WorldWideScience

Sample records for high-density aluminum-enriched formulations

  1. Development of very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    Following a hiatus of several years and following its successful development and qualification of 4.8 g U cm -3 U 3 Si 2 -Al dispersion fuel for application with low-enriched uranium in research and test reactors, the US Reduced Enrichment for Research and Test Reactors program has embarked on the development of even-higher-density fuels. Our goal is to achieve uranium densities of 8-9 g cm -3 in aluminum-based dispersion fuels. Achieving this goal will require the use of high-density, γ-stabilized uranium alloy powders in conjunction with the most-advanced fuel fabrication techniques. Key issues being addressed are the reaction of the fuel alloys with aluminum and the irradiation behavior of the fuel alloys and any reaction products. Test irradiations of candidate fuels in very-small (micro) plates are scheduled to begin in the Advanced Test Reactor during June, 1997. Initial results are expected to be available in early 1998. We are performing out-of-reactor studies on the phase structure of the candidate alloys on diffusion of the matrix material into the aluminum. In addition, we are modifying our current dispersion fuel irradiation behavior model to accommodate the new fuels. Several international partners are participating in various phases of this work. (orig.)

  2. Reaction of unirradiated high-density fuel with aluminum

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Meyer, M.K.; Prokofiev, I.G.; Keiser, D.D.

    1997-01-01

    Excellent dispersion fuel performance requires that fuel particles remain stable and do not react significantly with the surrounding aluminum matrix. A series of high-density fuels, which contain uranium densities >12 g/cm 3 , have been fabricated into plates. As part of standard processing, all of these fuels were subjected to a blister anneal of 1 h at 485 deg. C. Changes in plate thickness were measured and evaluated. From these results, suppositions about the probable irradiation properties of these fuels have been proposed. In addition, two fuels, U-10 wt% Mo and U 2 Mo, were subjected to various heat treatments and were found to be very stable in an aluminum matrix. On the basis of the experimental data, hypotheses of the irradiation behavior of these fuels are presented. (author)

  3. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  4. Formulation and method for preparing gels comprising hydrous aluminum oxide

    Science.gov (United States)

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  5. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  6. Advances in Glass Formulations for Hanford High-Aluminum, High-Iron and Enhanced Sulphate Management in HLW Streams - 13000

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [WTP Engineering Division, United States Department of Energy, Office of River Protection, Post Office Box 450, Richland, Washington 99352 (United States)

    2013-07-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or

  7. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-10-01

    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  8. Low-enriched uranium high-density target project. Compendium report

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, George; Brown, M. Alex; Jerden, James L.; Gelis, Artem V.; Stepinski, Dominique C.; Wiedmeyer, Stanley; Youker, Amanda; Hebden, Andrew; Solbrekken, G; Allen, C; Robertson., D; El-Gizawy, Sherif; Govindarajan, Srisharan; Hoyer, Annemarie; Makarewicz, Philip; Harris, Jacob; Graybill, Brian; Gunn, Andy; Berlin, James; Bryan, Chris; Sherman, Steven; Hobbs, Randy; Griffin, F. P.; Chandler, David; Hurt, C. J.; Williams, Paul; Creasy, John; Tjader, Barak; McFall, Danielle; Longmire, Hollie

    2016-09-01

    At present, most 99Mo is produced in research, test, or isotope production reactors by irradiation of highly enriched uranium targets. To achieve the denser form of uranium needed for switching from high to low enriched uranium (LEU), targets in the form of a metal foil (~125-150 µm thick) are being developed. The LEU High Density Target Project successfully demonstrated several iterations of an LEU-fission-based Mo-99 technology that has the potential to provide the world’s supply of Mo-99, should major producers choose to utilize the technology. Over 50 annular high density targets have been successfully tested, and the assembly and disassembly of targets have been improved and optimized. Two target front-end processes (acidic and electrochemical) have been scaled up and demonstrated to allow for the high-density target technology to mate up to the existing producer technology for target processing. In the event that a new target processing line is started, the chemical processing of the targets is greatly simplified. Extensive modeling and safety analysis has been conducted, and the target has been qualified to be inserted into the High Flux Isotope Reactor, which is considered above and beyond the requirements for the typical use of this target due to high fluence and irradiation duration.

  9. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION FINAL REPORT 08R1360-1

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT W; PEGG IL; JOSEPH I; BARDAKCI T; GAN H; GONG W; CHAUDHURI M

    2010-01-04

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  10. MELT RATE ENHANCEMENT FOR HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASS FORMULATION. FINAL REPORT 08R1360-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.; Pegg, I.L.; Joseph, I.; Bardakci, T.; Gan, H.; Gong, W.; Chaudhuri, M.

    2010-01-01

    This report describes the development and testing of new glass formulations for high aluminum waste streams that achieve high waste loadings while maintaining high processing rates. The testing was based on the compositions of Hanford High Level Waste (HLW) with limiting concentrations of aluminum specified by the Office of River Protection (ORP). The testing identified glass formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts and small scale melt rate screening tests. The results were used to select compositions for subsequent testing in a DuraMelter 100 (DM100) system. These tests were used to determine processing rates for the selected formulations as well as to examine the effects of increased glass processing temperature, and the form of aluminum in the waste simulant. Finally, one of the formulations was selected for large-scale confirmatory testing on the HLW Pilot Melter (DM1200), which is a one third scale prototype of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) HLW melter and off-gas treatment system. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy (DOE) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same high-aluminum waste composition used in the present work and other Hanford HLW compositions. The scope of this study was outlined in a Test Plan that was prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the WTP is about 13,500 (equivalent to 40,500 MT glass). This estimate is based upon the inventory of the tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form

  11. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording

    International Nuclear Information System (INIS)

    Miao, Lingyun; Hsiang, Thomas Y; Stoddart, Paul R

    2014-01-01

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in −2 . Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in −2 . A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. (paper)

  12. A disposition strategy for highly enriched, aluminum-based fuel from research and test reactors

    International Nuclear Information System (INIS)

    McKibben, J.M.; Gould, T.H.; McDonell, W.R.; Bickford, W.E.

    1994-01-01

    The strategy proposed in this paper offers the Department of Energy an approach for disposing of aluminum-based, highly enriched uranium (HEU) spent fuels from foreign and domestic research reactors. The proposal is technically, socially, and economically sound. If implemented, it would advance US non-proliferation goals while also disposing of the spent fuel's waste by timely and proven methods using existing technologies and facilities at SRS without prolonged and controversial storage of the spent fuel. The fuel would be processed through 221-H. The radioactive fission products (waste) would be treated along with existing SRS high level waste by vitrifying it as borosilicate glass in the Defense Waste Processing Facility (DWPF) for disposal in the national geological repository. The HEU would be isotopically diluted, during processing, to low-enriched uranium (LEU) which can not be used to make weapons, thus eliminating proliferation concerns. The LEU can be sold to fabricators of either research reactor fuel or commercial power fuel. This proposed processing-LEU recycle approach has several important advantages over other alternatives, including: Lowest capital investment; lowest net total cost; quickest route to acceptable waste form and final geologic disposal; and likely lowest safety, health, and environmental impacts

  13. Basic research on high-uranium density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Ugajin, M.; Itoh, A.; Akabori, M.

    1992-01-01

    High-uranium density fuels, uranium silicides (U 3 Si 2 , U 3 Si) and U 6 Me-type uranium alloys (Me = Fe, Mn, Ni), were prepared and examined metallurgically as low-enriched uranium (LEU) fuels for research and test reactors. Miniature aluminum-dispersion plate-type fuel (miniplate) and aluminum-clad disk-type fuel specimens were fabricated and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Fuel-aluminum compatibility tests were conducted to elucidate the extent of reaction and to identify reaction products. The relative stability of the fuels in an aluminum matrix was established at 350degC or above. Experiments were also performed to predict the chemical form of the solid fission-products in the uranium silicide (U 3 Si 2 ) simulating a high burnup anticipated for reactor service. (author)

  14. Aluminum recovery as a product with high added value using aluminum hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2013-01-01

    Highlights: • Granular and compact aluminum dross were physically and chemically characterized. • A relationship between density, porosity and metal content from dross was established. • Chemical reactions involving aluminum in landfill and negative consequences are shown. • A processing method for aluminum recovering from aluminum dross was developed. • Aluminum was recovered as an value product with high grade purity such as alumina. -- Abstract: The samples of hazardous aluminum solid waste such as dross were physically and chemically characterized. A relationship between density, porosity and metal content of dross was established. The paper also examines the chemical reactions involving aluminum dross in landfill and the negative consequences. To avoid environmental problems and to recovery the aluminum, a processing method was developed and aluminum was recovered as an added value product such as alumina. This method refers to a process at low temperature, in more stages: acid leaching, purification, precipitation and calcination. At the end of this process aluminum was extracted, first as Al 3+ soluble ions and final as alumina product. The composition of the aluminum dross and alumina powder obtained were measured by applying the leaching tests, using atomic absorption spectrometry (AAS) and chemical analysis. The mineralogical composition of aluminum dross samples and alumina product were determined by X-ray diffraction (XRD) and the morphological characterization was performed by scanning electron microscopy (SEM). The method presented in this work allows the use of hazardous aluminum solid waste as raw material to recover an important fraction from soluble aluminum content as an added value product, alumina, with high grade purity (99.28%)

  15. Charge-density-shear-moduli relationships in aluminum-lithium alloys.

    Science.gov (United States)

    Eberhart, M

    2001-11-12

    Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.

  16. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    Science.gov (United States)

    2016-06-01

    unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under

  17. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat

  18. High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide (AAO) Membrane

    OpenAIRE

    Han, Young-Hwan

    2008-01-01

    High density silver nanowire arrays were synthesized through the self-ordered Anodic Aluminum Oxide (AAO) template. The pore size in the AAO membrane was confirmed by processing the widening porosity with a honeycomb structure with cross sections of 20nm, 50nm, and 100nm, by SEM. Pore numbers by unit area were consistent; only pore size changed. The synthesized silver nanowire, which was crystallized, was dense in the cross sections of the amorphous AAO membrane. The synthesized silver nanowi...

  19. Progress in developing very-high-density low-enriched-uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Meyer, M.K.; Hayes, S.L.; Wiencek, T.C.; Strain, R.V.

    1999-01-01

    Preliminary results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm 3 . Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 deg. C) are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 deg. C in 8-g U/cm 3 fuel. (author)

  20. From high enriched to low enriched uranium fuel in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Van Den Berghe, S.; Leenaers, A.; Koonen, E.; Moons, F.; Sannen, L. [Nuclear Materials Science Institute, SCK.CEN, Boeretang 200, B-2400 Mol (Belgium)

    2010-07-01

    Since the 1970's, global efforts have been going on to replace the high-enriched (>90% {sup 235}U), low-density UAlx research reactor fuel with high-density, low enriched (<20% {sup 235}U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U{sub 3}Si{sub 2} dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U{sub 3}Si{sub 2} (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development. (authors)

  1. From high enriched to low enriched uranium fuel in research reactors

    International Nuclear Information System (INIS)

    Van Den Berghe, S.; Leenaers, A.; Koonen, E.; Moons, F.; Sannen, L.

    2010-01-01

    Since the 1970's, global efforts have been going on to replace the high-enriched (>90% 235 U), low-density UAlx research reactor fuel with high-density, low enriched ( 235 U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched material because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative (GTRI) and the Reduced Enrichment for Research and Test Reactors (RERTR) program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has presently been obtained with U 3 Si 2 dispersion fuel, which is currently used in many research reactors in the world. However, efforts to search for a replacement with even higher density, which will also allow the conversion of some high flux research reactors that currently cannot change to U 3 Si 2 (eg. BR2 in Belgium), have continued and are for the moment mainly directed towards the U(Mo) alloy fuel (7-10 w% Mo). This paper provides an overview of the past efforts and presents the current status of the U(Mo) development. (authors)

  2. High density thermite mixture for shaped charge ordnance disposal

    OpenAIRE

    Tamer Elshenawy; Salah Soliman; Ahmed Hawass

    2017-01-01

    The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using col...

  3. Effect of Fe- and Si-Enriched Secondary Precipitates and Surface Roughness on Pore Formation on Aluminum Plate Surfaces During Anodizing

    Science.gov (United States)

    Zhu, Yuanzhi; Wang, Shizhi; Yang, Qingda; Zhou, Feng

    2014-09-01

    Two twin roll casts (TRCs) and one hot rolled (HR) AA 1235 aluminum alloy plates with different microstructures are prepared. The plates were electrolyzed in a 1.2 wt% HCl solution with a voltage of 21 V and a current of 1.9 mA. The shape, size, and number of pores formed on the surfaces of these plates were analyzed and correlated with the microstructures of the plates. It is found that pores are easier to form on the alloy plates containing subgrains with a lower dislocation density inside the subgrains, rather than along the grain boundaries. Furthermore, Fe- and Si-enriched particles in the AA1235 aluminum alloys lead to the formation of pores on the surface during electrolyzing; the average precipitate sizes of 4, 3.5, and 2 μm in Alloy 1#, Alloy 2# and Alloy 3# result in the average pore sizes of 3.78, 2.76, and 1.9 μm on the surfaces of the three alloys, respectively; The G.P zone in the alloy also facilitates the surface pore formation. High-surface roughness enhances the possibility of entrapping more lubricants into the plate surface, which eventually blocks the formation of the pores on the surface of the aluminum plates in the following electrolyzing process.

  4. The use of U3Si2 dispersed in aluminum in plate-type fuel elements for research and test reactors

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U 3 Si 2 dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U 3 Si 2 fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U 3 Si 2 particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U 3 Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U 3 Si 2 -aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m 3 is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs

  5. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Measurement of enriched uranium and uranium-aluminum fuel materials with the AWCC

    International Nuclear Information System (INIS)

    Krick, M.S.; Menlove, H.O.; Zick, J.; Ikonomou, P.

    1985-05-01

    The active well coincidence counter (AWCC) was calibrated at the Chalk River Nuclear Laboratories (CRNL) for the assay of 93%-enriched fuel materials in three categories: (1) uranium-aluminum billets, (2) uranium-aluminum fuel elements, and (3) uranium metal pieces. The AWCC was a standard instrument supplied to the International Atomic Energy Agency under the International Safeguards Project Office Task A.51. Excellent agreement was obtained between the CRNL measurements and previous Los Alamos National Laboratory measurements on similar mockup fuel material. Calibration curves were obtained for each sample category. 2 refs., 8 figs., 15 tabs

  7. High density fuels using dispersion and monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia, E-mail: dsgomes@ipen.br, E-mail: teixeira@ipen.br, E-mail: alfredo@ctmsp.mar.mil.br, E-mail: rafael.orm@gmail.com, E-mail: claudia.giovedi@ctmsp.mar.mil.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Departamento de Engenharia Naval e Oceânica

    2017-07-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  8. High density fuels using dispersion and monolithic fuel

    International Nuclear Information System (INIS)

    Gomes, Daniel S.; Silva, Antonio T.; Abe, Alfredo Y.; Muniz, Rafael O.R.; Giovedi, Claudia; Universidade de São Paulo

    2017-01-01

    Fuel plates used in high-performance research reactors need to be converted to low-enrichment uranium fuel; the fuel option based on a monolithic formulation requires alloys to contain 6 - 10 wt% Mo. In this case, the fuel plates are composed of the metallic alloy U-10Mo surrounded by a thin zirconium layer encapsulated in aluminum cladding. This study reviewed the physical properties of monolithic forms. The constraints produced during the manufacturing process were analyzed and compared to those of dispersed fuel. The bonding process used for dispersion fuels differs from the techniques applied to foil bonding used for pure alloys. The quality of monolithic plates depends on the fabrication method, which usually involves hot isostatic pressing and the thermal annealing effect of residual stress, which degrades the uranium cubic phase. The preservation of the metastable phase has considerable influence on fuel performance. The physical properties of the foil fuel under irradiation are superior to those of aluminum-dispersed fuels. The fuel meat, using zirconium as the diffusion barrier, prevents the interaction layer from becoming excessively thick. The problem with dispersed fuel is breakaway swelling with a medium fission rate. It has been observed that the fuel dispersed in aluminum was minimized in monolithic forms. The pure alloys exhibited a suitable response from a rate at least twice as much as the fission rate of dispersions. The foils can support fissile material concentration combined with a reduced swelling rate. (author)

  9. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  10. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS, TEST PLAN 09T1690-1

    International Nuclear Information System (INIS)

    Kruger, A.A.; Matlack, K.S.; Kot, W.K.; Pegg, I.L.; Joseph, I.

    2009-01-01

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and

  11. Phytoplankton responses to aluminum enrichment in the South China Sea.

    Science.gov (United States)

    Zhou, Linbin; Liu, Jiaxing; Xing, Shuai; Tan, Yehui; Huang, Liangmin

    2018-04-01

    Compared to extensive studies reporting the aluminum (Al) toxicity to terrestrial plants and freshwater organisms, very little is known about how marine phytoplankton responds to Al in the field. Here we report the marine phytoplankton responses to Al enrichment in the South China Sea (SCS) using on-deck bottle incubation experiments during eight cruises from May 2010 to November 2013. Generally, Al addition alone enhanced the growth of diatom and Trichodesmium, and nitrogen fixation, but it inhibited the growth of dinoflagellates and Synechococcus. Nevertheless, Al addition alone did not influence the chlorophyll a concentration of the entire phytoplankton assemblages. By adding nitrate and phosphate simultaneously, Al enrichment led to substantial increases in chlorophyll a concentration (especially that of the picophytoplanktonenrichment. Further, by simultaneously adding different macronutrients and/or sufficient trace metals including iron, we found that the phytoplankton responses to Al enrichment were relevant to nutrients coexisting in the environment. Al enrichment may give some phytoplankton a competitive edge over using nutrients, especially the limited ones. The possible influences of Al on the competitors and grazers (predators) of some phytoplankton might indirectly contribute to the positive responses of the phytoplankton to Al enrichment. Our results indicate that Al may influence marine carbon cycle by impacting phytoplankton growth and structure in natural seawater. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Development of very-high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snegrove, J.L.; Hofmann, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-01-01

    The RERTR (=Reduced Enrichment for Research and Test Reactors) program has begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place, and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and the first results should be available by the end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun. (author)

  13. PTFE-ALUMINUM films serve as neutral density filters

    Science.gov (United States)

    Burks, H. D.

    1966-01-01

    Polytetrafluoroethylene /PTFE/ films coated with aluminum films act as neutral density filters in the wavelength range 0.3 to 2.1 microns. These filters are effective in the calibration of photometric systems.

  14. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    Science.gov (United States)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  15. Simulation of uranium aluminide dissolution in a continuous aluminum dissolver system

    International Nuclear Information System (INIS)

    Evans, D.R.; Farman, R.F.; Christian, J.D.

    1990-01-01

    This paper reports on the Idaho Chemical Processing Plant (ICPP) which recovers highly-enriched uranium (uranium that contains at least 20 atom percent 235 U) from spent nuclear reactor fuel by dissolution of the fuel elements and extraction of the uranium from the aqueous dissolver product. Because the uranium is highly-enriched, consideration must be given to whether a critical mass can form at any stage of the process. In particular, suspended 235 U-containing particles are of special concern, due to their high density (6.8 g/cm 3 ) and due to the fact that they can settle into geometrically unfavorable configurations when not adequately mixed. A portion of the spent fuel is aluminum-alloy-clad uranium aluminide (UAl 3 ) particles, which dissolve more slowly than the cladding. As the aluminum alloy cladding dissolves in mercury-catalyzed nitric acid, UAl 3 is released. Under standard operating conditions, the UAl 3 dissolves rapidly enough to preclude the possibility of forming a critical mass anywhere in the system. However, postulated worst-case abnormal operating conditions retard uranium aluminide dissolution, and thus require evaluation. To establish safety limits for operating parameters, a computerized simulation model of uranium aluminide dissolution in the aluminum fuel dissolver system was developed

  16. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    Directory of Open Access Journals (Sweden)

    HO JIN RYU

    2013-12-01

    Full Text Available Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99 production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional UAlx dispersion targets, while increasing the uranium density in the target plates

  17. Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process

    International Nuclear Information System (INIS)

    Heckendorn, F.M.

    2001-01-01

    Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment

  18. Criticality of moderated and undermoderated low-enriched uranium oxide systems

    International Nuclear Information System (INIS)

    Goebel, G.R.

    1980-06-01

    Uranium oxide was enriched to 4.46 wt % 235 U compacted to a density of 4.68 g/cm 3 . The uranium oxide was packed into cubical aluminum cans and water added to the oxide until an H/U atomic ratio of 0.77 was achieved. A 5 x 5 x 5 array of uranium oxide cans for the experiments were used when no plastic moderator material was placed between cans. High enriched uranium drivers were used to achieve criticality. Criticality was achieved for smaller arrays without a driver when 24.5 mm plastic moderator material was placed between the cans. Twelve critical experiments are reported, six in each reflector

  19. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung–waste paper mixtures

    International Nuclear Information System (INIS)

    Unuofin, F.O.; Mnkeni, P.N.S.

    2014-01-01

    Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg -1 resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg −1 dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg −1 resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg −1 feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered

  20. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung–waste paper mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Unuofin, F.O., E-mail: funmifrank2009@gmail.com; Mnkeni, P.N.S., E-mail: pmnkeni@ufh.ac.za

    2014-11-15

    Highlights: • Vermidegradation of RP-enriched waste mixtures is dependent on E. fetida stocking density. • A stocking density of 12.5 g-worms kg{sup -1} resulted in highly humified vermicomposts. • P release from RP-enriched waste vermicomposts increases with E. fetida stocking density. • RP-enriched waste vermicomposts had no inhibitory effect on seed germination. - Abstract: Vermitechnology is gaining recognition as an environmental friendly waste management strategy. Its successful implementation requires that the key operational parameters like earthworm stocking density be established for each target waste/waste mixture. One target waste mixture in South Africa is waste paper mixed with cow dung and rock phosphate (RP) for P enrichment. This study sought to establish optimal Eisenia fetida stocking density for maximum P release and rapid bioconversion of RP enriched cow dung–paper waste mixtures. E. fetida stocking densities of 0, 7.5, 12.5, 17.5 and 22.5 g-worms kg{sup −1} dry weight of cow dung–waste paper mixtures were evaluated. The stocking density of 12.5 g-worms kg{sup −1} resulted in the highest earthworm growth rate and humification of the RP enriched waste mixture as reflected by a C:N ratio of <12 and a humic acid/fulvic acid ratio of >1.9 in final vermicomposts. A germination test revealed that the resultant vermicompost had no inhibitory effect on the germination of tomato, carrot, and radish. Extractable P increased with stocking density up to 22.5 g-worm kg{sup −1} feedstock suggesting that for maximum P release from RP enriched wastes a high stocking density should be considered.

  1. High energy-density liquid rocket fuel performance

    Science.gov (United States)

    Rapp, Douglas C.

    1990-01-01

    A fuel performance database of liquid hydrocarbons and aluminum-hydrocarbon fuels was compiled using engine parametrics from the Space Transportation Engine Program as a baseline. Propellant performance parameters are introduced. General hydrocarbon fuel performance trends are discussed with respect to hydrogen-to-carbon ratio and heat of formation. Aluminum-hydrocarbon fuel performance is discussed with respect to aluminum metal loading. Hydrocarbon and aluminum-hydrocarbon fuel performance is presented with respect to fuel density, specific impulse and propellant density specific impulse.

  2. High Energy Density Dielectrics for Pulsed Power Applications

    National Research Council Canada - National Science Library

    Wu, Richard L; Bray, Kevin R

    2008-01-01

    This report was developed under a SBIR contract. Aluminum oxynitride (AlON) capacitors exhibit several promising characteristics for high energy density capacitor applications in extreme environments...

  3. The effects of aluminum or scandium on the toughness, density and ...

    African Journals Online (AJOL)

    The effects of the substitution of aluminum or scandium on the density, toughness as well as the stability of the phases formed by such an addition on platinum, iridium, rhodium and palladium metals were evaluated with the density functional quantum mechanical calculation methods. All the metals had four atoms per ...

  4. Fracture behavior of low-density replicated aluminum alloy foams

    NARCIS (Netherlands)

    Amsterdam, E.; Goodall, R.; Mortensen, A.; Onck, P. R.; De Hosson, J. Th. M.

    2008-01-01

    Tensile tests have been performed on replicated aluminum alloy foams of relative density between 4.5% and 8%. During the test the electrical resistance was measured with a four-point set-up and the displacements along the gage section were measured using a digital image correlation (DIC) technique.

  5. Final Report - Melt Rate Enhancement for High Aluminum HLW Glass Formulation, VSL-08R1360-1, Rev. 0, dated 12/19/08

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A.; Pegg, I. L.; Chaudhuri, M.; Gong, W.; Gan, H.; Matlack, K. S.; Bardakci, T.; Kot, W.

    2013-11-13

    in melter operating temperature. Glass composition development was based on one of the HLW waste compositions specified by ORP that has a high concentration of aluminum. Small-scale tests were used to provide an initial screening of various glass formulations with respect to melt rates; more definitive screening was provided by the subsequent DM100 tests. Glass properties evaluated included: viscosity, electrical conductivity, crystallinity, gross glass phase separation and the 7- day Product Consistency Test (ASTM-1285). Glass property limits were based upon the reference properties for the WTP HLW melter. However, the WTP crystallinity limit (< 1 vol% at 950oC) was relaxed slightly as a waste loading constraint for the crucible melts.

  6. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    International Nuclear Information System (INIS)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    2007-01-01

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated

  7. Development and characterization of ice cream enriched with different formulations flour jabuticaba bark (Myrciaria cauliflora

    Directory of Open Access Journals (Sweden)

    Marina Leopoldina Lamounier

    2015-09-01

    Full Text Available The aim was to perform the physicochemical characterization of the flour from the bark of jabuticaba, as well as developing three ice cream formulations (enriched with 0, 5 and 10% of this flour and evaluate the physicochemical and sensory characteristics. Fruits were pulped, the peels were dehydrated, dried, crushed and sieved to obtain the flour that was analyzed for physicochemical levels. Then, three ice cream formulations were developed (with 0%, 5% and 10% flour from the bark of jabuticaba, considering the physicochemical and sensorial characteristics. The results showed that the flour from the bark of jabuticaba showed high ash and fiber. The ice creams showed differences (p < 0.05 for pH, titratable acidity, moisture and ash due to the incorporation of flour from the bark of jabuticaba. The only attribute that did not differ (p > 0.05 was soluble solid. The overrun was ecreasing with increasing addition of flour. In the sensory evaluation, only attributes that differ (p < 0.05 were flavor, texture and overall appearance of the formulation with 10% flour from the bark of jabuticaba, which represents that incorporation of 5% flour from the bark of jabuticaba did not affect the cceptability of ice creams. It can be concluded that the enrichment of blemish bark flour provides edible ice increase in nutritional value without affecting the sensory characteristics at the level of 5% added.

  8. HIGH ALUMINUM HLW GLASSES FOR HANFORD'S WTP

    International Nuclear Information System (INIS)

    Kruger, A.A.; Joseph, I.; Bowman, B.W.; Gan, H.; Kot, W.; Matlack, K.S.; Pegg, I.L

    2009-01-01

    achievements of this program with emphasis on the recent enhancements in Al 2 O 3 loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m 2 ) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al 2 O 3 contents of ∼25 wt%, which represents a near-doubling of the present WTP baseline maximum Al 2 O 3 loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed

  9. Aluminum metal combustion in water revealed by high-speed microphotography

    Science.gov (United States)

    Tao, William C.; Frank, Alan M.; Clements, Rochelle E.; Shepherd, Joseph E.

    1991-01-01

    In high explosives designed for air blast cratering fragmentation and underwater applications metallic additives chemically react with the oxidizer and are used to tailor the rate of energy delivery by the expansion medium. Although the specific mechanism for sustained metal combustion in the dense detonation medium remains in question it is generally accepted that the fragmentation of the molten particle and disruption of its oxide layer are a necessity. In this study we use high speed microphotography to examine the ignition and combustion of small 25-76 jim diameter and 23 mm long aluminum wires rapidly heated by a capacitor discharge system in water. Streak and framing photographs detailing the combustion phenomenon and the fragmentation of the molten aluminum were obtained over periods of 100 nsec - 100 j. tsec with a spatial resolution of 2 . im. The wire temperature was determined as a function of time by integrating the circuit equation together with the energy equation for an adiabatic wire and incorporating known aluminum electrical resistivity and temperature functions of energy density in the integration. In order for the aluminum to sustain a rapid chemical reaction with the water we found that the wire temperature has to be raised above the melting temperature of aluminum oxide. The triggering mechanism for this rapid reaction appears to be the fragmentation of the molten aluminum from the collapse of a vapor blanket about

  10. The density of GM1-enriched lipid rafts correlates inversely with the efficiency of transfection mediated by cationic liposomes.

    Science.gov (United States)

    Kovács, Tamás; Kárász, Andrea; Szöllosi, János; Nagy, Peter

    2009-08-01

    Although cationic liposome-mediated transfection has become a standard procedure, the mechanistic details of the process are unknown. It has been suggested that endocytic uptake of lipoplexes is efficient, and transfectability is largely determined by later steps. In this article, we stained GM1-enriched membrane microdomains, a subclass of lipid rafts, with subunit B of cholera toxin and correlated transfection efficiency with their density by quantitatively evaluating microscopic images. We found a strong anticorrelation between the density of GM1-enriched membrane microdomains and the efficacy of transfection monitored by measuring the expression level of GFP in different cell lines transfected by lipofection using two different transfection agents. These findings imply that GM1-enriched membrane microdomains interfere with the process of lipofection. The blocked step must be endocytosis since the accumulation of fluorescently labeled plasmids was lower in cells with high content of GM1-enriched membrane microdomains. Such a correlation was not observed in cells transfected by electroporation. By comparing the efficiency of lipofection in several cell lines we found that those with a high density of GM1-enriched membrane microdomains were the most resistant to transfection. We conclude that the inhibition of lipofection by GM1-enriched membrane microdomains is a general rule, and that endocytosis of lipoplexes can be rate limiting in cells with high density of GM1-enriched membrane rafts. Copyright 2009 International Society for Advancement of Cytometry.

