Sample records for high-density magnetic storage

  1. High Density Methane Storage in Nanoporous Carbon (United States)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team


    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  2. Magnetization of High Density Hadronic Fluid

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; da Providencia, João


    In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid...... of the magnetization is derived by first considering and solving the Dirac equation of a fermion in interaction with a magnetic field and with a chiral sigma-pion pair. The solution provides the energies of single-particle states. The energy of the system is found by summing up contributions from all particles...

  3. High density data storage principle, technology, and materials

    CERN Document Server

    Zhu, Daoben


    The explosive increase in information and the miniaturization of electronic devices demand new recording technologies and materials that combine high density, fast response, long retention time and rewriting capability. As predicted, the current silicon-based computer circuits are reaching their physical limits. Further miniaturization of the electronic components and increase in data storage density are vital for the next generation of IT equipment such as ultra high-speed mobile computing, communication devices and sophisticated sensors. This original book presents a comprehensive introduction to the significant research achievements on high-density data storage from the aspects of recording mechanisms, materials and fabrication technologies, which are promising for overcoming the physical limits of current data storage systems. The book serves as an useful guide for the development of optimized materials, technologies and device structures for future information storage, and will lead readers to the fascin...

  4. High Density Thermal Energy Storage with Supercritical Fluids (United States)

    Ganapathi, Gani B.; Wirz, Richard


    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  5. Spontaneous magnetization in high-density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constanca


    It is shown that spontaneous magnetization occurs due to the anomalous magnetic moments of quarks in high-density quark matter under the tensor-type four-point interaction. The spin polarized condensate for each flavor of quark appears at high baryon density, which leads to the spontaneous...... magnetization due to the anomalous magnetic moments of quarks. The implications for the strong magnetic field in compact stars is discussed....

  6. Holographic memory for high-density data storage and high-speed pattern recognition (United States)

    Gu, Claire


    As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.

  7. High-density recording storage system by Collinear holography (United States)

    Horimai, Hideyoshi; Tan, Xiaodi; Aoki, Yoshio


    Collinear TM Holography, proposed and demonstrated by OPTWARE Corporation, can produce a small, practical holographic versatile disc (HVD TM) drive system more easily than conventional 2-axis holography. With Collinear TM technologies' unique configuration the optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media. As servo technology is being introduced to control the objective lens to be maintained precisely to the disc in the recording and the reconstructing process, a vibration isolator is no longer necessary. Experimental and theoretical studies suggest that the holographic material is very effective in increasing the recording density of the system. A high density data recording of Collinear TM Holography by reducing optical noise is also demonstrated.

  8. Shift-Peristrophic Multiplexing for High Density Holographic Data Storage

    Directory of Open Access Journals (Sweden)

    Zenta Ushiyama


    Full Text Available Holographic data storage is a promising technology that provides very large data storage capacity, and the multiplexing method plays a significant role in increasing this capacity. Various multiplexing methods have been previously researched. In the present study, we propose a shift-peristrophic multiplexing technique that uses spherical reference waves, and experimentally verify that this method efficiently increases the data capacity. In the proposed method, a series of holograms is recorded with shift multiplexing, in which the recording material is rotated with its axis perpendicular to the material’s surface. By iterating this procedure, multiplicity is shown to improve. This method achieves more than 1 Tbits/inch2 data density recording. Furthermore, a capacity increase of several TB per disk is expected by maximizing the recording medium performance.

  9. Spectroscopic Feedback for High Density Data Storage and Micromachining (United States)

    Carr, Christopher W.; Demos, Stavros; Feit, Michael D.; Rubenchik, Alexander M.


    Optical breakdown by predetermined laser pulses in transparent dielectrics produces an ionized region of dense plasma confined within the bulk of the material. Such an ionized region is responsible for broadband radiation that accompanies a desired breakdown process. Spectroscopic monitoring of the accompanying light in real-time is utilized to ascertain the morphology of the radiated interaction volume. Such a method and apparatus as presented herein, provides commercial realization of rapid prototyping of optoelectronic devices, optical three-dimensional data storage devices, and waveguide writing.

  10. High density collinear holographic data storage system (Conference Presentation) (United States)

    Tan, Xiaodi; Horimai, Hideyoshi; Arai, Ryo; Ikeda, Junichi; Inoue, Mitsuteru; Lin, Xiao; Xu, Ke; Liu, Jinpeng; Huang, Yong


    Collinear holography has been good candidate for a volumetric recording technology of holographic data storage system (HDSS), because of there are not only large storage capacities, high transfer rates, but also the unique configuration, in which the information and reference beams are modulated co-axially by the same spatial light modulator, as a new read/write method for HDSS are very promising. The optical pickup can be designed as small as DVDs, and can be placed on one side of the recording media (disc). In the disc structure, the preformatted reflective layer is used for the focus/tracking servo and reading address information, and a dichroic mirror layer is used for detecting holographic recording information without interfering with the preformatted information. A 2-dimensional digital page data format is used and the shift-multiplexing method is employed to increase recording density. As servo technologies are being introduced to control the objective lens to be maintained precisely to the disc in the recording and reconstructing process, a vibration isolator is no longer necessary. In this paper, we introduced the principle of the collinear holography and its media structure of disc. Some results of experimental and theoretical studies suggest that it is a very effective method. We also discussed some methods to increase the recording density and data transfer rates of collinear holography using phase modulated page data format.

  11. Magnetic force microscopy of thin film media for high density magnetic recording

    NARCIS (Netherlands)

    Porthun, Steffen; Porthun, S.; Abelmann, Leon; Lodder, J.C.


    This paper discusses various aspect of magnetic force microscopy (MFM) for use in the field of high density magnetic recording. After an introduction of the most important magnetic imaging techniques, an overview is given of the operation and theory of MFM. The developments in instrumentation, MFM

  12. High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yaoju [College of Physics and Electronic Information, Wenzhou University, Wenzhou 325035 (China)], E-mail:; Bai Jianping [School of Physics and Electronic Engineering, Nanyang Normal College, Nanyang 472000 (China)


    We propose a method for high-density all-optical magnetic recording. Our analyses, based on the vector diffraction theory, show that owing to the inverse Faraday effect, circularly polarized laser pulses focused by a high numerical aperture (NA) lens can induce a small magnetization domain. For an example, the FWHM of the effective magnetization domain is 0.4646{lambda} when NA=0.85. The magnetization direction is basically perpendicular to the surface of the optic-magneto film within the effective magnetization domain and the switching direction of magnetization can be controlled by the helicity of the incident circularly polarized light. These characteristics are useful to next-generation high-density all-optical magnetic storage.

  13. High-density ferroelectric recording using a hard disk drive-type data storage system (United States)

    Aoki, Tomonori; Hiranaga, Yoshiomi; Cho, Yasuo


    Ferroelectric probe data storage has been proposed as a novel data storage method in which bits are recorded based on the polarization directions of individual domains. These bits are subsequently read by scanning nonlinear dielectric microscopy. The domain walls of typical ferroelectric materials are quite thin: often only several times the lattice constant, which is advantageous for high-density data storage. In this work, high-density read/write (R/W) demonstrations were conducted using a hard disk drive-type test system, and the writing of bit arrays with a recording density of 3.4 Tbit/in.2 was achieved. Additionally, a series of writing and reading operations was successfully demonstrated at a density of 1 Tbit/in.2. Favorable characteristics of ferroelectric recording media for use with the proposed method are discussed in the latter part of this paper.

  14. Patterned magnetic thin films for ultra high density recording

    NARCIS (Netherlands)

    Haast, M.A.M.

    This thesis describes the results of a research project in the field of high bit-density data-storage media. More specifically, the material aspects of the novel recording technique using patterned media have been studied. The aim of the work was the design, realization and characterization of such

  15. Patterned magnetic thin films for ultra high density recording

    NARCIS (Netherlands)

    Lodder, J.C.; Haast, M.A.M.; Abelmann, Leon; Hadjipanayis, G.C.


    The areal bit density of magnetic disk recording has increased since 1990 60% per year and even in the last years 100%. Extrapolation of these rates leads to recording parameters not likely to be achieved without changes in the present way of storing hard disk data. One of the possible solutions is

  16. Output Enhancement Effect of Magnetic Underlayer in High-Density Magnetic Recording (United States)

    Endo, Katsumi; Yoshida, Osamu; Sasaki, Kenji; Nakayama, Kazuhiko; Maki, Kazuo; Nakamura, Yoshihisa


    A double-layered tape with a metal particulate (MP) upper layer and a metal-evaporated (ME) underlayer is fabricated. Output properties were enhanced over the single-layered MP tape in high-density recording. This effect cannot be explained by conventional magnetic recording mechanisms, and a new model of magneto-static interaction is proposed. This model is supported by a preliminary computer simulation.

  17. Capped bit patterned media for high density magnetic recording (United States)

    Li, Shaojing; Livshitz, Boris; Bertram, H. Neal; Inomata, Akihiro; Fullerton, Eric E.; Lomakin, Vitaliy


    A capped composite patterned medium design is described which comprises an array of hard elements exchange coupled to a continuous cap layer. The role of the cap layer is to lower the write field of the individual hard element and introduce ferromagnetic exchange interactions between hard elements to compensate the magnetostatic interactions. Modeling results show significant reduction in the reversal field distributions caused by the magnetization states in the array which is important to prevent bit errors and increase achievable recording densities.

  18. The physics of ultra-high-density magnetic recording

    CERN Document Server

    Ek, Johannes; Weller, Dieter


    In this book, 17 experts in magnetic recording focus on the underlying physical mechanisms that play crucial roles in medium and transducer development for high areal density disk drives. In 11 chapters, an examination is made of the fundamental physical concepts and their impact on recording mechanisms, with special emphasis on thin-film longitudinal, perpendicular, patterned and nanoparticle media. Theoretical and experimental investigations are presented which serve to enhance our basic understanding of thin-film dynamics, medium dynamics and thermal effects. Fundamental aspects of magnetotransport are discussed and an overview is given of recording head designs.

  19. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton


    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  20. Ultra-high density optical data storage in common transparent plastics (United States)

    Kallepalli, Deepak L. N.; Alshehri, Ali M.; Marquez, Daniela T.; Andrzejewski, Lukasz; Scaiano, Juan C.; Bhardwaj, Ravi


    The ever-increasing demand for high data storage capacity has spurred research on development of innovative technologies and new storage materials. Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium. However, in most cases the recording medium had to be photosensitive requiring doping with photochromic molecules or nanoparticles in a multilayer stack or in the bulk material. Here, we show high-density data storage in commonly available plastics without any special material preparation. A pulsed laser was used to record data in micron-sized modified regions. Upon excitation by the read laser, each modified region emits fluorescence whose intensity represents 32 grey levels corresponding to 5 bits. We demonstrate up to 20 layers of embedded data. Adjusting the read laser power and detector sensitivity storage capacities up to 0.2 TBytes can be achieved in a standard 120 mm disc.

  1. A Microelectromechanical High-Density Energy Storage/Rapid Release System

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, M. Steven; Allen, Jim J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Sam L.


    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  2. Spin polarization in high density quark matter under a strong external magnetic field

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; Da Providência, João; Providência, Constança


    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor......-type interaction under the strong external magnetic field, it is shown that a quark spin polarized phase is realized in all regions of the quark chemical potential under consideration within the lowest Landau level approximation. In the axial-vector-type interaction, it is also shown that the quark spin polarized...... phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs....

  3. The Pain in Storage: Work Safety in a High-Density Shelving Facility (United States)

    Atkins, Stephanie A.


    An increasing number of academic and research libraries have built high-density shelving facilities to address overcrowding conditions in their regular stacks. However, the work performed in these facilities is physically strenuous and highly repetitive in nature and may require the use of potentially dangerous equipment. This article will examine…

  4. Superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.


    Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

  5. Ultra-high density optical data storage in common transparent plastics

    National Research Council Canada - National Science Library

    Kallepalli, Deepak L N; Alshehri, Ali M; Marquez, Daniela T; Andrzejewski, Lukasz; Scaiano, Juan C; Bhardwaj, Ravi


    .... Conventional GByte optical discs (DVDs and Bluray) can be transformed into ultrahigh capacity storage media by encoding multi-level and multiplexed information within the three dimensional volume of a recording medium...

  6. Superparamagnetic reconstituted high-density lipoprotein nanocarriers for magnetically guided drug delivery. (United States)

    Sabnis, Sarika; Sabnis, Nirupama A; Raut, Sangram; Lacko, Andras G


    Current cancer chemotherapy is frequently associated with short- and long-term side effects, affecting the quality of life of cancer survivors. Because malignant cells are known to overexpress specific surface antigens, including receptors, targeted drug delivery is often utilized to reduce or overcome side effects. The current study involves a novel targeting approach using specifically designed nanoparticles, including encapsulation of the anti-cancer drug valrubicin into superparamagnetic iron oxide nanoparticle (SPION) containing reconstituted high-density lipoprotein (rHDL) nanoparticles. Specifically, rHDL-SPION-valrubicin hybrid nanoparticles were assembled and characterized with respect to their physical and chemical properties, drug entrapment efficiency and receptor-mediated release of the drug valrubicin from the nanoparticles to prostate cancer (PC-3) cells. Prussian blue staining was used to assess nanoparticle movement in a magnetic field. Measurements of cytotoxicity toward PC-3 cells showed that rHDL-SPION-valrubicin nanoparticles were up to 4.6 and 31 times more effective at the respective valrubicin concentrations of 42.4 µg/mL and 85 µg/mL than the drug valrubicin alone. These studies showed, for the first time, that lipoprotein drug delivery enhanced via magnetic targeting could be an effective chemotherapeutic strategy for prostate cancer.

  7. HfO2-based resistive switching memory with CNTs electrode for high density storage (United States)

    Cheng, W. K.; Wang, F.; Han, Y. M.; Zhang, Z. C.; Zhao, J. S.; Zhang, K. L.


    In this paper, the HfO2-based resistive switching memory (RRAM) using carbon nanotubes (CNTs) as contact electrodes for high density integration is demonstrated. The Al/HfO2/CNTs devices show self-compliance, forming-free and low resistive state (LRS) nonlinearity with less than 130 nA reset current (Ireset). By contrast with the Al/HfO2/Ti devices, resistive switching behavior has been enhanced significantly by using CNTs electrode. For the Al/HfO2/CNTs devices, current-voltage (I-V) characteristics demonstrate that the current conduction in high resistive state (HRS) and low resistive state (LRS) is controlled by space-charge-limited current (SCLC) and trap-controlled SCLC mechanism, respectively.

  8. Wine evolution and spatial distribution of oxygen during storage in high-density polyethylene tanks. (United States)

    del Alamo-Sanza, María; Laurie, V Felipe; Nevares, Ignacio


    Porous plastic tanks are permeable to oxygen due to the nature of the polymers with which they are manufactured. In the wine industry, these types of tanks are used mainly for storing wine surpluses. Lately, their use in combination with oak pieces has also been proposed as an alternative to mimic traditional barrel ageing. In this study, the spatial distribution of dissolved oxygen in a wine-like model solution, and the oxygen transfer rate (OTR) of high-density polyethylene tanks (HDPE), was analysed by means of a non-invasive opto-luminescence detector. Also, the chemical and sensory evolution of red wine, treated with oak pieces, and stored in HDPE tanks was examined and compared against traditional oak barrel ageing. The average OTR calculated for these tanks was within the commonly accepted amounts reported for new barrels. With regards to wine evolution, a number of compositional and sensory differences were observed between the wines aged in oak barrels and those stored in HDPE tanks with oak barrel alternatives. The use of HDPE tanks in combination with oak wood alternatives is a viable alternative too for ageing wine. © 2014 Society of Chemical Industry.

  9. Nanocomposites for ultra high density information storage, devices including the same, and methods of making the same (United States)

    Goyal, Amit; Shin, Junsoo


    A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.

  10. Polarization holographic high-density optical data storage in bacteriorhodopsin film. (United States)

    Yao, Baoli; Ren, Zhiwei; Menke, Neimule; Wang, Yingli; Zheng, Yuan; Lei, Ming; Chen, Guofu; Hampp, Norbert


    Optical films containing the genetic variant bacteriorhodopsin BR-D96N were experimentally studied in view of their properties as media for holographic storage. Different polarization recording schemes were tested and compared. The influence of the polarization states of the recording and readout waves on the retrieved diffractive image's intensity and its signal-to-noise ratio were analyzed. The experimental results showed that, compared with the other tested polarization relations during holographic recording, the discrimination between the polarization states of diffracted and scattered light is optimized with orthogonal circular polarization of the recording beams, and thus a high signal-to-noise ratio and a high diffraction efficiency are obtained. Using a He-Ne laser (633 nm, 3 mW) for recording and readout, a spatial light modulator as a data input element, and a 2D-CCD sensor for data capture in a Fourier transform holographic setup, a storage density of 2 x 10(8) bits/cm2 was obtained on a 60 x 42 microm2 area in the BR-D96N film. The readout of encoded binary data was possible with a zero-error rate at the tested storage density.

  11. Helicon wave propagation and plasma equilibrium in high-density hydrogen plasma in converging magnetic fields (United States)

    Caneses Marin, Juan Francisco

    In this thesis, we investigate wave propagation and plasma equilibrium in MAGPIE, a helicon based linear plasma device constructed at the Australian National University, to study plasma-material interactions under divertor-relevant plasma conditions. We show that MAGPIE is capable of producing low temperature (1–8 eV) high density hydrogen plasma (2–3x10. 19 m-3) with 20 kW of RF power when the confining magnetic field is converging. The original research herein described comprises: (1) Characterization of hydrogen plasma in MAGPIE, (2) Analysis of the RF compensation of double Langmuir probes, (3) Excitation, propagation and damping of helicon waves in uniform and non-uniform magnetic fields and (4) Steady-state force balance and equilibrium profiles in MAGPIE. We develop an analytical model of the physics of floating probes to describe and quantify the RF compensation of the DLP technique. Experimental validation for the model is provided. We show that (1) whenever finite sheath effects are important, overestimation of the ion density is proportional to the level of RF rectification and suggest that (2) electron temperature measurements are weakly affected. We develop a uniform plasma full wave code to describe wave propagation in MAGPIE. We show that under typical MAGPIE operating conditions, the helical antenna is not optimized to couple waves in the plasma; instead, the antenna’s azimuthal current rings excites helicon waves which propagate approximately along the whistler wave ray direction, constructively interfere on-axis and lead to the formation of an axial interference pattern. We show that helicon wave attenuation can be explained entirely through electron-ion and electron-neutral collisions. Results from a two-dimensional full wave code reveal that RF power deposition is axially non-uniform with both edge and on-axis components associated with the TG and helicon wave respectively. Finally, force balance analysis in MAGPIE using a two-fluid

  12. UV-Photodimerization in Uracil-substituted dendrimers for high density data storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Vestberg, Robert; Ivanov, Mario Tonev


    generation were synthesized and investigated as potential materials for high capacity optical data storage with their dimerization efficiency compared to uracil as a reference compound. This allows the impact of increasing the generation number of the dendrimers, both the number of chromophores, as well...... as the different steric environments, on the performance of each series of dendrimers to be investigated. The (uracil)(12)-[G-2]-bis-MPA and (uracil)(8)-[G-1]-PAMAM were observed to have high dimerization efficiency in solution with different behavior being observed for the PAMAM and bis-MPA dendrimers....... The dendrimers with the best dimerization efficiency in solution were then examined in the solid state as thin films cast on quartz plates, and their film qualities along with their photodimerization performance studied. High quality films with a transmission response of up to 70% in 55 s. when irradiated at 257...

  13. Tribology of magnetic storage systems (United States)

    Bhushan, Bharat


    The construction and the materials used in different magnetic storage devices are defined. The theories of friction and adhesion, interface temperatures, wear, and solid-liquid lubrication relevant to magnetic storage systems are presented. Experimental data are presented wherever possible to support the relevant theories advanced.

  14. High-density lipoprotein 3 and apolipoprotein A-I alleviate platelet storage lesion and release of platelet extracellular vesicles. (United States)

    Pienimaeki-Roemer, Annika; Fischer, Astrid; Tafelmeier, Maria; Orsó, Evelyn; Konovalova, Tatiana; Böttcher, Alfred; Liebisch, Gerhard; Reidel, Armin; Schmitz, Gerd


    Stored platelet (PLT) concentrates (PLCs) for transfusion develop a PLT storage lesion (PSL), decreasing PLT viability and function with profound lipidomic changes and PLT extracellular vesicle (PL-EV) release. High-density lipoprotein 3 (HDL3 ) improves PLT homeostasis through silencing effects on PLT activation in vivo. This prompted us to investigate HDL3 and apolipoprotein A-I (apoA-I) as PSL-antagonizing agents. Healthy donor PLCs were split into low-volume standard PLC storage bags and incubated with native (n)HDL3 or apoA-I from plasma ethanol fractionation (precipitate IV) for 5 days under standard blood banking conditions. Flow cytometry, Born aggregometry, and lipid mass spectrometry were carried out to analyze PL-EV release, PLT aggregation, agonist-induced PLT surface marker expression, and PLT and plasma lipid compositions. Compared to control, added nHDL3 and apoA-I significantly reduced PL-EV release by up to -62% during 5 days, correlating with the added apoA-I concentration. At the lipid level, nHDL3 and apoA-I antagonized PLT lipid loss (+12%) and decreased cholesteryl ester (CE)/free cholesterol (FC) ratios (-69%), whereas in plasma polyunsaturated/saturated CE ratios increased (+3%) and CE 16:0/20:4 ratios decreased (-5%). Administration of nHDL3 increased PLT bis(monoacylglycero)phosphate/phosphatidylglycerol (+102%) and phosphatidic acid/lysophosphatidic acid (+255%) ratios and improved thrombin receptor-activating peptide 6-induced PLT aggregation (+5%). nHDL3 and apoA-I improve PLT membrane homeostasis and intracellular lipid processing and increase CE efflux, antagonizing PSL-related reduction in PLT viability and function and PL-EV release. We suggest uptake and catabolism of nHDL3 into the PLT open canalicular system. As supplement in PLCs, nHDL3 or apoA-I from Fraction IV of plasma ethanol fractionation have the potential to improve PLC quality to prolong storage. © 2014 AABB.

  15. The use of polytetrafluoroethylene in the production of high-density bonded Nd-Fe-B magnets (United States)

    Tattam, C.; Williams, A. J.; Hay, J. N.; Harris, I. R.; Tedstone, S. F.; Ashraf, M. M.


    Rotary forging has been used to produce high-density bonded magnets from rapidly quenched Nd-Fe-B based ribbons (MQP-D, of nominal composition 28%Nd-56%Fe-15%Co-1%B (wt%)). Polytetrafluoroehtylene (PTFE), when used as an additive (5%-15% by volume) has been found to act as an effective binder and greatly enhances the forgeability of the MQI, allowing higher forging pressures to be used. Densities of up to 98% of the fully dense composite have been achieved. The forging process can be undertaken in air at room temperature. Magnetically, the compacts are comparable to conventional epoxy resin bonded MQI, with energy products of up to 84 kJ/cu m. Equivalent volume fractions of MQI (approximately 83.5 vol %) have been achieved in the compacts with increased PTFE content due to the displacement of pores by the PTFE. The effect of PTFE content on the mechanical strength of the compacts has been assessed and it has been found that strength increases with increasing PTFE content, consistent with the reduction in porosity.

  16. Cold storage of 'Manzanilla de Sevilla' and 'Manzanilla Cacereña' mill olives from super-high density orchards. (United States)

    Morales-Sillero, Ana; Pérez, Ana G; Casanova, Laura; García, José M


    The suitability of the cold storage (2°C) of fruit to maintain the quality of 'Manzanilla de Sevilla' and 'Manzanilla Cacereña' intended for virgin olive oil extraction was investigated. This temperature was effective in keeping the best commercial category of oil quality in both manually harvested olives and in mechanically harvested 'Manzanilla Cacereña' fruits for 11days. Mechanical harvesting induced significant decreases in oxidative stability and in the main phenolic compounds contents in the oils during cold storage and, only initially, in the total volatiles, regardless of the cultivar considered. However, the contents of volatile esters, associated to fruity flavor, were always higher in the oils from mechanically harvested fruits. 'Manzanilla de Sevilla' oils exhibited higher total volatiles during fruit cold storage, regardless of the harvesting system used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. (United States)

    Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua


    Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.

  18. High-resolution imaging of remanent state and magnetization reversal of superdomain structures in high-density cobalt antidot arrays. (United States)

    Rodríguez, L A; Magén, C; Snoeck, E; Gatel, C; Castán-Guerrero, C; Sesé, J; García, L M; Herrero-Albillos, J; Bartolomé, J; Bartolomé, F; Ibarra, M R


    Remanent state and magnetization reversal processes of a series of cobalt antidot arrays with a fixed hole diameter (d ≈ 55 nm) and an array periodicity (p) ranging between 95 and 524 nm were studied by in situ Lorentz microscopy (LM) as a function of the magnetic field. At remanence, defocused LM images showed the periodicity dependence of the magnetic states inside the lattice. A remarkable transition was observed in the type of domain structures as a function of p: for the large periodicities (p > 300 nm), conventional 90° and 180° domain walls were formed, whereas in small-period antidot arrays (p ≦ 160 nm) magnetic superdomain walls (SDWs) were nucleated to separate regions with different average magnetization direction, the so-called magnetic superdomains. In the SDW regime, a low-frequency Fourier filtering method was implemented to allow a quantitative analysis of the LM images by the transport of intensity equation method. In situ LM experiments under applied magnetic fields were performed to study the reversal magnetization process in a particular array (p = 160 nm), and clear differences were observed as a function of the magnetic field orientation. The switching process under magnetic fields parallel to the horizontal antidot rows occurs in two stages: the system first nucleates and propagates horizontal SDWs, parallel to the field. Then, at higher magnetic fields, vertical SDWs, perpendicular to the field, appear before saturation. When the magnetic field is applied at 45° with respect to the antidot rows, both horizontal and vertical SDWs are nucleated and propagated simultaneously. All the experiments were successfully correlated with micromagnetic simulations. The current study sheds new light on the magnetization reversal processes of antidot arrays and opens new possibilities of exploiting the potential of high-resolution in situ LM and new data analysis procedures to probe magnetization processes in nanomagnetism, particularly in

  19. Failure Analysis of Storage Data Magnetic Systems

    Directory of Open Access Journals (Sweden)

    Ortiz–Prado A.


    Full Text Available This paper shows the conclusions about the corrosion mechanics in storage data magnetic systems (hard disk. It was done from the inspection of 198 units that were in service in nine different climatic regions characteristic for Mexico. The results allow to define trends about the failure forms and the factors that affect them. In turn, this study has analyzed the causes that led to mechanical failure and those due to deterioration by atmospheric corrosion. On the basis of the results obtained from the field sampling, demonstrates that the hard disk failure is fundamentally by mechanical effects. The deterioration by environmental effects were found in read-write heads, integrated circuits, printed circuit boards and in some of the electronic components of the controller card of the device, but not in magnetic storage surfaces. There fore, you can discard corrosion on the surface of the disk as the main kind of failure due to environmental deterioration. To avoid any inconvenience in the magnetic data storage system it is necessary to ensure sealing of the system.

  20. FY1995 preparation of magnetic films with nano size magnetic domain structure and application for magnetic recording media with ultra-high density; 1995 nendo nano jiku seigyo jisei usumaku no sosei to chokomitsudo jiki kiroku media eno oyo

    Energy Technology Data Exchange (ETDEWEB)



    It is required to control microstructure and micro magnetic behavior in Co-Cr based alloy thin films strictly in order to apply these thin films to the ultra high density magnetic recording media. In this study, thin film deposition technology to control nano-metric micro-structure and micro magnetic properties, especially in the distribution through thickness direction, were examined. Furthermore, to develop some evaluation technique to determine such local distribution of magnetic properties was one of the purpose of this study. The relationship between c-axis orientation of crystallites and distribution of the perpendicular coercivity H{sub c} in Co-Cr films has been investigated through the evaluation of the the H{sub c} of surface layer H{sub c}(s) measured by Kerr hysteresis loop tracer. Better c-axis orientation, higher Cr content and addition of Ta seemed to be essential requirements to get higher H{sub c} of initial growth layer H{sub c}(i) and good uniformity of H{sub c}. Lower {delta}H{sub c} caused better recording characteristics and lower media noise level. It has been clarified that the homogeneity of the magnetic properties in the film and c-axis orientation in the initial layer of the films were the essential factors to deposit low noise and high performance recording media. (NEDO)

  1. Methodology for Long-Term Permeation Test Periods for HD in High-Density Polyethylene: Universal Munitions Storage Container for the Non-Stockpile Chemical Materiel Program (United States)


    Test Method Summary for HD on HDPE Test Property Test Procedure Test specification Custom hybrid of Q171 cell and TOP 8-2-501A Test cell... welded HDPE permeation experiments, the procedures were simplified with the expectation of continued short breakthrough times. The procedures were based...measurements for distilled mustard (HD) and non- welded high-density polyethylene (HDPE) at 120 °F were completed for thicknesses of 20–80 mil for

  2. Recombinant high-density lipoprotein nanoparticles containing gadolinium-labeled cholesterol for morphologic and functional magnetic resonance imaging of the liver. (United States)

    Rui, Mengjie; Guo, Wei; Ding, Qian; Wei, Xiaohui; Xu, Jianrong; Xu, Yuhong


    Natural high-density lipoproteins (HDL) possess important physiological functions to the transport of cholesterol from the peripheral tissues to the liver for metabolic degradation and excretion in the bile. In this work, we took advantage of this pathway and prepared two different gadolinium (Gd)-DTPA-labeled cholesterol-containing recombinant HDL nanoparticles (Gd-chol-HDL) and Gd-(chol)(2)-HDL as liver-specific magnetic resonance imaging (MRI) contrast agents. The reconstituted HDL nanoparticles had structural similarity to native HDL, and could be taken up by HepG2 cells via interaction with HDL receptors in vitro. In vivo MRI studies in rats after intravenous injections of 10 μmol gadolinium per kg of recombinant HDL nanoparticles indicated that both nanoparticles could provide signal enhancement in the liver and related organs. However, different T(1)-weighted image details suggested that they participated in different cholesterol metabolism and excretion pathways in the liver. Such information could be highly useful to differentiate functional changes as well as anatomic differences in the liver. These cholesterol-derived contrast agents and their recombinant HDL preparations may warrant further development as a new class of contrast agents for MRI of the liver and related organs.

  3. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic (United States)

    Riente, Fabrizio; Ziemys, Grazvydas; Mattersdorfer, Clemens; Boche, Silke; Turvani, Giovanna; Raberg, Wolfgang; Luber, Sebastian; Breitkreutz-v. Gamm, Stephan


    Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML) is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  4. One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates. (United States)

    Wan, Dehui; Chen, Hsuen-Li; Tseng, Shao-Chin; Wang, Lon A; Chen, Yung-Pin


    In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).

  5. Ultramultiple-level storage in TiN /SbTeN double-layer cell for high-density nonvolatile memory (United States)

    Yin, You; Higano, Naoya; Sone, Hayato; Hosaka, Sumio


    We report a phase-change nonvolatile memory (NVM) concept based on a TiN /SbTeN (N-doped Sb2Te3) double-layer structure, which can be used for ultramultiple-level storage (UMLS). SbTeN shows a gradual resistivity drop and good phase stability with increasing annealing temperature, a characteristic which makes it suitable for UMLS applications. We demonstrate that the number of distinguishable resistance levels can readily reach 16 and even higher. These levels in this study result from the initial threshold switching and the subsequent current-controlled crystallization induced by Joule heating. The latter allows the creation of many distinct levels, thus, enabling the low-cost ultrahigh-density NVM.

  6. High density grids

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Aina E.; Baxter, Elizabeth L.


    An X-ray data collection grid device is provided that includes a magnetic base that is compatible with robotic sample mounting systems used at synchrotron beamlines, a grid element fixedly attached to the magnetic base, where the grid element includes at least one sealable sample window disposed through a planar synchrotron-compatible material, where the planar synchrotron-compatible material includes at least one automated X-ray positioning and fluid handling robot fiducial mark.

  7. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Doose, C.; Dejus, R.; Jaski, M.; Jansma, W.; Collins, J.; Donnelly, A.; Liu, J.; Cease, H.; Decker, G.; Jain, A.; DiMarco, J.


    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.

  8. Design of the Main Magnets of the SESAME Storage Ring

    CERN Document Server

    Milanese, A; Shehab, M


    This paper describes the magnetic design of the main magnets of the SESAME storage ring. The 16 dipoles are combined function bending magnets, designed with an adjustable iron shimming scheme. The 64 quadrupoles are of two different lengths and strengths. The 64 sextupoles are optimized for field quality in 3D without end pole chamfers and they include additional coils to provide a horizontal/vertical dipole and a skew quadrupole terms.

  9. High-Density Magnetic Recording and Integrated Magneto-Optics: Materials and Devices; Symposium Held in San Francisco, California, on April 12-16 1998 (United States)


    Devices, Optical Isolators 541 Donald K. Wilson A Lens-Free and Mirror-Free Fiber-Integrated Optical Magnetic-Field Sensor Using Bi-Substituted...reversal roughly takes place in the unit of the magnetic grain size. ACKNOWLEDGEMENTS Authors would like to thank Donald Stafford, Varsha Patel and...H. Liou, S. Malhotra, Z. S. Shan, D. J. Sellmyer, S. Nafis, J. A. Woollam, C. P. Reed, R. J. DeAngelis , and G. M. Chow, J. Appl. Phys. 70, 5582

  10. FY1995 study to create the high density magnetic recording devices by using an ultra clean sputtering process; 1995 nendo choseijo sputter process ni yoru chokomitsudo jiki kiroku device no sosei

    Energy Technology Data Exchange (ETDEWEB)



    It is important to control microstructure of thin film magnetic devices such as recording heads and media, in order to induce excellent magnetic properties. Since the impurities in the sputtering atmosphere is easily thought to affect strongly on the initial film growth, we will develop the highly purified sputtering atmosphere to establish a fabrication technology of ultra thin metallic films with desirable microstructure. A specialized multi-sputtering system which has extremely clean atmosphere (impurity level: 1/10000 compared to conventional systems) were realized by (a) decreasing out-gassing rate from vacuum chamber, pumping system, cathode, robot, etc. and (b) using ultra-clean processing gas. The base pressure was 8 x 10{sup -12} Torr (XHV) and the build-up rate was less than 1 x 10{sup -8} Torrl/sec. From the correlation between the microstructure and magnetic properties of a part of spin-valve GMR films, the guiding principle for the microstructural design were clarified to induce the exchange coupling effectively at the ferro/antiferromagnetic interface and to enhance the GMR effect at the magnetic/non-magnetic interface. The mechanism of' Cr segregation on the grain boundaries was clarified, in thin film media deposited under ultra clean sputtering process. The material specification of the magnetic ultra thin film media for high density recording with low media noise were designed from view of the thermal agitation. (NEDO)

  11. Magnetic data storage: past, present and future

    NARCIS (Netherlands)

    Thomson, Thomas; Abelmann, Leon; Groenland, J.P.J.; Azzerboni, Bruno; Asti, Giovanni; Pareti, Luigi; Ghidini, Massimo


    The design of media, heads, positioning systems and data detection and coding techniques for various generations of magnetic recording systems are discussed. We will start with current systems, such as longitudinal hard disc and tape. Next we will discuss the near future, where perpendicular

  12. FY1995 study of high density near-contact magnetic recording using spin valve head; 1995 nendo spin valve head ni yoru chokomitsudo near contact jiki kiroku no kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    Development of high performance spin valves formed by amorphous magnetic layer and head-medium interface with nano-thickness molecular film for realizing an ultra-high density of 20 Gbit/in{sup 2} using contact recording. The giant magnetoresistance effect was investigated for spin valves using very thin amorphous magnetic layer. In amorphous-CoFeB/Cu/ Co spin valves, the maximum MR ratio of 6% was achieved at the thickness of the amorphous layer of 2 nm. The spin valves with the amorphous layer exhibit very good thermal stability. Design guideline for molecularly thin lubricant was established using newly derived lubrication equation considering lubricant porosity. Novel method for accurately measuring surface force due to molecularly thin lubricant was developed by using Michelson interferometry to detect cantilever displacement, which enabled two-dimensional transient force measurement. (NEDO)

  13. Flywheel energy storage with superconductor magnetic bearings (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.


    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  14. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.


    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  15. Effective surface modification of MnFe2O4@SiO2@PMIDA magnetic nanoparticles for rapid and high-density antibody immobilization (United States)

    Rashid, Zahra; Soleimani, Masoud; Ghahremanzadeh, Ramin; Vossoughi, Manouchehr; Esmaeili, Elaheh


    The present study is aimed at the synthesis of MnFe2O4@SiO2@PMIDA in terms of highly efficient sensing platform for anti-prostate specific membrane antigen (PSMA) immobilization. Superparamagnetic manganese ferrite nanoparticles were synthesized following co-precipitation method and then SiO2 shell was coated on the magnetic core with tetraethyl orthosilicate (TEOS) through a silanization reaction to prevent oxidation, agglomeration and, increase the density of OH groups on the surface of MnFe2O4. Subsequently, MnFe2O4@SiO2@PMIDA obtained as a result of the reaction between N-(phosphonomethyl)iminodiacetic acid (PMIDA) and MnFe2O4@SiO2. The reactive carboxyl groups on the surface of magnetic nanoparticles can efficiently conjugate to a monoclonal antibody, specific to PSMA, which was confirmed by enzyme-linked immune sorbent assay (ELISA). Thus, this kind of functionalized magnetic nanoparticles is promising to be utilized in the improvement of ELISA-based biosensors and also will be effective in a variety of biomedical applications such as cell separation, diagnosis, and monitoring of human diseases.

  16. Final prototype of magnetically suspended flywheel energy storage system (United States)

    Anand, D. K.; Kirk, J. A.; Zmood, R. B.; Pang, D.; Lashley, C.


    A prototype of a 500 Wh magnetically suspended flywheel energy storage system was designed, built, and tested. The authors present the work done and include the following: (1) a final design of the magnetic bearing, control system, and motor/generator, (2) construction of a prototype system consisting of the magnetic bearing stack, flywheel, motor, container, and display module, and (3) experimental results for the magnetic bearings, motor, and the entire system. The successful completion of the prototype system has achieved: (1) manufacture of tight tolerance bearings, (2) stability and spin above the first critical frequency, (3) use of inside sensors to eliminate runout problems, and (4) integration of the motor and magnetic bearings.

  17. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    Directory of Open Access Journals (Sweden)

    Fabrizio Riente


    Full Text Available Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  18. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.


    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  19. Capacitive energy storage and recovery for synchrotron magnets (United States)

    Koseki, K.


    Feasibility studies on capacitive energy storage and recovery in the main-ring synchrotron of the Japan Proton Accelerator Research Complex were conducted by circuit simulation. The estimated load fluctuation was 96 MVA in total for dipole magnets, which is likely to induce a serious disturbance in the main grid. It was found that the energy stored in the magnets after the excitation period can be recovered to the storage capacitor by controlling the voltage across the energy-storage capacitor using a pulse-width-modulation converter and reused in the next operational cycle. It was also found that the power fluctuation in the main grid can be reduced to 12 MVA. An experimental evaluation of an aluminum metalized film capacitor revealed that capacitance loss was induced by a fluctuating voltage applied to the storage capacitor when applying the proposed method. The capacitance loss was induced by corona discharge around the edges of segmented electrodes of a self-healing capacitor. The use of aluminum-zinc alloy was evaluated as a countermeasure to mitigate the effect induced by the corona discharge. For a zinc content of 8%, which was optimized experimentally, a capacitor with a sufficient life time expectancy of 20 years and a working potential gradient of 250 V/μm was developed.

  20. Feasible utility scale superconducting magnetic energy storage system (United States)

    Loyd, R. J.; Schoenung, S. M.; Nakamura, T.; Lieurance, D. W.; Hilal, M. A.; Rogers, J. D.; Purcell, J. R.; Hassenzahl, W. V.

    This paper presents the latest design features and estimated costs of a 5000 MWh/1000 MW Superconducting Magnetic Energy Storage (SMES) plant. SMES is proposed as a commercially viable technology for electric utility load leveling. The primary advantage of SMES over other electrical energy storage technologies is its high net roundtrip efficiency. Other features include rapid availability and low maintenance and operating costs. Economic comparisons are made with other energy storage options and with gas turbines. In a diurnal load leveling application, a superconducting coil can be charged from the utility grid during off-peak hours. The ac grid is connected to the dc magnetic coil through a power conversion system that includes an inverter/rectifier. Once charged, the superconducting coil conducts current, which supports an electromagnetic field, with virtually no losses. During hours of peak load, the stored energy is discharged to the grid by reversing the charging process. The principle of operation of a SMES unit is shown. For operation in the superconducting mode, the coil is maintained at extremely low temperature by immersion in a bath of liquid helium.

  1. Magnet design for an ultralow emittance storage ring

    Directory of Open Access Journals (Sweden)

    F. Saeidi


    Full Text Available The Iranian Light Source Facility (ILSF is a new 3 GeV synchrotron radiation laboratory which is in the design stage. The ILSF storage ring (SR is based on a Five-Bend Achromat (5BA lattice providing an ultra-low beam emittance of 0.48 nm rad. The ring is comprised of 100 pure dipole magnets, 320 quadrupoles, and 320 sextupoles with additional coils for dipole and skew quadrupole correctors. In this paper, we present some design features of the SR magnets and discuss the detailed physical design of these electromagnets. The related electrical and cooling calculations and mechanical design issues have been investigated as well.

  2. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  3. High-density electroencephalography developmental neurophysiological trajectories. (United States)

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy


    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. © The Authors. Journal compilation © 2015 Mac Keith Press.

  4. Synthesis and Characterization of Amorphous Carbon Films for Magnetic Storage Technology


    Xie, Jun


    Increasing demands for high magnetic storage capacity have led to the increase of the recording area density, mainly by reducing the distance between the magnetic media on the hard disk and the magnetic transducer of the head. A factor that has greatly contributed to the profound decrease of the magnetic spacing is excessive thinning of the protective amorphous carbon (a-C) overcoat. However, the remarkable decrease in overcoat thickness raises a concern about its quality and protective capab...

  5. Design and cost of a utility scale superconducting magnetic energy storage plant

    Energy Technology Data Exchange (ETDEWEB)

    Loyd, R.J.; Nakamura, T.; Schoenung, S.M.; Lieurance, D.W.; Hilal, M.A.; Rogers, J.D.; Purcell, J.R.; Hassenzahl, W.V.


    Superconducting Magnetic Energy Storage (SMES) has potential as a viable technology for use in electric utility load leveling. The advantage of SMES over other energy storage technologies is its high net roundtrip energy efficiency. This paper reports the major features and costs of a jointly developed 5000 MWh SMES plant design.

  6. High Density Fuel Development for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove


    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  7. Irradiation test of high density Si material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Choo, Kee Nam; Lee, Chul Yong; Yang, Seong Woo; Shim, Kyue Taek; Park, Sang Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The feasibility of irradiation test for the high-density Si material entrusted by Guju Inc. was reviewed. The high density Si material is used for a sealing of the penetration holes of piping at the nuclear power plants. The irradiation test was performed and the density changes between before and after irradiation test were measured. The irradiation tests were performed 2 times for 1 day and 20 days at IP 4 hole of HANARO. The 3 Si specimens irradiated were without flaws and the density changes after irradiation were successfully measured. The result satisfies the requirement of the design specification.

  8. Optically Addressed Nanostructures for High Density Data Storage (United States)


    volumens , neCw near-field optical characterization methiods to determnen theC sub-resolution0 3D) Co nfiguraWtion of artificial na3nostruciTurs, and... magnitude --of the amplitude and phase deviation from ideal. This leads to two distortion metrics, one for the amplitude variation (D,) and one for the DNG me- I dium. We recall that the magnitude of the phase and group speeds of the wave in the low loss limit are given, rescpc- tively, by the

  9. Atomic hydrogen storage. [cryotrapping and magnetic field strength (United States)

    Woollam, J. A. (Inventor)


    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  10. Studies of ultrathin magnetic films for advanced storage applications (United States)

    Sears, Ryan Paul

    For a thorough understanding of tunneling magneto-resistance (TMR) and exchange anisotropy, the local chemical and magnetic environment near the surface and interfaces of magnetic thin films creeds characterization. This thesis comprises a series of studies that investigate ultra-thin magnetic films using various electron spectroscopy techniques with that necessity in mind. First, we investigate the chemical and magnetic properties of FM/AlO x bilayers. We find that the FM layer polarizes the states of the AlOx layer. The sign of the induced polarization is sensitive to the type of FM material. These findings challenge our understanding of TMR in magnetic tunneling junctions with similar films. It is assumed AlO x only acts as a non-magnetic tunneling barrier and the tunneling current's spin-polarization is an intrinsic property of the FM layers. The existence of magnetism in the AlOx layer suggests new models that include its contribution to this tunneling spin-polarization. Next, we investigate the chemical and magnetic properties of Fe3O4/AlOx bilayers. We find the growth of Fe3O4 is dependent upon the substrate heterostructure, and minority-spin electrons dominate the tunneling current in junctions with similar films. This result is understood from band-structure calculations that suggest Fe3O4 is a half-metallic ferromagnet with only minority-spin states at the Fermi Level. These findings are in contrast to all previous TMR studies of AlOx-based junctions, where the tunneling current is dominated by majority-spin electrons. Finally, we investigate the role of non-interfacial AFM layers in exchange biasing of ferromagnetic (FM) films, which is characterized as a shift in the hysteresis loop along the field axis of the FM film in contact with an AFM film. We demonstrate exchange anisotropy in Fe films exchange biased by NiO/CoO heterostructures is sensitive to the magnetic anisotropy, thickness and depth from the Fe/AFM interface of the CoO layer. These results

  11. Spin polarization in high density quark matter

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providênci, Constanca


    We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, ...

