nor Pai'za Mohamad Hasan; Mohamad Ridzuan Ahamad; Md Fakarudin Ab Rahman; Hafizal Yazid; Ainul Mardhiah Terry; Airwan Affandi Mahmood; Nurliyana Abdullah

    2016-01-01

    Full text: Composite of High Density Polyethylene and Fiber Reinforced Polymer Dust (HDPE/ FRPD) were prepared by melt mixing technique. The blend was mixed and compression molded by hydraulic press at 150 degree Celsius. Effect of blend ratio on mechanical properties of the developed composite was determined. Tensile properties of the blends found to show decreasing trend with addition of FRPD. While impact strength and hardness properties showed promising result. Reuse of ' Fiber Reinforced Polymer ' dust can be improved by the present invention. (author)

  11. Radiolysis products and sensory properties of electron-beam-irradiated high-barrier food-packaging films containing a buried layer of recycled low-density polyethylene.

    Science.gov (United States)

    Chytiri, S D; Badeka, A V; Riganakos, K A; Kontominas, M G

    2010-04-01

    The aim was to study the effect of electron-beam irradiation on the production of radiolysis products and sensory changes in experimental high-barrier packaging films composed of polyamide (PA), ethylene-vinyl alcohol (EVOH) and low-density polyethylene (LDPE). Films contained a middle buried layer of recycled LDPE, while films containing 100% virgin LDPE as the middle buried layer were taken as controls. Irradiation doses ranged between zero and 60 kGy. Generally, a large number of radiolysis products were produced during electron-beam irradiation, even at the lower absorbed doses of 5 and 10 kGy (approved doses for food 'cold pasteurization'). The quantity of radiolysis products increased with irradiation dose. There were no significant differences in radiolysis products identified between samples containing a recycled layer of LDPE and those containing virgin LDPE (all absorbed doses), indicating the 'functional barrier' properties of external virgin polymer layers. Sensory properties (mainly taste) of potable water were affected after contact with irradiated as low as 5 kGy packaging films. This effect increased with increasing irradiation dose.

  12. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-11-01

    Graphene and single-walled carbon nanotube (CNT) composites are explored as the electrodes for supercapacitors by coating polyaniline (PANI) nano-cones onto the graphene/CNT composite to obtain graphene/CNT-PANI composite electrode. The graphene/CNT-PANI electrode is assembled with a graphene/CNT electrode into an asymmetric pseudocapacitor and a highest energy density of 188 Wh kg-1 and maximum power density of 200 kW kg-1 are achieved. The structure and morphology of the graphene/CNT composite and the PANI nano-cone coatings are characterized by both scanning electron microscopy and transmission electron microscopy. The excellent performance of the assembled supercapacitors is also discussed and it is attributed to (i) effective utilization of the large surface area of the three-dimensional network structure of graphene-based composite, (ii) the presence of CNT in the composite preventing graphene from re-stacking, and (ii) uniform and vertically aligned PANI coating on graphene offering increased electrical conductivity.

  13. Ultra high molecular weight polyethylene (UHMWPE) fiber epoxy composite hybridized with Gadolinium and Boron nanoparticles for radiation shielding

    Science.gov (United States)

    Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit

    2016-09-01

    Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was

  14. Gamma irradiation technology for composite materials

    International Nuclear Information System (INIS)

    Romero, Guillermo R; Gonzalez, Maria E.

    2003-01-01

    A composite of sugar cane bagasse and low-density polyethylene was prepared. Gamma -radiation of Cobalt-60 (Co 60 ) and reactive additives were used, to make compatible the lignocellulosic fibers with the polymeric matrix. Gamma-radiation was applied in different stages with different purposes: a) Irradiation of cellulosic fibers treated or not with reactive additive, in presence of air, to produce macro radicals increasing their reactivity during extrusion with polyethylene. A homogeneous and fusible material resulted that can be used as raw material in thermoforming processes with cost in between that of its constitutive elements; b) Irradiation of final products, to produce the cross-linking of polymeric chains. The fibers remain trapped in the cross-linked matrix. A homogeneous and infusible material with high mechanical properties was obtained. (author)

  15. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Maryam Boshtam

    2013-01-01

    Full Text Available Introduction. Cardioprotective effect of high density lipoprotein (HDL is, in part, dependent on its related enzyme, paraoxonase 1 (PON1. Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA. PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  16. Serum paraoxonase 1 activity is associated with fatty acid composition of high density lipoprotein.

    Science.gov (United States)

    Boshtam, Maryam; Razavi, Amirnader Emami; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω 6 fatty acids of HDL. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health.

  17. Developing light nano-composites with improved mechanical properties for neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, F. [Shiraz Univ. of Medical Sciences (Iran, Islamic Republic of). School of Medicine; Mortazavi, S.M.J. [Shiraz Univ. of Medical Sciences (Iran, Islamic Republic of). Dept. of Medical Physics and Medical Engineering; Shiraz Univ. of Medical Sciences (Iran, Islamic Republic of). The Center for Radiological Research; Kardan, M. [Nuclear Science and Technology Institute, Tehran (Iran, Islamic Republic of). Radiation Application School; Mosleh-Shirazi, M.A. [Shiraz Univ. of Medical Sciences (Iran, Islamic Republic of). Radiotherapy Dept.; Sina, S. [Shiraz Univ. of Medical Sciences (Iran, Islamic Republic of). Radiation Research Center; Rahpeyma, J.

    2017-12-15

    Although radiation exposures in manned space missions are normally below the limits recommended to NASA by NCRP, in long-duration deep space exploratory missions astronauts may receive relatively high doses of ionizing radiation. Novel light polyethylene-based composites can be considered as effective radiation shields in space explorations. However, normally these composites cannot provide desired mechanical properties. Over the past several years our laboratories have focused on developing efficient methods for both physical and biological protection of the crew in long term space missions. In this study carbon nanotubes and either nano-sized or micro-sized boron carbide (B{sub 4}C) fillers were incorporated into the continuous phase of low density polyethylene (LDPE). In the next phase, the mechanical characteristics of the composites as well as their neutron attenuation properties were studied. Findings of this study indicated enhanced mechanical properties accompanied by an enhanced shielding efficiency for neutrons at some specific weight fraction of the fillers.

  18. Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites

    Science.gov (United States)

    Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker

    2011-01-01

    Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...

  19. Thermomechanical behaviour of stabilized polyethylene irradiated with gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Markovic, V; Gal, O; Stannett, V T

    1986-01-01

    The moduli of elasticity at 150/sup 0/C for irradiated linear low density and low density polyethylenes, pure and with 0.5% antioxidants were determined using the penetration technique. Simultaneously, on similar samples, the gel content was measured. Analysing the radiation parameters and comparing data derived from the two methods the efficiency of radiation crosslinking of different polyethylenes and the effect of antioxidants is discussed.

  20. Thermomechanical behaviour of stabilized polyethylene irradiated with gamma rays

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Markovic, V.; Gal, O.; Stannett, V.T.

    1986-01-01

    The moduli of elasticity at 150 C for irradiated linear low density and low density polyethylenes, pure and with 0.5% antioxidants were determined using the penetration technique. Simultaneously, on similar samples, the gel content was measured. Analysing the radiation parameters and comparing data derived from the two methods the efficiency of radiation crosslinking of different polyethylenes and the effect of antioxidants is discussed. (author)

  1. The influence of expanded graphite on thermal properties for paraffin/high density polyethylene/chlorinated paraffin/antimony trioxide as a flame retardant phase change material

    International Nuclear Information System (INIS)

    Zhang Ping; Song Lei; Lu Hongdian; Wang Jian; Hu Yuan

    2010-01-01

    The influences of expanded graphite (EG) on the thermal properties of chlorinated paraffin (CP) and antimony trioxide (AT) on phase change material which bases on paraffin/high density polyethylene (HDPE) are studied. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), thermogravimetric analysis-Fourier transform infrared spectrometry (TGA-FTIR), microscale combustion calorimeter (MCC) and cone calorimeter (CONE) were used to evaluate the influence of EG on paraffin/HDPE/CP/AT system. The DSC results indicated that the latent heat value of PCM could be increased when the mass fraction of HDPE was decreased in the PCM, and EG could confine the molecular heat movement of paraffin. EG could improve the thermal stability and increase the char residue at high temperature for paraffin/HDPE/CP/AT hybrid. The volatilized products formed on thermal degradation of paraffin/HDPE/CP/AT with EG showed the release of CO 2 gas was hastened and increased, and the amount of combustible gases were decreased by TGA-FTIR analysis. The MCC and CONE results presented that the flame retardant efficiency of CP/AT could be improved by adding EG in paraffin/HDPE/CP/AT system.

  2. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    Science.gov (United States)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  3. Wear of PEEK-OPTIMA® and PEEK-OPTIMA®-Wear Performance articulating against highly cross-linked polyethylene.