  11. Advances in Glass Formulations for Hanford High-Alumimum, High-Iron and Enhanced Sulphate Management in HLW Streams-13000

    International Nuclear Information System (INIS)

    Kruger, Albert A.

    2013-01-01

    The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previous experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur

  12. Globular Cluster Formation at High Density: A Model for Elemental Enrichment with Fast Recycling of Massive-star Debris

    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: bge@us.ibm.com [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)

    2017-02-10

    The self-enrichment of massive star clusters by p -processed elements is shown to increase significantly with increasing gas density as a result of enhanced star formation rates and stellar scatterings compared to the lifetime of a massive star. Considering the type of cloud core where a globular cluster (GC) might have formed, we follow the evolution and enrichment of the gas and the time dependence of stellar mass. A key assumption is that interactions between massive stars are important at high density, including interactions between massive stars and massive-star binaries that can shred stellar envelopes. Massive-star interactions should also scatter low-mass stars out of the cluster. Reasonable agreement with the observations is obtained for a cloud-core mass of ∼4 × 10{sup 6} M {sub ⊙} and a density of ∼2 × 10{sup 6} cm{sup −3}. The results depend primarily on a few dimensionless parameters, including, most importantly, the ratio of the gas consumption time to the lifetime of a massive star, which has to be low, ∼10%, and the efficiency of scattering low-mass stars per unit dynamical time, which has to be relatively large, such as a few percent. Also for these conditions, the velocity dispersions of embedded GCs should be comparable to the high gas dispersions of galaxies at that time, so that stellar ejection by multistar interactions could cause low-mass stars to leave a dwarf galaxy host altogether. This could solve the problem of missing first-generation stars in the halos of Fornax and WLM.

  13. Behavior of high-density spent-fuel storage racks

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1986-08-01

    Included in this report is a summary of information on neutron-absorbing materials such as B 4 C in an aluminum matrix or organic binder material, stainless steel-boron and aluminum-boron alloys, and stainless steetl-clad cadmium that are used in high-density spent fuel storage racks. A list of the types of neutron-absorbing materials being used in spent fuel storage racks at domestic commercial plants is provided. Recent cases at several domestic plants where swelling of rack side plates (where the B 4 C in an aluminum matrix and B 4 C in an organic binder material were located) occurred are reviewed

  14. An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.

    Science.gov (United States)

    Xu, Yifan; Zhao, Yang; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2016-07-04

    Owing to the high theoretical energy density of metal-air batteries, the aluminum-air battery has been proposed as a promising long-term power supply for electronics. However, the available energy density from the aluminum-air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all-solid-state fiber-shaped aluminum-air batteries with a specific capacity of 935 mAh g(-1) and an energy density of 1168 Wh kg(-1) . The synthesis of an electrode composed of cross-stacked aligned carbon-nanotube/silver-nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum-air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large-scale applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    OpenAIRE

    RYU, HO JIN; KIM, CHANG KYU; SIM, MOONSOO; PARK, JONG MAN; LEE, JONG HYUN

    2013-01-01

    Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compou...

  16. Aluminum anode for aluminum-air battery - Part I: Influence of aluminum purity

    Science.gov (United States)

    Cho, Young-Joo; Park, In-Jun; Lee, Hyeok-Jae; Kim, Jung-Gu

    2015-03-01

    2N5 commercial grade aluminum (99.5% purity) leads to the lower aluminum-air battery performances than 4N high pure grade aluminum (99.99% purity) due to impurities itself and formed impurity complex layer which contained Fe, Si, Cu and others. The impurity complex layer of 2N5 grade Al declines the battery voltage on standby status. It also depletes discharge current and battery efficiency at 1.0 V which is general operating voltage of aluminum-air battery. However, the impurity complex layer of 2N5 grade Al is dissolved with decreasing discharge voltage to 0.8 V. This phenomenon leads to improvement of discharge current density and battery efficiency by reducing self-corrosion reaction. This study demonstrates the possibility of use of 2N5 grade Al which is cheaper than 4N grade Al as the anode for aluminum-air battery.

  17. Vapor corrosion of aluminum cladding alloys and aluminum-uranium fuel materials in storage environments

    International Nuclear Information System (INIS)

    Lam, P.; Sindelar, R.L.; Peacock, H.B. Jr.

    1997-04-01

    An experimental investigation of the effects of vapor environments on the corrosion of aluminum spent nuclear fuel (A1 SNF) has been performed. Aluminum cladding alloys and aluminum-uranium fuel alloys have been exposed to environments of air/water vapor/ionizing radiation and characterized for applications to degradation mode analysis for interim dry and repository storage systems. Models have been developed to allow predictions of the corrosion response under conditions of unlimited corrodant species. Threshold levels of water vapor under which corrosion does not occur have been identified through tests under conditions of limited corrodant species. Coupons of aluminum 1100, 5052, and 6061, the US equivalent of cladding alloys used to manufacture foreign research reactor fuels, and several aluminum-uranium alloys (aluminum-10, 18, and 33 wt% uranium) were exposed to various controlled vapor environments in air within the following ranges of conditions: Temperature -- 80 to 200 C; Relative Humidity -- 0 to 100% using atmospheric condensate water and using added nitric acid to simulate radiolysis effects; and Gamma Radiation -- none and 1.8 x 10 6 R/hr. The results of this work are part of the body of information needed for understanding the degradation of the A1 SNF waste form in a direct disposal system in the federal repository. It will provide the basis for data input to the ongoing performance assessment and criticality safety analyses. Additional testing of uranium-aluminum fuel materials at uranium contents typical of high enriched and low enriched fuels is being initiated to provide the data needed for the development of empirical models

  18. Long term effects on human plasma lipoproteins of a formulation enriched in butter milk polar lipid

    Directory of Open Access Journals (Sweden)

    Nilsson Åke

    2009-10-01

    Full Text Available Abstract Background Sphingolipids (SL, in particular sphingomyelin (SM are important components of milk fat polar lipids. Dietary SM inhibits cholesterol absorption in rats (Nyberg et al. J Nutr Biochem. 2000 and SLs decrease both cholesterol and TG concentrations in lipid- and cholesterol fed APOE*3Leiden mice (Duivenvoorden et al. Am J Clin Nutr. 2006. This human study examines effects of a butter milk formulation enriched in milk fat globule membrane material, and thereby in SLs, on blood lipids in healthy volunteers. In a four week parallel group study with 33 men and 15 women we examined the effects of an SL-enriched butter milk formulation (A and an equivalent control formulation (B on plasma lipid levels. Plasma concentrations of HDL and LDL cholesterol, triacylglycerols (TG, apolipoproteins AI and B, and lipoprotein (a were measured. The daily dose of SL in A was 975 mg of which 700 mg was SM. The participants registered food and drink intake four days before introducing the test formula and the last four days of the test period. Results A daily increase of SL intake did not significantly influence fasting plasma lipids or lipoproteins. In group B TG, cholesterol, LDL, HDL and apolipoprotein B concentrations increased, however, but not in group A after four weeks. The difference in LDL cholesterol was seen primarily in women and difference in TG primarily in men. No significant side effects were observed. Conclusion The study did not show any significant decrease on plasma lipids or lipoprotein levels of an SL-enriched formulation containing 2-3 times more SL than the normal dietary intake on cholesterol, other plasma lipids or on energy intake. The formulation A may, however, have counteracted the trend towards increased blood lipid concentrations caused by increased energy intake that was seen with the B formulation.

  19. A density functional theory-based investigation of adhesion of poly(butylene terephthalate) on aluminum

    International Nuclear Information System (INIS)

    David, Melanie; Roman, Tanglaw; Nakanishi, Hiroshi; Kasai, Hideaki; Ando, Naoki; Naritomi, Masanori

    2006-01-01

    We investigate the adhesion of PBT on aluminum using density functional theory-based calculations. The geometric structure of the PBT monomer is first relaxed then an aluminum atom is connected to the monomer in different orientations. We calculate their total energies and determine the orientation that gives the strongest binding between the monomer and the aluminum atom. Binding is strongest when the Al connects linearly with the carbonyl oxygen in the ester group. We present binding mechanisms and total energy relationships for the different orientations

  20. High U-density nuclear fuel development with application of centrifugal atomization technology

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Kim, Ki Hwan; Lee, Don Bae

    1997-01-01

    In order to simplify the preparation process and improve the properties of uranium silicide fuels prepared by mechanical comminution, a fuel fabrication process applying rotating-disk centrifugal atomization technology was invented in KAERI in 1989. The major characteristic of atomized U 3 Si and U 3 Si 2 powders have been examined. The out-pile properties, including the thermal compatibility between atomized particle and aluminum matrix in uranium silicide dispersion fuels, have generally showed a superiority to the comminuted fuels. Moreover, the RERTR (reduced enrichment for research and test reactors) program, which recently begins to develop very-high-density uranium alloy fuels, including U-Mo fuels, requires the centrifugal atomization process to overcome the contaminations of impurities and the difficulties of the comminution process. In addition, a cooperation with ANL in the U.S. has been performed to develop high-density fuels with an application of atomization technology since December 1996. If the microplate and miniplate irradiation tests of atomized fuels, which have been performed with ANL, demonstrated the stability and improvement of in-reactor behaviors, nuclear fuel fabrication technology by centrifugal atomization could be most-promising to the production method of very-high-uranium-loading fuels. (author). 22 refs., 2 tabs., 12 figs

  1. Development of high-strength aluminum alloys for basket in transport and storage cask for high burn-up spent fuel

    International Nuclear Information System (INIS)

    Maeguchi, T.; Sakaguchi, Y.; Kamiwaki, Y.; Ishii, M.; Yamamoto, T.

    2004-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has developed high-strength borated aluminum alloys (high-strength B-Al alloys), suitable for application to baskets in transport and storage casks for high burn-up spent fuels. Aluminum is a suitable base material for the baskets due to its low density and high thermal conductivity. The aluminum basket would reduce weight of the cask, and effectively release heat generated by spent fuels. MHI had already developed borated aluminum alloys (high-toughness B-Al alloy), and registered them as ASME Code Case ''N-673''. However, there has been a strong demand for basket materials with higher strength in the case of MSF (Mitsubishi Spent Fuel) casks for high-burn up spent fuels, since the basket is required to stand up to higher stress at higher temperature. The high-strength basket material enables the design of a compact cask under a limitation of total size and weight. MHI has developed novel high-strength B-Al alloys which meet these requirements, based on a new manufacturing process. The outline of mechanical and metallurgical characteristics of the high-strength B-Al alloys is described in this paper

  2. In-line high-rate evaporation of aluminum for the metallization of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Christoph Paul

    2012-07-11

    This work focuses on the in-line high-rate evaporation of aluminum for contacting rear sides of silicon solar cells. The substrate temperature during the deposition process, the wafer bow after deposition, and the electrical properties of evaporated contacts are investigated. Furthermore, this work demonstrates for the first time the formation of aluminum-doped silicon regions by the in-line high-rate evaporation of aluminum without any further temperature treatment. The temperature of silicon wafers during in-line high-rate evaporation of aluminum is investigated in this work. The temperatures are found to depend on the wafer thickness W, the aluminum layer thickness d, and on the wafer emissivity {epsilon}. Two-dimensional finite-element simulations reproduce the measured peak temperatures with an accuracy of 97%. This work also investigates the wafer bow after in-line high-rate evaporation and shows that the elastic theory overestimates the wafer bow of planar Si wafers. The lower bow is explained with plastic deformation in the Al layer. Due to the plastic deformation only the first 79 K in temperature decrease result in a bow formation. Furthermore the electrical properties of evaporated point contacts are examined in this work. Parameterizations for the measured saturation currents of contacted p-type Si wafers and of contacted boron-diffused p{sup +}-type layers are presented. The contact resistivity of the deposited Al layers to silicon for various deposition processes and silicon surface concentrations are presented and the activation energy of the contact formation is determined. The measured saturation current densities and contact resistivities of the evaporated contacts are used in one-dimensional numerical Simulations and the impact on energy conversion efficiency of replacing a screen-printed rear side by an evaporated rear side is presented. For the first time the formation of aluminum-doped p{sup +}-type (Al-p{sup +}) silicon regions by the in

  3. Formulation of Biocides Increases Antimicrobial Potency and Mitigates the Enrichment of Nonsusceptible Bacteria in Multispecies Biofilms

    Science.gov (United States)

    Forbes, Sarah; Cowley, Nicola; Mistry, Hitesh; Amézquita, Alejandro

    2017-01-01

    ABSTRACT The current investigation aimed to generate data to inform the development of risk assessments of biocide usage. Stabilized domestic drain biofilm microcosms were exposed daily over 6 months to increasing concentrations (0.01% to 1%) of the biocide benzalkonium chloride (BAC) in a simple aqueous solution (BAC-s) or in a complex formulation (BAC-f) representative of a domestic cleaning agent. Biofilms were analyzed by culture, differentiating by bacterial functional group and by BAC or antibiotic susceptibility. Bacterial isolates were identified by 16S rRNA sequencing, and changes in biofilm composition were assessed by high-throughput sequencing. Exposure to BAC-f resulted in significantly larger reductions in levels of viable bacteria than exposure to BAC-s, while bacterial diversity greatly decreased during exposure to both BAC-s and BAC-f, as evidenced by sequencing and viable counts. Increases in the abundance of bacteria exhibiting reduced antibiotic or BAC susceptibility following exposure to BAC at 0.1% were significantly greater for BAC-s than BAC-f. Bacteria with reduced BAC and antibiotic susceptibility were generally suppressed by higher BAC concentrations, and formulation significantly enhanced this effect. Significant decreases in the antimicrobial susceptibility of bacteria isolated from the systems before and after long-term BAC exposure were not detected. In summary, dose-dependent suppression of bacterial viability by BAC was enhanced by formulation. Biocide exposure decreased bacterial diversity and transiently enriched populations of organisms with lower antimicrobial susceptibility, and the effects were subsequently suppressed by exposure to 1% BAC-f, the concentration most closely reflecting deployment in formulated products. IMPORTANCE Assessment of the risks of biocide use has been based mainly on the exposure of axenic cultures of bacteria to biocides in simple aqueous solutions. The current investigation aimed to assess the

  4. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  5. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)], E-mail: mfarhan_73@yahoo.co.uk; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)

    2008-09-15

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease.

  6. Effects of high density dispersion fuel loading on the kinetic parameters of a low enriched uranium fueled material test research reactor

    International Nuclear Information System (INIS)

    Muhammad, Farhan; Majid, Asad

    2008-01-01

    The effects of using high density low enriched uranium on the neutronic parameters of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density LEU fuels currently being developed under the RERTR program. Since the alloying elements have different cross-sections affecting the reactor in different ways, therefore fuels U-Mo (9 w/o) which contain the same elements in same ratio were selected for analysis. Simulations were carried out to calculate core excess reactivity, neutron flux spectrum, prompt neutron generation time, effective delayed neutron fraction and feedback coefficients including Doppler feedback coefficient, and reactivity coefficients for change of water density and temperature. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the excess reactivity at the beginning of life does not increase as the uranium density of fuel. Both the prompt neutron generation time and the effective delayed neutron fraction decrease as the uranium density increases. The absolute value of Doppler feedback coefficient increases while the absolute values of reactivity coefficients for change of water density and temperature decrease

  7. Molybdate Coatings for Protecting Aluminum Against Corrosion

    Science.gov (United States)

    Calle, Luz Marina; MacDowell, Louis G.

    2005-01-01

    Conversion coatings that comprise mixtures of molybdates and several additives have been subjected to a variety of tests to evaluate their effectiveness in protecting aluminum and alloys of aluminum against corrosion. Molybdate conversion coatings are under consideration as replacements for chromate conversion coatings, which have been used for more than 70 years. The chromate coatings are highly effective in protecting aluminum and its alloys against corrosion but are also toxic and carcinogenic. Hexavalent molybdenum and, hence, molybdates containing hexavalent molybdenum, have received attention recently as replacements for chromates because molybdates mimic chromates in a variety of applications but exhibit significantly lower toxicity. The tests were performed on six proprietary formulations of molybdate conversion coatings, denoted formulations A through F, on panels of aluminum alloy 2024-T3. A bare alloy panel was also included in the tests. The tests included electrochemical impedance spectroscopy (EIS), measurements of corrosion potentials, scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS).

  8. A prominent large high-density lipoprotein at birth enriched in apolipoprotein C-I identifies a new group of infancts of lower birth weight and younger gestational age

    Energy Technology Data Exchange (ETDEWEB)

    Kwiterovich Jr., Peter O.; Cockrill, Steven L.; Virgil, Donna G.; Garrett, Elizabeth; Otvos, James; Knight-Gibson, Carolyn; Alaupovic, Petar; Forte, Trudy; Farwig, Zachlyn N.; Macfarlane, Ronald D.

    2003-10-01

    Because low birth weight is associated with adverse cardiovascular risk and death in adults, lipoprotein heterogeneity at birth was studied. A prominent, large high-density lipoprotein (HDL) subclass enriched in apolipoprotein C-I (apoC-I) was found in 19 percent of infants, who had significantly lower birth weights and younger gestational ages and distinctly different lipoprotein profiles than infants with undetectable, possible or probable amounts of apoC-I-enriched HDL. An elevated amount of an apoC-I-enriched HDL identifies a new group of low birth weight infants.

  9. Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD

    International Nuclear Information System (INIS)

    Morrison, P.J.; Greene, J.M.

    1980-04-01

    A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables

  10. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided; if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly

  11. Use of highly enriched uranium in the material testing reactor BR2

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, A.

    1979-05-01

    In the material testing reactor BR2, the use of highly enriched uranium is determined by the consideration of the fast, epithermal and thermal neutron flux effectively available for the experimental devices. The choice of the core configuration is defined by combining the localisation of the experimental devices and of fuel elements of various burnup, such as to satisfy the irradiation conditions of the experimental load, compatible with an economic use of the fuel elements and safe operation of the reactor. Taking into account the present manufacturing technology for MTR fuels (37 Wt % uranium density in the fuel meat) the highly enriched uranium cannot be avoided: if higher concentration of uranium could be realised by some new manufacturing technology, the 235 U density of fuel elements at elimination should be kept at the required level and the enrichment could be reduced accordingly. (author)

  12. Rheological characterization of LDPE{sub Al} (low density polyethylene and aluminum) e HDPE (high density polyethylene); Caracterizacao das propriedades reologicas da mistura LDPE{sub Al} (polietileno de baixa densidade e aluminio) e HDPE (polietileno de alta densidade)

    Energy Technology Data Exchange (ETDEWEB)

    Santa Marinha, Ana Beatriz Abreu; Pacheco, Elen Beatriz Acordi Vasques; Monteiro, Elisabeth Ermel da Costa [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    The long life packaging contains paper, polyethylene and aluminum for packaging of food. A few part of total amount produced is recycled and another is discharged in landfills in Brazil. The low density polyethylene and aluminum (LDPE{sub Al}) was obtained from recycling this packaging. The rheological properties of the blends were intermediate to ones of the pure polymers. In a general way, the rheological properties were not modified by the aluminum presence. (author)

  13. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  14. Enrichment of unlabeled human Langerhans cells from epidermal cell suspensions by discontinuous density gradient centrifugation

    NARCIS (Netherlands)

    Teunissen, M. B.; Wormmeester, J.; Kapsenberg, M. L.; Bos, J. D.

    1988-01-01

    In this report we introduce an alternative procedure for enrichment of human epidermal Langerhans cells (LC) from epidermal cell suspensions of normal skin. By means of discontinuous Ficoll-Metrizoate density gradient centrifugation, a fraction containing high numbers of viable, more than 80% pure

  15. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.; Jones, Anthony M.; Ramuhalli, Pradeep; Roy, Surajit; Moran, Traci L.; Denslow, Kayte M.; Longoni, Gianluca

    2017-09-01

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using a surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.

  16. Ultrasound as a probe of dislocation density in aluminum

    International Nuclear Information System (INIS)

    Mujica, Nicolás; Cerda, Maria Teresa; Espinoza, Rodrigo; Lisoni, Judit; Lund, Fernando

    2012-01-01

    Graphical abstract: Display Omitted - Abstract: Dislocations are at the heart of the plastic behavior of crystalline materials yet it is notoriously difficult to perform quantitative, non-intrusive measurements of their single or collective properties. Dislocation density is a critical variable that determines dislocation mobility, strength and ductility. On the one hand, individual dislocations can be probed in detail with transmission electron microscopy. On the other hand, their collective properties must be simulated numerically. Here we show that ultrasound technology can be used to measure dislocation density. This development rests on theory—a generalization of the Granato–Lücke theory for the interaction of elastic waves with dislocations—and resonant ultrasound spectroscopy (RUS) measurements. The chosen material is aluminum, to which different dislocation contents were induced through annealing and cold-rolling processes. The dislocation densities obtained with RUS compare favorably with those inferred from X-ray diffraction, using the modified Williamson–Hall method.

  17. Effect of coating current density on the wettability of electrodeposited copper thin film on aluminum substrate

    Directory of Open Access Journals (Sweden)

    Arun Augustin

    2016-09-01

    Full Text Available Copper is the only one solid metal registered by the US Environmental Protection Agency as an antimicrobial touch surface. In touch surface applications, wettability of the surface has high significance. The killing rate of the harmful microbes depends on the wetting of pathogenic solution. Compared to the bulk copper, coated one on aluminum has the advantage of economic competitiveness and the possibility of manufacturing complex shapes. In the present work, the copper coating on the aluminum surface has successfully carried out by electrodeposition using non cyanide alkaline bath. To ensure good adhesion strength, the substrate has been pre-zincated prior to copper deposition. The coating current density is one of the important parameters which determine the nucleation density of the copper on the substrate. To understand the effect of current density on wettability, the coating has done at different current densities in the range of 3 A dm−2 to 9 A dm−2 for fixed time interval. The grain size has been measured from TEM micrographs and showed that as current density increases, grain size reduces from 62 nm to 35 nm. Since the grain size reduces, grain boundary volume has increases. As a result the value of strain energy (calculated by Williamson–Hall method has increased. The density of nodular morphology observed in SEM analysis has been increased with coating current density. Further, wettability studies with respect to double distilled water on the electrodeposited copper coatings which are coated at different current densities are carried out. At higher current density the coating is more wettable by water because at these conditions grain size of the coating decreases and morphology of grain changes to a favorable dense nodularity.

  18. ZPR-3 Assembly 6F : A spherical assembly of highly enriched uranium, depleted uranium, aluminum and steel with an average {sup 235}U enrichment of 47 atom %.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; McKnight, R. D; Schaefer, R. W.; Nuclear Engineering Division

    2010-09-30

    Assembly 6F (ZPR-3/6F), the final phase of the Assembly 6 program, simulated a spherical core with a thick depleted uranium reflector. ZPR-3/6F was designed as a fast reactor physics benchmark experiment with an average core {sup 235}U enrichment of approximately 47 at.%. Approximately 81.4% of the total fissions in this assembly occur above 100 keV, approximately 18.6% occur below 100 keV, and essentially none below 0.625 eV - thus the classification as a 'fast' assembly. This assembly is Fast Reactor Benchmark No. 7 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications and has historically been used as a data validation benchmark assembly. Loading of ZPR-3/6F began in late December 1956, and the experimental measurements were performed in January 1957. The core consisted of highly enriched uranium (HEU) plates, depleted uranium plates, perforated aluminum plates and stainless steel plates loaded into aluminum drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of three columns of 0.125 in.-wide (3.175 mm) HEU plates, three columns of 0.125 in.-wide depleted uranium plates, nine columns of 0.125 in.-wide perforated aluminum plates and one column of stainless steel plates. The maximum length of each column of core material in a drawer was 9 in. (228.6 mm). Because of the goal to produce an approximately spherical core, core fuel and diluent column lengths generally varied between adjacent drawers and frequently within an individual drawer. The axial reflector consisted of depleted uranium plates and blocks loaded in the available space in the front (core) drawers, with the remainder loaded into back drawers behind the front drawers. The radial reflector consisted of blocks of depleted uranium loaded directly into the matrix tubes. The assembly geometry approximated a reflected sphere as closely as the square matrix tubes, the drawers and the

  19. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    Science.gov (United States)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  20. High density dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, G.L.

    1996-01-01

    A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm 3 of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm -3 with U 3 Si 2 as fuel. High-density uranium compounds offer no real density advantage over U 3 Si 2 and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U 3 Si has approximately a 30% higher uranium density but the density of the U 6 X compounds would yield the factor 1.5 needed to achieve 9 g cm -3 uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure α-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic γ phase at low temperatures where normally α phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing

  1. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelko, Victor V., E-mail: vik_ko83@mail.ru [Chelyabinsk State University, Bratiev Kashirinykh 129, 454001 Chelyabinsk (Russian Federation); South Ural State University (National Research University), Lenin Prospect 76, 454080 Chelyabinsk (Russian Federation); Mayer, Alexander E., E-mail: mayer@csu.ru [Chelyabinsk State University, Bratiev Kashirinykh 129, 454001 Chelyabinsk (Russian Federation); South Ural State University (National Research University), Lenin Prospect 76, 454080 Chelyabinsk (Russian Federation); Krasnikov, Vasiliy S., E-mail: vas.krasnikov@gmail.com [Chelyabinsk State University, Bratiev Kashirinykh 129, 454001 Chelyabinsk (Russian Federation); South Ural State University (National Research University), Lenin Prospect 76, 454080 Chelyabinsk (Russian Federation)

    2016-12-30

    Highlights: • High-speed nanoparticle impact induces shock waves and intensive plastic deformation. • Lattice orientation strongly influences on the deformation degree. • Plastic deformation goes through nucleation, growth and separation of semi-loops. • Medium impact energy and elevated temperature are optimal for high-quality coating. • High impact velocity and room temperature lead to plastic deformation and coating. - Abstract: We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2–22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the

  2. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    International Nuclear Information System (INIS)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-01-01

    Highlights: • High-speed nanoparticle impact induces shock waves and intensive plastic deformation. • Lattice orientation strongly influences on the deformation degree. • Plastic deformation goes through nucleation, growth and separation of semi-loops. • Medium impact energy and elevated temperature are optimal for high-quality coating. • High impact velocity and room temperature lead to plastic deformation and coating. - Abstract: We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2–22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the

  3. Progress in qualifying low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Hayes, S.L.; Meyer, M.K.

    2001-01-01

    The U.S. Reduced Enrichment for Research and Test Reactors program is working to qualify dispersions of U-Mo alloys in aluminum with fuel-meat densities of 8 to 9 gU cm -3 . Post irradiation examinations of the small fuel plates irradiated in the Advanced Test Reactor during the high-temperature RERTR-3 tests are virtually complete, and analysis of the large quantity of data obtained is underway. We have observed that the swelling of the fuel plates is stable and modest and that the swelling is dominated by the temperature-dependent interaction of the U-Mo fuel and the aluminum matrix. In order to extract detailed information about the behavior of these fuels from the data, a complex fuel-plate thermal model is being developed to account for the effects of the changing fission rate and thermal conductivity of the fuel meat during irradiation. This paper summarizes the empirical results of the post irradiation examinations and the preliminary results of the model development. In addition, the schedule for irradiation of full-sized elements in the HFR-Petten is briefly discussed. (author)

  4. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jaluvka, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States); Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States); McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States); Peters, N. J. [Univ. of Missouri, Columbia, MO (United States)

    2017-02-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members in the Research and Test Reactor Department at the Argonne National Laboratory (ANL) and the MURR Facility. MURR LEU conversion is part of an overall effort to develop and qualify high-density fuel within the U.S. High Performance Research Reactor Conversion (USHPRR) program conducted by the U.S. Department of Energy National Nuclear Security Administration’s Office of Material Management and Minimization (M3).

  5. Nanopore density effect of polyacrylamide gel plug on electrokinetic ion enrichment in a micro-nanofluidic chip

    Science.gov (United States)

    Wang, Jun-yao; Xu, Zheng; Li, Yong-kui; Liu, Chong; Liu, Jun-shan; Chen, Li; Du, Li-qun; Wang, Li-ding

    2013-07-01

    In this paper, the nanopore density effect on ion enrichment is quantitatively described with the ratio between electrophoresis flux and electroosmotic flow flux based on the Poisson-Nernst-Planck equations. A polyacrylamide gel plug is integrated into a microchannel to form a micro-nanofluidic chip. With the chip, electrokinetic ion enrichment is relatively stable and enrichment ratio of fluorescein isothiocyanate can increase to 600-fold within 120 s at the electric voltage of 300 V. Both theoretical research and experiments show that enrichment ratio can be improved through increasing nanopore density. The result will be beneficial to the design of micro-nanofluidic chips.

  6. Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant

    Directory of Open Access Journals (Sweden)

    Timothee L. Pourpoint

    2012-01-01

    Full Text Available Aluminum-water reactions have been proposed and studied for several decades for underwater propulsion systems and applications requiring hydrogen generation. Aluminum and water have also been proposed as a frozen propellant, and there have been proposals for other refrigerated propellants that could be mixed, frozen in situ, and used as solid propellants. However, little work has been done to determine the feasibility of these concepts. With the recent availability of nanoscale aluminum, a simple binary formulation with water is now feasible. Nanosized aluminum has a lower ignition temperature than micron-sized aluminum particles, partly due to its high surface area, and burning times are much faster than micron aluminum. Frozen nanoscale aluminum and water mixtures are stable, as well as insensitive to electrostatic discharge, impact, and shock. Here we report a study of the feasibility of an nAl-ice propellant in small-scale rocket experiments. The focus here is not to develop an optimized propellant; however improved formulations are possible. Several static motor experiments have been conducted, including using a flight-weight casing. The flight weight casing was used in the first sounding rocket test of an aluminum-ice propellant, establishing a proof of concept for simple propellant mixtures making use of nanoscale particles.