  12. Supernovae and high density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, S.


    The role of the nuclear equation of state (EOS) in producing prompt supernova explosions is examined. Results of calculations of Baron, Cooperstein, and Kahana incorporating general relativity and a new high density EOS are presented, and the relevance of these calculations to laboratory experiments with heavy ions considered. 31 refs., 6 figs., 2 tabs.

  13. High Density GEOSAT/GM Altimeter Data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The high density Geosat/GM altimeter data south of 30 S have finally arrived. In addition, ERS-1 has completed more than 6 cycles of its 35-day repeat track. These...

  14. Neural network based feed-forward high density associative memory (United States)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.


    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  15. Experimental modelling of the dipole magnet for the electron storage ring DELSY

    CERN Document Server

    Meshkov, I N; Syresin, E M


    In the Joint Institute for Nuclear Research (Dubna) the project of Dubna Electron Synchrotron (DELSY) with an electron energy of 1.2 GeV is developed. The electron storage ring in the DELSY project is planned to be created on the basis of magnetic elements, which were used earlier in the storage ring AmPS (NIKHEF, Amsterdam). The optics of the ring is necessary to be changed, its perimeter to be reduced approximately in one and a half time, the energy of electrons to be increased. The paper is devoted to the development of a modified dipole magnet of the storage ring. The preliminary estimation of geometry of the magnet pole is carried out by means of computer modelling using two- and three- dimensional codes of the magnetic field calculation SUPERFISH and RADIA. The experimental stand for the measurements of the dipole magnetic field is described. As the result of calculational and experimental modelling for the dipole magnet, the geometry of its poles was estimated, providing in the horizontal aperture +- 3...

  16. Performance evaluation of permanent magnet synchronous motor/generator for superconductor flywheel energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.P.; Sung, T.H.; Jung, S.V.; Han, Y.H. [Korea Electric Power Energy Research Inst., Daejeon (Korea, Republic of); You, D.J.; Jang, S.M. [Chung Nam National Univ., Daejeon (Korea, Republic of)


    Superconductor flywheel energy storage (SFES) systems are used to supply energy when needed during periods of peak electrical use. Stored energy decreases when the rotational speed of the flywheel decreases. Rotational losses occur as a result of induced currents in the superconductors caused by inhomogeneous fields of the permanent magnet (PM) rotor and the eddy current in the rotor induced by the magnetic field of the superconductor. The aim of this modelling study was to improve the storage efficiency of the SFES by reducing rotational losses. A permanent magnet synchronous motor (PMSM) for a SFES system was designed using magnetic field and dynamic modelling. The model consisted of a surface-mounted permanent magnet (PM) rotor with diametrical magnetization and a slotless iron-cored stator. Rotor and stator performance were evaluated in both operational and idling modes. Electromagnetic analyses were conducted to determine PM volume and winding rotations. A 2-D analytical solution was used to characterize the distribution of magnetized materials. Ampere's law was used to solve the field quantities and boundary conditions of the PM. The electrical dynamic equation was characterized as a 3-phase winding in a rotating time domain. Results of the study showed that the PMSM design provided the correct amount of power. It was concluded that magnetic field analyses can be used to accurately calculate core losses for PMSM systems. 6 refs., 1 tab., 12 figs.

  17. Evolution of a high-performance storage system based on magnetic tape instrumentation recorders (United States)

    Peters, Bruce


    In order to provide transparent access to data in network computing environments, high performance storage systems are getting smarter as well as faster. Magnetic tape instrumentation recorders contain an increasing amount of intelligence in the form of software and firmware that manages the processes of capturing input signals and data, putting them on media and then reproducing or playing them back. Such intelligence makes them better recorders, ideally suited for applications requiring the high-speed capture and playback of large streams of signals or data. In order to make recorders better storage systems, intelligence is also being added to provide appropriate computer and network interfaces along with services that enable them to interoperate with host computers or network client and server entities. Thus, recorders are evolving into high-performance storage systems that become an integral part of a shared information system. Data tape has embarked on a program with the Caltech sponsored Concurrent Supercomputer Consortium to develop a smart mass storage system. Working within the framework of the emerging IEEE Mass Storage System Reference Model, a high-performance storage system that works with the STX File Server to provide storage services for the Intel Touchstone Delta Supercomputer is being built. Our objective is to provide the required high storage capacity and transfer rate to support grand challenge applications, such as global climate modeling.

  18. The high density Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    McCall, G.H.


    During the past few years techniques have been developed for producing pinches in solid deuterium. The conditions which exist in these plasmas are quiet different from those produced earlier. The pinch is formed from a fiber of solid deuterium rather than from a low density gas, and the current is driven by a low impedance, high voltage pulse generator. Because of the high initial density, it is not necessary to compress the pinch to reach thermonuclear conditions, and the confinement time required for energy production is much shorter than for a gas. The experimental results, which have been verified by experiments performed at higher current were quite surprising and encouraging. The pinch appeared to be stable for a time much longer than the Alfven radial transit time. In this paper, however, I argue that the pinch is not strictly stable, but it does not appear to disassemble in a catastrophic fashion. It appears that there may be a distinction between stability and confinement in the high density pinch. In the discussion below I will present the status of the high density Z-pinch experiments at laboratories around the world, and I will describe some of the calculational and experimental results. I will confine my remarks to recent work on the high density pinch. 17 refs. 10 figs.

  19. Design of Anti-windup Compensator for Superconducting Magnetic Energy Storage

    DEFF Research Database (Denmark)

    Fang, Jiakun; Chen, Zhe; Su, Chi


    -windup compensator (AWC) is applied to the controller of the superconducting magnetic energy storage (SMES) system to improve power system stability. First, power system with actuator saturation is described to formulate the problem mathematically. Then, uniform anti-windup scheme is studied and compensator...

  20. Double pancake superconducting coil design for maximum magnetic energy storage in small scale SMES systems (United States)

    Hekmati, Arsalan; Hekmati, Rasoul


    Electrical power quality and stability is an important issue nowadays and technology of Superconducting Magnetic Energy Storage systems, SMES, has brought real power storage capability to power systems. Therefore, optimum SMES design to achieve maximum energy with the least length of tape has been quite a matter of concern. This paper provides an approach to design optimization of solenoid and toroid types of SMES, ensuring maximum possible energy storage. The optimization process, based on Genetic Algorithm, calculates the operating current of superconducting tapes through intersection of a load line with the surface indicating the critical current variation versus the parallel and perpendicular components of magnetic flux density. FLUX3D simulations of SMES have been utilized for energy calculations. Through numerical analysis of obtained data, formulations have been obtained for the optimum dimensions of superconductor coil and maximum stored energy for a given length and cross sectional area of superconductor tape.

  1. Energy Storage. (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  2. High-density percutaneous chronic connector for neural prosthetics

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.


    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnets are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.

  3. High density scintillating glass proton imaging detector (United States)

    Wilkinson, C. J.; Goranson, K.; Turney, A.; Xie, Q.; Tillman, I. J.; Thune, Z. L.; Dong, A.; Pritchett, D.; McInally, W.; Potter, A.; Wang, D.; Akgun, U.


    In recent years, proton therapy has achieved remarkable precision in delivering doses to cancerous cells while avoiding healthy tissue. However, in order to utilize this high precision treatment, greater accuracy in patient positioning is needed. An accepted approximate uncertainty of +/-3% exists in the current practice of proton therapy due to conversions between x-ray and proton stopping power. The use of protons in imaging would eliminate this source of error and lessen the radiation exposure of the patient. To this end, this study focuses on developing a novel proton-imaging detector built with high-density glass scintillator. The model described herein contains a compact homogeneous proton calorimeter composed of scintillating, high density glass as the active medium. The unique geometry of this detector allows for the measurement of both the position and residual energy of protons, eliminating the need for a separate set of position trackers in the system. Average position and energy of a pencil beam of 106 protons is used to reconstruct the image rather than by analyzing individual proton data. Simplicity and efficiency were major objectives in this model in order to present an imaging technique that is compact, cost-effective, and precise, as well as practical for a clinical setting with pencil-beam scanning proton therapy equipment. In this work, the development of novel high-density glass scintillator and the unique conceptual design of the imager are discussed; a proof-of-principle Monte Carlo simulation study is performed; preliminary two-dimensional images reconstructed from the Geant4 simulation are presented.

  4. High density circuit technology, part 1 (United States)

    Wade, T. E.

    The metal (or dielectric) lift-off processes used in the semiconductor industry to fabricate high density very large scale integration (VLSI) systems were reviewed. The lift-off process consists of depositing the light-sensitive material onto the wafer and patterning first in such a manner as to form a stencil for the interconnection material. Then the interconnection layer is deposited and unwanted areas are lifted off by removing the underlying stencil. Several of these lift-off techniques were examined experimentally. The use of an auxiliary layer of polyimide to form a lift-off stencil offers considerable promise.

  5. Design, Modeling and Control of Magnetic Bearings for a Ring-Type Flywheel Energy Storage System

    Directory of Open Access Journals (Sweden)

    Chow-Shing Toh


    Full Text Available This study is concerned with the magnetic force models of magnetic bearing in a flywheel energy storage system (FESS. The magnetic bearing is of hybrid type, with axial passive magnetic bearing (PMB and radial hybrid magnetic bearing (HMB. For the PMB, a pair of ring-type Halbach arrays of permanent magnets are arranged vertically to support the rotor weight. For the HMB, a set of ring-type Halbach array is placed on the rotor side, which corresponds to coil sets on the stator side. The HMB can produce both attraction and repulsion forces on the radial direction, depending on the direction of the coil currents. It is found that the ring-type configuration and the differential winding scheme for coil sets can yield linear magnetic force models for both PMB and HMB. Based on the obtained magnetic force model, an integral sliding mode controller is designed for the stable rotor levitation in the radial direction. The experimental results show that the rotor can be stabilized to the bearing center, verifying the accuracy of the magnetic force models and effectiveness of the levitation controller.

  6. Co-Cr-(X) thin films for high density recording

    NARCIS (Netherlands)

    Lodder, J.C.

    Magnetic recording has been the dominant recording technology for information storage since the invention of the computer. The first commercial IBM computer (Ramac) in 1965 consisted of 50 hard disks having a diameter of 24 inches (» 610 mm). The total capacity was 5 Mbytes and an access time of

  7. Some novel phenomena at high density (United States)

    Berkowitz, Evan Scott

    Astrophysical environments probe matter in ways impossible on Earth. In particular, matter in compact objects are extraordinarily dense. In this thesis we discuss two phenomena that may occur at high density. First, we study toroidal topological solitons called vortons, which can occur in the kaon-condensed color-flavor-locked phase of high-density quark matter, a candidate phase for the core of some neutron stars. We show that vortons have a large radius compared to their thickness if their electrical charge is on the order of 104 times the fundamental charge. We show that shielding of electric fields by electrons dramatically reduces the size of a vorton. Second, we study an unusual phase of degenerate electrons and nonrelativistic Bose-condensed helium nuclei that may exist in helium white dwarfs. We show that this phase supports a previously-unknown gapless mode, known as the half-sound, that radically alters the material's specific heat, and can annihilate into neutrinos. We provide evidence that this neutrino radiation is negligible compared to the star's surface photoemission.

  8. Models for Experimental High Density Housing (United States)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia


    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  9. High density lipoproteins, 1978 -- an overview. (United States)

    Levy, R I


    High density lipoproteins (HDL) have come of age. For years it has been fashionable to study HDL as an approach to understanding lipoprotein structure and lipid binding. Available in abundant amounts from normal human plasma, readily separable into its individual lipid and soluble apolipoprotein components, HDL has provided much information for lipoprotein model building. Suddenly it has been thrust center stage clinically by a host of convincing epidemiologic studies that clearly establishes an inverse relationship between HDL levels and coronary vascular events. Biochemists, clinicians, cardiologists and epidemiologists are simultaneously focusing attention on HDL. Familial High Density Lipoprotein Deficiency (Tangier Disease) has been well described but is poorly understood as a clinical syndrome complex. We have suddenly become aware of how little we understand about HDL's normal ultracentrifugal and apoprotein heterogeneity, about its functional role(s) or the determinant(s) of its concentration in plasma. The relative contributions of the two sites of HDL origin, the liver and intestine, are yet to be determined as are the site(s) of degradation. Awareness of a problem and its importance is the first step toward the solution(s) of the problem.

  10. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S


    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  11. Coupling field maps of combined function bending magnets to linear optics for the SESAME storage ring

    CERN Document Server

    Milanese, A


    This note provides several analyses of the combined function bending magnets of the SESAME storage ring. The objective is to develop tools to couple the magnetic design to the linear optics specifications. Such tools can be used to carry out a 3D field optimization, at the design phase and following magnetic measurements, in particular in order to fine tune the end shims on the poles. The analyses take as input field maps on the midplane, which are then processed in different ways to obtain linear transfer matrices for the optics, in the horizontal and vertical planes. Some peculiarities of this kind of magnet are also highlighted, for example, the slight variation of gradient along the arc. For convenience, the relative codes and scripts are included in the appendix.

  12. Soft end dipole magnet design for the MAX-IV storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Tarawneh, Hamed E-mail:; Wallen, Erik


    The future 3 GeV MAX-IV storage ring at MAX-Lab will be a low emittance storage ring for the production of synchrotron radiation. The vertical aperture in the straight sections, as well as in the bends, of the storage rings will be small. It is foreseen to use, among other insertion devices, superconducting cold bore short period undulators as insertion devices in order to obtain undulator radiation with short wavelengths. The cold bore insertion devices are sensitive to the deposited heat from the stored beam in the storage ring. An important contribution to the heat load to the cold core insertion devices comes from the synchrotron radiation from the upstream dipole adjacent to the insertion device. The synchrotron radiation from the upstream dipole adjacent to a superconducting insertion device can be minimized by the introduction of a soft end to the dipole. This note describes the proposed design of the dipoles with soft ends adjacent to the insertion devices in the 3 GeV MAX-IV storage ring. The soft ends of the dipole magnets have reduced the impinging heat load from synchrotron radiation on the superconducting undulators by a factor of 5.8 and they have also reduced the overall circumference of the storage ring.

  13. Storage of nuclear magnetization as long-lived singlet order in low magnetic field. (United States)

    Pileio, Giuseppe; Carravetta, Marina; Levitt, Malcolm H


    Hyperpolarized nuclear states provide NMR signals enhanced by many orders of magnitude, with numerous potential applications to analytical NMR, in vivo NMR, and NMR imaging. However, the lifetime of hyperpolarized magnetization is normally limited by the relaxation time constant T(1), which lies in the range of milliseconds to minutes, apart from in exceptional cases. In many cases, the lifetime of the hyperpolarized state may be enhanced by converting the magnetization into nuclear singlet order, where it is protected against many common relaxation mechanisms. However, all current methods for converting magnetization into singlet order require the use of a high-field, high-homogeneity NMR magnet, which is incompatible with most hyperpolarization procedures. We demonstrate a new method for converting magnetization into singlet order and back again. The new technique is suitable for magnetically inequivalent spin-pair systems in weak and inhomogeneous magnetic fields, and is compatible with known hyperpolarization technology. The method involves audio-frequency pulsed irradiation at the low-field nuclear Larmor frequency, employing coupling-synchronized trains of 180° pulses to induce singlet-triplet transitions. The echo trains are used as building blocks for a pulse sequence called M2S that transforms longitudinal magnetization into long-lived singlet order. The time-reverse of the pulse sequence, called S2M, converts singlet order back into longitudinal magnetization. The method is demonstrated on a solution of (15)N-labeled nitrous oxide. The magnetization is stored in low magnetic field for over 30 min, even though the T(1) is less than 3 min under the same conditions.

  14. A High Density ECRH Plasma Source (United States)

    Simon, M.; Rosenthal, G.; Kidd, P.; Wuerker, R.; Wong, A. Y.; Siciliano, E. R.


    An ECRH plasma source has been constructed within a 10 kG solenoid, using a 10 kW (max) of CW 10.6 GHz klystron amplifier. Vacuum base pressures are on the order of 10-7 torr. One kW of CW ECRH microwave power is sufficient to create a high density (10^12 cm-3) fully ionized pure calcium metal plasma, the maximum theoretically possible at 10.6 GHz. The electron temperature is around 10 eV. Neutral Ca is evaporated through the ECRH resonance zone from a thermal oven. Only ions (not neutrals) trapped by the field enter the main chamber, resulting in a fully ionized plasma. The source is useful for generating fully ionized pure plasmas from low melting point materinals. Work Supported by NSF PHY-94-21693

  15. Nanotechnology for Synthetic High Density Lipoproteins (United States)

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad


    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  16. Observation of Magnetic Resonances in Electron Clouds in a Positron Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Pivi, M.T.F.; Ng, J.S.T.; Cooper, F.; Kharakh, D.; King, F.; Kirby, R.E.; Kuekan, B.; Spencer, Cherrill M.; Raubenheimer, T.O.; Wang, L.F.; /SLAC


    The first experimental observation of magnetic resonances in electron clouds is reported. The resonance was observed as a modulation in cloud intensity for uncoated as well as TiN-coated aluminum surfaces in the positron storage ring of the PEP-II collider at SLAC. Electron clouds frequently arise in accelerators of positively charged particles, and severely impact the machines performance. The TiN coating was found to be an effective remedy, reducing the cloud intensity by three orders of magnitude.

  17. Vibration study of the APS storage ring 0. 8 meter quadrupole magnet/magnet support assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.


    The objectives of this study are as follows: Determine the vibration characteristics (frequency, damping, and mode shapes) of the magnet on prototypic supports (the actual mounting system used to mount the magnet on the girder). Measure system response to ambient floor motion. Measure the effect of various modifications to determine if the magnet response can be modified to minimize unwanted response characteristics. Modifications investigated include support schemes, increasing system damping, and increasing mechanical rigidity. Measure system response to coolant flow. Determine vibrational characteristics of a large concrete block placed on a concrete floor, including response to ambient floor motions.

  18. Molecular changes in soy and wheat breads during storage as probed by nuclear magnetic resonance (NMR). (United States)

    Lodi, Alessia; Tiziani, Stefano; Vodovotz, Yael


    Addition of raw ground almond has been shown to improve loaf quality (e.g., loaf specific volume) of soy bread. To better understand the effects of almond addition to soy bread and to follow these through storage, nuclear magnetic resonance spectroscopy relaxation times and cross-relaxation experiments were performed. Spin-spin relaxation times of water protons were similar for the two soy breads, and therefore changes of water interactions with the other components of the soy breads (with and without almond) were not considered to be major contributors to the differences in loaf quality observed between these breads. Additionally, T2 values of water protons were found to have a similar decreasing trend during storage, especially up to day 3, for all of the products studied. On the other hand, during storage, lipid proton relaxation times exhibited only small changes in wheat and regular soy bread, whereas the soy-almond bread showed a major decrease of lipid proton mobility in particular after day 3 and up to day 10. These findings may indicate that, after a few days of storage, the lipid fraction contributes to better plasticization of the soy bread with almond, which can affect acceptability and storage stability of the final product. Thus, the higher amount of lipids introduced in the almond-enriched soy bread is likely to be responsible for the improved loaf quality and may significantly affect shelf stability of the soy-containing product.

  19. Load test of Superconducting Magnetic Bearing for MW-class Flywheel Energy Storage System (United States)

    Mukoyama, S.; Nakao, K.; Sakamoto, H.; Nagashima, K.; Ogata, M.; Yamashita, T.; Miyazaki, K.; Shimizu, H.; Sawamura, H.


    A flywheel energy storage system (FESS) stores electrical power as kinetic energy of a rotating flywheel rotor. Since the storage energy of the FESS is proportional to the weight of the rotor and the square of the rotating speed, the heavy weight and high speed rotor leads a FESS to a high power and a high capacity. However a conventional FESS limits in both the rotor weight and the rotating speed because of using mechanical bearings. A superconducting FESS (SFESS) utilizes a superconducting magnetic bearing (SMB) to levitate and rotate the flywheel rotor that has ton class weight and high speed rotation without mechanical contact. As the SFESS with 300 kW demonstrated at Mt. Komekura in Yamanashi prefecture, the SMB in the SFESS levitated the 4-ton rotor. The SMB consisted of a high temperature superconducting magnet (HTS magnet) and a HTS bulk, and utilized a repulsive force between the HTS magnet and the HTS bulk. The demonstration of the SFESS has been carried out successfully at Mt. Komekura. Now the next step development was started to aim a MW-class SFESS. The MW-class SFESS needs the SMB levitated and withstood a 10 ton-class load. This paper describes a design of the 10 ton-class SMB and the result of the load test of the developed SMB

  20. Energy storage device with large charge separation (United States)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei


    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.


    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  2. Dark High Density Dipolar Liquid of Excitons. (United States)

    Cohen, Kobi; Shilo, Yehiel; West, Ken; Pfeiffer, Loren; Rapaport, Ronen


    The possible phases and the nanoscale particle correlations of two-dimensional interacting dipolar particles is a long-sought problem in many-body physics. Here we observe a spontaneous condensation of trapped two-dimensional dipolar excitons with internal spin degrees of freedom from an interacting gas into a high density, closely packed liquid state made mostly of dark dipoles. Another phase transition, into a bright, highly repulsive plasma, is observed at even higher excitation powers. The dark liquid state is formed below a critical temperature Tc ≈ 4.8 K, and it is manifested by a clear spontaneous spatial condensation to a smaller and denser cloud, suggesting an attractive part to the interaction which goes beyond the purely repulsive dipole-dipole forces. Contributions from quantum mechanical fluctuations are expected to be significant in this strongly correlated, long living dark liquid. This is a new example of a two-dimensional atomic-like interacting dipolar liquid, but where the coupling of light to its internal spin degrees of freedom plays a crucial role in the dynamical formation and the nature of resulting condensed dark ground state.

  3. High-density lipoprotein cholesterol: How High

    Directory of Open Access Journals (Sweden)

    G Rajagopal


    Full Text Available The high-density lipoprotein cholesterol (HDL-C is considered anti-atherogenic good cholesterol. It is involved in reverse transport of lipids. Epidemiological studies have found inverse relationship of HDL-C and coronary heart disease (CHD risk. When grouped according to HDL-C, subjects having HDL-C more than 60 mg/dL had lesser risk of CHD than those having HDL-C of 40-60 mg/dL, who in turn had lesser risk than those who had HDL-C less than 40 mg/dL. No upper limit for beneficial effect of HDL-C on CHD risk has been identified. The goals of treating patients with low HDL-C have not been firmly established. Though many drugs are known to improve HDL-C concentration, statins are proven to improve CHD risk and mortality. Cholesteryl ester transfer protein (CETP is involved in metabolism of HDL-C and its inhibitors are actively being screened for clinical utility. However, final answer is still awaited on CETP-inhibitors.

  4. Flow instabilities of magnetic flux tubes. IV. Flux storage in the solar overshoot region (United States)

    Işık, E.; Holzwarth, V.


    Context: Flow-induced instabilities of magnetic flux tubes are relevant to the storage of magnetic flux in the interiors of stars with outer convection zones. The stability of magnetic fields in stellar interiors is of importance to the generation and transport of solar and stellar magnetic fields. Aims: We consider the effects of material flows on the dynamics of toroidal magnetic flux tubes located close to the base of the solar convection zone, initially within the overshoot region. The problem is to find the physical conditions in which magnetic flux can be stored for periods comparable to the dynamo amplification time, which is of the order of a few years. Methods: We carry out nonlinear numerical simulations to investigate the stability and dynamics of thin flux tubes subject to perpendicular and longitudinal flows. We compare the simulations with the results of simplified analytical approximations. Results: The longitudinal flow instability induced by the aerodynamic drag force is nonlinear in the sense that the growth rate depends on the perturbation amplitude. This result is consistent with the predictions of linear theory. Numerical simulations without friction show that nonlinear Parker instability can be triggered below the linear threshold of the field strength, when the difference in superadiabaticity along the tube is sufficiently large. A localised downflow acting on a toroidal tube in the overshoot region leads to instability depending on the parameters describing the flow, as well as the magnetic field strength. We determined ranges of the flow parameters for which a linearly Parker-stable magnetic flux tube is stored in the middle of the overshoot region for a period comparable to the dynamo amplification time. Conclusions: The longitudinal flow instability driven by frictional interaction of a flux tube with its surroundings is relevant to determining the storage time of magnetic flux in the solar overshoot region. The residence time for

  5. Exact transfer functions for the PEP storage ring magnets and some general characteristics and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.E.


    The exact, ion-optical transfer functions for the dipoles, quadrupoles and sextupoles of the PEP standard PODC cell are calculated for any single particle with initial coordinates (r, p, s). Modifications resulting from radiative energy loss are also calculated and discussed. These functions allow one to characterize individual magnets or classes of magnets by their aberrations and thereby simplify their study and correction. In contrast to high-energy spectrometers where aberrations are often analyzed away, those in storage rings drive series of high order resonances, even for perfect magnets (2), that can produce stop bands and other effects which can seriously limit performance. Thus, one would like to eliminate them altogether or failing this to develop local and global correction schemes. Even then, one should expect higher order effects to influence injection, extraction or single-pass systems either because of orbit distortions or overly large phase spece distortions such as may occur in low-beta insertions or any final-focus optics. The term exact means that the results here are based on solving the relativistic Lorentz force equation with accurate representations of measured magnetostatic fields. Such fields satisfy Maxwell's equations and are the actual fields seen by a particle as it propagates around a real storage ring. This is discussed in detail and illustrated with examples that show that this is possible, practical and may even be useful.

  6. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher (United States)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal


    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  7. Changes in Ultrastructure and Sensory Characteristics on Electro-magnetic and Air Blast Freezing of Beef during Frozen Storage. (United States)

    Choi, Yun-Sang; Ku, Su-Kyung; Jeong, Ji-Yun; Jeon, Ki-Hong; Kim, Young-Boong


    The ultrastructure in the beef muscle of the electro-magnetic resonance and air blast freezing during the frozen storage, and the changes in the quality characteristics after thawing were evaluated. The size of ice crystal was small and evenly formed in the initial freezing period, and it showed that the size was increased as the storage period was elapsed (pair blast freezing during the frozen storage. The thawing loss of beef stored by the electro-magnetic resonance freezing was significantly lower than the air blast freezing during frozen storage (pstorage period became longer while the electro-magnetic resonance freezing was higher than the air blast on 8 month (pair blast freezing. Thus, it is considered that the freezing method has an effect on the change in the ultrastructure and quality characteristics of the beef.

  8. Multi-Functional Current Multiplier by High Temperature Superconducting Magnet Energy Storage (United States)

    Yamada, S.; Hishinuma, Y.; Aso, Y.

    We had been developing a current multiplier by inductive storage (CMIS). The prototype of CMIS consists of 12 storage copper coil with switching units. Coils and feeders are cooled by the liquid nitrogen to reduce the resistivity. Output current pulse with 480 A could be generated, by charging the coils to 40 A. The continuous current pulses of 666 pulses per minute were obtained owing to the fast switching of coil currents by using IGBTs. Two types of the multi-functional CMIS were designed conceptually; one is for mega ampere and the other is for long pulse. The system consists of the superconducting (SC) magnet section with a temperature of 20 K and the IGBT control switch section with a temperature of 77 K. The SC coil is cooled down from 77 to 20 K by a G-M refrigerator. The IGBT control switches are soaked in liquid nitrogen to reduce the total resistance from CMIS coils to the load.

  9. Measurement of neutrino oscillations by means of a high density detector on the atmospheric neutrino beam

    CERN Document Server

    Aglietta, M; Aprile, E; Bologna, G; Bonesini, M; Bencivenni, G; Calvi, M; Castellina, A; Curioni, A; Fulgione, W; Ghia, P L; Gustavino, C; Kokoulin, R P; Mannocchi, G; Murtas, F; Murtas, G P; Negri, P; Paganoni, M; Periale, L; Petrukhin, A A; Picchi, P; Pullia, Antonio; Ragazzi, S; Redaelli, N G; Satta, L; Tabarelli de Fatis, T; Terranova, F; Tonazzo, A; Trinchero, G C; Vallania, P; Villone, B


    A high-density calorimeter, consisting of magnetized iron planes interleaved by RPCs, as tracking and timing devices, is a good candidate for a next generation experiment on atmospheric neutrinos. With 34 kt of mass and in four years of data taking, this experiment will be sensitive to $\

  10. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NARCIS (Netherlands)

    N. den Harder,; D.C. Schram,; W. J. Goedheer,; de Blank, H. J.; M. C. M. van de Sanden,; van Rooij, G. J.


    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1–5 × 10 20  m −3 ) low temperature (∼3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center,

  11. Transient stability of NbTi Rutherford cables for energy storage magnet applications (United States)

    Bhunia, U.; Pradhan, J.; De, A.; Roy, A.; Khare, V. K.; Dey, M. K.; Thakur, S. K.; Saha, S.; Kanithi, H.


    Stability and quench behavior against transient perturbation expected during operation of a fast cycling energy storage magnet is an important issue for its design and safe operation. Understanding of thermal stability in terms of minimum quench energy (MQE) of a superconducting cable under specific operating scenario is of primary importance for its magnet application. Process of current redistribution from quench strand to adjacent strands depends on inductive coupling and has influence on quench development in the cable. The electrodynamic and thermal behavior of a ten-strand Rutherford-type cable for SMES program in the centre is studied numerically in the framework of discrete network modeling. Influence of several parameters such as uncertainties of inter-strand transverse and adjacent resistance, cooling conditions with liquid helium, etc. on MQE and quench behavior of Rutherford cable is discussed in this paper.


    Energy Technology Data Exchange (ETDEWEB)



    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  13. A new method of geobiological sample storage by snap freezing under alternating magnetic field (United States)

    Morono, Y.; Terada, T.; Yamamoto, Y.; Hirose, T.; Xiao, N.; Sugeno, M.; Ohwada, N.; Inagaki, F.


    Scientific ocean drilling provides unprecedented opportunities to study the deep subseafloor biosphere. Especially, subseafloor living life and its genomes are significant components, since the activity may play some roles in global biogeochemical cycling of carbon, nitrogen, sulfur, metals, and other elements over geologic times. Given the significance of deep biological components as well as the potential application of future analytical technologies to the core, the material (or portions thereof) should be preserved in the best appropriate manner for long-term storage. Here we report a novel technology to freeze the cored sample with the least damage on scientifically important multiple characteristics including microbial cells. In the conventional freezer, expanding volume of pore space by the formation of ice crystals may change the (micro-) structure in the core sample (e.g., cell, micro-fossils). The cell alive system (CAS) is the new super-quick freezing system that applies alternating magnetic field for vibrating water molecules in the samples: i.e., the vibration leads to the stable super-cooled condition of the liquid-phase water at around -7 to -10 degree-C, keeping the liquid at the low temperature uniformly. Following further decrease of temperature enables the snap and hence uniform freezing of the samples with minimal size of the ice crystal formation, resulting in the minimum damage on structurally fragile components such as microbial cells and its DNA. We tested the CAS freezing technique for sediment core samples obtained by the Chikyu training cruise 905 and others. The core samples from various depths were sub-sampled, and immediately frozen in the CAS system along with the standard freezing method under the temperature of -20, -80, and -196 (liquid nitrogen) degree-C. Microbial cell abundance showed that the normal freezing decreased the number of microbial cells, whereas the CAS freezing resulted in almost no loss of the cells. We also tested

  14. Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units

    Directory of Open Access Journals (Sweden)

    Saroj Padhan


    Full Text Available In the present work, an attempt has been made to understand the dynamic performance of Automatic Generation Control (AGC of multi-area multi-units thermal–thermal power system with the consideration of Reheat turbine, Generation Rate Constraint (GRC and Time delay. Initially, the gains of the fuzzy PID controller are optimized using Differential Evolution (DE algorithm. The superiority of DE is demonstrated by comparing the results with Genetic Algorithm (GA. After that performance of Thyristor Controlled Series Compensator (TCSC has been investigated. Further, a TCSC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.

  15. A high efficiency motor/generator for magnetically suspended flywheel energy storage system (United States)

    Niemeyer, W. L.; Studer, P.; Kirk, J. A.; Anand, D. K.; Zmood, R. B.


    The authors discuss the theory and design of a brushless direct current motor for use in a flywheel energy storage system. The motor design is optimized for a nominal 4.5-in outside diameter operating within a speed range of 33,000-66,000 revolutions per minute with a 140-V maximum supply voltage. The equations which govern the motor's operation are used to compute a series of acceptable design parameter combinations for ideal operation. Engineering tradeoffs are then performed to minimize the irrecoverable energy loss while remaining within the design constraint boundaries. A final integrated structural design whose features allow it to be incorporated with the 500-Wh magnetically suspended flywheel is presented.

  16. Introducing Barium in Transition Metal Oxide Frameworks: Impact upon Superconductivity, Magnetism, Multiferroism and Oxygen Diffusion and Storage. (United States)

    Raveau, Bernard


    The role of barium in the structural chemistry of some transition metal oxides of the series "Cu, Mn, Fe,Co" is reviewed, based on its size effect and its particular chemical bonding. Its impact upon various properties, superconductivity, magnetism, multiferroism, oxygen storage is emphasized. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    Directory of Open Access Journals (Sweden)

    Kentaro Harada


    Full Text Available We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR in High Energy Accelerator Research Organization (KEK. The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3  T/m and a shorter pulse width of 2.4  μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  18. High regression rate, high density hybrid fuels Project (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  19. 128x128 Ultra-High Density Optical Interconnect Project (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high-density deformable mirrors with up to 16,000 actuators to enable direct imaging of planets around...

  20. Wake high-density electroencephalographic spatiospectral signatures of Insomnia

    NARCIS (Netherlands)

    Colombo, Michele A.; Ramautar, Jennifer R.; Wei, Yishul; Gomez-Herrero, Germán; Stoffers, Diederick; Wassing, Rick; Benjamins, Jeroen S.; Tagliazucchi, Enzo; van der Werf, Ysbrand; Cajochen, Christian; Van Someren, Eus J.W.


    Study Objectives: Although daytime complaints are a defining characteristic of insomnia, most EEG studies evaluated sleep only. We used high-density electroencephalography to investigate wake resting state oscillations characteristic of insomnia disorder (ID) at a fine-grained spatiospectral

  1. 128x128 Ultra-High Density Optical Interconnect Project (United States)

    National Aeronautics and Space Administration — Future NASA programs like Tertiary Planet Finder (TPF) require high density deformable mirrors with upto 16,000 actuators to enable direct imaging of planets around...

  2. Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches

    National Research Council Canada - National Science Library

    deGoma, Emil M; deGoma, Rolando L; Rader, Daniel J


    A number of therapeutic strategies targeting high-density lipoprotein (HDL) cholesterol and reverse cholesterol transport are being developed to halt the progression of atherosclerosis or even induce regression...

  3. Formation of gapless Z 2 spin liquid phase manganites in the (Sm1- y Gd y )0.55Sr0.45MnO3 system in zero magnetic field: Topological phase transitions to states with low and high density of 2D-vortex pairs induced by the magnetic field (United States)

    Bukhan'ko, F. N.; Bukhan'ko, A. F.


    The evolution of the ground state of the manganese spin ensemble in the (Sm1- y Gd y )0.55Sr0.45MnO3 in the case of isovalent substitution of rare-earth samarium ions with large radii with gadolinium ions with significantly smaller radii is studied. The measured temperature dependences of the ac magnetic susceptibility and the field dependences of the dc magnetizations are analyzed using the Heisenberg-Kitaev model describing the transition from the ordered spin state with classical isotropic AFM exchange to the frustrated spin state with quantum highly anisotropic FM exchange. A continuous transition from the 3D ferromagnetic state of manganese spins in the initial sample with y = 0 to zigzag AFM ordering of CE-type spins in ab planes for y = 0.5, coexisting in samples with y = 0.5, 0.6, and 0.7 at temperatures below T N ≅ 48.5 K with a disordered phase such as a quantum Griffiths phase is identified. As the gadolinium concentration further increases, the CE-type zigzag AFM structure is molten, which leads to the appearance of an unusual phase in Gd0.55Sr0.45MnO3 in the temperature range close to the absolute zero. This phase has characteristic features of a gapless Z 2 quantum spin liquid in zero external magnetic field. The step changes in the magnetization isotherms measured at 4.2 K in the field range of ±75 kOe are explained by quantum phase transitions of the Z 2 spin liquid to a phase with topological order in weak magnetic fields and a polarized phase in strong fields. The significant difference between critical fields and magnetization jumps in isotherms indicates the existence of hysteretic phenomena in quantum spin liquid magnetization-demagnetization processes caused by the difference between localization-delocalization of 2D vortex pairs induced by a magnetic field in a quantum spin liquid with disorder.

  4. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks (United States)

    Ogata, M.; Matsue, H.; Yamashita, T.; Hasegawa, H.; Nagashima, K.; Maeda, T.; Matsuoka, T.; Mukoyama, S.; Shimizu, H.; Horiuchi, S.


    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper.

  5. Long term stability of paraoxonase-1 and high-density lipoprotein in human serum

    Directory of Open Access Journals (Sweden)

    Beekhof Piet K


    Full Text Available Abstract Background Paraoxonase-1 (PON1 is an enzyme with numerous functions and receives an increasing interest in clinical and epidemiological studies. Sometimes samples are stored for longer periods at a certain temperature. Therefore the stability of PON1 activity must be checked and retained upon storage for longer periods. Results In this study the stability of PON1 activity has been tested in human serum samples during storage up to 12 months at 3 commonly used temperatures, -20°C, -70°C and −196°C. It was found that the stability of the PON1 activity is constant during 12 months of storage at −70°C and −196°C. Storage at −20°C resulted in a small but statistically significant decrease after 6 months to about 94% of its original value. Nonetheless, the rank order between the samples at T = 0 and 12 months remained the same. The same temperature dependence was found for the associated high-density lipoprotein. Conclusions It can be concluded that −70°C is the right temperature for storage to maintain the PON1 activity for at least one year. Storage at a lower temperature in liquid nitrogen (−196°C is not necessary.

  6. High-density scintillating glasses for a proton imaging detector (United States)

    Tillman, I. J.; Dettmann, M. A.; Herrig, V.; Thune, Z. L.; Zieser, A. J.; Michalek, S. F.; Been, M. O.; Martinez-Szewczyk, M. M.; Koster, H. J.; Wilkinson, C. J.; Kielty, M. W.; Jacobsohn, L. G.; Akgun, U.


    High-density scintillating glasses are proposed for a novel proton-imaging device that can improve the accuracy of the hadron therapy. High-density scintillating glasses are needed to build a cost effective, compact calorimeter that can be attached to a gantry. This report summarizes the study on Europium, Terbium, and Cerium-doped scintillating glasses that were developed containing heavy elements such as Lanthanum, Gadolinium, and Tungsten. The density of the samples reach up to 5.9 g/cm3, and their 300-600 nm emission overlaps perfectly with the peak cathode sensitivity of the commercial photo detectors. The developed glasses do not require any special quenching and can be poured easily, which makes them a good candidate for production in various geometries. Here, the glass making conditions, preliminary tests on optical and physical properties of these scintillating, high-density, oxide glasses developed for a novel medical imaging application are reported.

  7. Changes in Ultrastructure and Sensory Characteristics on Electro-magnetic and Air Blast Freezing of Beef during Frozen Storage (United States)


    The ultrastructure in the beef muscle of the electro-magnetic resonance and air blast freezing during the frozen storage, and the changes in the quality characteristics after thawing were evaluated. The size of ice crystal was small and evenly formed in the initial freezing period, and it showed that the size was increased as the storage period was elapsed (pfreezing showed the size of ice crystal with a lower rate of increase than the air blast freezing during the frozen storage. The thawing loss of beef stored by the electro-magnetic resonance freezing was significantly lower than the air blast freezing during frozen storage (pfreezing was higher than the air blast on 8 month (pfreezing did not show the difference until 4 months, and it showed higher acceptability in comparison with the beef stored by the air blast freezing. Thus, it is considered that the freezing method has an effect on the change in the ultrastructure and quality characteristics of the beef. PMID:26761797

  8. Control of Superconducting Magnetic Energy Storage Units in Multi-Machine Power Systems (United States)

    Ranaweera, Aruna

    A new scheme, in which a synchronous generator connected to the SMES busbar is used as a feedback generator, is proposed to control superconducting magnetic energy storage (SMES) units in multi-machine power systems, in this dissertation. The speed and the load angle changes of the feedback generator are used to calculate the necessary real power transfers to the SMES, while the necessary reactive power transfers are calculated from the voltage changes of the common busbar. Expressions are derived for the direct and quadrature axis components of the current drawn by the SMES, for unequal firing angles in the converter bridge, and the relationships of the two currents to the total real and reactive power transfers to the SMES are shown. The expressions derived are valid for small or large systems, under steady state or transient conditions, and it is shown through computer simulations in a small power system that, the proposed scheme is quite effective in stabilizing electromechanical oscillations caused by small as well as large disturbances. It is also shown that, the SMES can improve the power output of wind turbine induction generators, and also stabilize the oscillations caused by wind power losses in a steam turbine generator system, and thereby eliminate the need to use diesel turbine generators for the same purpose. Finally, equations are derived to represent the synchronous machine in terms of its d-q circuits, while it is connected to the network which is described by complex quantities, and the formulations done for the proposed scheme are extended to study the use of SMES units with proposed control in power systems of large and complex configurations. The proposed scheme of control is simple, and does not call for a special design of a controller requiring simplifying assumptions such as the presence of an infinite busbar or steady state operating conditions on the system, and therefore, would help in the widespread use of SMES units in electric

  9. Intelligently controlled superconducting magnetic energy storage for improved load frequency control

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, S.J.; Mufti, M.D.; Lone, S.A. [National Inst. of Technology, Kazratbal, Kashmir (India). Dept. of Electrical Engineering; Mushtaq, I. [ALSTOM Projects India Ltd., Maharashtra (India)


    Small load perturbations disturb the normal operation of a power system. Whenever there is a change in customer load demand, control engineers are faced with the problem of continuous electromechanical oscillations to which the tie-lines are subjected. This paper proposed a method to solve the load frequency control (LFC) problem in multi-area power systems with steam reheat constraint and governor dead band nonlinearity. The approach consisted of a nonlinear neural adaptive predictive control for active modulation of a superconducting magnetic energy storage system (SMES) equipped with an insulated gate bipolar transistor (IGBT) converter. The SMES is a fast acting device that can absorb the oscillations and help reduce the frequency and tie-power deviations. A two-layer nonlinear network with tapped delay line (TDL) inputs was used for online nonlinear identification of each control area of the power system. A one-step ahead prediction of the new area control error (NACE) was then used to generate an optimal power command for SMES. The NACE was a newly introduced variable in this paper. It consisted of area control error (ACE), a term proportional to derivative of ACE and a term proportional to SMES coil current deviation. The resulting control signal had an anticipatory character and met the control objectives. The power conditioning system (PCS) for the SMES included an IGBT-based voltage source converter (VSC) and a two-quadrant DC chopper. This paper presented simulation results for various components of the hybrid system. The S-function code in MATLAB was used to build 2 special blocks, one for the SMES unit and its PCS and the other for adaptive neural identification, prediction and control. These blocks were used together with other standard blocks in SIMULINK to demonstrate the effectiveness of the proposed scheme. 23 refs., 21 figs.

  10. Interfacial stick–slip transition in hydroxyapatite filled high density ...

    Indian Academy of Sciences (India)

    Effect of filler addition and temperature on the stick–slip transition in high density polyethylene melt was studied. Results showed that shear stresses corresponding to stick–slip transition increases with the addition of filler. Increase in temperature also increases the shear stresses for stick–slip transition. The features of the ...

  11. High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions

    NARCIS (Netherlands)

    Barter, Philip; Kastelein, John; Nunn, Alistair; Hobbs, Richard


    The concentration of high density lipoprotein-cholesterol (HDL-C) has been found consistently to be a powerful negative predictor of premature coronary heart disease (CHD) in human prospective population studies. There is also circumstantial evidence from human intervention studies and direct

  12. BCS Theory of Hadronic Matter at High Densities

    DEFF Research Database (Denmark)

    Bohr, Henrik; Panda, Prafulla K.; Providencia, Constanca


    The equilibrium between the so-called 2SC and CFL phases of strange quark matter at high densities is investigated in the framework of a simple schematic model of the NJL type. Equal densities are assumed for quarks u, d and s. The 2SC phase is here described by a color-flavor symmetric state, in...