    Science.gov (United States)

    East, Rebecca H; Briscoe, Adam; Unsworth, Anthony

    2015-03-01

    The idea of all polymer artificial joints, particularly for the knee and finger, has been raised several times in the past 20 years. This is partly because of weight but also to reduce stress shielding in the bone when stiffer materials such as metals or ceramics are used. With this in mind, pin-on-plate studies of various polyetheretherketone preparations against highly cross-linked polyethylene were conducted to investigate the possibility of using such a combination in the design of a new generation of artificial joints. PEEK-OPTIMA(®) (no fibre) against highly cross-linked polyethylene gave very low wear factors of 0.0384 × 10(-6) mm(3)/N m for the polyetheretherketone pins and -0.025 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates. The carbon-fibre-reinforced polyetheretherketone (PEEK-OPTIMA(®)-Wear Performance) also produced very low wear rates in the polyetheretherketone pins but produced very high wear in the highly cross-linked polyethylene, as might have been predicted since the carbon fibres are quite abrasive. When the fibres were predominantly tangential to the sliding plane, the mean wear factor was 0.052 × 10(-6) mm(3)/N m for the pins and 49.3 × 10(-6) mm(3)/N m for the highly cross-linked polyethylene plates; a half of that when the fibres ran axially in the pins (0.138 × 10(-6) mm(3)/N m for the pins and 97.5 × 10(-6) mm/ N m for the cross-linked polyethylene plates). PEEK-OPTIMA(®) against highly cross-linked polyethylene merits further investigation. © IMechE 2015.

  4. Effects of high energy electrons on the properties of polyethylene / multiwalled carbon nanotubes composites: Comparison of as-grown and oxygen-functionalised MWCNT

    International Nuclear Information System (INIS)

    Krause, B.; Pötschke, P.; Gohs, U.

    2014-01-01

    Polymer modification with high energy electrons (EB) is well established in different applications for many years. It is used for crosslinking, curing, degrading, grafting of polymeric materials and polymerisation of monomers. In contrast to this traditional method, electron induced reactive processing (EIReP) combines the polymer modification with high energy electrons and the melt mixing process. This novel reactive method was used to prepare polymer blends and composites. In this study, both methods were used for the preparation of polyethylene (PE)/ multiwalled carbon nanotubes (MWCNT) composites in the presence of a coupling agent. The influence of MWCNT and type of electron treatment on the gel content, the thermal conductivity, rheological, and electrical properties was investigated whereby as-grown and oxidised MWCNT were used. In the presence of a coupling agent and at an absorbed dose of 40 kGy, the gel content increased from 57 % for the pure PE to 74 % or 88 % by the addition of as-grown (Baytubes® C150P) or oxidised MWCNT, respectively. In comparison to the composites containing the as-grown MWCNTs, the use of the oxidised MWCNTs led to higher melt viscosity and higher storage modulus due to higher yield of filler polymer couplings. The melt viscosity increased due to the addition of MWCNT and crosslinking of PE. The thermal conductivity increased to about 150 % and showed no dependence on the kind of MWCNT and the type of electron treatment. In contrast, the lowest value of electrical volume resistivity was found for the non-irradiated samples and after state of the art electron treatment without any influence of the type of MWCNT. In the case of EIReP, the volume resistivity increased by 2 (as-grown MWCNT) or 3 decades (oxidised MWCNT) depending on the process parameters

  5. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Kim, Jaewoo; Uhm, Young Rang; Jeon, Jae-Kyun; Lee, Sol; Lee, Hi Min; Rhee, Chang Kyu

    2010-01-01

    The thermal properties of micro-sized boron nitride (BN) and nano-sized BN dispersed high density polyethylene (HDPE) composites were investigated by means of differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Nano-BN powder was prepared by using a ball mill process before it was mixed in HDPE. To enhance the dispersivity of nano-BN in the polymer matrix, the surfaces of the nano-particles were treated with low density polyethylene (LDPE) which was dissolved in the cyclohexane solvent. The average particle sizes of micro-BN powder and LDPE coated nano-BN powder were ∼10 μm and ∼100 nm respectively. Dispersion and distribution of 5 wt% and 20 wt% of micro-BN and nano-BN respectively mixed in HDPE were observed by using the scanning electron microscope (SEM). According to the thermal analyses of pure HDPE, micro-BN/HDPE, and nano-BN/HDPE, 20 wt% nano-BN/HDPE composite shows the lowest enthalpy of fusion (ΔH m ) and better thermal conductive characteristics compared to the others.

  6. Utilization of waste polyethylene terephthalate as a reducing agent in the reduction of iron ore composite pellets

    Science.gov (United States)

    Polat, Gökhan; Birol, Burak; Sarıdede, Muhlis Nezihi

    2014-08-01

    The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450°C for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450°C for 10 min using composite pellets containing 60% PET and 40% coke.

  7. Chemical modification of high molecular weight polyethylene through gamma radiation for biomaterials applications

    International Nuclear Information System (INIS)

    Raposo, Matheus P.; Rocha, Marisa C.G.

    2015-01-01

    Ultra high molecular weight polyethylene has been used in the medical field due to its high mechanical properties compared to the other polymers. Its main application is in the development of orthopedic implants, which requires high resistance to abrasion. One of the most used methods is the introduction of crosslinks in the polymer through gamma irradiation. In order to prevent oxidation reactions, studies have been developed using tacoferol (vitamin E) as an antioxidant for the material. The ascorbic acid (vitamin C), however, has been appointed as a viable alternative for vitamin E. In this work, a high molecular weight polyethylene grade (HMWPE) and polyethylene samples formulated with vitamin C were submitted to gamma radiation. Thermodynamic-mechanical methods and gel content determinations were used to characterize the samples obtained. The sample containing 1% of vitamin C and irradiated with 50 KGy of gamma radiation presented the highest content of crosslinks. (author)

  8. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

    Science.gov (United States)

    Requejo, B. A.; Pajarito, B. B.

    2017-05-01

    Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

  9. Extrapolation of creep behavior of high-density polyethylene liner in the Catch Basin of grout vaults

    International Nuclear Information System (INIS)

    Whyatt, G.A.

    1995-07-01

    Testing was performed to determine if gravel particles will creep into and puncture the high-density polyethylene (HDPE) liner in the catch basin of a grout vault over a nominal 30-year period. Testing was performed to support a design without a protective geotextile cover after the geotextile was removed from the design. Recently, a protective geotextile cover over the liner was put back into the design. The data indicate that the geotextile has an insignificant effect on the creep of gravel into the liner. However, the geotextile may help to protect the liner during construction. Two types of tests were performed to evaluate the potential for creep-related puncture. In the first type of test, a very sensitive instrument measured the rate at which a probe crept into HDPE over a 20-minute period at temperatures of 176 degrees F to 212 degrees F (80 degrees C to 100 degrees C). The second type of test consisted of placing the liner between gravel and mortar at 194 degrees F (90 degrees C) and 45.1 psi overburden pressure for periods up to 1 year. By combining data from the two tests, the long-term behavior of the creep was extrapolated to 30 years of service. After 30 years of service, the liner will be in a nearly steady condition and further creep will be extremely small. The results indicate that the creep of gravel into the liner will not create a puncture during service at 194 degrees F (90 degrees C). The estimated creep over 30 years is expected to be less than 25 mils out of the total initial thickness of 60 mils. The test temperature of 194 degrees F (90 degrees C) corresponds to the design basis temperature of the vault. Lower temperatures are expected at the liner, which makes the test conservative. Only the potential for failure of the liner resulting from creep of gravel is addressed in this report

  10. Influence of photostabilizers on wood flour-HDPE composites exposed to xenon-arc radiation with and without water spray

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2006-01-01

    The weathering of wood-plastic composites changes their appearance and/or mechanical properties. These changes can be slowed through the addition of ultraviolet absorbers and pigments. The first phase of this study examined the effect of incorporating different concentrations of an ultraviolet absorber and/or pigment into wood-flour-filled high-density polyethylene (WF...

  11. Thermally stimulated current of electron beam irradiation cross-linked polyethylene, (3)

    International Nuclear Information System (INIS)

    Aihara, Mitsugu; Aida, Fumio; Shiono, Takeo

    1984-01-01

    In the past, electron-beam irradiation was for the most part applied to rather thin insulation electric cables. Considering application to thick insulation, high voltage power cables (6.6 kV or more), the authors experimented on the charge accumulation and crystallizing properties of polyethylene due to irradiation, using three differently crystallizing samples, high and low density polyethylenes (HDPE and LDPE) and straight chain low density polyethylene (LLDPE), and have obtained some findings. Those are summarized as follows. (1) The crystallizing properties (crystallinity, the size of spherulite, etc.) of polyethylene varied according to the cooling condition, and affected the thermally stimulated current (TSC). (2) In HDPE and LDPE, the behaviour of crystallization differed. In HDPE, fine crystals decreased, and spherulites significantly grew in slow cooling, but in LDPE, the generation of fine crystals and the growth of spherulites simultaneously progressed. (3) The TSC peak area for HDPE was scarcely affected by slow cooling, but that for LDPE greatly increased. (4) The TSC of irradiated polyethylene showed peaks corresponding to the melting temperatures of fine crystals and spherulites when collecting voltage Vc was lowered. (5) The above facts suggest that fine crystals and spherulites took part as charge trap sites, but the aspect of participation was different in HDPE and LDPE. (6) LLDPE has the properties of both HDPE and LDPE in view of the crystallinity, charge accumulation was small, and it was hard to be affected by cooling condition. Accordingly, it seemed to be an interesting material as the PE for irradiation. A differential scanning calorimeter and laser small angle scattering method were used for the analysis of the measured results of TSC. (Wakatsuki, Y.)