  7. Structure of the Copper–Enriched Layer Introduced by Anodic Oxidation of Copper-Containing Aluminium Alloy

    International Nuclear Information System (INIS)

    Hashimoto, T.; Zhou, X.; Skeldon, P.; Thompson, G.E.

    2015-01-01

    This paper investigates the structure of the copper–enriched layer formed at the alloy/anodic film interface during anodizing of Al–2 wt.% Cu binary alloy using transmission electron microscopy. It was revealed that θ′ phase was formed within the copper–enriched layer. For the copper–enriched layer formed on {1 0 0} aluminum planes, the interface between the aluminum matrix and the θ′ phase within the copper-enriched layer is coherent. For the copper–enriched layer formed on {1 1 0} and {1 1 1} aluminum planes, the interfaces between the aluminum matrix and the θ′ phase within the copper-enriched layer are semi-coherent or incoherent. The interfacial coherency influences the formation of oxygen gas bubbles within the resultant anodic films.

  8. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  9. Study of diffusion bonding in 6061 aluminum and development of future high-density fuels fabrication

    International Nuclear Information System (INIS)

    Prokofiev, I.G.; Wiencek, T.C.; McGann, D.J.

    1997-01-01

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing uses fuel miniplates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must be established between the aluminum cover plates that surround the fuel meat. Four different variations of the standard method for roll-bonding 6061 aluminum were studied: mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and modifications to welding. Aluminum test pieces were subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that a reduction in thickness of at least 70% is required to produce a diffusion bond with the standard roll-bonding method, versus a 60% reduction when using a method in which the assembly was 100% welded and contained empty 9 mm holes near the frame corners. (author)

  10. Nutrient density score of typical Indonesian foods and dietary formulation using linear programming.

    Science.gov (United States)

    Jati, Ignasius Radix A P; Vadivel, Vellingiri; Nöhr, Donatus; Biesalski, Hans Konrad

    2012-12-01

    The present research aimed to analyse the nutrient density (ND), nutrient adequacy score (NAS) and energy density (ED) of Indonesian foods and to formulate a balanced diet using linear programming. Data on typical Indonesian diets were obtained from the Indonesian Socio-Economic Survey 2008. ND was investigated for 122 Indonesian foods. NAS was calculated for single nutrients such as Fe, Zn and vitamin A. Correlation analysis was performed between ND and ED, as well as between monthly expenditure class and food consumption pattern in Indonesia. Linear programming calculations were performed using the software POM-QM for Windows version 3. Republic of Indonesia, 2008. Public households (n 68 800). Vegetables had the highest ND of the food groups, followed by animal-based foods, fruits and staple foods. Based on NAS, the top ten food items for each food group were identified. Most of the staple foods had high ED and contributed towards daily energy fulfillment, followed by animal-based foods, vegetables and fruits. Commodities with high ND tended to have low ED. Linear programming could be used to formulate a balanced diet. In contrast to staple foods, purchases of fruit, vegetables and animal-based foods increased with the rise of monthly expenditure. People should select food items based on ND and NAS to alleviate micronutrient deficiencies in Indonesia. Dietary formulation calculated using linear programming to achieve RDA levels for micronutrients could be recommended for different age groups of the Indonesian population.

  11. Functional aluminum alloys for ultra high vacuum use

    International Nuclear Information System (INIS)

    Kato, Yutaka; Tsukamoto, Kenji; Isoyama, Eizo

    1985-01-01

    Ultra high vacuum systems made of aluminum alloys are actively developed. The reasons for using aluminum alloys are low residual radioactivity, light weight, good machinability, good thermal conductivity, non-magnetism. The important function required for ultra high vacuum materials is low outgassing rate, but surface gas on ordinary aluminum is much. Then the research on aluminum surface structure with low outgassing rate has been made and the special extrusion method, that is, extrusion method with the conditions of preventing air from entering inside of pipe and of taking in mixture gas of Ar + O 2 , was developed. 6063 alloy obtained by special extrusion method showed low outgassing rate (2 x 10 -13 Torr. 1/s. cm 2 ) by only 150 deg C, 24 h baking. For the future it will be important to develop aluminum alloys with low dynamic outgassing rate as well as low static outgassing rate. (author)

  12. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  13. Investigation of high-energy-proton effects in aluminum

    International Nuclear Information System (INIS)

    Czajkowski, C.J.; Snead, C.L. Jr.; Todosow, M.

    1997-01-01

    Specimens of 1100 aluminum were exposed to several fluences of 23.5-GeV protons at the Brookhaven Alternating Gradient Synchrotron. Although this energy is above those currently being proposed for spallation-neutron applications, the results can be viewed as indicative of trends and other microstructural evolution with fluence that take place with high-energy proton exposures such as those associated with an increasing ratio of gas generation to dpa. TEM investigation showed significantly larger bubble size and lower density of bubbles compared with lower-energy proton results. Additional testing showed that the tensile strength increased with fluence as expected, but the microhardness decreased, a result for which an intepretation is still under investigation

  14. Experimental and theoretical study of electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Festa, Floriane

    2013-01-01

    Matter in extreme conditions belongs to Warm Dense Matter regime which lays between dense plasma regime and condensed matter. This regime is still not well known, indeed it is very complex to generate such plasma in the laboratory to get experimental data and validate models. The goal of this thesis is to study electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy. Experimentally aluminum has reached high densities and high temperatures, up to now unexplored. An X-ray source has also been generated to probe highly compressed aluminum. Two spectrometers have recorded aluminum absorption spectra and aluminum density and temperature conditions have been deduced thanks to optical diagnostics. Experimental spectra have been compared to ab initio spectra, calculated in the same conditions. The theoretical goal was to validate the calculation method in high densities and high temperatures regime with the study of K-edge absorption modifications. We also used absorption spectra to study the metal-non metal transition which takes place at low density (density ≤ solid density). This transition could be study with electronic structure modifications of the system. (author) [fr

  15. Rule of formation of aluminum electroplating layer on Q235 steel.

    Science.gov (United States)

    Ding, Zhimin; Feng, Qiuyuan; Shen, Changbin; Gao, Hong

    2011-06-01

    Aluminum electroplating layer on Q235 steel in AlCl3-NaCl-KCl molten salt was obtained, and the rule of its nucleation and growth were investigated. The results showed that aluminum electroplating layer formed through nucleating and growing of aluminum particles, and thickened by delaminating growth pattern. At low current density, the morphology of aluminum particles took on flake-like, while at high current density they changed to spherical. The thickness of plating layer increases with increasing current density and electroplating time. The relationship between the plating thickness (δ) and electroplating time (t) or current density (i) can be expressed as δ = 0.28f(137), and δ = 1.1i(1-39). Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  17. Enriched reproducing kernel particle method for fractional advection-diffusion equation

    Science.gov (United States)

    Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam

    2018-06-01

    The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.

  18. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T(e and N(e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T(e and N(e for the aluminum in aluminum alloys using an optical fiber probe.

  19. High-Temperature Cast Aluminum for Efficient Engines

    Science.gov (United States)

    Bobel, Andrew C.

    Accurate thermodynamic databases are the foundation of predictive microstructure and property models. An initial assessment of the commercially available Thermo-Calc TCAL2 database and the proprietary aluminum database of QuesTek demonstrated a large degree of deviation with respect to equilibrium precipitate phase prediction in the compositional region of interest when compared to 3-D atom probe tomography (3DAPT) and transmission electron microscopy (TEM) experimental results. New compositional measurements of the Q-phase (Al-Cu-Mg-Si phase) led to a remodeling of the Q-phase thermodynamic description in the CALPHAD databases which has produced significant improvements in the phase prediction capabilities of the thermodynamic model. Due to the unique morphologies of strengthening precipitate phases commonly utilized in high-strength cast aluminum alloys, the development of new microstructural evolution models to describe both rod and plate particle growth was critical for accurate mechanistic strength models which rely heavily on precipitate size and shape. Particle size measurements through both 3DAPT and TEM experiments were used in conjunction with literature results of many alloy compositions to develop a physical growth model for the independent prediction of rod radii and rod length evolution. In addition a machine learning (ML) model was developed for the independent prediction of plate thickness and plate diameter evolution as a function of alloy composition, aging temperature, and aging time. The developed models are then compared with physical growth laws developed for spheres and modified for ellipsoidal morphology effects. Analysis of the effect of particle morphology on strength enhancement has been undertaken by modification of the Orowan-Ashby equation for 〈110〉 alpha-Al oriented finite rods in addition to an appropriate version for similarly oriented plates. A mechanistic strengthening model was developed for cast aluminum alloys containing

  20. Magnesium Removal from an Aluminum A-332 Molten Alloy Using Enriched Zeolite with Nanoparticles of SiO2

    Directory of Open Access Journals (Sweden)

    R. Muñoz-Arroyo

    2014-01-01

    Full Text Available In order to improve the Mg removal from an A-380 molten alloy, mixtures of zeolite and SiO2 nanoparticles (SiO2(NPs were tested. Zeolite was enriched with 2.5, 5, 7.5, 10, or 12.5 wt-% of amorphous SiO2(NPs. The SiO2(NPs and zeolite were mixed for 30 min in ethanol for each experiment and then dried in a furnace at 80°C for 12 h. The enriched zeolites were analyzed by scanning electron microscopy, transmission electron microscopy, and N2 gas adsorption analysis. The Mg removal was carried out injecting each mixture into the molten aluminum alloy at 750°C using argon. The Mg content of the molten alloy was measured after different periods of the injection time. Zeolites enriched with 2.5 and 5 wt-% of SiO2(NPs were demonstrated to be the better mixtures, removing Mg from an initial content of 1.6 to a final content of 0.0002 and 0.0101 wt-%, respectively, in 45 min of injection.

  1. Neutronic performance of high-density LEU fuels in water-moderated and water-reflected research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Matos, J.E.

    1996-01-01

    At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U 3 Si 2 fuel is about 6.0 g U/cm 3 . The French Commissariat a l'Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L'Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm 3 and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersion fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm 3 . On the other hand, UN is the least reactive fuel because of the relatively large 14 N(n,p) cross section. For a fixed value of k eff , the required 235 U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO 2 dispersions are only useful for uranium densities below 5.0 g/cm 3 . In this density range, however, UO 2 is more reactive than U 3 Si 2

  2. Progress on high-performance rapid prototype aluminum mirrors

    Science.gov (United States)

    Woodard, Kenneth S.; Myrick, Bruce H.

    2017-05-01

    Near net shape parts can be produced using some very old processes (investment casting) and the relatively new direct metal laser sintering (DMLS) process. These processes have significant advantages for complex blank lightweighting and costs but are not inherently suited for producing high performance mirrors. The DMLS process can provide extremely complex lightweight structures but the high residual stresses left in the material results in unstable mirror figure retention. Although not to the extreme intricacy of DMLS, investment casting can also provide complex lightweight structures at considerably lower costs than DMLS and even conventional wrought mirror blanks but the less than 100% density for casting (and also DMLS) limits finishing quality. This paper will cover the progress that has been made to make both the DMLS and investment casting processes into viable near net shape blank options for high performance aluminum mirrors. Finish and figure results will be presented to show performance commensurate with existing conventional processes.

  3. Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

    Science.gov (United States)

    Yang, Xiaoqing; Li, Chengfei; Fu, Ruowen

    2016-07-01

    As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm3 g-1, 1003 m2 g-1 and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g-1 can be obtained at the current density of 0.1 A g-1, which can stay over 88% (286 F g-1) as the current density increases by 100 times (10 A g-1). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications.

  4. Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—A comparative study with the AAO produced on high purity aluminum

    International Nuclear Information System (INIS)

    Michalska-Domańska, Marta; Norek, Małgorzata; Stępniowski, Wojciech J.; Budner, Bogusław

    2013-01-01

    Highlights: • Nanoporous alumina was fabricated by anodization in sulfuric acid solution with glycol. • The AAO manufacturing on low- and high-purity Al was compared. • The pores size was ranging between 30 and 50 nm. • No difference in the quality of the AAO fabricated on both Al types was observed. • The current vs. anodization time curves were recorded. -- Abstract: In this work the quality, arrangement, composition, and regularity of nanoporous AAO formed on the low-purity (AA1050) and high-purity aluminum during two-step anodization in a mixture of sulfuric acid solution (0.3 M), water and glycol (3:2, v/v), at various voltages (15, 20, 25, 30, 35 V) and at temperature of −1 °C, are investigated. The electrochemical conditions have allowed to obtain pores with the size ranging from 30 to 50 nm, which are much larger than those usually obtained by anodization in a pure sulfuric acid solution (<20 nm). The mechanism of the AAO growth is discussed. It was found that with the increase of applied anodizing voltage a number of incorporated sulfate ions in the aluminum oxide matrix increases, which was connected with the appearance of an unusual area in the current vs. time curves. On the surface of anodizing low- and high-purity aluminum, the formation of hillocks was observed, which was associated with the sulfate ions incorporation. The sulfate ions are replacing the oxygen atom/atoms in the AAO amorphous crystal structure and, consequently, the AAO template swells, the oxide cracks and uplifts causing the formation of hillocks. The same mechanism occurs for both low- and high-purity aluminum. Nanoporous AAO characterized by a very high regularity, not registered previously for low purity aluminum, was obtained. Furthermore, no significant difference in the regularity ratio between the AAO obtained on low- and high-purity aluminum, was observed. The electrochemical conditions applied in this study can be, thus, used for the fabrication of high quality

  5. Aluminum as anode for energy storage and conversion: a review

    Science.gov (United States)

    Li, Qingfeng; Bjerrum, Niels J.

    Aluminum has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer on the aluminum surface is however detrimental to the battery performance, contributing to failure to achieve the reversible potential and causing the delayed activation of the anode. By developing aluminum alloys as anodes and solution additives to electrolytes, a variety of aluminum batteries have been extensively investigated for various applications. From molten salt and other non-aqueous electrolytes, aluminum can be electrodeposited and therefore be suitable for developing rechargable batteries. Considerable efforts have been made to develop secondary aluminum batteries of high power density. In the present paper, these research activities are reviewed, including aqueous electrolyte primary batteries, aluminum-air batteries and molten salt secondary batteries.

  6. Relationships between nutrient enrichment, pleurocerid snail density and trematode infection rate in streams

    Science.gov (United States)

    Ciparis, Serena; Iwanowicz, Deborah D.; Voshell, J. Reese

    2013-01-01

    Summary 1. Nutrient enrichment is a widespread environmental problem in freshwater ecosystems. Eutrophic conditions caused by nutrient enrichment may result in a higher prevalence of infection by trematode parasites in host populations, due to greater resource availability for the molluscan first intermediate hosts. 2. This study examined relationships among land use, environmental variables indicating eutrophication, population density of the pleurocerid snail, Leptoxis carinata, and trematode infections. Fifteen study sites were located in streams within the Shenandoah River catchment (Virginia, U.S.A.), where widespread nutrient enrichment has occurred. 3. Snail population density had a weak positive relationship with stream water nutrient concentration. Snail population density also increased as human activities within stream catchments increased, but density did not continue to increase in catchments where anthropogenic disturbance was greatest. 4. Cercariae from five families of trematodes were identified in L. carinata, and infection rate was generally low (<10%). Neither total infection rate nor the infection rate of individual trematode types showed a positive relationship with snail population density, nutrients or land use. 5. There were statistically significant but weak relationships between the prevalence of infection by two trematode families and physical and biological variables. The prevalence of Notocotylidae was positively related to water depth, which may be related to habitat use by definitive hosts. Prevalence of Opecoelidae had a negative relationship with orthophosphate concentration and a polynomial relationship with chlorophyll a concentration. Transmission of Opecoelid trematodes between hosts may be inhibited by eutrophic conditions. 6. Leptoxis carinata appears to be a useful species for monitoring the biological effects of eutrophication and investigating trematode transmission dynamics in lotic systems.

  7. Fast LIBS Identification of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Tawfik W.

    2007-04-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to analysis aluminum alloy targets. The plasma is generated by focusing a 300 mJ pulsed Nd: YAG laser on the target in air at atmospheric pressure. Such plasma emission spectrum was collected using a one-meter length wide band fused-silica optical fiber connected to a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the LTE and optically thin plasma conditions. The LIBS spectrum was optimized for high S/N ratio especially for trace elements. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of selected aluminum spectral lines. The values of these parameters were found to change with the aluminum alloy matrix, i.e. they could be used as a fingerprint character to distinguish between different aluminum alloy matrices using only one major element (aluminum without needing to analysis the rest of elements in the matrix. Moreover, It was found that the values of T e and N e decrease with increasing the trace elements concentrations in the aluminum alloy samples. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line industrial monitoring application, by following up only the values of T e and N e for aluminum in aluminum alloys as a marker for the correct alloying using an optical fiber probe.

  8. Precision forging technology for aluminum alloy

    Science.gov (United States)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  9. Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory

    International Nuclear Information System (INIS)

    Szállás, A.; Szász, K.; Trinh, X. T.; Son, N. T.; Janzén, E.; Gali, A.

    2014-01-01

    We carried out Heyd-Scuseria-Ernzerhof hybrid density functional theory plane wave supercell calculations in wurtzite aluminum nitride in order to characterize the geometry, formation energies, transition levels, and hyperfine tensors of the nitrogen split interstitial defect. The calculated hyperfine tensors may provide useful fingerprint of this defect for electron paramagnetic resonance measurement.

  10. Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Szállás, A., E-mail: szallas.attila@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Szász, K. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Institute of Physics, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary); Trinh, X. T.; Son, N. T.; Janzén, E. [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Gali, A., E-mail: gali.adam@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest (Hungary)

    2014-09-21

    We carried out Heyd-Scuseria-Ernzerhof hybrid density functional theory plane wave supercell calculations in wurtzite aluminum nitride in order to characterize the geometry, formation energies, transition levels, and hyperfine tensors of the nitrogen split interstitial defect. The calculated hyperfine tensors may provide useful fingerprint of this defect for electron paramagnetic resonance measurement.

  11. Civilian inventories of plutonium and highly enriched uranium

    International Nuclear Information System (INIS)

    Albright, D.

    1987-01-01

    In the future, commercial laser isotope enrichment technologies, currently under development, could make it easier for national to produce highly enriched uranium secretly. The head of a US firm that is developing a laser enrichment process predicts that in twenty years, major utilities and small countries will have relatively small, on-site, laser-based uranium enrichment facilities. Although these plants will be designed for the production of low enriched uranium, they could be modified to produce highly enriched uranium, an option that raises the possibility of countries producing highly enriched uranium in small, easily hidden facilities. Against this background, most of this report describes the current and future quantities of plutonium and highly enriched uranium in the world, their forms, the facilities in which they are produced, stored, and used, and the extent to which they are transported. 5 figures, 10 tables

  12. High enrichment to low enrichment core's conversion. Technical securities

    International Nuclear Information System (INIS)

    Abbate, P.; Madariaga, M.R.

    1990-01-01

    This work presents the fulfillment of the technical securities subscribed by INVAP S.E. for the conversion of a high enriched uranium core. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. These are neutronic and thermohydraulic securities. (Author) [es

  13. Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable

    International Nuclear Information System (INIS)

    Basfar, A.A.

    2002-01-01

    Various formulations of low-density polyethylene blended with ethylene vinyl acetate were prepared to improve the flame retardancy for wire and cable applications. The prepared formulations were cross-linked by γ-rays to 50, 100, 150 and 200 kGy in the presence of trimethylolpropane triacrylate (TMPTA). The effect of thermal aging on mechanical properties of these formulations were investigated. In addition, the influence of various combinations of aluminum trihydroxide and zinc borate as flame retardant fillers on the flammability was explored. Limiting oxygen index (LOI) and average extent of burning were used to characterize the flammability of investigated formulations. An improved flame retardancy of low density polyethylene was achieved by various combinations of flame ratardant fillers and cross-linking by gamma radiation

  14. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    Energy Technology Data Exchange (ETDEWEB)

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces were subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.

  15. Effects of high density dispersion fuel loading on the uncontrolled reactivity insertion transients of a low enriched uranium fueled material test research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Farhan [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)], E-mail: farhan73@hotmail.com; Majid, Asad [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650 (Pakistan)

    2009-08-15

    The effects of using high density low enriched uranium on the uncontrolled reactivity insertion transients of a material test research reactor were studied. For this purpose, the low density LEU fuel of an MTR was replaced with high density U-Mo (9w/o) LEU fuels currently being developed under the RERTR program having uranium densities of 6.57 gU/cm{sup 3}, 7.74 gU/cm{sup 3} and 8.57 gU/cm{sup 3}. Simulations were carried out to determine the reactor performance under reactivity insertion transients with totally failed control rods. Ramp reactivities of 0.25$/0.5 s and 1.35$/0.5 s were inserted with reactor operating at full power level of 10 MW. Nuclear reactor analysis code PARET was employed to carry out these calculations. It was observed that when reactivity insertion was 0.25$/0.5 s, the new power level attained increased by 5.8% as uranium density increases from 6.57 gU/cm{sup 3} to 8.90 gU/cm{sup 3}. This results in increased maximum temperatures of fuel, clad and coolant outlet, achieved at the new power level, by 4.7 K, 4.4 K and 2.4 K, respectively. When reactivity insertion was 1.35$/0.5 s, the feedback reactivities were unable to control the reactor which resulted in the bulk boiling of the coolant; the one with the highest fuel density was the first to reach the boiling point.

  16. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  17. 31 CFR 540.306 - Highly Enriched Uranium (HEU).

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Highly Enriched Uranium (HEU). 540...) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.306 Highly Enriched Uranium (HEU). The term highly...

  18. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  19. Comments on applications of reduced enrichment fuels

    International Nuclear Information System (INIS)

    Winkler, M.H.

    1983-01-01

    Full text: I will briefly describe the experience gained using different fuels in the SAPHIR reactor in Switzerland. The SAPHIR has been operating since 1957 and was the first swimming pool reactor built outside of the United States, which was originally known as the Geneva Conference Reactor. The first core was loaded with 20 percent enriched high density UO 2 fuel with a density of about 2.5 grams per cc, fabricated in 1955 by Oak Ridge National Laboratory. After a few years of operation at a power level of one MW, more than one batch of the elements released small amounts of fission products mainly Xe and Kr. When these releases were discovered, high enriched fuel was becoming available so that the fuel fabricators began to produce the lower density high enriched fuels. During this transition from fabrication of low to high enriched fuels no one could foresee that the stone age of nuclear fuel fabrication would come back again. Therefore, we did not investigate the reasons for the fission product release from the high density low enriched UO 2 fuel. The second fuel type used in the SAPHIR was the 90 percent enriched low density U 3 O 8 fuel fabricated by NUKEM. This high enriched fuel has performed satisfactorily over the years. Since 1968, the core has been using improved 23 plate fuel elements with a loading of 280 grams of uranium. The reactor power has been recently increased to five MW. An additional increase in the power level to 10 MW is planned at the end of next year so that heavier loaded elements will be needed. In order to follow the recommendations of the INFCE working group 8C and in cooperation with the reduced enrichment program, we intend to initially reduce the fuel enrichment to 45 percent. Last year we ordered five fuel elements with a loading of 320 grams 235 U/element and 45 percent enrichment for full power tests. Unfortunately, the delivery of the necessary enriched fuel uranium has been delayed and it is not available at this time. If

  20. The formation of chondrules at high gas pressures in the solar nebula.

    Science.gov (United States)

    Galy, A; Young, E D; Ash, R D; O'Nions, R K

    2000-12-01

    High-precision magnesium isotope measurements of whole chondrules from the Allende carbonaceous chondrite meteorite show that some aluminum-rich Allende chondrules formed at or near the time of formation of calcium-aluminum-rich inclusions and that some others formed later and incorporated precursors previously enriched in magnesium-26. Chondrule magnesium-25/magnesium-24 correlates with [magnesium]/[aluminum] and size, the aluminum-rich, smaller chondrules being the most enriched in the heavy isotopes of magnesium. These relations imply that high gas pressures prevailed during chondrule formation in the solar nebula.

  1. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    Directory of Open Access Journals (Sweden)

    M.K. MEYER

    2014-04-01

    Full Text Available High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  2. Irradiation performance of U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M. K.; Gan, J.; Jue, J. F.; Keiser, D. D.; Perez, E.; Robinson, A.; Wachs, D. M.; Woolstenhulme, N. [Idaho National Laboratory, Idaho (Korea, Republic of); Kim, Y.S.; Hofman, G. L. [Argonne National Laboratory, Lemont (United States)

    2014-04-15

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  3. PWR fuel of high enrichment with erbia and enriched gadolinia

    International Nuclear Information System (INIS)

    Bejmer, Klaes-Håkan; Malm, Christian

    2011-01-01

    Today standard PWR fuel is licensed for operation up to 65-70 MWd/kgU, which in most cases corresponds to an enrichment of more than 5 w/o "2"3"5U. Due to criticality safety reason of storage and transportation, only fuel up to 5 w/o "2"3"5U enrichment is so far used. New fuel storage installations and transportation casks are necessary investments before the reactivity level of the fresh fuel can be significantly increased. These investments and corresponding licensing work takes time, and in the meantime a solution that requires burnable poisons in all pellets of the fresh high-enriched fuel might be used. By using very small amounts of burnable absorber in every pellet the initial reactivity can be reduced to today's levels. This study presents core calculations with fuel assemblies enriched to almost 6 w/o "2"3"5U mixed with a small amount of erbia. Some of the assemblies also contain gadolinia. The results are compared to a reference case containing assemblies with 4.95 w/o "2"3"5U without erbia, utilizing only gadolinia as burnable poison. The comparison shows that the number of fresh fuel assemblies can be reduced by 21% (which increases the batch burnup by 24%) by utilizing the erbia fuel concept. However, increased cost of uranium due to higher enrichment is not fully compensated for by the cost gain due to the reduction of the number assemblies. Hence, the fuel cycle cost becomes slightly higher for the high enrichment erbia case than for the reference case. (author)

  4. Picosecond Streaked K-Shell Spectroscopy of Near Solid-Density Aluminum Plasmas

    Science.gov (United States)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2016-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured. The targets were driven by high-contrast 1 ω or 2 ω laser pulses at focused intensities up to 1 ×1019W/Wcm2 cm2 . A streaked x-ray spectrometer recorded the Al Heα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E/E ΔE 700). Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Line widths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic model to provide the average plasma conditions in the buried layer as a function of time. It was observed that the resonance line tends toward lower photon energies at high electron densities. The measured shifts will be compared to predicted shifts from Stark-operator calculations at the inferred plasma conditions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the office of Fusion Energy Sciences Award Number DE-SC0012317, and the Stewardship Science Graduate Fellowship Grant Number DE-NA0002135.

  5. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  6. N-enriched multilayered porous carbon derived from natural casings for high-performance supercapacitors

    Science.gov (United States)

    Xu, Zongying; Li, Yu; Li, Dandan; Wang, Dawei; Zhao, Jing; Wang, Zhifeng; Banis, Mohammad N.; Hu, Yongfeng; Zhang, Huaihao

    2018-06-01

    In this study, N-enriched multilayered porous activated carbon (LPAC), using natural casings as precursor, was fabricated by a facile carbonization and subsequent KOH activation procedure. The influence of the mass ratio of KOH to carbonized material on pore-structure and surface element composition of LPACs was investigated by a variety of means, such as SEM, HRTEM, BET, Raman, XRD, XPS and XAS. Owing to the unique multilayered texture and nitrogen (N) and oxygen (O) rich feature of natural casings, the resulting LPACs possess interconnected and developed porous structure with N- and O-enriched functional groups, contributing to larger pseudocapacitance. With the rise of mass ratio, the specific surface area (SSA) and average pore size of LPACs increased. The final materials were endowed with a desirable SSA (3100 m2 g-1) and high N content (6.34 at.%). Meanwhile, N- and O-enriched LPAC-4 exhibited a high specific capacitance (307.5 F g-1 at a current density of 0.5 A g-1 in 6 M KOH aqueous solution), excellent rate performance (63.4% capacitance retention at 20 A g-1) and good cycling stability (7.1% capacitance loss after 5000 cycles). Furthermore, the assembled symmetrical supercapacitor (LPAC-4//LPAC-4) with a wide voltage window of 1.4 V delivered a remarkable energy density of 11.6 Wh kg-1 at a power density of 297 W kg-1. These results suggested that unique LPACs derived from natural casings are a promising material for supercapacitors.

  7. Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems

    International Nuclear Information System (INIS)

    Shumaev, V. V.

    2016-01-01

    The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures T > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state.

  8. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  9. Replacement of highly enriched uranium by medium or low-enriched uranium in fuels for research reactors

    International Nuclear Information System (INIS)

    Schwartz, J.P.

    To exclude the possibility of an explosive use of the uranium obtained from an elementary chemical process, one needs to use a fuel less enriched than 20 weight percent in U 235 . This goal can be reached by two ways: 1. The low density fuels, i.e. U or U 3 O 8 /Al fuels. One has to increase their U content from 1.3 g U/cm 3 presently qualified under normal operation conditions. Several manufacturers such as CERCA in France developed these fuels with a near-term objective of about 2 g U/cm 3 and a long-term objective of 3 g U/cm 3 . 2. The high density fuels. They are the UO 2 Caramel plate type fuels now under consideration, and U 3 Si and UMo as a long-term potential

  10. Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain.

    Science.gov (United States)

    Hamberger, A; Blomstrand, C; Lehninger, A L

    1970-05-01

    Fractions enriched in neuronal and glial cells were obtained from dispersions of whole beef brain and rabbit cerebral cortex by large-scale density gradient centrifugation procedures. The fractions were characterized by appropriate microscopic observation. Mitochondria were then isolated from these fractions by differential centrifugation of their homogenates. The two different types of mitochondria were characterized with respect to certain enzyme activities, respiratory rate, rate of protein synthesis, and their buoyant density in sucrose gradients. The mitochondria from the neuron-enriched fraction were distinguished by a higher rate of incorporation of amino acids into protein, higher cytochrome oxidase activity, and a higher buoyant density in sucrose density gradients. Mitochondria from the glia-enriched fraction showed relatively high monoamine oxidase and Na(+)- and K(+)-stimulated ATPase activities. The rates of oxidation of various substrates and the acceptor control ratios did not differ appreciably between the two types of mitochondria. The difference in the buoyant density of mitochondria isolated from the neuron-enriched and glia-enriched cell fractions was utilized in attempts to separate neuronal and glial mitochondria from the mixed mitochondria obtained from whole brain homogenates in shallow sucrose gradients. The appearance of two peaks of cytochrome oxidase, monoamine oxidase, and protein concentration in such gradients shows the potential feasibility of such an approach.