  13. Mendelian Disorders of High-Density Lipoprotein Metabolism

    NARCIS (Netherlands)

    Oldoni, Federico; Sinke, Richard J.; Kuivenhoven, Jan Albert


    High-density lipoproteins (HDLs) are a highly heterogeneous and dynamic group of the smallest and densest lipoproteins present in the circulation. This review provides the current molecular insight into HDL metabolism led by articles describing mutations in genes that have a large affect on HDL

  14. A Novel Anti-Inflammatory Effect for High Density Lipoprotein.

    Directory of Open Access Journals (Sweden)

    Scott J Cameron

    Full Text Available High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC. Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.

  15. The usefulness of total cholesterol and high density lipoprotein ...

    African Journals Online (AJOL)

    Objective: To determine the usefulness of total cholesterol/high-density lipoprotein cholesterol and/or highdensity lipoprotein cholesterol/total cholesterol ratios in the interpretation of lipid profile result in clinical practice. Methods: This is a prospective case-control study involving 109 diabetics, 98 diabetic hypertensives, 102 ...

  16. Sparse deconvolution of high-density super-resolution images

    NARCIS (Netherlands)

    S. Hugelier (Siewert); J.J. de Rooi (Johan); R. Bernex (Romain); S. Duwé (Sam); O. Devos (Olivier); M. Sliwa (Michel); P. Dedecker (Peter); P.H.C. Eilers (Paul); C. Ruckebusch (Cyril)


    textabstractIn wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms

  17. High-density QCD phase transitions inside neutron stars: Glitches ...

    Indian Academy of Sciences (India)


    Oct 9, 2017 ... ... of different high-density phases and associated phase transitions. We study effectsof density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due ...

  18. Helicity-dependent all-optical switching in hybrid metal-ferromagnet structures for ultrafast magnetic data storage (United States)

    Cheng, Feng

    The emerging Big Data era demands the rapidly increasing need for speed and capacity of storing and processing information. Standalone magnetic recording devices, such as hard disk drives (HDDs), have always been playing a central role in modern data storage and continuously advancing. Recognizing the growing capacity gap between the demand and production, industry has pushed the bit areal density in HDDs to 900 Giga-bit/square-inch, a remarkable 450-million-fold increase since the invention of the first hard disk drive in 1956. However, the further development of HDD capacity is facing a pressing challenge, the so-called superparamagnetic effect, that leads to the loss of information when a single bit becomes too small to preserve the magnetization. This requires new magnetic recording technologies that can write more stable magnetic bits into hard magnetic materials. Recent research has shown that it is possible to use ultrafast laser pulses to switch the magnetization in certain types of magnetic thin films. Surprisingly, such a process does not require an externally applied magnetic field that always exists in conventional HDDs. Furthermore, the optically induced magnetization switching is extremely fast, up to sub-picosecond (10 -12 s) level, while with traditional recording method the deterministic switching does not take place shorter than 20 ps. It's worth noting that the direction of magnetization is related to the helicity of the incident laser pulses. Namely, the right-handed polarized laser pulses will generate magnetization pointing in one direction while left-handed polarized laser pulses generate magnetization pointing in the other direction. This so-called helicity-dependent all-optical switching (HD-AOS) phenomenon can be potentially used in the next-generation of magnetic storage systems. In this thesis, I explore the HD-AOS phenomenon in hybrid metal-ferromagnet structures, which consist of gold and Co/Pt multilayers. The experiment results show

  19. Workshop on compact storage ring technology: applications to lithography

    Energy Technology Data Exchange (ETDEWEB)


    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  20. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.


    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  1. Vibration study of the APS storage ring 0.8 meter quadrupole magnet/magnet support assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.


    The objectives of this study are as follows: Determine the vibration characteristics (frequency, damping, and mode shapes) of the magnet on prototypic supports (the actual mounting system used to mount the magnet on the girder). Measure system response to ambient floor motion. Measure the effect of various modifications to determine if the magnet response can be modified to minimize unwanted response characteristics. Modifications investigated include support schemes, increasing system damping, and increasing mechanical rigidity. Measure system response to coolant flow. Determine vibrational characteristics of a large concrete block placed on a concrete floor, including response to ambient floor motions.

  2. Proposal to negotiate two blanket purchase contracts for the supply of magnetic tape drivers, librairies and cartridges for LHC data storage

    CERN Document Server


    This document concerns the award of two blanket purchase contracts for the supply of magnetic tape drives, libraries and cartridges for LHC data storage. The Finance Committee is invited to agree to the negotiation of two blanket purchase contracts with GATE (CH) (appointed distributor for IBM, Switzerland) and SUN (previously StorageTek, STK) (CH) for the supply of magnetic tape drives, libraries and cartridges for LHC data storage for an estimated amount covering both contracts not exceeding 21 000 000 Swiss francs over the period 2007-2011.

  3. Multilevel SOT-MRAM Cell with a Novel Sensing Scheme for High-Density Memory Applications

    DEFF Research Database (Denmark)

    Zeinali, Behzad; Madsen, Jens Kargaard; Moradi, Farshad

    in high-density memory application. To deal with this obstacle, we propose a multilevel cell which stores two bits per memory cell. In addition, we propose a novel sensing scheme to read out the stored data in the multilevel SOT-MRAM cell. Our simulation results show that the proposed cell can achieve 3X......This paper presents a multilevel spin-orbit torque magnetic random access memory (SOT-MRAM). The conventional SOT-MRAMs enables a reliable and energy efficient write operation. However, these cells require two access transistors per cell, hence the efficiency of the SOTMRAMs can be questioned...

  4. The hydrogen equation of state at high densities

    CERN Document Server

    Vorberger, J; Kraeft, W -D


    We use a two-fluid model combining the quantum Green's function technique for the electrons and a classical HNC description for the ions to calculate the high-density equation of state of hydrogen. This approach allows us to describe fully ionized plasmas of any electron degeneracy and any ionic coupling strength which are important for the modeling of a variety of astrophysical objects and inertial confinement fusion targets. We have also performed density functional molecular dynamics simulations (DFT-MD) and show that the data obtained agree with our approach in the high density limit. Good agreement is also found between DFT-MD and quantum Monte Carlo simulations. The thermodynamic properties of dense hydrogen can thus be obtained for the entire density range using only calculations in the physical picture.

  5. A Coupled Plasma-Sheath Model for High Density Sources (United States)

    Bose, Deepak; Govindan, T. R.; Meyyappan, M.


    High density, low pressure plasmas are used for etching and deposition in microelectronics fabrication processes. The process characteristics are strongly determined by the ion energy distribution (IED) and the ion flux arriving at the substrate that are responsible for desorption of etch products and neutral dissociation at the surface. The ion flux and energy are determined by a self- consistent modeling of the bulk plasma, where the ions and the neutral radicals are produced, and the sheath, where the ions are accelerated. Due to their widely different time scales, it is a formidable task to self-consistently resolve non-collisional sheath in a high density bulk plasma model. In this work, we first describe a coupled plasma-sheath model that attempts to resolve the non-collisional sheath in a reactor scale model. Second, we propose a semianalytical radio frequency (RF) sheath model to improve ion dynamics.

  6. Noise reduction in muon tomography for detecting high density objects (United States)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.


    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  7. High-density quantum sensing with dissipative first order transitions


    Raghunandan, Meghana; Wrachtrup, Jörg; Weimer, Hendrik


    The sensing of external fields using quantum systems is a prime example of an emergent quantum technology. Generically, the sensitivity of a quantum sensor consisting of $N$ independent particles is proportional to $\\sqrt{N}$. However, interactions invariably occuring at high densities lead to a breakdown of the assumption of independence between the particles, posing a severe challenge for quantum sensors operating at the nanoscale. Here, we show that interactions in quantum sensors can be t...

  8. Design of a Permanent Magnet Synchronous Machine for a Flywheel Energy Storage System within a Hybrid Electric Vehicle (United States)

    Jiang, Ming

    As an energy storage device, the flywheel has significant advantages over conventional chemical batteries, including higher energy density, higher efficiency, longer life time, and less pollution to the environment. An effective flywheel system can be attributed to its good motor/generator (M/G) design. This thesis describes the research work on the design of a permanent magnet synchronous machine (PMSM) as an M/G suitable for integration in a flywheel energy storage system within a large hybrid electric vehicle (HEV). The operating requirements of the application include wide power and speed ranges combined with high total system efficiency. Along with presenting the design, essential issues related to PMSM design including cogging torque, iron losses and total harmonic distortion (THD) are investigated. An iterative approach combining lumped parameter analysis with 2D Finite Element Analysis (FEA) was used, and the final design is presented showing excellent performance.

  9. High-density cervical ureaplasma urealyticum colonization in pregnant women

    Directory of Open Access Journals (Sweden)

    Ranđelović Gordana


    Full Text Available Background/aim: Ureaplasma urealyticum, a common commensal of the female lower genital tract, has been observed as an important opportunistic pathogen during pregnancy. The aims of this study were to determine the degree of cervical colonization with U. urealyticum in pregnant women with risk pregnancy and in pregnant women with normal term delivery and to evaluate the correlation between high-density cervical U. urealyticum colonization and premature rupture of membranes (PROM as well. Methods. This research was conducted on the samples comprising 130 hospitalized pregnant women with threatening preterm delivery and premature rupture of membranes. The control group consisted of 39 pregnant women with term delivery without PROM. In addition to standard bacteriological examination and performing direct immunofluorescence test to detect Chlamydia trachomatis, cervical swabs were also examined for the presence of U. urealyticum and Mycoplasma hominis by commercially available Mycofast Evolution 2 test (International Microbio, France. Results. The number of findings with isolated high-density U. urealyticum in the target group was 69 (53.08%, while in the control group was 14 (35.90%. Premature rupture of membranes (PROM occurred in 43 (33.08% examinees: 29 were pPROM, and 14 were PROM. The finding of U.urealyticum ≥104 was determined in 25 (58.14% pregnant women with rupture, 17 were pPROM, and 8 were PROM. There was statistically significant difference in the finding of high-density U. urealyticum between the pregnant women with PROM and the control group (χ² = 4.06, p < 0.05. U. urealyticum was predominant bacterial species found in 62.79% of isolates in the PROM cases, while in 32.56% it was isolated alone. Among the 49 pregnant women with preterm delivery, pPROM occurred in 29 (59.18% examinees, and in 70.83% of pregnant women with findings of high-density U. urealyticum pPROM was observed. Conclusion. Cervical colonization with U

  10. Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit

    DEFF Research Database (Denmark)

    Chen, S. S.; Wang, L.; Lee, W. J.


    A novel scheme using a superconducting magnetic energy storage (SMES) unit to perform both power flow control and damping enhancement of a large wind farm (WF) feeding to a utility grid is presented. The studied WF consisting of forty 2 MW wind induction generators (IGs) is simulated...... controller is very effective in stabilising the studied large WF under various wind speeds. The inherent fluctuations of the injected active power of the WF to the power grid can also be effectively controlled by the proposed control scheme....

  11. Adult onset glycogen storage disease type II (adult onset Pompe disease): report and magnetic resonance images of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Del Gaizo, Andrew [Emory University School of Medicine, Radiology Resident, Atlanta, GA (United States); Banerjee, Sima [Emory University School of Medicine, Musculoskeletal Radiology Department, Atlanta, GA (United States); Terk, Michael [Emory University School of Medicine, Radiology, Division of Musculoskeletal Imaging, Atlanta, GA (United States)


    Glycogen storage disease type II (GSDII), also referred to as Pompe disease or acid maltase deficiency, is a rare inherited condition caused by a deficiency in acid alpha-glucosidase (GAA) enzyme activity. The condition is often classified by age of presentation, with infantile and late onset variants (Laforet et al. J Neurology 55:1122-8, 2000). Late onset tends to present with progressive proximal muscle weakness and respiratory insufficiency (Winkel et al. J Neurology 252:875-84, 2005). We report two cases of biopsy confirmed adult onset GSDII, along with key Magnetic Resonance (MR) images. (orig.)

  12. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Altamore, C; Tringali, C; Sparta' , N; Marco, S Di; Grasso, A; Ravesi, S [STMicroelectronics, Industial and Multi-segment Sector R and D, Catania (Italy)


    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10{sup 5}) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10{sup 1} Hz to 10{sup 6} Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl{sub 2}/Ar chemistry. The relationship between the etch rate and the Cl{sub 2}/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl{sub 2}/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  13. Effects of magnetic non-linearities on a stored proton beam and their implications for superconducting storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, M.; Evans, L.


    A nonlinear lens may be used to study the effect of high-order multipolar field imperfections on a stored proton beam. Such a nonlinear lens is particulary suitable to simulate field imperfections of the types encountered in coil dominated superconducting magnets. We have studied experimentally at the SPS the effect of high order (5th and 8th) single isolated resonances driven by the nonlinear lens. The width of these resonances is of the order one expects to be caused by field errors in superconducting magnets of the SSC type. The experiment shows that, in absence of tune modulation, these resonances are harmless. Slow crossings of the resonance, on the other hand, have destructive effects on the beam, much more so than fast crossings caused by synchrotron oscillations. In the design of future storage rings, sources of low-frequency tune modulation should be avoided as a way to reduce the harmful effects of high order multipolar field imperfection.

  14. High-performance battery electrodes via magnetic templating (United States)

    Sander, J. S.; Erb, R. M.; Li, L.; Gurijala, A.; Chiang, Y.-M.


    In lithium-ion batteries, the critical need for high-energy-density, low-cost storage for applications ranging from wearable computing to megawatt-scale stationary storage has created an unmet need for facile methods to produce high-density, low-tortuosity, kinetically accessible storage electrodes. Here we show that magnetic control of sacrificial features enables the creation of directional pore arrays in lithium-ion electrodes. The directional pores result in faster charge transport kinetics and enable electrodes with more than threefold higher area capacity (for example, >12 mAh cm-2 versus electric vehicle model drive cycle.

  15. High Current, High Density Arc Plasma as a New Source for WiPAL (United States)

    Waleffe, Roger; Endrizzi, Doug; Myers, Rachel; Wallace, John; Clark, Mike; Forest, Cary; WiPAL Team


    The Wisconsin Plasma Astrophysics Lab (WiPAL) has installed a new array of nineteen plasma sources (plasma guns) on its 3 m diameter, spherical vacuum vessel. Each gun is a cylindrical, molybdenum, washer-stabilized, arc plasma source. During discharge, the guns are maintained at 1.2 kA across 100 V for 10 ms by the gun power supply establishing a high density plasma. Each plasma source is fired independently allowing for adjustable plasma parameters, with densities varying between 1018 -1019 m-3 and electron temperatures of 5-15 eV. Measurements were characterized using a 16 tip Langmuir probe. The plasma source will be used as a background plasma for the magnetized coaxial plasma gun (MCPG), the Terrestrial Reconnection Experiment (TREX), and as the plasma source for a magnetic mirror experiment. Temperature, density, and confinement results will be presented. This work is supported by the DoE and the NSF.

  16. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery (United States)

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad


    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery. PMID:21319839

  17. Biofuels Barrier Properties of Polyamide 6 and High Density Polyethylene


    Fillot L.-A.; Ghiringhelli S.; Prebet C.; Rossi S.


    In this paper, a comparison of the biofuels barrier properties of PolyAmide 6 (PA6) and High Density PolyEthylene (HDPE) is presented. Model fuels were prepared as mixtures of toluene, isooctane and ethanol, the ethanol volume fraction varying between 0% and 100%. Barrier properties were determined at 40°C by gravimetric techniques or gas chromatography measurements, and it was shown that polyamide 6 permeability is lower than that of polyethylene on a wide range of ethanol contents up to 85%...

  18. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat


    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  19. Multiplexed, high density electrophysiology with nanofabricated neural probes.

    Directory of Open Access Journals (Sweden)

    Jiangang Du

    Full Text Available Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.

  20. Multiplexed, high density electrophysiology with nanofabricated neural probes. (United States)

    Du, Jiangang; Blanche, Timothy J; Harrison, Reid R; Lester, Henry A; Masmanidis, Sotiris C


    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.

  1. High-density waveguide superlattices with low crosstalk (United States)

    Song, Weiwei; Gatdula, Robert; Abbaslou, Siamak; Lu, Ming; Stein, Aaron; Lai, Warren Y.-C.; Provine, J.; Pease, R. Fabian W.; Christodoulides, Demetrios N.; Jiang, Wei


    Silicon photonics holds great promise for low-cost large-scale photonic integration. In its future development, integration density will play an ever-increasing role in a way similar to that witnessed in integrated circuits. Waveguides are perhaps the most ubiquitous component in silicon photonics. As such, the density of waveguide elements is expected to have a crucial influence on the integration density of a silicon photonic chip. A solution to high-density waveguide integration with minimal impact on other performance metrics such as crosstalk remains a vital issue in many applications. Here, we propose a waveguide superlattice and demonstrate advanced superlattice design concepts such as interlacing-recombination that enable high-density waveguide integration at a half-wavelength pitch with low crosstalk. Such waveguide superlattices can potentially lead to significant reduction in on-chip estate for waveguide elements and salient enhancement of performance for important applications, opening up possibilities for half-wavelength-pitch optical-phased arrays and ultra-dense space-division multiplexing.

  2. Effects of High-Density Impacts on Shielding Capability (United States)

    Christiansen, Eric L.; Lear, Dana M.


    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  3. A Coupled Plasma and Sheath Model for High Density Reactors (United States)

    Deepak, Bose; Govindan, T. R.; Meyyappan, M.; Arnold, Jim (Technical Monitor)


    We present a coupled plasma and collisionless; sheath model for the simulation of high density plasma processing reactors. Due to inefficiencies in numerical schemes and the resulting computational burden, a coupled multidimensional plasma and sheath simulation has not been possible model for gas mixtures and high density reactors of practical interest. In this work we demonstrate that with a fully implicit algorithm and a refined computational mesh, a self-consistent plasma and sheath simulation is feasible. We discuss the details of the model equations, the importance of ion inertia, and the resulting sheath profiles for argon and chlorine plasmas. We find that at low operating pressures (10-30 mTorr), the charge separation occurs only within a 0.5 mm layer near the surface in a 300 mm inductively coupled plasma etch reactor. A unified model eliminates the use of off-line or loosely coupled sheath models with simplifying assumptions which generally lead to uncertainties in ion flux and sheath electrical properties.

  4. Simulating deposition of high density tailings using smoothed particle hydrodynamics (United States)

    Babaoglu, Yagmur; Simms, Paul H.


    Tailings are a slurry of silt-sized residual material derived from the milling of rock. High density (HD) tailings are tailings that have been sufficiently dewatered to a point where they exhibit a yield stress upon deposition. They form gently sloped stacks on the surface when deposited; this eliminates or minimizes the need for dams or embankments for containment. Understanding the flow behaviour of high density tailings is essential for estimating the final stack geometry and overall slope angle. This paper focuses on modelling the flow behaviour of HD tailings using smoothed particle hydrodynamics (SPH) method incorporating a `bi-viscosity' model to simulate the non-Newtonian behaviour. The model is validated by comparing the numerical results with bench scale experiments simulating single or multi-layer deposits in two-dimensions. The results indicate that the model agreed fairly well with the experimental work, excepting some repulsion of particles away from the bottom boundary closer to the toe of the deposits. Novel aspects of the work, compared to other simulation of Bingham fluids by SPH, are the simulation of multilayer deposits and the use of a stopping criteria to characterize the rest state.

  5. Magnetic measurement of Iranian Light Source Facility quadrupole storage ring prototype

    Directory of Open Access Journals (Sweden)

    Y Radkhorrami


    Full Text Available Magnetic Measurement Lab is one of the most significant divisions of Research and Development (R&D Lab of Iranian Light Source Facility. The main duty of this lab is to measure and check qualification of the accelerator magnets, including permanent and electromagnets, being applied in Iran for the fisrt time. The ILSF measurement lab consists of precise measurement equipment, in proportion  to synchrotron needs, such as Hall Effect probe measurement bench, rotating coil and Helmholtz coil. Recently, the lab has been provided with Hall probe measurement bench and uncompensated rotating coil and has made it possible to measure prototype magnets. In this article, the results of measuring quadrupole prototype are studied using Hall probe and rotating coil, to determine and compare errors in measuring multipole magnets and their sources

  6. High-density ultracold neutron sources for the WWR-M and PIK reactors

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail:; Fomin, A. K.; Kharitonov, A. G.; Lyamkin, V. A.; Prudnikov, D. V.; Ivanov, S. A.; Erykalov, A. N.; Onegin, M. S. [National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute (Russian Federation); Gridnev, K. A. [St. Petersburg State University (Russian Federation)


    It is proposed to equip the PIK and WWR-M research reactors at the Petersburg Nuclear Physics Institute (PNPI) with high-density ultracold neutron (UCN) sources, where UCNs will be obtained based on the effect of their accumulation in superfluid helium (due to the specific features of this quantum fluid). The maximum UCN storage time in superfluid helium is obtained at temperatures on the order of 1 K. These sources are expected to yield UCN densities of 10{sup 3}–10{sup 4} cm{sup –3}, i.e., approximately three orders of magnitude higher than the density from existing UCN sources throughout the world. The development of highest intensity UCN sources will make PNPI an international center of fundamental UCN research.

  7. Evaluation of synthetic/reconstituted high-density lipoproteins as delivery vehicles for paclitaxel. (United States)

    McConathy, Walter J; Nair, Maya P; Paranjape, Sulabha; Mooberry, Linda; Lacko, Andras G


    Reconstituted (synthetic) high-density lipoprotein particles carrying paclitaxel (rHDL/PTX) were prepared with substantially higher PTX content than reported earlier. The rHDL/PTX complexes seemed to be primarily spherical nanoparticles when examined via electron microscopy, with a constant composition, molecular weight and exceptional stability even after ultracentrifugation and storage for up to 6 months. The rHDL/PTX nanoparticles had superior cytotoxicity against several cancer cell lines (MCF7, DU145, OV1063 and OVCAR-3), the half maximal inhibitory concentration (IC50) having been found to be 5-20 times lower than that of the free drug. Studies with mice showed that the rHDL/PTX nanoparticles were substantially better tolerated than the corresponding dosages of either Taxol or Abraxane.

  8. Methods for preparing patterned media for high-density recording

    NARCIS (Netherlands)

    Lodder, J.C.


    The areal bit density of magnetic disk recording has made a colossal increase over the last decades. Extrapolation leads to recording parameters not likely to be achieved without changes in the present way of storing magnetic data. One of the potential solutions is the use of patterned media, which

  9. Scoping study. High density polyethylene (HDPE) in salstone service

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, Mark A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  10. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)


    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  11. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy


    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  12. High Density Electroencephalography in Sleep Research: Potential, Problems, Future Perspective (United States)

    Lustenberger, Caroline; Huber, Reto


    High density EEG (hdEEG) during sleep combines the superior temporal resolution of EEG recordings with high spatial resolution. Thus, this method allows a topographical analysis of sleep EEG activity and thereby fosters the shift from a global view of sleep to a local one. HdEEG allowed to investigate sleep rhythms in terms of their characteristic behavior (e.g., the traveling of slow waves) and in terms of their relationship to cortical functioning (e.g., consciousness and cognitive abilities). Moreover, recent studies successfully demonstrated that hdEEG can be used to study brain functioning in neurological and neuro-developmental disorders, and to evaluate therapeutic approaches. This review highlights the potential, the problems, and future perspective of hdEEG in sleep research. PMID:22593753

  13. The alterations in high density polyethylene properties with gamma irradiation (United States)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.


    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  14. Single-Readout High-Density Memristor Crossbar

    KAUST Repository

    Zidan, M. A.


    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  15. Characterization of high density through silicon vias with spectral reflectometry. (United States)

    Ku, Yi-Sha; Huang, Kuo Cheng; Hsu, Weite


    Measurement and control is an important step for production-worthy through silicon vias etch. We demonstrate the use and enhancement of an existing wafer metrology tool, spectral reflectometer by implementing novel theoretical model and measurement algorithm for high density through-silicon via (HDTSV) inspection. It is capable of measuring depth and depth variations of array vias by Discrete Fourier Transform (DFT) analysis in one shot measurement. Surface roughness of via bottom can also be extracted by scattering model fitting. Our non-destructive solution can measure TSV profile diameters as small as 5 μm and aspect ratios greater than 13:1. The measurement precision is in the range of 0.02 μm. Metrology results from actual 3D interconnect processing wafers are presented.

  16. Methods and systems for rapid prototyping of high density circuits (United States)

    Palmer, Jeremy A [Albuquerque, NM; Davis, Donald W [Albuquerque, NM; Chavez, Bart D [Albuquerque, NM; Gallegos, Phillip L [Albuquerque, NM; Wicker, Ryan B [El Paso, TX; Medina, Francisco R [El Paso, TX


    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  17. Environmental determinants, liver function, and high density lipoprotein cholesterol levels. (United States)

    Kuller, L H; Hulley, S B; LaPorte, R E; Neaton, J; Dai, W S


    High density lipoprotein cholesterol (HDL-chol) is negatively associated with coronary heart disease. Environmental heart disease risk factors may partially be related to coronary heart disease through alterations in HDL-chol concentrations. Little is known about the underlying mechanisms by which environmental factors are related to HDL-chol. The authors investigated a possible mechanism: changes in liver function as a mediating link between risk factors and HDL-chol concentrations in marathon runners, alcoholics, and participants in the Multiple Risk Factor Intervention Trial. Liver function, as measured by liver enzymes, was related to both coronary heart disease risk factors and alcohol consumption, suggesting that the increased levels of HDL-chol associated with alcohol were primarily the result of changes in liver function. The relationship of obesity to HDL-chol could not be explained by the alterations in liver function.

  18. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides (United States)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  19. The glass transition in high-density amorphous ice. (United States)

    Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland


    There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature Tg of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's Tg measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p-T plane for LDA, HDA, and VHDA.

  20. High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices (United States)

    Baek, S. G.; Parker, R. R.; Bonoli, P. T.; Shiraiwa, S.; Wallace, G. M.; LaBombard, B.; Faust, I. C.; Porkolab, M.; Whyte, D. G.


    Parametric decay instabilities (PDI) appear to be an ubiquitous feature of lower hybrid current drive (LHCD) experiments at high density. In density ramp experiments in Alcator C-Mod and other machines the onset of PDI activity has been well correlated with a decrease in current drive efficiency and production of fast electron bremsstrahlung. However whether PDI is the primary cause of the ‘density limit’, and if so by exactly what mechanism (beyond the obvious one of pump depletion) has not been clearly established. In order to further understand the connection, the frequency spectrum of PDI activity occurring during Alcator C-Mod LHCD experiments has been explored in detail by means of a number of RF probes distributed around the periphery of the C-Mod tokamak including a probe imbedded in the inner wall. The results show that (i) the excited spectra consists mainly of a few discrete ion cyclotron (IC) quasi-modes, which have higher growth than the ion sound branch; (ii) PDI activity can begin either at the inner or outer wall, depending on magnetic configuration; (iii) the frequencies of the IC quasi-modes correspond to the magnetic field strength close to the low-field side (LFS) or high-field side separatrix; and (iv) although PDI activity may initiate near the inner separatrix, the loss in fast electron bremsstrahlung is best correlated with the appearance of IC quasi-modes characteristic of the magnetic field strength near the LFS separatrix. These data, supported by growth rate calculations, point to the importance of the LFS scrape-off layer (SOL) density in determining PDI onset and degradation in current drive efficiency. By minimizing the SOL density it is possible to extend the core density regime over which PDI can be avoided, thus potentially maximizing the effectiveness of LHCD at high density. Increased current drive efficiency at high density has been achieved in FTU and EAST through lithium coating and special fuelling methods, and in recent

  1. High Density Data Storage Systems by DNA Complexes and Nano-Particles from DNA Hybrid Materials

    National Research Council Canada - National Science Library

    Ogata, Naoya


    ...) In-situ Intercalation of Phtharocyanine dye (PC) into DNA and Polyamine Complex, (3) syntheses and characterization of Nano-particles derived from DNA-polymer Hybrid Materials Containing Optical Dyes, and (4...

  2. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph


    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of Ca(BH4)2 and Mg(BH4)2 in nano-frameworks did not improve their H2 absorption due to the formation of stable alkaline earth B12H12 intermediates upon rehydrogenation. This project primarily investigated the effect of nano-framework surface chemistry on hydride properties, while the effect of pore size is the focus area of other efforts (e.g., HRL, Sandia National Laboratories (SNL) etc.) within the Metal Hydride Center of Excellence (MHCoE). The projects were complementary in gaining an overall understanding of the influence of nano-frameworks on hydride behavior.

  3. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn


    densities both gravimetrically and volumetrically. Upon heating, NH3 is released from the salts, and by employing an appropriate catalyst, H-2 can be released corresponding to up to 9.78 wt % H and 0.116 kg H/L for the Ca(NH3)(8)Cl-2 salt. The NH3 release from all four salts is investigated using...

  4. Fabrication of Material and Devices for Very High Density Information Storage. (United States)


    crystal bismuth doped garnets , having properties equivalent to IPE grown materials,,’., onto gadolinium gallium garnet substrates. There was speculation... LPE onto0 (111)-.""’’ oriented calcium-, magnesium- or zirconium-substituted gadolinium, samarium or neodymium gallium /’’’ garnet substrates. Garnet of LPE garnetmusesit favor garnets a s a t arting poiut. ref og Vmagnetic and m g e-optical po et s o a- , pae d m u , alu inu-%, li

  5. Magnetic recording with acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail:


    We demonstrate acoustically assisted magnetic recording (AAMR), a new paradigm in magnetic data storage. In this concept, otherwise unwriteable high-coercivity media, requisite for thermally stable high-density data storage, are made amenable to recording by lowering their coercivity via strain induced by surface acoustic waves. The basic principles of AAMR are proven using galfenol, a low-coercivity magnetostrictive material, as the recording medium. It is shown that the writing field needed to record data in the presence of acoustic strain is lower than the coercivity of the unstrained galfenol film. Further, it is demonstrated that interference between acoustic waves can be tailored to selectively address a bit on the recording medium.

  6. High density plasma calculation of J-PARC RF negative ion source (United States)

    Shibata, T.; Asano, H.; Ikegami, K.; Naito, F.; Nanmo, K.; Oguri, H.; Ohkoshi, K.; Shinto, K.; Takagi, A.; Ueno, A.


    Ignition and steady state phases of Radio Frequency (RF) plasma in J-PARC ion source has been investigated by numerical modeling. The model takes into account the transport of plasma particles (electrons, protons, hydrogen molecular ions and cesium ions) in electromagnetic (EM) field with collision processes. Inductively coupled and capacitive EM fields are simultaneously solved in the model with plasma transport. Applying KEK parallel computation system A (64 cores, 56 nodes with 256 GB memory per node), behavior of high density plasma up to 1019 - 1020 m-3 in the steady state is calculated. In the simulation, it has been clarified that inductively coupled electric field in azimuthal direction and magnetic field in axial direction play a key role to maintain high density plasma which oscillates with frequency up to doubled value of applied RF frequency. The spatial distribution plot of plasma density and EM field at each phase may lead to understandings on how RF plasma is kept stable inside the source chamber.

  7. High density event-related potential data acquisition in cognitive neuroscience. (United States)

    Slotnick, Scott D


    Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.

  8. Force on a storage ring vacuum chamber after sudden turn-off of a magnet power supply

    Directory of Open Access Journals (Sweden)

    Gautam Sinha


    Full Text Available We are commissioning a 2.5 GeV synchrotron radiation source (SRS where electrons travel in high vacuum inside the vacuum chambers made of aluminum alloys. These chambers are kept between the pole gaps of magnets and are made to facilitate the radiation coming out of the storage ring to the experimental station. These chambers are connected by metallic bellows. During the commissioning phase of the SRS, the metallic bellows became ruptured due to the frequent tripping of the dipole magnet power supply. The machine was down for quite some time. In the case of a power supply trip, the current in the magnets decays exponentially. It was observed experimentally that the fast B field decay generates a large eddy current in the chambers and consequently the chambers are subjected to a huge Lorentz force. This motivated us to develop a theoretical model to study the force acting on a metallic plate when exposed to an exponentially decaying field and then to extend it for a rectangular vacuum chamber. The problem is formulated using Maxwell’s equations and converted to the inhomogeneous Helmholtz equation. After taking the Laplace transform, the equation is solved with appropriate boundary conditions. Final results are obtained after taking the appropriate inverse Laplace transform. The expressions for eddy current contour and magnetic field produced by the eddy current are also derived. Variations of the force on chambers of different wall thickness due to spatially varying and exponentially time decaying field are presented. The result is a general theory which can be applied to different geometries and calculation of power loss as well. Comparisons are made with results obtained by simulation using a finite element based code, for quick verification of the theoretical model.

  9. Storage of magnetization as singlet order by optimal control designed pulses

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Bowen, Sean; Vinding, Mads Sloth


    . With this aim, optimal control theory was applied to create pulses that for near‐equivalent spins accomplish transfers in and out of the singlet state with maximum efficiency while ensuring robustness toward variations in the nuclear spin system Hamiltonian (chemical shift, J‐couplings, B1 and B magnetic field...

  10. Polyhedral magnetite nanocrystals with multiple facets: facile synthesis, structural modelling, magnetic properties and application for high capacity lithium storage. (United States)

    Su, Dawei; Horvat, Josip; Munroe, Paul; Ahn, Hyojun; Ranjbartoreh, Ali R; Wang, Guoxiu


    Polyhedral magnetite nanocrystals with multiple facets were synthesised by a low temperature hydrothermal method. Atomistic simulation and calculations on surface attachment energy successfully predicted the polyhedral structure of magnetite nanocrystals with multiple facets. X-ray diffraction, field emission scanning electron microscopy, and high resolution transmission microscopy confirmed the crystal structure of magnetite, which is consistent with the theoretical modelling. The magnetic property measurements show the superspin glass state of the polyhedral nanocrystals, which could originate from the nanometer size of individual single crystals. When applied as an anode material in lithium ion cells, magnetite nanocrystals demonstrated an outstanding electrochemical performance with a high lithium storage capacity, a satisfactory cyclability, and an excellent high rate capacity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Noncentrosymmetric Magnets Hosting Magnetic Skyrmions. (United States)

    Kanazawa, Naoya; Seki, Shinichiro; Tokura, Yoshinori


    The concept of a skyrmion, which was first introduced by Tony Skyrme in the field of particle physics, has become widespread in condensed matter physics to describe various topological orders. Skyrmions in magnetic materials have recently received particular attention; they represent vortex-like spin structures with the character of nanometric particles and produce fascinating physical properties rooted in their topological nature. Here, a series of noncentrosymmetric ferromagnets hosting skyrmions is reviewed: B20 metals, Cu2 OSeO3 , Co-Zn-Mn alloys, and GaV4 S8 , where Dzyaloshinskii-Moriya interaction plays a key role in the stabilization of skyrmion spin texture. Their topological spin arrangements and consequent emergent electromagnetic fields give rise to striking features in transport and magnetoelectric properties in metals and insulators, such as the topological Hall effect, efficient electric-drive of skyrmions, and multiferroic behavior. Such electric controllability and nanometric particle natures highlight magnetic skyrmions as a potential information carrier for high-density magnetic storage devices with excellent energy efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dynamic nuclear polarization of high-density atomic hydrogen in solid mixtures of molecular hydrogen isotopes. (United States)

    Sheludiakov, S; Ahokas, J; Järvinen, J; Zvezdov, D; Vainio, O; Lehtonen, L; Vasiliev, S; Mao, S; Khmelenko, V V; Lee, D M


    We report on magnetic resonance studies of high-density atomic hydrogen and deuterium in solid hydrogen matrices at temperatures below 1 K. Average concentrations of H atoms ≈3×10(19)  cm(-3) are obtained in chemical tunneling reactions of isotope exchange with D atoms. The products of these reactions are closely located pairs of H atoms near D2 molecules with strong exchange interactions. We discovered a dynamic nuclear polarization effect on H atoms created by pumping the center of the H electron spin resonance spectrum, similar to the Overhauser effect in metals. Our results indicate that H atoms may be arranged inside molecular matrices at separations equivalent to local concentrations of 2.6×10(21)  cm(-3). This opens up a way to build a metallic state of atomic hydrogen at zero pressure.

  13. Turbulence at the transition to the high density H-mode in Wendelstein 7-AS plasmas

    DEFF Research Database (Denmark)

    Basse, N.P.; Zoletnik, S.; Baumel, S.


    Recently a new improved confinement regime was found in the Wendelstein 7-AS (W7-AS) stellarator (Renner H. et al 1989 Plasma Phys. Control. Fusion 31 1579). The discovery of this high density high confinement mode (HDH-mode) was facilitated by the installation of divertor modules. In this paper......, measurements of short wavelength density fluctuations in the HDH-mode using collective scattering of infrared light are presented. These measurements will be contrasted to fluctuations during normal confinement operation (NC-mode). The autopower spectra of the measurements show a consistent increase...... of the fluctuation level associated with the transition from NC- to HDH-mode. Correlation calculations on a 20 mus timescale between magnetic and density fluctuations lead to the result that the fluctuations are correlated in NC- but not in HDH-mode. Finally, a comparative analysis between the enhanced D-alpha H...

  14. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling

    National Research Council Canada - National Science Library

    Riwanto, Meliana; Rohrer, Lucia; Roschitzki, Bernd; Besler, Christian; Mocharla, Pavani; Mueller, Maja; Perisa, Damir; Heinrich, Kathrin; Altwegg, Lukas; von Eckardstein, Arnold; Lüscher, Thomas F; Landmesser, Ulf


    ...). High-density lipoprotein from healthy subjects (HDL(Healthy)) has been proposed to exert endothelial antiapoptotic effects that may represent an important antiatherogenic property of the lipoprotein...

  15. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars (United States)

    Flynn, Michael


    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  16. Reading and writing single-atom magnets (United States)

    Natterer, Fabian D.; Yang, Kai; Paul, William; Willke, Philip; Choi, Taeyoung; Greber, Thomas; Heinrich, Andreas J.; Lutz, Christopher P.


    The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3-12 atoms. Long magnetic relaxation times have been demonstrated for single lanthanide atoms in molecular magnets, for lanthanides diluted in bulk crystals, and recently for ensembles of holmium (Ho) atoms supported on magnesium oxide (MgO). These experiments suggest a path towards data storage at the atomic limit, but the way in which individual magnetic centres are accessed remains unclear. Here we demonstrate the reading and writing of the magnetism of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states using tunnel magnetoresistance and write the states with current pulses using a scanning tunnelling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron spin resonance on a nearby iron sensor atom, which also shows that Ho has a large out-of-plane moment of 10.1 ± 0.1 Bohr magnetons on this surface. To demonstrate independent reading and writing, we built an atomic-scale structure with two Ho bits, to which we write the four possible states and which we read out both magnetoresistively and remotely by electron spin resonance. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is indeed possible.

  17. Properties of recycled high density polyethylene and coffee dregs composites

    Directory of Open Access Journals (Sweden)

    Sibele Piedade Cestari


    Full Text Available Composites of recycled high density polyethylene (HDPE-R and coffee dregs (COFD were elaborated. The blends were made at the proportions of 100-0, 90-10, 80-20, 70-30, 60-40, 50-50 and 40-60% polymer-filler ratio. The materials were evaluated through scanning electron microscopy (SEM, differential scanning calorimetry (DSC, thermogravimetry/derivative thermogravimetry (TGA, and compressive resistance test. The compounding was done using a two-stage co-kneader system extruder, and then cylindrical specimens were injection molded. All composites had a fine dispersion of the COFD into the polymeric matrix. The composites degraded in two steps. The first one was in a temperature lower than the neat HDPE, but higher than the average processing temperature of the polymer. The melting temperature and the degree of crystallinity of the composites resulted similar to the neat HDPE ones. The compressive moduli of the composites resulted similar to the neat polymer one. The results show that these composites have interesting properties as a building material.

  18. High-density housing that works for all

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Arif


    In an urbanising world, the way people fit into cities is vastly important - socially, economically, environmentally, even psychologically. So density, or the number of people living in a given area, is central to urban design and planning. Both governments and markets tend to get density wrong, leading to overcrowding, urban sprawl or often both. A case in point are the high-rise buildings springing up throughtout urban Asia - perceived as key features of that widely touted concept, the 'world-class city'. While some may offer a viable solution to land pressures and density requirements, many built to house evicted or resettled 'slum' dwellers are a social and economic nightmare - inconveniently sited, overcrowded and costly. New evidence from Karachi, Pakistan, reveals a real alternative. Poor people can create liveable high-density settlements as long as community control, the right technical assistance and flexible designs are in place. A city is surely 'world-class' only when it is cosmopolitan – built to serve all, including the poorest.

  19. High density scalp EEG in frontal lobe epilepsy. (United States)

    Feyissa, Anteneh M; Britton, Jeffrey W; Van Gompel, Jamie; Lagerlund, Terrance L; So, Elson; Wong-Kisiel, Lilly C; Cascino, Gregory C; Brinkman, Benjamin H; Nelson, Cindy L; Watson, Robert; Worrell, Gregory A


    Localization of seizures in frontal lobe epilepsy using the 10-20 system scalp EEG is often challenging because neocortical seizure can spread rapidly, significant muscle artifact, and the suboptimal spatial resolution for seizure generators involving mesial frontal lobe cortex. Our aim in this study was to determine the value of visual interpretation of 76 channel high density EEG (hdEEG) monitoring (10-10 system) in patients with suspected frontal lobe epilepsy, and to evaluate concordance with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional EEG, and intracranial EEG (iEEG). We performed a retrospective cohort study of 14 consecutive patients who underwent hdEEG monitoring for suspected frontal lobe seizures. The gold standard for localization was considered to be iEEG. Concordance of hdEEG findings with MRI, subtraction ictal SPECT co-registered to MRI (SISCOM), conventional 10-20 EEG, and iEEG as well as correlation of hdEEG localization with surgical outcome were examined. hdEEG localization was concordant with iEEG in 12/14 and was superior to conventional EEG 3/14 (pfrontal epilepsy requiring localization of epileptogenic brain. hdEEG may assist in developing a hypothesis for iEEG monitoring and could potentially augment EEG source localization. Published by Elsevier B.V.

  20. Propofol anesthesia and sleep: a high-density EEG study. (United States)

    Murphy, Michael; Bruno, Marie-Aurélie; Riedner, Brady A; Boveroux, Pierre; Noirhomme, Quentin; Landsness, Eric C; Brichant, Jean-Francois; Phillips, Christophe; Massimini, Marcello; Laureys, Steven; Tononi, Giulio; Boly, Mélanie


    The electrophysiological correlates of anesthetic sedation remain poorly understood. We used high-density electroencephalography (hd-EEG) and source modeling to investigate the cortical processes underlying propofol anesthesia and compare them to sleep. 256-channel EEG recordings in humans during propofol anesthesia. Hospital operating room. 8 healthy subjects (4 males). N/A. Initially, propofol induced increases in EEG power from 12-25 Hz. Loss of consciousness (LOC) was accompanied by the appearance of EEG slow waves that resembled the slow waves of NREM sleep. We compared slow waves in propofol to slow waves recorded during natural sleep and found that both populations of waves share similar cortical origins and preferentially propagate along the mesial components of the default network. However, propofol slow waves were spatially blurred compared to sleep slow waves and failed to effectively entrain spindle activity. Propofol also caused an increase in gamma (25-40 Hz) power that persisted throughout LOC. Source modeling analysis showed that this increase in gamma power originated from the anterior and posterior cingulate cortices. During LOC, we found increased gamma functional connectivity between these regions compared to the wakefulness. Propofol anesthesia is a sleep-like state and slow waves are associated with diminished consciousness even in the presence of high gamma activity.

  1. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.


    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  2. High-density matter: current status and future challenges

    Directory of Open Access Journals (Sweden)

    Stone J. R.


    Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  3. High-Density Lipoprotein Processing and Premature Cardiovascular Disease (United States)

    Rosales, Corina; Gillard, Baiba K.; Gotto, Antonio M.; Pownall, Henry J.


    High plasma concentrations of low-density lipoprotein-cholesterol (LDL-C) are a well-accepted risk factor for cardiovascular disease (CVD), and the statin class of hypolipidemic drugs has emerged as an effective means of lowering LDL-C and reducing CVD risk. In contrast, the role of plasma high-density lipoproteins (HDL) in protection against atherosclerotic vascular disease is the subject of considerable controversy. Although the inverse correlation between plasma HDL-C and CVD is widely acknowledged, reduction of CVD risk by interventions that increase HDL-C have not been uniformly successful. Several studies of large populations have shown that the first step in reverse cholesterol transport (RCT), the transfer of cholesterol from the subendothelial space of the arterial wall via the plasma compartment to the liver for disposal, is impaired in patients with CVD. Here we review HDL function, the mechanisms by which HDL supports RCT, and the role of RCT in preventing CVD. PMID:26634027

  4. Biodegradation of high density polyethylene using Streptomyces species

    Directory of Open Access Journals (Sweden)

    Ali Farzi


    Full Text Available Objective: To investigate the biodegradation of high density polyethylene (HDPE by Streptomyces species isolated from the soil of East Azerbaijan, Iran. Methods: Powders of HDPE samples were prepared by grinding in different particle sizes of 212, 300, 420, and 500 microns. Each time 50 mg of a sample was poured to a liquid medium containing species. Samples were incubated for 18 days at 28 °C in a shaker-incubator and their degradation percentage was measured by weighting method. Produced metabolite at 18th day was analyzed by gas chromatography-mass spectrometry. Also a film of HDPE was subjected to biodegradation and after one month was analyzed by scanning electron microscope which showed degradation on the surface of the film. Results: The results showed that Streptomyces species degraded 50 mg of HDPE sample with the size of 212 μm about 18.26%, 300 and 420 μm about 14.4%, and 500 μm about 13%. Kinetic modeling of biodegradation process showed that the reaction rate was first order with respect to concentration of HDPE. Based on gas chromatography-mass spectrometry results, no high toxic material was produced during biodegradation of HDPE. Conclusions: The research showed that isolated Streptomyces sp. are capable of degradation of HDPE polymer with high degradation efficiency.