  12. Biodegradation of low-density polyethylene (LDPE by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil.

    Directory of Open Access Journals (Sweden)

    Atefeh Esmaeili

    Full Text Available In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR, x-ray diffraction (XRD and scanning electron microscopy (SEM were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.

  13. Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil

    Science.gov (United States)

    Esmaeili, Atefeh; Pourbabaee, Ahmad Ali; Alikhani, Hossein Ali; Shabani, Farzin; Esmaeili, Ensieh

    2013-01-01

    In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source. PMID:24086254

  14. The effect of radiation dose on the crosslink density of ultra-high molecular weight polyethylene (UHMWPE) measured by a novel swelling method

    International Nuclear Information System (INIS)

    Muratoglu, O.K.; Bragdon, C.R.; O'Connor, D.O.; Jasty, M.; Harris, W.H.

    1998-01-01

    The crosslink density of a polyethylene network structure can be determined by swelling in hot xylene (130 deg C). The Flory's swelling theory is generally used to calculate the crosslink density, dx (ln(l-q -1 ) + q -1 + Xq -1 )/(V l q -1/3 ), where V l is the molar volume of xylene at 130 deg C (136 cc/mol), X is the xylene-polyethylene interaction parameter, and q is the equilibrium volume swelling ratio of cross-linked network in hot xylene. Conventionally, q is measured using gravimetric methods as described in ASTM D2765-95. However, as noted in the ASTM standard, the gravimetric method has a large error factor associated with the measurement of q (as much as 100%). UHMWPE was irradiated (range of 25 to 300 kGy) using an AECL I 10/1 linear electron beam accelerator operated at 1 kW. The irradiated specimens were subsequently melt-annealed at 150 deg C for 2 hours in vacuum. For swelling experiments, 2 mm thin samples were machined using a diamond blade. The sample sizes were kept at around 3x3x2 mm and the bottom and top surfaces were machined parallel to each other. The equilibrium volume swelling ratios were determined using a Perkin-Elmer TMA/DMA 7 (n=3 for each radiation dose level). The samples were placed in a quartz basket-probe assembly and lowered into a xylene/antioxidant bath at room temperature. The xylene was then heated to 130 deg C at 5 deg C/min and held at 130 deg C for 2 hours. The swelling was then recorded with the upward motion of the probe until the equilibrium swelling was achieved. (The experiments were carried out in 3 orthogonal directions which confirmed the isotropy of swelling). From this one-dimensional change in height, q was calculated by taking into account the volumetric expansion due to heating and melting. (author)

  15. Self-sensing performance of MWCNT-low density polyethylene nanocomposites

    Science.gov (United States)

    Gupta, Tejendra K.; Kumar, S.; Khan, Amal Z.; Varadarajan, Kartik M.; Cantwell, Wesley J.

    2018-01-01

    Carbon nanotubes (CNTs) based polymer nanocomposites offer a range of remarkable properties. Here, we demonstrate self-sensing performance of low density polyethylene (LDPE)-multiwalled carbon nanotubes (MWCNTs) nanocomposites for the first time. The dispersion of the CNTs and the morphology of the nanocomposites was investigated using scanning electron microscopy, x-ray diffraction and Raman spectroscopic techniques. The thermal properties were measured using thermal gravimetric analysis and differential scanning calorimetry and were found to increase with increasing wt% of MWCNTs in LDPE matrix. An overall improvement in ultimate tensile strength, yield strength and Young’s modulus was found to be 59.6%, 48.5% and 129.3%, respectively for 5.0 wt% loading of MWCNTs. The electrical percolation threshold was observed at 1.0 wt% of MWCNTs and the highest electrical conductivity of 2.8 × 10-2 Scm-1 was observed at 5.0 wt% loading of MWCNTs. These piezo-resistive nanocomposites offer tunable self-sensing capabilities with gauge factors in the ranges of 17-52 and 42-530 in linear elastic (strain ˜3%) and inelastic regimes (strain ˜15%) respectively. Our demonstration would provide guidelines for the fabrication of low cost, self-sensing MWCNT-LDPE nanocomposites for potential use as civil water pipelines and landfill membranes.

  16. High density, uniformly distributed W/UO2 for use in Nuclear Thermal Propulsion

    Science.gov (United States)

    Tucker, Dennis S.; Barnes, Marvin W.; Hone, Lance; Cook, Steven

    2017-04-01

    An inexpensive, quick method has been developed to obtain uniform distributions of UO2 particles in a tungsten matrix utilizing 0.5 wt percent low density polyethylene. Powders were sintered in a Spark Plasma Sintering (SPS) furnace at 1600 °C, 1700 °C, 1750 °C, 1800 °C and 1850 °C using a modified sintering profile. This resulted in a uniform distribution of UO2 particles in a tungsten matrix with high densities, reaching 99.46% of theoretical for the sample sintered at 1850 °C. The powder process is described and the results of this study are given below.

  17. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  18. Preparation of Basalt Incorporated Polyethylene Composite with Enhanced Mechanical Properties for Various Applications

    Directory of Open Access Journals (Sweden)

    Bredikhin Pavel

    2017-01-01

    Full Text Available The present article showed the possibility of increasing the complex of mechanical properties of polyolefins with dispersed mineral fillers obtained by fine grinding of basalt rocks via ball mill processing. The composites based on dispersed basalt, which were derived from Samara rock mass (Russia with rare earth elements containing, were obtained by extrusion combining the binder and filler, followed by preparation injection-molded test samples. The study of mechanical properties of materials developed showed the possibility of a significant increase in strength characteristics of different types of polyethylene: the breaking stress at static bending for HDPE can be increasing more than 60% and the impact strength by more than 4 times. In addition the incorporation of the dispersed basalt also enhanced the thermal properties of the composites (the oxygen index of HDPE increases from 19 to 25%.

  19. Radiation-modified blends of the basis of polyethylene terephthalate and polypropylene

    International Nuclear Information System (INIS)

    Mery-Meri, R.; Revyakin, O.; Zicans, J.

    2000-01-01

    The binary composite systems on the basis of post-consumer poly-(ethylene terephthalate) and polypropylene have been investigated. Mechanical properties of the compositions were studied in detail in order to expand the application possibilities of tested binary composites. Structural changes of the poly (ethylene terephthalate) / polypropylene blends depending on the concentration of the components were investigated also. Additionally, the optimum processing conditions were established. Particular attention was paid to study the influence of the ionizing γ-radiation on the structural and mechanical properties of the composition systems tested. The magnitude of the adsorbed dose od γ-radiation was established to affect differently the structure of poly(ethylene terephalate) and polypropylene. At small absorbed doses (50 kGy) crosslinking of the polymer was observed for both poly(ethylene terephthalate) and polypropylene resulting in the increase of some mechanical properties of pure materials as well of their compositions, whereas the absorbed dose of 300 kGy caused the destruction of the tested materials. It is important to mention that the rate of radiation-chemical destruction of polypropylene is higher than poly(ethylene terephthalate) destruction rate. (author)

  20. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    Science.gov (United States)

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  1. Biopolymer-nanocarbon composite electrodes for use as high-energy high-power density electrodes

    Science.gov (United States)

    Karakaya, Mehmet; Roberts, Mark; Arcilla-Velez, Margarita; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao

    2014-03-01

    Supercapacitors (SCs) address our current energy storage and delivery needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Although activated carbon is extensively used as a supercapacitor electrode due to its inexpensive nature, its low specific capacitance (100-120 F/g) fundamentally limits the energy density of SCs. We demonstrate that a nano-carbon based mechanically robust, electrically conducting, free-standing buckypaper electrode modified with an inexpensive biorenewable polymer, viz., lignin increases the electrode's specific capacitance (~ 600-700 F/g) while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes. Research supported by US NSF CMMI Grant 1246800.