  11. High level compressive residual stresses produced in aluminum alloys by laser shock processing

    International Nuclear Information System (INIS)

    Gomez-Rosas, G.; Rubio-Gonzalez, C.; Ocana, J.L; Molpeceres, C.; Porro, J.A.; Chi-Moreno, W.; Morales, M.

    2005-01-01

    Laser shock processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results for metal surface treatments in underwater laser irradiation at 1064 nm. A convergent lens is used to deliver 1.2 J/cm 2 in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG, two laser spot diameters were used: 0.8 and 1.5 mm. Results using pulse densities of 2500 pulses/cm 2 in 6061-T6 aluminum samples and 5000 pulses/cm 2 in 2024 aluminum samples are presented. High level of compressive residual stresses are produced -1600 MPa for 6061-T6 Al alloy, and -1400 MPa for 2024 Al alloy. It has been shown that surface residual stress level is higher than that achieved by conventional shot peening and with greater depths. This method can be applied to surface treatment of final metal products

  12. TiN coated aluminum electrodes for DC high voltage electron guns

    International Nuclear Information System (INIS)

    Mamun, Md Abdullah A.; Elmustafa, Abdelmageed A.; Taus, Rhys; Forman, Eric; Poelker, Matthew

    2015-01-01

    Preparing electrodes made of metals like stainless steel, for use inside DC high voltage electron guns, is a labor-intensive and time-consuming process. In this paper, the authors report the exceptional high voltage performance of aluminum electrodes coated with hard titanium nitride (TiN). The aluminum electrodes were comparatively easy to manufacture and required only hours of mechanical polishing using silicon carbide paper, prior to coating with TiN by a commercial vendor. The high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, was compared to that of bare aluminum electrodes, and electrodes manufactured from titanium alloy (Ti-6Al-4V). Following gas conditioning, each TiN-coated aluminum electrode reached −225 kV bias voltage while generating less than 100 pA of field emission (<10 pA) using a 40 mm cathode/anode gap, corresponding to field strength of 13.7 MV/m. Smaller gaps were studied to evaluate electrode performance at higher field strength with the best performing TiN-coated aluminum electrode reaching ∼22.5 MV/m with field emission less than 100 pA. These results were comparable to those obtained from our best-performing electrodes manufactured from stainless steel, titanium alloy and niobium, as reported in references cited below. The TiN coating provided a very smooth surface and with mechanical properties of the coating (hardness and modulus) superior to those of stainless steel, titanium-alloy, and niobium electrodes. These features likely contributed to the improved high voltage performance of the TiN-coated aluminum electrodes

  13. Evaluation of the impact of density gradient centrifugation on fetal cell loss during enrichment from maternal peripheral blood.

    Science.gov (United States)

    Emad, Ahmed; Drouin, Régen

    2014-09-01

    Physical separation by density gradient centrifugation (DGC) is usually used as an initial step of multistep enrichment protocols for purification of fetal cells (FCs) from maternal blood. Many protocols were designed but no single approach was efficient enough to provide noninvasive prenatal diagnosis. Procedures and methods were difficult to compare because of the nonuniformity of protocols among different groups. Recovery of FCs is jeopardized by their loss during the process of enrichment. Any loss of FCs must be minimized because of the multiplicative effect of each step of the enrichment process. The main objective of this study was to evaluate FC loss caused by DGC. Fetal cells were quantified in peripheral blood samples obtained from both euploid and aneuploid pregnancies before and after enrichment by buoyant DGC using Histopaque 1.119 g/mL. Density gradient centrifugation results in major loss of 60% to 80% of rare FCs, which may further complicate subsequent enrichment procedures. Eliminating aggressive manipulations can significantly minimize FC loss. Data obtained raise questions about the appropriateness of the DGC step for the enrichment of rare FCs and argues for the use of the alternative nonaggressive version of the procedure presented here or prioritizing other methods of enrichments. © 2014 John Wiley & Sons, Ltd.

  14. Effect of aluminum and silicon reactants and process parameters on glass-ceramic waste form characteristics for immobilization of high-level fluorinel-sodium calcined waste

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1993-06-01

    In this report, the effects of aluminum and silicon reactants, process soak time and the initial calcine particle size on glass-ceramic waste form characteristics for immobilization of the high-level fluorinel-sodium calcined waste stored at the Idaho Chemical Processing Plant (ICPP) are investigated. The waste form characteristics include density, total and normalized elemental leach rates, and microstructure. Glass-ceramic waste forms were prepared by hot isostatically pressing (HIPing) a pre-compacted mixture of pilot plant fluorinel-sodium calcine, Al, and Si metal powders at 1050 degrees C, 20,000 psi for 4 hours. One of the formulations with 2 wt % Al was HIPed for 4, 8, 16 and 24 hours at the same temperature and pressure. The calcine particle size range include as calcined particle size smaller than 600 μm (finer than -30 mesh, or 215 μm Mass Median Diameter, MMD) and 180 μm (finer than 80 mesh, or 49 μm MMD)

  15. A high-performance aluminum-feed microfluidic fuel cell stack

    Science.gov (United States)

    Wang, Yifei; Leung, Dennis Y. C.

    2016-12-01

    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  16. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    -170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active......The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...

  17. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Ianakiev, Kiril D.; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-01-01

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF 6 containing low enriched (approximately 4% 235 U) and highly enriched (above 20% 235 U) uranium. This instrument used the 22-keV line from a 109 Cd source as a transmission source to achieve a high sensitivity to the UF 6 gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF 6 product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  18. X-Ray and Neutron Diffraction Measurements of Dislocation Density and Subgrain Size in a Friction-Stir-Welded Aluminum Alloy

    International Nuclear Information System (INIS)

    Woo, Wan Chuck; Ungar, Tomas; Feng, Zhili; Kenik, Edward A.; Clausen, B.

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10 14 m -2 and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10 15 m -2 and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation

  19. Progress in the development of very high density research and test reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wachs, D.M. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, Idaho 83415 (United States)

    2009-06-15

    New nuclear fuels are being developed to enable many of the most important research and test reactors worldwide to convert from high enriched uranium (HEU) fuels to low enriched uranium (LEU) fuels without significant loss in performance. The last decade of work has focused on the development of uranium-molybdenum alloy (U-Mo) based fuels and is an international effort that includes the active participation of more than ten national programs. The US RERTR program, under the NNSA's Global Threat Reduction Initiative (GTRI), is in the process of developing both dispersion and monolithic U-Mo fuel designs. While the U-Mo fuel alloy has behaved extremely well under irradiation, initial testing (circa 2003) revealed that the U-Mo fuels dispersed in aluminum had an unexpected tendency toward unstable swelling (pillowing) under high-power conditions. Technical investigations were initiated worldwide at this time by the partner programs to understand this behavior as well as to develop and test remedies. The behavior was corrected by modifying the chemistry of the U-Mo/Al interfaces in both fuel designs. In the dispersion fuel design, this was accomplished by the addition of small amounts of silicon to the aluminum matrix material. Two methods are under development for the monolithic fuel design, which include the application of a thin layer of silicon or a thin zirconium based diffusion barrier at the fuel/clad interface. This paper gives an overview of the current status of U-Mo fuel development, including basic research results, manufacturing aspects, results of the latest irradiations and post irradiation examinations, the approach to fuel performance qualification, and the scale-up and commercialization of fabrication technology. (authors)

  20. Gaseous diffusion -- the enrichment workhorse

    International Nuclear Information System (INIS)

    Shoemaker, J.E. Jr.

    1984-01-01

    Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors

  1. Casting Characteristics of High Cerium Content Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D; Rios, O R; Sims, Z C; McCall, S K; Ott, R T

    2017-09-05

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems for melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.

  2. Effects of formulation and host nematode density on the ability of in vitro-produced pasteuria endospores to control its host Belonolaimus longicaudatus.

    Science.gov (United States)

    Luc, John E; Pang, Wenjing; Crow, William T; Giblin-Davis, Robin M

    2010-06-01

    The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm(3) of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective.

  3. Polarization-dependent aluminum metasurface operating at 450 nm

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Zhu, Xiaolong; Carstensen, Marcus S

    2015-01-01

    We report on a polarization-dependent plasmonic aluminum-based high-density metasurface operating at blue wavelengths. The fabricated sub-wavelength structures, tailored in size and geometry, possess strong, localized, plasmonic resonances able to control linear polarization. Best performance...

  4. Preparation of highly and generally enriched mammalian tissues for solid state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Veronica Wai Ching; Reid, David G.; Chow, Wing Ying; Rajan, Rakesh [University of Cambridge, Department of Chemistry (United Kingdom); Green, Maggie [University of Cambridge, Central Biomedical Resources, School of Clinical Medicine (United Kingdom); Brooks, Roger A. [University of Cambridge, Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital (United Kingdom); Duer, Melinda J., E-mail: mjd13@cam.ac.uk [University of Cambridge, Department of Chemistry (United Kingdom)

    2015-10-15

    An appreciable level of isotope labelling is essential for future NMR structure elucidation of mammalian biomaterials, which are either poorly expressed, or unexpressable, using micro-organisms. We present a detailed protocol for high level {sup 13}C enrichment even in slow turnover murine biomaterials (fur keratin), using a customized diet supplemented with commercial labelled algal hydrolysate and formulated as a gel to minimize wastage, which female mice consumed during pregnancy and lactation. This procedure produced approximately eightfold higher fur keratin labelling in pups, exposed in utero and throughout life to label, than in adults exposed for the same period, showing both the effectiveness, and necessity, of this approach.

  5. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    Directory of Open Access Journals (Sweden)

    Ravin Jugdaohsingh

    Full Text Available Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7 we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP. Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2 g(-1 and it competes effectively with transferrin for Al(III binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  6. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    Science.gov (United States)

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  7. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  8. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    Science.gov (United States)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  9. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    OpenAIRE

    Gerrard Eddy Jai Poinern; Derek Fawcett; Nurshahidah Ali

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical ...

  10. Supply of low enriched (LEU) and highly enriched uranium (HEU) for research reactors

    International Nuclear Information System (INIS)

    Mueller, H.

    1997-01-01

    Enriched uranium for research reactors in the form of LEU /= low enriched uranium at 19.75% U-235) and HEU (= highly enriched uranium at 90 to 93% U-235) was and is - due to its high U-235 enrichment - a political fuel other than enriched uranium for power reactors. The sufficient availability of LEU and HEU is a vital question for research reactors, especially in Europe, in order to perform their peaceful research reactor programs. In the past the USA were in the Western hemisphere sole supplier of LEU and HEU. Today the USA have de facto stopped the supply of LEU and HEU, for HEU mainly due to political reasons. This paper deals, among others, with the present availability of LEU and HEU for European research reactors and touches the following topics: - historical US supplies, - influence of the RERTR-program, - characteristics of LEU and HEU, - military HEU enters the civil market, -what is the supply situation for LEU and HEU today? - outlook for safe supplies of LEU and HEU. (author)

  11. Perturbation based Monte Carlo criticality search in density, enrichment and concentration

    International Nuclear Information System (INIS)

    Li, Zeguang; Wang, Kan; Deng, Jingkang

    2015-01-01

    Highlights: • A new perturbation based Monte Carlo criticality search method is proposed. • The method could get accurate results with only one individual criticality run. • The method is used to solve density, enrichment and concentration search problems. • Results show the feasibility and good performances of this method. • The relationship between results’ accuracy and perturbation order is discussed. - Abstract: Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Existing Monte Carlo criticality search methods need large amount of individual criticality runs and may have unstable results because of the uncertainties of criticality results. In this paper, a new perturbation based Monte Carlo criticality search method is proposed and discussed. This method only needs one individual criticality calculation with perturbation tallies to estimate k eff changing function using initial k eff and differential coefficients results, and solves polynomial equations to get the criticality search results. The new perturbation based Monte Carlo criticality search method is implemented in the Monte Carlo code RMC, and criticality search problems in density, enrichment and concentration are taken out. Results show that this method is quite inspiring in accuracy and efficiency, and has advantages compared with other criticality search methods

  12. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  13. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, R.T. III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N.

    2006-01-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U 3 O 8 mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties

  14. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  15. Irradiation testing of high density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U 2 Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions

  16. Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

    Science.gov (United States)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.

  17. Superhydrophilicity of a nanofiber-covered aluminum surface fabricated via pyrophosphoric acid anodizing

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-12-01

    A superhydrophilic aluminum surface covered by numerous alumina nanofibers was fabricated via pyrophosphoric acid anodizing. High-density anodic alumina nanofibers grow on the bottom of a honeycomb oxide via anodizing in concentrated pyrophosphoric acid. The water contact angle on the nanofiber-covered aluminum surface decreased with time after a 4 μL droplet was placed on the surface, and a superhydrophilic behavior with a contact angle measuring 2.2° was observed within 2 s; this contact angle is considerably lower than those observed for electropolished and porous alumina-covered aluminum surfaces. There was no dependence of the superhydrophilicity on the density of alumina nanofibers fabricated via different constant voltage anodizing conditions. The superhydrophilic property of the surface covered by anodic alumina nanofibers was maintained during an exposure test for 359 h. The quick-drying and snow-sliding behaviors of the superhydrophilic aluminum covered with anodic alumina nanofibers were demonstrated.

  18. Experimental study on the warm forming and quenching behavior for hot stamping of high-strength aluminum alloys

    Science.gov (United States)

    Degner, J.; Horn, A.; Merklein, M.

    2017-09-01

    Within the last decades, stringent regulations on fuel consumption, CO2 emissions and product recyclability forced the automotive sector to implement new strategies within the field of car body manufacturing. Due to their low density and good corrosion resistance, aluminum became one of the most relevant lightweight materials. Recently, especially high- strength aluminum alloys for structural components gained importance. Since the low formability of these alloys limits their application, there is a need for novel process strategies in order to enhance the forming behavior. One promising approach is the hot stamping of aluminum alloys. The combination of quenching and forming in one step after solution heat treatment leads to a significant improvement of the formability. Furthermore, higher manufacturing accuracy can be achieved due to reduced spring back. Within this contribution, the influence of forming temperature on the subsequent material behavior and the heat transfer during quenching will be analyzed. Therefore, the mechanical and thermal material characteristics such as flow behavior and heat transfer coefficient during hot stamping are investigated.

  19. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    Science.gov (United States)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  20. Analysis of Material Flow in Screw Extrusion of Aluminum

    International Nuclear Information System (INIS)

    Haugen, Bjoern; Oernskar, Magnus; Welo, Torgeir; Wideroee, Fredrik

    2010-01-01

    Screw extrusion of aluminum is a new process for production of aluminum profiles. The commercial potential could be large. Little experimental and numerical work has been done with respect to this process.The material flow of hot aluminum in a screw extruder has been analyzed using finite element formulations for the non-Newtonian Navier-Stokes equations. Aluminum material properties are modeled using the Zener-Holloman material model. Effects of stick-slip conditions are investigated with respect to pressure build up and mixing quality of the extrusion process.The numerical results are compared with physical experiments using an experimental screw extruder.

  1. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    Badr, Ibrahim H.A.; Meyerhoff, Mark E.

    2005-01-01

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  2. Reprocessing ability of high density fuels for research and test reactors

    International Nuclear Information System (INIS)

    Gay, A.; Belieres, M.

    1997-01-01

    The development of a new high density fuel is becoming a key issue for Research Reactors operators. Such a new fuel should be a Low Enrichment Uranium (LEU) fuel with a high density, to improve present in core performances. It must be compatible with the reprocessing in an industrial plant to provide a steady back-end solution. Within the framework of a work group CEA/CERCA/COGEMA on new fuel development for Research Reactors, COGEMA has performed an evaluation of the reprocessing ability of some fuel dispersants selected as good candidates. The results will allow US to classify these fuel dispersants from a reprocessing ability point of view. (author)

  3. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    International Nuclear Information System (INIS)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-01-01

    A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving

  4. Enrichment, development, and assessment of Indian basil oil based antiseptic cream formulation utilizing hydrophilic-lipophilic balance approach.

    Science.gov (United States)

    Yadav, Narayan Prasad; Meher, Jaya Gopal; Pandey, Neelam; Luqman, Suaib; Yadav, Kuldeep Singh; Chanda, Debabrata

    2013-01-01

    The present work was aimed to develop an antiseptic cream formulation of Indian basil oil utilizing hydrophilic-lipophilic balance approach. In order to determine the required-hydrophilic lipophilic balance (rHLB) of basil oil, emulsions of basil oil were prepared by phase inversion temperature technique using water, Tween 80, and Span 80. Formulated emulsions were assessed for creaming (BE9; 9.8, BE10; 10.2), droplet size (BE18; 3.22 ± 0.09 μ m), and turbidity (BE18; 86.12 ± 2.1%). To ensure correctness of the applied methodology, rHLB of light liquid paraffin was also determined. After rHLB determination, basil oil creams were prepared with two different combinations of surfactants, namely, GMS : Tween 80 (1 : 3.45) and SLS : GMS (1 : 3.68), and evaluated for in vitro antimicrobial activity, skin irritation test, viscosity and consistency. The rHLB of basil oil and light liquid paraffin were found to be 13.36 ± 0.36 and 11.5 ± 0.35, respectively. Viscosity, and consistency parameters of cream was found to be consistent over 90 days. Cream formulations showed net zone of growth inhibition in the range of 5.0-11.3 mm against bacteria and 4.3-7.6 mm against fungi. Primary irritation index was found to be between 0.38 and1.05. Conclusively stable, consistent, non-irritant, enriched antiseptic basil oil cream formulations were developed utilizing HLB approach.

  5. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Analysis on High Temperature Aging Property of Self-brazing Aluminum Honeycomb Core at Middle Temperature

    Directory of Open Access Journals (Sweden)

    ZHAO Huan

    2016-11-01

    Full Text Available Tension-shear test was carried out on middle temperature self-brazing aluminum honeycomb cores after high temperature aging by micro mechanical test system, and the microstructure and component of the joints were observed and analyzed using scanning electron microscopy and energy dispersive spectroscopy to study the relationship between brazing seam microstructure, component and high temperature aging properties. Results show that the tensile-shear strength of aluminum honeycomb core joints brazed by 1060 aluminum foil and aluminum composite brazing plate after high temperature aging(200℃/12h, 200℃/24h, 200℃/36h is similar to that of as-welded joints, and the weak part of the joint is the base metal which is near the brazing joint. The observation and analysis of the aluminum honeycomb core microstructure and component show that the component of Zn, Sn at brazing seam is not much affected and no compound phase formed after high temperature aging; therefore, the main reason for good high temperature aging performance of self-brazing aluminum honeycomb core is that no obvious change of brazing seam microstructure and component occurs.

  7. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  8. Irradiation testing of high-density uranium alloy dispersion fuels

    International Nuclear Information System (INIS)

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-01-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 'microplates'. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U10Mo-0.05Sn, U2Mo, or U 3 Si 2 . These experiments will be discharged at peak fuel burnups of approximately 40 and 80 at.% U 235 . Of particular interest are the extent of reaction of the fuel and matrix phases and the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions. (author)

  9. Characterization of highly enriched uranium in a nuclear forensic exercise

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Marcos R.L. do; Quinelato, Antonio L.; Silva, Nivaldo C. da, E-mail: pmarcos@cnen.gov.br [Laboratorio de Pocos de Caldas (LAPOC/CNEN-MG), Pocos de Caldas, MG (Brazil); Sarkis, Jorge E.S., E-mail: jesarkis@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    This paper presents the characterization of two metal samples of highly enriched uranium as a contribution of Pocos de Caldas Laboratory, LAPOC, a branch of Brazilian National Commission for Nuclear Energy, CNEN, to the Round Robin 3, R R3, coordinated by the Nuclear Forensics International Technical Working Group. A scenario was constructed in which two separate seizures of nuclear material occurred and forensics analysis was requested to help discern whether these incidents were related and whether these incidents exceeded country statutes. Laboratories were instructed to submit assessment reports in 24 hours, one week, and two month time frames. Besides preliminary evaluations for categorization of the material, our laboratory applied high resolution gamma spectrometry, optical emission spectrometry by inductively coupled plasma, and potentiometric titration for quantitative characterization of the samples. Concerning our technical reports answers for the three main forensics questions formulated by R R3, one of them was inconclusive, considering that LAPOC does not yet have all essential equipment for a fully satisfactory forensics nuclear analysis. (author)

  10. Characterization of highly enriched uranium in a nuclear forensic exercise

    International Nuclear Information System (INIS)

    Nascimento, Marcos R.L. do; Quinelato, Antonio L.; Silva, Nivaldo C. da; Sarkis, Jorge E.S.

    2011-01-01

    This paper presents the characterization of two metal samples of highly enriched uranium as a contribution of Pocos de Caldas Laboratory, LAPOC, a branch of Brazilian National Commission for Nuclear Energy, CNEN, to the Round Robin 3, R R3, coordinated by the Nuclear Forensics International Technical Working Group. A scenario was constructed in which two separate seizures of nuclear material occurred and forensics analysis was requested to help discern whether these incidents were related and whether these incidents exceeded country statutes. Laboratories were instructed to submit assessment reports in 24 hours, one week, and two month time frames. Besides preliminary evaluations for categorization of the material, our laboratory applied high resolution gamma spectrometry, optical emission spectrometry by inductively coupled plasma, and potentiometric titration for quantitative characterization of the samples. Concerning our technical reports answers for the three main forensics questions formulated by R R3, one of them was inconclusive, considering that LAPOC does not yet have all essential equipment for a fully satisfactory forensics nuclear analysis. (author)

  11. Iron-niobium-aluminum alloy having high-temperature corrosion resistance

    Science.gov (United States)

    Hsu, Huey S.

    1988-04-14

    An alloy for use in high temperature sulfur and oxygen containing environments, having aluminum for oxygen resistance, niobium for sulfur resistance and the balance iron, is discussed. 4 figs., 2 tabs.

  12. Low-enriched research reactor fuel: Post-Irradiation Examinations at SCK-CEN

    International Nuclear Information System (INIS)

    Van den Berghe, S.; Leenaers, A.

    2007-01-01

    Generally, research and test reactors are fuelled with fuel plates instead of pins. In most cases in the past, these plates consisted of high enriched (higher than 95 percent 235 U) UAl 3 powder mixed with a pure Al matrix (called the meat) in between two aluminium alloy plates (the cladding). These plates are then assembled in fuel elements of different designs to fit the needs of the various reactors. Since the 1970's, efforts have been going on to replace the high-enriched, low-density UAl 3 fuel with high-density, low enriched ( 235 U) replacements. This search is driven by the attempt to reduce the civil use of high-enriched materials because of proliferation risks and terrorist threats. American initiatives, such as the Global Threat Reduction Initiative and the Reduced Enrichment for Research and Test Reactors program have triggered the development of reliable low-enriched fuel types for these reactors, which can replace the high enriched ones without loss of performance. Most success has been obtained with U 3 Si 2 fuel, which is currently used in many research reactors in the world. However, efforts to search for a better replacement have continued and are currently directed towards the U-Mo alloy fuel (7-10 weight percent Mo)

  13. Improving the aluminum-air battery system for use in electrical vehicles

    Science.gov (United States)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  14. Status report on conversion of the Georgia Tech Research Reactor to low enrichment fuel

    International Nuclear Information System (INIS)

    Karam, R.A.; Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1995-01-01

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. The US Department of Energy is funding a program to compare reactor performance with high and low enrichment fuels. The goals of the program are: (1) to amend the SAR and the technical specifications of the GTRR so that LEU U 3 Si 2 -Al dispersion fuel plates can replace the current HEU U-Al alloy fuel, and (2) to optimize the LEU core such that maximum value neutron beams can be extracted for possible neutron capture therapy application. This paper presents a status report on the LEU conversion effort. (author)

  15. Status report on conversion of the Georgia Tech Research Reactor to low enrichment fuel

    International Nuclear Information System (INIS)

    Karam, R.A.; Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1991-01-01

    The 5 MW Georgia Tech Research Reactor (GTRR) is a heterogeneous, heavy water moderated and cooled reactor, fueled with highly-enriched uranium aluminum alloy fuel plates. The GTRR is required to convert to low enrichment (LEU) fuel in accordance with USNRC policy. The US Department of Energy is funding a program to compare reactor performance with high and low enrichment fuels. The goals of the program are: (1) to amend the SAR and the Technical Specifications of the GTRR so that LEU U 3 Si 2 -Al dispersion fuel plates can replace the current HEU U-Al alloy fuel, and (2) to optimize the LEU core such that maximum value neutron beams can be extracted for possible neutron capture therapy application. This paper presents a status report on the LEU conversion effort

  16. Development of high uranium-density fuels for use in research reactors

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro; Akabori, Mitsuo; Itoh, Akinori

    1996-01-01

    The uranium silicide U 3 Si 2 possesses uranium density 11.3 gU/cm 3 with a congruent melting point of 1665degC, and is now successfully in use as a research reactor fuel. Another uranium silicide U 3 Si and U 6 Me-type uranium alloys (Me=Fe,Mn,Ni) have been chosen as new fuel materials because of the higher uranium densities 14.9 and 17.0 gU/cm 3 , respectively. Experiments were carried out to fabricate miniature aluminum-dispersion plate-type and aluminum-clad disk-type fuels by using the conventional picture-frame method and a hot-pressing technique, respectively. These included the above-mentioned new fuel materials as well as U 3 Si 2 . Totally 14 miniplates with uranium densities from 4.0 to 6.3 gU/cm 3 of fuel meat were prepared together with 28 disk-type fuel containing structurally-modified U 3 Si, and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Some results of postirradiation examinations are presented. (author)

  17. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  18. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  19. Study of Plasma Electrolytic Oxidation Coatings on Aluminum Composites

    Directory of Open Access Journals (Sweden)

    Leonid Agureev

    2018-06-01

    Full Text Available Coatings, with a thickness of up to 75 µm, were formed by plasma electrolytic oxidation (PEO under the alternating current electrical mode in a silicate-alkaline electrolyte on aluminum composites without additives and alloyed with copper (1–4.5%. The coatings’ structure was analyzed by scanning electron microscopy, X-ray microanalysis, X-ray photoelectron spectroscopy, nuclear backscattering spectrometry, and XRD analysis. The coatings formed for 60 min were characterized by excessive aluminum content and the presence of low-temperature modifications of alumina γ-Al2O3 and η-Al2O3. The coatings formed for 180 min additionally contained high-temperature corundum α-Al2O3, and aluminum inclusions were absent. The electrochemical behavior of coated composites and uncoated ones in 3% NaCl was studied. Alloyage of aluminum composites with copper increased the corrosion current density. Plasma electrolytic oxidation reduced it several times.

  20. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo-Hwan [Samsung Advanced Institute of Technology, Suwon (Korea, Republic of); Lee, Kun-Hong [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2004-08-15

    Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C{sub 2}H{sub 2} and H{sub 2} at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/mum and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

  1. Semi-solid metal forming of beryllium-reinforced aluminum alloys

    International Nuclear Information System (INIS)

    Haws, W.; Lane, L.; Marder, J.; Nicholas, N.

    1995-01-01

    A Powder Metallurgy (PM) based, Semi-Solid Metal (SSM) forming process has been developed to produce low cost near-net shapes of beryllium-reinforced aluminum alloys. Beryllium acts as a reinforcing additive to the aluminum, in which there is nearly no mutual solid solubility. The modulus of elasticity of the alloy dramatically increases, while the density and thermal expansion coefficient decrease with increasing beryllium content. The material is suitable for complex thermal management and vibration resistance applications, as well as for airborne components which are density and stiffness sensitive. The forming process involves heating a blank of the material to a temperature at which the aluminum is semi-solid and the beryllium is solid. The semi-solid blank is then injected without turbulence into a permanent mold. High quality, near net shape components can be produced which are functionally superior to those produced by other permanent mold processes. Dimensional accuracy is equivalent to or better than that obtained in high pressure die casting. Cost effectiveness is the primary advantage of this technique compared to other forming processes. The advantages and limitations of the process are described. Physical and mechanical property data are presented, as well as directions for future investigation

  2. Advanced Neutron Source enrichment study

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.R.

    1996-01-01

    A study has been performed of the impact on performance of using low-enriched uranium (20% 235 U) or medium-enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which was initially designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology

  3. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Brandon C., E-mail: terry13@purdue.edu [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Sippel, Travis R. [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011 (United States); Pfeil, Mark A. [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Gunduz, I.Emre; Son, Steven F. [School of Mechanical Engineering, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States)

    2016-11-05

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I{sub SP}). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I{sub SP} by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  4. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    International Nuclear Information System (INIS)

    Terry, Brandon C.; Sippel, Travis R.; Pfeil, Mark A.; Gunduz, I.Emre; Son, Steven F.

    2016-01-01

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I_S_P). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I_S_P by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  5. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  6. Development of technology of high density LEU dispersion fuel fabrication

    International Nuclear Information System (INIS)

    Wiencek, T.; Totev, T.