  5. Plasma high density lipoprotein cholesterol in thyroid disease. (United States)

    Agdeppa, D; Macaron, C; Mallik, T; Schnuda, N D


    The plasma levels of high density lipoprotein cholesterol (HDL-C) were reduced in 16 hyperthyroid female patients compared to 37 euthyroid women (33.5 +/- 8 vs. 51.5 +/- 13 mg/dl (mean +/- SD); P less than 0.001). When 5 patients were restudied after restoration of the euthyroid state, plasma HDL-C increased from 29 +/- 5 to 43 +/- 11.5 mg/dl (P less than 0.05). In addition, in 22 hypothyroid women, HDL-C levels were also diminished compared to the euthyroid group (43.4 +/- 15.5 vs. 51.5 +/- 13 mg/dl; P less than 0.05). Nine patients were restudied after L-T4 replacement therapy; their levels of HDL-C increased but not to a statistically significant degree. The daily administration of 0.3 mg L-T4 to eight normal male volunteers for 1 month did not significantly affect HDL-C levels.

  6. Low fasting low high-density lipoprotein and postprandial lipemia

    Directory of Open Access Journals (Sweden)

    Sorodila Konstandina


    Full Text Available Abstract Background Low levels of high density lipoprotein (HDL cholesterol and disturbed postprandial lipemia are associated with coronary heart disease. In the present study, we evaluated the variation of triglyceride (TG postprandially in respect to serum HDL cholesterol levels. Results Fifty two Greek men were divided into 2 main groups: a the low HDL group (HDL p = 0.002. The low HDL group had significantly higher TG at 4, 6 and 8 h postprandially compared to the controls (p = 0.006, p = 0.002, and p p = 0.017 compared to the matched-control group. ROC analysis showed that fasting TG ≥ 121 mg/dl have 100% sensitivity and 81% specificity for an abnormal TG response (auc = 0.962, p Conclusions The delayed TG clearance postprandially seems to result in low HDL cholesterol even in subjects with low fasting TG. The fasting TG > 121 mg/dl are predictable for abnormal response to fatty meal.

  7. Crystallographic alignment of high-density gallium nitride nanowire arrays. (United States)

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong


    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  8. High-Density Carbon (HDC) Ablator for NIC Ignition Capsules (United States)

    Ho, D.; Haan, S.; Salmonson, J.; Milovich, J.; Callahan, D.


    HDC ablators show high performance based on simulations, despite the fact that the shorter pulses for HDC capsules result in higher M-band radiation compared to that for plastic capsules. HDC capsules have good 1-D performance because HDC has relatively high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation. HDC ablators have good 2-D performance because the ablator surface is more than an order-of-magnitude smoother than Be or plastic ablators. Refreeze of the ablator near the fuel region can be avoided by appropriate dopant placement. Here we present two HDC ignition designs doped with W and Si. For the design with maximum W concentration of 1.0 at% (and respectively with maximum Si concentration of 2.0 at%): peak velocity = 0.395 (0.397) mm/ns, mass weighted fuel entropy = 0.463 (0.469) kJ/mg/eV, peak core hydrodynamic stagnation pressure = 690 (780) Gbar, and yield = 17.3 (20.2) MJ. 2-D simulations show that yield is close to 80% YoC even with 2.5x of nominal surface roughness on all surfaces. The clean fuel fraction is about 75% at peak velocity. Doping HDC with the required concentration of W and Si is in progress. A first undoped HDC Symcap is scheduled to be fielded later this year.

  9. High-Density Superconducting Cables for Advanced ACTPol (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; hide


    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measure- ment of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 µ m pitch superconducting flexible cables (flex) to connect the detec- tor wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered alu- minum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97%.

  10. High Density Lipoprotein: A Therapeutic Target in Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Philip J. Barter


    Full Text Available High density lipoproteins (HDLs have a number of properties that have the potential to inhibit the development of atherosclerosis and thus reduce the risk of having a cardiovascular event. These protective effects of HDLs may be reduced in patients with type 2 diabetes, a condition in which the concentration of HDL cholesterol is frequently low. In addition to their potential cardioprotective properties, HDLs also increase the uptake of glucose by skeletal muscle and stimulate the synthesis and secretion of insulin from pancreatic β cells and may thus have a beneficial effect on glycemic control. This raises the possibility that a low HDL concentration in type 2 diabetes may contribute to a worsening of diabetic control. Thus, there is a double case for targeting HDLs in patients with type 2 diabetes: to reduce cardiovascular risk and also to improve glycemic control. Approaches to raising HDL levels include lifestyle factors such as weight reduction, increased physical activity and stopping smoking. There is an ongoing search for HDL-raising drugs as agents to use in patients with type 2 diabetes in whom the HDL level remains low despite lifestyle interventions.

  11. [Residual risk: The roles of triglycerides and high density lipoproteins]. (United States)

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried


    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Storage of quantum coherences as phase-labelled local polarization in solid-state nuclear magnetic resonance. (United States)

    Franzoni, María Belén; Acosta, Rodolfo H; Pastawski, Horacio M; Levstein, Patricia R


    Nuclear spins are promising candidates for quantum information processing because their good isolation from the environment precludes the rapid loss of quantum coherence. Many strategies have been developed to further extend their decoherence times. Some of them make use of decoupling techniques based on the Carr-Purcell and Carr-Purcell-Meiboom-Gill pulse sequences. In many cases, when applied to inhomogeneous samples, they yield a magnetization decay much slower than that of the Hahn echo. However, we have proved that these decays cannot be associated with longer decoherence times, as coherences remain frozen. They result from coherences recovered after their storage as local polarization and thus they can be used as memories. We show here how this freezing of the coherent state, which can subsequently be recovered after times longer than the natural decoherence time of the system, can be generated in a controlled way with the use of field gradients. A similar behaviour of homogeneous samples in inhomogeneous fields is demonstrated. It is emphasized that the effects of inhomogeneities in solid-state nuclear magnetic resonance, independently of their origin, should not be disregarded, as they play a crucial role in multipulse sequences.

  13. Experimental study of high density foods for the Space Operations Center (United States)

    Ahmed, S. M.


    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  14. A Strategy to Design High-Density Nanoscale Devices utilizing Vapor Deposition of Metal Halide Perovskite Materials. (United States)

    Hwang, Bohee; Lee, Jang-Sik


    The demand for high memory density has increased due to increasing needs of information storage, such as big data processing and the Internet of Things. Organic-inorganic perovskite materials that show nonvolatile resistive switching memory properties have potential applications as the resistive switching layer for next-generation memory devices, but, for practical applications, these materials should be utilized in high-density data-storage devices. Here, nanoscale memory devices are fabricated by sequential vapor deposition of organolead halide perovskite (OHP) CH3 NH3 PbI3 layers on wafers perforated with 250 nm via-holes. These devices have bipolar resistive switching properties, and show low-voltage operation, fast switching speed (200 ns), good endurance, and data-retention time >10(5) s. Moreover, the use of sequential vapor deposition is extended to deposit CH3 NH3 PbI3 as the memory element in a cross-point array structure. This method to fabricate high-density memory devices could be used for memory cells that occupy large areas, and to overcome the scaling limit of existing methods; it also presents a way to use OHPs to increase memory storage capacity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biomimetic High-Density Lipoproteins from a Gold Nanoparticle Template (United States)

    Luthi, Andrea Jane

    For hundreds of years the field of chemistry has looked to nature for inspiration and insight to develop novel solutions for the treatment of human diseases. The ability of chemists to identify, mimic, and modifiy small molecules found in nature has led to the discovery and development of many important therapeutics. Chemistry on the nanoscale has made it possible to mimic natural, macromolecular structures that may also be useful for understanding and treating diseases. One example of such a structure is high-density lipoprotein (HDL). The goal of this work is to use a gold nanoparticle (Au NP) as a template to synthesize functional mimics of HDL and characterize their structure and function. Chapter 1 details the structure and function of natural HDL and how chemistry on the nanoscale provides new strategies for mimicking HDL. This Chapter also describes the first examples of using nanoparticles to mimic HDL. Chapter 2 reports the synthesis and characterization of biomimetic HDL using different sizes of Au NPs and different surface chemistries and how these variables can be used to tailor the properties of biomimetic HDL. From these studies the optimal strategy for synthesizing biomimetic HDL was determined. In Chapter 3, the optimization of the synthesis of biomimetic HDL is discussed as well as a full characterization of its structure. In addition, the work in this chapter shows that biomimetic HDL can be synthesized on a large scale without alterations to its structure or function. Chapter 4 focuses on understanding the pathways by which biomimetic HDL accepts cholesterol from macrophage cells. The results of these studies demonstrate that biomimetic HDL is able to accept cholesterol by both active and passive pathways of cholesterol efflux. In Chapter 5 the preliminary results of in vivo studies to characterize the pharmacokinetics and pharmacodynamics of biomimetic HDL are presented. These studies suggest that biomimetic HDL traffics through tissues prone to

  16. High density transcriptional mapping of chromosome 21 by hybridization selection

    Energy Technology Data Exchange (ETDEWEB)

    Tassone, F.; Wade, H.; Gardiner, K. [Eleanor Roosevelt Institute, Denver, CO (United States)] [and others


    A transcriptional map of human chromosome 21 is important for the study of Down syndrome, development processes and genome organization. To construct a high density transcriptional map, the technique of cDNA hybrid selection is being applied to a minimal tiling path of YAC clones that span 21q. The cDNA used for selection represents a complex pool of sequences obtained from a variety of fetal and adult tissues and cell lines. Approximately 70-80 YAC clones are sufficient to span 21q; each is individually processed through the selection procedure to obtain a YAC-specific {open_quotes}selected cDNA library{close_quotes}. Survey analysis of each library includes determination of levels of ribosomal contamination, verification of enrichment of control genes, identification of a preliminary number of novel unique sequences, and verification that novel sequences map to the correct YAC and chromosomal regions. This analysis has been completed for 19 YACs that together comprise approximately 10 Mb of non-overlapping DNA, 25% of the long arm. Ribosomal cDNA contamination is low (<10%) and all known genes of appropriate tissue specificity of expression have been recovered, as well as new genes from each YAC. Libraries of expression have been recovered, as well as new genes from each YAC. Libraries from 8 of these YACs are now being subjected to exhaustive analysis to identify all novel genes contained within them and to obtain complete cDNAs and expression analysis for each. Not all regions of the chromosome, however, are equally amenable to these analyses. Selected cDNA libraries from the centromeric YACs are yielding apparently novel genes, but confirmation of map position is problematic. Also of interest is a region of several megabases within the Giemsa dark band, 21q21. Selected cDNA libraries from these YACs so far have yielded no novel genes and support the idea of a genuinely very gene-poor region.

  17. Differential analysis for high density tiling microarray data

    Directory of Open Access Journals (Sweden)

    Kapranov Philipp


    Full Text Available Abstract Background High density oligonucleotide tiling arrays are an effective and powerful platform for conducting unbiased genome-wide studies. The ab initio probe selection method employed in tiling arrays is unbiased, and thus ensures consistent sampling across coding and non-coding regions of the genome. These arrays are being increasingly used to study the associated processes of transcription, transcription factor binding, chromatin structure and their association. Studies of differential expression and/or regulation provide critical insight into the mechanics of transcription and regulation that occurs during the developmental program of a cell. The time-course experiment, which comprises an in-vivo system and the proposed analyses, is used to determine if annotated and un-annotated portions of genome manifest coordinated differential response to the induced developmental program. Results We have proposed a novel approach, based on a piece-wise function – to analyze genome-wide differential response. This enables segmentation of the response based on protein-coding and non-coding regions; for genes the methodology also partitions differential response with a 5' versus 3' versus intra-genic bias. Conclusion The algorithm built upon the framework of Significance Analysis of Microarrays, uses a generalized logic to define regions/patterns of coordinated differential change. By not adhering to the gene-centric paradigm, discordant differential expression patterns between exons and introns have been identified at a FDR of less than 12 percent. A co-localization of differential binding between RNA Polymerase II and tetra-acetylated histone has been quantified at a p-value -13. The prototype R code has been made available as supplementary material [see Additional file 1]. Additional file 1 File archive comprising of prototype R code for gSAM implementation including readme and examples. Click here for file

  18. Surface interactions involved in flashover with high density electronegative gases.

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie


    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  19. Reconstituted high-density lipoprotein modulates activation of human leukocytes.

    Directory of Open Access Journals (Sweden)

    Rolf Spirig

    Full Text Available An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC. Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40, IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.

  20. Reconstituted high-density lipoprotein modulates activation of human leukocytes. (United States)

    Spirig, Rolf; Schaub, Alexander; Kropf, Alain; Miescher, Sylvia; Spycher, Martin O; Rieben, Robert


    An anti-inflammatory effect of reconstituted High Density Lipoprotein (rHDL) has been demonstrated in atherosclerosis and in sepsis models. An increase of adhesion molecules as well as tissue factor expression on endothelial cells in response to inflammatory or danger signals are attenuated by the treatment with rHDL. Here we show the inhibitory effect of rHDL on the activation of human leukocytes in a whole blood assay as well as on monocyte-derived human dendritic cells (DC). Multiplex analysis of human whole blood showed that phytohaemagglutinin (PHA)-induced secretion of the cytokines IL-1β, IL-1RA, IL-2R, IL-6, IL-7, IL-12(p40), IL-15 and IFN-α was inhibited. Furthermore, an inhibitory effect on the production of the chemokines CCL-2, CCL-4, CCL-5, CXCL-9 and CXCL-10 was observed. Activation of granulocytes and CD14+ monocytes by PHA is inhibited dose-dependently by rHDL shown as decreased up-regulation of ICAM-1 surface expression. In addition, we found a strong inhibitory effect of rHDL on toll-like receptor 2 (TLR2)- and TLR4-mediated maturation of DC. Treatment of DC with rHDL prevented the up-regulation of cell surface molecules CD80, CD83 and CD86 and it inhibited the TLR-driven activation of inflammatory transcription factor NF-κB. These findings suggest that rHDL prevents activation of crucial cellular players of cellular immunity and could therefore be a useful reagent to impede inflammation as well as the link between innate and adaptive immunity.

  1. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells. (United States)

    Zhang, Huijie; Oellers, Tobias; Feng, Wenqian; Abdulazim, Tarik; Saw, En Ning; Ludwig, Alfred; Levkin, Pavel A; Plumeré, Nicolas


    Microarray technology has shown great potential for various types of high-throughput screening applications. The main read-out methods of most microarray platforms, however, are based on optical techniques, limiting the scope of potential applications of such powerful screening technology. Electrochemical methods possess numerous complementary advantages over optical detection methods, including its label-free nature, capability of quantitative monitoring of various reporter molecules, and the ability to not only detect but also address compositions of individual compartments. However, application of electrochemical methods for the purpose of high-throughput screening remains very limited. In this work, we develop a high-density individually addressable electrochemical droplet microarray (eDMA). The eDMA allows for the detection of redox-active reporter molecules irrespective of their electrochemical reversibility in individual nanoliter-sized droplets. Orthogonal band microelectrodes are arranged to form at their intersections an array of three-electrode systems for precise control of the applied potential, which enables direct read-out of the current related to analyte detection. The band microelectrode array is covered with a layer of permeable porous polymethacrylate functionalized with a highly hydrophobic-hydrophilic pattern, forming spatially separated nanoliter-sized droplets on top of each electrochemical cell. Electrochemical characterization of single droplets demonstrates that the underlying electrode system is accessible to redox-active molecules through the hydrophilic polymeric pattern and that the nonwettable hydrophobic boundaries can spatially separate neighboring cells effectively. The eDMA technology opens the possibility to combine the high-throughput biochemical or living cell screenings using the droplet microarray platform with the sequential electrochemical read-out of individual droplets.

  2. Relation of black race between high density lipoprotein cholesterol content, high density lipoprotein particles and coronary events (from the Dallas Heart Study). (United States)

    Chandra, Alvin; Neeland, Ian J; Das, Sandeep R; Khera, Amit; Turer, Aslan T; Ayers, Colby R; McGuire, Darren K; Rohatgi, Anand


    Therapies targeting high-density lipoprotein cholesterol content (HDL-C) have not improved coronary heart disease (CHD) outcomes. High-density lipoprotein particle concentration (HDL-P) may better predict CHD. However, the impact of race/ethnicity on the relations between HDL-P and subclinical atherosclerosis and incident CHD events has not been described. Participants from the Dallas Heart Study (DHS), a multiethnic, probability-based, population cohort of Dallas County adults, underwent the following baseline measurements: HDL-C, HDL-P by nuclear magnetic resonance imaging, and coronary artery calcium by electron-beam computed tomography. Participants were followed for a median of 9.3 years for incident CHD events (composite of first myocardial infarction, stroke, coronary revascularization, or cardiovascular death). The study comprised 1,977 participants free of CHD (51% women, 46% black). In adjusted models, HDL-C was not associated with prevalent coronary artery calcium (p = 0.13) or incident CHD overall (hazard ratio [HR] per 1 SD 0.89, 95% confidence interval [CI] 0.76 to 1.05). However, HDL-C was inversely associated with incident CHD among nonblack (adjusted HR per 1 SD 0.67, 95% CI 0.46 to 0.97) but not black participants (HR 0.94, 95% CI 0.78 to 1.13, pinteraction = 0.05). Conversely, HDL-P, adjusted for risk factors and HDL-C, was inversely associated with prevalent coronary artery calcium (p = 0.009) and with incident CHD overall (adjusted HR per 1 SD 0.73, 95% CI 0.62 to 0.86), with no interaction by black race/ethnicity (pinteraction = 0.57). In conclusion, in contrast to HDL-C, the inverse relation between HDL-P and incident CHD events is consistent across ethnicities. These findings suggest that HDL-P is superior to HDL-C in predicting prevalent atherosclerosis as well as incident CHD events across a diverse population and should be considered as a therapeutic target. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, R.J. [Ferraro, Oliver, and Associates, Inc., Knoxville, TN (United States); McConnell, B.W. [Oak Ridge National Lab., TN (United States)


    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  4. Local probing spinel and perovskite complex magnetic systems

    CERN Document Server

    De Pinho Oliveira, Goncalo; Lima Lopes, Armandina Maria

    Materials with multifunctional physical properties are crucial for the modern society, especially those which display a strong coupling between magnetic, lattice and polar degrees of freedom. This by far unexploited capability promises new paradigm-shift technologies for cooling technologies, magnetic data storage, high-frequency magnetic devices, spintronics, and micro-electromechanical systems. Alongside with the understanding of the properties of these materials, the need to improve them and to make them smaller and more efficient is a current goal. Device miniaturization towards very high-density data storage stands also as a trend in modern science and technology. Here, the integration of several functions into one material system has become highly desirable. Research in this area has already highlighted complex magnetic materials with po- tential for multifunctional applications based on spinel type structures like CdMn2O4 or multiferroic CdCr2S4 or even RCrO3 with orthorhombically distorted perovskite ...

  5. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  6. Biofuels Barrier Properties of Polyamide 6 and High Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Fillot L.-A.


    Full Text Available In this paper, a comparison of the biofuels barrier properties of PolyAmide 6 (PA6 and High Density PolyEthylene (HDPE is presented. Model fuels were prepared as mixtures of toluene, isooctane and ethanol, the ethanol volume fraction varying between 0% and 100%. Barrier properties were determined at 40°C by gravimetric techniques or gas chromatography measurements, and it was shown that polyamide 6 permeability is lower than that of polyethylene on a wide range of ethanol contents up to 85% of ethanol (E85 in the biofuel, permeability of PA6 being 100 times lower than that of HDPE for low ethanol content fuels (E5, E0. The time-lags were also compared, and on the whole range of ethanol contents, HDPE permeation kinetics appears to be much faster than that of PA6, the time lag for a 1 mm thick specimens in presence of E10 being 50 days for PA6 and 0.5 days for HDPE. The compositions of the solvent fluxes were analyzed by FID gas chromatography, and it turned out that the solvent flux was mainly made up of ethanol (minimum 95% in the case of PA6, whereas in the case of HDPE, solvent flux was mainly made up of hydrocarbons. The implication of this difference in the solvent flux composition is discussed in the present article, and a side effect called the “fuel exhaustion process” is presented. The influence of the sample thickness was then studied, and for the different biofuels compositions, the pervaporation kinetics of polyamide 6 appeared to evolve with the square of the thickness, a long transitory regime being highlighted in the case of PA6. This result implies that the time needed to characterize the steady state permeability of thick PA6 parts such as fuel tanks can be very long (one year or more, this duration being far superior to the Euros 5 or Euro 6 standard emission measurements time scale. The influence of temperature on the permeability was finally assessed, and the activation energy that is the signature of the temperature

  7. Fuel-rich catalytic combustion of a high density fuel (United States)

    Brabbs, Theodore A.; Merritt, Sylvia A.


    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot. Increasing

  8. Effects of acute exercise on high density lipoprotein cholesterol and high density lipoprotein subfractions in moderately trained females. (United States)

    Gordon, P M; Fowler, S; Warty, V; Danduran, M; Visich, P; Keteyian, S


    Increases in high density lipoprotein cholesterol (HDL-C) levels have previously been reported after moderate exercise bouts lasting less than two hours in men. Little information exists, however, on HDL-C responses after moderate duration exercise in women. Post-exercise HDL-C modifications may appear differently in women because of higher baseline HDL-C concentrations and differences in lipolytic activity. To determine the influence of exercise on acute HDL-C responses in women, 12 trained premenopausal women (22 (4) years old; mean (SD)) who ran 24-48 km a week exercised on a motor driven treadmill at 75% VO2MAX until 3.34 MJ (800 kcal) were expended (72 (9) min). Subjects were all tested during the early follicular phase of their menstrual cycle. Fasting blood samples were obtained before exercise (baseline), immediately after (IPE), one hour after (1 h PE), 24 hours after (24 h PE), and 48 hours after (48 h PE) exercise. Plasma was analysed for HDL-C, HDL2-C, and HDL3-C. A significant increase in HDL-C was observed 48 h PE (p<0.05). HDL3-C increased IPE (p<0.01) but returned to baseline at 1 h PE. In contrast, HDL2-C was not significantly different from baseline at any time point. The rise in HDL-C, however, was attributed to an increase in both HDL2 and HDL3. Moreover, at 48 h PE, the increase in HDL-C correlated highly with changes in HDL2-C (r = 0.92). Thus it appears that exercise of moderate duration can elicit similar post-exercise increases in HDL-C in women to those previously reported in men. However, the changes in HDL subfractions leading to the rise in HDL-C may be different in women.

  9. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering. (United States)

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción


    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  10. A new quasi-stationary, very high density plasma regime on the W7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Jaenicke, R; Baeumel, S; Baldzuhn, J; Brakel, R; Burhenn, R; Ehmler, H; Endler, M; Erckmann, V; Feng, Y; Gadelmeier, F; Geiger, J; Giannone, L; Grigull, P; Hartfuss, H J; Hartmann, D; Hildebrandt, D; Hirsch, M; Holzhauer, E; Kick, M; Kisslinger, J; Klinger, T; Klose, S; Knauer, J; Koenig, R; Kuehner, G; Laqua, H; Maassberg, H; McCormick, K; Narayanan, R; Niedermeyer, H; Pasch, E; Ruhs, N; Rust, N; Saffert, J; Sardei, F; Schneider, F; Schubert, M; Speth, E; Wagner, F; Weller, A; Wenzel, U; Werner, A; Wuersching, E [Max-Planck Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany)


    Stellarators have the intrinsic property of steady state operation. However, on present-day stellarators the pulse length is usually not only limited due to technical reasons, but also by physical problems. Lack of density control and a subsequent radiation collapse terminate the discharges quite often at high densities. To improve the control of the plasma-wall interaction, the island divertor concept was developed for optimized stellarators. To test this divertor concept on W7-AS, all limiters were removed and replaced by ten divertor modules. In subsequent divertor experiments a promising new plasma operational regime has been discovered which is termed 'high density H-mode' (HDH-mode). During the transition into that regime a clear reduction of ELM-like events and turbulent fluctuations is observed. The HDH-mode combines good energy confinement with very low impurity confinement resulting in low core radiation, but high edge-localized radiation. Consequently, stationary discharges at densities of typically 2x10{sup 20} m{sup -3} can be performed within the accessible pulse length of about 1 s. At densities above 3x10{sup 20} m{sup -3} a controlled transition from attached to partially detached plasmas is observed. The still edge-localized radiation reaches 90% of the heating power so that the power load onto the divertor target plates is further reduced. At a lower toroidal field of 0.9 T average {beta}-values could be raised from earlier 2% to more than 3% in magnetic field configurations with rather smooth flux surfaces at the plasma boundary. The recently obtained results render excellent prospects for W7-X, the larger superconducting successor experiment of W7-AS.

  11. High Density Ion Implanted Contiguous Disk Bubble Technology (United States)


    change through implantation 1 4. The films were epitaxially grown on gadolinium gallium garnet (GGG) substrates. GGG is a non-magnetic garnet with an...not appear. x W d ALUMINUM PAD 13 / V+ Si Si"- -A10 3 (SAPPHIRE) - Figure 5-2: SOS magnetodiode structure. d = base length, w = base width, b = film...ambient at 8500C, open contacts to the n+ and p+ regions, deposit aluminum , and pattern the aluminum layer to form 3 the necessary electrodes. The

  12. Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy

    Directory of Open Access Journals (Sweden)

    Rui Hou


    Full Text Available Superconducting magnetic energy storage (SMES systems, in which the proportional-integral (PI method is usually used to control the SMESs, have been used in microgrids for improving the control performance. However, the robustness of PI-based SMES controllers may be unsatisfactory due to the high nonlinearity and coupling of the SMES system. In this study, the energy shaping passivity (ESP-based control strategy, which is a novel nonlinear control based on the methodology of interconnection and damping assignment (IDA, is proposed for robustness improvement of SMES systems. A step-by-step design of the ESP-based method considering the robustness of SMES systems is presented. A comparative analysis of the performance between ESP-based and PI control strategies is shown. Simulation and experimental results prove that the ESP-based strategy achieves the stronger robustness toward the system parameter uncertainties than the conventional PI control. Besides, the use of ESP-based control method can reduce the eddy current losses of a SMES system due to the significant reduction of 2nd and 3rd harmonics of superconducting coil DC current.

  13. Control strategy of wind turbine based on permanent magnet synchronous generator and energy storage for stand-alone systems

    DEFF Research Database (Denmark)

    Deng, Fujin; Liu, Dong; Chen, Zhe


    This paper investigates a variable speed wind turbine based on permanent magnet synchronous generator and a full-scale power converter in a stand-alone system. An energy storage system(ESS) including battery and fuel cell-electrolyzer combination is connected to the DC link of the full-scale power...... for the operation of this variable speed wind turbine in a stand-alone system, where the generator-side converter and the ESS operate together to meet the demand of the loads. This control strategy is competent for supporting the variation of the loads or wind speed and limiting the DC-link voltage of the full......-scale power converter in a small range. A simulation model of a variable speed wind turbine in a stand-alone system is developed using the simulation tool of PSCAD/EMTDC. The dynamic performance of the stand-alone wind turbine system and the proposed control strategy is assessed and emphasized...

  14. Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles

    Directory of Open Access Journals (Sweden)

    Srinivasa Saranu


    Full Text Available Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy energy scales with the particle volume, the storage density in media composed of individual nanoparticles is limited by the onset of superparamagnetism. One solution to overcome this limitation is the use of materials with extremely large magneto-crystalline anisotropy. In this article, we follow an alternative approach by using magneto-elastic interactions to tailor the total effective magnetic anisotropy of the nanoparticles. By applying large biaxial stress to nanoparticles embedded in a non-magnetic film, it is demonstrated that a significant modification of the magnetic properties can be achieved. The stress is applied to the nanoparticles through expansion of the substrate during hydrogen loading. Experimental evidence for stress induced magnetic effects is presented based on temperature-dependent magnetization curves of superparamagnetic Fe particles. The results show the potential of the approach for adjusting the magnetic properties of nanoparticles, which is essential for application in future data storage media.

  15. Weight Loss and Exercise Alter the High-Density Lipoprotein Lipidome and Improve High-Density Lipoprotein Functionality in Metabolic Syndrome. (United States)

    Khan, Anmar A; Mundra, Piyushkumar A; Straznicky, Nora E; Nestel, Paul J; Wong, Gerard; Tan, Ricardo; Huynh, Kevin; Ng, Theodore W; Mellett, Natalie A; Weir, Jacquelyn M; Barlow, Christopher K; Alshehry, Zahir H; Lambert, Gavin W; Kingwell, Bronwyn A; Meikle, Peter J


    High-density lipoprotein (HDL) lipid composition and function may better reflect cardiovascular risk than HDL cholesterol concentration. This study characterized the relationships between HDL composition, metabolism, and function in metabolic syndrome (MetS) patients and how changes in composition after weight loss (WL) and exercise treatments are related to function. Plasma samples from MetS patients (n=95) and healthy individuals (n=40) were used in this study. Subsets of the MetS group underwent 12 weeks of no treatment (n=17), WL (n=19), or WL plus exercise (WLEX; n=17). HDL was isolated using density-gradient ultracentrifugation. The HDL lipidome was analyzed by mass spectrometry, and particle size determined by nuclear magnetic resonance. Cholesteryl ester transfer protein activity and ex vivo HDL cholesterol efflux capacity (CEC) were assessed. The HDL lipidome in the MetS patients was substantially different from that in healthy individuals, mean particle size was smaller, and CEC was lower. Several HDL phospholipid and sphingolipid species were associated with HDL diameter and CEC. The HDL lipidome and particle size were modified toward the healthy individuals after WL and WLEX treatments, with greater effects observed in the latter group. Cholesteryl ester transfer protein activity was reduced after WL and WLEX, and CEC was improved after WLEX. WLEX treatment in MetS patients normalizes the HDL lipidome and particle size profile and enhances CEC. HDL lipids associated with diminished CEC may represent novel biomarkers for early prediction of HDL dysfunction and disease risk and may represent potential therapeutic targets for future HDL therapies. URL: Unique identifier: NCT00163943. © 2017 American Heart Association, Inc.

  16. 1998 Annual Study Report. Research and development of power storage by high-temperature superconducting flywheels (research and development of permanent magnet); 1998 nendo seika hokokusho. Koon chodendo flywheel denryoku chozo kenkyu kaihatsu (eikyu jishaku no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)



    The permanent magnets have been investigated and developed, for eventual commercialization of a 10 MWh power storage system by high-temperature superconducting flywheel. The permanent magnet rotors have been already developed in the previous years using a praseodymium-based magnet (Pr magnet) and neodymium-based sintered magnet (Nd sintered magnet), and the target rotational speed of 30,000 rpm has been attained. For development of the magnetic circuit to produce a stronger and smoother magnetic field, magnetic flux density of the Nd sintered magnet is measured. It shows a lower magnetic flux irregularity than the Pd magnet, but there is still room for further improvement. For development of large-size permanent magnet fabrication techniques, it is confirmed that the large-size Nd sintered magnet can be easily magnetized by partial magnetizing, as is the case with the Pr magnet. In this year, the irregular magnetic flux is three-dimensionally simulated, based on the results obtained in the previous years, to find that the simulated results are in good agreement with the observed ones. The measures to solve the problems are also investigated. It is also confirmed that the large-size ring magnet can be easily magnetized by partial magnetization. (NEDO)

  17. Effect of Modified and Nonmodified Carbon Nanotubes on the Rheological Behavior of High Density Polyethylene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Adewunmi A. Ahmad


    Full Text Available This paper reports the results of studies on the rheological behavior of nanocomposites of high density polyethylene (HDPE with pristine multiwall carbon nanotubes (CNT as well as phenol and 1-octadecanol (C18 functionalized CNT at 1, 2, 3, 4, 5, and 7 wt% loading. The viscosity reduction at 1 wt% CNT follows the order, pristine CNT < phenol functionalized CNT < C18 functionalized CNT. As the filler loading increases from 1 to 2, 3, and 4 wt%, neat HDPE and filled HDPE systems show similar moduli and viscosity, particularly in the low frequency region. As the filler loading increases further to 5 and 7 wt%, the viscosity and moduli become greater than the neat HDPE. The storage modulus, tan, and the Cole-Cole plots show that CNT network formation occurs at higher CNT loading. The critical CNT loading or the rheological percolation threshold, where network formation occurs is found to be strongly dependant on the functionalization of CNT. For pristine CNT, the rheological percolation threshold is around 4 wt%, but for functionalized CNT it is around 7 wt%. The surface morphologies of CNT and functionalized CNT at 1 wt% loading showed good dispersion while at 7 wt% loading, dispersion was also achieved, but there are few regions with agglomeration of CNT.

  18. Shape stabilised phase change materials (SSPCMs): High density polyethylene and hydrocarbon waxes

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Mulan, E-mail:, E-mail:; Basheer, P. A. M., E-mail:, E-mail: [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, BT9 5AG (United Kingdom); Bai, Yun, E-mail: [Department of Civil, Environmental and Geomatic Engineering, University College London, WC1E 6BT (United Kingdom); McNally, Tony, E-mail: [WMG, University of Warwick, CV4 7AL (United Kingdom)


    Shape stabilised phase change materials (SSPCMs) based on high density polyethylene (HDPE) with high (HPW, T{sub m}=56-58 °C) and low (L-PW, T{sub m}=18-23 °C) melting point waxes were prepared by melt-mixing in a twin-screw extruder and their potential in latent heat thermal energy storage (LHTES) applications for housing assessed. The structure and morphology of these blends were investigated by scanning electron microscopy (SEM). Both H-PW and L-PW were uniformly distributed throughout the HDPE matrix. The melting point and latent heat of the SSPCMs were determined by differential scanning calorimetry (DSC). The results demonstrated that both H-PW and L-PW have a plasticisation effect on the HDPE matrix. The tensile and flexural properties of the samples were measured at room temperature (RT, 20±2 °C) and 70 °C, respectively. All mechanical properties of HDPE/H-PW and HDPE/L-PW blends decreased from RT to 70 °C. In all instances at RT, modulus and stress, irrespective of the mode of deformation was greater for the HDPE/H-PW blends. However, at 70 °C, there was no significant difference in mechanical properties between the HDPE/H-PW and HDPE/L-PW blends.

  19. Nanoscale cross-point diode array accessing embedded high density PCM (United States)

    Wang, Heng; Liu, Yan; Liu, Bo; Gao, Dan; Xu, Zhen; Zhan, Yipeng; Song, Zhitang; Feng, Songlin


    The main bottlenecks in the development of current embedded phase change memory (PCM) technology are the current density and data storage density. In this paper, we present a PCM with 4F2 cross-point diode selector and blade-type bottom electrode contact (BEC). A blade TiN BEC with a cross-sectional area of 630 nm2 (10 nm × 63 nm) reduces the reset current down to about 750 μA. The optimized diode array could supply this 750 μA reset current at about 1.7 V and low off-current 1 × 10-4 μA at about -5.05 V. The on-off ratio of this device is 7.5 × 106. The proposed nanoscale PCM device simultaneously exhibits an operation voltage as low as 3 V and a high density drive current with an ultra small cell size of 4F2 (108 nm × 108 nm). Over 106 cycling endurance properties guarantee that it can work effectively on the embedded memory.

  20. High-density speckle contrast optical tomography (SCOT) for three dimensional tomographic imaging of the small animal brain. (United States)

    Dragojević, Tanja; Varma, Hari M; Hollmann, Joseph L; Valdes, Claudia P; Culver, Joseph P; Justicia, Carles; Durduran, Turgut


    High-density speckle contrast optical tomography (SCOT) utilizing tens of thousands of source-detector pairs, was developed for in vivo imaging of blood flow in small animals. The reduction in cerebral blood flow (CBF) due to local ischemic stroke in a mouse brain was transcanially imaged and reconstructed in three dimensions. The reconstructed volume was then compared with corresponding magnetic resonance images demonstrating that the volume of reduced CBF agrees with the infarct zone at twenty-four hours. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.


    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  2. Comparison of synthetic high density lipoprotein (HDL) contrast agents for MR imaging of atherosclerosis. (United States)

    Cormode, David P; Chandrasekar, Rohith; Delshad, Amanda; Briley-Saebo, Karen C; Calcagno, Claudia; Barazza, Alessandra; Mulder, Willem J M; Fisher, Edward A; Fayad, Zahi A


    Determining arterial macrophage expression is an important goal in the molecular imaging of atherosclerosis. Here, we compare the efficacy of two synthetic, high density lipoprotein (HDL) based contrast agents for magnetic resonance imaging (MRI) of macrophage burden. Each form of HDL was labeled with gadolinium and rhodamine to allow MRI and fluorescence microscopy. Either the 37 or 18 amino acid peptide replaced the apolipoprotein A-I in these agents, which were termed 37pA-Gd or 18A-Gd. The diameters of 37pA-Gd and 18A-Gd are 7.6 and 8.0 nm, respectively, while the longitudinal relaxivities are 9.8 and 10.0 (mM s)(-1). 37pA has better lipid binding properties. In vitro tests with J774A.1 macrophages proved the particles possessed the functionality of HDL by eliciting cholesterol efflux and were taken up in a receptor-like fashion by the cells. Both agents produced enhancements in atherosclerotic plaques of apolipoprotein E knockout mice of approximately 90% (n = 7 per agent) and are macrophage specific as evidenced by confocal microscopy on aortic sections. The half-lives of 37pA-Gd and 18A-Gd are 2.6 and 2.1 h, respectively. Despite the more favorable lipid interactions of 37pA, both agents gave similar, excellent contrast for the detection of atherosclerotic macrophages using MRI.

  3. High-density diffuse optical tomography of term infant visual cortex in the nursery (United States)

    Liao, Steve M.; Ferradal, Silvina L.; White, Brian R.; Gregg, Nicholas; Inder, Terrie E.; Culver, Joseph P.


    Advancements in antenatal and neonatal medicine over the last few decades have led to significant improvement in the survival rates of sick newborn infants. However, this improvement in survival has not been matched by a reduction in neurodevelopmental morbidities with increasing recognition of the diverse cognitive and behavioral challenges that preterm infants face in childhood. Conventional neuroimaging modalities, such as cranial ultrasound and magnetic resonance imaging, provide an important definition of neuroanatomy with recognition of brain injury. However, they fail to define the functional integrity of the immature brain, particularly during this critical developmental period. Diffuse optical tomography methods have established success in imaging adult brain function; however, few studies exist to demonstrate their feasibility in the neonatal population. We demonstrate the feasibility of using recently developed high-density diffuse optical tomography (HD-DOT) to map functional activation of the visual cortex in healthy term-born infants. The functional images show high contrast-to-noise ratio obtained in seven neonates. These results illustrate the potential for HD-DOT and provide a foundation for investigations of brain function in more vulnerable newborns, such as preterm infants.

  4. Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-density polyethylene composites

    Directory of Open Access Journals (Sweden)


    Full Text Available Natural fibers are widely used as plastic composite material reinforcements. In this work, composites of postconsumer high-density polyethylene (HDPE reinforced with sisal fibers were prepared. PE and sisal fibers were chemically modified to improve their compatibilities, try to increase the hydrophobic character of the sisal fiber and hydrophilic character HDPE. Sisal was mercerized with a NaOH solution and acetylated and the PE was oxidized with KMnO4 solution. The chemically modified fibers were characterized by Fourier Transformed Infrared Spectroscopy (FTIR and 13C Nuclear Magnetic Resonance Spectroscopy (13C NMR. The composites were prepared by extrusion of modified and unmodified materials containing either 5 or 10 wt% fibers. The morphology of the obtained materials was evaluated by SEM. The fiber chemical modification improves it adhesion with matrix, but not benefit were obtained with HDPE oxidation. Flexural and impact tests demonstrated that the composites prepared with modified sisal fibers and unmodified PE present improved mechanical performance compared to pure PE.

  5. Low-energy effective worldsheet theory of a non-Abelian vortex in high-density QCD revisited: A regular gauge construction (United States)

    Chatterjee, Chandrasekhar; Nitta, Muneto


    Color symmetry is spontaneously broken in quark matter at high density as a consequence of di-quark condensations with exhibiting color superconductivity. Non-Abelian vortices or color magnetic flux tubes stably exist in the color-flavor locked phase at asymptotically high density. The effective worldsheet theory of a single non-Abelian vortex was previously calculated in the singular gauge to obtain the C P2 model [1,2]. Here, we reconstruct the effective theory in a regular gauge without taking a singular gauge, confirming the previous results in the singular gauge. As a byproduct of our analysis, we find that non-Abelian vortices in high-density QCD do not suffer from any obstruction for the global definition of a symmetry breaking.

  6. Short-term cooling increases serum triglycerides and small high-density lipoprotein levels in humans. (United States)

    Hoeke, Geerte; Nahon, Kimberly J; Bakker, Leontine E H; Norkauer, Sabine S C; Dinnes, Donna L M; Kockx, Maaike; Lichtenstein, Laeticia; Drettwan, Diana; Reifel-Miller, Anne; Coskun, Tamer; Pagel, Philipp; Romijn, Fred P H T M; Cobbaert, Christa M; Jazet, Ingrid M; Martinez, Laurent O; Kritharides, Leonard; Berbée, Jimmy F P; Boon, Mariëtte R; Rensen, Patrick C N

    Cold exposure and β3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by (1)H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [(3)H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  7. High Density Lipoproteins and Arteriosclerosis: Role of Cholesterol Efflux and Reverse Cholesterol Transport

    National Research Council Canada - National Science Library

    von Eckardstein, Arnold; Nofer, Jerzy Roch; Assmann, Gerd


    Abstract—High density lipoprotein (HDL) cholesterol is an important risk factor for coronary heart disease, and HDL exerts various potentially antiatherogenic properties, including the mediation of reverse transport of cholesterol...

  8. Human plasma phospholipid transfer protein increases the antiatherogenic potential of high density lipoproteins in transgenic mice

    NARCIS (Netherlands)

    M.J. van Haperen (Rien); A. van Tol (Arie); P. Vermeulen; M. Jauhiainen; T. van Gent (Teus); P.M. van den Berg (Paul); S. Ehnholm (Sonja); A.W.M. van der Kamp (Arthur); M.P.G. de Crom (Rini); F.G. Grosveld (Frank)


    textabstractPlasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoprotein particles and alters high density lipoprotein (HDL) subfraction patterns in vitro, but its physiological function is poorly understood. Transgenic mice that overexpress

  9. A Decentralized Control Strategy for High Density Material Flow Systems with Automated Guided Vehicles


    Schwab, Melanie


    This work presents a universal decentralized control strategy for grid-based high-density material flow systems with automated guided vehicles and gives insights into the system behavior as well as the solution quality.

  10. Moderate doses of alcoholic beverages with dinner and postprandial high density lipoprotein composition

    NARCIS (Netherlands)

    Hendriks, H.F.J.; Veenstra, J.; Tol, A. van; Groener, J.E.M.; Schaafsma, G.


    Moderate alcohol consumption is associated with a reduced risk of coronary heart disease. In this study, postprandial changes in plasma lipids, high-density lipoprotein (HDL) composition and cholesteryl ester transfer protein (CETP) and lecithin: cholesterol acyltransferase (LCAT) activity levels

  11. The Influence of Opacity on Hydrogen Line Emission and Ionisation Balance in High Density Divertor Plasmas


    Behringer, K.


    The influence of opacity on hydrogen line emission and ionisation balance in high density divertor plasmas. - Garching bei München : Max-Planck-Inst. für Plasmaphysik, 1997. - 21 S. - (IPP-Report ; 10/5)

  12. Test of high density UC targets development at Gatchina for neutron rich radioactive beam facilities

    CERN Document Server

    Lhersonneau, G; Lanchais, A; Rizzi, V; Tecchio, L.B; Bajeat, O; Essabaa, S; Lau, C; Cheikh Mhamed, M; Roussière, B; Barzakh, A.E; Fedorov, D.V; lonan, A.M; lvanov, V.S; Mezilev, K.A; Moroz, F.V; Orlov, S.YU; Panteleevc, V.N; Volkovc, YU.M; Dubois, M; Eléon, C; Gaubert, G; Jardin, P; Leroy, R; Saint Laurent, M.G; Villari, A.C.C; Stroe, L; 10.1016/j.nimb.2008.05.033


    Production of on-line mass separator neutron rich isotopes using fission induced by 1 GeV protons on high density uranium carbide has been investigate and results compared with the low density targets yields.

  13. High-density lipoproteins and adrenal steroidogenesis : A population-based study

    NARCIS (Netherlands)

    Buitenwerf, Edward; Kerstens, Michiel N.; Links, Thera P.; Kema, Ido P.; Dullaart, Robin P. F.