  2. Decoration of multi-walled carbon nanotubes by polymer wrapping and its application in MWCNT/polyethylene composites.

    Science.gov (United States)

    Hsiao, An-En; Tsai, Shu-Ya; Hsu, Mei-Wen; Chang, Shinn-Jen

    2012-05-06

    We dispersed the non-covalent functionalization of multi-walled carbon nanotubes (CNTs) with a polymer dispersant and obtained a powder of polymer-wrapped CNTs. The UV-vis absorption spectrum was used to investigate the optimal weight ratio of the CNTs and polymer dispersant. The powder of polymer-wrapped CNTs had improved the drawbacks of CNTs of being lightweight and difficult to process, and it can re-disperse in a solvent. Then, we blended the polymer-wrapped CNTs and polyethylene (PE) by melt-mixing and produced a conductive masterbatch and CNT/PE composites. The polymer-wrapped CNTs showed lower surface resistivity in composites than the raw CNTs. The scanning electron microscopy images also showed that the polymer-wrapped CNTs can disperse well in composites than the raw CNTs.

  3. Degradation assessment of natural weathering on low density polyethylene/thermoplastic soya spent powder blends

    Science.gov (United States)

    Nuradibah, M. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.

    2015-07-01

    Soya spent powder was blended with low density polyethylene (LDPE) ranging from 5-25 wt%. Glycerol was added to soya spent powder (SSP) for preparation of thermoplastic soya spent powder (TSSP). Then, the blends were exposed to natural weathering for 6 months. The susceptibility of the LDPE/soya spent powder blends based on its tensile, morphological properties and structural changes was measured every three months. The tensile strength of LDPE/TSSP blends after 6 months of weathering was the lowest compared to the other blends whereas LDPE/SSP blends after 6 months of weathering demonstrated the lowest elongation at break (Eb). Large pore can be seen on the surface of 25 wt% of LDPE/SSP blends.

  4. Compressive strength and initial water absorption rate for cement brick containing high-density polyethylene (HDPE) as a substitutional material for sand

    Science.gov (United States)

    Ali, Noorwirdawati; Din, Norhasmiza; Sheikh Khalid, Faisal; Shahidan, Shahiron; Radziah Abdullah, Siti; Samad, Abdul Aziz Abdul; Mohamad, Noridah

    2017-11-01

    The rapid growth of today’s construction sector requires high amount of building materials. Bricks, known to have solid properties and easy to handle, which leads to the variety of materials added or replaced in its mixture. In this study, high density polyethylene (HDPE) was selected as the substitute materials in the making of bricks. The reason behind the use of HDPE is because of its recyclable properties and the recycling process that do not emit hazardous gases to the atmosphere. Other than that, the use of HDPE will help reducing the source of pollution by avoiding the millions of accumulated plastic waste in the disposal sites. Furthermore, the material has high endurance level and is weatherproof. This study was carried out on experimenting the substitute materials in the mixture of cement bricks, a component of building materials which is normally manufactured using the mixture of cement, sand and water, following a certain ratios, and left dried to produce blocks of bricks. A series of three different percentages of HDPE were used, which were 2.5%, 3.0% and 3.5%. Tests were done on the bricks, to study its compressive strength and the initial water absorption rate. Both tests were conducted on the seventh and 28th day. Based on the results acquired, for compressive strength tests on the 28th day, the use of 2.5% of HDPE shown values of 12.6 N/mm2 while the use of 3.0% of HDPE shown values of 12.5 N/mm2. Onto the next percentage, 3.5% of HDPE shown values of 12.5 N/mm2.

  5. Morphologies and mechanical properties of syndiotactic polypropylene (sPP)/polyethylene (PE) blends

    NARCIS (Netherlands)

    Loos, J.; Bonnet, M.; Petermann, J.

    2000-01-01

    The tensile properties of blends based on syndiotactic polypropylene (sPP) and high-density polyethylene (HDPE) have been studied. In order to understand the unexpected decrease in ductility, the crystallization behavior of these blends was characterized by transmission electron microscopy and

  6. Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches

    International Nuclear Information System (INIS)

    Bai, Byong Chol; Kang, Seok Chang; Im, Ji Sun; Lee, Se Hyun; Lee, Young-Seak

    2011-01-01

    Graphical abstract: The electrical properties of MWCNT-filled HDPE polymeric switches and their effect on oxyfluorination. Highlights: → Oxyfluorinated MWCNTs were used to reduce the PTC/NTC phenomenon in MWCNT-filled HDPE polymeric switches. → Electron mobility is difficult in MWCNT particles when the number of oxygen functional groups (C-O, C=O) increases by oxyfluorination. → A mechanism of improved electrical properties of oxyfluorinated MWCNT-filled HDPE polymeric switches was suggested. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) were embedded into high-density polyethylene (HDPE) to improve the electrical properties of HDPE polymeric switches. The MWCNT surfaces were modified by oxyfluorination to improve their positive temperature coefficient (PTC) and negative temperature coefficient (NTC) behaviors in HDPE polymeric switches. HDPE polymeric switches exhibit poor electron mobility between MWCNT particles when the number of oxygen functional groups is increased by oxyfluorination. Thus, the PTC intensity of HDPE polymeric switches was increased by the destruction of the electrical conductivity network. The oxyfluorination of MWCNTs also leads to weak NTC behavior in the MWCNT-filled HDPE polymeric switches. This result is attributed to the reduction of the mutual attraction between the MWCNT particles at the melting temperature of HDPE, which results from a decrease in the surface free energy of the C-F bond in MWCNT particles.

  7. Thermoplastic elastomers blends based on linear low density polyethylene, ethylene-1-octene copolymers and ground rubber tire

    Directory of Open Access Journals (Sweden)

    Marisa Cristina Guimarães Rocha

    2014-01-01

    Full Text Available Blends of linear low density polyethylene (LLDPE ethylene-1-octene copolymers (EOC, with different 1-octene (OC content, and ground rubber tire (GRT were prepared by melt mixing in a twin screw extruder. Five different compositions of LLDPE/EOC/GRT blends were processed in the extruder to evaluate the effect of EOC addition to the LLDPE/GRT blends. The addition of EOC to LLDPE/GRT blends improves the mechanical properties. Besides, the replacement of 5% of GRT by EOC grades (OC = 20 or 30 wt % in the 50/50 LLDPE/GRT blend, leads to a significant increase of ultimate tensile properties. The EOC comonomer content affects the properties of LLDPE/EOC and LLDPE/EOC/GRT blends. Dynamical-mechanical analyses showed that, with the addition of EOC to LLDPE/GRT blends, the Tg of GRT and the Tg of EOC are closer. This effect is more pronounced when the EOC with the highest content of comonomer (30 wt % is added to LLDPE/GRT blend. In this case, only one peak related to the Tg of the rubber phase can be visualized in the amorphous region. These findings indicate that EOC may act as compatibilizer agent for LLDPE/GRT blends.

  8. Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method

    Directory of Open Access Journals (Sweden)

    Baokang Dang

    2017-11-01

    Full Text Available A polyethylene/wood-fiber composite loaded with nano-ZnO was prepared by a facile hot-press method and was used for the photocatalytic degradation of organic compounds as well as for microwave absorption. ZnO nanoparticles with an average size of 29 nm and polyethylene (PE powders were dispersed on the wood fibers’ surface through a viscous cationic polyacrylamide (CPAM solution. The reflection loss (RL value of the resulting composite was −21 dB, with a thickness of 3.5 mm in the frequency of 17.17 GHz. The PE/ZnO/wood-fiber (PZW composite exhibited superior photocatalytic activity (84% methyl orange degradation within 300 min under UV light irradiation. ZnO nanoparticels (NPs increased the storage modulus of the PZW composite, and the damping factor was transferred to the higher temperature region. The PZW composite exhibited the maximum flexural strength of 58 MPa and a modulus of elasticity (MOE of 9625 MPa. Meanwhile, it also displayed dimensional stability (thickness swelling value of 9%.

  9. A directional entrapment modification on the polyethylene surface by the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether

    Science.gov (United States)

    Lu, Qiang; Chen, Yi; Huang, Juexin; Huang, Jian; Wang, Xiaolin; Yao, Jiaying

    2018-05-01

    A novel entrapment modification method involving directional implantation of the amphiphilic modifier of stearyl-alcohol poly(ethylene oxide) ether (AEO) into the high-density polyethylene (HDPE) surface is proposed. This modification technique allows the AEO modifier to be able to spontaneously attain and subsequently penetrate into the swollen HDPE surface with its hydrophobic stearyl segment, while its hydrophilic poly(ethylene oxide) (PEO) segment spontaneously points to water. The AEO modifier with a HLB number below 8.7 was proved appropriate for the directional entrapment, Nevertheless, AEOs with larger HLB numbers were also effective modifiers in the presence of salt additives. In addition, a larger and hydrophobic micelle, induced respectively by the AEO concentration above 1.3 × 10-2 mol/L and the entrapping temperature above the cloud point of AEO, could lead to a sharp contact angle decline of the modified surface. Finally, a hydrophilic HDPE surface with the modifier coverage of 38.9% was reached by the directional entrapment method, which is far larger than that of 19.2% by the traditional entrapment method.