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  7. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  8. Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors

    Science.gov (United States)

    Xu, Yongjie; Li, Xinyu; Hu, Guanghui; Wu, Ting; Luo, Yi; Sun, Lang; Tang, Tao; Wen, Jianfeng; Wang, Heng; Li, Ming

    2017-11-01

    Nitrogen-enriched graphene was fabricated via a facile strategy. Graphene oxide (GO) nanosheets and graphene oxide quantum dots (GQDs) were used as a structure-directing agent and in situ activating agent, respectively, after photoreduction under NH3 atmosphere. The combination of photoreduction and NH3 not only reduced GO and GQD composites (GO/GQDs) within a shorter duration but also doped a high level of nitrogen on the composites (NrGO/GQDs). The nitrogen content of NrGO/GQDs reached as high as 18.86 at% within 5 min of irradiation. Benefiting from the nitrogen-enriched GO/GQDs hybrid structure, GQDs effectively prevent the agglomeration of GO sheets and increased the numbers of ion channels in the material. Meanwhile, the high levels of nitrogen improved electrical conductivity and strengthened the binding energy between GQD and GO sheets. Compared with reduced GO and low nitrogen-doped reduced GO, NrGO/GQD electrodes exhibited better electrochemical characteristics with a high specific capacitance of 344 F g-1 at a current density of 0.25 A g-1. Moreover, the NrGO/GQD electrodes exhibited 82% capacitance retention after 3000 cycles at a current density of 0.8 A g-1 in 6 M KOH electrolyte. More importantly, the NrGO/GQD electrodes deliver a high energy density of 43 Wh kg-1 at a power density of 417 W kg-1 in 1 M Li2SO4 electrolyte. The nitrogen-doped graphene and corresponding supercapacitor presented in this study are novel materials with potential applications in advanced energy storage systems.

  9. On-Line Enrichment Monitor for UF{sub 6} Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Ianakiev, K. D.; Boyer, B.; Favalli, A.; Goda, J. M.; Hill, T.; Keller, C.; Lombardi, M.; Paffett, M.; MacArthur, D. W.; McCluskey, C.; Moss, C. E.; Parker, R.; Smith, M. K.; Swinhoe, M. T. [Los Alamos National Laboratory, Los Alamos (United States)

    2012-06-15

    This paper is a continuation of the Advanced Enrichment Monitoring Technology for UF{sub 6} Gas Centrifuge Enrichment Plant (GCEP) work, presented in the 2010 IAEA Safeguards Symposium. Here we will present the system architecture for a planned side-by-side field trial test of passive (186-keV line spectroscopy and pressure-based correction for UF{sub 6} gas density) and active (186-keV line spectroscopy and transmission measurement based correction for UF{sub 6} gas density) enrichment monitoring systems in URENCO's enrichment plant in Capenhurst. Because the pressure and transmission measurements of UF{sub 6} are complementary, additional information on the importance of the presence of light gases and the UF{sub 6} gas temperature can be obtained by cross-correlation between simultaneous measurements of transmission, pressure and 186-keV intensity. We will discuss the calibration issues and performance in the context of accurate, on-line enrichment measurement. It is hoped that a simple and accurate on-line enrichment monitor can be built using the UF{sub 6} gas pressure provided by the Operator, based on online mass spectrometer calibration, assuming a negligible (a small fraction of percent) contribution of wall deposits. Unaccounted-for wall deposits present at the initial calibration will lead to unwanted sensitivity to changes in theUF{sub 6} gas pressure and thus to error in the enrichment results. Because the accumulated deposits in the cascade header pipe have been identified as an issue for Go/No Go measurements with the Cascade Header Enrichment Monitor (CHEM) and Continuous Enrichment Monitor (CEMO), it is important to explore their effect. Therefore we present the expected uncertainty on enrichment measurements obtained by propagating the errors introduced by deposits, gas density, etc. and will discuss the options for a deposit correction during initial calibration of an On-Line Enrichment Monitor (OLEM).

  10. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures; Desenvolvimento de um combustivel de alta densidade a base das ligas uranio-molibdenio com alta compatibilidade em altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Fabio Branco Vaz de

    2008-07-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature

  11. Study of aluminum emission spectra in astrophysical plasmas

    International Nuclear Information System (INIS)

    Jin Zhan; Zhang Jie

    2001-01-01

    High temperature, high density and strong magnetic fields in plasmas produced by ultra-high intensity and ultrashort laser pulses are similar to the main characteristics of astrophysical plasmas. This makes it possible to simulate come astrophysical processes at laboratories. The author presents the theoretic simulation of aluminum emission spectra in astrophysical plasmas. It can be concluded that using laser produced plasmas, the authors can obtain rich information on astrophysical spectroscopy, which is unobservable for astronomer

  12. Investigation of Energy Absorption in Aluminum Foam Sandwich Panels By Drop Hammer Test: Experimental Results

    Directory of Open Access Journals (Sweden)

    Mohammad Nouri Damghani

    2016-05-01

    Full Text Available The sandwich panel structures with aluminum foam core and metal surfaces have light weight with high performance in dispersing energy. This has led to their widespread use in the absorption of energy. The cell structure of foam core is subjected to plastic deformation in the constant tension level that absorbs a lot of kinetic energy before destruction of the structure. In this research, by making samples of aluminum foam core sandwich panels with aluminum surfaces, experimental tests of low velocity impact by a drop machine are performed for different velocities and weights of projectile on samples of sandwich panels with aluminum foam core with relative density of 18%, 23%, and 27%. The output of device is acceleration‐time diagram which is shown by an accelerometer located on the projectile. From the experimental tests, the effect of weight, velocity and energy of the projectile and density of the foam on the global deformation, and energy decrease rate of projectile have been studied. The results of the experimental testes show that by increasing the density of aluminum foam, the overall impression is reduced and the slop of energy loss of projectile increases. Also by increasing the velocity of the projectile, the energy loss increases.

  13. Reflected rarefactions, double regular reflection, and mach waves in aluminum and beryllium

    International Nuclear Information System (INIS)

    Neal, T.

    1975-01-01

    A number of shock techniques which can be used to obtain high-pressure equation-of-state information between the principal Hugoniot and the principal adiabat are illustrated. A rarefaction wave in aluminum shocked to 27.7 GPa [277 kbar] is examined with radiographic techniques and the bulk sound speed is determined. The two stage compression which occurs in a double shock may be attained by colliding two shocks and observing regular reflection. A radiographic method which uses this phenomenon to measure a three-stage compression of aluminum to a density of 4.7 Mg/m 3 and beryllium to a density of 3.1 Mg/m 3 is presented. The results of a Mach reflection experiment in aluminum are found to disagree substantially with the simple three-shock model. A modified model, consistent with observations, is discussed. In all cases the Gruneisen parameter is determined. (U.S.)

  14. Development of polyisocyanurate pour foam formulation for space shuttle external tank thermal protection system

    Science.gov (United States)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1988-01-01

    Four commercially available polyisocyanurate polyurethane spray-foam insulation formulations are used to coat the external tank of the space shuttle. There are several problems associated with these formulations. For example, some do not perform well as pourable closeout/repair systems. Some do not perform well at cryogenic temperatures (poor adhesion to aluminum at liquid nitrogen temperatures). Their thermal stability at elevated temperatures is not adequate. A major defect in all the systems is the lack of detailed chemical information. The formulations are simply supplied to NASA and Martin Marietta, the primary contractor, as components; Part A (isocyanate) and Part B (poly(s) and additives). Because of the lack of chemical information the performance behavior data for the current system, NASA sought the development of a non-proprietary room temperature curable foam insulation. Requirements for the developed system were that it should exhibit equal or better thermal stability both at elevated and cryogenic temperatures with better adhesion to aluminum as compared to the current system. Several formulations were developed that met these requirements, i.e., thermal stability, good pourability, and good bonding to aluminum.

  15. Comparison of four methods for determining aluminum in highly radioactive solutions

    International Nuclear Information System (INIS)

    Hanson, T.J.

    1976-06-01

    Four methods for the accurate determination of aluminum in highly alkaline nuclear waste solutions were developed and the results were compared to determine the strengths and weaknesses of each. The solutions of interest contain aluminum in concentrations of 0.5 to 3.5 M and the hydroxide (OH - ) concentrations were greater than 1.0 M. The normal atomic absorption determination was highly inaccurate for these samples so citrate was used as a complexant to improve the results. A fluoride titration was carried out in an ethanol-water matrix using a fluoride ion-selective electrode. A thermometric titration proved successful in determining both the OH - and aluminum concentrations of the samples. Finally, a titrimetric method using a pH electrode to determine OH - d aluminum was checked and compared with the other methods. Samples were analyzed using all four methods and the agreement of the results was very good. For all four methods the accuracy was around 100 percent and the precision varied from approximately +-2 percent for the fluoride electrode determination to approximately +-10 percent for the atomic absorption determination. On the basis of the work performed, conclusions were drawn about the strengths and weaknesses of each method and whether or not the method was suitable for routine use in analytical laboratories

  16. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    Science.gov (United States)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  17. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, M L; Perkins, W C; Thompson, M C; Burney, G A; Russell, E R; Holcomb, H P; Landon, L F

    1979-04-01

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.

  18. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hyder, M.L.; Perkins, W.C.; Thompson, M.C.; Burney, G.A.; Russell, E.R.; Holcomb, H.P.; Landon, L.F.

    1979-04-01

    Uranium fuels containing 235 U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction with dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of 238 Pu is high enough to make its recovery desirable. Most of the 238 Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, 239 Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse

  19. Reduced enrichment fuel and its reactivity effects in the University Training Reactor Moata

    International Nuclear Information System (INIS)

    Wilson, D.J.

    1983-08-01

    Concern for nuclear proliferation is likely to preclude future supply of highly enriched uranium fuel for research reactors such as the University Training Reactor Moata. This study calculates the fuel densities necessary to maintain the reactivity per plate of the present high enrichment (90 per cent 235 U) fuel for a range of lower enrichments assuming that no geometry changes are allowed. The maximum uranium density for commercially available aluminium-type research reactor fuels is generally considered to be about 1.7 g cm -3 . With this density limitation, the minimum enrichment to maintain present reactivity per plate is about 35 per cent 235 U. For low enrichment (max. 20 per cent 235 U) fuel, the required U density is about 2.9 g cm -3 , which is beyond the expected range for UAl/sub x/-Al but within that projected for the longer term development and full qualification for U 3 O 8 -Al. Medium enrichment (nominally 45 per cent 235 U) Al/sub x/-Al would be entirely satisfactory as an immediate replacement fuel, requiring no modifications to the reactor and operating procedures, and minimal reappraisal of safety issues. Included in this study are calculations of the fuel coefficients at various enrichments, the effect of replacing standard fuel plates or complete elements with 45 per cent enriched fuel, and the reactivity to be gained by replacing 12-plate with 13-plate elements

  20. Thermal-mechanical simulation of high-current pulsed electron beam surface modification process of pure aluminum

    International Nuclear Information System (INIS)

    Zou Jianxin; Qin Ying; Wu Aimin; Hao Shengzhi; Wang Xiaogang; Dong Chuang

    2004-01-01

    A mathematical physics model is established to describe the surface modification process of High Current Pulsed Electron Beams (HCPEB) of pure aluminum alloy. Computer simulation is used to reveal the phenomena of fast heating and cooling, melting, solidification, evaporation, and thermal stress wave associated with the HCPEB bombardment. The calculated melting depth is about 1-10 μm, which is close to the experimental results. The evaporated layer is at nanometer level, which can be omitted in the calculation of temperature field. The thermal stress wave, though as weak as about 0.1 MPa in peak amplitude (proportional to pulsed energy density), has strong impacts on material's structure and properties. (authors)

  1. FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6

    International Nuclear Information System (INIS)

    Pike, J.; Gillam, J.

    2008-01-01

    Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved

  2. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  3. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    Science.gov (United States)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  4. Benchmark critical experiments on low-enriched uranium oxide systems with H/U = 0.77

    International Nuclear Information System (INIS)

    Tuck, G.; Oh, I.

    1979-08-01

    Ten benchmark experiments were performed at the Critical Mass Laboratory at Rockwell International's Rocky Flats Plant, Golden, Colorado, for the US Nuclear Regulatory Commission. They provide accurate criticality data for low-enriched damp uranium oxide (U 3 O 8 ) systems. The core studied consisted of 152 mm cubical aluminum cans containing an average of 15,129 g of low-enriched (4.46% 235 U) uranium oxide compacted to a density of 4.68 g/cm 3 and with an H/U atomic ratio of 0.77. One hundred twenty five (125) of these cans were arranged in an approx. 770 mm cubical array. Since the oxide alone cannot be made critical in an array of this size, an enriched (approx. 93% 235 U) metal or solution driver was used to achieve criticality. Measurements are reported for systems having the least practical reflection and for systems reflected by approx. 254-mm-thick concrete or plastic. Under the three reflection conditions, the mass of the uranium metal driver ranged from 29.87 kg to 33.54 kg for an oxide core of 1864.6 kg. For an oxide core of 1824.9 kg, the weight of the high concentration (351.2 kg U/m 3 ) solution driver varied from 14.07 kg to 16.14 kg, and the weight of the low concentration (86.4 kg U/m 3 ) solution driver from 12.4 kg to 14.0 kg

  5. High strength corrosion-resistant zirconium aluminum alloys

    International Nuclear Information System (INIS)

    Schulson, E.M.; Cameron, D.J.

    1976-01-01

    A zirconium-aluminum alloy is described possessing superior corrosion resistance and mechanical properties. This alloy, preferably 7.5-9.5 wt% aluminum, is cast, worked in the Zr(Al)-Zr 2 Al region, and annealed to a substantially continuous matrix of Zr 3 Al. (E.C.B.)

  6. Analysis of enriched HF-UF6 systems. Influence by impurity and density upon the value of the multiplication

    International Nuclear Information System (INIS)

    Acosta, N.B.; Canavese, S.I.; Lopez, M.L.

    1990-01-01

    The purpose of this paper is analyzing the influence of impurity in hydrogen fluoride and in density variation (UF 6 -HF) upon the value of the effective multiplication factor (Kef) in enriched uranium hexafluoride and hydrogen fluoride systems. The identification of the values of such multiplication factors were performed by means of the Monte-Carlo (MONK V.II) code, which is specific for criticality problems. Diverse systems were considered by keeping the same geometry and varying the density value and the impurity percentages, while the assumptions made for each model were described on a case-by-case basis. Also, systems with and without water infinite reflector were evaluated. Finally, an analysis is made of the influence of each parameter upon the effective multiplication factor, in the postulated enriched UF 6 -HF systems. (Author) [es

  7. Development of high uranium-density fuels for use in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ugajin, Mitsuhiro; Akabori, Mitsuo; Itoh, Akinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    The uranium silicide U{sub 3}Si{sub 2} possesses uranium density 11.3 gU/cm{sup 3} with a congruent melting point of 1665degC, and is now successfully in use as a research reactor fuel. Another uranium silicide U{sub 3}Si and U{sub 6}Me-type uranium alloys (Me=Fe,Mn,Ni) have been chosen as new fuel materials because of the higher uranium densities 14.9 and 17.0 gU/cm{sup 3}, respectively. Experiments were carried out to fabricate miniature aluminum-dispersion plate-type and aluminum-clad disk-type fuels by using the conventional picture-frame method and a hot-pressing technique, respectively. These included the above-mentioned new fuel materials as well as U{sub 3}Si{sub 2}. Totally 14 miniplates with uranium densities from 4.0 to 6.3 gU/cm{sup 3} of fuel meat were prepared together with 28 disk-type fuel containing structurally-modified U{sub 3}Si, and subjected to the neutron irradiation in JMTR (Japan Materials Testing Reactor). Some results of postirradiation examinations are presented. (author)

  8. Qualification status of LEU [low enriched uranium] fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.

    1987-01-01

    Sufficient data has been obtained from tests of high-density, low-enriched fuels for research and test reactors to declare them qualified for use. These fuels include UZrH x (TRIGA fuel) and UO 2 (SPERT fuel) for rod-type reactors and UAl x , U 3 O 8 , U 3 Si 2 , and U 3 Si dispersed in aluminium for plate-type reactors. Except for U 3 Si, the allowable fission density for LEU applications is limited only by the available 235 U. Several reactors are now using these fuels, and additional conversions are in progress. The basic performance characteristics and limits, if any, of the qualified low-enriched (and medium-enriched) fuels are discussed. Continuing and planned work to qualify additional fuels is also discussed. (Author)

  9. Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input

    Directory of Open Access Journals (Sweden)

    André L. M. Oliveira

    2017-09-01

    Full Text Available Although Azospirillum strains used in commercial inoculant formulations presents diazotrophic activity, it has been reported that their ability to produce phytohormones plays a pivotal role in plant growth-promotion, leading to a general recommendation of its use in association with regular N-fertilizer doses. In addition, a high variability in the effectiveness of Azospirillum inoculants is still reported under field conditions, contributing to the adoption of the inoculation technology as an additional management practice rather than its use as an alternative practice to the use of chemical inputs in agriculture. To investigate whether the content of stress-resistance biopolymers would improve the viability and performance of Azospirillum inoculants when used as substitute of N-fertilizers, biomass of A. brasilense strain Ab-V5 enriched in exopolysaccharides (EPS and polyhydroxybutirate (PHB was produced using a new culture medium developed by factorial mixture design, and the effectiveness of resulting inoculants was evaluated under field conditions. The culture medium formulation extended the log phase of A. brasilense cultures, which presented higher cell counts and increased EPS and PHB contents than observed in the cultures grown in the OAB medium used as control. An inoculation trial with maize conducted under greenhouse conditions and using the biopolymers-enriched Ab-V5 cells demonstrated the importance of EPS and PHB to the long term bacterial viability in soil and to the effectiveness of inoculation. The effectiveness of liquid and peat inoculants prepared with Ab-V5 cells enriched with EPS and PHB was also evaluated under field conditions, using maize as target crop along different seasons, with the inoculants applied directly over seeds or at topdressing under limiting levels of N-fertilization. No additive effect on yield resulted from inoculation under high N fertilizer input, while inoculated plants grown under 80% reduction in

  10. Maize Inoculation with Azospirillum brasilense Ab-V5 Cells Enriched with Exopolysaccharides and Polyhydroxybutyrate Results in High Productivity under Low N Fertilizer Input

    Science.gov (United States)

    Oliveira, André L. M.; Santos, Odair J. A. P.; Marcelino, Paulo R. F.; Milani, Karina M. L.; Zuluaga, Mónica Y. A.; Zucareli, Claudemir; Gonçalves, Leandro S. A.

    2017-01-01

    Although Azospirillum strains used in commercial inoculant formulations presents diazotrophic activity, it has been reported that their ability to produce phytohormones plays a pivotal role in plant growth-promotion, leading to a general recommendation of its use in association with regular N-fertilizer doses. In addition, a high variability in the effectiveness of Azospirillum inoculants is still reported under field conditions, contributing to the adoption of the inoculation technology as an additional management practice rather than its use as an alternative practice to the use of chemical inputs in agriculture. To investigate whether the content of stress-resistance biopolymers would improve the viability and performance of Azospirillum inoculants when used as substitute of N-fertilizers, biomass of A. brasilense strain Ab-V5 enriched in exopolysaccharides (EPS) and polyhydroxybutirate (PHB) was produced using a new culture medium developed by factorial mixture design, and the effectiveness of resulting inoculants was evaluated under field conditions. The culture medium formulation extended the log phase of A. brasilense cultures, which presented higher cell counts and increased EPS and PHB contents than observed in the cultures grown in the OAB medium used as control. An inoculation trial with maize conducted under greenhouse conditions and using the biopolymers-enriched Ab-V5 cells demonstrated the importance of EPS and PHB to the long term bacterial viability in soil and to the effectiveness of inoculation. The effectiveness of liquid and peat inoculants prepared with Ab-V5 cells enriched with EPS and PHB was also evaluated under field conditions, using maize as target crop along different seasons, with the inoculants applied directly over seeds or at topdressing under limiting levels of N-fertilization. No additive effect on yield resulted from inoculation under high N fertilizer input, while inoculated plants grown under 80% reduction in N fertilizer

  11. Active interrogation of highly enriched uranium

    Science.gov (United States)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  12. Resolving electrical conductivities from collisionally damped plasmons in isochorically heated warm dense aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fletcher, L. B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Chung, H. -K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gamboa, E. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lee, H. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Omarbakiyeva, Y. [International IT Univ., Almaty (Kazakhstan); Univ. Rostock (Germany); Reinholz, H. [Univ. Rostock (Germany); ; Univ. of Western Australia, Crawley, WA (Australia); Ropke, G. [Univ. Rostock (Germany); Rosmej, S. [Univ. Rostock (Germany); Zastrau, U. [European XFEL, Hamburg (Germany); Glenzer, S. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-03-29

    We measure the highly-resolved inelastic x-ray scattering spectrum of isochorically ultrafast heated aluminum. In the x-ray forward scattering spectra the electron temperature could be measured from the down- and upshifted plasmon, where the electron density of ne = 1:8 1023 cm3 is known a priori. We have studied the plasmon damping by applying electron-particle collision models beyond the Born approximation determining the electrical conductivity of warm dense aluminum.

  13. Development of very high-density low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Snelgrove, J.L.; Hofman, G.L.; Trybus, C.L.; Wiencek, T.C.

    1997-02-01

    The RERTR program has recently begun an aggressive effort to develop dispersion fuels for research and test reactors with uranium densities of 8 to 9 g U/cm 3 , based on the use of γ-stabilized uranium alloys. Fabrication development teams and facilities are being put into place and preparations for the first irradiation test are in progress. The first screening irradiations are expected to begin in late April 1997 and first results should be available by end of 1997. Discussions with potential international partners in fabrication development and irradiation testing have begun

  14. Characterization of 2024-T3: An aerospace aluminum alloy

    International Nuclear Information System (INIS)

    Huda, Zainul; Taib, Nur Iskandar; Zaharinie, Tuan

    2009-01-01

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al 2 CuMg (S-phase) and the CuAl 2 (θ') phases indicated precipitation strengthening in the aluminum alloy

  15. Future materials requirements for the high-energy-intensity production of aluminum

    Science.gov (United States)

    Welch, B. J.; Hyland, M. M.; James, B. J.

    2001-02-01

    Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.

  16. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  17. Effect of high organic enrichment of benthic polychaete population in an estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Ingole, B.S.; Parulekar, A.H.

    The benthic polychaete fauna of an estuarine region receiving domestic sewage and wastes from a nearby fish landing jetty was compared to that of a site having normal organic enrichment. The population density, biomass and species diversity were...

  18. Extension of the Kohn-Sham formulation of density functional theory to finite temperature

    Science.gov (United States)

    Gonis, A.; Däne, M.

    2018-05-01

    Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. We show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T > 0. Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T = 0, we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T > 0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T = 0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T = 0 . The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the

  19. A direct comparison of physical block occupancy versus timed block occupancy in train timetabling formulations

    DEFF Research Database (Denmark)

    Harrod, Steven; Schlechte, Thomas

    2013-01-01

    Two fundamental mathematical formulations for railway timetabling are compared on a common set of sample problems, representing both multiple track high density services in Europe and single track bidirectional operations in North America. One formulation, ACP, enforces against conflicts by const......Two fundamental mathematical formulations for railway timetabling are compared on a common set of sample problems, representing both multiple track high density services in Europe and single track bidirectional operations in North America. One formulation, ACP, enforces against conflicts...

  20. A liquid aluminum corrosion resistance surface on steel substrate

    International Nuclear Information System (INIS)

    Wang Deqing; Shi Ziyuan; Zou Longjiang

    2003-01-01

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al 2 O 3 , followed by a thinner layer of FeAl 3 , and then a much thicker one of Fe 2 Al 5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  1. U.S. Non-proliferation policy and programs regarding use of high-enriched uranium in research reactors

    International Nuclear Information System (INIS)

    Lewis, R.A.

    1993-01-01

    Uranium enriched to 90-93%, supplied by the U.S., is now used in 141 research and test reactors in 35 countries around the world with a cumulative power of 1714 mw. Since of the order of 3 kg of 235 U is involved annually in fuel fabrication, fresh fuel transport and storage, reactor operation, and spent fuel cooling and return per megawatt of research reactor power, it is estimated that more than 5000 kg of very high-enriched uranium is handled each year to operate these reactors. Recent U.S. assessments have led to the tentative conclusion that in only approximately 11 of these reactors, generally those of highest power or power density, is the use of 90-93% enriched uranium currently a technical necessity. Universal use of the best state-of-the-art fuel technology would permit an estimated 90 of these reactors to use 20% enriched fuel, and estimated 40 others to use 45% enriched fuel, without significant performance degradation. If advanced research reactor fuel development programs currently under way in the U.S. and elsewhere are successful, it may, in fact, be possible to operate virtually all of these reactors on less than 20% enriched uranium in the longer term. The physical and economic practicality of these developmental fuels must, of course, await future assessments

  2. Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics

    Science.gov (United States)

    Chao, Tsu-An

    A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.

  3. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with General Atomic's standard commercial warranty

  4. TRIGA low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.

    1993-01-01

    Sixty TRIGA reactors have been sold and the earliest of these are now passing twenty years of operation. All of these reactors use the uranium-zirconium hydride fuel (UZrH) which provides certain unique advantages arising out of its large prompt negative temperature coefficient, very low fission product release, and high temperature capability. Eleven of these Sixty reactors are conversions from plate fuel to TRIGA fuel which were made as a result of these advantages. With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on nonproliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U.S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of 1978, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  5. Investigation of Thermal Properties of High-Density Polyethylene/Aluminum Nanocomposites by Photothermal Infrared Radiometry

    Science.gov (United States)

    Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.

    2017-12-01

    In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.

  6. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces

    International Nuclear Information System (INIS)

    Hyldgaard, P

    2012-01-01

    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the

  7. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    Science.gov (United States)

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  8. Characterization of 2024-T3: An aerospace aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huda, Zainul [Department of Mechanical Engineering, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: drzainulhuda@hotmail.com; Taib, Nur Iskandar [Department of Geology, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: ntaib@alumni.indiana.edu; Zaharinie, Tuan [Department of Mechanical Engineering, University of Malaya, Kuala Lumpur (Malaysia)], E-mail: rinie_3483@hotmail.com

    2009-02-15

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al{sub 2}CuMg (S-phase) and the CuAl{sub 2} ({theta}') phases indicated precipitation strengthening in the aluminum alloy.

  9. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Energy Technology Data Exchange (ETDEWEB)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  10. Highly Selective Enrichment of Glycopeptides Based on Zwitterionically Functionalized Soluble Nanopolymers

    Science.gov (United States)

    Cao, Weiqian; Huang, Jiangming; Jiang, Biyun; Gao, Xing; Yang, Pengyuan

    2016-07-01

    Efficient glycopeptides enrichment prior to mass spectrometry analysis is essential for glycoproteome study. ZIC-HILIC (zwitterionic hydrophilic interaction liquid chromatography) based glycopeptides enrichment approaches have been attracting more attention for several benefits like easy operating, high enrichment specificity and intact glycopeptide retained. In this study, Poly (amidoamine) dendrimer (PAMAM) was adopted for the synthesis of zwitterionically functionalized (ZICF) materials for glycopeptide enrichment. The multiple branched structure and good solubility of ZICF-PAMAM enables a sufficient interaction with glycopeptides. The ZICF-PAMAM combined with the FASP-mode enrichment strategy exhibits more superior performance compared with the existing methods. It has the minimum detectable concentration of femtomolar level and high recovery rate of over 90.01%, and can efficiently enrich glycopeptides from complex biological samples even for merely 0.1 μL human serum. The remarkable glycopeptides enrichment capacity of ZICF-PAMAM highlights the potential application in in-depth glycoproteome research, which may open up new opportunities for the development of glycoproteomics.

  11. Experiments for evaluation of corrosion to develop storage criteria for interim dry storage of aluminum-alloy clad spent nuclear fuel

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.; Murphy, T.H.

    1994-01-01

    The technical bases for specification of limits to environmental exposure conditions to avoid excessive degradation are being developed for storage criteria for dry storage of highly-enriched, aluminum-clad spent nuclear fuels owned by the US Department of Energy. Corrosion of the aluminum cladding is a limiting degradation mechanism (occurs at lowest temperature) for aluminum exposed to an environment containing water vapor. Attendant radiation fields of the fuels can lead to production of nitric acid in the presence of air and water vapor and would exacerbate the corrosion of aluminum by lowering the pH of the water solution. Laboratory-scale specimens are being exposed to various conditions inside an autoclave facility to measure the corrosion of the fuel matrix and cladding materials through weight change measurements and metallurgical analysis. In addition, electrochemical corrosion tests are being performed to supplement the autoclave testing by measuring differences in the general corrosion and pitting corrosion behavior of the aluminum cladding alloys and the aluminum-uranium fuel materials in water solutions

  12. Grazing damage to plants and gastropod and grasshopper densities in a CO 2-enrichment experiment on calcareous grassland

    Science.gov (United States)

    Ledergerber, Stephan; Thommen, G. Heinrich; Baur, Bruno

    Plant-herbivore interactions may change as atmospheric CO 2 concentrations continue to rise. We examined the effects of elevated atmospheric CO 2 and CO 2-exposure chambers on the grazing damage to plants, and on the abundances of potential herbivores (terrestrial gastropods and grasshoppers) in a calcareous grassland in the Jura mountains of Switzerland (village of Nenzlingen). Individuals of most plant species examined showed slight grazing damage. However, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in the extent of grazing damage. Similarly, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in either gastropod or grasshopper density. Experimental plots with and without chambers did not differ in the number of gastropods. However, the densities of gastropods and grasshoppers and extent of grazing damage to plants were generally lower in the experimental area than in the grassland outside the experimental field.

  13. Analysis of Mo99 production irradiating 20% U targets

    International Nuclear Information System (INIS)

    Calabrese, C. Ruben; Grant, Carlos R.; Marajofsky, Andres; Parkansky, David G.