    BACKGROUND: Cholesterol trafficked within plasma lipoproteins, in particular high-density lipoproteins (HDL), may represent an important source of cholesterol that is required for adrenal steroidogenesis. Based on a urinary gas chromatography method, compromised adrenal function has been suggested

  14. Traffic Signal Synchronization in the Saturated High-Density Grid Road Network

    National Research Council Canada - National Science Library

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye


    ... has inspired several urban road network development trends, including increased use of the high-density grid road network (HGRN). The structure of the HGRN is the orthogonal checkerboard pattern,...

  15. Fundamental Study of Interactions Between Pulsed High-Density Plasmas and Materials for Space Propulsion (United States)


    interaction phenomena. The high density thermal plasma source was also used to produce surface tracking high density non-thermal plasma discharges...state. A set of high speed image sequences were used to determine the dielectric tracking path and propagation velocity of the non- thermal streamer...represented by a slab of atoms supported by a frozen layer held in the position of the bulk. A thermostat above this frozen layer is used to remove

  16. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array (United States)

    Freitas, Barry L.


    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  17. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth. (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark


    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells (United States)

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie


    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  19. Evaluating Approaches to Rendering Braille Text on a High-Density Pin Display. (United States)

    Morash, Valerie S; Russomanno, Alexander; Gillespie, R Brent; OModhrain, Sile


    Refreshable displays for tactile graphics are typically composed of pins that have smaller diameters and spacing than standard braille dots. We investigated configurations of high-density pins to form braille text on such displays using non-refreshable stimuli produced with a 3D printer. Normal dot braille (diameter 1.5 mm) was compared to high-density dot braille (diameter 0.75 mm) wherein each normal dot was rendered by high-density simulated pins alone or in a cluster of pins configured in a diamond, X, or square; and to "blobs" that could result from covering normal braille and high-density multi-pin configurations with a thin membrane. Twelve blind participants read MNREAD sentences displayed in these conditions. For high-density simulated pins, single pins were as quickly and easily read as normal braille, but diamond, X, and square multi-pin configurations were slower and/or harder to read than normal braille. We therefore conclude that as long as center-to-center dot spacing and dot placement is maintained, the dot diameter may be open to variability for rendering braille on a high density tactile display.

  20. FY 1999 Report on research and development of power storage by high-temperature superconducting flywheel. Research and development of permanent magnet; 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu eikyu jishaku no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    The R and D program is implemented for permanent magnet, as part of the project aimed at commercialization of a 10 MWh-class high-temperature superconducting magnetic bearing type power storage system. A speed of rotation of 28,570 rpm is attained by using an iron intermediate ring for a Pr permanent magnet rotator and reinforcing the rotator with a plastic hoop reinforced with carbon fibers three-fold (CFPR hoop). The speed is increased to 31,300 rpm by interlacing carbon fibers also in the radial direction and replacing iron for the intermediate ring by titanium. The highest speed of rotation of 33,506 rpm is realized by the rotator of permanent magnet of sintered Nd. The magnetic circuit of stronger, more smooth magnetic field needs the permanent magnet of less uneven magnetic flux. The magnet is of a monoaxially anisotropic rare-earth metal, with four-fold magnetic ring bodies having fan-shaped small pieces arranged on each ring. Uneven magnetic flux occurs at the joint between these small pieces. The one-body-ring magnet of radially anisotropic, sintered Nd is developed, and incorporated in the repulsion type magnetic circuit, to reduce unevenness of the magnetic flux. (NEDO)

  1. Improved energy storage, magnetic and electrical properties of aligned, mesoporous and high aspect ratio nanofibers of spinel-NiMn2O4 (United States)

    Bhagwan, Jai; Rani, Stuti; Sivasankaran, V.; Yadav, K. L.; Sharma, Yogesh


    Spinel-NiMn2O4 (NMO) nanofibers of high aspect ratio, high surface area (50 m2 g-1) and homogeneous pore size distribution are fabricated by electrospinning process and characterized by XRD, FTIR, XPS, BET, FESEM, TEM techniques. Further, multifunctional properties (energy storage properties, magnetic and electrical properties) of NMO nanofibers are also examined. High specific capacitance (Cs) of 410 (±5) F g-1 at 1 A g-1, good rate capability and high cycling stability (up to 5000 cycles) are demonstrated by NMO nanofibers. Furthermore, NMO-based solid-state symmetric supercapacitor (SSSC) shows a high Cs of 170 (±5) F g-1 at 0.5 A g-1 in potential range of 0.0V-2.0 V and exhibits excellent energy density of ∼95 W h kg-1 and power density of 1030 W Kg-1. The above storage properties i.e. high energy density and output voltage of 2.0 V are further supplemented by lighting up a red colored LED (1.8 V @ current 20 mA) at least for 5 min. The ionic diffusion coefficient of NMO based electrode is found to be ∼4.84 × 10-11 cm2 s-1. Magnetic and dielectric properties of NMO nanofibers are also examined and results are discussed.

  2. High-density marker imputation accuracy in sixteen French cattle breeds. (United States)

    Hozé, Chris; Fouilloux, Marie-Noëlle; Venot, Eric; Guillaume, François; Dassonneville, Romain; Fritz, Sébastien; Ducrocq, Vincent; Phocas, Florence; Boichard, Didier; Croiseau, Pascal


    Genotyping with the medium-density Bovine SNP50 BeadChip® (50K) is now standard in cattle. The high-density BovineHD BeadChip®, which contains 777,609 single nucleotide polymorphisms (SNPs), was developed in 2010. Increasing marker density increases the level of linkage disequilibrium between quantitative trait loci (QTL) and SNPs and the accuracy of QTL localization and genomic selection. However, re-genotyping all animals with the high-density chip is not economically feasible. An alternative strategy is to genotype part of the animals with the high-density chip and to impute high-density genotypes for animals already genotyped with the 50K chip. Thus, it is necessary to investigate the error rate when imputing from the 50K to the high-density chip. Five thousand one hundred and fifty three animals from 16 breeds (89 to 788 per breed) were genotyped with the high-density chip. Imputation error rates from the 50K to the high-density chip were computed for each breed with a validation set that included the 20% youngest animals. Marker genotypes were masked for animals in the validation population in order to mimic 50K genotypes. Imputation was carried out using the Beagle 3.3.0 software. Mean allele imputation error rates ranged from 0.31% to 2.41% depending on the breed. In total, 1980 SNPs had high imputation error rates in several breeds, which is probably due to genome assembly errors, and we recommend to discard these in future studies. Differences in imputation accuracy between breeds were related to the high-density-genotyped sample size and to the genetic relationship between reference and validation populations, whereas differences in effective population size and level of linkage disequilibrium showed limited effects. Accordingly, imputation accuracy was higher in breeds with large populations and in dairy breeds than in beef breeds. More than 99% of the alleles were correctly imputed if more than 300 animals were genotyped at high-density. No

  3. Construction, arraying, and high-density screening of large insert libraries of human chromosomes X and 21: Their potential use as reference libraries

    Energy Technology Data Exchange (ETDEWEB)

    Nizetic, D.; Zehetner, G.; Monaco, A.P.; Gellen, L.; Lehrach, H. (Imperial Cancer Research Fund, London (England)); Young, B.D. (St. Bartholomew' s Hospital, London (England))


    The authors have constructed cosmid libraries from flow-sorted human chromosomes X and 21, each of which contains {gt}30 genome equivalents, and have developed systems allowing permanent storage of primary clones, easy screening of libraries in high-density filter formats, and the simultaneous generation of fingerprinting and mapping data on the same set of cosmid clones. Clones are picked into microtiter plate wells and stored at {minus}70C. A semiautomatic robot system allows the generation of filter replicas containing up to 10,000 clones per membrane. Sets of membranes containing 15-20 chromosome equivalents of both chromosomes will be used for the construction of ordered clone libraries by hybridization fingerprinting protocols. The authors describe the construction of the libraries and demonstrate the use of high-density screening filters in oligonucleotide probe hybridizations and the isolation of cosmids by hybridization with probes from the X chromosome.

  4. High density nitrogen-vacancy sensing surface created via He{sup +} ion implantation of {sup 12}C diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kleinsasser, Ed E., E-mail: [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States); Stanfield, Matthew M.; Banks, Jannel K. Q. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Zhu, Zhouyang; Li, Wen-Di [HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518000 (China); Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong (China); Acosta, Victor M. [Department of Physics and Astronomy, Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Watanabe, Hideyuki [Correlated Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Itoh, Kohei M. [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Fu, Kai-Mei C., E-mail: [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States); Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)


    We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10{sup 17 }cm{sup −3} nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed 200 kHz spin resonance linewidth over 10 times narrower.

  5. Realization of zero-field skyrmions with high-density via electromagnetic manipulation in Pt/Co/Ta multilayers (United States)

    He, Min; Peng, Licong; Zhu, Zhaozhao; Li, Gang; Cai, Jianwang; Li, Jianqi; Wei, Hongxiang; Gu, Lin; Wang, Shouguo; Zhao, Tongyun; Shen, Baogen; Zhang, Ying


    Taking advantage of the electron-current ability to generate, stabilize, and manipulate skyrmions prompts the application of skyrmion multilayers in room-temperature spintronic devices. In this study, the robust high-density skyrmions are electromagnetically generated from Pt/Co/Ta multilayers using Lorentz transmission electron microscopy. The skyrmion density is tunable and can be significantly enhanced. Remarkably, these generated skyrmions after optimized manipulation sustain at zero field with both the in-plane current and perpendicular magnetic field being switched off. The skyrmion generation and manipulation method demonstrated in this study opens up an alternative way to engineer skyrmion-based devices. The results also provide key data for further theoretical study to discover the nature of the interaction between the electric current and different spin configurations.

  6. A Low Cost High Density Sensor Network for Air Quality at London Heathrow Airport (United States)

    Bright, V.; Mead, M. I.; Popoola, O. A.; Baron, R. P.; Saffell, J.; Stewart, G.; Kaye, P.; Jones, R.


    ) resolution data over a 12 month period with data transmitted back to a server every 2 hours. In this paper we present the data capture and storage, data accessibility, data mining and visualisation techniques applied to the measurements of the SNAQ Heathrow high density sensor network, the preliminary results of which provide an insight into the potential use of such networks in characterising air quality, emissions and validating dispersion models on local scales. We also present a web based interface developed for the sensor network that allows users to access archived data and assess meteorological conditions, atmospheric dispersion, pollutant levels and emission rates.

  7. Biochemical assessment of red blood cells during storage by (1)H nuclear magnetic resonance spectroscopy. Identification of a biomarker of their level of protection against oxidative stress. (United States)

    Pertinhez, Thelma A; Casali, Emanuela; Lindner, Luisa; Spisni, Alberto; Baricchi, Roberto; Berni, Pamela


    Blood transfusion is an established therapeutic practice. The characteristics of blood components at different storage times are expected to affect the efficacy of transfusion therapy. Metabolic profiling by nuclear magnetic resonance (NMR) spectroscopy requires little or no sample treatment and allows identification of more than 50 soluble metabolites in a single experiment. The aim of this study was to assess the metabolic behaviour of red blood cells during 42 days of storage in blood bank conditions. Red blood cells (RBC), collected from eight healthy male donors, aged 25-50 years, were prepared as prestorage leukoreduced erythrocyte concentrates and stored under standard blood bank conditions. Samples taken at various storage times were separated in two fractions: the supernatant, recovered after centrifugation, and the red blood cell lysate obtained after protein depletion by ultrafiltration. The metabolic profile of the red blood cells was determined from analysis of (1)H-NMR spectra. The red blood cell supernatant was studied to track the consumption of the preservative additives and to detect and quantify up to 30 metabolites excreted by the erythrocytes. The NMR spectra of the RBC lysate provided complementary information on some biochemical pathways and set the basis for building a time-dependent red blood cell metabolic profile. We proved the analytical power of (1)H-NMR spectroscopy to study red blood cell metabolism under blood bank conditions. A potential biomarker able to provide information on the level of cellular oxidative stress protection was identified. Our data support the hypothesis that a more detailed knowledge of metabolic modifications during storage opens the way to the development of new and more effective protocols for red blood cell conservation and patient-oriented transfusion therapy.

  8. Spectral measurements of lower hybrid waves in the high-density multi-pass regime of Alcator C-Mod (United States)

    Baek, Seung Gyou; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Faust, I. C.; Hubbard, A. E.; Labombard, B. L.; Porkolab, M.; Takase, Y.; Shinya, T.; Vieira, R.; Mucic, N.


    Spectral measurements of lower hybrid waves have been performed on the diverted Alcator C-Mod tokamak with an aim of identifying the root cause of the observed anomalous loss of LH current drive efficiency in the high-density multi-pass regime. A recent experiment conducted in the reversed-field configuration confirms the previously observed magnetic-configuration dependent parametric decay instabilities (PDI) in the forward-field configuration at ne ~ 1 . 1 ×1020 m-2, suggesting edge/scrape-off-layer plasmas are playing an important role in determining the PDI onset. As the plasma density is raised toward ne ~ 1 . 5 ×1020 m-2, decay spectra are observed to be dominated by PDI that are excited at the low-field-side (LFS) of the tokamak, regardless of magnetic-configuration types. While the quantification of pump depletion due to PDI needs further investigations, the measured pump peak power at the high-field-side is observed to maintain its strength up to ne ~ 1 . 5 ×1020 m-2, indicating multi-pass propagations of LH waves. This also implies that strong single-pass Landau absorption could help recover the expected current drive efficiency. A set of LH magnetic probes is being designed to further examine how much the launched parallel wavenumber spectrum is affected by nonlinear effects on the first pass from the launcher to the plasma at the LFS. Supported by DOE Award DE-FC02-99ER54512.

  9. Memory mass storage

    CERN Document Server

    Campardo, Giovanni; Iaculo, Massimo


    Covering all the fundamental storage technologies such as semiconductor, magnetic, optical and uncommon, this volume details their core characteristics. In addition, it includes an overview of the 'biological memory' of the human brain and its organization.

  10. The effect of water stress on super-high- density 'Koroneiki' olive oil quality. (United States)

    Dag, Arnon; Naor, Amos; Ben-Gal, Alon; Harlev, Guy; Zipori, Isaac; Schneider, Doron; Birger, Reuven; Peres, Moti; Gal, Yoni; Kerem, Zohar


    Over the last two decades, the area of cultivated super-high-density olive orchards has increased rapidly. Water stress is an important tool in super-high-density orchards to reduce tree growth and promote suitability for overhead mechanical harvesters. Little is known regarding the effect of water stress in super-high-density orchards on oil quality parameters. In this study the effect of irrigation rate on oil quality parameters was evaluated in a six-year-old super-high-density 'Koreneiki' olive orchard for five consecutive seasons. Five water status levels, determined by irrigating in order to maintain various midday stem water potential threshold values (-1.5, -2, -2.5, -3 and -4 MPa), were applied during the oil accumulation stage. The MUFA/PUFA ratio and free fatty acid content generally decreased as a function of increasing tree water stress. In most seasons a reduction in polyphenols was found with decreasing irrigation level. Peroxide value was not affected by the water stress level. The present study demonstrates that limiting irrigation and exposure of olive trees to water stress in a super-high-density orchard lowers free fatty acid content and therefore benefits oil quality. However, the decreased MUFA/PUFA ratio and the reduction in polyphenol content that were also found under increased water stress negatively influence oil quality. © 2014 Society of Chemical Industry.

  11. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures (United States)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.


    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  12. MAGNET

    CERN Multimedia

    by B. Curé


    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  13. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data (United States)

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael


    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.

  14. Triglycerides and high-density lipoprotein cholesterol are associated with insulinemia in adolescents

    Directory of Open Access Journals (Sweden)

    Ramírez-López Guadalupe


    Full Text Available OBJECTIVE: The aim of this study was to evaluate the association between lipids and insulin concentration in adolescents. MATERIAL AND METHODS: A cross-sectional study of 350 adolescents aged 14-19 years old from a public high school in Guadalajara, in the state of Jalisco, Mexico, was conducted. Fasting insulin concentration was determined using microparticle enzyme immunoassay; total cholesterol and triglycerides were detected by standard enzymatic procedures; and low- and high-density lipoproteins were found using standard precipitation methods. Statistical analysis included linear multivariate regression. RESULTS: Serum triglycerides were associated positively with insulin fasting (beta= 0.003, p= 0.0001 and high-density lipoprotein cholesterol was negatively associated with insulin fasting in male adolescents 18-19 years old (beta= -0.03, p= 0.012. CONCLUSIONS: The relationships between triglycerides and insulin and between high-density lipoprotein cholesterol and insulin are already present in adolescence.

  15. The final stage of gravitational collapse for high density fluid medium

    Energy Technology Data Exchange (ETDEWEB)

    Souza, R. G. [Physics Department , Roraima Federal University, 69304-000 Boa Vista, RR (Brazil); De Campos, M. [Physics Department, Roraima Federal University, 69304-000 Boa Vista, RR (Brazil) and Astronomy Department, Sao Paulo University, 05508-900 Sao Paulo, SP (Brazil)


    The High density high density fluids can be represented by a stiff matter state equation P={rho} and also by the Hagedorn state equation. The first is constructed using a lagrangian that allows bare nucleons to interact attractively via scalar meson exchange, and repulsively by a more massive vector meson exchange; the second consider that for large mass the spectrum of hadrons grows exponentially, namely {rho}(m) {approx}exp(m/T{sub H}), where T{sub H} is the Hagedorn temperature, resulting the state equation P = P{sub 0}+{rho}{sub 0}ln({rho}/{rho}{sub 0}). We study the gravitational collapse for a high density fluid, considering a Hagedorn state equation in a presence of a vacuum component.

  16. Liver fibrosis in type I Gaucher disease: magnetic resonance imaging, transient elastography and parameters of iron storage.

    Directory of Open Access Journals (Sweden)

    Anneloes E Bohte

    Full Text Available Long term liver-related complications of type-1 Gaucher disease (GD, a lysosomal storage disorder, include fibrosis and an increased incidence of hepatocellular carcinoma. Splenectomy has been implicated as a risk factor for the development of liver pathology in GD. High ferritin concentrations are a feature of GD and iron storage in Gaucher cells has been described, but iron storage in the liver in relation to liver fibrosis has not been studied. Alternatively, iron storage in GD may be the result of iron supplementation therapy or regular blood transfusions in patients with severe cytopenia. In this pilot study, comprising 14 type-1 GD patients (7 splenectomized, 7 non-splenectomized and 7 healthy controls, we demonstrate that liver stiffness values, measured by Transient Elastography and MR-Elastography, are significantly higher in splenectomized GD patients when compared with non-splenectomized GD patients (p = 0.03 and p = 0.01, respectively. Liver iron concentration was elevated (>60±30 µmol/g in 4 GD patients of whom 3 were splenectomized. No relationship was found between liver stiffness and liver iron concentration. HFE gene mutations were more frequent in splenectomized (6/7 than in non-splenectomized (2/7 participants (p = 0.10. Liver disease appeared more advanced in splenectomized than in non-splenectomized patients. We hypothesize a relationship with excessive hepatic iron accumulation in splenectomized patients. We recommend that all splenectomized patients, especially those with evidence of substantial liver fibrosis undergo regular screening for HCC, according to current guidelines.

  17. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium (United States)

    Goodwin, Conrad A. P.; Ortu, Fabrizio; Reta, Daniel; Chilton, Nicholas F.; Mills, David P.


    Lanthanides have been investigated extensively for potential applications in quantum information processing and high-density data storage at the molecular and atomic scale. Experimental achievements include reading and manipulating single nuclear spins, exploiting atomic clock transitions for robust qubits and, most recently, magnetic data storage in single atoms. Single-molecule magnets exhibit magnetic hysteresis of molecular origin—a magnetic memory effect and a prerequisite of data storage—and so far lanthanide examples have exhibited this phenomenon at the highest temperatures. However, in the nearly 25 years since the discovery of single-molecule magnets, hysteresis temperatures have increased from 4 kelvin to only about 14 kelvin using a consistent magnetic field sweep rate of about 20 oersted per second, although higher temperatures have been achieved by using very fast sweep rates (for example, 30 kelvin with 200 oersted per second). Here we report a hexa-tert-butyldysprosocenium complex—[Dy(Cpttt)2][B(C6F5)4], with Cpttt = {C5H2tBu3-1,2,4} and tBu = C(CH3)3—which exhibits magnetic hysteresis at temperatures of up to 60 kelvin at a sweep rate of 22 oersted per second. We observe a clear change in the relaxation dynamics at this temperature, which persists in magnetically diluted samples, suggesting that the origin of the hysteresis is the localized metal-ligand vibrational modes that are unique to dysprosocenium. Ab initio calculations of spin dynamics demonstrate that magnetic relaxation at high temperatures is due to local molecular vibrations. These results indicate that, with judicious molecular design, magnetic data storage in single molecules at temperatures above liquid nitrogen should be possible.

  18. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.


    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  19. LTE Micro-cell Deployment for High-Density Railway Areas

    DEFF Research Database (Denmark)

    Sniady, Aleksander; Kassab, Mohamed; Soler, José


    Long Term Evolution (LTE) is a serious candidate for the future releases of the European Rail Traffic Management System (ERTMS). LTE offers more capacity and supports new communication-based applications and services for railways. Nevertheless, even with this technology, the classical macro......-cell radio deployments reach overload, especially in high-density areas, such as major train stations. In this paper, an LTE micro-cell deployment is investigated in high-density railway areas. Copenhagen Main Station is considered as a realistic deployment study case, with a set of relevant railway...

  20. Research on and Application to BH-HTC High Density Cementing Slurry System on Tarim Region (United States)

    Yuanhong, Song; Fei, Gao; Jianyong, He; Qixiang, Yang; Jiang, Yang; Xia, Liu


    A large section of salt bed is contented in Tarim region Piedmont which constructs complex geological conditions. For high-pressure gas well cementing difficulties from the region, high density cement slurry system has been researched through reasonable level of particle size distribution and second weighting up. The results of laboratory tests and field applications show that the high density cementing slurry system is available to Tarim region cementing because this system has a well performance in slurry stability, gas breakthrough control, fluidity, water loss, and strength.

  1. Interplay between spin polarization and color superconductivity in high density quark matter

    DEFF Research Database (Denmark)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança


    Here, it is suggested that a four-point interaction of the tensor type may lead to spin polarization in quark matter at high density. It is found that the two-flavor superconducting phase and the spin polarized phase correspond to distinct local minima of a certain generalized thermodynamical...... potential. It follows that a transition from one to the other phase occurs, passing through true minima with both a spin polarization and a color superconducting gap. It is shown that the quark spin polarized phase is realized at rather high density, while the two-flavor color superconducting phase...

  2. Improving the circular economy via hydrothermal processing of high-density waste plastics

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies....... This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical...... processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy....

  3. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories

    KAUST Repository

    Ivanov, Yurii P.


    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.

  4. Magnetic

    National Research Council Canada - National Science Library

    Essam Aboud; Nabil El-Masry; Atef Qaddah; Faisal Alqahtani; Mohammed R.H. Moufti


    .... A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth...


    CERN Multimedia

    B. Curé


      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...


    CERN Multimedia

    B. Curé


      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...


    CERN Multimedia

    Benoit Curé


    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  8. Analysis of the weld strength of the High Density Polyethylene (HDPE)

    African Journals Online (AJOL)

    An analysis was carried out to determine the strength of welded joints in High Density Polyethylene (HDPE) dam liners. Samples were collected of welded joints and subjected to tensile tests and creep test. It was observed that the welded joints from field welded samples were much weaker and had a very low straining ...

  9. Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics

    DEFF Research Database (Denmark)

    Philipp, Hugh T.; Andersen, Karin Nordström; Svendsen, Winnie Edith


    Amorphous silicon rich silicon nitride optical waveguides clad in silica are presented as a high-index contrast platform for high density integrated optics. Performance of different cross-sectional geometries have been measured and are presented with regards to bending loss and insertion loss...

  10. Revealing structural and dynamical properties of high density lipoproteins through molecular simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vattulainen, I.


    The structure and function of high density lipoprotein (HDL) particles have intrigued the scientific community for decades because of their crucial preventive role in coronary heart disease. However, it has been a taunting task to reveal the precise molecular structure and dynamics of HDL. Further...

  11. Assessing the feasibility of high-density subsurface heat extraction in urban areas (United States)

    Abesser, Corinna; Busby, Jonathan


    The subsurface is increasingly utilized as a heat source (sink) for use in heating (and cooling) applications. This is driven by the need to increase the amount of heat generated from renewable sources to meet the EU renewable energy target of 12% by 2020. This study explores the feasibility, performance and long-term sustainability of high density, closed-loop GSHP installations in urban areas. Specifically, it employs a 2D, finite element, heat transport model to assess the impact of high density heat extraction in a residential area in Reading. A block of semi-detached houses is modelled, assuming that separate GSHP systems are installed in every property. The model considers conductive and advective heat transport. Uncertainties are explored through varying thermal properties and groundwater gradients across the site. Different heat demand scenarios are evaluated and the impact on the subsurface temperature distribution and on heat pump efficiency is assessed. The scenarios are selected to represent variations in inter-annual weather pattern, heating pattern and building insulation standards. Results indicate that high density heat extraction for domestic heating can be sustainable over the lifespan expected for GSHP systems (of around 20 years), in particular where heat demand is reduced by home improvement measures. Based on the results, recommendations are being presented for the sustainable deployment of high density GSHP installation in urban areas.

  12. High-density surface electromyography improves the identification of oscillatory synaptic inputs to motor neurons

    NARCIS (Netherlands)

    van de Steeg, C.; Daffertshofer, A.; Stegeman, D.F.; Boonstra, T.W.


    Many studies have addressed corticomuscular coherence (CMC), but broad applications are limited by low coherence values and the variability across subjects and recordings. Here, we investigated how the use of high-density surface electromyography (HDsEMG) can improve the detection of CMC. Sixteen

  13. High-density surface electromyography improves the identification of oscillatory synaptic inputs to motoneurons

    NARCIS (Netherlands)

    Steeg, C.V.; Daffertshofer, A.; Stegeman, D.F.; Boonstra, T.W.


    Many studies have addressed corticomuscular coherence (CMC), but broad applications are limited by low coherence values and the variability across subjects and recordings. Here, we investigated how the use of high-density surface electromyography (HDsEMG) can improve the detection of CMC. Sixteen

  14. Fluidisation and dispersion behaviour of small high density pellicular expanded bed adsorbents

    DEFF Research Database (Denmark)

    Theodossiou, Irini; Elsner, H.D.; Thomas, Owen R. T.


    The fluidisation and dispersion properties of various agarose-based expanded bed matrices-small high density stainless steel cored prototypes and standard commercial types-were studied in I-cm diameter expanded bed contactors in which fluid entering the column base is locally stirred. In all cases...

  15. The Effects of Interspersal Training versus High-Density Reinforcement on Spelling Acquisition and Retention. (United States)

    Neef, Nancy A.; And Others


    The study investigated the effects of interspersing known items during spelling instruction on new words for three moderately to severely mentally retarded male students (ages 19 to 24). Results showed that high density reinforcement did facilitate performance over baseline; however, interspersal training was superior to the other conditions in…

  16. The HDL hypothesis : does high-density lipoprotein protect from atherosclerosis?

    NARCIS (Netherlands)

    Vergeer, Menno; Holleboom, Adriaan G; Kastelein, John J P; Kuivenhoven, Jan Albert

    There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for

  17. The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis?

    NARCIS (Netherlands)

    Vergeer, Menno; Holleboom, Adriaan G.; Kastelein, John J. P.; Kuivenhoven, Jan Albert


    There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for

  18. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency

    NARCIS (Netherlands)

    Brooks-Wilson, A.; Marcil, M.; Clee, S. M.; Zhang, L. H.; Roomp, K.; van Dam, M.; Yu, L.; Brewer, C.; Collins, J. A.; Molhuizen, H. O.; Loubser, O.; Ouelette, B. F.; Fichter, K.; Ashbourne-Excoffon, K. J.; Sensen, C. W.; Scherer, S.; Mott, S.; Denis, M.; Martindale, D.; Frohlich, J.; Morgan, K.; Koop, B.; Pimstone, S.; Kastelein, J. J.; Genest, J.; Hayden, M. R.


    Genes have a major role in the control of high-density lipoprotein (HDL) cholesterol (HDL-C) levels. Here we have identified two Tangier disease (TD) families, confirmed 9q31 linkage and refined the disease locus to a limited genomic region containing the gene encoding the ATP-binding cassette

  19. Effect of resin variables on the creep behavior of high density hardwood composite panels (United States)

    R.C. Tang; Jianhua Pu; C.Y Hse


    The flexural creep behavior of oriented strandboards (OSB) fabricated with mixed high, density hardwood flakes was investigated. Three types of adhesives, liquid phenolic-formaldehyde (LPF), melamine modified urea-formaldehyde (MUF), and LPF (face)/MUF (core) were chosen in this investigation. The resin contents (RC) used were 3.5 percent and 5.0 percent. The flakes...

  20. A High-Density Map for Navigating the Human Polycomb Complexome

    DEFF Research Database (Denmark)

    Hauri, Simon; Comoglio, Federico; Seimiya, Makiko


    Polycomb group (PcG) proteins are major determinants of gene silencing and epigenetic memory in higher eukaryotes. Here, we systematically mapped the human PcG complexome using a robust affinity purification mass spectrometry approach. Our high-density protein interaction network uncovered...

  1. Plasma modification of sisal and high-density polyethylene composites : effect on mechanical properties (United States)

    A.R. Martin; S. Manolache; L.H.C. Mattoso; R.M. Rowell; F. Denes


    Sisal fibers and finely powdered high-density polyethylene were surface functionalized using dichlorosilane (DS) under R-F plasma conditions to improve interfacial adhesion between the two dissimilar substrates. The functionalized polyethylene (70%) and sisal (30%) were compounded on four different ways using thermokinetic mixer and injected molded into composites...

  2. Increased Antioxidant Quality Versus Lower Quantity Of High Density Lipoprotein In Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Aydin Ozgur


    Full Text Available Background: Oxidative stress may be involved in the pathogenesis of every human disease. To understand its possible role in benign prostatic hyperplasia (BPH, we measured the overall oxidative status of patients with BPH and the serum activity of the high density lipoprotein (HDL-related antioxidant enzymes paraoxonase 1 (PON1 and arylesterase (ARE.

  3. Deep anisotropic dry etching of silicon microstructures by high-density plasmas

    NARCIS (Netherlands)

    Blauw, M.A.


    This thesis deals with the dry etching of deep anisotropic microstructures in monocrystalline silicon by high-density plasmas. High aspect ratio trenches are necessary in the fabrication of sensitive inertial devices such as accellerometers and gyroscopes. The etching of silicon in fluorine-based

  4. Behavior and Preparedness to Fire Hazard in High Density Settlements in Bandung

    Directory of Open Access Journals (Sweden)

    Saut Sagala


    Full Text Available Fire is one of the hazards that may affect urban areas with high density settlements. Thus, research on fire mitigation is important to be conducted. This paper examines the behavior and preparedness of occupants in high density settlements towards fire risks in urban area. The case study is located at Kelurahan Sukahaji, Kecamatan Babakan Ciparay, Bandung that has very high density settlement as well as prone to fire hazards. This study assess 232 respondents in the study areas on information related to demography, understanding about fire, behavior and preparedness. The respondents understanding on the types of fire sources are still low. Similarly, the behavior related to the activites using fire are still dangerous because some activities are conducted with other activities which make people less aware of the fire hazards. Nevertheless, their knowledge on how to extinguish fires are quite good. This paper recommends more trainings on knowledge of fire source and behavior to be conducted to occupants living in high density settlements in order to reduce fire disaster risk.

  5. The constraints of high density production of the calanoid copepod Acartia tonsa Dana

    DEFF Research Database (Denmark)

    Vu, Minh T. T.; Hansen, Benni W.; Kiørboe, Thomas


    Copepods are excellent live feed for marine fish larvae in aquaculture. Culturing copepods at high density is important to increase the total egg yield, but this is still a main challenge. To address this, we conducted experiments to test factors affecting the egg harvest potential of the well...

  6. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2010 (United States)

    Irom, Farokh; Nguyen, Duc N.


    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) and multi-level cell (MLC) NAND flash memories manufactured by Micron Technology.

  7. Radiation Tests of Highly scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories--Update 2011 (United States)

    Irom, Farokh; Nguyen, Duc N.


    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) 32Gb and multi-level cell (MLC) 64Gb NAND flash memories manufactured by Micron Technology.

  8. Properties of high density polyethylene – Paulownia wood flour composites via injection molding (United States)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  9. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings. (United States)

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun


    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  10. Plasma detachment study of high density helium plasmas in the Pilot-PSI device

    NARCIS (Netherlands)

    Hayashi, Y.; Jesko, K.; van der Meiden, H. J.; Vernimmen, J. W. M.; Morgan, T. W.; Ohno, N.; Kajita, S.; Yoshikawa, M.; Masuzaki, S.


    We have investigated plasma detachment phenomena of high-density helium plasmas in the linear plasma device Pilot-PSI, which can realize a relevant ITER SOL/Divertor plasma condition. The experiment clearly indicated plasma detachment features such as drops in the plasma pressure and particle flux

  11. Properties Of 10 Ghanaian High Density Lesser-Used-Species Of ...

    African Journals Online (AJOL)

    Sixty trees of ten high density Lesser Used Species (LUS) of potential importance to bridge construction were extracted from four forest reserves - Bobiri, Pra-Anum, Nueng, and Subri River (in four different ecological zones). Logs from the trees were converted on a horizontal bandmill to 27 and 53 mm thick boards.

  12. How Well Does BODIPY-Cholesteryl Ester Mimic Unlabeled Cholesteryl Esters in High Density Lipoprotein Particles?

    DEFF Research Database (Denmark)

    Karilainen, Topi; Vuorela, Timo; Vattulainen, Ilpo


    We compare the behavior of unlabeled and BODIPY-labeled cholesteryl ester (CE) in high density lipoprotein by atomistic molecular dynamics simulations. We find through replica exchange umbrella sampling and unbiased molecular dynamics simulations that BODIPY labeling has no significant effect...

  13. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation

    NARCIS (Netherlands)

    Yuana, Yuana; Levels, Johannes; Grootemaat, Anita; Sturk, Auguste; Nieuwland, Rienk


    Extracellular vesicles (EVs) facilitate intercellular communication by carrying bioactive molecules such as proteins, messenger RNA, and micro (mi)RNAs. Recently, high-density lipoproteins (HDL) isolated from human plasma were also reported to transport miRNA to other cells. HDL, when isolated from

  14. Clinical applications of high-density surface EMG: a systematic review.

    NARCIS (Netherlands)

    Drost, G.; Stegeman, D.F.; Engelen, B.G.M. van; Zwarts, M.J.


    High density-surface EMG (HD-sEMG) is a non-invasive technique to measure electrical muscle activity with multiple (more than two) closely spaced electrodes overlying a restricted area of the skin. Besides temporal activity HD-sEMG also allows spatial EMG activity to be recorded, thus expanding the

  15. Clinical applications of high-density surface EMG: A systematic review

    NARCIS (Netherlands)

    Drost, G; Stegeman, D.F.; van Engelen, B.G.M.; Smeitink, J.A.M.; Rodenburg, J.A.; Hol, F.A.


    High density-surface EMG (HD-sEMG) is a non-invasive technique to measure electrical muscle activity with multiple (more than two) closely spaced electrodes overlying a restricted area of the skin. Besides temporal activity HD-sEMG also allows spatial EMG activity to be recorded, thus expanding the

  16. Does high-density stocking affect perennial forbs in mesic grassland ...

    African Journals Online (AJOL)

    Livestock production is an appropriate land use for mainstreaming biodiversity conservation, but little is known about the impact of grazing strategies on forbs that contribute most species, in grasslands. This study compared the effects of high-density, short-duration stocking (HDG) with no grazing (control) on vegetation ...

  17. Magnetic nanoparticles studied by small angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiano Luis Pinto [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Grupo de Fluidos Complexos; Antonel, Soledad; Negri, Martin [Universidad de Buenos Aires (UBA) (Argentina). Facultad de Ciencias Exactas y Naturales. Dept. de Quimica Inorganica, Analitica y Quimica Fisica


    Full text: Magnetic nanoparticles have attracted much attention in the past decades because of their potential applications in high-density magnetic recording, magnetic fluids, data storage, spin-tronics, solar cells, sensors and catalysis. Among the magnetic nanoparticles, cobalt ferrite (CoFe{sub 2}O{sub 4}) has been widely studied due to high electromagnetic performance, excellent chemical stability, mechanical hardness, and high cubic magnetocrystalline anisotropy. These properties make it a promising candidate for many applications in commercial electronics such as video, audio tapes, high-density digital recording media, and magnetic fluids. Other interesting application is the use of magnetic nanocompounds in the design of magneto elastomers. Magnetoelastomers are dispersions of magnetic particles into an elastomer polymer matrix. These materials are highly promising for applications in the development of sensors and actuators, mainly because of the possibility to optimize the quality parameters of the devices by systematically changing the chemical nature of both the inorganic particles and the organic polymeric matrix, with the consequent modification of the magnetic, electric and elastic properties. Moreover, nanoparticles of cobalt-iron oxides (cobalt ferrite, CoFe{sub 2}O{sub 4}) appears as very interesting compounds for magnetoelasticity, not only because present magnetic anisotropy, moderate-high magnetization and high coercitivity at room temperature, but also because the possibility to modulate its magnetic properties by chemical synthesis, that is by synthesizing nanoparticles of different sizes having thus not only different magnetic parameters but also different magnetic behavior (superparamagnetism or ferromagnetism). That means that most of the magnetic properties of CoFe{sub 2}O{sub 4} ferrite strongly depend on the size and shape of the nanoparticles, which are closely related to the method of preparation. On the other hand, nickel

  18. MAGNET

    CERN Multimedia

    B. Curé


      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  19. MAGNET

    CERN Multimedia

    B. Curé


    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  20. MAGNET

    CERN Multimedia

    Benoit Curé


    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...


    CERN Multimedia

    B. Curé


      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  2. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata


    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  3. A concept of an electricity storage system with 50 MWh storage capacity

    Directory of Open Access Journals (Sweden)

    Józef Paska


    Full Text Available Electricity storage devices can be divided into indirect storage technology devices (involving electricity conversion into another form of energy, and direct storage (in an electric or magnetic fi eld. Electricity storage technologies include: pumped-storage power plants, BES Battery Energy Storage, CAES Compressed Air Energy Storage, Supercapacitors, FES Flywheel Energy Storage, SMES Superconducting Magnetic Energy Storage, FC Fuel Cells reverse or operated in systems with electrolysers and hydrogen storage. These technologies have diff erent technical characteristics and economic parameters that determine their usability. This paper presents two concepts of an electricity storage tank with a storage capacity of at least 50 MWh, using the BES battery energy storage and CAES compressed air energy storage technologies.

  4. Adaptation in human somatosensory cortex as a model of sensory memory construction: a study using high-density EEG. (United States)

    Bradley, Claire; Joyce, Niamh; Garcia-Larrea, Luis


    Adaptation in sensory cortices has been seen as a mechanism allowing the creation of transient memory representations. Here we tested the adapting properties of early responses in human somatosensory areas SI and SII by analysing somatosensory-evoked potentials over the very first repetitions of a stimulus. SI and SII generators were identified by well-defined scalp potentials and source localisation from high-density 128-channel EEG. Earliest responses (~20 ms) from area 3b in the depth of the post-central gyrus did not show significant adaptation to stimuli repeated at 300 ms intervals. In contrast, responses around 45 ms from the crown of the gyrus (areas 1 and 2) rapidly lessened to a plateau and abated at the 20th stimulation, and activities from SII in the parietal operculum at ~100 ms displayed strong adaptation with a steady amplitude decrease from the first repetition. Although responses in both SI (1-2) and SII areas showed adapting properties and hence sensory memory capacities, evidence of sensory mismatch detection has been demonstrated only for responses reflecting SII activation. This may index the passage from an early form of sensory storage in SI to more operational memory codes in SII, allowing the prediction of forthcoming input and the triggering of a specific signal when such input differs from the previous sequence. This is consistent with a model whereby the length of temporal receptive windows increases with progression in the cortical hierarchy, in parallel with the complexity and abstraction of neural representations.


    CERN Multimedia

    B. Curé


    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  6. High-density QCD phase transitions inside neutron stars: Glitches and gravitational waves (United States)

    Srivastava, A. M.; Bagchi, P.; Das, A.; Layek, B.


    We discuss physics of exotic high baryon density QCD phases which are believed to exist in the core of a neutron star. This can provide a laboratory for exploring exotic physics such as axion emission, KK graviton production etc. Much of the physics of these high-density phases is model-dependent and not very well understood, especially the densities expected to occur inside neutron stars. We follow a different approach and use primarily universal aspects of the physics of different high-density phases and associated phase transitions. We study effects of density fluctuations during transitions with and without topological defect production and study the effect on pulsar timings due to changing moment of inertia of the star. We also discuss gravitational wave production due to rapidly changing quadrupole moment of the star due to these fluctuations.

  7. Development of ultra-high-density screening tools for microbial "omics".

    Directory of Open Access Journals (Sweden)

    Gordon J Bean

    Full Text Available High-throughput genetic screens in model microbial organisms are a primary means of interrogating biological systems. In numerous cases, such screens have identified the genes that underlie a particular phenotype or a set of gene-gene, gene-environment or protein-protein interactions, which are then used to construct highly informative network maps for biological research. However, the potential test space of genes, proteins, or interactions is typically much larger than current screening systems can address. To push the limits of screening technology, we developed an ultra-high-density, 6144-colony arraying system and analysis toolbox. Using budding yeast as a benchmark, we find that these tools boost genetic screening throughput 4-fold and yield significant cost and time reductions at quality levels equal to or better than current methods. Thus, the new ultra-high-density screening tools enable researchers to significantly increase the size and scope of their genetic screens.

  8. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)


    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  9. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.


    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  10. High-Density Liquid-Crystalline Polymer Brushes Formed by Surface Segregation and Self-Assembly. (United States)

    Mukai, Koji; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro


    High-density polymer brushes on substrates exhibit unique properties and functions stemming from the extended conformations due to the surface constraint. To date, such chain organizations have been mostly attained by synthetic strategies of surface-initiated living polymerization. We show herein a new method to prepare a high-density polymer brush architecture using surface segregation and self-assembly of diblock copolymers containing a side-chain liquid-crystalline polymer (SCLCP). The surface segregation is attained from a film of an amorphous base polymer (polystyrene, PS) containing a minor amount of a SCLCP-PS diblock copolymer upon annealing above the glass-transition temperature. The polystyrene portion of the diblock copolymer can work as a laterally mobile anchor for the favorable self-assembly on the polystyrene base film. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High density lipoproteins as indicators of endothelial dysfunction in children with diadetes type I

    Directory of Open Access Journals (Sweden)

    Lobanova S.M.


    Full Text Available The aim of the investigation was to study the level of blood high density lipoproteins (HDL in the groups of children with different course of diadetes type I in order to find out the dependence of course and complications of diabetes on that level. Materials and methods: Blood high density lipoprotein (HDL levels were investigated in children and adolescents with diadetes type I, depending on the duration of diadetes type I, age, stage of sexual development, the stage of diabetic nephropathy and levels of plasma endothelin-1 (E-1. Results: Decrease in HDL level with increasing duration of diadetes type I in prepubertate patients, higher indices of HDL cholesterol were determined in girls, especially with impaired puberty. HDL cholesterol was higher in diabetic nephropathy at the stage of proteinuria and high level of blood endothelin-1. Conclusion: The revealed changes were considered to cause deregulation of vascular endothelium as a manifestation of the initial stages of endothelial dysfunction

  12. ChemicalVia: a CERN-patented technology for use in high-density circuits

    CERN Multimedia

    Patrice Loïez


    High-density multilayer printed circuits such as those pictured here are found in miniaturized modern equipment from video cameras to mobile phones. Adjacent layers in these circuits are electrically connected by microvias, consisting of a small-diameter hole (usually 50 µm) with a thin metal-deposited surface covering their cylindrical walls to ensure local conductivity between the two layers. ChemicalVia is a new method, patented by CERN, to make microvias on high-density multilayer printed circuits using chemicals rather than complex laser, plasma or photoimaging technology. The process is compatible with all standard printed-circuit assembly lines, and has the advantages of low initial investment and reduced manufacturing costs.

  13. OSCAR experiment high-density network data report: Event 3 - April 16-17, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dana, M.T.; Easter, R.C.; Thorp, J.M.


    The OSCAR (Oxidation and Scavenging Characteristics of April Rains) experiment, conducted during April 1981, was a cooperative field investigation of wet removal in cyclonic storm systems. The high-density component of OSCAR was located in northeast Indiana and included sequential precipitation chemistry measurements on a 100 by 100 km network, as well as airborne air chemistry and cloud chemistry measurements, surface air chemistry measurements, and supporting meteorological measurements. Four separate storm events were studied during the experiment. This report summarizes data taken by Pacific Northwest Laboratory (PNL) during the third storm event, April 16-17. The report contains the high-density network precipitation chemistry data, air chemistry and cloud chemistry data from the PNL aircraft, and meteorological data for the event, including standard National Weather Service products and radar and rawindsonde data from the network. 4 references, 76 figures, 6 tables.