  10. Breast Tissue Composition and Immunophenotype and Its Relationship with Mammographic Density in Women at High Risk of Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Jia-Min B Pang

    Full Text Available To investigate the cellular and immunophenotypic basis of mammographic density in women at high risk of breast cancer.Mammograms and targeted breast biopsies were accrued from 24 women at high risk of breast cancer. Mammographic density was classified into Wolfe categories and ranked by increasing density. The histological composition and immunophenotypic profile were quantified from digitized haematoxylin and eosin-stained and immunohistochemically-stained (ERα, ERβ, PgR, HER2, Ki-67, and CD31 slides and correlated to mammographic density.Increasing mammographic density was significantly correlated with increased fibrous stroma proportion (rs (22 = 0.5226, p = 0.0088 and significantly inversely associated with adipose tissue proportion (rs (22 = -0.5409, p = 0.0064. Contrary to previous reports, stromal expression of ERα was common (19/20 cases, 95%. There was significantly higher stromal PgR expression in mammographically-dense breasts (p=0.026.The proportion of stroma and fat underlies mammographic density in women at high risk of breast cancer. Increased expression of PgR in the stroma of mammographically dense breasts and frequent and unexpected presence of stromal ERα expression raises the possibility that hormone receptor expression in breast stroma may have a role in mediating the effects of exogenous hormonal therapy on mammographic density.

  11. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior

    NARCIS (Netherlands)

    Deschamps, A.A.; Grijpma, Dirk W.; Feijen, Jan

    2001-01-01

    In this study, the influence of copolymer composition on the physical properties and the degradation behavior of thermoplastic elastomers based on poly(ethylene oxide) (PEO) and poly(butylene terephthalate) (PBT) segments is investigated. These materials are intended to be used in medical

  12. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    Science.gov (United States)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  13. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    Science.gov (United States)

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites

  14. Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers

    OpenAIRE

    Bartolomeo Coppola; Paola Scarfato; Loredana Incarnato; Luciano Di Maio

    2017-01-01

    In this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene (LLDPE–g–MA) and an organomodified montmorillonite (Dellite 67G) at three different loadings (3, 5 and 10 wt %). Fibers were produced by a single-screw extruder and drawn ...

  15. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    Science.gov (United States)

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  16. The effect of chromic acid treatment on the mechanical and tribological properties of aramid fibre reinforced ultra-high molecular weight polyethylene composite

    NARCIS (Netherlands)

    Hofste, JM; Pennings, AJ; Schut, J.A.

    1998-01-01

    Surface oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder has an influence on the mixing procedure of chopped fibres and UHMWPE powder. Due to this oxidation hydrogen bonds can be formed between the fibres and powder particles, leading to a more homogeneous fibre-powder mixture.

  17. Experimental study of the density and viscosity of polyethylene glycols and their mixtures at temperatures from 293 K to 473 K and at atmospheric pressure

    International Nuclear Information System (INIS)

    Sagdeev, D.I.; Fomina, M.G.; Mukhamedzyanov, G.Kh.; Abdulagatov, I.M.

    2011-01-01

    Highlights: → Viscosity and density of polyethylene glycols. → Combined experimental apparatus for density and viscosity measurements. → Vogel-Tamman-Fulcher model for viscosity. - Abstract: A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius-Andrade and Vogel-Tamman-Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.

  18. Study of the effect of gamma irradiation on carbon black loaded low-density polyethylene films

    International Nuclear Information System (INIS)

    Salem, M.A.; Hussein, A.; El-Ahdal, M.A.

    2003-01-01

    The effect of gamma irradiation on the tensile and physico-chemical properties of low-density polyethylene (LDPE) films loaded with different concentrations of carbon black (C.B) has been studied. The results showed that the behavior of the samples during gamma irradiation is complicated and this may be due to scission and the interaction between oxidation and crosslinking processes. The tensile properties are modified by the presence of carbon black. Film sample containing 7% C.B was found to exhibit a nearly stabilized tensile behavior with radiation dose, which allows to use this formulation in packaging for food sterilization and in preservation of weak cobalt-gamma sources. (author)

  19. Study of energy transfer to solvent in radiation graft polymerization of styrene onto polyethylene

    International Nuclear Information System (INIS)

    Rabie, A.; Odian, G.

    1977-01-01

    The radiation-initiated graft polymerization of styrene onto polyethylene was studied to determine whether energy transfer to diluent was responsible for the previously observed high orders of dependence of the grafting rate on monomer concentration. n-Octane was used as the diluent instead of benzene. If energy transfer from excited polyethylene to benzene were present, it should not be with n-octane. The percent swelling of polyethylene by various n-octane--styrene mixtures was determined. The compositions of various n-octane--styrene mixtures absorbed inside polyethylene were determined by ultraviolet and refractive index measurements and found to be richer in styrene than the corresponding mixtures in which the polyethylene had been placed. The graft polymerization rates were determined at 0.000761, 0.0371, and 0.213 Mrad/hr and plotted against the inside styrene concentrations on a log-log scale to yield the kinetic orders of dependence of rate on monomer as 2, 3, and 3, respectively. It was concluded that energy transfer to diluent was not responsible for the high-order dependence observed

  20. Influence of the irradiation conditions on the effect of radiation on polyethylene

    Directory of Open Access Journals (Sweden)

    BOJANA SECEROV

    2004-12-01

    Full Text Available Two types of polyethylene, low density (LDPE and high density (HDPE, as well as low density polyethylene containing an antioxidant were subjected to g-irradiation in the presence of air and in water. The irradiated polymers were studied using IR spectrophotometric analysis. The radiation induced oxidative degradation was followed through the formation of oxygen containing groups by the development of bands in the 1850–1650 cm-1 region and double bonds formation by the development of bands in the 1050–850 cm-1 region. The crosslinking efficiency was determined by measuring the gel content by extraction with xylene. The radiation induced changes in the molecular structure, evolution of oxygen containing species and formation, of vinyl double bonds as well as of the crosslinking efficiency are discussed in terms of the properties of the polymers in an electric field of low strength.

  1. Interactions of polyethylene glycols with water studied by measurements of density and sound velocity

    International Nuclear Information System (INIS)

    Ayranci, Erol; Sahin, Melike

    2008-01-01

    Densities and sound velocities of ethylene glycol (EG) and polyethylene glycols (PEGs) of molecular weight 200, 300, 400, 550, 600, 1000, 1450, 3350, 8000, and 10,000 at (288.15, 298.15, and 308.15) K were measured with high precision vibrating tube densimeter and sound velocity measuring device. They were used to evaluate apparent molar volumes, V o , and apparent molar isentropic compressibilities, K ΦS . Infinite dilution values of these parameters, V o 0 , and K ΦS 0 , were obtained from their plot as a function of molality. The variations of V o 0 , and K ΦS 0 , with the number of repeating units in PEGs and with temperature were examined. Comparison of the experimentally obtained data was made with the available literature data and also with some values predicted according to group additivity approach. The results were interpreted in terms of hydration and conformational effects of PEGs in water. A correlation was also examined between V o 0 or K ΦS 0 values of PEGs in water and equilibrium moisture contents of PEGs as well as the water vapor permeabilities (WVP) of edible films containing PEGs

  2. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  3. Influence of irradiation conditions on the gamma irradiation effect in polyethylene

    International Nuclear Information System (INIS)

    Kacarevic-Popovic, Z.; Gal, O.; Novakovic, L.J.; Secerov, B.

    2002-01-01

    Complete text of publication follows. The radiation cross-linking of polyethylene, due to its high cross-linking yield, has resulted in the radiation technology that has found application in radiation production of heat shrinkable structures and in improvement of mechanical and thermo-physical properties of oriented polyethylene objects. It is observed that the cross-linking efficiency decreases when the irradiation is carried out in the presence of oxygen. In order to estimate the conditions that improve cross-linking efficiency, gamma irradiation effect in two types of polyethylene, irradiated in water and air was investigated. The polyethylene samples used were the low density (LDPE) Lotrene CdF 0302 with 45% crystallinity and the high density (HDPE) Hiplex EHM 6003 with 73% crystallinity. Both kinds of samples, fixed in the Pyrex glass tubes, were simultaneously irradiated with 60 Co gamma rays in distilled water and air, at a doses rate of 9,5 kGy/h (determined by the Fricke dosimeter) at room temperature. Radiation induced oxidative degradation was followed through oxygen containing group formation by the carbonyl group band (1720 cm -1 ) and transvinylene group formation by the band at 966 cm -1 in the infrared spectra. Cross-linking efficiency was determined by gel content using the procedure of the extraction in xylene. The monitored effects of gamma irradiation in water and air point to the conclusion that irradiation in water leads to the lower oxidative degradation and higher cross-linking compared with the effects measured after irradiation in air

  4. Vitamin E diffused highly cross-linked polyethylene in total hip arthroplasty at five years

    DEFF Research Database (Denmark)

    Nebergall, Audrey K; Greene, M. E.; Laursen, M B

    2017-01-01

    Aims: The objective of this five-year prospective, blinded, randomised controlled trial (RCT) was to compare femoral head penetration into a Vitamin E diffused highly cross-linked polyethylene (HXLPE) liner with penetration into a medium cross-linked polyethylene control liner using......, ArComXL. This is the longest-term RCT comparing the wear performance and clinical outcome of Vitamin E diffused HXLPE with a previous generation of medium cross-linked polyethylene....... radiostereometric analysis. Patients and Methods: Patients scheduled for total hip arthroplasty (THA) were randomised to receive either the study E1 (32 patients) or the control ArComXL polyethylene (35 patients). The median age (range) of the overall cohort was 66 years (40 to 76). Results: The five-year median...