    1999-01-01

    At present time, the National Atomic Energy Commission is producing about 800 Ci of Mo99 per week irradiating 90% enriched uranium-aluminum alloy plate targets in the RA-3 reactor, a 5 MW. Mtr type one. In order to change to 20% enriched uranium, and to increase the production to about 3000 Ci per week some configurations were studied with rod and plate geometry with uranium (20% enriched) -aluminum targets. The first case was the irradiation of a plate target element in the normal reactor configuration. Results showed a good efficiency, but both reactivity value and power density were too high. An element with rods was also analyzed, but results showed a poor efficiency, too much aluminum involved in the process, although a low reactivity and an acceptable rod power density. Finally, a solution consisting of plate elements with a Zircaloy cladding was adopted, which has shown not only a good efficiency, but it is also acceptable from the viewpoint of safety, heat transference criteria and feasibility

  14. A high-voltage and non-corrosive ionic liquid electrolyte used in rechargeable aluminum battery.

    Science.gov (United States)

    Wang, Huali; Gu, Sichen; Bai, Ying; Chen, Shi; Wu, Feng; Wu, Chuan

    2016-10-03

    As a promising post-lithium battery, rechargeable aluminum battery has the potential to achieve a three-electron reaction with fully use of metal aluminum. Alternative electrolytes are strongly needed for further development of rechargeable aluminum batteries, since typical AlCl3-contained imidazole-based ionic liquids are moisture sensitive, corrosive, and with low oxidation voltage. In this letter, a kind of non-corrosive and water-stable ionic liquid obtained by mixing 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]OTF) with the corresponding aluminum salt (Al(OTF)3) is studied. This ionic liquid electrolyte has a high oxidation voltage (3.25V vs Al3+/Al) and high ionic conductivity, and a good electrochemical performance is also achieved. A new strategy, which first use corrosive AlCl3-based electrolyte to construct a suitable passageway on the Al anode for Al3+, and then use non-corrosive Al(OTF)3-based electrolyte to get stable Al/electrolyte interface, is put forward.

  15. Status of fuel element technology for plate type dispersion fuels with high uranium density

    International Nuclear Information System (INIS)

    Hrovat, M.; Huschka, H.; Koch, K.H.; Nazare, S.; Ondracek, G.

    1983-01-01

    A number of about 20 Material Test and Research Reactors in Germany and abroad is supplied with fuel elements by the company NUKEM. The power of these reactors differs widely ranging from up to about 100 MW. Consequently, the uranium density of the fuel elements in the meat varies considerably depending on the reactor type and is usually within the range from 0.4 to 1.3 g U/cm 3 if HEU is used. In order to convert these reactors to lower uranium enrichment (19.75% 235-U) extensive work is carried out at NUKEM since about two years with the goal to develop fuel elements with high U-density. This work is sponsored by the German Ministry for Research and Technology in the frame of the AF-program. This paper reports on the present state of development for fuel elements with high U-density fuels at NUKEM is reported. The development works were so far concentrated on UAl x , U 3 O 8 and UO 2 fuels which will be described in more detail. In addition fuel plates with new fuels like e.g. U-Si or U-Fe compounds are developed in collaboration with KfK. The required uranium densities for some typical reactors with low, medium, and high power are listed allowing a comparison of HEU and LEU uranium density requirements. The 235-U-content in the case of LEU is raised by 18%. Two different meat thicknesses are considered: Standard thickness of 0.5 mm; and increased thickness of 0.76 mm. From this data compilation the objective follows: in the case of conversion to LEU (19.75% 235-U-enrichment), uranium densities have to be made available up to 24 gU/cm 3 meat for low power level reactors, up to 33 gU/cm 3 meat for medium power level reactors, and between 5.75 and 7.03 g/cm 3 meat for high power level reactors according to this consideration

  16. Theoretical studies aiming at the IEA-R1 reactor core conversion from high U-235 enrichment to low U-235 enrichment

    International Nuclear Information System (INIS)

    Frajndlich, R.

    1982-01-01

    The research reactors, of which the fuel elements are of MTR type, functions presently, almost in their majority with high U-235 enrichment. The fear that those fuel elements might generate a considerabLe proliferation of nuclear weapons rendered almost mandatory the conversion of highly enriched fuel elements to a low U-235 enrichment. As the IEA-R1 reactor of IPEN is operating with highly enriched fuel elements a study aiming at this conversion was done. The problems related to the conversion and the results obtained, demonstrated the technical viabilty for its realization. (E.G.) [pt

  17. Investigation of magnetism in aluminum-doped silicon carbide nanotubes

    Science.gov (United States)

    Behzad, Somayeh; Chegel, Raad

    2013-11-01

    The effect of aluminum doping on the structural, electronic and magnetic properties of (8,0) silicon carbide nanotube (SiCNT) is investigated using spin-polarized density functional theory. It is found from the calculation of the formation energies that aluminum substitution for silicon atom is preferred. Our results show that the magnetization depends on the substitutional site, aluminum substitution at silicon site does not introduce any spin-polarization, whereas the aluminum substitution for carbon atom yields a spin polarized, almost dispersionless π band within the original band gap.

  18. The relationship of dislocation and vacancy cluster with yield strength in magnetic annealed UFG 1050 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yiheng [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); He, Lizi, E-mail: helizi@epm.neu.edu.cn [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Cao, Xingzhong; Zhang, Peng; Wang, Baoyi [Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Yizhou [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Ping; Cui, Jianzhong [Key Lab of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-01-02

    The evolutions of tensile properties and microstructures of ultrafine grained (UFG) 1050 aluminum alloy after annealing at 90–210 °C for 4 h without and with 12 T high magnetic field were investigated by tensile test, electron back scattering diffraction pattern (EBSD), transmission electron microscopy (TEM) and positron annihilation lifetime spectroscopy (PALS). When annealing temperature increases from 90 °C to 150 °C, the yield strength (YS) of UFG 1050 aluminum alloy increases, it is because that the increase in the density of vacancy clusters due to the activated monovacancies and the high angle boundaries (HABs) having more stable structures, both of them can act as effective barriers to dislocation motion during tensile deformation. When annealing at 210 °C, the YS of UFG 1050 aluminum alloy deceases, it is because that the decrease in the vacancy clusters density due to the thermally activated the vacancy clusters annihilating at sinks and the dislocation density decreases. The YS of magnetic annealed samples are lower at 90 °C and 150 °C due to the lower density of dislocations and vacancy clusters. The difference of YS between samples annealed without and with magnetic field disappears at 210 °C due to the sharply reduced strain hardening stage.

  19. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  20. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    International Nuclear Information System (INIS)

    1998-12-01

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ''DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.'' DOE's Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site

  1. High Pressure and High Temperature State of Oxygen Enriched Ice

    Science.gov (United States)

    LI, M.; Zhang, S.; Jeanloz, R.; Militzer, B.

    2016-12-01

    Interior models for Uranus and Neptune include a hydrogen/helium/water outer envelope and a core of rock and metal at the center, with superionic water-rich ice proposed as comprising an intermediate layer. Here we consider an oxygen-enriched ice, such as H2O2 hydrogen peroxide (± water), that could form through chemical reaction between water-rich and underlying rocky (i.e., oxygen-rich) layers. As oxygen and its compounds (e.g., H2O, SiO2) form metallic fluids at pressures above 100-150 GPa, the problem amounts to considering oxygen alloying of semiconducting or metallic water. The density of H2O2 is 1.45 g/cc at ambient pressure and 0° C, increasing to 1.71 g/cc in the solid state at about -20° C. There are no Hugoniot data beyond 30 GPa, so we estimated Hugoniots for H2O2 with different initial densities, using both a mixing model based on Hugoniot data for H2O2 and 1/2 O2 (molar volume summation under pressure) and ab initio calculations for unreacted H2O2. The results agree with each other to pressures of about 200 GPa, and the ab initio calculations show evidence of a superionic state at temperatures as low as 500 K, much lower than for water ice. Hydrogen peroxide is expected to be liquid along planetary isentropes for Uranus and Neptune, suggesting that H2O2 may not be present as a pure compound in these planets. Instead, oxygen-enriched H2O ice may be the relevant form of water and oxygen, and might be produced in the laboratory by way of dynamic compression of H2O2 or laser-heating of statically compressed H2O + O2 and/or H2O2.

  2. Research on Melt Degassing Processes of High Conductivity Hard Drawn Aluminum Wire

    Science.gov (United States)

    Xu, Xuexia; Feng, Yanting; Wang, Qing; Li, Wenbin; Fan, Hui; Wang, Yong; Li, Guowei; Zhang, Daoqian

    2018-03-01

    Degassing effects of ultrasonic and vacuum processes on high conductivity hard drawn aluminum melt were studied. Results showed that the degassing efficiency improved with the increase of ultrasonic power within certain range, stabilizing at 70% with 240W. For vacuum degassing process, hydrogen content of aluminum melt decreased with the loading time and was linear with logarithm of vacuum degree. Comparison of degassing effects of ultrasonic, vacuum, vacuum-ultrasonic degassing process showed that vacuum-ultrasonic process presented optimal effect.

  3. Critical enrichment and critical density of infinite systems for nuclear criticality safety evaluation

    International Nuclear Information System (INIS)

    Naito, Yoshitaka; Koyama, Takashi; Komuro, Yuichi

    1986-03-01

    Critical enrichment and critical density of homogenous infinite systems, such as U-H 2 O, UO 2 -H 2 O, UO 2 F 2 aqueous solution, UO 2 (NO 3 ) 2 aqueous solution, Pu-H 2 O, PuO 2 -H 2 O, Pu(NO 3 ) 4 aqueous solution and PuO 2 ·UO 2 -H 2 O, were calculated with the criticality safety evaluation computer code system JACS for nuclear criticality safety evaluation on fuel facilities. The computed results were compared with the data described in European and American criticality handbooks and showed good agreement with each other. (author)

  4. Acceptability and nutritional value of dark chocolate enriched with baru almonds, flaxseed and quinoa

    Directory of Open Access Journals (Sweden)

    Jullyana Borges de Freitas

    2016-04-01

    Full Text Available This study aimed to formulate dark chocolate enriched with baru almonds, flaxseed and quinoa (9% in replacement of chocolate, as well as assess the acceptability (global acceptance, appearance and purchase intent and the nutritional value of the formulations. The various chocolate samples were considered accepted and showed good levels of purchase intent, except for the variation enriched with flaxseed. The chocolate samples showed high content of fiber (27 to 40 g/100g, and lower energy value (385 to 413 kcal/100g compared to conventional dark chocolates with almonds (7 to 11 g of dietary fiber/100g and 500 to 550 kcal/100g, thus providing a healthier alternative for consumers.

  5. Origin of 6-fold coordinated aluminum at (010-type pyrophyllite edges

    Directory of Open Access Journals (Sweden)

    M. Okumura

    2017-05-01

    Full Text Available To better understand the aqueous chemical reactivity of clay mineral edges we explored the relationships between hydration and the structure of (010-type edges of pyrophyllite. In particular, we used density functional theory and the quantum theory of atoms in molecules to evaluate the stability of 6-fold coordinated hydrated aluminum at the edge in terms of the electron density distribution. Geometrical optimization revealed an intra-edge hydrogen bond network between aluminol hydroxyls and water ligands completing the aluminum coordination shell. From the electron density isosurfaces one water ligand is not covalently bonded to aluminum. Bader charge analysis revealed that OH2 ligands have small negative charge. In addition, it is also found that the charge of the 6-fold coordinated aluminum is larger than one of the 5-fold aluminum. From these results, the charging of the OH2 ligands is interpreted as charge transfer originated from the formation of the hydrogen bond network and not from Al-OH2 interaction per se. This suggests that the weakly bound water ligand in question, and more generally 6-fold hydrated edge Al coordination, is stabilized primarily by the hydrogen bond network which in turn leads to weak ionic attraction to the aluminum center itself. The finding highlights the importance of cooperative effects between solvent structure and the coordination of metal cations exposed at clay mineral edges.

  6. Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams

    International Nuclear Information System (INIS)

    Weaver, Randi D.; Gerbi, Bruce J.; Dusenbery, Kathryn E.

    1998-01-01

    3 mm beyond the shield was .048 Gy for the 2-mm shield and .029 Gy for the 3-mm shield (40% decrease). Backscatter was not further decreased using thicker tungsten. With a 6-MeV beam, using the 2-mm or 3-mm custom tungsten eye shields plus 0.5 mm of aluminum, the backscattered doses were 1.03 and 1.02 Gy, respectively. The backscatter dose with 9 MeV was 1.06 Gy using the 2-mm custom shield plus 0.5 mm aluminum and 1.05 Gy with a 3-mm custom shield plus 0.5 mm aluminum. There was very little difference in backscatter dosage under the eyelid using 0.5 vs. 1.0 mm of aluminum. Therefore, for patient comfort, we recommend using 0.5 mm of aluminum. Conclusions: Tungsten is superior to lead as a material for eye shields due to its higher density and lower atomic number (Z). Using 6- and 9-MeV electrons, tungsten provides the necessary protection for the lens and cornea of the eye and decreases the amount of backscatter to the eyelid above the shield

  7. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Primm, Trent; Guida, Tracey

    2010-01-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  8. A detailed investigation of the strain hardening response of aluminum alloyed Hadfield steel

    Science.gov (United States)

    Canadinc, Demircan

    The unusual strain hardening response exhibited by Hadfield steel single and polycrystals under tensile loading was investigated. Hadfield steel, which deforms plastically through the competing mechanisms slip and twinning, was alloyed with aluminum in order to suppress twinning and study the role of slip only. To avoid complications due to a grained structure, only single crystals of the aluminum alloyed Hadfield steel were considered at the initial stage of the current study. As a result of alloying with aluminum, twinning was suppressed; however a significant increase in the strain hardening response was also present. A detailed microstructural analysis showed the presence of high-density dislocation walls that evolve in volume fraction due to plastic deformation and interaction with slip systems. The very high strain hardening rates exhibited by the aluminum alloyed Hadfield steel single crystals was attributed to the blockage of glide dislocations by the high-density dislocation walls. A crystal plasticity model was proposed, that accounts for the volume fraction evolution and rotation of the dense dislocation walls, as well as their interaction with the active slip systems. The novelty of the model lies in the simplicity of the constitutive equations that define the strain hardening, and the fact that it is based on experimental data regarding the microstructure. The success of the model was tested by its application to different crystallographic orientations, and finally the polycrystals of the aluminum alloyed Hadfield steel. Meanwhile, the capability of the model to predict texture was also observed through the rotation of the loading axis in single crystals. The ability of the model to capture the polycrystalline deformation response provides a venue for its utilization in other alloys that exhibit dislocation sheet structures.

  9. Experimental determination of the thickness of aluminum cascade pipes in the presence of UF{sub 6} gas during enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, M.L., E-mail: lombardi@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos NM 87545 (United States); Favalli, A.; Goda, J.M.; Ianakiev, K.D.; MacArthur, D.W.; Moss, C.E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos NM 87545 (United States)

    2012-04-21

    We present a method of determining the wall thickness of a pipe in a Gas Centrifuge Enrichment Plant (GCEP) when an empty pipe measurement is not feasible. Our method uses an X-ray tube for transmission measurements and a lanthanum bromide (LaBr{sub 3}) scintillation detector on the opposite side of the pipe. Two filters, molybdenum (K-edge 20.0 keV) and palladium (K-edge 24.35 keV) are used to transform the bremsstrahlung spectra produced by the X-ray tube into more useful, sharply peaked, spectra. The maximum energies of the peaks are determined by the K-edges of the filters. The attenuation properties of the uranium hexafluoride (UF{sub 6}) gas allow us to determine wall thickness by looking at the ratio of selected regions of interest (ROIs) of the Mo and Pd transmitted spectra. While the attenuation factor at these two transmission energies in the UF{sub 6} gas is nearly equal, attenuation in the aluminum pipe wall at these two energies differs by a factor of about 60. This difference allows measurement of attenuation in the pipe independent of attenuation in the UF{sub 6} gas. Feasibility studies were performed using analytical calculations, and filter thicknesses were optimized. In order to experimentally validate our attenuation measurement method, a UF{sub 6} source with variable enrichment and pipe thickness was built. We describe the experimental procedure used to verify our previous calculations and present recent results.

  10. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  11. Stress corrosion in high-strength aluminum alloys

    Science.gov (United States)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  12. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  13. Fabrication of an aluminum, Caribbean-style, musical pan: Metallurgical and acoustical characterization

    International Nuclear Information System (INIS)

    Murr, L.E.; Esquivel, E.V.; Lawrie, S.C.; Lopez, M.I.; Lair, S.L.; Soto, K.F.; Gaytan, S.M.; Bujanda, D.; Kerns, R.G.; Guerrero, P.A.; Flores, J.A.

    2006-01-01

    We report herein the first development and fabrication of a 6061 aluminum alloy pan and compare its tuning and acoustic spectra for selected notes with a standard low-carbon steel Caribbean pan fabricated from a 210-L barrel. The experimental aluminum alloy pan was completely manufactured by welding a 1.68-mm-thick head sheet to a 9-mm 2 aluminum alloy hoop, sinking the head by pneumatic hammering and welding a 1.15-mm-thick aluminum alloy side or skirt to the hoop. This experimental pan was 0.66 m in diameter, in contrast to the 210-L steel barrel standard, which had a diameter of 0.57 m. Chromatic tones were observed for most rim notes on the aluminum alloy pan, but the highest octave range notes at the pan bottom were not tuned. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated the necessity for high dislocation densities and associated hardness in order to stabilize the notes and to assure their chromatic tuning

  14. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    Science.gov (United States)

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  15. Preferential enrichment of large-sized very low density lipoprotein populations with transferred cholesteryl esters

    International Nuclear Information System (INIS)

    Eisenberg, S.

    1985-01-01

    The effect of lipid transfer proteins on the exchange and transfer of cholesteryl esters from rat plasma HDL2 to human very low (VLDL) and low density (LDL) lipoprotein populations was studied. The use of a combination of radiochemical and chemical methods allowed separate assessment of [ 3 H]cholesteryl ester exchange and of cholesteryl ester transfer. VLDL-I was the preferred acceptor for transferred cholesteryl esters, followed by VLDL-II and VLDL-III. LDL did not acquire cholesteryl esters. The contribution of exchange of [ 3 H]cholesteryl esters to total transfer was highest for LDL and decreased in reverse order along the VLDL density range. Inactivation of lecithin: cholesterol acyltransferase (LCAT) and heating the HDL2 for 60 min at 56 degrees C accelerated transfer and exchange of [ 3 H]cholesteryl esters. Addition of lipid transfer proteins increased cholesterol esterification in all systems. The data demonstrate that large-sized, triglyceride-rich VLDL particles are preferred acceptors for transferred cholesteryl esters. It is suggested that enrichment of very low density lipoproteins with cholesteryl esters reflects the triglyceride content of the particles

  16. Comparison of tolerance to soil acidity among crop plants. II. Tolerance to high levels of aluminum and manganese. Comparative plant nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A; Hayakawa, Y

    1975-01-01

    Research was conducted by growing various species of plants in solutions containing high concentrations of manganese or aluminum. A comparison was made of the tolerance of these plants to low pH and to the manganese and aluminum. In addition, the element content of the plants was compared. Plants high in calcium were found to have an intermediate tolerance to high concentrations of manganese and aluminum. Gramineae had a high tolerance to these elements and to low pH. They also accumulated high levels of these elements. Legumes had a high tolerance to manganese and aluminum and to low pH. However, they also accumulated high levels of these elements. Legumes had a high tolerance to manganese and aluminum and to low pH. However, they also accumulated high levels of these elements. Cruciferae had a low tolerance to the elements and to low pH. They contained low levels of manganese and aluminum. Chenopodiaceae had a low tolerance to the elements as well as low element contents. However, they were highly tolerant to low pH.

  17. Practical Modeling of aluminum species in high-pH waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1995-10-01

    One of the main components of the nuclear waste stored at the Hanford Site is aluminum. As efforts are made to dispose of the waste, the need to predict the various phases of the aluminum becomes important for modeling of the disposal processes. Current databases of the aluminum species are not adequate as they stand. This study is not an attempt to present a rigorous discussion of aluminum chemistry, but to approach aluminum solubility as a practical application. The approach considers two different forms of aluminate; Al(OH) 4 - and AlO 2 - . By taking both of these forms of aluminate into consideration, a workable system of aluminium chemistry is formed that can be used to model the various waste disposal processes

  18. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  19. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Schweiger, M.J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-01-01

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at ∼1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at ∼1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  20. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    International Nuclear Information System (INIS)

    Lee, W; Nielsch, K; Goesele, U

    2007-01-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H 4 C 3 O 4 ) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ∼100 mA cm -2 . Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D int ) for a given anodization potential (U) during malonic acid anodization

  1. Angle-adjustable density field formulation for the modeling of crystalline microstructure

    Science.gov (United States)

    Wang, Zi-Le; Liu, Zhirong; Huang, Zhi-Feng

    2018-05-01

    A continuum density field formulation with particle-scale resolution is constructed to simultaneously incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic way of performing tunable angle analyses for crystalline microstructures.

  2. Progress in Aluminum Electrolysis Control and Future Direction for Smart Aluminum Electrolysis Plant

    Science.gov (United States)

    Zhang, Hongliang; Li, Tianshuang; Li, Jie; Yang, Shuai; Zou, Zhong

    2017-02-01

    The industrial aluminum reduction cell is an electrochemistry reactor that operates under high temperatures and highly corrosive conditions. However, these conditions have restricted the measurement of key control parameters, making the control of aluminum reduction cells a difficult problem in the industry. Because aluminum electrolysis control systems have a significant economic influence, substantial research has been conducted on control algorithms, control systems and information systems for aluminum reduction cells. This article first summarizes the development of control systems and then focuses on the progress made since 2000, including alumina concentration control, temperature control and electrolyte molecular ratio control, fault diagnosis, cell condition prediction and control system expansion. Based on these studies, the concept of a smart aluminum electrolysis plant is proposed. The frame construction, key problems and current progress are introduced. Finally, several future directions are discussed.

  3. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    Science.gov (United States)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  4. Mirror-finished superhydrophobic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2018-05-01

    We demonstrate mirror-finished superhydrophobic aluminum surfaces fabricated via the formation of anodic alumina nanofibers and subsequent modification with self-assembled monolayers (SAMs). High-density anodic alumina nanofibers were formed on the aluminum surface via anodizing in a pyrophosphoric acid solution. The alumina nanofibers became tangled and bundled by further anodizing at low temperature because of their own weight, and the aluminum surface was completely covered by the long falling nanofibers. The nanofiber-covered aluminum surface exhibited superhydrophilic behavior, with a contact angle measuring less than 10°. As the nanofiber-covered aluminum surface was modified with n-alkylphosphonic acid SAMs, the water contact angle drastically shifted to superhydrophobicity, measuring more than 150°. The contact angle increased with the applied voltage during pyrophosphoric acid anodizing, the anodizing time, and the number of carbon atoms contained in the SAM molecules modified on the alumina nanofibers. By optimizing the anodizing and SAM-modification conditions, superhydrophobic behavior could be achieved with only a brief pyrophosphoric acid anodizing period of 3 min and subsequent simple immersion in SAM solutions. The superhydrophobic aluminum surface exhibited a high reflectance, measuring approximately 99% across most of the visible spectrum, similar to that of an electropolished aluminum surface. Therefore, our mirror-finished superhydrophobic aluminum surface based on anodic alumina nanofibers and SAMs can be used as a reflective mirror in various optical applications such as concentrated solar power systems.

  5. Multicomponent density functional theory embedding formulation

    Energy Technology Data Exchange (ETDEWEB)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave, Urbana, Illinois 61801 (United States)

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  6. Copper-carbon and aluminum-carbon composites fabricated by powder metallurgy processes

    International Nuclear Information System (INIS)

    Silvain, Jean-François; Veillère, Amélie; Lu, Yongfeng

    2014-01-01

    The increase in both power and packing densities in power electronic devices has led to an increase in the market demand for effective heat-dissipating materials, with high thermal conductivity and thermal- expansion coefficient compatible with chip materials still ensuring the reliability of the power modules. In this context, metal matrix composites: carbon fibers and diamond-reinforced copper and aluminum matrix composites among them are considered very promising as a next generation of thermal-management materials in power electronic packages. These composites exhibit enhanced thermal properties compared to pure copper combined with lower density. This article presents the fabrication techniques of copper/carbon fibers and copper/diamond and aluminum/carbon fibers composite films by powder metallurgy and hot pressing. The thermal analyses clearly indicate that interfacial treatments are required in these composites to achieve high thermomechanical properties. Interfaces (through novel chemical and processing methods), when selected carefully and processed properly will form the right chemical/mechanical link between metal and carbon, enhancing all the desired thermal properties while minimizing the deleterious effect.

  7. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    International Nuclear Information System (INIS)

    Jiang, Longtao; Wang, Pingping; Xiu, Ziyang; Chen, Guoqin; Lin, Xiu; Dai, Chen; Wu, Gaohui

    2015-01-01

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond (111) /Al interface was found to be devoid of reaction products. While at the diamond (100) /Al interface, large-sized aluminum carbides (Al 4 C 3 ) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond (111) / aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond (111) /aluminum. • The growth mechanism of Al 4 C 3 was analyzed by crystallography theory

  8. Limitations of high dose carrier based formulations.

    Science.gov (United States)

    Yeung, Stewart; Traini, Daniela; Tweedie, Alan; Lewis, David; Church, Tanya; Young, Paul M

    2018-06-10

    This study was performed to investigate how increasing the active pharmaceutical ingredient (API) content within a formulation affects the dispersion of particles and the aerosol performance efficiency of a carrier based dry powder inhalable (DPI) formulation, using a custom dry powder inhaler (DPI) development rig. Five formulations with varying concentrations of API beclomethasone dipropionate (BDP) between 1% and 30% (w/w) were formulated as a multi-component carrier system containing coarse lactose and fine lactose with magnesium stearate. The morphology of the formulation and each component were investigated using scanning electron micrographs while the particle size was measured by laser diffraction. The aerosol performance, in terms of aerodynamic diameter, was assessed using the British pharmacopeia Apparatus E cascade impactor (Next generation impactor). Chemical analysis of the API was observed by high performance liquid chromatography (HPLC). Increasing the concentration of BDP in the blend resulted in increasing numbers and size of individual agglomerates and densely packed BDP multi-layers on the surface of the lactose carrier. BDP present within the multi-layer did not disperse as individual primary particles but as dense agglomerates, which led to a decrease in aerosol performance and increased percentage of BDP deposition within the Apparatus E induction port and pre-separator. As the BDP concentration in the blends increases, aerosol performance of the formulation decreases, in an inversely proportional manner. Concurrently, the percentage of API deposition in the induction port and pre-separator could also be linked to the amount of micronized particles (BDP and Micronized composite carrier) present in the formulation. The effect of such dose increase on the behaviour of aerosol dispersion was investigated to gain greater insight in the development and optimisation of higher dosed carrier-based formulations. Copyright © 2018 Elsevier B.V. All

  9. U.S. progress in the development of very high density low enrichment research reactor fuels

    International Nuclear Information System (INIS)

    Meyer, M. K.; Wachs, D. M.; Jue, J.-F.; Keiser, D. D.; Gan, J.; Rice, F.; Robinson, A.; Woolstenhulme, N. E.; Medvedev, P.; Hofman, G. L.; Kim, Y.-S.

    2012-01-01

    The effort to develop low-enriched fuels for high power research reactors began world-wide in 1996. Since that time, hundreds of fuel specimens have been tested to investigate the operational limits of many variations of U-Mo alloy dispersion and monolithic fuels. In the U.S., the fuel development program has focused on the development of monolithic fuel, and is currently transitioning from conducting research experiments to the demonstration of large scale, prototypic element assemblies. These larger scale, integral fuel performance demonstrations include the AFIP-7 test of full-sized, curved plates configured as an element, the RERTR-FE irradiation of hybrid fuel elements in the Advanced Test Reactor, reactor specific Design Demonstration Experiments, and a multi-element Base Fuel Demonstration. These tests are conducted alongside mini-plate tests designed to prove fuel stability over a wide range of operating conditions. Along with irradiation testing, work on collecting data on fuel plate mechanical integrity, thermal conductivity, fission product release, and microstructural stability is underway. (authors)

  10. High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

    Directory of Open Access Journals (Sweden)

    Guiming Zhong

    2018-03-01

    Full Text Available Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx with superior performance through a direct gas fluorination method. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1,073 Wh kg−1 and an excellent power density of 21,460 W kg−1 at a high current density of 10 A g−1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.

  11. Aluminum cladding oxidation of prefilmed in-pile fueled experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, School of Nuclear Science and Engineering, 116 Radiation Center, Corvallis, OR 97331 (United States); Wachs, D.M.; Robinson, A.B.; Lillo, M.A. [Idaho National Laboratory, Nuclear Fuels & Materials Department, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2016-04-01

    A series of fueled irradiation experiments were recently completed within the Advanced Test Reactor Full size plate In center flux trap Position (AFIP) and Gas Test Loop (GTL) campaigns. The conduct of the AFIP experiments supports ongoing efforts within the global threat reduction initiative (GTRI) to qualify a new ultra-high loading density low enriched uranium-molybdenum fuel. This study details the characterization of oxide growth on the fueled AFIP experiments and cross-correlates the empirically measured oxide thickness values to existing oxide growth correlations and convective heat transfer correlations that have traditionally been utilized for such an application. This study adds new and valuable empirical data to the scientific community with respect to oxide growth measurements of highly irradiated experiments, of which there is presently very limited data. Additionally, the predicted oxide thickness values are reconstructed to produce an oxide thickness distribution across the length of each fueled experiment (a new application and presentation of information that has not previously been obtainable in open literature); the predicted distributions are compared against experimental data and in general agree well with the exception of select outliers. - Highlights: • New experimental data is presented on oxide layer thickness of irradiated aluminum fuel. • Five oxide growth correlations and four convective heat transfer correlations are used to compute the oxide layer thickness. • The oxide layer thickness distribution is predicted via correlation for each respective experiment. • The measured experiment and predicted distributions correlate well, with few outliers.

  12. Corrosion resistance properties of enamels with high B2O3-P2O5 content to molten aluminum

    International Nuclear Information System (INIS)

    Zhou, M.; Li, K.; Shu, D.; Sun, B.D.; Wang, J.