  14. High-density 3D graphene-based monolith and related materials, methods, and devices (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Charnvanichborikarn, Supakit; Kucheyev, Sergei; Montalvo, Elizabeth; Shin, Swanee; Tylski, Elijah


    A composition comprising at least one high-density graphene-based monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds and having a density of at least 0.1 g/cm.sup.3. Also provided is a method comprising: preparing a reaction mixture comprising a suspension and at least one catalyst, said suspension selected from a graphene oxide (GO) suspension and a carbon nanotube suspension; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel, said drying step is substantially free of supercritical drying and freeze drying; and pyrolyzing the dry gel to produce a high-density graphene-based monolith. Exceptional combinations of properties are achieved including high conductive and mechanical properties.

  15. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed


    Full Text Available The importance of nanoparticles in controlling physical properties of polymeric nanocomposite materials leads us to study effects of these nanoparticles on electric and dielectric properties of polymers in industry In this research, the dielectric behaviour of High-Density Polyethylene (HDPE nanocomposites materials that filled with nanoparticles of clay or fumed silica has been investigated at various frequencies (10 Hz-1 kHz and temperatures (20-60°C. Dielectric spectroscopy has been used to characterize ionic conduction, then, the effects of nanoparticles concentration on the dielectric losses and capacitive charge of the new nanocomposites can be stated. Capacitive charge and loss tangent in high density polyethylene nanocomposites are measured by dielectric spectroscopy. Different dielectric behaviour has been observed depending on type and concentration of nanoparticles under variant thermal conditions.

  16. A complete life cycle assessment of high density polyethylene plastic bottle (United States)

    Treenate, P.; Limphitakphong, N.; Chavalparit, O.


    This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.

  17. High-density surface electromyography improves the identification of oscillatory synaptic inputs to motor neurons


    van de Steeg, C.; Daffertshofer, A.; Stegeman, D.F.; Boonstra, T.W.


    Many studies have addressed corticomuscular coherence (CMC), but broad applications are limited by low coherence values and the variability across subjects and recordings. Here, we investigated how the use of high-density surface electromyography (HDsEMG) can improve the detection of CMC. Sixteen healthy subjects performed isometric contractions at six low-force levels using a pinch-grip, while HDsEMG of the adductor pollicis transversus and flexor and abductor pollicis brevis and whole-head ...

  18. The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis?


    Vergeer, Menno; Holleboom, Adriaan G.; Kastelein, John J. P.; Kuivenhoven, Jan Albert


    There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for this “HDL hypothesis”. In vitro studies suggest that HDL has a wide range of anti-atherogenic properties but validation of these functions in humans is absent to date. A significant number of anima...

  19. Preparation and Compatibility Evaluation of Polypropylene/High Density Polyethylene Polyblends


    Lin, Jia-Horng; Pan, Yi-Jun; Liu, Chi-Fan; Huang, Chien-Lin; Hsieh, Chien-Teng; Chen, Chih-Kuang; Lin, Zheng-Ian; Lou, Ching-Wen


    This study proposes melt-blending polypropylene (PP) and high density polyethylene (HDPE) that have a similar melt flow index (MFI) to form PP/HDPE polyblends. The influence of the content of HDPE on the properties and compatibility of polyblends is examined by using a tensile test, flexural test, Izod impact test, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), polarized light microscopy (PLM), and X-ray diffraction...

  20. Mechanical and thermal properties of high density polyethylene - dried distillers grains with solubles composites


    Brent Tisserat; Louis Reifschneider; Rogers Harry O’Kuru; Victoria L. Finkenstadt


    Dried Distillers Grain with Solubles (DDGS) was evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE) composed of 25% by weight DDGS and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection molding. An improved DDGS bio-filler was produced by solvent treating DDGS (STDDGS). Injection-molded test specimens were evaluated for their tensile, flexural, impact, and thermal properties. Composite blends...

  1. Small high-density lipoprotein is associated with monocyte subsets in stable coronary artery disease


    Krychtiuk, Konstantin A.; Kastl, Stefan P.; Pfaffenberger, Stefan; Pongratz, Thomas; Hofbauer, Sebastian L.; Wonnerth, Anna; Katsaros, Katharina M.; Goliasch, Georg; Gaspar, Ludovit; Huber, Kurt; Maurer, Gerald; Dostal, Elisabeth; Oravec, Stanislav; Wojta, Johann; Speidl, Walter S.


    Objective: High-density lipoprotein (HDL) particles are heterogeneous in structure and function and the role of HDL subfractions in atherogenesis is not well understood. It has been suggested that small HDL may be dysfunctional in patients with coronary artery disease (CAD). Monocytes are considered to play a key role in atherosclerotic diseases. Circulating monocytes can be divided into three subtypes according to their surface expression of CD14 and CD16. Our aim was to examine whether mono...

  2. Preparation of High-Density Fibrillar Collagen Matrices that Mimic Desmoplastic Tumor Stroma


    Artym, Vira V.


    The stroma of invasive tumors becomes enriched in dense fibrillar collagen as a result of the desmoplastic reaction. This desmoplastic collagen exerts profound effects on tumor and normal cells. In view of these findings, it is important to develop novel in vitro cell systems that mimic this desmoplastic extracellular matrix in order to permit cell studies under in vivo-like conditions. This Unit provides a protocol and troubleshooting guide for the preparation of high density fibrillar colla...

  3. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites


    Feihong Liu; Guangping Han; Wanli Cheng,; Qinglin Wu


    Temperature and relative humidity (RH) are two major external factors, which affect equilibrium moisture content (EMC) of wood-plastic composites (WPCs). In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP)-high density polyethylene (HDPE) composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorpt...

  4. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie


    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  5. Motor unit number estimation based on high-density surface electromyography decomposition. (United States)

    Peng, Yun; He, Jinbao; Yao, Bo; Li, Sheng; Zhou, Ping; Zhang, Yingchun


    To advance the motor unit number estimation (MUNE) technique using high density surface electromyography (EMG) decomposition. The K-means clustering convolution kernel compensation algorithm was employed to detect the single motor unit potentials (SMUPs) from high-density surface EMG recordings of the biceps brachii muscles in eight healthy subjects. Contraction forces were controlled at 10%, 20% and 30% of the maximal voluntary contraction (MVC). Achieved MUNE results and the representativeness of the SMUP pools were evaluated using a high-density weighted-average method. Mean numbers of motor units were estimated as 288±132, 155±87, 107±99 and 132±61 by using the developed new MUNE at 10%, 20%, 30% and 10-30% MVCs, respectively. Over 20 SMUPs were obtained at each contraction level, and the mean residual variances were lower than 10%. The new MUNE method allows a convenient and non-invasive collection of a large size of SMUP pool with great representativeness. It provides a useful tool for estimating the motor unit number of proximal muscles. The present new MUNE method successfully avoids the use of intramuscular electrodes or multiple electrical stimuli which is required in currently available MUNE techniques; as such the new MUNE method can minimize patient discomfort for MUNE tests. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.


    Directory of Open Access Journals (Sweden)

    A. J. M. Rattu


    Full Text Available The acute and chronic effects of endurance exercise on parameters pertinent to blood lipid profiles have been extensively studied and reviewed. The preponderance of evidence available would suggest that endurance exercise transiently increases high-density lipoprotein cholesterol with concomitant alteration in total cholesterol and triglycerides. The major aim of the present study was to determine the effect of Poco-Poco Dance On High Density Lipoprotein Cholesterol Level. Subjects were divided into 2 groups : A Poco-Poco Dance Group; B Control group which received no exercise training. Venous blood samples were obtained at rest and immediately after Poco-Poco Dance. Data showed that high-density lipoprotein cholesterol rose significantly in the Poco-Poco Dance Group (from 39.3 ±0.4 to 40.7 ± 4.0 mg%; P<0.05 in response to Poco-Poco Dance. It is therefore concluded that The Poco-Poco Dance induces alterations in blood lipid profiles.

  7. Construction and analysis of high-density linkage map using high-throughput sequencing data.

    Directory of Open Access Journals (Sweden)

    Dongyuan Liu

    Full Text Available Linkage maps enable the study of important biological questions. The construction of high-density linkage maps appears more feasible since the advent of next-generation sequencing (NGS, which eases SNP discovery and high-throughput genotyping of large population. However, the marker number explosion and genotyping errors from NGS data challenge the computational efficiency and linkage map quality of linkage study methods. Here we report the HighMap method for constructing high-density linkage maps from NGS data. HighMap employs an iterative ordering and error correction strategy based on a k-nearest neighbor algorithm and a Monte Carlo multipoint maximum likelihood algorithm. Simulation study shows HighMap can create a linkage map with three times as many markers as ordering-only methods while offering more accurate marker orders and stable genetic distances. Using HighMap, we constructed a common carp linkage map with 10,004 markers. The singleton rate was less than one-ninth of that generated by JoinMap4.1. Its total map distance was 5,908 cM, consistent with reports on low-density maps. HighMap is an efficient method for constructing high-density, high-quality linkage maps from high-throughput population NGS data. It will facilitate genome assembling, comparative genomic analysis, and QTL studies. HighMap is available at

  8. A high-density SNP genotyping array for rice biology and molecular breeding. (United States)

    Chen, Haodong; Xie, Weibo; He, Hang; Yu, Huihui; Chen, Wei; Li, Jing; Yu, Renbo; Yao, Yue; Zhang, Wenhui; He, Yuqing; Tang, Xiaoyan; Zhou, Fasong; Deng, Xing Wang; Zhang, Qifa


    A high-density single nucleotide polymorphism (SNP) array is critically important for geneticists and molecular breeders. With the accumulation of huge amounts of genomic re-sequencing data and available technologies for accurate SNP detection, it is possible to design high-density and high-quality rice SNP arrays. Here we report the development of a high-density rice SNP array and its utility. SNP probes were designed by screening more than 10 000 000 SNP loci extracted from the re-sequencing data of 801 rice varieties and an array named RiceSNP50 was produced on the Illumina Infinium platform. The array contained 51 478 evenly distributed markers, 68% of which were within genic regions. Several hundred rice plants with parent/F1 relationships were used to generate a high-quality cluster file for accurate SNP calling. Application tests showed that this array had high genotyping accuracy, and could be used for different objectives. For example, a core collection of elite rice varieties was clustered with fine resolution. Genome-wide association studies (GWAS) analysis correctly identified a characterized QTL. Further, this array was successfully used for variety verification and trait introgression. As an accurate high-throughput genotyping tool, RiceSNP50 will play an important role in both functional genomics studies and molecular breeding.

  9. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability (United States)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.

  10. X-ray CT high-density artefact suppression in the presence of bones

    Energy Technology Data Exchange (ETDEWEB)

    Wei Jikun [School of Health Sciences, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Chen Laigao [BioImaging Center of Emphasis, Pfizer Global Research and Development, 2800 Plymouth RD, Ann Arbor, MI 48105 (United States); Sandison, George A [School of Health Sciences, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Liang Yun [Department of Radiology, Indiana University Medical School, Indianapolis, IN 46202 (United States); Xu, Lisa X [School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907-2040 (United States)


    This paper presents a novel method of reducing x-ray CT high-density artefacts generated by metal objects when abundant bone structures are present in the region of interest. This method has an advantage over previously proposed methods since it heavily suppresses the metal artefacts without introducing extra bone artefacts. The method of suppression requires that bone pixels are isolated and segmented by thresholding. Then artificial CT numbers are assigned to the bone pixels so that their projection profiles are smooth and thus can be properly simulated by a polynomial interpolation. The projection profile of the metal object is then removed to fully suppress the artefacts. The resulting processed profile is fed to a reconstruction routine and the previously preserved bone pixels added back. The new method utilizes two important features of the CT image with metal artefacts: (a) metal and bone pixels are not severely affected by the high-density artefacts and (b) the high-density artefacts can be located in specific projection channels in the profile domain, although they are spread out in the image domain. This suppression method solves the problem of CT image artefacts arising from metal objects in the body. It has the potential to greatly improve diagnostic CT imaging in the presence of these objects and treatment planning that utilizes CT for patients with metal applicators (e.g., brachytherapy for cervix cancer and prostate cryotherapy)

  11. Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach (United States)

    Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.


    Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.

  12. Experimental evidence that ecological effects of an invasive fish are reduced at high densities. (United States)

    Kornis, Matthew S; Carlson, Jedchada; Lehrer-Brey, Gabrielle; Vander Zanden, M Jake


    Understanding the relationship between invasive species density and ecological impact is a pressing topic in ecology, with implications for environmental management and policy. Although it is widely assumed that invasive species impact will increase with density, theory suggests interspecific competition may diminish at high densities due to increased intraspecific interactions. To test this theory, we experimentally examined intra- and interspecific interactions between a globally invasive fish, round goby (Neogobius melanostomus), and three native species at different round goby densities in a tributary of the Laurentian Great Lakes. Eighteen 2.25 m(2) enclosures were stocked with native fish species at natural abundances, while round gobies were stocked at three different densities: 0 m(-2), 2.7 m(-2), and 10.7 m(-2). After 52 days, native fish growth rate was significantly reduced in the low density goby treatment, while growth in the high density goby treatment mirrored the goby-free treatment for two of three native species. Invertebrate density and gut content weight of native fishes did not differ among treatments. Conversely, gut content weight and growth of round gobies were lower in the high goby density treatment, suggesting interactions between round gobies and native fishes are mediated by interference competition amongst gobies. Our experiment provides evidence that invasive species effects may diminish at high densities, possibly due to increased intraspecific interactions. This is consistent with some ecological theory, and cautions against the assumption that invasive species at moderate densities have low impact.

  13. Development of a nuclear magnetic resonance system for in situ analysis of hydrogen storage materials under high pressures and temperatures. (United States)

    Hashimoto, S; Noda, Y; Maekawa, H; Takamura, H; Fujito, T; Moriya, J; Ikeda, T


    A NMR system for in situ analysis of hydrogen storage materials under high pressure and temperature conditions was developed. The system consists of a gas pressure and flow rate controlling unit, a temperature controller, a high temperature NMR probe tunable for both (1)H and other nuclei, and a sample tube holder. Sample temperature can be controlled up to 623 K by heated N(2) gas flow. Sample tube atmosphere can be substituted by either H(2) or Ar and can be pressurized up to 1 MPa under constant flow rate up to 100 ml/min. During the NMR measurement, the pressure can be adjusted easily by just handle a back pressure valve. On the blank NMR measurement, (1)H background noise was confirmed to be very low. (1)H and (11)B NMR spectrum of LiBH(4) were successfully observed at high temperature for the demonstration of the system. The intensity of the (1)H NMR spectra of H(2) gas was also confirmed to be proportional to the applied pressure.

  14. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  15. MAGNET

    CERN Multimedia

    Benoit Curé


    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  16. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  17. MAGNET

    CERN Multimedia

    B. Curé


    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  18. Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine (United States)

    Barash, N. R.; Nosala, C.; Pham, J. K.; McInally, S. G.; Gourguechon, S.; McCarthy-Sinclair, B.


    ABSTRACT Giardia lamblia is a highly prevalent yet understudied protistan parasite causing significant diarrheal disease worldwide. Hosts ingest Giardia cysts from contaminated sources. In the gastrointestinal tract, cysts excyst to become motile trophozoites, colonizing and attaching to the gut epithelium. Trophozoites later differentiate into infectious cysts that are excreted and contaminate the environment. Due to the limited accessibility of the gut, the temporospatial dynamics of giardiasis in the host are largely inferred from laboratory culture and thus may not mirror Giardia physiology in the host. Here, we have developed bioluminescent imaging (BLI) to directly interrogate and quantify the in vivo temporospatial dynamics of Giardia infection, thereby providing an improved murine model to evaluate anti-Giardia drugs. Using BLI, we determined that parasites primarily colonize the proximal small intestine nonuniformly in high-density foci. By imaging encystation-specific bioreporters, we show that encystation initiates shortly after inoculation and continues throughout the duration of infection. Encystation also initiates in high-density foci in the proximal small intestine, and high density contributes to the initiation of encystation in laboratory culture. We suggest that these high-density in vivo foci of colonizing and encysting Giardia likely result in localized disruption to the epithelium. This more accurate visualization of giardiasis redefines the dynamics of the in vivo Giardia life cycle, paving the way for future mechanistic studies of density-dependent parasitic processes in the host. IMPORTANCE Giardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand

  19. Selectivity of conventional electrodes for recording motor evoked potentials: An investigation with high-density surface electromyography. (United States)

    Gallina, Alessio; Peters, Sue; Neva, Jason L; Boyd, Lara A; Garland, S Jayne


    The objective of this study was to determine whether motor evoked potentials (MEPs) elicited with transcranial magnetic stimulation and measured with conventional bipolar electromyography (EMG) are influenced by crosstalk from non-target muscles. MEPs were recorded in healthy participants using conventional EMG electrodes placed over the extensor carpi radialis muscle (ECR) and high-density surface EMG (HDsEMG). Fifty MEPs at 120% resting and active motor threshold were recorded. To determine the contribution of ECR to the MEPs, the amplitude distribution across HDsEMG channels was correlated with EMG activity recorded during a wrist extension task. Whereas the conventional EMG identified MEPs from ECR in >90% of the stimulations, HDsEMG revealed that spatial amplitude distribution representative of ECR activation was observed less frequently at rest than while holding a contraction (P < 0.001). MEPs recorded with conventional EMG may contain crosstalk from non-target muscles, especially when the stimulation is applied at rest. Muscle Nerve 55: 828-834, 2017. © 2016 Wiley Periodicals, Inc.

  20. Characterization of onset of parametric decay instability of lower hybrid waves in ITER-relevant high-density plasmas (United States)

    Baek, Seung Gyou; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; Labombar, B. L.; Lau, C.


    Lower hybrid (LH) current drive experiments on Alcator C-Mod have revealed that the density corresponding to the onset of parametric decay instability (PDI) is as low as ne ~ 1 ×1020m-3 suggesting that PDI may be a remaining parasitic loss mechanism to explain the observed loss of current drive efficiency in high density plasmas. Convective growth due to parallel coupling is most likely to explain the observed PDI. Depending on the magnetic configurations, PDI is excited at different locations with different strength, while a similar level of hard X-ray is observed as long as ne is similar. PDI is excited at the high-field side edge in lower null plasmas with the decrease in the pump power, indicating that the single pass absorption is weak and pump depletion can occur below conventional PDI limit. In upper null plasmas, PDI is excited at the low-field side edge with no apparent indication of pump depletion. More extensive spectral measurements are necessary to fully understand the role of this seemingly weak PDI at the LFS to gauge the effect of the observed PDI in high single-pass absorption plasmas as will be in ITER. Supported by USDoE award DE-FC02-99ER54512.

  1. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue


    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example...

  2. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods (United States)

    Goyal, Amit , Kang; Sukill, [Knoxville, TN


    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  3. Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System

    Directory of Open Access Journals (Sweden)

    Lei Chen


    Full Text Available In regard to the rapid development of renewable energy sources, more and more photovoltaic (PV generation systems have been connected to main power networks, and it is critical to enhance their transient performance under short-circuit faults conditions. This paper proposes and studies the coordinated control of a flux-coupling-type superconducting fault current limiter (SFCL and a superconducting magnetic energy storage (SMES, to improve the fault ride through (FRT capability and smooth the power fluctuation of a grid-connected PV generation system. Theoretical analyses of the device structure, operating principle and control strategy are conducted, and a detailed simulation model of 100 kW class PV generation system is built in MATLAB/SIMULINK. During the simulations of the symmetrical and asymmetrical faults, the maximum power point tracking (MPPT control is disabled, and four different cases including without auxiliary, with SFCL, with SMES, and with SFCL-SMES, are compared. From the demonstrated results, the combination of without MPPT and with SFCL-SMES can more efficiently improve the point of common coupling (PCC voltage sag, inhibit the DC-link overvoltage and alleviate the power fluctuation. Finally, a preliminary parameter optimization method is suggested for the SFCL and the SMES, and it is helpful to promote their future application in the real PV projects.

  4. Prooxidant effect of α-tocopherol on soybean oil. Global monitoring of its oxidation process under accelerated storage conditions by1H nuclear magnetic resonance. (United States)

    Martin-Rubio, A S; Sopelana, P; Ibargoitia, M L; Guillén, María D


    The effect of adding α-tocopherol in proportions ranging from 0.002 to 5% in weight on the oxidative stability of soybean oil was studied. For the first time, the oxidation process under accelerated storage conditions including evolution of the molar percentages of the several types of oil acyl groups, and formation and evolution of various kinds of oxidation products comprising hydroperoxides, hydroxy-dienes and other alcohols, epoxides, aldehydes and keto-dienes, was followed by 1 H nuclear magnetic resonance. It is proved that, except in the lowest proportion, α-tocopherol not only exerts a prooxidant effect on soybean oil but also modifies its oxidation pathway, affecting the oxidation products generation rate, their nature, relative proportions and concentrations. It is noticeable that the highest α-tocopherol concentrations induce the generation of some toxic compounds at earlier stages of the thermoxidation process and sometimes in higher concentration, such as certain oxygenated α,β-unsaturated aldehydes and monoepoxides derived from linoleic groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Lunt, Barry M.; Gates, Richard J.; Asplund, Matthew C.; Shutthanandan, V.; Davis, Robert C.; Linford, Matthew R.


    A novel write-once-read-many (WORM) optical stack on Mylar tape is proposed as a replacement for magnetic tape for archival data storage. This optical tape contains a cosputtered bismuth–tellurium–selenium (BTS) alloy as the write layer sandwiched between thin, protective films of reactively sputtered carbon. The composition and thickness of the BTS layer were confirmed by Rutherford Backscattering (RBS) and atomic force microscopy (AFM), respectively. The C/BTS/C stack on Mylar was written to/marked by 532 nm laser pulses. Under the same conditions, control Mylar films without the optical stack were unaffected. Marks, which showed craters/movement of the write material, were characterized by optical microscopy and AFM. The threshold laser powers for making marks on C/BTS/C stacks with different thicknesses were explored. Higher quality marks were made with a 60× objective compared to a 40× objective in our marking apparatus. Finally, the laser writing process was simulated with COMSOL.


    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...


    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  8. Pruning for crop regulation in high density guava (Psidium guajava L.) plantation

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, M.; Lal, S.; Uniyal, S.; Goswami, A.K. Prakash. P.


    High density management and crop regulation are two important aspects in guava (Psidium guajava L.) production. Therefore, to find out the economic way of managing high density planting and crop regulation, the present work was carried out on 6-year-old guava trees of cv. Pant Prabhat under double-hedge row system of planting during 2009-10 and 2010-11. Seven different forms of pruning [FBT: flower bud thinning by hand, FBTT: flower bud thinning by hand followed by removal of terminal one leaf pair, RLFO: removal of leaves and flower buds by hand, retaining one leaf pair at the top, RLF: removal of all leaves and flowers by hand, OLPS: one leaf pair shoot pruning, FSP: full shoot pruning, OLPF: one leaf pair pruning of fruited shoots only] were studied along with control (C).Minimum annual increase in tree volume (6.764 m3) was recorded with the treatment OLPF, which was 2.31 times less than the control (15.682 m3). Highest yield during winter season (55.30 kg/tree) and total yield (59.87 kg/tree) was obtained from treatment OLPF. One leaf pair pruning of fruited shoots only (OLPF) was also found profitable among other treatments by recording cost:benefit ratio of 1:2.96. This treatment also recorded the highest return distributed in rainy as well as in winter season. On the basis of findings it can be concluded that one leaf pair pruning of fruited shoots only is suitable for profitable high density management as well as crop regulation of guava in farmer friendly manner. (Author)

  9. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics. (United States)

    Charvet, Guillaume; Rousseau, Lionel; Billoint, Olivier; Gharbi, Sadok; Rostaing, Jean-Pierre; Joucla, Sébastien; Trevisiol, Michel; Bourgerette, Alain; Chauvet, Philippe; Moulin, Céline; Goy, François; Mercier, Bruno; Colin, Mikael; Spirkovitch, Serge; Fanet, Hervé; Meyrand, Pierre; Guillemaud, Régis; Yvert, Blaise


    Microelectrode arrays (MEAs) offer a powerful tool to both record activity and deliver electrical microstimulations to neural networks either in vitro or in vivo. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, dense arrays of 3D micro-needle electrodes, providing closer contact with the neural tissue than planar electrodes, are not achievable using conventional isotropic etching processes. Moreover, increasing the number of electrodes using conventional electronics is difficult to achieve into compact devices addressing all channels independently for simultaneous recording and stimulation. Here, we present a full modular and versatile 256-channel MEA system based on integrated electronics. First, transparent high-density arrays of 3D-shaped microelectrodes were realized by deep reactive ion etching techniques of a silicon substrate reported on glass. This approach allowed achieving high electrode aspect ratios, and different shapes of tip electrodes. Next, we developed a dedicated analog 64-channel Application Specific Integrated Circuit (ASIC) including one amplification stage and one current generator per channel, and analog output multiplexing. A full modular system, called BIOMEA, has been designed, allowing connecting different types of MEAs (64, 128, or 256 electrodes) to different numbers of ASICs for simultaneous recording and/or stimulation on all channels. Finally, this system has been validated experimentally by recording and electrically eliciting low-amplitude spontaneous rhythmic activity (both LFPs and spikes) in the developing mouse CNS. The availability of high-density MEA systems with integrated electronics will offer new possibilities for both in vitro and in vivo studies of large neural networks. 2010 Elsevier B.V. All rights reserved.

  10. An approach to conifer stem localization and modeling in high density airborne LiDAR data (United States)

    Harikumar, A.; Bovolo, F.; Bruzzone, L.


    Individual tree level inventory performed using high density multi-return airborne Light Detection and Ranging (LiDAR) systems provides both internal and external geometric details on individual tree crowns. Among them, the parameters such as, the stem location, and Diameter at Breast Height of the stem (DBH) are very relevant for accurate biomass, and forest growth estimation. However, methods that can accurately estimate these parameters along the vertical canopy are lacking in the state of the art. Thus, we propose a method to locate and model the stem by analyzing the empty volume that appears within the 3D high density LiDAR point cloud of a conifer, due to the stem. In a high LiDAR density data, the points most proximal to the stem location in the upper half of the crown are very likely due to laser reflections from the stem and/or the branch-stem junctions. By locating accurately these points, we can define the lattice of points representing branch-stem junctions and use it to model the empty volume associated to the stem location. We identify these points by using a state-of-the-art internal crown structure modelling technique that models individual conifer branches in a high density LiDAR data. Under the assumption that conifer stem can be closely modelled using a cone shape, we regression fit a geometric shape onto the lattice of branch-stem junction points. The parameters of the geometric shape are used to accurately estimate the diameter at breast height, and height of the tree. The experiments were performed on a set of hundred conifers consisting of trees from six dominant European conifer species, for which the height and the DBH were known. The results prove the method to be accurate.

  11. Niacin extended-release/simvastatin combination therapy produces larger favorable changes in high-density lipoprotein particles than atorvastatin monotherapy

    Directory of Open Access Journals (Sweden)

    Toth PP


    Full Text Available Peter P Toth1, Kamlesh M Thakker2, Ping Jiang2, Robert J Padley21University of Illinois College of Medicine, Peoria, and CGH Medical Center, Sterling, 2Abbott, Abbott Park, IL, USABackground: The purpose of this research was to compare the effects of niacin extended-release in combination with simvastatin (NER/S versus atorvastatin monotherapy on high-density lipoprotein (HDL particle number and size in patients with hyperlipidemia or dyslipidemia from the SUPREME study.Methods: This was a post hoc analysis of patients (n = 137 who completed the SUPREME study and who had lipid particle number and size measurements at both baseline and at week 12 by nuclear magnetic resonance spectroscopy. Following ≥4 weeks without lipid-modifying therapy (washout period, the patients received NER/S 1000/40 mg/day for 4 weeks followed by NER/S 2000/40 mg/day for 8 weeks, or atorvastatin 40 mg/day for 12 weeks. Median percent changes in HDL particle number and size from baseline to week 12 were compared between the NER/S and atorvastatin treatment groups using the Wilcoxon rank-sum test. Distribution of HDL particle subclasses at week 12 was compared between the treatment groups using the Cochran–Mantel–Haenszel test.Results: Treatment with NER/S resulted in a significantly greater percent reduction in small HDL particle number at week 12 compared with atorvastatin monotherapy (-1.8% versus 4.2%, P = 0.014, and a numerically greater percent increase in large HDL particle number (102.4% versus 39.2%, P = 0.078 compared with atorvastatin monotherapy. A significantly greater percent increase in HDL particle size from baseline at week 12 was observed with NER/S compared with atorvastatin (6.0% versus 1.3%, P < 0.001. NER/S treatment also resulted in a significant shift in HDL particle size from small and medium at baseline to large at week 12 (P < 0.0001.Conclusion: Treatment with NER/S resulted in larger favorable changes in number and size of HDL particle

  12. Banks-Casher-type relation for the BCS gap at high density

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Takuya [The University of Tokyo, Department of Physics, Tokyo (Japan); Wettig, Tilo [University of Regensburg, Department of Physics, Regensburg (Germany); Yamamoto, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); University of Maryland, Maryland Center for Fundamental Physics, Department of Physics, College Park, MD (United States)


    We derive a new Banks-Casher-type relation which relates the density of complex Dirac eigenvalues at the origin to the BCS gap of quarks at high density and zero temperature. Our relation is applicable to QCD and QCD-like theories without a sign problem, such as two-color QCD and adjoint QCD with baryon chemical potential, and QCD with isospin chemical potential. It provides us with a method to measure the BCS gap through the Dirac spectrum on the lattice. (orig.)

  13. High-density EMG e-textile systems for the control of active prostheses

    DEFF Research Database (Denmark)

    Farina, Dario; Lorrain, Thomas; Negro, Francesco


    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals...... for myoelectric control. A sleeve covering the upper and lower arm, which contains 100 electrodes arranged in four grids of 5 * 5 electrodes, was used to record EMG signals in 3 subjects during the execution of 9 tasks of the wrist and hand. The signals were analyzed by extracting wavelet coefficients which were...

  14. Generation of a neutral, high-density electron-positron plasma in the laboratory

    CERN Document Server

    Sarri, G; Cole, J; Schumaker, W; Di Piazza, A; Reville, B; Doria, D; Dromey, B; Gizzi, L; Green, A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kushel, S; Mangles, S; Najmudin, Z; Thomas, A G R; Vargas, M; Zepf, M


    We report on the laser-driven generation of purely neutral, relativistic electron-positron pair plasmas. The overall charge neutrality, high average Lorentz factor ($\\gamma_{e/p} \\approx 15$), small divergence ($\\theta_{e/p} \\approx 10 - 20$ mrad), and high density ($n_{e/p}\\simeq 10^{15}$cm$^{-3}$) of these plasmas open the pathway for the experimental study of the dynamics of this exotic state of matter, in regimes that are of relevance to electron-positron astrophysical plasmas.

  15. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment (United States)

    Ramesham, Rajeshuni


    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  16. On The Use Of High-Density Rock In Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.


    Natural rock with high density is widely used in the Scandinavian countries. However, the use of natural rock with density higher than 2:9t=m3 is ordinarily associated with some kind of problem solving, e.g. where normal density stones have to be replaced with heavier stones without increasing...... the construction volume or layer thickness. Most common design formulae do not give a clear conclusion on the in°uence of the rock density on the stability. The present paper presents results of small and large scale model tests in which is used rock with different densities. It is shown that the positive effect...

  17. In situ determination of pore sizes of high density polyester woven fabrics under biaxial loading (United States)

    Türkay Kocaman, Recep; Malik, Samander Ali; Aibibu, Dilbar; Cherif, Chokri


    In this study an in situ pore size measurement method was developed to determine the pore size changes of high density polyester woven fabrics under biaxial loading. This unique method allows the non-destructive testing of the pore sizes under biaxial loading. Changes in the pore size distributions of samples were in situ determined with the newly developed method. The results show that the developed measurement method is very promising to define the pore size changes of barrier textiles in situ under loading.


    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri


    Full Text Available This research was developed aiming to evaluate the effects of board density and melamine-urea-formaldehyde resin onthe properties of particleboard for semi-structural applications. The boards were manufactured with nominal density of 0.65 g/cm³and 0.90 g/cm³ using urea-formaldehyde resin as control and melamine-urea-formaldehyde. The results showed a better dimensionallystability and mechanical properties of the boards manufactured with higher density and MUF resin content. The fine furnish usedfor external layer of particleboard in the industrial process, could be used for high density homogeneous board to semi-strucuturaluses, such as flooring applications.

  19. Self-digitization of samples into a high-density microfluidic bottom-well array. (United States)

    Schneider, Thomas; Yen, Gloria S; Thompson, Alison M; Burnham, Daniel R; Chiu, Daniel T


    This paper describes a sample digitization method that generates tens of thousands of nanoliter-sized droplets in a high-density array in a matter of minutes. We show that the sample digitization depends on both the geometric design of the microfluidic device and the viscoelastic forces between the aqueous sample and a continuous oil phase. Our design avoids sample loss: Samples are split into tens of thousands of discrete volumes with close to 100% efficiency without the need for any expensive valving or pumping systems. We envision this technology will have broad applications that require simple sample digitization within minutes, such as digital polymerase chain reactions and single-cell studies.

  20. Health benefits of high-density lipoproteins in preventing cardiovascular diseases. (United States)

    Berrougui, Hicham; Momo, Claudia N; Khalil, Abdelouahed


    Plasma levels of high-density lipoprotein (HDL) are strongly and inversely correlated with atherosclerotic cardiovascular diseases. However, it is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-cholesterol levels. The best known antiatherogenic function of HDL particles relates to their ability to promote reverse cholesterol transport from peripheral cells. However, HDL also possesses antioxidant, anti-inflammatory, and antithrombotic effects. This review focuses on the state of knowledge regarding assays of HDL heterogeneity and function and their relationship to cardiovascular diseases. Copyright © 2012 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  1. Determination of thermal properties and morphology of eucalyptus wood residue filled high density polyethylene composites. (United States)

    Mengeloglu, Fatih; Kabakci, Ayse


    Thermal behaviors of eucalyptus wood residue (EWR) filled recycled high density polyethylene (HDPE) composites have been measured applying the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Morphology of the materials was also studied using scanning electron microscope (SEM). Addition of the EWR into the recycled HDPE matrix reduced the starting of degradation temperature. EWR filled recycled HDPE had two main decomposition peaks, one for EWR around 350 degrees C and one for recycled HDPE around 460 degrees C. Addition of EWR did not affect the melting temperature of the recycled HDPE. Morphological study showed that addition of coupling agent improved the compatibility between wood residue and recycled HDPE.

  2. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease

    DEFF Research Database (Denmark)

    Johannsen, Trine Holm; Kamstrup, Pia R; Andersen, Rolf V


    CONTEXT: Hepatic lipase influences metabolism of high-density lipoprotein (HDL), a risk factor for ischemic cardiovascular disease (ICD: ischemic heart disease and ischemic cerebrovascular disease). OBJECTIVE: We tested the hypothesis that genetic variation in the hepatic lipase genetic variants V......73M, N193S, S267F, L334F, T383M, and -480c>t influence levels of lipids, lipoproteins, and apolipoproteins and risk of ICD. DESIGN: For the cross-sectional study, we genotyped 9003 individuals from the Copenhagen City Heart Study; hereof were 8971 individuals included in the prospective study, 1747...

  3. Solving a product safety problem using a recycled high density polyethylene container (United States)

    Liu, Ping; Waskom, T. L.


    The objectives are to introduce basic problem-solving techniques for product safety including problem identification, definition, solution criteria, test process and design, and data analysis. The students are given a recycled milk jug made of high density polyethylene (HDPE) by blow molding. The objectives are to design and perform proper material test(s) so they can evaluate the product safety if the milk jug is used in a certain way which is specified in the description of the procedure for this investigation.

  4. Laser drilling of vias in dielectric for high density multilayer LSHI thick film circuits (United States)

    Cocca, T.; Dakesian, S.


    A design analysis of a high density multilevel thick film digital microcircuit used for large scale integration is presented. The circuit employs 4 mil lines, 4 mil spaces and requires 4 mil diameter vias. Present screened and fired thick film technology is limited on a production basis to 16 mil square vias. A process whereby 4 mil diameter vias can be fabricated in production using laser technology was described along with a process to produce 4 mil diameter vias for conductor patterns which have 4 mil lines and 4 mil spacings.

  5. Polyethylene Terephthalate (Pete) And High Density Polyethylene (Hdpe) Mixture To Fuel Production


    Moinuddin Sarker


    High density polyethylene (HDPE) and polyethylene terephthalate (PETE) mixture to fuel production process was performed with Ferric Oxide (Fe2O3) and activated carbon. HDPE waste plastic was use 75 gm, PETE was use 25 gm, activated carbon was use 5 gm as a 5% and Ferric Oxide was use 2 gm as a 1%. PETE and HDPE waste plastics mixture to fuel production process temperature was use 420 ºC and reactor was use Pyrex glass reactor. Total waste plastics sample was 100 gm and 100 gm of waste plastic...

  6. A high density genetic map of maritime pine based on AFLPs


    Chagné, David; Lalanne, Céline; Madur, Delphine; Kumar, Satish; Frigério, Jean-Marc; Krier, Catherine; Decroocq, Stéphane; Savouré, Arnould; Magida Bou-Dagher-Kharrat,; Bertocchi, Evangelista; Brach, Jean; Plomion, Christophe


    International audience; We constructed a high-density linkage map of maritime pine (Pinus pinaster Ait.) based on AFLP (Amplified Fragment Length Polymorphism) markers using a three-generation outbred pedigree. In a first step, male and female maps were established independently with test-cross markers segregating 1:1 (presence:absence of the amplified fragment in the full-sib progeny). In a second step, both maps were merged using intercross markers segregating 3:1 in the progeny. A combinat...

  7. Reduced scattering-matrix algorithm for high-density plasmonic structures. (United States)

    Bouchon, Patrick; Pardo, Fabrice; Haïdar, Riad; Vincent, Grégory; Pelouard, Jean-Luc


    We describe a method to compute S-matrix interface terms using a selection of eigenmodes. When solving the modal equation, the computation of left and right eigenvectors leads to rectangular eigenmodes matrices. Expressions of S-matrix interface terms are then expressed so as to allow for a significant reduction of the computation cost. The reduction is even further decreased in the case of the B-spline modal method, which deals with sparse matrices. Its convergence is illustrated on a high-density plasmonic structure and compared to a full modal method.

  8. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma (United States)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru


    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  9. High-Density Near-Field Readout Using Diamond Solid Immersion Lens (United States)

    Shinoda, Masataka; Saito, Kimihiro; Kondo, Takao; Nakaoki, Ariyoshi; Furuki, Motohiro; Takeda, Minoru; Yamamoto, Masanobu; Schaich, Thomas J.; van Oerle, Bart M.; Godfried, Herman P.; Kriele, Paul A. C.; Houwman, Evert P.; Nelissen, Wim H. M.; Pels, Gert J.; Spaaij, Paul G. M.


    We investigated high-density near-field readout using a diamond solid immersion lens (SIL). A synthetic single-crystal chemical vapor deposition diamond provides a high refractive index and a high transmission for a wide wavelength range. Since the refractive index at a wavelength of 405 nm is 2.458, we could design a solid immersion lens with an effective numerical aperture of 2.34. Using the diamond SIL, we observed the eye pattern of a 150-GB-capacity (104.3 Gbit/in.2) disk with a track pitch of 130 nm and a bit length of 47.6 nm.

  10. High-density lipoprotein subfractions and influence of endothelial lipase in a healthy Turkish population: a study in a land of low high-density lipoprotein cholesterol. (United States)

    Kilic, Harun; Atalar, Enver; Lay, Incilay; Yazihan, Nuray; Buyukcam, Fatih; Saygisunar, Ugur; Aksoy, Murat; Gunduz, Huseyin; Akdemir, Ramazan


    Low concentration of high-density lipoprotein (HDL) is prevalent in Turkey. Endothelial lipase (EL) regulates lipoprotein metabolism. Small, lipid-poor HDL particles represent more-efficient cholesterol acceptors than their large, lipid-rich counterparts. The aim of this study was to investigate HDL subfractions and the effect of EL on HDL concentrations in healthy Turkish population. 102 healthy subjects were included in the study (mean age 33.6 ± 10.3 years, 42 female). HDL subfractions were assayed by single precipitation method and EL concentrations were measured by competitive enzyme immunoassay. Mean HDL concentrations were 1.45 ± 0.37 mmol/L in women, 1.10 ± 0.30 mmol/L in men. Small HDL subfraction levels did not differ statistically between density lipoprotein cholesterol (LDL), triglyceride (TG) and age but positively correlated with total cholesterol and HDL (r = 0.2, p = 0.017; r = 0.2, p = 0.028, respectively). Large HDL was not correlated with age, EL and total cholesterol, and negatively correlated with HDL, LDL, TG (r = - 0.7, p 1.6 mmol/L, mean EL concentrations were 475.83 ± 521.77 nmol/L and 529.71 ± 276.92 nmol/L, respectively (p = 0.086). There were no differences between small HDL concentrations in the HDL low and high groups. Our data did not support EL to be the reason for low HDL in a healthy Turkish population. Our results in a healthy population may serve as a reference for clinical studies on HDL subfractions.

  11. Influence of pH on the structural and magnetic behavior of cobalt ferrite synthesized by sol-gel auto-combustion (United States)

    Kakade, S. G.; Kambale, R. C.; Kolekar, Y. D.


    Cobalt ferrite (CoFe2O4) shown to be promising candidate for applications such as high-density magnetic recording, enhanced memory storage, magnetic fluids and catalysts. Utility of ferrite nanoparticles depends on its size, dispersibility in solutions, and magnetic properties. We have investigated the structural properties of synthesized cobalt ferrite nanoparticles synthesized by sol gel auto combustion for uncontrolled, acidic, neutral and basic pH values. X-ray diffraction (XRD) study confirms the cubic spinel phase formation with lattice constant 8.38 Å. In this study, we have optimized the pH value to synthesize homogenous cobalt ferrite nanoparticles with enhanced magnetic behavior. The surface morphology has been investigated by employing SEM images and the confirmation of spinel ferrite was also supported by using IR spectroscopy. Magnetic measurements for CoFe2O4 compositions (with pH <1, pH = 3, 7, 10) were investigated using VSM measurements.

  12. Interfacial Properties of Bamboo Fiber-Reinforced High-Density Polyethylene Composites by Different Methods for Adding Nano Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Cuicui Wang


    Full Text Available The focus of this study was to observe the effect of nano calcium carbonate (CaCO3 modification methods on bamboo fiber (BF used in BF-reinforced high-density polyethylene (HDPE composites manufactured by extrusion molding. Two methods were used to introduce the nano CaCO3 into the BF for modification; the first was blending modification (BM and the second was impregnation modification (IM. In order to determine the effects of the modification methods, the water absorption, surface free energy and interfacial properties of the unmodified composites were compared to those of the composites made from the two modification methods. The results revealed that the percentage increase in the weight of the composite treated by nano CaCO3 decreased and that of the IMBF/HDPE composite was the lowest over the seven months of time. The results obtained by the acid-base model according to the Lewis and Owens-Wendt- Rabel-Kaelble (OWRK equations indicated that the surface energy of the composites was between 40 and 50 mJ/m2. When compared to the control sample, the maximum storage modulus (E′max of the BMBF/HDPE and IMBF/HDPE composites increased 1.43- and 1.53-fold, respectively. The values of the phase-to-phase interaction parameter B and the k value of the modified composites were higher than those of the unmodified composites, while the apparent activation energy Ea and interface parameter A were lower in the modified composites. It can be concluded that nano CaCO3 had an effect on the interfacial properties of BF-reinforced HDPE composites, and the interface bonding between IMBF and HDPE was greatest among the composites.

  13. Enabling Airspace Integration for High-Density On-Demand Mobility Operations (United States)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.


    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  14. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering. (United States)

    Harvey, Benjamin G; Meylemans, Heather A; Gough, Raina V; Quintana, Roxanne L; Garrison, Michael D; Bruno, Thomas J


    Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications.

  15. Localized Electrochemiluminescence from Nanoneedle Electrodes for Very-high-density Electrochemical Sensing

    KAUST Repository

    Zhang, Jingjing


    In this paper, localized electrochemiluminescence (ECL) was visualized from nanoneedle electrodes that achieved very-high-density electrochemical sensing. The localized luminescence at the nanometer-sized tip observed was ascribed to enhanced mass transfer of the luminescence probe at the tip than on the planar surface surrounding the tip, which provided higher luminescence at the tip. The size of the luminescence spots was restricted to 15 μm permitting the electrochemical analysis with a density over 4 × 103 spots/mm2. The positive correlation between the luminescence intensity at the tips and the concentration of hydrogen peroxide supported the quantitative ECL analysis using nanoneedle electrodes. The further modification of glucose oxidase at the electrode surface conceptually demonstrated that the concentration of glucose ranging from 0.5 to 5 mM could be quantified using the luminescence at the tips, which could be further applied for the detection of multiple molecules in the complex biosystem. This successful localized ECL offers a specific strategy for the development of very-high-density electrochemical arrays without the complicated chip design.