  5. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  6. Molecular weight​/branching distribution modeling of low-​density-​polyethylene accounting for topological scission and combination termination in continuous stirred tank reactor

    NARCIS (Netherlands)

    Yaghini, N.; Iedema, P.D.

    2014-01-01

    We present a comprehensive model to predict the molecular weight distribution (MWD),(1) and branching distribution of low-density polyethylene (IdPE),(2) for free radical polymerization system in a continuous stirred tank reactor (CSTR).(3) The model accounts for branching, by branching moment or

  7. Fabrication and Characterization of Micro- and Nano- Gd2O3 Dispersed HDPE/EPM Composites

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jae Woo; Jun, Ji Heon; Lee, Sol; Rhee, Chang Kyu

    2010-01-01

    Hydrophobic polymer mixed with Gd 2 O 3 can be used in nuclear industry as a neutron shield because of its neutron attenuating and absorbing property, while it was reported that the smaller particles dispersed polymer composites can enhance radiation shielding efficiency compared to larger particles dispersed ones. However, preparations of such materials are difficult because of the poor dispersion of the fine particles in the polymer matrix. Surface modification of the nanoparticles is therefore required for the homogeneous dispersion of the particles in the polymer matrix. In this study, pulverization of the micro-Gd 2 O 3 particles and simultaneous surface coating of the nanoparticles by polymeric surfactant low density polyethylene (LDPE) were performed by using one-step of high energy wet ball-mill. Dispersion and neutron shielding effect of the nano- and micro-Gd 2 O 3 fillers in mixed polymer of ethylene propylene monomer (EPM) and high density polyethylene (HDPE) were examined

  8. Silver nanoparticles as a key feature of a plasma polymer composite layer in mitigation of charge injection into polyethylene under dc stress

    International Nuclear Information System (INIS)

    Milliere, L; Makasheva, K; Laurent, C; Despax, B; Boudou, L; Teyssedre, G

    2016-01-01

    The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm −1 , 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm −1 ) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection

  9. Method to measure composition modifications in polyethylene terephthalate during ion beam irradiation

    Science.gov (United States)

    Abdesselam, M.; Stoquert, J. P.; Chami, S.; Djebara, M.; Chami, A. C.; Siad, M.

    2009-01-01

    Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 10 14 to 9 × 10 16 cm -2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p 0) 17O, 16O(d,p 1) 17O and 12C(d,p 0) 13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 10 16 cm -2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.

  10. Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes.

    Science.gov (United States)

    Ashori, Alireza; Sheshmani, Shabnam; Farhani, Foad

    2013-01-30

    This article presents the preparation and characterization of bagasse/high density polyethylene (HDPE) composites. The effects of multi-walled carbon nanotubes (MWCNTs), as reinforcing agent, on the mechanical and physical properties were also investigated. In order to increase the interphase adhesion, maleic anhydride grafted polyethylene (MAPE) was added as a coupling agent to all the composites studied. In the sample preparation, MWCNTs and MAPE contents were used as variable factors. The morphology of the specimens was characterized using scanning electron microscopy (SEM) technique. The results of strength measurement indicated that when 1.5 wt% MWCNTs were added, tensile and flexural properties reached their maximum values. At high level of MWCNTs loading (3 or 4 wt%), increased population of MWCNTs lead to agglomeration and stress transfer gets blocked. The addition of MWCNTs filler slightly decreased the impact strength of composites. Both mechanical and physical properties were improved when 4 wt% MAPE was applied. SEM micrographs also showed that the surface roughness improved with increasing MAPE loading from 0 to 4 wt%. The improvement of physicomechanical properties of composites confirmed that MWCNTs have good reinforcement and the optimum synergistic effect of MWCNTs and MAPE was achieved at the combination of 1.5 and 4 wt%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Biodegradation of low density polyethylene (LDPE) by a new ...

    African Journals Online (AJOL)

    aghomotsegin

    The microbial degradation of LDPE was also analyzed by the change in pH of the culture ... The generation of biodegradable polyethylene requires ...... Use of scanning electron microscope for the examination of actinomycetes. J. Gen. Microbiol. 48:171-177. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, Saiganji A, Tani ...

  12. Pyrolysis of olive residue/low density polyethylene mixture:Part I Thermogravimetric kinetics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper demonstrates the thermal pyrolysis of olive residue, low density polyethylene (LDPE) and olive residue/LDPE mixture in an inert atmosphere of N2 using thermogravimetric analysis (TGA). Measurements were carried out in the temperature range 300K~973K at heating rates of 2K/min, 10K/min, 20K/min and 50K/min. Based on the results obtained, three temperature regimes were selected for studying the non-isothermal kinetics of olive residue/LDPE mixture. The first two were dominated by the olive residue pyrolysis, while the third was linked to the LDPE pyrolysis, which occurred at much higher temperatures. Discrepancies between the experimental and calculated TG/DTG profiles were considered as a measurement of the extent of interactions occurring on co-pyrolysis. The maximum degradation temperatures of each component in the mixture were higher than those the individual components;thus an increase in thermal stability was expected. The kinetic parameters associated with thermal degradation were determined using Friedman isoconversional method.

  13. Tuning the Density of Poly(ethylene glycol Chains to Control Mammalian Cell and Bacterial Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Ani

    2017-08-01

    Full Text Available Surface modification of biomaterials with polymer chains has attracted great attention because of their ability to control biointerfacial interactions such as protein adsorption, cell attachment and bacterial biofilm formation. The aim of this study was to control the immobilisation of biomolecules on silicon wafers using poly(ethylene glycol(PEG chains by a “grafting to” technique. In particular, to control the polymer chain graft density in order to capture proteins and preserve their activity in cell culture as well as find the optimal density that would totally prevent bacterial attachment. The PEG graft density was varied by changing the polymer solubility using an increasing salt concentration. The silicon substrates were initially modified with aminopropyl-triethoxysilane (APTES, where the surface density of amine groups was optimised using different concentrations. The results showed under specific conditions, the PEG density was highest with grafting under “cloud point” conditions. The modified surfaces were characterised with X-ray photoelectron spectroscopy (XPS, ellipsometry, atomic force microscopy (AFM and water contact angle measurements. In addition, all modified surfaces were tested with protein solutions and in cell (mesenchymal stem cells and MG63 osteoblast-like cells and bacterial (Pseudomonas aeruginosa attachment assays. Overall, the lowest protein adsorption was observed on the highest polymer graft density, bacterial adhesion was very low on all modified surfaces, and it can be seen that the attachment of mammalian cells gradually increased as the PEG grafting density decreased, reaching the maximum attachment at medium PEG densities. The results demonstrate that, at certain PEG surface coverages, mammalian cell attachment can be tuned with the potential to optimise their behaviour with controlled serum protein adsorption.

  14. The use of poly(ethylene terephthalate)-poly(aniline) composite for trypsin immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Caramori, S.S. [Laboratorio de Quimica de Proteinas, Departamento de Bioquimica e Biologia Molecular, Instituto de Ciencias Biologicas, Universidade Federal de Goias, Cx. Postal 131, 74001-970 Goiania-GO (Brazil)], E-mail: samanthabio@hotmail.com; Fernandes, K.F. [Laboratorio de Quimica de Proteinas, Departamento de Bioquimica e Biologia Molecular, Instituto de Ciencias Biologicas, Universidade Federal de Goias, Cx. Postal 131, 74001-970 Goiania-GO (Brazil)], E-mail: katia@icb.ufg.br

    2008-08-01

    This paper presents trypsin immobilisation on strips of poly(ethylene terephthalate)-poly(aniline), activated with glutaraldehyde (PET-PANIG) composite. The photomicrography of the material showed changes corresponding to the chemical modifications produced in the steps of synthesis. The immobilisation process was very efficient under optimal conditions (18.6%). The immobilised and free enzyme presented the same pH and temperature optimum. PET-PANIG-trypsin was able to hydrolyse casein, albumin, gelatine, and skimmed milk. Km{sub app} value for PET-PANIG-trypsin was very close to Km of the free enzyme for casein. Immobilised trypsin showed higher stability than the free enzyme, with 100% activity after 14 days of storage at 4 deg. C and 100% operational stability after 4 cycles of use.