    2003-01-01

    Anticorrosive properties of borophosphate and boron-free enamels to molten aluminum were investigated using SEM and electron probe. Carbonates of alkali metal and alkaline earth metal were added in an appropriate weight ratio to achieve desired melting temperature of the enamels. SEM examination on the solidified interface between the enamels and aluminum alloy show that the enamels can spread slightly on aluminum alloy. For anticorrosive sample of borophosphate enamel, phosphorus was not detected by electron probe at the side of aluminum alloy near the interface, but silicon was detected in the silica-free enamels side. For the sample of boron-free enamels, however, phosphorus was found at the side of aluminum alloy near the interface. It was revealed that the enamels with high B 2 O 3 -P 2 O 5 content have high corrosion resistance to molten aluminum

  13. Syndecans reside in sphingomyelin-enriched low-density fractions of the plasma membrane isolated from a parathyroid cell line.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Podyma-Inoue

    Full Text Available BACKGROUND: Heparan sulfate proteoglycans (HSPGs are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction. METHODOLOGY/PRINCIPAL FINDINGS: Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [(35S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([(35S]sulfate/mg protein, implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [(35S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30-33 kDa and syndecan-1 (70 kDa suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase. CONCLUSIONS/SIGNIFICANCE: Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms.

  14. Critical experiments on low-enriched uranium oxide system with H/U=1.25

    International Nuclear Information System (INIS)

    Oh, I.; Rothe, R.E.; Tuck, G.

    1982-01-01

    Fifteen (15) critical experiments were performed on a horizontal split table machine using 4.48%-enriched sup(235)U uranium oxide(U 3 O 8 ). The oxide was compacted to a density of 4.68g/cm 3 and placed in 152 mm cubical aluminum cans. Water was added to achive an H/U of 1.25. Various arrays of oxide cans were distributed on each half of the split table, and the separation between halves reduced until criticality occurred. The critical table separation varied from 3.59 mm to 18.40 mm. Twelve (12) experiments required the addition of a high-enriched(-93 %sup(235)U) metal or solution driver to achieve criticality. These experiments were performed in a plastic, concrete, or thin steel reflector. Three additional experiments in the plastic reflector contained either 9.3-mm- or 24.3-mm-thick plastic moderator material between the oxide cans and did not require a driver to achieve criticality. Critical uranium driver masses ranged from 9.999 kg to 14.000 kg (solution driver), and from 25.378 kg to 29.278 kg (metal driver) for 5X5X5 arrays of uranium oxide cans. Always, one or four of these 125 cans had to be removed to make room for the drivers. Therefore, the uranium oxide masses used were 1823.8 kg and 1863.5 kg. For the moderated experiments, the uranium oxide mass ranged between 574.4 kg and 1210.0 kg. (Author)

  15. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  16. High Temperature Analysis of Aluminum-Lithium 2195 Alloy to Aid in the Design of Improved Welding Techniques

    Science.gov (United States)

    Talia, George E.; Widener, Christian

    1996-01-01

    Aluminum-lithium alloys have extraordinary properties. The addition of lithium to an aluminum alloy decreases its density, while making large increases in its strength and hardness. The down side is that they are unstable at higher temperatures, and are subsequently difficult to weld or even manufacture. Martin Marietta, though, developed an aluminum-lithium alloy 2195 that was reported to have exceptional properties and good weldability. Thus, it was chosen as the alloy for the space shuttles super light external tank. Unfortunately, welding 2195 has turned out to be much more of a challenge than anticipated. Thus, research has been undergone in order to understand the mechanisms that are causing the welding problems. Gas reactions have been observed to be detrimental to weld strength. Water vapor has often been identified as having a significant role in these reactions. Nitrogen, however, has also been shown to have a direct correlation to porosity. These reactions were suspected as being complex and responsible for the two main problems of welding 2195. One, the initial welds of 2195 are much weaker than the parent metal. Second, each subsequent welding pass increases the size and number of cracks and porosity, yielding significant reductions in strength. Consequently, the objective of this research was to characterize the high-temperature reactions of 2195 in order to understand the mechanisms for crack growth and the formation of porosity in welds. In order to accomplish that goal, an optical hot-stage microscope, HSM, was used to observe those reactions as they occurred. Surface reactions of 2195 were observed in a variety of environments, such as air, vacuum, nitrogen and helium. For comparison, some samples of Al-2219 were also observed. Some of the reacted surfaces were then analyzed on a scanning electron microscope, SEM. Additionally, a gas chromatograph was used to analyze the gaseous products of the high temperature reactions.

  17. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-11-01

    Full Text Available The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure and compositions (argon, nitrogen and helium on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center to its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.

  18. Essential elements of the high density H-mode on W7-AS

    International Nuclear Information System (INIS)

    McCormick, K.; Burhenn, R.; Grigull, P.

    2003-01-01

    The High Density H-Mode (HDH), discovered during the run-in phase of W7-AS divertor operation/1-3/, rapidly became the workhorse of the divertor program, combining optimal core behavior along with edge parameters necessary for successful operation of an Island Divertor. Its unique properties of high energy confinement along with low impurity retention and radiation localized at the edge under ELM-free steady-state conditions at high densities (to 4 x 10 20 m -3 ) and heating powers (to 1.7 MWm -3 ) make the HDH H-mode ideal for a reactor scenario, given it can be extended to higher temperatures in a larger machine. Hence, considerable effort has been invested to understand the nature of the HDH-mode in order to be able to extrapolate to next generation devices. To this end the present paper reports on experiments where two globally-similar ELM-free H-modes are compared: the classic quiescent H-mode H* where both impurity and density control are a severe problem and the HDH-mode with its contrasting steady-state behavior. Through modeling of the temporal behavior of laser-ablated aluminum spectral lines, as well as that of background impurities, it is concluded that a principle difference between the two H-modes is that of enhanced impurity diffusion in the edge gradient region of the HDH-mode. However, no direct indicators of enhanced diffusion have yet been identified. (orig.)

  19. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    Science.gov (United States)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  20. High-strength laser welding of aluminum-lithium scandium-doped alloys

    Science.gov (United States)

    Malikov, A. G.; Ivanova, M. Yu.

    2016-11-01

    The work presents the experimental investigation of laser welding of an aluminum alloy (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of nano-structuring of the surface layer welded joint by cold plastic deformation on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys. The strength of the plastically deformed welded joint, aluminum alloys of the Al-Mg-Li and Al-Cu-Li systems reached 0.95 and 0.6 of the base alloy strength, respectively.

  1. Hot forging of roll-cast high aluminum content magnesium alloys

    Science.gov (United States)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  2. DESIGN AND APPLICATION OF TRANSPARENT AND TRANSLUCENT ENAMELS ON ALUMINUM

    Directory of Open Access Journals (Sweden)

    H. AHMADI MOGHADDAM

    2012-09-01

    Full Text Available Transparent and opaque glass enamels for aluminum plates were designed with a minimum or with no heavy atom oxides such as lead and bismuth oxides. The thermal properties of the enamels were studied by DTA and their stability as measured by the difference of glass transition and crystallization onset temperatures was determined. Bending and rapid deformation (impact tests indicated the interfacial adhesion. The enamel/aluminum interfacial qualities were viewed and examined by scanning electron microscopy (SEM. A large amount of NaF and P2O5 in their formulation created opaque enamels. The three methods of melt dipping, pouring, and sintering were used to apply layers of enamels on aluminum plates. The novelty of the pouring and spreading method and its advantages over other methods, were in the use of lower stability and higher melting point enamels, without thermally/mechanically damaging the aluminum. Observations suggested that the interfacial contact and adhesion properties were good, particularly with the transparent or glassy state enamels.

  3. High Strain Rate Response of 7055 Aluminum Alloy Subject to Square-spot Laser Shock Peening

    Science.gov (United States)

    Sun, Rujian; Zhu, Ying; Li, Liuhe; Guo, Wei; Peng, Peng

    2017-12-01

    The influences of laser pulse energy and impact time on high strain rate response of 7055 aluminum alloy subject to square-spot laser shock peening (SLSP) were investigate. Microstructural evolution was characterized by OM, SEM and TEM. Microhardness distribution and in-depth residual stress in 15 J with one and two impacts and 25 J with one and two impacts were analyzed. Results show that the original rolling structures were significantly refined due to laser shock induced recrystallization. High density of microdefects was generated, such as dislocation tangles, dislocation wall and stacking faults. Subgrains and nanograins were induced in the surface layer, resulting in grain refinement in the near surface layer after SLSP. Compressive residual stresses with maximum value of more than -200 MPa and affected depths of more than 1 mm can be generated after SLSP. Impact time has more effectiveness than laser pulse energy in increasing the magnitude of residual stress and achieving thicker hardening layer.

  4. Generation and decay dynamics of triplet excitons in Alq3 thin films under high-density excitation conditions.

    Science.gov (United States)

    Watanabe, Sadayuki; Furube, Akihiro; Katoh, Ryuzi

    2006-08-31

    We studied the generation and decay dynamics of triplet excitons in tris-(8-hydroxyquinoline) aluminum (Alq3) thin films by using transient absorption spectroscopy. Absorption spectra of both singlet and triplet excitons in the film were identified by comparison with transient absorption spectra of the ligand molecule (8-hydroxyquinoline) itself and the excited triplet state in solution previously reported. By measuring the excitation light intensity dependence of the absorption, we found that exciton annihilation dominated under high-density excitation conditions. Annihilation rate constants were estimated to be gammaSS = (6 +/- 3) x 10(-11) cm3 s(-1) for single excitons and gammaTT = (4 +/- 2) x 10(-13) cm3 s(-1) for triplet excitons. From detailed analysis of the light intensity dependence of the quantum yield of triplet excitons under high-density conditions, triplet excitons were mainly generated through fission from highly excited singlet states populated by singlet-singlet exciton annihilation. We estimated that 30% of the highly excited states underwent fission.

  5. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Longtao, E-mail: longtaojiang@163.com [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Pingping [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiu, Ziyang [Skate Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Chen, Guoqin [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Lin, Xiu [Heilongjiang Academy of Industrial Technology, Harbin 150001 (China); Dai, Chen; Wu, Gaohui [Department of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.

  6. Use of highly enriched uranium at the FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Boening, K. [Forschungs-Neutronenquelle FRM-II, Technische Universitaet Muenchen, D-85747 Garching bei Muenchen (Germany)

    2002-07-01

    The new FRM-II research reactor in Munich, Germany, provides a high flux of thermal neutrons outside of the core at only 20 MW power. This is achieved by using a single compact, cylindrical fuel element with highly enriched uranium (HEU) which is cooled by light water and placed in the center of a large heavy water tank. The paper outlines the arguments which have led to this core concept and summarizes its performance. It also reports on alternative studies which have been performed for the case of low enriched uranium (LEU) and compares the data of the two concepts, with the conclusion that the FRM-II cannot be converted to LEU. A concept using medium enriched uranium (MEU) is described as well as plans to develop such a fuel element in the future. Finally, it is argued that the use of HEU fuel elements at the FRM-II does not - realistically -involve any risk of proliferation. (author)

  7. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  8. Combustion of Shock-Dispersed Flake Aluminum - High-Speed Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Neuwald, P; Reichenbach, H; Kuhl, A

    2006-06-19

    Charges of 0.5 g PETN were used to disperse 1 g of flake aluminum in a rectangular test chamber of 4 liter inner volume and inner dimensions of approximately 10 cm x 10 cm x 40 cm. The subsequent combustion of the flake aluminum with the ambient air in the chamber gave rise to a highly luminous flame. The evolution of the luminous region was studied by means of high-speed cinematography. The high-speed camera is responsive to a broad spectral range in the visible and near infra-red. For a number of tests this response range was narrowed down by means of a band-pass filter with a center wavelength of 488 nm and a half-width of 23 nm. The corresponding images were expected to have a stronger temperature dependence than images obtained without the filter, thus providing better capability to highlight hot-spots. Emission in the range of the pass-band of the filter can be due to continuous thermal radiation from hot Al and Al{sub 2}O{sub 3} particles or to molecular band emission from gaseous AlO. A time-resolving spectrometer was improvised to inspect this topic. The results suggest that AlO emission occurs, but that the continuous spectrum is the dominating effect in our experiments.

  9. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.

    Science.gov (United States)

    Wan, Liu; Wang, Jianlong; Xie, Lijing; Sun, Yahui; Li, Kaixi

    2014-09-10

    Nitrogen-enriched hierarchically porous carbons (HPCs) were synthesized from a novel nitrile-functionalized benzoxazine based on benzoxazine chemistry using a soft-templating method and a potassium hydroxide (KOH) chemical activation method and used as electrode materials for supercapacitors. The textural and chemical properties could be easily tuned by adding a soft template and changing the activation temperature. The introduction of the soft-templating agent (surfactant F127) resulted in the formation of mesopores, which facilitated fast ionic diffusion and reduced the internal resistance. The micropores of HPCs were extensively developed by KOH activation to provide large electrochemical double-layer capacitance. As the activation temperature increased from 600 to 800 °C, the specific surface area of nitrogen-enriched carbons increased dramatically, micropores were enlarged, and more meso/macropores were developed, but the nitrogen and oxygen content decreased, which affected the electrochemical performance. The sample HPC-800 activated at 800 °C possesses a high specific surface area (1555.4 m(2) g(-1)), high oxygen (10.61 wt %) and nitrogen (3.64 wt %) contents, a hierarchical pore structure, a high graphitization degree, and good electrical conductivity. It shows great pseudocapacitance and the largest specific capacitance of 641.6 F g(-1) at a current density of 1 A g(-1) in a 6 mol L(-1) KOH aqueous electrolyte when measured in a three-electrode system. Furthermore, the HPC-800 electrode exhibits excellent rate capability (443.0 F g(-1) remained at 40 A g(-1)) and good cycling stability (94.3% capacitance retention over 5000 cycles).

  10. The aluminum-U3O8 exothermic reaction

    International Nuclear Information System (INIS)

    Copeland, George L.

    1983-01-01

    The phase assemblage of aluminum-urania is a nonequilibrium mixture and a cermet fuel of this mixture will ultimately tend to change phases. Early studies of this reaction recognized the potentially large energy release accompanying the phase change. This paper reviews the studies of the reaction and concludes that increasing the uranium content to the level necessary for low-enriched fuels will not add significantly to the chemical reaction hazard. (author)

  11. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    Science.gov (United States)

    Wei, Gang; Zhang, Wei

    2013-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~ 170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. National Natural Science Foundation of China (No.: 11072072).

  12. High Dielectric Performance of Solution-Processed Aluminum Oxide-Boron Nitride Composite Films

    Science.gov (United States)

    Yu, Byoung-Soo; Ha, Tae-Jun

    2018-04-01

    The material compositions of oxide films have been extensively investigated in an effort to improve the electrical characteristics of dielectrics which have been utilized in various electronic devices such as field-effect transistors, and storage capacitors. Significantly, solution-based compositions have attracted considerable attention as a highly effective and practical technique to replace vacuum-based process in large-area. Here, we demonstrate solution-processed composite films consisting of aluminum oxide (Al2O3) and boron nitride (BN), which exhibit remarkable dielectric properties through the optimization process. The leakage current of the optimized Al2O3-BN thin films was decreased by a factor of 100 at 3V, compared to pristine Al2O3 thin film without a loss of the dielectric constant or degradation of the morphological roughness. The characterization by X-ray photoelectron spectroscopy measurements revealed that the incorporation of BN with an optimized concentration into the Al2O3 dielectric film reduced the density of oxygen vacancies which act as defect states, thereby improving the dielectric characteristics.

  13. Static Recovery Modeling of Dislocation Density in a Cold Rolled Clad Aluminum Alloy

    Science.gov (United States)

    Penlington, Alex

    Clad alloys feature one or more different alloys bonded to the outside of a core alloy, with non-equilibrium, interalloy interfaces. There is limited understanding of the recovery and recrystallization behaviour of cold rolled clad aluminum alloys. In order to optimize the properties of such alloys, new heat treatment processes may be required that differ from what is used for the monolithic alloys. This study examines the recovery behaviour of a cold rolled Novelis Fusion(TM) alloy containing an AA6XXX core with an AA3003 cladding on one side. The bond between alloys appears microscopically discrete and continuous, but has a 30 microm wide chemical gradient. The as-deformed structure at the interalloy region consists of pancaked sub-grains with dislocations at the misorientation boundaries and a lower density organized within the more open interiors. X-ray line broadening was used to extract the dislocation density from the interalloy region and an equivalently deformed AA6XXX following static annealing using a modified Williamson-Hall analysis. This analysis assumed that Gaussian broadening contributions in a pseudo-Voigt function corresponded only to strain from dislocations. The kinetics of the dislocation density evolution to recrystallization were studied isothermally at 2 minute intervals, and isochronally at 175 and 205°C. The data fit the Nes model, in which the interalloy region recovered faster than AA6XXX at 175°C, but was slower at 205°C. This was most likely caused by change in texture and chemistry within this region such as over-aging of AA6XXX . Simulation of a continuous annealing and self homogenization process both with and without pre-recovery indicates a detectable, though small change in the texture and grain size in the interalloy region.

  14. Development of high-strength and high-RRR aluminum-stabilized superconductor for the ATLAS thin solenoid

    CERN Document Server

    Wada, K; Sakamoto, H; Shimada, T; Nagasu, Y; Inoue, I H; Tsunoda, K; Endo, S; Yamamoto, A; Makida, Y; Tanaka, K; Doi, Y; Kondo, T

    2000-01-01

    The ATLAS central solenoid magnet is being constructed to provide a magnetic field of 2 Tesla in the central tracking part of the ATLAS detector at the LHC. Since the solenoid coil is placed in front of the liquid-argon electromagnetic calorimeter, the solenoid coil must be as thin (and transparent) as possible. The high-strength and high- RRR aluminum-stabilized superconductor is a key technology for the solenoid to be thinnest while keeping its stability. This has been developed with an alloy of 0.1 wt% nickel addition to 5N pure aluminum and with the subsequent mechanical cold working of 21% in area reduction. A yield strength of 110 MPa at 4.2 K has been realized keeping a residual resistivity ratio (RRR) of 590, after a heat treatment corresponding to coil curing at 130 degrees C for 15 hrs. This paper describes the optimization of the fabrication process and characteristics of the developed conductor. (8 refs).

  15. Theoretical Model for Volume Fraction of UC, 235U Enrichment, and Effective Density of Final U 10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2016-04-12

    The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U-10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U-10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U-10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content

  16. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  17. Propellant Improvement Program. Volume 2. Iron Contamination Effect in HDA (High Density Acid)

    Science.gov (United States)

    Density Acid ( HDA ) and the effect of iron impurity level up to 100 parts per million as Fe2O3 on HDA heat transfer. Thirty tests were conducted using...resistance heated, circular, 6061T6 aluminum tubes. Results showed that normal nucleate boiling did not occur with either of the HDA compositions. The

  18. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-01-01

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering. PMID:28880002

  19. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development.

    Science.gov (United States)

    Poinern, Gerrard Eddy Jai; Ali, Nurshahidah; Fawcett, Derek

    2011-02-25

    The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO) membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  20. Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development

    Directory of Open Access Journals (Sweden)

    Gerrard Eddy Jai Poinern

    2011-02-01

    Full Text Available The anodization of aluminum is an electro-chemical process that changes the surface chemistry of the metal, via oxidation, to produce an anodic oxide layer. During this process a self organized, highly ordered array of cylindrical shaped pores can be produced with controllable pore diameters, periodicity and density distribution. This enables anodic aluminum oxide (AAO membranes to be used as templates in a variety of nanotechnology applications without the need for expensive lithographical techniques. This review article is an overview of the current state of research on AAO membranes and the various applications of nanotechnology that use them in the manufacture of nano-materials and devices or incorporate them into specific applications such as biological/chemical sensors, nano-electronic devices, filter membranes and medical scaffolds for tissue engineering.

  1. Ductile damage development in friction stir welded aluminum (AA2024) joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    Ductile damage development in a friction stir welded aluminum joint subjected to tension is analyzed numerically by FE-analysis, based on a total Lagrangian formulation. An elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids is applied. Main focus...

  2. Electronic Structure of the Organic Semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from Soft X-ray Spectroscopies and Density Functional Theory Calculations

    Energy Technology Data Exchange (ETDEWEB)

    DeMasi, A.; Piper, L; Zhang, Y; Reid, I; Wang, S; Smith, K; Downes, J; Pelkekis, N; McGuinness, C; Matsuura, A

    2008-01-01

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq3) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq3, and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  3. Electronic structure of the organic semiconductor Alq3 (aluminum tris-8-hydroxyquinoline) from soft x-ray spectroscopies and density functional theory calculations.

    Science.gov (United States)

    DeMasi, A; Piper, L F J; Zhang, Y; Reid, I; Wang, S; Smith, K E; Downes, J E; Peltekis, N; McGuinness, C; Matsuura, A

    2008-12-14

    The element-specific electronic structure of the organic semiconductor aluminum tris-8-hydroxyquinoline (Alq(3)) has been studied using a combination of resonant x-ray emission spectroscopy, x-ray photoelectron spectroscopy, x-ray absorption spectroscopy, and density functional theory (DFT) calculations. Resonant and nonresonant x-ray emission spectroscopy were used to measure directly the carbon, nitrogen and oxygen 2p partial densities of states in Alq(3), and good agreement was found with the results of DFT calculations. Furthermore, resonant x-ray emission at the carbon K-edge is shown to be able to measure the partial density of states associated with individual C sites. Finally, comparison of previous x-ray emission studies and the present data reveal the presence of clear photon-induced damage in the former.

  4. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  5. Enrichment increases hippocampal neurogenesis independent of blood monocyte-derived microglia presence following high-dose total body irradiation.

    Science.gov (United States)

    Ruitenberg, Marc J; Wells, Julia; Bartlett, Perry F; Harvey, Alan R; Vukovic, Jana

    2017-06-01

    Birth of new neurons in the hippocampus persists in the brain of adult mammals and critically underpins optimal learning and memory. The process of adult neurogenesis is significantly reduced following brain irradiation and this correlates with impaired cognitive function. In this study, we aimed to compare the long-term effects of two environmental paradigms (i.e. enriched environment and exercise) on adult neurogenesis following high-dose (10Gy) total body irradiation. When housed in standard (sedentary) conditions, irradiated mice revealed a long-lasting (up to 4 months) deficit in neurogenesis in the granule cell layer of the dentate gyrus, the region that harbors the neurogenic niche. This depressive effect of total body irradiation on adult neurogenesis was partially alleviated by exposure to enriched environment but not voluntary exercise, where mice were single-housed with unlimited access to a running wheel. Exposure to voluntary exercise, but not enriched environment, did lead to significant increases in microglia density in the granule cell layer of the hippocampus; our study shows that these changes result from local microglia proliferation rather than recruitment and infiltration of circulating Cx 3 cr1 +/gfp blood monocytes that subsequently differentiate into microglia-like cells. In summary, latent neural precursor cells remain present in the neurogenic niche of the adult hippocampus up to 8 weeks following high-dose total body irradiation. Environmental enrichment can partially restore the adult neurogenic process in this part of the brain following high-dose irradiation, and this was found to be independent of blood monocyte-derived microglia presence. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. 77 FR 51579 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2012-08-24

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken metal to the Atomic Energy of Canada...

  7. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Yuanqing Wang

    2016-01-01

    Full Text Available Experiments of 17 high strength aluminum alloy (7A04 specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinematic hardening were calibrated from test data according to Chaboche model. The cyclic tests were simulated in finite element software ABAQUS. The test results show that 7A04 aluminum alloy has obvious nonlinearity and ultra-high strength which is over 600 MPa, however, with relatively poor ductility. In the cyclic loading tests, 7A04 aluminum alloy showed cyclic hardening behavior and when the compressive strain was larger than 1%, the stiffness degradation and strength degradation occurred. The simulated curves derived by FE model fitted well with experimental curves which indicates that the parameters of this combined model can be used in accurate calculation of 7A04 high strength aluminum structures under cyclic loading.

  8. Aluminum Removal From Hanford Waste By Lithium Hydrotalcite Precipitation - Laboratory Scale Validation On Waste Simulants Test Report

    International Nuclear Information System (INIS)

    Sams, T.; Hagerty, K.

    2011-01-01

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH) 4 ) as lithium hydrotalcite (Li 2 CO 3 .4Al(OH) 3 .3H 2 O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  9. Perturbation theory and importance functions in integral transport formulations

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory

  10. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  11. Choice and utilization of slightly enriched uranium fuel for high performance research reactors

    International Nuclear Information System (INIS)

    Cerles, J.M.; Schwartz, J.P.

    1978-01-01

    Problems relating to the replacement of highly enriched (90% or 93% U 235 ) uranium fuel: by moderately enriched (20% or 40% in U 235 ) metallic uranium fuel and slightly enriched (3% or 8% in U 235 ) uranium oxide fuel are discussed

  12. LTCC magnetic components for high density power converter

    Science.gov (United States)

    Lebourgeois, Richard; Labouré, Eric; Lembeye, Yves; Ferrieux, Jean-Paul

    2018-04-01

    This paper deals with multilayer magnetic components for power electronics application and specifically for high frequency switching. New formulations based on nickel-zinc-copper spinel ferrites were developed for high power and high frequency applications. These ferrites can be sintered at low temperature (around 900°C) which makes them compatible with the LTCC (Low Temperature Co-fired Ceramics) technology. Metallic parts of silver or gold can be fully integrated inside the ferrite while guaranteeing the integrity of both the ferrite and the metal. To make inductors or transformers with the required properties, it is mandatory to have nonmagnetic parts between the turns of the winding. Then it is essential to find a dielectric material, which can be co-sintered both with the ferrite and the metal. We will present the solution we found to this problem and we will describe the results we obtained for a multilayer co-sintered transformer. We will see that these new components have good performance compared with the state of the art and are very promising for developing high density switching mode power supplies.

  13. Industrial plants for production of highly enriched nitrogen-15

    International Nuclear Information System (INIS)

    Krell, E.; Jonas, C.

    1977-01-01

    A discussion is presented of the present stage of development of large-scale enrichment of 15 N. The most important processes utilized to separate nitrogen isotopes, namely chemical exchange in the NO/NO 2 /HNO 3 system and low-temperature distillation of NO at -151 0 C, are compared, especially with respect to their economics and use of energy. As examples, chemical exchange plants in the GDR are discussed, and the research activities necessary to optimize the process, especially to solve aerodynamic, hydrodynamic, interface and processing problems, are reviewed. Good results were obtained by the choice of an optimum location and the design of a plant for pre-enrichment to 10 at.% 15 N and an automatically operating two-section cascade for the high enrichment of 15 N to more than 99 at.%. The chemical industry has taken over operation of the plant with the consequence that the raw materials are all available without additional transport. All by-products (nitrous gases and sulphuric acid) are returned for use elsewhere within the industry. The technology of the plant has been chosen so that the quantity of highly enriched product can be varied within a wide range. The final product is used to synthesize more than 250 different 15 N-labelled compounds which are also produced on an industrial scale. (author)

  14. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  15. [Residual risk: The roles of triglycerides and high density lipoproteins].

    Science.gov (United States)

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried

    2016-06-01

    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Development of long-life low enrichment fuel

    International Nuclear Information System (INIS)

    Gietzen, A.J.; West, G.B.

    1978-01-01

    With only a few exceptions, TRIGA reactors have always used low-enriched-uranium (LEU) fuel with an enrichment of 19.9%. The exceptions have either been converted from the standard low-enriched fuel to the 70% enriched FLIP fuel in order to achieve extended lifetime, or are higher powered reactors which were designed for long life using 93%-enriched uranium during the time when the use and export of highly enriched uranium (HEU) was not restricted. The advent of international policies focusing attention on non-proliferation and safeguards made the HEU fuels obsolete. General Atomic immediately undertook a development effort (nearly two years ago) in order to be in a position to comply with these policies for all future export sales and also to provide a low-enriched alternative to fully enriched plate-type fuels. This important work was subsequently partially supported by the U. S. Department of Energy. The laboratory and production tests have shown that higher uranium densities can be achieved to compensate for reducing the enrichment to 20%, and that the fuels maintain the characteristics of the very thoroughly proven standard TRIGA fuels. In May of this year, General Atomic announced that these fuels were available for TRIGA reactors and for plate-type reactors with power levels up to 15 MW with GA's standard commercial warranty

  17. Soft x-ray emission studies of several aluminum alloys

    International Nuclear Information System (INIS)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-01-01

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole

  18. Soft x-ray emission studies of several aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, K.L.; Zhang, C.H.; Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.; Biancaniello, F.; Curelaru, I.

    1986-09-23

    During the first few months of operation of our soft x-ray spectrometer at the NSLS, we have measured the L emission spectrum for three classes of aluminum alloys: dilute aluminum-magnesium alloys to extend the Al-Mg system to the impurity limit; a 50-50 alloy of aluminum-lithium to characterize the band structure of bulk samples of this potential battery electrolite; and the icosahedral and normal Al-Mn alloys to see if the two phases had measurably different density of states which have been predicted. All spectra shown are produced when core holes generated by energetic electrons or photons are filled by radiative transitions from conduction band states. Dipole selection rules govern the transitions. Thus, K spectra provide a measure of the p-symmetic partial density of states (DOS) near the atom. Similarly, L spectra produced by transitions to p-core holes map the s and d symmetric DOS in the vicinity of the atom with the core hole.

  19. Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors

    Science.gov (United States)

    Busom, J.; Schreiber, A.; Tolosa, A.; Jäckel, N.; Grobelsek, I.; Peter, N. J.; Presser, V.

    2016-10-01

    Supercapacitors are devices for rapid and efficient electrochemical energy storage and commonly employ carbon coated aluminum foil as the current collector. However, the thickness of the metallic foil and the corresponding added mass lower the specific and volumetric performance on a device level. A promising approach to drastically reduce the mass and volume of the current collector is to directly sputter aluminum on the freestanding electrode instead of adding a metal foil. Our work explores the limitations and performance perspectives of direct sputter coating of aluminum onto carbon film electrodes. The tight and interdigitated interface between the metallic film and the carbon electrode enables high power handling, exceeding the performance and stability of a state-of-the-art carbon coated aluminum foil current collector. In particular, we find an enhancement of 300% in specific power and 186% in specific energy when comparing aluminum sputter coated electrodes with conventional electrodes with Al current collectors.