  16. Evolutionary Agroecology: the potential for cooperative, high density, weed-suppressing cereals. (United States)

    Weiner, Jacob; Andersen, Sven B; Wille, Wibke K-M; Griepentrog, Hans W; Olsen, Jannie M


    Evolutionary theory can be applied to improve agricultural yields and/or sustainability, an approach we call Evolutionary Agroecology. The basic idea is that plant breeding is unlikely to improve attributes already favored by millions of years of natural selection, whereas there may be unutilized potential in selecting for attributes that increase total crop yield but reduce plants' individual fitness. In other words, plant breeding should be based on group selection. We explore this approach in relation to crop-weed competition, and argue that it should be possible to develop high density cereals that can utilize their initial size advantage over weeds to suppress them much better than under current practices, thus reducing or eliminating the need for chemical or mechanical weed control. We emphasize the role of density in applying group selection to crops: it is competition among individuals that generates the 'Tragedy of the Commons', providing opportunities to improve plant production by selecting for attributes that natural selection would not favor. When there is competition for light, natural selection of individuals favors a defensive strategy of 'shade avoidance', but a collective, offensive 'shading' strategy could increase weed suppression and yield in the high density, high uniformity cropping systems we envision.

  17. Detecting genetic association of common human facial morphological variation using high density 3D image registration. (United States)

    Peng, Shouneng; Tan, Jingze; Hu, Sile; Zhou, Hang; Guo, Jing; Jin, Li; Tang, Kun


    Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ∼30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the IRF6 gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation.

  18. Optimization of Cold Spray Deposition of High-Density Polyethylene Powders (United States)

    Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.


    When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.

  19. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points. (United States)

    Li, Chenhui; Baciu, George; Yu, Han


    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heatmap. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  20. Nasal measurements in Asians and high-density porous polyethylene implants in rhinoplasty. (United States)

    Jang, Dongwoo; Yu, Li; Wang, Yimin; Cao, Dejun; Yu, Zheyuan; Mu, Xiongzheng


    To understand Asian noses, set goals for rhinoplasty, and find the best alternative columellar strut. Six values were used to evaluate the morphology of the nose: tip projection, alar-tip-columellar base angle, alar-columellar base-philtrum angle, nasolabial angle, nasofacial angle, and tip angle. One hundred average Chinese people (50 males and 50 females) were compared with 36 preoperative Chinese patients (13 males and 23 females). We presented an application of high-density porous polyethylene (Medpor) implant as a columellar strut for use in lengthening. We performed 3 surgical techniques: a single-plate strut, a double-plate strut, and a butterfly-shaped strut. Open rhinoplasty (transcolumella incision) was performed on 21 patients; closed rhinoplasty (marginal incision) was performed on 15 patients. Prominent changes in the 6 values were found in both male and female patients after rhinoplasty. An analysis of the Asian nose will help surgeons achieve better results. High-density porous polyethylene columellar strut grafts provide adequate support for refined tip definition and the shaping of the columellar-lobular angle.

  1. Estimation of genomic inbreeding coefficients based on high-density SNP markers in Chinese Holstein cattle. (United States)

    Yang, Zhan-cheng; Huang, He-tian; Yan, Qing-xia; Wang, Ya-chun; Yu, Ying; Chen, Shao-hu; Sun, Dong-xiao; Zhang, Sheng-li; Zhang, Yi


    In livestock, inbreeding coefficient based on pedigree information is usually used to evaluate the level of inbreeding. Recently, with cost reduction of high-density SNP genotyping, it's possible to analyze real genomic inbreeding degree using genomic information. In this study, utilizing high-density SNP chip data, we analyzed the frequency and distribution of runs of homozygosity (ROH) in 2107 Chinese Holstein cattle in Beijing area, and calculated 2 genomic inbreeding coefficients, i.e., 1) the proportion of ROH length in the total length of autosomal genome (Froh), and 2) the percentage of homozygous SNPs (Fhom). Then we analyzed the correlation between 2 genomic inbreeding coefficients and the correlation between genomic and pedigree inbreeding coefficients. We totally detected 44 676 ROHs that mainly ranged from 1 to 10 Mb. Various lengths of ROHs existed in the genome. There were more short ROHs than long ROHs. ROHs aren't evenly distributed in chromosomes. The area with most ROHs is in the middle part of chromosome 10. Strong correlation (r > 0.90) existed between 2 kinds of genomic inbreeding coefficients, but the correlation between pedigree and genomic inbreeding coefficients were much lower (r inbreeding. Genomic inbreeding measures may reflect individuals' real inbreeding, which could be a useful tool to evaluate population inbreeding.

  2. Study on the Weaving Behavior of High Density Bidirectional Pedestrian Flow

    Directory of Open Access Journals (Sweden)

    Lishan Sun


    Full Text Available Weaving area may be the critical risk place in the subway transfer station. When improving service level of the weaving area, the characteristic of pedestrian weaving behavior should be systemically discussed. This paper described the mechanism of weaving behavior on high density pedestrian which was analyzed by the collection data of controlled experiment. Different weaving behaviors were contrasted due to different volumes in the bidirectional passageway. Video analysis was conducted to extract pedestrian moving behavior and calibrate the movement data with SIMI Motion. Influence of the high density weaving pedestrian was studied based on the statistical results (e.g., velocity, walking distance, and journey time. Furthermore, the quantitative method by speed analysis was announced to discriminate the conflict point. The scopes of weaving area and impact area at different pedestrian volumes were revealed to analyze the pedestrian turning angle. The paper concluded that walking pedestrians are significantly influenced by the weaving conflict and trend to turn the moving direction to avoid the conflict in weaving area; the ratio of stable weaving area and impact area is 2 to 3. The conclusions do provide a method to evaluate the transfer station safety and a facility layout guidance to improve the capacity.

  3. Catalyst design by cyclic deposition: Nanoparticle formation and growth of high-density nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Esconjauregui, Santiago; Fouquet, Martin; Xie, Rongsie; Cartwright, Richard; Robertson, John [Engineering Department, University of Cambridge, CB2 1PZ Cambridge (United Kingdom); Newcomb, Simon B. [Glebe Scientific Ltd., Newport, County Tipperary (Ireland)


    The areal density of carbon nanotube forests can be increased up to the order of 10{sup 13} cm{sup -2} using cycles of deposition and annealing of ultra-thin metal films, followed by nanoparticle immobilization. Herein, we show how the density of the catalyst nanoparticles increases after each cycle by using cross-sectional transmission electron microscopy. The layers of metal catalyst - subsequently deposited after previous annealing - sit on the uncovered areas of the support and, after annealing, restructure into nanoparticles cumulatively increasing the catalyst density. These nanoparticles lead to close-packed, high-density nanotube forests with nanotube areal densities of {proportional_to}10{sup 13} cm{sup -2}. The height of these high-density forests shortens as the density of the catalyst nanoparticle increases, which is observed using several synthesis conditions. This high nanotube density is required for using carbon nanotubes as interconnects in integrated circuits and in thermal interface materials. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Improving the circular economy via hydrothermal processing of high-density waste plastics. (United States)

    Helmer Pedersen, Thomas; Conti, Federica


    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Construction, arraying, and high-density screening of large insert libraries of human chromosomes X and 21: their potential use as reference libraries. (United States)

    Nizetić, D; Zehetner, G; Monaco, A P; Gellen, L; Young, B D; Lehrach, H


    We have constructed cosmid libraries from flow-sorted human chromosomes X and 21, each of which contains greater than 30 genome equivalents, and have developed systems allowing permanent storage of primary clones, easy screening of libraries in high-density filter formats, and the simultaneous generation of fingerprinting and mapping data on the same set of cosmid clones. Clones are picked into microtiter plate wells and stored at -70 degrees C. A semiautomatic robot system allows the generation of filter replicas containing up to 10,000 clones per membrane. Sets of membranes containing 15-20 chromosome equivalents of both chromosomes will be used for the construction of ordered clone libraries by hybridization fingerprinting protocols. In addition, multiple sets of two membranes containing 4 chromosome equivalents of the human X chromosome, and one membrane containing 3 chromosome equivalents of chromosome 21, have been distributed to other interested laboratories as part of a system of reference libraries. This system allows other groups easy access to the clones and offers an efficient protocol to combine results generated in different laboratories using these libraries. Here we describe the construction of the libraries and demonstrate the use of high-density screening filters in oligonucleotide probe hybridizations and the isolation of cosmids by hybridization with probes from the X chromosome. Images PMID:2014245

  6. Low total, low-density lipoprotein, high-density lipoprotein, and non-high-density lipoprotein cholesterol levels in patients with complex congenital heart disease after Fontan palliation. (United States)

    Whiteside, Wendy; Tan, Meng; Yu, Sunkyung; Rocchini, Albert


    To test the hypothesis that patients with complex congenital heart disease who have undergone Fontan palliation have low total cholesterol, low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels. We retrospectively reviewed the random serum lipid profiles obtained at cardiology clinic visits between May 2010 and November 2011 in patients who had undergone the Fontan procedure. We compared these serum lipid levels against age- and sex-matched established normal data from the Third National Health and Nutrition Examination Survey. Eighty-eight patients who had undergone the Fontan procedure also had laboratory test data obtained during their visits. Median total cholesterol level in the Fontan group was 127 mg/dL (IQR, 116-144 mg/dL), median HDL-C was 40 mg/dL (IQR, 33-45 mg/dL), median non-HDL-C was 86 mg/dL (IQR, 76-109 mg/dL), and median LDL-C was 66 mg/dL (IQR, 57-83 mg/dL). Total cholesterol, LDL-C, non-HDL-C, and HDL-C levels were significantly lower in patients who had undergone a Fontan procedure compared with age- and sex-matched normal individuals (mean z-score, -1.4, -1.2, -1.0, and -1.0 respectively; all P<.0001). Cholesterol levels were below the 25th percentile for age and sex for total cholesterol in 82% of patients, for LDL-C in 76%, for non-HDL-C in 67%, and for HDL-C in 57%. Patients who have undergone the Fontan procedure have significantly lower serum total cholesterol, LDL-C, HDL-C and non-HDL-C levels than age- and sex-matched normal individuals. Although the implications of this finding are unknown, it raises the possibility of abnormalities in cholesterol absorption, synthesis, or catabolism in this patient population. Copyright © 2013 Mosby, Inc. All rights reserved.

  7. Risk of coronary heart disease is associated with triglycerides and high-density lipoprotein cholesterol in women and non-high-density lipoprotein cholesterol in men. (United States)

    Abdel-Maksoud, Madiha F; Eckel, Robert H; Hamman, Richard F; Hokanson, John E


    Although the physiologic interrelationships between triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) are not fully understood, studies typically are adjusted for one when one is examining the role of the other. If the mechanism of coronary heart disease (CHD) risk is mediated through the other, then controlling for the second factor may mask the true effect of the first. We investigated the relationship between the combined effect of increased (↑) TG and decreased (↓) HDL-C compared with isolated ↑TG or isolated ↓HDL-C on CHD risk in men and women and compared these TG/HDL-C categories to non-HDL cholesterol (non-HDL-C). Subjects (936 women and 746 men) from the San Luis Valley Study were grouped on the basis of 4 sex-specific NCEP-ATP III cutpoints (↑TG ≥150 mg/dL, and ↓HDL-C, 50 and >40 mg/dL for women and men, respectively). Non-HDL-C was analyzed as a continuous variable. Among women, all groups had greater risk of CHD compared with the ↓TG/↑HDL-C reference in univariate analysis: ↓TG/↓HDL-C HR = 2.82 [95% confidence interval 1.12-7.1], ↑TG/↑HDL-C HR = 3.82 [1.50-9.74], ↑TG/↓HDL-C HR= 4.32 [1.91-9.80]. The risk remained significant in the ↓TG/↓HDL-C group (HR= 3.27 [1.26-8.50] and marginally significant in other groups in multivariable analysis. Neither ↑TG nor ↓HDL-C was related to CHD risk in men. Non-HDL cholesterol was significantly related to CHD in men but not in women. The CHD risk associated with ↓HDL-C in women was >2- to 4-fold elevated depending on TG levels. Non-HDL cholesterol was a significant predictor of CHD in men. Examining the combined effects of risk factors that share physiologic pathways may reveal important associations that can be otherwise obscured. Further dissection of gender specific pathways that affect HDL-C and TG and non-HDL cholesterol are important in understanding CHD risk. Published by Elsevier Inc.

  8. Influence of type and content of chemical foaming agent on the dynamic mechanical properties of high density polyethylene-flax fiber composites

    Directory of Open Access Journals (Sweden)

    Behzad Kord


    Full Text Available This study aims to evaluate the influence of type and content of chemical foaming agent on the dynamic mechanical properties of high density polyethylene-flax fiber composites. Composites were prepared via melt mixing in an internal mixer, and then foamed using single-stage batch foaming method. Two type of chemical foaming agents including azodicarbonamide (ADC and sodium bicarbonate (SB were considered at three levels of 0, 2 and 4 per hundred resins (phr. The amount of flax fiber and coupling agent for all formulations was fixed at 60% and 2 phr, respectively. Static mechanical tests including flexural and tensile were performed on samples. The dynamic mechanical properties such as storage modulus, loss modulus and damping factor of composites were investigated in the temperature range of -60 to 150 0C at a step of 5 0C and frequency of 1 Hz. Morphology of the samples was also evaluated by scanning electron microscopy (SEM. Results indicate that the chemical foaming agent substantially increased cell size and reduced cell density and mechanical strength of composites. Moreover, the lowest mechanical strength was observed in foamed composites with SB. SEM confirmed that the type and content of chemical foaming agent had significant influence on density reduction of foamed composites. Finally, by increase in the chemical foaming agent content, the storage modulus and loss modulus of samples decreased. However, on addition of chemical foaming agent to composites, the damping factor was increased. Foamed composites prepared with ADC exhibited inferior storage modulus compared than the SB.


    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  10. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  11. MAGNET

    CERN Multimedia

    Benoit Curé


    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  12. Fast Configuration of MEMS-Based Storage Devices for Streaming Applications

    NARCIS (Netherlands)

    Khatib, M.G.; van Dijk, H.W.


    An exciting class of storage devices is emerging: the class of Micro-Electro-Mechanical storage Systems (MEMS). Properties of MEMS-based storage devices include high density, small form factor, and low power. The use of this type of devices in mobile infotainment systems, such as video cameras is


    Simon, A.


    A method and apparatus are described for burning out neutral particles in an evacuated region and within a strong magnetic field. The method comprises injecting energetic molecular ions into the region perpendicular to the magnetic field and into the path of a dissociating, energetic arc discharge, the atomic ions formed in the dissociating process being trapped by the magnetic field, and then increasing the value of the trapped atomic ion current to such a value that the neutral particles are destroyed faster than they are formed, thereby causing a dense, energetic plasma to be built up and sustained by the magnetic field. (AEC)

  14. A novel transient rotor current control scheme of a doubly-fed induction generator equipped with superconducting magnetic energy storage for voltage and frequency support (United States)

    Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao


    A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).

  15. A review of the magnetic properties, synthesis methods and applications of maghemite

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, H., E-mail:


    It must be pointed out that maghemite (γ-Fe{sub 2}O{sub 3}) with a cubic spinel structure is a crucial material for various applications, including spin electronic devices, high-density magnetic recording, nano-medicines and biosensors. This paper has to do with a review study on the synthesis methods, magnetic properties and application of maghemite in the form of one-dimensional (1D) nanostructured materials, such as nanoparticles, nanotubes, nano-rods, and nanowires, as well as two-dimensional (2D) thin films. The results revealed that maghemite is widely used in the biomedical applications (hyperthermia, magnetic resonance imaging and drug delivery) and magnetic recording devices. The unmodified and Co/Mn modified maghemite thin films prepared by the dc-reactive magnetron sputtering show the excellent values of coercivity 2100 Oe and 3900 Oe, respectively, for the magnetic storage application. The super-paramagnetic particles with 7 nm size and the saturation magnetization of 80 emu/g prepared by the established thermolysis method are good candidates for bio-medical applications. - Highlights: • Among iron oxides, maghemite is one of the most important magnetic ceramics. • Maghemite is widely sued in magnetic recording and biomedicine. • This paper attempts to give an overview on the some important areas. • They contain synthetic methods, magnetic study, structural study and applications.

  16. Right ventricular outflow tract high-density endocardial unipolar voltage mapping in patients with Brugada syndrome: evidence for electroanatomical abnormalities. (United States)

    Letsas, Konstantinos P; Efremidis, Michael; Vlachos, Konstantinos; Georgopoulos, Stamatis; Karamichalakis, Nikolaos; Asvestas, Dimitrios; Valkanas, Kosmas; Korantzopoulos, Panagiotis; Liu, Tong; Sideris, Antonios


    Epicardial structural abnormalities at the right ventricular outflow tract (RVOT) may provide the arrhythmia substrate in Brugada syndrome (BrS). Electroanatomical endocardial unipolar voltage mapping is an emerging tool that accurately identifies epicardial abnormalities in different clinical settings. This study investigated whether endocardial unipolar voltage mapping of the RVOT detects electroanatomical abnormalities in patients with BrS. Ten asymptomatic patients (8 males, 34.5 ± 11.2 years) with spontaneous type 1 ECG pattern of BrS and negative late gadolinium enhancement-cardiac magnetic resonance imaging (LGE-c-MRI) underwent high-density endocardial electroanatomical mapping (>800 points). Using a cut-off of 1 mV and 4 mV for normal bipolar and unipolar voltage, respectively, derived from 20 control patients without structural heart disease established by LGE-c-MRI, the extend of low-voltage areas within the RVOT was estimated using a specific calculation software. The mean RVOT area presenting low-voltage bipolar signals in BrS patients was 3.4 ± 1.7 cm2 (range 1.5-7 cm2). A significantly greater area of abnormal unipolar signals was identified (12.6 ± 4.6 cm2 [range 7-22 cm2], P: 0.001). Both bipolar and unipolar electroanatomical abnormalities were mainly located at the free wall of the RVOT. The mean RVOT activation time was significantly prolonged in BrS patients compared to control population (86.4 ± 16.5 vs. 63.4 ± 9.7 ms, P voltage abnormalities that possibly reflect epicardial structural abnormalities are identified at the RVOT of BrS patients.

  17. ALICE: A tool for automatic localization of intra-cranial electrodes for clinical and high-density grids. (United States)

    Branco, Mariana P; Gaglianese, Anna; Glen, Daniel; Hermes, Dora; Saad, Ziad S; Petridou, Natalia; Ramsey, Nick F


    Electrocorticographic (ECoG) measurements require the accurate localization of implanted electrodes with respect to the subject's neuroanatomy. Electrode localization is particularly relevant to associate structure with function. Several procedures have attempted to solve this problem, namely by co-registering a post-operative computed tomography (CT) scan, with a pre-operative magnetic resonance imaging (MRI) anatomy scan. However, this type of procedure requires a manual and time-consuming detection and transcription of the electrode coordinates from the CT volume scan and restricts the extraction of smaller high-resolution ECoG grid electrodes due to the downsampling of the CT. ALICE automatically detects electrodes on the post-operative high-resolution CT scan, visualizes them in a combined 2D and 3D volume space using AFNI and SUMA software and then projects the electrodes on the individual's cortical surface rendering. The pipeline integrates the multiple-step method into a user-friendly GUI in Matlab ® , thus providing an easy, automated and standard tool for ECoG electrode localization. ALICE was validated in 13 subjects implanted with clinical ECoG grids by comparing the calculated electrode center-of-mass coordinates with those computed using a commonly used method. A novel aspect of ALICE is the combined 2D-3D visualization of the electrodes on the CT scan and the option to also detect high-density ECoG grids. Feasibility was shown in 5 subjects and validated for 2 subjects. The ALICE pipeline provides a fast and accurate detection, discrimination and localization of ECoG electrodes spaced down to 4mm apart. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Calcium bromide hydration for heat storage systems


    Ai Niwa; Noriyuki Kobayashi


    A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the...

  19. High-quality stable electron beams from laser wakefield acceleration in high density plasma

    Directory of Open Access Journals (Sweden)

    B. S. Rao


    Full Text Available High-quality, stable electron beams are produced from self-injected laser wakefield acceleration using the interaction of moderate 3 TW, 45 fs duration Ti:sapphire laser pulses with high density (>5×10^{19}   cm^{−3} helium gas jet plasma. The electron beam has virtually background-free quasimonoenergetic distribution with energy 35.6_{−2.5}^{+3.9}  MeV, charge 3.8_{−1.2}^{+2.8}  pC, divergence and pointing variation ∼10  mrad. The stable and high quality of the electron beam opens an easy way for applications of the laser wakefield accelerator in the future, particularly due to the widespread availability of sub-10 TW class lasers with a number of laser plasma laboratories around the world.

  20. Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios. (United States)

    Lycett-Brown, Daniel; Luo, Kai H


    The pseudopotential lattice Boltzmann method has been widely used to simulate many multiphase flow applications. However, there still exist problems with reproducing realistic values of density ratio and surface tension. In this study, a higher-order analysis of a general forcing term is derived. A forcing scheme is then constructed for the pseudopotential method that is able to accurately reproduce the full range of coexistence curves. As a result, multiphase flow of arbitrarily high density ratios independent of the surface tension can be simulated. Furthermore, the interface width can be tuned to allow for grid refinement and systematic error reduction. Numerical results confirm that the proposed scheme enables independent control of density ratio, surface tension, and interface width simultaneously.

  1. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method. (United States)

    Kim, Yongseon; Kim, Doyu


    Spherical nickel cobalt aluminum hydroxide (Ni(0.80)Co(0.15)Al(0.05)-hydroxide, NCA) was prepared by a continuous coprecipitation method. A new design of the Al solution and the feeding method was applied, which enabled to prevent rapid precipitation of Al(OH)(3) and to obtain spherical NCA with large enough particle size and high density. The active material (LiNi(0.80)Co(0.15)Al(0.05)O(2) or LNCA) prepared from it showed higher tap-density than that made from NCA prepared by general processes, and homogeneity of Al-distribution was also improved. It is expected that the electrode density of lithium ion batteries adopting LNCA could be improved with the new process proposed in this study.

  2. Determination of Thermal Properties and Morphology of Eucalyptus Wood Residue Filled High Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Ayse Kabakci


    Full Text Available Thermal behaviors of eucalyptus wood residue (EWR filled recycled high density polyethylene (HDPE composites have been measured applying the thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Morphology of the materials was also studied using scanning electron microscope (SEM. Addition of the EWR into the recycled HDPE matrix reduced the starting of degradation temperature. EWR filled recycled HDPE had two main decomposition peaks, one for EWR around 350 °C and one for recycled HDPE around 460 °C. Addition of EWR did not affect the melting temperature of the recycled HDPE. Morphological study showed that addition of coupling agent improved the compatibility between wood residue and recycled HDPE.

  3. Method and device for secure, high-density tritium bonded with carbon (United States)

    Wertsching, Alan Kevin; Trantor, Troy Joseph; Ebner, Matthias Anthony; Norby, Brad Curtis


    A method and device for producing secure, high-density tritium bonded with carbon. A substrate comprising carbon is provided. A precursor is intercalated between carbon in the substrate. The precursor intercalated in the substrate is irradiated until at least a portion of the precursor, preferably a majority of the precursor, is transmutated into tritium and bonds with carbon of the substrate forming bonded tritium. The resulting bonded tritium, tritium bonded with carbon, produces electrons via beta decay. The substrate is preferably a substrate from the list of substrates consisting of highly-ordered pyrolytic graphite, carbon fibers, carbon nanotunes, buckministerfullerenes, and combinations thereof. The precursor is preferably boron-10, more preferably lithium-6. Preferably, thermal neutrons are used to irradiate the precursor. The resulting bonded tritium is preferably used to generate electricity either directly or indirectly.

  4. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE

    Directory of Open Access Journals (Sweden)

    S. S. Cota


    Full Text Available This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates.

  5. Kinetic effects during the interaction between high density microplasma and electromagnetic wave (United States)

    Levko, Dmytro; Raja, Laxminarayan


    The interaction between a high-density microplasma and high-power electromagnetic wave is studied by one-dimensional Particle-in-Cell Monte Carlo collisions model coupled with the Maxwell's equations. We find the value of the amplitude of the wave field above which a fully ionized plasma is generated on the picosecond time scale. This fully ionized plasma is obtained only in the skin layer while the ionization degree of the plasma bulk is 20%. The simulation results show that such non-homogeneous distribution of plasma and gas density influences significantly the heating of plasma electrons and time evolution of the electron energy probability function. Air Force Office of Scientific Research (AFOSR) through a Multi-University Research Initiative (MURI) Grant titled ``Plasma-Based Reconfigurable Photonic Crystals and Metamaterials'' with Dr. Mitat Birkan as the program manager.

  6. Fermionic Superfluids: From Cold Atoms To High Density Qcd Gapless (breached Pair) Superfluidity And Kaon Condensation

    CERN Document Server

    Forbes, M M


    In this thesis, we explore aspects of fermionic superfluidity through a mean-field approximation. Our framework is extremely general, includes both pairing and Hartree-Fock contributions, and is derived rigorously from a variational principle. This framework allows us to analyze a wide range of fermionic systems. In this thesis, we shall consider two-species non-relativistic atomic systems with various types of interactions, and relativistic QCD systems with 3 × 3 × 4 = 36 different quark degrees of freedom (3 colours, 3 flavours, and 4 relativistic degrees of freedom). We discuss properties of a new state of matter: gapless (Breached Pair) superfluidity, and include a summary of potential experimental realizations. We also present numerical results for a completely self-consistent approximation to the NJL model of high-density QCD and use these results to demonstrate a microscopic realization of kaon condensation. We describe how to match the mean-field approximation to the low-energy chi...

  7. Impact of a high density GPS network on the operational forecast

    Directory of Open Access Journals (Sweden)

    C. Faccani


    Full Text Available Global Positioning System Zenith Total Delay (GPS ZTD can provide information about the water vapour in atmosphere. Its assimilation into the analysis used to initialize a model can then improve the weather forecast, giving the right amount of moisture and reducing the model spinup. In the last year, an high density GPS network has been created on the Basilicata region (south of Italy by the Italian Space Agency in the framework of a national project named MAGIC2. MAGIC2 is the Italian follow on of the EC project MAGIC has. Daily operational data assimilation experiments are performed since December 2003. The results show that the assimilation of GPS ZTD improves the forecast especially during the transition from winter to spring even if a no very high model resolution (9km is used.

  8. Characteristics of recycled and electron beam irradiated high density polyethylene samples

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jessica R.; Gabriel, Leandro; Geraldo, Aurea B.C.; Moura, Eduardo, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    Polymers modification by irradiation is a well-known process that allows degradation and cross-linking in concurrent events; this last is expected when an increase of mechanical properties is required. Actually, the interest of recycling and reuse of polymeric material is linked to the increase of plastics ending up in waste streams. Therefore, these both irradiation and recycling process may be conducted to allow a new use to this material that would be discarded by an improvement of its mechanical properties. In this work, the High Density Polyethylene (HDPE) matrix has been recycled five times from original substrate. The electron beam irradiation process was applied from 50 kGy to 200 kGy in both original and recycled samples; in this way, mechanical properties and thermal characteristics were evaluated. The results of applied process and material characterization are discussed. (author)

  9. Formation of high-density Si nanodots by agglomeration of ultra-thin amorphous Si films

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Hiroki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)], E-mail:; Ueyama, Tomonori [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ikenaga, Eiji; Kobayashi, Keisuke [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Sakai, Akira [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Ogawa, Masaki [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Zaima, Shigeaki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)


    High-density and similarly-sized Si nanodots were formed by annealing ultra-thin amorphous Si (a-Si) films deposited on SiO{sub 2}/Si substrates in vacuum. Dependences of density and diameter of the Si nanodots on the a-Si film thickness and, annealing temperature and time were investigated by scanning electron microscopy. It is found that drastic increase (decrease) in the density (diameter) occurred at an a-Si thickness of 1 nm. By agglomeration of sub-nanometer thick a-Si films, a density larger than 10{sup 12} cm{sup -2}, an average diameter smaller than 5 nm, and a dispersion of diameter less than 15% were achieved.

  10. The HDL hypothesis: does high-density lipoprotein protect from atherosclerosis? (United States)

    Vergeer, Menno; Holleboom, Adriaan G; Kastelein, John J P; Kuivenhoven, Jan Albert


    There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for this "HDL hypothesis". In vitro studies suggest that HDL has a wide range of anti-atherogenic properties but validation of these functions in humans is absent to date. A significant number of animal studies and clinical trials support an atheroprotective role for HDL; however, most of these findings were obtained in the context of marked changes in other plasma lipids. Finally, genetic studies in humans have not provided convincing evidence that HDL genes modulate cardiovascular risk. Thus, despite a wealth of information on this intriguing lipoprotein, future research remains essential to prove the HDL hypothesis correct.

  11. Early onset alcohol dependence with high density of family history is not "male limited". (United States)

    Magnusson, Asa; Göransson, Mona; Heilig, Markus


    Based on classical adoption studies, early onset type II alcoholism was originally described as "male limited." We examined the possible expression of this subtype in present day alcohol-dependent women. Detailed systematic assessment was obtained from 200 treatment-seeking alcohol-dependent women and 189 healthy population controls. Women fulfilling type II alcoholism criteria had higher alcoholism severity as measured by The Alcohol Use Disorders Identification Test and markedly higher use of illicit drugs. Both alcoholism subtypes scored higher than normal on anxiety and impulsivity traits, but type II women scored markedly higher on aggression subscales than either of the other groups. Importantly, density of family history was markedly higher in type II women, suggesting a higher heritability. Despite its original description as male limited, early onset alcoholism with high density of family history is likely to be a valid construct in women. Its recognition has important implications for diagnosis, treatment, and research. Published by Elsevier Inc.

  12. OSCAR experiment high-density network data report: Event 1 - April 8-9, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dana, M.T.; Easter, R.C.; Thorp, J.M.


    The OSCAR (Oxidation and Scavenging Characteristics of April Rains) experiment, conducted during April 1981, was a cooperative field investigation of wet removal in cyclonic storm systems. The high-densiy component of OSCAR was located in northeast Indiana and included sequential precipitation chemistry measurements on a 100 by 100 km network, as well as airborne air chemistry and cloud chemistry measurements, surface air chemistry measurements, and supporting meteorological measurements. Four separate storm events were studied during the experiment. This report summarizes data taken by Pacific Northwest Laboratory (PNL) during the first storm event, April 8-9. The report contains the high-density network precipitation chemistry data, air chemistry data from the PNL aircraft, and meteorological data for the event, including standard National Weather Service products and radar data from the network. 4 references, 72 figures, 5 tables.

  13. High density polyethylene membrane filled with alumina prepared by a gamma ray irradiation. (United States)

    Park, Jong-Seok; Sung, Hae-Jun; Lim, Youn-Mook; Gwon, Hui-Jeong; Nho, Young-Chang


    High density polyethylene (HDPE) membrane filled with alumina particles was prepared by a wet process for a Li-ion secondary battery. Soybean oil and dibutyl phthalate (DBP) were premixed as the co-diluents. Gamma ray irradiation was used for crosslinking of HDPE. The HDPE membrane filled with alumina particles had excellent mechanical property and thermal stability due to the alumina particles and irradiation crosslinking. The tensile strength of the membrane increased with an increased amount of alumina up to 15 wt%. The thermal shrinkage of the membrane decreased with an increased amount of alumina up to 15 wt%. The electrochemical stability of the irradiated membrane after extraction was improved with irradiation dose up to 50 kGy.

  14. Structure and Dynamics of Low-Density and High-Density Liquid Water at High Pressure. (United States)

    Fanetti, Samuele; Lapini, Andrea; Pagliai, Marco; Citroni, Margherita; Di Donato, Mariangela; Scandolo, Sandro; Righini, Roberto; Bini, Roberto


    Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.

  15. Density functional study of the electric double layer formed by a high density electrolyte. (United States)

    Henderson, Douglas; Lamperski, Stanisław; Jin, Zhehui; Wu, Jianzhong


    We use a classical density functional theory (DFT) to study the electric double layer formed by charged hard spheres near a planar charged surface. The DFT predictions are found to be in good agreement with recent computer simulation results. We study the capacitance of the charged hard-sphere system at a range of densities and surface charges and find that the capacitance exhibits a local minimum at low ionic densities and small electrode charge. Although this charging behavior is typical for an aqueous electrolyte solution, the local minimum gradually turns into a maximum as the density of the hard spheres increases. Charged hard spheres at high density provide a reasonable first approximation for ionic liquids. In agreement with experiment, the capacitance of this model ionic liquid double layer has a maximum at small electrode charge density.

  16. The Dynamic Mechanical Analysis of Highly Filled Rice Husk Biochar/High-Density Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Qingfa Zhang


    Full Text Available In this study, rice husk biochar/high-density polyethylene (HDPE composites were prepared via melt mixing followed by extrusion. Effects of biochar content and testing temperature on the dynamic mechanical analysis (DMA of the composites were studied. Morphological analysis of the rice husk biochar and composites were evaluated by scanning electron microscopy (SEM. The results showed that biochar had a positive effect on dynamic viscoelasticity, creep resistance and stress relaxation properties of the composites, but the creep resistance and stress relaxation of the composites decreased with the increase of temperature. SEM analysis showed that HDPE components were embedded in the holes of the rice husk biochar, and it is believed that strong interaction was achieved.

  17. High-density lipoprotein associated with secondary vitellogenesis in the hemolymph of the crayfish Cherax quadricarinatus. (United States)

    Yehezkel, G; Chayoth, R; Abdu, U; Khalaila, I; Sagi, A


    The high-density lipoproteins LPI and LPII were isolated from the hemolymph of the crayfish Cherax quadricarinatus by gradient ultracentrifugation and high-performance liquid chromatography (HPLC). Both lipoproteins contained a carotenoid moiety. LPI is comprised of a single polypeptide with an approximate molecular mass of 96 kDa. LPII was composed of two similar native components, LPIIa and LPIIb, both having polypeptides of 80 and 177 kDa. Both under natural conditions and after endocrine manipulations, LPI was present in males and in females, regardless of the female reproductive stage. LPII was present only in secondary-vitellogenic females, but not during the winter reproductive arrest period. LPII was also absent from young females that had received androgenic gland implants. LPII also appeared in the hemolymph of intersex individuals from which the androgenic gland had been removed. It is therefore suggested that LPII serves as a marker indicating the onset of secondary vitellogenesis in C. quad'iariicarintus females.

  18. Correlation of mechanical and tribological properties of organosilane modified cenosphere filled high density polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Chand, Navin, E-mail: [Advanced Materials and Processes Research Institute (AMPRI), Bhopal (India); Sharma, Prabhat [Advanced Materials and Processes Research Institute (AMPRI), Bhopal (India); Fahim, M. [Department of Physics, Zakir Husain College,University of Delhi, Delhi (India)


    Flyash cenosphere obtained as industrial waste from thermal power plants is an effective cost and weight reducing filler for developing lightweight polymer composites. Cenospheres as fillers also help in improving the mechanical properties of base polymer matrices. However, the desired enhancement depends on homogeneous dispersion of cenospheres and excellent compatibility between cenospheres and polymer matrix. In the present work, this was achieved by modifying the surface of cenospheres using silane treatment and incorporating them in a versatile thermoplastic high density polyethylene. The silane treatment resulted in considerable improvement in the impact strength and density of the composites which ultimately translated into better wear performance of composites even in severe abrasive conditions. Lancaster-Ratner correlation between mechanical properties and wear resistance was found to be almost linear for the silane treated cenospheres filled composites unlike the untreated cenospheres filled composites. Scanning electron microscopy was used to understand the wear modes and mechanisms and supported using X-ray diffractograms.

  19. Receptor mediated uptake of paclitaxel from a synthetic high density lipoprotein nanocarrier. (United States)

    Mooberry, Linda K; Nair, Maya; Paranjape, Sulabha; McConathy, Walter J; Lacko, Andras G


    The purpose of these studies was to determine the mechanism(s) whereby paclitaxel (PTX), is taken up by cancer cells, once encapsulated into synthetic/reconstituted high density lipoprotein (rHDL). The uptake of PTX was found to be facilitated by the scavenger receptor type B-1 (SR-B1) when drug-loaded rHDL particles were incubated with cells that express the SRB1 receptor. Studies with double-labeled, PTX containing rHDL nanoparticles showed that prostate cancer (PC-3) cells incorporated PTX primarily via a selective (SR-B1 type) uptake mechanism. In the presence of a 10-fold excess of plasma HDL, PTX uptake decreased to 30% of the control. These findings suggest that the incorporation of lipophilic drugs by cancer cells from rHDL nanoparticles is facilitated by a receptor mediated (SR-B1) mechanism.

  20. Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity (United States)


    We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility. PMID:25314576

  1. Influence of mixing in mechanical properties of clay and carbon nanotube and high density polyethylene (United States)

    Brandenburg, R. F.; Lofi, A. R. H. C.; Lepienski, C. M.; Coelho, L. A. F.; Becker, D.


    In this work, nanocomposites with simultaneous dispersion of multiwalled carbon nanotubes (MWCNT) and montmorillonite clays in a high density polyethylene matrix were prepared by two different processes of preparation: solution and melt intercalation. The simultaneous dispersion of clays with carbon nanotubes (CNT) in different polymeric matrices has been showing a synergic potential for increasing mechanical properties, electrical conductivity and reducing the percolation threshold of the conductive phase. Two different montmorillonite clays were used separately: a natural (MMT-Na) and an organoclay (MMT-30B). The crystallinity degree and melting temperatures were evaluated by D.S.C., mechanical properties were evaluated by nanoindentetion. It can be seen that the process of preparation modify the degree of crystallinity of the HDPE matrix. Data from nanoidentention showed that the simultaneous addition of nanoclays and carbon nanotubes increased the Young's Modulus in both processes of preparation.

  2. Application of schlieren interferometry to temperature measurements during laser welding of high-density polyethylene films. (United States)

    Coelho, João M P; Abreu, Manuel A; Rodrigues, F Carvalho


    Schlieren interferometry is found to be an alternative tool for temperature measurement during thermoplastic laser welding with regard to methods based on thermocouples or optical pyrometers. In fact, these techniques are not easily applied when materials to be processed have reduced thickness, negligible heat conduction, and low emissivity, as is the case of welding high-density polyethylene films with 10.6-microm CO2 laser radiation, even if the method reaches its applicability limit after approximately 1 s of the interaction process. The schlieren method provides the means and the results to probe the thermal variations of the laser-thermoplastic interaction on both the surface and the interface between the sample material and the air.

  3. Generation of neutral and high-density electron-positron pair plasmas in the laboratory. (United States)

    Sarri, G; Poder, K; Cole, J M; Schumaker, W; Di Piazza, A; Reville, B; Dzelzainis, T; Doria, D; Gizzi, L A; Grittani, G; Kar, S; Keitel, C H; Krushelnick, K; Kuschel, S; Mangles, S P D; Najmudin, Z; Shukla, N; Silva, L O; Symes, D; Thomas, A G R; Vargas, M; Vieira, J; Zepf, M


    Electron-positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter-antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron-positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron-positron plasmas in controlled laboratory experiments.

  4. Generation of neutral and high-density electron–positron pair plasmas in the laboratory (United States)

    Sarri, G.; Poder, K.; Cole, J. M.; Schumaker, W.; Di Piazza, A.; Reville, B.; Dzelzainis, T.; Doria, D.; Gizzi, L. A.; Grittani, G.; Kar, S.; Keitel, C. H.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Shukla, N.; Silva, L. O.; Symes, D.; Thomas, A. G. R.; Vargas, M.; Vieira, J.; Zepf, M.


    Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments. PMID:25903920

  5. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2012 (United States)

    Irom, Farokh; Allen, Gregory R.


    The space radiation environment poses a certain risk to all electronic components on Earth-orbiting and planetary mission spacecraft. In recent years, there has been increased interest in the use of high-density, commercial, nonvolatile flash memories in space because of ever-increasing data volumes and strict power requirements. They are used in a wide variety of spacecraft subsystems. At one end of the spectrum, flash memories are used to store small amounts of mission-critical data such as boot code or configuration files and, at the other end, they are used to construct multi-gigabyte data recorders that record mission science data. This report examines single-event effect (SEE) and total ionizing dose (TID) response in single-level cell (SLC) 32-Gb, multi-level cell (MLC) 64-Gb, and Triple-level (TLC) 64-Gb NAND flash memories manufactured by Micron Technology with feature size of 25 nm.

  6. High density lipoprotein – a hero, a mirage or a witness?

    Directory of Open Access Journals (Sweden)

    Dmitri eSviridov


    Full Text Available Negative relationship between plasma High Density Lipoprotein (HDL levels and risk of cardiovascular disease is a firmly established medical fact, but attempts to reproduce protective properties of HDL by pharmacologically elevating HDL levels were mostly unsuccessful. This conundrum presents a fundamental question: were the approaches used to raise HDL flawed or the protective effects of HDL are an epiphenomenon. Recent attempts to elevate plasma HDL were universally based on reducing HDL catabolism by blocking reverse cholesterol transport. Here we argue that this mode of HDL elevation may be mechanistically different to natural mechanisms and thus be counterproductive. We further argue that independently of whether HDL is a driving force or a surrogate measure of the rate of reverse cholesterol transport, approaches aimed at increasing HDL supply, rather than reducing its catabolism, would be most beneficial for speeding up reverse cholesterol transport and improving protection against cardiovascular disease.

  7. Progress of cardioprotective effects of high density lipoprotein: function and mechanism

    Directory of Open Access Journals (Sweden)

    Hai-ge SUN


    Full Text Available The high density lipoprotein (HDL in human plasma is a heterogeneous lipoprotein consisting of roughly equal contents of lipid and protein in roughly equal content, and it consists of several subtypes. HDL possesses several well-documented functions, including anti-atherosclerosis by promoting reverse cholesterol transport, inhibiting the oxidative modification of low density lipoproteins (LDLs, inhibiting vascular inflammation, preventing thrombosis and apoptosis, and promoting endothelial repair. Recently, more cardiovascular protective functions of HDL have been found, mainly including the ability of suppressing immune inflammatory reaction, inhibiting the proliferation of hematopoietic stem cells, and regulating the plasma glucose level. It is of great importance to understand how different HDL subtypes contribute to the potentially cardioprotective functions. DOI: 10.11855/j.issn.0577-7402.2014.11.13

  8. High precision (14 bit), high density (octal) analog to digital converter for spectroscopy applications. (United States)

    Subramaniam, E T; Jain, Mamta; Bhowmik, R K; Tripon, Michel


    Nuclear and particle physics experiments with large number of detectors require signal processing and data collection strategies that call for the ability to collect large amount of data while not sacrificing the precision and accuracy of the data being collected. This paper deals with the development of a high precision pulse peak detection, analog to digital converter (ADC) module with eight independent channels in plug-in daughter card motherboard model, best suited for spectroscopy experiments. This module provides multiple channels without cross-talk and of 14 bit resolution, while maintaining high density (each daughter card has an area of just 4.2(")x0.51(")) and exhibiting excellent integral nonlinearity (< or = +/-2 mV or +/-0.02% full scale reading) and differential nonlinearity (< or = +/-1%). It was designed, developed and tested, in house, and gives added advantages of cost effectiveness and ease of maintenance.

  9. Preparation of High-Density Fibrillar Collagen Matrices That Mimic Desmoplastic Tumor Stroma. (United States)

    Artym, Vira V


    The stroma of invasive tumors becomes enriched in dense fibrillar collagen as a result of the desmoplastic reaction. This desmoplastic collagen exerts profound effects on tumor and normal cells. In view of these findings, it is important to develop novel in vitro cell systems that mimic this desmoplastic extracellular matrix in order to permit cell studies under in vivo-like conditions. This unit provides a protocol and troubleshooting guide for preparation of high-density fibrillar collagen (HDFC) matrices that closely model the desmoplastic collagenous matrix of malignant tumors. It then describes the use of this matrix for in vitro cell studies of invadopodia formation and function in extracellular matrix invasion. In addition, it provides a detailed protocol for immunolabeling of invadopodial proteins and detection of HDFC matrix degradation associated with invadopodia to permit visualization of invadopodia using fluorescence microscopy. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. The role of paraoxonase 1 in regulating high-density lipoprotein functionality during aging. (United States)

    Khalil, Abdelouahed; Kamtchueng Simo, Olivier; Ikhlef, Souade; Berrougui, Hicham


    Pharmacological interventions to increase the concentration of high-density lipoprotein (HDL) have led to disappointing results and have contributed to the emergence of the concept of HDL functionality. The anti-atherogenic activity of HDLs can be explained by their functionality or quality. The capacity of HDLs to maintain cellular cholesterol homeostasis and to transport cholesterol from peripheral cells to the liver for elimination is one of their principal anti-atherogenic activities. However, HDLs possess several other attributes that contribute to their protective effect against cardiovascular diseases. HDL functionality is regulated by various proteins and lipids making up HDL particles. However, several studies investigated the role of paraoxonase 1 (PON1) and suggest a significant role of this protein in the regulation of the functionality of HDLs. Moreover, research on PON1 attracted much interest following several studies indicating that it is involved in cardiovascular protection. However, the mechanisms by which PON1 exerts these effects remain to be elucidated.

  11. High-density EMG E-textile systems for the control of active prostheses. (United States)

    Farina, Dario; Lorrain, Thomas; Negro, Francesco; Jiang, Ning


    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals for myoelectric control. A sleeve covering the upper and lower arm, which contains 100 electrodes arranged in four grids of 5 × 5 electrodes, was used to record EMG signals in 3 subjects during the execution of 9 tasks of the wrist and hand. The signals were analyzed by extracting wavelet coefficients which were classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 ± 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing.