  15. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourdanesh, Fereydoun [Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 8916733754 (Iran, Islamic Republic of); Jebali, Ali, E-mail: alijebal2011@gmail.com [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hekmatimoghaddam, Seyedhossein [Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of); Allaveisie, Azra [Department of Genetics, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of)

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca{sub 3}(PO{sub 4}){sub 2}, hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property.

  16. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    International Nuclear Information System (INIS)

    Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra

    2014-01-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca 3 (PO 4 ) 2 ) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca 3 (PO 4 ) 2 , hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property

  17. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

    Science.gov (United States)

    Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

    2017-08-01

    Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

  18. Toward a new polyethylene scattering law determined using inelastic neutron scattering

    International Nuclear Information System (INIS)

    Lavelle, C.M.; Liu, C.-Y.; Stone, M.B.

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S(Q,E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for ambient temperatures (∼300K), and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 294 K which are used to improve the scattering law for HDPE. We review some of the past HDPE scattering laws, describe the experimental methods, and compare computations using these models to the measured S(Q,E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the one phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work. -- Highlights: ► Polyethylene at 5 K and 300 K is measured using inelastic neutron scattering (INS). ► Measurements conducted at the Wide Angular-Range Chopper Spectrometer at SNS. ► Several models for Polyethylene are compared to measurements. ► Improvements to existing models for the polyethylene scattering law are suggested. ► INS is shown to be highly valuable tool for scattering law development

  19. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying; Mei, Jun; Sheng, Ping

    2012-01-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle

  20. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, Alena, E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Novotna, Zdenka, E-mail: zdenka1.novotna@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Kolska, Zdenka [Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Kasalkova, Nikola Slepickova [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Rimpelova, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic)

    2015-07-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. - Highlights: • Plasma activation of LDPE, HDPE and UHMWPE • Study of surface properties by several techniques: ARXPS, AFM, zeta-potential, and goniometry • Investigation of adhesion and spreading of vascular smooth muscle cells (VSMCs) and mouse fibroblasts (L929)

  1. A one-step in-situ assembly strategy to construct PEG@MOG-100-Fe shape-stabilized composite phase change material with enhanced storage capacity for thermal energy storage

    Science.gov (United States)

    Wang, Junyong; Andriamitantsoa, Radoelizo S.; Atinafu, Dimberu G.; Gao, Hongyi; Dong, Wenjun; Wang, Ge

    2018-03-01

    A novel in-situ assembly strategy has been developed to synthesis polyethylene glycol (PEG)@iron-benzenetricarboxylate metal-organic gel (MOG-100-Fe) shape-stabilized composite phase change materials by regulating metal-to-ligand ratio. The PEG@MOG-100-Fe was prepared by an ingenious introduction of PEG into the traditional sol-gel prepared MOG-100-Fe. The composite exhibited high heat storage density and thermal stability. The PEG loading content reached up to 92% without any leakage above its melting point. The heat storage density reaches to 152.88

  2. Enhanced energy density and thermal conductivity in poly(fluorovinylidene-co-hexafluoropropylene) nanocomposites incorporated with boron nitride nanosheets exfoliated under assistance of hyperbranched polyethylene

    Science.gov (United States)

    Ye, Huijian; Lu, Tiemei; Xu, Chunfeng; Zhong, Mingqiang; Xu, Lixin

    2018-03-01

    Polymer dielectric film with a large dielectric constant, high energy density and enhanced thermal conductivity are of significance for the development of impulse capacitors. However, the fabrication of polymer dielectrics combining high energy density and thermal conductivity is still a challenge at the moment. Here we demonstrate the facile exfoliation of hexagonal boron nitride nanosheets (BNNSs) in common organic solvents under sonication with the assistance of hyperbranched polyethylene (HBPE). The noncovalent CH-π interactions between the nanosheets and HBPE ensure the dispersion of BNNSs in organic solvents with high concentrations, because of the highly branched chain structure of HBPE. Subsequently, the resultant BNNSs with a few defects are distributed uniformly in the poly(fluorovinylidene-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite films prepared via simple solution casting. The BNNS/P(VDF-HFP) nanocomposite exhibits outstanding dielectric properties, high energy density and high thermal conductivity. The dielectric constant of the 0.5 wt% nanocomposite film is 35.5 at 100 Hz with an energy density of 5.6 J cm-3 at 325 MV m-1 and a high charge-discharge efficiency of 79% due to the depression of the charge injection and chemical species ionization in a high field. Moreover, a thermal conductivity of 1.0 wt% nanocomposite film reaches 0.91 W·m-1 · K-1, which is 3.13 times higher than that of the fluoropolymer matrix. With dipole accumulation and orientation in the interfacial zone, lightweight, flexible BNNS/P(VDF-HFP) nanocomposite films with high charge-discharge performance and thermal conductivity, exhibit promising applications in relatively high-temperature electronics and energy storage devices.

  3. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  4. Radiation processing of polyethylene and polymethylmethacrylate for construction industry and architecture

    International Nuclear Information System (INIS)

    Knizhnik, E.I.; Gordienko, V.P.; Il'yenko, R.E.; Onisko, A.D.; AN Ukrainskoj SSR, Kiev. Inst. Fizicheskoj Khimii)

    1983-01-01

    Radiation processing of relief-forming molds made of filled high-density polyethylene enables them to be used for shaping concrete and ferroconcrete barrier constructions of buildings; radiation processing of polymethylmethacrylate in unit form makes it possible to produce large-size decorative elements of building interior. The subject is discussed and examples presented. (author)

  5. Development and evaluation of polyethylene as solidification agent for low-level waste

    International Nuclear Information System (INIS)

    Franz, E.M.; Colombo, P.

    1986-09-01

    A polyethylene solidification process, using an extrusion system, has been developed for the immobilization of dry wastes resulting from volume reduction technologies. Ease of processibility and high packing efficiencies were obtained through the use of low-density polyethylene (0.917 to 0.924 g/cm 3 ) with melt indices from 2.0 to 55.0 g/10 min. Maximum waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash and 65 wt % ion exchnge were obtained. A series of tsts were conducted to assess the acceptability of polyethylene waste forms to meet the requirements of 10 CFR 61. Based on test results and process control considerations, optimal waste loadings of 70 wt % sodium sulfate, 50 wt % boric acid, 40 wt % incinerator ash and 30 wt % ion exchange resins are recommended

  6. The relationship between sol fraction and radiation dose in radiation crosslinking of low-density polyethylene (LDPE)/ethylenevinylacetate copolymer (EVA) blend

    International Nuclear Information System (INIS)

    Zhang, W.X.; Liu, Y.T.; Sun, J.Z.

    1990-01-01

    In this paper, two different methods were used to prepare the blend of low-density polyethylene (LDPE) and ethylene vinyl acetate copolymer (EVA). One of them was mechanical blending, and the other was solution blending. The relationship between sol fraction and radiation dose of different weight ratio polymer blends has been studied. The method to calculate the β b value of polymer blend system (LDPE/EVA) has been established. (author)

  7. Influence of adipic acid on tensile and morphology properties of linear low density polyethylene/rambutan peels flour blends

    Science.gov (United States)

    Nadhirah, A. A.; Sam, S. T.; Noriman, N. Z.; Ragunathan, S.; Ismail, H.

    2015-07-01

    This study investigate about the tensile and morphological properties of degradable polymer produced from linear low density polyethylene/rambutan peel flour (LLDPE/RPF) blends and adipic acid (AA) was used as a compatibilizer by varying the rambutan peel flour (RPF) amount from 0-25wt%. The samples were subjected to tensile and morphological tests. AA compatibilized showed higher strength compared to uncompatibilized blends. The Young's modulus for LLDPE/RPF blends increased with increasing flour content. However, the addition of adipic acid had reduced the Young's Modulus.

  8. A high energy density relaxor antiferroelectric pulsed capacitor dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hwan Ryul; Lynch, Christopher S. [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095 (United States)

    2016-01-14

    Pulsed capacitors require high energy density and low loss, properties that can be realized through selection of composition. Ceramic (Pb{sub 0.88}La{sub 0.08})(Zr{sub 0.91}Ti{sub 0.09})O{sub 3} was found to be an ideal candidate. La{sup 3+} doping and excess PbO were used to produce relaxor antiferroelectric behavior with slim and slanted hysteresis loops to reduce the dielectric hysteresis loss, to increase the dielectric strength, and to increase the discharge energy density. The discharge energy density of this composition was found to be 3.04 J/cm{sup 3} with applied electric field of 170 kV/cm, and the energy efficiency, defined as the ratio of the discharge energy density to the charging energy density, was 0.920. This high efficiency reduces the heat generated under cyclic loading and improves the reliability. The properties were observed to degrade some with temperature increase above 80 °C. Repeated electric field cycles up to 10 000 cycles were applied to the specimen with no observed performance degradation.

  9. The adhesive properties of chlorinated ultra-high molecular weight polyethylene

    NARCIS (Netherlands)

    Menting, H.N.A.M.; Voets, P.E.L.; Lemstra, P.J.

    1995-01-01

    Ultra-high molecular weight polyethylene (UHMW-PE) is well known for its abrasion and chemical resistance. Recently we developed a new application for UHMW-PE as a liner in elastomeric hoses. It was found that the adhesion between UHMW-PE and elastomers such as ethylene-propylene-diene monomer

  10. Thermal stability of radiation-modified polyethylene

    International Nuclear Information System (INIS)

    Vinogradova, T.B.; Sirota, A.G.; Bal'tenas, R.A.; Stanyavichus, V.I.; Knebel'man, A.M.; Sil'chenko, S.A.

    1989-01-01

    In the work reported here, the authors investigated the thermooxidative resistance, at temperatures from 373 to 473 K, of polyethylene that had been cross-linked by exposure to radiation and formulated with various heat stabilizers. Thus, these studies of the thermooxidative resistance of polyethylene-based compositions that have been cross-linked by the radiation-chemical method have shown that, in this particular series of heat-stabilizers, the greatest effect at temperatures of 373-473 K is given by the FAU-13. The DTPhDMI has the greatest heat-stabilizing effect in the temperature interval 448-473 K, whereas the heat resistance of materials containing Diaphen NN or Phenozan-23 is higher at 373-423 K. These comparative results are in agreement with data for unirradiated and chemically cross-linked polyethylene

  11. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Science.gov (United States)

    Sokullu Urkac, E.; Oztarhan, A.; Tihminlioglu, F.; Kaya, N.; Ila, D.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.; Ezdesir, A.; Tek, Z.

    2007-08-01

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 1017 ion/cm2 and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  12. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    Rupert, N.L.; Burkins, M.S.; Gooch, W.A.; Walz, M.J.; Levoy, N.F.; Washchilla, E.P.

    1993-01-01

    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm 2 . These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al 2 O 3 will be presented

  13. Effect of electron beam radiation on the structure and mechanical properties of ultra high molecular weight polyethylene fibers

    International Nuclear Information System (INIS)

    Li Shujun; Sun Weijun; Liu Xiuju; Gao Yongzhong; Li Huisheng

    1998-01-01

    Ultra high molecular weight polyethylene fibers have been crosslinked by electron beam. The structure and mechanical properties of them have been investigated in different irradiation atmospheres. The obtained results show that the gel content and crosslinking density increase with the increase of dose, the swelling ratio and average molecular weight of crosslinked net decrease with the increase of dose, the tensile strength and failure elongation decrease with the increase of dose, the tensile modulus increases with the increase of dose. When the samples are irradiated in air, vacuum and acetylene atmospheres, the effect of irradiation in acetylene atmosphere is best

  14. Effect of Radiation on Physical and Mechanical Properties of Polyblend polyethylene (LDPE)-Akrilonitril Butadiene Styrene(ADS)

    International Nuclear Information System (INIS)

    Infrawan, M.H.; Mashuri; Sudirman

    2001-01-01

    Poly blend material is blended material that made of two or more polymer material with or without chemical reaction. Polyethylene (LDPE)- ABS poly blend material was made of two materials, ABS resin and Low Density Polyethylene (LDPE). This research is conducted to synthesize LDPE and ABS poly blend material before and after irradiation by γ ray and to investigate the effect of γ-ray irradiation doses on mechanical, and physical properties. This effect will enhanced mechanical properties of poly blend LDPE and ABS material that was caused by crosslinking. The gel fraction showed that the crosslinking occurred. The other effect of γ-ray irradiation are increased tensile strength and melting point, but the elongation at break, and yield strength decreased. The best composition to get the best properties is 5 % LDPE : 95 % ABS

  15. Solidification of commercial and defense low-level radioactive waste in polyethylene

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, L.H.; Colombo, P.

    1987-08-01

    A process was developed for the solidification of salt wastes, incinerator ash and ion-exchange resins in polyethylene. Of the salt wastes, sodium sulfate and boric acid are representative of the wastes produced at commercial nuclear facilities while sodium nitrate in a typical high-volume waste generated at defense-related facilities. Ease of processibility and high loading efficiencies were obtained through the use of low-density polyethylene with melt indices ranging from 2.0 to 55.0 g/minute. The process utilized a commercially available single-screw extruder to incorporate the wastes into the polyethylene at about 120 0 C to produce a homogeneous mixture. Although present studies utilize dry wastes, wet wastes can also be processed using vented extruders of the type used commercially for the bitumen solidification process. Tests were performed on the waste forms to determine leachability and mechanical properties. To confirm the compatibility of polyethylene and nitrate salt waste at elevated temperatures, the self-ignition temperatures were measured and a differential scanning calorimeter was used to characterize the thermal behavior of oxidizing compounds contained in the simulated waste, as well as the real Savannah River Plant waste. No exothermic reactions were observed over the temperature range studied from 50 0 C to 400 0 C. 18 refs., 7 figs., 8 tabs

  16. Fish species composition, density-distribution patterns, and impingement during upwelling

    International Nuclear Information System (INIS)

    Spigarelli, S.A.; Sharma, R.K.

    1975-01-01

    The effects of cooling system intakes and discharges on Lake Michigan fishes are highly dependent on inshore species composition and spatial distribution which, in turn, are affected by natural hydrological conditions. Significant (5 to 10 C) short-term decreases in water temperature (due to upwelling) could cause cold shock in fish equilibrated to either ambient or plume temperatures; substantial changes in distribution due to avoidance or attraction responses; and resultant changes in susceptibility to impingement. The objectives of this study are to characterize the changes in fish species composition, density, and thermal distribution as a result of natural upwellings, and to relate these factors to intake and discharge effects. Day and night sampling was conducted in ambient (reference) and thermal plume waters near the Zion Nuclear Plant on four occasions between 17 July and 11 September 1975. Density-distribution patterns and species composition of fish were determined by means of gill nets, bottom trawls, seines, and a sonic fish locater

  17. Mechanical Properties of Medium Density Fibreboard Composites Material Using Recycled Rubber and Coconut Coir

    OpenAIRE

    S. Mahzan; A.M. Ahmad Zaidi; M.I. Ghazali; N. Arsat; M.N. M. Hatta

    2010-01-01

    Natural fibre reinforced composite has emerged as highly potential replacement for synthetic fibres. Various natural waste fibres have been adopted for various engineering applications. This paper investigates the mechanical properties of medium density fibreboard composites material fabricated using recycled rubber and coconut coir. The suitability of using recycled rubber and coconut coir as a raw material and polyurethane as a resin in the manufacturer of medium density fibreboard was also...

  18. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms

    International Nuclear Information System (INIS)

    Aboulkas, A.; El harfi, K.; El Bouadili, A.

    2010-01-01

    Study of the decomposition kinetics is an important tool for the development of polymer recycling in industrial scale. In this work, the activation energy and the reaction model of the pyrolysis of high density polyethylene (HDPE), low density polyethylene (LDPE) and polypropylene (PP) have been estimated from non-isothermal kinetic results. Firstly, the activation energy values obtained by Friedman, Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa isoconversional methods, are 238-247 kJ/mol for HDPE, 215-221 kJ/mol for LDPE and 179-188 kJ/mol for PP. Secondly, the appropriate conversion model of the process was determined by Coats-Redfern and Criado methods. The pyrolysis reaction models of HDPE and LDPE are accounted for by 'Contracting Sphere' model, whereas that of PP by 'Contracting Cylinder' model.

  19. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    Science.gov (United States)

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.

  20. Biomedicinal implications of high-density lipoprotein: its composition, structure, functions, and clinical applications.

    Science.gov (United States)

    Cho, Kyung-Hyun

    2009-07-31

    High-density lipoprotein (HDL) is a proven biomarker for the monitoring of changes in antioxidant and anti-inflammation capability of body fluids. The beneficial virtues of HDL are highly dependent on its lipids and protein compositions, and their ratios. In normal state, the HDL particle is enriched with lipids and several HDL-associated enzymes, which are responsible for its antioxidant activity. Lower HDL-cholesterol levels (40 mg/dL) have been recognized as an independent risk factor for coronary artery disease, as well as being a known component of metabolic syndrome. Functional and structural changes of HDL have been recognized as factors pivotal to the evaluation of HDL-quality. In this review, I have elected to focus on the functional and structural correlations of HDL and the roles of HDL-associated apolipoproteins and enzymes. Recent clinical applications of HDL have also been reviewed, particularly the therapeutic targeting of HDL metabolism and reconstituted HDL; these techniques represent promising emerging strategies for the treatment of cardiovascular disease, for drug or gene therapy.