  12. A High-Density Map for Navigating the Human Polycomb Complexome

    Directory of Open Access Journals (Sweden)

    Simon Hauri


    Full Text Available Polycomb group (PcG proteins are major determinants of gene silencing and epigenetic memory in higher eukaryotes. Here, we systematically mapped the human PcG complexome using a robust affinity purification mass spectrometry approach. Our high-density protein interaction network uncovered a diverse range of PcG complexes. Moreover, our analysis identified PcG interactors linking them to the PcG system, thus providing insight into the molecular function of PcG complexes and mechanisms of recruitment to target genes. We identified two human PRC2 complexes and two PR-DUB deubiquitination complexes, which contain the O-linked N-acetylglucosamine transferase OGT1 and several transcription factors. Finally, genome-wide profiling of PR-DUB components indicated that the human PR-DUB and PRC1 complexes bind distinct sets of target genes, suggesting differential impact on cellular processes in mammals.

  13. Direct Selective Laser Sintering/Melting of High Density Alumina Powder Layers at Elevated Temperatures (United States)

    Deckers, J.; Meyers, S.; Kruth, J. P.; Vleugels, J.

    Direct selective laser sintering (SLS) or selective laser melting (SLM) are additive manufacturing techniques that can be used to produce three-dimensional ceramic parts directly, without the need for a sacrificial binder. In this paper, a low laser energy density is applied to SLS/SLM high density powder layers of sub-micrometer alumina at elevated temperatures (up to 800̊C). In order to achieve this, a furnace was designed and built into a commercial SLS machine. This furnace was able to produce a homogeneously heated cylindrical zone with a height of 60 mm and a diameter of 32 mm. After optimizing the layer deposition and laser scanning parameters, two ceramic parts with a density up to 85% and grain sizes as low as 5 μm were successfully produced.

  14. Thermal properties of silica-filled high density polyethylene composites compatibilized with glut palmitate (United States)

    Samsudin, Dalina; Ismail, Hanafi; Othman, Nadras; Hamid, Zuratul Ain Abdul


    A study of thermal properties resulting from the utilization of Glut Palmitate (GP) on the silica filled high density polyethylene (HDPE) composites was carried out. The composites with the incorporation of GP at 0.5, 1.0, 2.0 and 3.0 phr were prepared by using an internal mixer at the temperature 180 °C and the rotor speed of 50 rpm. The thermal behaviours of the composites were then investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the crystallinity and the thermal stability of the composites increased with the incorporation of GP. The highest crystallinity contents and decomposition temperatures were observed at the 1 phr GP loading.

  15. High-density SNP arrays improve detection of HER2 amplification and polyploidy in breast tumors

    DEFF Research Database (Denmark)

    Hansen, Thomas V. O.; Vikesaa, Jonas; Buhl, Sine S


    BACKGROUND: Human epidermal growth factor receptor-2 (HER2) overexpression and gene amplification are currently established by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), respectively. This study investigates whether high-density single nucleotide polymorphism (SNP......) arrays can provide additional diagnostic power to assess HER2 gene status. METHODS: DNA from 65 breast tumor samples previously diagnosed by HER2 IHC and FISH analysis were blinded and examined for HER2 copy number variation employing SNP array analysis. RESULTS: SNP array analysis identified 24 (37......%) samples with selective amplification or imbalance of the HER2 region in the q-arm of chromosome 17. In contrast, only 15 (23%) tumors were found to have HER2 amplification by IHC and FISH analysis. In total, there was a discrepancy in 19 (29%) samples between SNP array and IHC/FISH analysis. In 12...

  16. DEGAS 2 neutral transport modeling of high density, low temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D.P.; Karney, C.F.F. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Pigarov, A.Y. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center]|[I.V. Kurchatov Inst. of Atomic Energy, Moscow (Russian Federation)] [and others


    Neutral transport in the high density, low temperature plasma regime is examined using the DEGAS 2 Monte Carlo neutral transport code. DEGAS 2 is shown to agree with an analytic fluid neutral model valid in this regime as long as the grid cell spacing is less than twice the neutral mean-free path. Using new atomic physics data provided by the collisional radiative code CRAMD, DEGAS 2 is applied to a detached Alcator C-Mod discharge. A model plasma with electron temperature {approximately}1 eV along detached flux tubes, between the target and the ionization front, is used to demonstrate that recombination is essential to matching the experimental data. With the CRAMD data, {approximately}20% of the total recombination is due to molecular activated recombination.

  17. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting. (United States)

    Rosselló, Josep L; Alomar, Miquel L; Morro, Antoni; Oliver, Antoni; Canals, Vincent


    Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.

  18. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity

    Directory of Open Access Journals (Sweden)

    Peng Dao-Quan


    Full Text Available Abstract Obesity, a significant risk factor for various chronic diseases, is universally related to dyslipidemia mainly represented by decreasing high-density lipoprotein cholesterol (HDL-C, which plays an indispensible role in development of cardiovascular disease (CVD. However, the mechanisms underlying obesity and low HDL-C have not been fully elucidated. Previous studies have focused on the alteration of HDL catabolism in circulation following elevated triglyceride (TG. But recent findings suggested that liver and fat tissue played pivotal role in obesity related low HDL-C. Some new molecular pathways like microRNA have also been proposed in the regulation of HDL metabolism in obesity. This article will review recent advances in understanding of the potential mechanism of low HDL-C in obesity.

  19. Behavior of a plasma in a high-density gas-embedded Z-pinch configuration

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, J.S.


    The theoretical analysis of a high density Z-pinch (HDZP) begins with an examination of the steady state energy balance between ohmic heating and bremsstrahlung radiation losses for a plasma column in pressure equilibrium. The model is then expanded to include the time-varying internal energy and results in a quasi-equilibrium prescription for the load current through a constant radius plasma channel. This set of current waveforms is useful in the design of experimental systems. The behavior of a plasma for physically realizable conditions is first examined by allowing adiabatic changes in the column radius. A more complete model is then developed by incorporating inertial effects into the momentum equation, and the resultant global MHD computational model is compared with more sophisticated, and costly, one- and two-dimensional computer simulations. These comparisons demonstrate the advantages of the global MHD description over previously developed zero-dimensional models.

  20. On the High Density Behavior of Hamming Codes with Fixed Minimum Distance (United States)

    Parisi, Giorgio; Zamponi, Francesco


    We discuss the high density behavior of a system of hard spheres of diameter d on the hypercubic lattice of dimension n, in the limit n→∞, d→∞, d/ n = δ. The problem is relevant for coding theory, and the best available bounds state that the maximum density of the system falls in the interval 1 ≤ ρ V d ≤ exp ( n κ(δ)), being κ(δ) > 0 and V d the volume of a sphere of radius d. We find a solution of the equations describing the liquid up to an exponentially large value of {widetilde ρ} ρ = ρ V d , but we show that this solution gives a negative entropy for the liquid phase for {widetilde ρ} ρ > rsimn. We then conjecture that a phase transition towards a different phase might take place, and we discuss possible scenarios for this transition.

  1. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    Directory of Open Access Journals (Sweden)

    Subedi BH


    Full Text Available Bishnu H Subedi,1,2 Parag H Joshi,1 Steven R Jones,1 Seth S Martin,1 Michael J Blaha,1 Erin D Michos1 1Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, 2Greater Baltimore Medical Center, Baltimore, MD, USA Abstract: Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD is low high-density lipoprotein cholesterol (HDL-C. Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. Keywords: high-density lipoprotein, lipids, cholesterol, atherosclerosis, cardiovascular disease, therapy

  2. Development and characterization of a high density SNP genotyping assay for cattle.

    Directory of Open Access Journals (Sweden)

    Lakshmi K Matukumalli

    Full Text Available The success of genome-wide association (GWA studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP genotyping for the identification of quantitative trait loci (QTL and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF ranging from 0.24 to 0.27. The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle.


    Directory of Open Access Journals (Sweden)

    Umar A.H.


    Full Text Available Umar A.H1, Zainudin E.S1,2 and Sapuan S.M.1,21Department of Mechanical and Manufacturing EngineeringFaculty of Engineering, Universiti Putra MalaysiaSelangor, Malaysia.2Biocomposite LaboratoryInstitute of Tropical Forestry and Forest Product (INTROPUniversiti Putra Malaysia, Selangor, Malaysia.Email: ABSTRACTIn this study, a high-density polyethylene composite reinforced with kenaf (Hibiscus Cannabinus L. bast fibres (K-HDPE was fabricated and tested for durability with regard to weather elements. The material consists of 40% (by weight fibres and 60% matrix. Other additives, such as ultraviolet (UV stabiliser and maleic anhydride grafted polyethylene (MaPE as a coupling agent were added to the composite material. The biocomposite was subjected to 1000 hours (h of accelerated weathering tests, which consisted of heat, moisture and UV light, intended to imitate the outdoor environment. The tensile properties of the K-HDPE composite were recorded after 0, 200, 400, 600, 800 and 1000 h of exposure to the accelerated weathering. Compared with neat high-density polyethylene (HDPE, the K-HDPE composite has 22.7% lower tensile strength when produced but displays a less rapid rate of strength deterioration under weathering (After 1000 h of exposure the tensile strength of K-HDPE drops 29.4%, whereas, for neat HDPE, it falls rapidly by 36%. Due to better stiffness, the Young’s modulus of the K-HDPE composite is much higher than that of neat HDPE. The fibres on the surface of the K-HDPE composite gradually start to whiten after 200 h of exposure and become completely white after 600 h of exposure. For neat HDPE, micro-cracking on the surface can be observed after 200 h of exposure and the stress-strain curve obtained from the tensile test indicates its increase in brittleness proportional to the amount of weathering time.

  4. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Nurul Izni Rusli


    Full Text Available The formation of high-density zinc oxide (ZnO nanorods on porous silicon (PS substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn powder in the presence of oxygen (O2 gas was systematically investigated. The high-density growth of ZnO nanorods with (0002 orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS and vapor-solid (VS mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  5. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study. (United States)

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M


    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  6. Elastic Behavior and Platelet Retraction in Low- and High-Density Fibrin Gels (United States)

    Wufsus, Adam R.; Rana, Kuldeepsinh; Brown, Andrea; Dorgan, John R.; Liberatore, Matthew W.; Neeves, Keith B.


    Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3–10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3–10 mg/mL) and high (30–100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi. PMID:25564864

  7. Polymer ring resonators for high density photonic and electronic-photonic integration (United States)

    Sun, Haishan


    Electrical interconnect based on the copper wires will be the bottleneck for the future performance improvement of multi-core CPUs. Chip scale optical interconnect based on high density photonic and electronic-photonic integration is one of the feasible solutions. Ring resonators are promising photonic components serving as building blocks. High density integration of ring resonators is also important for high throughput lab-on-a-chip biosensors and opto-microwave integrated circuits. Polymer materials are compatible with most semiconductor fabrication processes. Polymers can be easily doped with rare earth ions, quantum dots etc. to make active optical devices. Especially, over several hundreds pm/V electro-optic (EO) coefficients and femtosecond scale response time of EO polymers enables photonic devices with sub 1V to millivolt drive voltages and terahertz bandwidth. This dissertation describes several technologies about design, simulation, fabrication, integration with electronic circuits and fiber optics of polymer ring resonators, and demonstrates three application examples of polymer ring resonators in communications and biochemical sensing. First the Beam Propagation Method (BPM) and the matrix analysis are combined to provide a fast circuit level simulation and design procedure of polymer ring resonators. Several low cost fabrication techniques based on electron beam irradiation effects on EO polymers are introduced. For the practical electronicphotonic integration, a hybrid integration scheme of EO polymer waveguide devices with Si integrated circuits is developed. One application is an all-dielectric RF sensor or receiver with sensitivity of 100 V/m and theoretical bandwidth over 100 GHz. This device is based on a novel structure with polymer ring resonator directly coupled to a side polished optical fiber. The other two examples are biochemical sensors based on multi-slot waveguide and ring resonator reflector structures.

  8. The Experimental Demonstration of the Optimized Electrical Probe Memory for Ultra-High Density Recording. (United States)

    Wang, Lei; Gong, Sidi; Yang, Cihui; Wen, Jing


    A theoretical model has been previously proposed to optimize the structure of the electrical probe memory system, whereby the optimal thickness and resistivity of DLC capping layer and TiN under layer are predicted to be 2 nm, 0.01 Ωm, and 40 nm, 2×10-7 Ωm,respectively However, there is no experimental evidence to show that such a media stack can be fabricated in reality by the time of writing and few patents regarding this intriguing topic have been reviewed and cited. In order to realize this optimized design experimentally, the thickness dependent resistivity for both DLC and TiN film are assessed, from which it is not possible to obtain a media stack with exactly the same properties as the optimized design. Therefore, the previously proposed architecture is re-optimized using the measured properties values, and the capability of using the modified memory architecture to provide ultra-high density, high data rate, and low energy consumption is demonstrated. The results show that it is difficult to experimentally attain an electrical probe memory with exactly the same properties values as the optimized counterpart. An optimized electrical probe memory structure that includes a DLC capping layer and TiN under layer was previously proposed according to a parametric approach, while the practicality of realizing such a media stack experimentally has not bee investigated. In order to assess its practical feasibility, we first measured the electrical resistivities of DLC and TiN films for different thicknesses. In this case, for the purpose of optimizing the memory system with appropriate, but more physically realistic properties values, we re-designed the architecture using the measured properties, and the modified system is able to provide ultra-high density, large data rate, and low energy consumption. Copyright© Bentham Science Publishers; For any queries, please email at

  9. Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection.

    Directory of Open Access Journals (Sweden)

    Marie Samanovic


    Full Text Available Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system.

  10. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis. (United States)

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei


    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  11. Detecting genetic association of common human facial morphological variation using high density 3D image registration.

    Directory of Open Access Journals (Sweden)

    Shouneng Peng

    Full Text Available Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ∼30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the IRF6 gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation.

  12. Impaired platelet activation in familial high density lipoprotein deficiency (Tangier disease). (United States)

    Nofer, Jerzy-Roch; Herminghaus, Grazyna; Brodde, Martin; Morgenstern, Eberhard; Rust, Stephan; Engel, Thomas; Seedorf, Udo; Assmann, Gerd; Bluethmann, Horst; Kehrel, Beate E


    ATP binding cassette transporter A1 (ABCA1) is involved in regulation of intracellular lipid trafficking and export of cholesterol from cells to high density lipoproteins. ABCA1 defects cause Tangier disease, a disorder characterized by absence of high density lipoprotein and thrombocytopenia. In the present study we have demonstrated that ABCA1 is expressed in human platelets and that fibrinogen binding and CD62 surface expression in response to collagen and low concentrations of thrombin, but not to ADP, are defective in platelets from Tangier patients and ABCA1-deficient animals. The expression of platelet membrane receptors such as GPVI, alpha2beta1 integrin, and GPIIb/IIIa, the collagen-induced changes in phosphatidylserine and cholesterol distribution, and the collagen-induced signal transduction examined by phosphorylation of LAT and p72syk and by intracellular Ca2+ mobilization were unaltered in Tangier platelets. The electron microscopy of Tangier platelets revealed reduced numbers of dense bodies and the presence of giant granules typically encountered in platelets from Chediak-Higashi syndrome. Further studies demonstrated impaired release of dense body content in platelets from Tangier patients and ABCA1-deficient animals. In addition, Tangier platelets were characterized by defective surface exposure of dense body and lysosomal markers (CD63, LAMP-1, LAMP-2, CD68) during collagen- and thrombin-induced stimulation and by abnormally high lysosomal pH. We conclude that intact ABCA1 function is necessary for proper maturation of dense bodies in platelets. The impaired release of the content of dense bodies may explain the defective activation of Tangier platelets by collagen and low concentrations of thrombin, but not by ADP.

  13. High-density SNP genotyping to define beta-globin locus haplotypes. (United States)

    Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S; Quinn, Charles T; Onyekwere, Onyinye C; Pace, Betty S


    Five major beta-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, beta-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the beta-locus, which consists of five functional beta-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the beta-locus using DNA samples from healthy African Americans with either normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the beta-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Ggamma-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high-density SNP mapping may be required to accurately define beta-haplotypes that correlate with the different clinical phenotypes observed in SCD.

  14. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL

    National Research Council Canada - National Science Library

    Xia, P; Vadas, M A; Rye, K A; Barter, P J; Gamble, J R


    The ability of high density lipoproteins (HDL) to inhibit cytokine-induced adhesion molecule expression has been demonstrated in their protective function against the development of atherosclerosis and associated coronary heart disease...

  15. In-vivo performance of high-density collagen gel tubes for urethral regeneration in a rabbit model.

    NARCIS (Netherlands)

    Micol, L.A.; Arenas da Silva, L.F.; Geutjes, P.J.; Oosterwijk, E.; Hubbell, J.A.; Feitz, W.F.J.; Frey, P.


    Congenital malformations or injuries of the urethra can be treated using existing autologous tissue, but these procedures are sometimes associated with severe complications. Therefore, tissue engineering may be advantageous for generating urethral grafts. We evaluated engineered high-density

  16. Genetically elevated apolipoprotein A-I, high-density lipoprotein cholesterol levels, and risk of ischemic heart disease

    DEFF Research Database (Denmark)

    Lundegaard, Christiane; Tybjærg-Hansen, Anne; Grande, Peer


    Epidemiologically, levels of high-density lipoprotein (HDL) cholesterol and its major protein constituent, apolipoprotein A-I (apoA-I), are inversely related to risk of ischemic heart disease (IHD).......Epidemiologically, levels of high-density lipoprotein (HDL) cholesterol and its major protein constituent, apolipoprotein A-I (apoA-I), are inversely related to risk of ischemic heart disease (IHD)....

  17. High-Density Digital Links Optimization of Signal Integrity and Noise Performance of the High-Density Digital Links of the ATLAS-TRT Readout System

    CERN Document Server

    Mandl, M


    The Transition Radiation Tracker (TRT) is a sub detector of the particle detector ATLAS (A Toroidal LHC ApparatuS). About 420,000 detecting elements are distributed over 22 m3. They produce each second approximately 20 Tbit of data which has to be transferred from the front-end electronics inside the detector to the back-end electronics outside the detector for further processing. The task of this thesis is to guarantee the integrity of the signals and the electromagnetic compatibility inside the TRT as well as to the aggressive surroundings. The electromagnetic environment of particle detectors in high-energy physics adds special constraints to the high data rates and the high complexity: high sensibility of the detecting elements and their pre amplifiers, confined space, limited material budget, a radioactive environment, and high static magnetic fields. Thus many industrial standard measures have to be abandoned. Special design is essential to compensate this disadvantage.

  18. A Review of Energy Storage Technologies

    DEFF Research Database (Denmark)

    Connolly, David


    ), Battery Energy Storage (BES), Flow Battery Energy Storage (FBES), Flywheel Energy Storage (FES), Supercapacitor Energy Storage (SCES), Superconducting Magnetic Energy Storage (SMES), Hydrogen Energy Storage System (HESS), Thermal Energy Storage (TES), and Electric Vehicles (EVs). The objective...... than PHES depending on the availability of suitable sites. FBES could also be utilised in the future for the integration of wind, but it may not have the scale required to exist along with electric vehicles. The remaining technologies will most likely be used for their current applications...

  19. Flywheel energy storage; Schwungmassenspeicher

    Energy Technology Data Exchange (ETDEWEB)

    Bornemann, H.J. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany)


    Energy storages may be chemical systems such as batteries, thermal systems such as hot-water tanks, electromagnetic systems such as capacitors and coils, or mechanical systems such as pumped storage power systems or flywheel energy storages. In flywheel energy storages the energy is stored in the centrifugal mass in the form of kinetic energy. This energy can be converted to electricity via a motor/generator unit and made available to the consumer. The introduction of magnetic bearings has greatly enhanced the potential of flywheel energy storages. As there is no contact between the moving parts of magnetic bearings, this technology provides a means of circumventing the engineering and operational problems involved in the we of conventional bearings (ball, roller, plain, and gas bearings). The advantages of modern flywheel energy storages over conventional accumulators are an at least thousandfold longer service life, low losses during long-time storage, greater power output in the case of short-time storage, and commendable environmental benignity. (orig./HW) [Deutsch] Als Enegiespeicher kommen chemische Systeme, z.B. Batterien, thermische Systeme, z.B. Warmwassertanks, elektromagnetische Systeme, z.B. Kondensatoren und Spulen, sowie mechanische Systeme, z.B. Pumpspeicherwerke und Schwungmassenspeicher in Frage. In einem Schwungmassenspeicher wird Energie in Form von kinetischer Energie in der Schwungmasse gespeichert. Ueber eine Moter/Generator Einheit wird diese Energie in elektrischen Strom umgewandelt und dem Verbraucher zugefuehrt. Mit der Einfuehrung von magnetischen Lagern konnte die Leistungsfaehigkeit von Schwungmassenspeichern erheblich gesteigert werden. Da in einem Magnetlager keine Beruehrung zwischen sich bewegenden Teilen besteht, wird ein Grossteil der mit dem Einsatz konventioneller Lager (Kugel- und Rollenlager, Gleitlager und Gaslager) verbundenen ingenieurtechnischen und betriebstechnischen Probleme vermieden. Die Vorteile von modernen

  20. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays (United States)

    Ferguson, Jane A.


    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  1. A Portable Low-Cost High Density Sensor Network for Air Quality at London Heathrow Airport (United States)

    Popoola, O. A.; Mead, M. I.; Bright, V. B.; North, R.; Stewart, G.; Kaye, P. H.; Jones, R. L.


    The growing demand for air travel in the UK has led to calls for ways to address the effects of increasing activities in airports in London. London Heathrow airport (LHR) is the largest airport in the UK and in recent years has been operating close to full capacity resulting in consideration of building a third runway to ease the burden at the airport. Such an expansion would be subject to meeting several criteria including local air quality challenges. Air quality issues associated with the airport include particulates (e.g. PM2.5, PM10), carbon monoxide (CO), oxides of nitrogen (NO, NO2), sulphur dioxide (SO2) and volatile organic compounds (VOCs), and these are associated with different sources including aircraft activities and road traffic within and outside of the airport. Although it is well known that airports contribute to poor air quality, part of the challenge is to quantify contributions from these different sources. The work presented here shows the utility of low-cost high density sensor networks in addressing this challenge. We have shown in previous studies the application of low-cost electrochemical sensor network instruments in monitoring air quality pollutants including CO, NO and NO2 in an urban environment. In this paper we extend this to include modified versions of these instruments which incorporate additional species such as O3, SO2, VOCs, CO2 as well as size-speciated particulates (0.38 to 17.4 μm). Meteorological data including temperature, relative humidity, wind speed and direction are also recorded. For this paper, we focus on LHR, although the technique has much wider applicability. A network of 30 sensor nodes is being deployed for over 16 months in and around LHR as part of NERC funded Sensor Network for Air Quality (SNAQ) project. We present here some of the early results from the deployment showing source attribution associated with different operational modes at LHR. Regional pollution episodes influenced by macro meteorology are

  2. Exploring properties of high-density matter through remnants of neutron-star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Bauswein, Andreas [Aristotle University of Thessaloniki, Department of Physics, Thessaloniki (Greece); Heidelberger Institut fuer Theoretische Studien, Heidelberg (Germany); Stergioulas, Nikolaos [Aristotle University of Thessaloniki, Department of Physics, Thessaloniki (Greece); Janka, Hans-Thomas [Max-Planck-Institut fuer Astrophysik, Garching (Germany)


    Remnants of neutron-star mergers are essentially massive, hot, differentially rotating neutron stars, which are initially strongly oscillating. As such they represent a unique probe for high-density matter because the oscillations are detectable via gravitational-wave measurements and are strongly dependent on the equation of state. The impact of the equation of state for instance is apparent in the frequency of the dominant oscillation mode of the remnant. For a fixed total binary mass a tight relation between the dominant postmerger oscillation frequency and the radii of nonrotating neutron stars exists. Inferring observationally the dominant postmerger frequency thus determines neutron star radii with high accuracy of the order of a few hundred meters. By considering symmetric and asymmetric binaries of the same chirp mass, we show that the knowledge of the binary mass ratio is not critical for this kind of radius measurements. We perform simulations which show that initial intrinsic neutron star rotation is unlikely to affect this method of constraining the high-density equation of state. We also summarize different possibilities about how the postmerger gravitational-wave emission can be employed to deduce the maximum mass of nonrotating neutron stars. We clarify the nature of the three most prominent features of the postmerger gravitational-wave spectrum and argue that the merger remnant can be considered to be a single, isolated, self-gravitating object that can be described by concepts of asteroseismology. We sketch how the consideration of the strength of secondary gravitational-wave peaks leads to a classification scheme of the gravitational-wave emission and postmerger dynamics. The understanding of the different mechanisms shaping the gravitational-wave signal yields a physically motivated analytic model of the gravitational-wave emission, which may form the basis for template-based gravitational-wave data analysis. We explore the observational

  3. CGHScan: finding variable regions using high-density microarray comparative genomic hybridization data

    Directory of Open Access Journals (Sweden)

    Rajashekara Gireesh


    Full Text Available Abstract Background Comparative genomic hybridization can rapidly identify chromosomal regions that vary between organisms and tissues. This technique has been applied to detecting differences between normal and cancerous tissues in eukaryotes as well as genomic variability in microbial strains and species. The density of oligonucleotide probes available on current microarray platforms is particularly well-suited for comparisons of organisms with smaller genomes like bacteria and yeast where an entire genome can be assayed on a single microarray with high resolution. Available methods for analyzing these experiments typically confine analyses to data from pre-defined annotated genome features, such as entire genes. Many of these methods are ill suited for datasets with the number of measurements typical of high-density microarrays. Results We present an algorithm for analyzing microarray hybridization data to aid identification of regions that vary between an unsequenced genome and a sequenced reference genome. The program, CGHScan, uses an iterative random walk approach integrating multi-layered significance testing to detect these regions from comparative genomic hybridization data. The algorithm tolerates a high level of noise in measurements of individual probe intensities and is relatively insensitive to the choice of method for normalizing probe intensity values and identifying probes that differ between samples. When applied to comparative genomic hybridization data from a published experiment, CGHScan identified eight of nine known deletions in a Brucella ovis strain as compared to Brucella melitensis. The same result was obtained using two different normalization methods and two different scores to classify data for individual probes as representing conserved or variable genomic regions. The undetected region is a small (58 base pair deletion that is below the resolution of CGHScan given the array design employed in the study

  4. Chemically Functionalized Phosphorene: Two-Dimensional Multiferroics with Vertical Polarization and Mobile Magnetism. (United States)

    Yang, Qing; Xiong, Wei; Zhu, Lin; Gao, Guoying; Wu, Menghao


    In future nanocircuits based on two-dimensional (2D) materials, the ideal nonvolatile memories (NVMs) would be based on 2D multiferroic materials that can combine both efficient ferroelectric writing and ferromagnetic reading, which remain hitherto unreported. Here we show first-principles evidence that a halogen-intercalated phosphorene bilayer can be multiferroic with most long-sought advantages: its "mobile" magnetism can be controlled by ferroelectric switching upon application of an external electric field, exhibiting either an "on" state with spin-selective and highly p-doped channels, or an "off" state, insulating against both spin and electron transport, which renders efficient electrical writing and magnetic reading. Vertical polarization can be maintained against a depolarizing field, rendering high-density data storage possible. Moreover, all those functions in the halogenated regions can be directly integrated into a 2D phosphorene wafer, similar to n/p channels formed by doping in a silicon wafer. Such formation of multiferroics with vertical polarization robust against a depolarizing field can be attributed to the unique properties of covalently bonded ferroelectrics, distinct from ionic-bonded ferroelectrics, which may be extended to other van der Waals bilayers for the design of NVM in future 2D wafers. Every intercalated adatom can be used to store one bit of data: "0" when binding to the upper layer and "1" when binding to the down layer, giving rise to a possible approach of realizing single atom memory for high-density data storage.

  5. Dietary Tuna Dark Muscle Protein Attenuates Hepatic Steatosis and Increases Serum High-Density Lipoprotein Cholesterol in Obese Type-2 Diabetic/Obese KK-Ay Mice. (United States)

    Maeda, Hayato; Hosomi, Ryota; Fukuda, Mari; Ikeda, Yuki; Yoshida, Munehiro; Fukunaga, Kenji


    Tuna muscle consists of light and dark muscle in approximately equal proportions. However, besides for the light muscle of tuna, cod, sardine, and salmon, few researches have assessed the health-promoting functions of fish protein. Therefore, we evaluated the mechanisms underlying the alteration of lipid storage and cholesterol metabolism following the intake of tuna dark muscle protein (TDMP) by obese type-2 diabetic/obese mice. Four-week-old male KK-Ay mice were separated into 2 dietary groups, with one group receiving a casein-based diet and the other receiving a diet with the substitution of part of the protein (50%, w/w) by TDMP (TDMP diet) for 4 wk. The TDMP diet significantly increased the content of serum high-density lipoprotein cholesterol, partly due to the reduction of the expression of scavenger receptor class B member 1 in epididymal white adipose tissue. In addition, dietary TDMP decreased the content of hepatic triacylglycerol, which could be due to the enhancement of carnitine palmitoyltransferase-2 activity through the activation of the expression of the peroxisome proliferative activated receptor-α in the liver. These results suggest that TDMP could have the potential to prevent the development of obesity-related diseases by suppressing the storage of hepatic triacylglycerol and cholesterol. © 2017 Institute of Food Technologists®.

  6. Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs

    KAUST Repository

    Haverinen, Hanna


    Recently, an intriguing solution to obtain better color purity has been to introduce inorganic emissive quantum dots (QDs) into an otherwise OLED structure. The emphasis of this chapter is to present a simple discussion of the first attempts to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors that have to be considered in order to achieve the desired accuracy and printing quality. The successful operation of the RGB printed devices indicates the potential of the inkjet printing approach in the fabrication of full-color QDLEDs for display application. However, further optimization of print quality is still needed in order to eliminate the formation of pinholes, thus maximizing energy transfer from organic layers to the QDs and in turn increasing the performance of the devices. Controlled Vocabulary Terms: ink jet printing; LED displays; LED lamps; organic light emitting diodes; quantum dots

  7. High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Directory of Open Access Journals (Sweden)

    Yanjun Li


    Full Text Available The effect of heat-treated bamboo fibers (BFs on nonisothermal crystallization of high-density polyethylene (HDPE was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE.

  8. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  9. Wax co-cracking synergism of high density polyethylene to alternative fuels

    Directory of Open Access Journals (Sweden)

    Magdy Motawie


    Full Text Available Attempts have been made to understand the thermal degradation of high density polyethylene (HDPE and their combined co-cracking using different ratios of HDPE and petroleum wax under nitrogen atmosphere. We have conducted the experiments using HDPE as the raw material and petroleum wax as co-feed by at 400 and 450 °C reaction temperatures. The product distribution was noted along with reaction time of 0.5–3 h for the degradation. Thermal gravimetric analysis (TGA technique was used to measure the weight change of the feedstock as a function of temperature and time. Differential scanning calorimetry (DSC was used to determine the degradation temperature. Products were characterized using gas chromatography (GC and infrared spectroscopy (FTIR, some other standard physical methods were used to determine the main properties of the liquid products. Results show that the mixed plastic-wax samples could be converted into gases, gasoline, and middle distillate depending upon the composition of feed polymer/wax ratio. It was found that the products mostly consisted of paraffin and olefin compounds, with carbon numbers of C1–C4, C5–C9 and C10–C19 in the case of gases, gasoline and middle distillate respectively.

  10. High-density surface electromyography improves the identification of oscillatory synaptic inputs to motoneurons. (United States)

    Steeg, Chiel van de; Daffertshofer, Andreas; Stegeman, Dick F; Boonstra, Tjeerd W


    Many studies have addressed corticomuscular coherence (CMC), but broad applications are limited by low coherence values and the variability across subjects and recordings. Here, we investigated how the use of high-density surface electromyography (HDsEMG) can improve the detection of CMC. Sixteen healthy subjects performed isometric contractions at six low-force levels using a pinch-grip, while HDsEMG of the adductor pollicis transversus and flexor and abductor pollicis brevis and whole-head magnetoencephalography were recorded. Different configurations were constructed from the HDsEMG grid, such as a bipolar and Laplacian montage, as well as a montage based on principal component analysis (PCA). CMC was estimated for each configuration, and the strength of coherence was compared across configurations. As expected, performance of the precision-grip task resulted in significant CMC in the β-frequency band (16-26 Hz). Compared with a bipolar EMG montage, all multichannel configurations obtained from the HDsEMG grid revealed a significant increase in CMC. The configuration, based on PCA, showed the largest (37%) increase. HDsEMG did not reduce the between-subject variability; rather, many configurations showed an increased coefficient of variation. Increased CMC presumably reflects the ability of HDsEMG to counteract inherent EMG signal factors-such as amplitude cancellation-which impact the detection of oscillatory inputs. In contrast, the between-subject variability of CMC most likely has a cortical origin. Copyright © 2014 the American Physiological Society.

  11. Targeted delivery of garcinia glycosides by reconstituted high-density lipoprotein nano-complexes. (United States)

    Liu, Chang; Zhou, Zijun; Chen, Ye; Liu, Ju; Wang, Yang; Liu, Hongsheng


    Scavenger receptor class B type 1 (SR-B1) is over-expressed in tumor cells where it mediates the uptake of drug payload of reconstituted high density lipoprotein (rHDL) via the process of reverse cholesterol transport. In this study, rHDL was prepared to determine its function as a drug delivery carrier for targeting hepatocellular carcinoma by incorporating the anti-tumor drug garcinia glycosides into rHDL to yield rHDL/GG nano-complexes. Structural analysis indicated that the rHDL/GG nano-complex was similar to HDL in size. HepG2 cells treated with fluorescent-labeled rHDL/GG exhibited a time-dependent increase in cell death. Further experiment in which HepG2 cells were treated with rHDL/GG plus plasma-derived HDL showed reduction in cell death compared to treatment with rHDL/GG alone, suggesting that plasma-derived HDL compete with rHDL/GG for binding to the SR-B1 on the cell. We concluded that rHDL could incorporate GG and serve as acarrier, targeting the drug to HepG2 cells via SR-B1.

  12. Scalp and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG Study. (United States)

    Castelnovo, Anna; Riedner, Brady A; Smith, Richard F; Tononi, Giulio; Boly, Melanie; Benca, Ruth M


    To examine scalp and source power topography in sleep arousals disorders (SADs) using high-density EEG (hdEEG). Fifteen adult subjects with sleep arousal disorders (SADs) and 15 age- and gender-matched good sleeping healthy controls were recorded in a sleep laboratory setting using a 256 channel EEG system. Scalp EEG analysis of all night NREM sleep revealed a localized decrease in slow wave activity (SWA) power (1-4 Hz) over centro-parietal regions relative to the rest of the brain in SADs compared to good sleeping healthy controls. Source modelling analysis of 5-minute segments taken from N3 during the first half of the night revealed that the local decrease in SWA power was prominent at the level of the cingulate, motor, and sensori-motor associative cortices. Similar patterns were also evident during REM sleep and wake. These differences in local sleep were present in the absence of any detectable clinical or electrophysiological sign of arousal. Overall, results suggest the presence of local sleep differences in the brain of SADs patients during nights without clinical episodes. The persistence of similar topographical changes in local EEG power during REM sleep and wakefulness points to trait-like functional changes that cross the boundaries of NREM sleep. The regions identified by source imaging are consistent with the current neurophysiological understanding of SADs as a disorder caused by local arousals in motor and cingulate cortices. Persistent localized changes in neuronal excitability may predispose affected subjects to clinical episodes.

  13. Changes in postprandial lipoproteins of low and high density caused by moderate alcohol consumption with dinner. (United States)

    van Tol, A; van der Gaag, M S; Scheek, L M; van Gent, T; Hendriks, H F


    We measured the effects of consumption of moderate amounts of beer, wine or spirits with evening dinner on plasma LDL and HDL levels as well as composition in 11 healthy middle-aged men. Forty grams of alcohol were consumed daily with dinner for a period of 3 weeks. Mineral water was used as a negative control. Dinner was served at 6 pm and blood samples were obtained at 1 h before and 3, 5, 9, and 13 h after the start of the meal. No differences were detected between the effects of the different alcohol-containing beverages. Plasma levels of triglycerides (TG), measured 1 h before dinner were very variable and higher than fasting values (means of 2.2 and 1.5 mM, respectively). Daily consumption of 40 g of alcohol with dinner resulted in increased postprandial plasma TG levels and decreased low density lipoprotein (LDL) cholesterol concentrations. These effects were transient and observed at 11 pm (TG) and 9 pm and 11 pm (LDL). In contrast, high density lipoproteins (HDL) were raised by alcohol intake at all time points analysed. HDL composition was changed by alcohol consumption, resulting in a raised HDL-cholesterol/apo A-I ratio at 5 pm and 9 pm. The observed alcohol-dependent effects on plasma HDL and LDL during the postprandial phase are considered anti-atherogenic and may contribute to the observed protection against coronary heart disease by moderate alcohol consumption.

  14. High-Density LiDAR Mapping of the Ancient City of Mayapán

    Directory of Open Access Journals (Sweden)

    Timothy Hare


    Full Text Available A 2013 survey of a 40 square kilometer area surrounding Mayapán, Yucatan, Mexico used high-density LiDAR data to map prehispanic architecture and related natural features. Most of the area is covered by low canopy dense forest vegetation over karstic hilly terrain that impedes full coverage archaeological survey. We used LiDAR at 40 laser points per square meter to generate a bare earth digital elevation model (DEM. Results were evaluated with comparisons to previously mapped areas and with traditional archaeological survey methods for 38 settlement clusters outside of the city wall. Ground checking employed full coverage survey of selected 500 m grid squares, as well as documentation of the chronology and detail of new public and domestic settlement features and cenotes. Results identify the full extent of continued, contemporary Postclassic settlement (A.D. 1150–1450 outside of the city wall to at least 500 meters to the east, north, and west. New data also reveal an extensive modified landscape of terraformed residential hills, rejolladas, and dense settlement dating from Preclassic through Classic Periods. The LiDAR data also allow for the identification of rooms, benches, and stone property walls and lanes within the city.

  15. Early Left Parietal Activity Elicited by Direct Gaze: A High-Density EEG Study (United States)

    Burra, Nicolas; Kerzel, Dirk; George, Nathalie


    Gaze is one of the most important cues for human communication and social interaction. In particular, gaze contact is the most primary form of social contact and it is thought to capture attention. A very early-differentiated brain response to direct versus averted gaze has been hypothesized. Here, we used high-density electroencephalography to test this hypothesis. Topographical analysis allowed us to uncover a very early topographic modulation (40–80 ms) of event-related responses to faces with direct as compared to averted gaze. This modulation was obtained only in the condition where intact broadband faces–as opposed to high-pass or low-pas filtered faces–were presented. Source estimation indicated that this early modulation involved the posterior parietal region, encompassing the left precuneus and inferior parietal lobule. This supports the idea that it reflected an early orienting response to direct versus averted gaze. Accordingly, in a follow-up behavioural experiment, we found faster response times to the direct gaze than to the averted gaze broadband faces. In addition, classical evoked potential analysis showed that the N170 peak amplitude was larger for averted gaze than for direct gaze. Taken together, these results suggest that direct gaze may be detected at a very early processing stage, involving a parallel route to the ventral occipito-temporal route of face perceptual analysis. PMID:27880776

  16. High density of benzodiazepine binding sites in the substantia innominata of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Sarter, M.; Schneider, H.H.


    In order to study the neuronal basis of the pharmacological interactions between benzodiazepine receptor ligands and cortical cholinergic turnover, we examined the regional distribution of specific benzodiazepine binding sites using in vitro autoradiography. In the basal forebrain, the substantia innominata contained a high density of (/sup 3/H)lormetazepam (LMZ) binding sites (Bmax = 277 fmol/mg tissue; Kd = 0.55 nM). The label could be displaced by diazepam (IC50 = 100 nM), the benzodiazepine receptor antagonist beta-carboline ZK 93426 (45 nM) and the partial inverse agonist beta-carboline FG 7142 (540 nM). It is hypothesized that the amnesic effects of benzodiazepine receptor agonists are exerted through benzodiazepine receptors which are situated on cholinergic neurons in the substantia innominata and are involved in a tonic inhibition of cortical acetylcholine release. The benzodiazepine receptor antagonist ZK 93426 may exert its nootropic effects via benzodiazepine receptors in the substantia innominata and, consequently, by disinhibiting cortical acetylcholine release.

  17. Longitudinal high-density EMG classification: Case study in a glenohumeral TMR subject. (United States)

    Schweisfurth, Meike A; Ernst, Jennifer; Vujaklija, Ivan; Schilling, Arndt F; Farina, Dario; Aszmann, Oskar C; Felmerer, Gunther


    Targeted muscle reinnervation (TMR) represents a breakthrough interface for prosthetic control in high-level upper-limb amputees. However, clinically, it is still limited to the direct motion-wise control restricted by the number of reinnervation sites. Pattern recognition may overcome this limitation. Previous studies on EMG classification in TMR patients experienced with myocontrol have shown greater accuracy when using high-density (HD) recordings compared to conventional single-channel derivations. This case study investigates the potential of HD-EMG classification longitudinally over a period of 17 months post-surgery in a glenohumeral amputee. Five experimental sessions, separated by approximately 3 months, were performed. They were timed during a standard rehabilitation protocol that included intensive physio- and occupational therapy, myosignal training, and routine use of the final myoprosthesis. The EMG signals recorded by HD-EMG grids were classified into 12 classes. The first sign of EMG activity was observed in the second experimental session. The classification accuracy over 12 classes was 76% in the third session and ∼95% in the last two sessions. When using training and testing sets that were acquired with a 1-h time interval in between, a much lower accuracy (32%, Session 4) was obtained, which improved upon prosthesis usage (Session 5, 67%). The results document the improvement in EMG classification accuracy throughout the TMR-rehabilitation process.

  18. A device to facilitate preparation of high-density neural cell cultures in MEAs. (United States)

    Mok, S Y; Lim, Y M; Goh, S Y


    A device to facilitate high-density seeding of dissociated neural cells on planar multi-electrode arrays (MEAs) is presented in this paper. The device comprises a metal cover with two concentric cylinders-the outer cylinder fits tightly on to the external diameter of a MEA to hold it in place and an inner cylinder holds a central glass tube for introducing a cell suspension over the electrode area of the MEA. An O-ring is placed at the bottom of the inner cylinder and the glass tube to provide a fluid-tight seal between the glass tube and the MEA electrode surface. The volume of cell suspension in the glass tube is varied according to the desired plating density. After plating, the device can be lifted from the MEA without leaving any residue on the contact surface. The device has enabled us to increase and control the plating density of neural cell suspension with low viability, and to prepare successful primary cultures from cryopreserved neurons and glia. The cultures of cryopreserved dissociated cortical neurons that we have grown in this manner remained spontaneously active over months, exhibited stable development and similar network characteristics as reported by other researchers.

  19. A fast atlas-guided high density diffuse optical tomography system for brain imaging (United States)

    Dai, Xianjin; Zhang, Tao; Yang, Hao; Jiang, Huabei


    Near infrared spectroscopy (NIRS) is an emerging functional brain imaging tool capable of assessing cerebral concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) during brain activation noninvasively. As an extension of NIRS, diffuse optical tomography (DOT) not only shares the merits of providing continuous readings of cerebral oxygenation, but also has the ability to provide spatial resolution in the millimeter scale. Based on the scattering and absorption properties of nonionizing near-infrared light in biological tissue, DOT has been successfully applied in the imaging of breast tumors, osteoarthritis and cortex activations. Here, we present a state-of-art fast high density DOT system suitable for brain imaging. It can achieve up to a 21 Hz sampling rate for a full set of two-wavelength data for 3-D DOT brain image reconstruction. The system was validated using tissue-mimicking brain-model phantom. Then, experiments on healthy subjects were conducted to demonstrate the capability of the system.

  20. High-density surface electromyography provides reliable estimates of motor unit behavior. (United States)

    Martinez-Valdes, E; Laine, C M; Falla, D; Mayer, F; Farina, D


    To assess the intra- and inter-session reliability of estimates of motor unit behavior and muscle fiber properties derived from high-density surface electromyography (HDEMG). Ten healthy subjects performed submaximal isometric knee extensions during three recording sessions (separate days) at 10%, 30%, 50% and 70% of their maximum voluntary effort. The discharge timings of motor units of the vastus lateralis and medialis muscles were automatically identified from HDEMG by a decomposition algorithm. We characterized the number of detected motor units, their discharge rates, the coefficient of variation of their inter-spike intervals (CoVisi), the action potential conduction velocity and peak-to-peak amplitude. Reliability was assessed for each motor unit characteristics by intra-class correlation coefficient (ICC). Additionally, a pulse-to-noise ratio (PNR) was calculated, to verify the accuracy of the decomposition. Good to excellent reliability within and between sessions was found for all motor unit characteristics at all force levels (ICCs>0.8), with the exception of CoVisi that presented poor reliability (ICC95%). Motor unit features can be assessed non-invasively and reliably within and across sessions over a wide range of force levels. These results suggest that it is possible to characterize motor units in longitudinal intervention studies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.