  20. A feasibility study concerning the conversion of the TR-2 reactor from using highly enriched uranium to light enriched uranium

    International Nuclear Information System (INIS)

    Aldemir, T.; Turgut, H.M.; Bretscher, M.M.; Snelgrove, L.J.

    1983-01-01

    A study has been made of the feasibility of converting the 5-MW TR-2 reactor at CNAEM to use fuel with uranium enrichment of 3 O 8 -Al fuel meat with a uranium density in the range 2.3 to 3.0 g/cm 3 in the fuel meat with meat thickness varying between 0.9 and 1.00 mm, the number of plates in the LEU element being reduced from 23 in the HEU element to 19 to 20 to maintain adequate cooling. Fuels within this density range are expected to be commercially available within the next two years. From the results of the study it appears to be feasible to safely operate the TR-2 reactor using LEU fuel without increased fuel cycle costs or decreased performance using U 2 O 8 fuels with densities in the 2.3 to 3.0 gU/cm 3 range. (author)

  1. Enrichment of high ammonia tolerant methanogenic culture

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Karakashev, Dimitar Borisov; Proietti, Nicolas

    Ammonia is the major toxicant in full scale anaerobic digesters of animal wastes which are rich in proteins and/or urea, such as pig or poultry wastes. Ammonia inhibition decreases methane production rates, increases volatile fatty acids concentration and leads to economic losses for the biogas...... was derived from a full scale biogas reactor (Hashøj, Denmark), fed with 75% animal manure and 25% food industries organic waste. Basal anaerobic medium was used for the enrichment along with sodium acetate (1 g HAc L-1) as a carbon source. Fluorescence insitu hybridization (FISH) was used to determine...... exclusively to strict aceticlastic methanogens. Results obtained in this study, demonstrated for the first time that strictly aceticlastic methanogens, derived from an enriched culture, can efficiently produce methane under high ammonia levels....

  2. Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions.

    Science.gov (United States)

    Yu, Chaowei; Reddy, Amitha P; Simmons, Christopher W; Simmons, Blake A; Singer, Steven W; VanderGheynst, Jean S

    2015-01-01

    Microbial communities enriched from diverse environments have shown considerable promise for the targeted discovery of microorganisms and enzymes for bioconversion of lignocellulose to liquid fuels. While preservation of microbial communities is important for commercialization and research, few studies have examined storage conditions ideal for preservation. The goal of this study was to evaluate the impact of preservation method on composition of microbial communities enriched on switchgrass before and after storage. The enrichments were completed in a high-solid and aerobic environment at 55 °C. Community composition was examined for each enrichment to determine when a stable community was achieved. Preservation methods included cryopreservation with the cryoprotective agents DMSO and glycerol, and cryopreservation without cryoprotective agents. Revived communities were examined for their ability to decompose switchgrass under high-solid and thermophilic conditions. High-throughput 16S rRNA gene sequencing of DNA extracted from enrichment samples showed that the majority of the shift in composition of the switchgrass-degrading community occurred during the initial three 2-week enrichments. Shifts in community structure upon storage occurred in all cryopreserved samples. Storage in liquid nitrogen in the absence of cryoprotectant resulted in variable preservation of dominant microorganisms in enriched samples. Cryopreservation with either DMSO or glycerol provided consistent and equivalent preservation of dominant organisms. A stable switchgrass-degrading microbial community was achieved after three 2-week enrichments. Dominant microorganisms were preserved equally well with DMSO and glycerol. DMSO-preserved communities required more incubation time upon revival to achieve pre-storage activity levels during high-solid thermophilic cultivation on switchgrass. Despite shifts in the community with storage, the samples were active upon revival under thermophilic and

  3. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    Science.gov (United States)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  4. Density-based global sensitivity analysis of sheet-flow travel time: Kinematic wave-based formulations

    Science.gov (United States)

    Hosseini, Seiyed Mossa; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-04-01

    Despite advancements in developing physics-based formulations to estimate the sheet-flow travel time (tSHF), the quantification of the relative impacts of influential parameters on tSHF has not previously been considered. In this study, a brief review of the physics-based formulations to estimate tSHF including kinematic wave (K-W) theory in combination with Manning's roughness (K-M) and with Darcy-Weisbach friction formula (K-D) over single and multiple planes is provided. Then, the relative significance of input parameters to the developed approaches is quantified by a density-based global sensitivity analysis (GSA). The performance of K-M considering zero-upstream and uniform flow depth (so-called K-M1 and K-M2), and K-D formulae to estimate the tSHF over single plane surface were assessed using several sets of experimental data collected from the previous studies. The compatibility of the developed models to estimate tSHF over multiple planes considering temporal rainfall distributions of Natural Resources Conservation Service, NRCS (I, Ia, II, and III) are scrutinized by several real-world examples. The results obtained demonstrated that the main controlling parameters of tSHF through K-D and K-M formulae are the length of surface plane (mean sensitivity index T̂i = 0.72) and flow resistance (mean T̂i = 0.52), respectively. Conversely, the flow temperature and initial abstraction ratio of rainfall have the lowest influence on tSHF (mean T̂i is 0.11 and 0.12, respectively). The significant role of the flow regime on the estimation of tSHF over a single and a cascade of planes are also demonstrated. Results reveal that the K-D formulation provides more precise tSHF over the single plane surface with an average percentage of error, APE equal to 9.23% (the APE for K-M1 and K-M2 formulae were 13.8%, and 36.33%, respectively). The superiority of Manning-jointed formulae in estimation of tSHF is due to the incorporation of effects from different flow regimes as

  5. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    Science.gov (United States)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  6. Emission spectroscopy of hypervelocity impacts on aluminum, organic and high-explosive targets

    NARCIS (Netherlands)

    Verreault, J.; Day, J.P.R.; Halswijk, W.H.C.; Loiseau, J.; Huneault, J.; Higgins, A.J.; Devir, A.D.

    2015-01-01

    Laboratory experiments of hypervelocity impacts on aluminum, nylon and high-explosive targets are presented. Spectral measurements of the impact flash are recorded, together with radiometric measurements to derive the temperature of the flash. Such experiments aim at demonstrating that the impact

  7. Enriching an effect calculus with linear types

    DEFF Research Database (Denmark)

    Egger, Jeff; Møgelberg, Rasmus Ejlers; Simpson, Alex

    2009-01-01

    We define an ``enriched effect calculus'' by conservatively extending  a type theory for computational effects with primitives from linear logic. By doing so, we obtain a generalisation of linear type theory, intended as a formalism for expressing linear aspects of effects. As a worked example, we...... formulate  linearly-used continuations in the enriched effect calculus. These are captured by a fundamental translation of the enriched effect calculus into itself, which extends existing call-by-value and call-by-name linearly-used CPS translations. We show that our translation is involutive. Full...... completeness results for the various linearly-used CPS translations  follow. Our main results, the conservativity of enriching the effect calculus with linear primitives, and the involution property of the fundamental translation, are proved using a category-theoretic semantics for the enriched effect calculus...

  8. Low-temperature resistance of cyclically strained aluminum

    International Nuclear Information System (INIS)

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  9. Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature

    International Nuclear Information System (INIS)

    Yang, Weijuan; Zhang, Tianyou; Liu, Jianzhong; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    In order to recover the released heat of Al–H_2O reaction and promote the reaction itself, the hydrogen production processes of aluminum with lithium addition in molten state are investigated. Experiments are conducted by both a thermogravimetric analyzer and a special experimental facility at high temperature. The results on both apparatuses show that the addition of Li can promote the reactivity of aluminum with water. Compared with pure aluminum, only 5% of Li content can achieve a great improvement: the H_2 yield increases from 8.7% to 53% and the average H_2 generation rate from 15 to 112 mL min"−"1 g"−"1. With the increase of Li content, H_2 yield is improved distinctly and the period with a high H_2 generation rate is prolonged. In the Al–20%Li case, the H_2 yield of 88% is obtained, and it appears a stable period in which the H_2 generation rate keeps high. When adding lithium, LiAlO_2 appears in the products and the products are made of columnar crystals. The pores with an average size of 17–33 nm in the LiAlO_2 products are manyfold bigger than the pores of alumina, which takes an important role in improving the reactivity of aluminum and water. - Highlights: • The Al–H_2O reaction with Li addition in molten state was researched. • Li addition can achieve a great promotion of H_2 yield and H_2 generation rate. • The Al–20%Li case achieved a H_2 yield of 88%. • With Li addition, LiAlO_2 was detected in the reaction products. • XRD and TEM-EDS results indicated the promoting mechanism of Li.

  10. Thermal expansion and density measurements of molten and solid materials at high temperatures by the gamma attenuation technique

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1979-05-01

    An apparatus is described for the measurement of the density and thermal expansion of molten materials to 3200 0 K using the gamma attenuation technique. The precision of the experimental technique was analytically examined for both absolute and relative density determinations. Three analytical expressions used to reduce data for liquid density determinations were evaluated for their precision. Each allows use of a different set of input data parameters, which can be chosen based on experimental considerations. Using experimentally reasonable values for the precision of the parameters yields a similar resultant density precision from the three methods, on the order of 0.2%. The analytical method for measurements of the linear thermal expansion of solids by the gamma method is also described. To demonstrate the use of the technique on reasonably well-characterized systems, data are presented for (1) the density and thermal expansion of molten tin, lead, and aluminum to 1300 0 K, (2) the thermal expansion of solid aluminum to the melting point, and (3) the thermal expansion of a low melting point glass through the transition temperature and melting region. The data agree very well with published results using other methods where such published data exist

  11. Growth and characterization of isotopically enriched 70Ge and 74Ge single crystals

    International Nuclear Information System (INIS)

    Itoh, K.

    1992-10-01

    Isotopically enriched 70 Ge and 74 Ge single crystals were successfully gown by a newly developed vertical Bridgman method. The system allows us to reliably grow high purity Ge single crystals of approximately 1 cm 3 volume. To our knowledge, we have grown the first 70 Ge single crystal. The electrically active chemical impurity concentration for both crystals was found to be ∼2 x cm -3 which is two order of magnitude better that of 74 Ge crystals previously grown by two different groups. Isotopic enrichment of the 70 Ge and the 74 Ge crystals is 96.3% and 96.8%, respectively. The residual chemical impurities present in both crystals were identified as phosphorus, copper, aluminum, and indium. A wide variety of experiments which take advantage of the isotopic purity of our crystals are discussed

  12. Experimental Ion Exchange Column With SuperLig 639 And Simulant Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Megan; Nash, C.

    2013-08-26

    SuperLig®639 ion exchange resin was tested as a retrieval mechanism for pertechnetate, through decontamination of a perrhenate spiked 5M Simple Average Na{sup +} Mass Based Simulant. Testing included batch contacts and a three-column ion exchange campaign. A decontamination of perrhenate exceeding 99% from the liquid feed was demonstrated. Analysis of the first formulation of a SBS/WESP simulant found unexpectedly low concentrations of soluble aluminum. Follow-on work will complete the formulation.

  13. Successful enrichment of the ubiquitous freshwater acI Actinobacteria.

    Science.gov (United States)

    Garcia, Sarahi L; McMahon, Katherine D; Grossart, Hans-Peter; Warnecke, Falk

    2014-02-01

    Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity

    Science.gov (United States)

    Oddone, Valerio; Boerner, Benji; Reich, Stephanie

    2017-12-01

    High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.

  15. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  16. Bioinspired, Graphene/Al2O3 Doubly Reinforced Aluminum Composites with High Strength and Toughness.

    Science.gov (United States)

    Zhang, Yunya; Li, Xiaodong

    2017-11-08

    Nacre, commonly referred to as nature's armor, has served as a blueprint for engineering stronger and tougher bioinspired materials. Nature organizes a brick-and-mortar-like architecture in nacre, with hard bricks of aragonite sandwiched with soft biopolymer layers. However, cloning nacre's entire reinforcing mechanisms in engineered materials remains a challenge. In this study, we employed hybrid graphene/Al 2 O 3 platelets with surface nanointerlocks as hard bricks for primary load bearer and mechanical interlocking, along with aluminum laminates as soft mortar for load distribution and energy dissipation, to replicate nacre's architecture and reinforcing effects in aluminum composites. Compared with aluminum, the bioinspired, graphene/Al 2 O 3 doubly reinforced aluminum composite demonstrated an exceptional, joint improvement in hardness (210%), strength (223%), stiffness (78%), and toughness (30%), which are even superior over nacre. This design strategy and model material system should guide the synthesis of bioinspired materials to achieve exceptionally high strength and toughness.

  17. Aluminum-carbon composite electrode

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  18. 76 FR 72984 - Revised Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2011-11-28

    ... NUCLEAR REGULATORY COMMISSION Revised Application for a License To Export High-Enriched Uranium The application for a license to export high-enriched Uranium has been revised as noted below. Notice... fabricate fuel France. Security Complex; October 18, Uranium (93.35%). uranium (174.0 elements in France...

  19. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    International Nuclear Information System (INIS)

    Seri, Osami

    2008-01-01

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl 3 . The FeAl 3 particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl 3 particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl 3 free surface was an electrochemical treatment such as cathodic current density of -2 kAm -2 in a 20-30 mass% HNO 3 solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl 3 free particles are examined in a 0.1 kmol/m 3 NaCl solution. It is found that aluminum with free FeAl 3 particles shows higher corrosion resistance than aluminum with FeAl 3 particles

  20. Nuclear material enrichment identification method based on cross-correlation and high order spectra

    International Nuclear Information System (INIS)

    Yang Fan; Wei Biao; Feng Peng; Mi Deling; Ren Yong

    2013-01-01

    In order to enhance the sensitivity of nuclear material identification system (NMIS) against the change of nuclear material enrichment, the principle of high order statistic feature is introduced and applied to traditional NMIS. We present a new enrichment identification method based on cross-correlation and high order spectrum algorithm. By applying the identification method to NMIS, the 3D graphs with nuclear material character are presented and can be used as new signatures to identify the enrichment of nuclear materials. The simulation result shows that the identification method could suppress the background noises, electronic system noises, and improve the sensitivity against enrichment change to exponential order with no system structure modification. (authors)

  1. High-Density Superconducting Cables for Advanced ACTPol

    Science.gov (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  2. Isotope enrichment

    International Nuclear Information System (INIS)

    Garbuny, M.

    1979-01-01

    The invention discloses a method for deriving, from a starting material including an element having a plurality of isotopes, derived material enriched in one isotope of the element. The starting material is deposited on a substrate at less than a critical submonatomic surface density, typically less than 10 16 atoms per square centimeter. The deposit is then selectively irradiated by a laser (maser or electronic oscillator) beam with monochromatic coherent radiation resonant with the one isotope causing the material including the one istope to escape from the substrate. The escaping enriched material is then collected. Where the element has two isotopes, one of which is to be collected, the deposit may be irradiated with radiation resonant with the other isotope and the residual material enriched in the one isotope may be evaporated from the substrate and collected

  3. Influence of scandium on the microstructure and strength properties of the welded joint at the laser welding of aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Golyshev, A. A.; Ivanova, M. Yu.

    2017-10-01

    Today, aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from lithium admixture. Various technologies of fusible welding of these alloys are being developed. Serious demands are imposed to the welded joints of aluminum alloys in respect to their strength characteristics. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint. The effect of scandium on the micro-and macro-structure has been studied as well as the strength characteristics of the welded joint. It has been found that scandium under in the laser welding process increases the welded joint elasticity for the system Al-Mg-Li, aluminum alloy 1420 by 20 %, and almost doubles the same for the system Al-Cu-Li, aluminum alloy 1441.

  4. Disposal criticality analysis for aluminum-based DOE fuels

    International Nuclear Information System (INIS)

    Davis, J.W.; Gottlieb, P.

    1997-11-01

    This paper describes the disposal criticality analysis for canisters containing aluminum-based Department of Energy fuels from research reactors. Different canisters were designed for disposal of highly enriched uranium (HEU) and medium enriched uranium (MEU) fuel. In addition to the standard criticality concerns in storage and transportation, such as flooding, the disposal criticality analysis must consider the degradation of the fuel and components within the waste package. Massachusetts Institute of Technology (MIT) U-Al fuel with 93.5% enriched uranium and Oak Ridge Research Reactor (ORR) U-Si-Al fuel with 21% enriched uranium are representative of the HEU and MEU fuel inventories, respectively. Conceptual canister designs with 64 MIT assemblies (16/layer, 4 layers) or 40 ORR assemblies (10/layer, 4 layers) were developed for these fuel types. Borated stainless steel plates were incorporated into a stainless steel internal basket structure within a 439 mm OD, 15 mm thick XM-19 canister shell. The Codisposal waste package contains 5 HLW canisters (represented by 5 Defense Waste Processing Facility canisters from the Savannah River Site) with the fuel canister placed in the center. It is concluded that without the presence of a fairly insoluble neutron absorber, the long-term action of infiltrating water can lead to a small, but significant, probability of criticality for both the HEU and MEU fuels. The use of 1.5kg of Gd distributed throughout the MIT fuel and the use of carbon steels for the structural basket or 1.1 kg of Gd distributed in the ORR fuel will reduce the probability of criticality to virtually zero for both fuels

  5. Modeling of electromagnetic and thermal diffusion in a large pure aluminum stabilized superconductor under quench

    CERN Document Server

    Gavrilin, A V

    2001-01-01

    Low temperature composite superconductors stabilized with extra large cross-section pure aluminum are currently in use for the Large Helical Device in Japan, modern big detectors such as ATLAS at CERN, and other large magnets. In these types of magnet systems, the rated average current density is not high and the peak field in a region of interest is about 2-4 T. Aluminum stabilized superconductors result in high stability margins and relatively long quench times. Appropriate quench analyses, both for longitudinal and transverse propagation, have to take into account a rather slow diffusion of current from the superconductor into the thick aluminum stabilizer. An exact approach to modeling of the current diffusion would be based on directly solving the Maxwell's equations in parallel with thermal diffusion and conduction relations. However, from a practical point of view, such an approach should be extremely time consuming due to obvious restrictions of computation capacity. At the same time, there exist cert...

  6. The Diametrically Loaded Cylinder For The Study Of Nanostructured Aluminum-Graphene And Aluminum-Alumina Nanocomposites Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Meysam eTabandeh Khorshid

    2016-05-01

    Full Text Available Non-contact methods for characterization of metal matrix composites have the potential to accelerate the development and study of advanced composite materials. In this study, diametrical compression of small disk specimens was used to understand the mechanical properties of metal matrix micro and nano composites. Analysis was performed using an inverse method that couples digital image correlation and the analytical closed form formulation. This technique was capable of extracting the tension and compression modulus values in the metal matrix nanocomposite disk specimens. Specimens of aluminum and aluminum reinforced with either Al2O3 nanoparticles or graphene nanoplatelets (GNP were synthesized using a powder metallurgy approach that involved room temperature milling in ethanol, and low temperature drying followed by single action compaction. The elastic and failure properties of MMNC materials prepared using the procedure above are presented.

  7. 78 FR 16303 - Request To Amend a License To Export; High-Enriched Uranium

    Science.gov (United States)

    2013-03-14

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export; High-Enriched Uranium Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the... Application No. Docket No. U.S. Department of Energy, High-Enriched Uranium 10 kilograms uranium To...

  8. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys

    International Nuclear Information System (INIS)

    Senkov, O.N.; Senkova, S.V.; Woodward, C.

    2014-01-01

    The microstructure, phase composition and mechanical properties of the AlMo 0.5 NbTa 0.5 TiZr and Al 0.4 Hf 0.6 NbTaTiZr high-entropy alloys are reported. The AlMo 0.5 NbTa 0.5 TiZr alloy consists of two body-centered cubic (bcc) phases with very close lattice parameters, a 1 = 326.8 pm and a 2 = 332.4 pm. One phase was enriched with Mo, Nb and Ta and another phase was enriched with Al and Zr. The phases formed nano-lamellae modulated structure inside equiaxed grains. The alloy had a density of ρ = 7.40 g cm −3 and Vickers hardness H v = 5.8 GPa. Its yield strength was 2000 MPa at 298 K and 745 MPa at 1273 K. The Al 0.4 Hf 0.6 NbTaTiZr had a single-phase bcc structure, with the lattice parameter a = 336.7 pm. This alloy had a density ρ = 9.05 g cm −3 , Vickers microhardness H v = 4.9 GPa, and its yield strength at 298 K and 1273 K was 1841 MPa and 298 MPa, respectively. The properties of these Al-containing alloys were compared with the properties of the parent CrMo 0.5 NbTa 0.5 TiZr and HfNbTaTiZr alloys and the beneficial effects from the Al additions on the microstructure and properties were outlined. A thermodynamic calculation of the solidification and equilibrium phase diagrams was conducted for these alloys and the calculated results were compared with the experimental data

  9. Ultimate disposition of aluminum clad spent nuclear fuel in the United States

    International Nuclear Information System (INIS)

    Messick, C.E.; Clark, W.D.; Clapper, M.; Mustin, T.P.

    2001-01-01

    Treatment and disposition of spent nuclear fuel (SNF) in the United States has changed significantly over the last decade due to change in world climate associated with nuclear material. Chemical processing of aluminum based SNF is ending and alternate disposition paths are being developed that will allow for the ultimate disposition of the enriched uranium in this SNF. Existing inventories of aluminum based SNF are currently being stored primarily in water-filled basins at the Savannah River Site (SRS) while these alternate disposition paths are being developed and implemented. Nuclear nonproliferation continues to be a worldwide concern and it is causing a significant influence on the development of management alternatives for SNF. SRS recently completed an environmental impact statement for the management of aluminum clad SNF that selects alternatives for all of the fuels in inventory. The U.S. Department of Energy and SRS are now implementing a dual strategy of processing small quantities of 'problematic' SNF while developing an alternative technology to dispose of the remaining aluminum clad SNF in the proposed monitored geologic repository. (author)

  10. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.

    Science.gov (United States)

    Zhang, Changkun; Ding, Yu; Zhang, Leyuan; Wang, Xuelan; Zhao, Yu; Zhang, Xiaohong; Yu, Guihua

    2017-06-19

    Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li + /Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L -1 and an energy density of 189 Wh L -1 or 165 Wh kg -1 have been achieved when coupled with a I 3 - /I - catholyte. The prototype cell has also been extended to the use of a Br 2 -based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L -1 . The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling

    International Nuclear Information System (INIS)

    Pavlak, I.E.; Cintho, O.M.; Capocchi, J.D.T.

    2010-01-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  12. Research of plating aluminum and aluminum foil on internal surface of carbon fiber composite material centrifuge rotor drum

    International Nuclear Information System (INIS)

    Lu Xiuqi; Dong Jinping; Dai Xingjian

    2014-01-01

    In order to improve the corrosion resistance, thermal conductivity and sealability of the internal surface of carbon fiber/epoxy composite material centrifuge rotor drum, magnetron sputtering aluminum and pasting an aluminum foil on the inner wall of the drum are adopted to realize the aim. By means of XRD, SEM/EDS and OM, the surface topography of aluminum coated (thickness of 5 μm and 12 μm) and aluminum foil (12 μm) are observed and analyzed; the cohesion of between aluminum coated (or aluminum foil) and substrate material (CFRP) is measured by scratching experiment, direct drawing experiment, and shear test. Besides, the ultra-high-speed rotation experiment of CFRP ring is carried out to analyze stress and strain of coated aluminum (or aluminum foil) which is adhered on the ring. The results showed aluminum foil pasted on inner surface do better performance than magnetron sputtering aluminum on CFRP centrifuge rotor drum. (authors)

  13. Development of low enrichment technologies for high density fuels and for isotope production targets

    International Nuclear Information System (INIS)

    Taboada, Horacio; Gonzalez, Alfredo G.

    2005-01-01

    Since more than twenty years ago, CNEA has carried out RERTR activities. Main goals are to convert the RA 6 reactor core from HEU to LEU, to get a comprehensive understanding of U-Mo/Al compounds phase formation in dispersed and monolithic fuels, to develop possible solutions to VHD dispersed and monolithic fuels technical problems, and to optimize techniques to recover U from silicide scrap samples. The future plans include: 1) Completion the RA 6 reactor conversion to LEU; 2) Qualification by irradiation of the promising solutions found for the high density fuels; 3) Irradiation of mini plates and full scale fuel assemblies at the RA 3 reactor and at higher flux and temperature reactors; 4) Optimization of LEU target and radiochemical techniques for radioisotope production. (author) [es

  14. Qualification of high density aluminide fuels for the BR2 reactor

    International Nuclear Information System (INIS)

    Beeckmans de West-Meerbeeck, Andre; Gubel, Pol; Ponsard, Bernard; Pin, Thomas; Falgoux, Jean Louis

    2005-01-01

    The BR2 operation still relies on the use of 90..93% enriched HEU aluminide fuel. The availability of a limited batch of 73% enriched HEU from reprocessed BR2 uranium in Dounreay justified 10 years ago the qualification and use of this material. After some preliminary test irradiations, various batches of fuel elements were fabricated by the UKAEA-Dounreay and successfully irradiated. Due to their lower 235 U content (0.050 g 235 U/cm 2 ), these elements were always irradiated together with standard 90...93% HEU fuel elements. A mixed-core strategy was developed at this occasion for an optimal utilization, and was reported during the 4th RRFM conference (March 19-21, 2000, Colmar, France). The availability of a new batch of fresh 73% HEU material was the occasion, a few years ago, to initiate the development, fabrication and qualification of a new high density fuel element. An order was placed with CERCA to assess the optimal fabrication methods and tooling required to meet as far as possible the existing BR2 standard specifications and 235 U content (0.060 g 235 U/cm 2 ). This development phase has been already reported during the 7th RRFM conference (March 9-12, 2003, Aix-en-Provence, France). Afterwards, six lead test fuel elements were ordered for qualification by irradiation. The neutronic properties of the fuel elements were adjusted and optimized. After a short summary of the main results of the development program, this paper describes the nuclear characteristics of the high density fuel elements and comments on the nuclear follow-up of the lead test fuel elements during their irradiation for five cycles in the BR2 reactor and the return of experience for CERCA. (author)

  15. Corrosion Degradation of Coated Aluminum Alloy Systems through Galvanic Interactions

    Science.gov (United States)

    2017-07-19

    REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...19b. TELEPHONE NUMBER (Include area code) Corrosion  Degradation  of  Coated  Aluminum  Alloy  Systems  through  Galvanic...their  low  density  and  relatively  high  strength.   While  exhibiting  significant  general   corrosion  resistance,  these

  16. Electrochemical behaviour of aluminum alloy containing various stanum concentration tested in tropical seawater

    International Nuclear Information System (INIS)

    Siti Radiah Mohd Kamarudin; Muhamad Daud; Mohd Shariff Satar

    2004-01-01

    A study has been carried out to investigate the electrochemical behaviour of sacrificial anodes with different Sh concentration in tropical seawater environment. In this work, samples of Aluminum alloy with the addition of Sn in a range of 1. 0% - 1. 7% were tested in tropical seawater at room temperature. Tafel technique was used to produce a graph of the measured current versus potential for each different Sh concentration of aluminum alloy. The results show that the variation in alloy compositions affected the values of corrosion rate, corrosion current density and potential compared to alloy without Sn content. Furthermore, it was found that small addition of Sn successfully increased aluminum ion dissolution into seawater by producing a higher value of corrosion current density and corrosion rate. (Author)

  17. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    Science.gov (United States)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  18. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    Science.gov (United States)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  19. Use of low-cost aluminum in electric energy production

    Science.gov (United States)

    Zhuk, Andrey Z.; Sheindlin, Alexander E.; Kleymenov, Boris V.; Shkolnikov, Eugene I.; Lopatin, Marat Yu.

    Suppression of the parasitic corrosion while maintaining the electrochemical activity of the anode metal is one of the serious problems that affects the energy efficiency of aluminum-air batteries. The need to use high-purity aluminum or special aluminum-based alloys results in a significant increase in the cost of the anode, and thus an increase in the total cost of energy generated by the aluminum-air battery, which narrows the range of possible applications for this type of power source. This study considers the process of parasitic corrosion as a method for hydrogen production. Hydrogen produced in an aluminum-air battery by this way may be further employed in a hydrogen-air fuel cell (Hy-air FC) or in a heat engine, or it may be burnt to generate heat. Therefore, anode materials may be provided by commercially pure aluminum, commercially produced aluminum alloys, and secondary aluminum. These materials are much cheaper and more readily available than special anode alloys of aluminum and high-purity aluminum. The aim of present study is to obtain experimental data for comparison of energy and cost parameters of some commercially produced aluminum alloys, of high-purity aluminum, and of a special Al-ln anode alloy in the context of using these materials as anodes for an Al-air battery and for combined production of electrical power and hydrogen.

  20. How Thin Is Foil? Applying Density to Find the Thickness of Aluminum Foil

    Science.gov (United States)

    Concannon, James P.

    2011-01-01

    In this activity, I show how high school students apply their knowledge of density to solve an unknown variable, such as thickness. Students leave this activity with a better understanding of density, the knowledge that density is a characteristic property of a given substance, and the ways density can be measured. (Contains 4 figures and 1 table.)

  1. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    Science.gov (United States)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was

  2. Heat capacity of iron, aluminum, and chromium vanadates at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cheshnitskii, S.M.; Fotiev, A.A.; Ignashin, V.P.; Kesler, Y.A.

    1985-09-01

    The thermodynamic characteristics of compounds participating in the processing of vanadium-containing raw materials have not been sufficiently investigated. In this paper the authors report on measurements of the heat capacities of the compounds FeVO/sub 4/, CrVO/sub 4/, AIVO/sub 4/, Fe/sub 2/V/sub 4/O/sub 13/ and FeCr(VO/sub 4/)/sub 2/ at high temperatures. The obtained experimental data on the high-temperature heat capacity of iron, aluminum, and chromium vanadates makes it possible to calculate the thermodynamic functions of these compounds at high temperatures.

  3. Effect of liquid properties on laser ablation of aluminum and titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Peixuan, E-mail: oypx12@mails.tsinghua.edu.cn [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); Li, Peijie [National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Leksina, E.G.; Michurin, S.V. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119992 (Russian Federation); He, Liangju [School of Aerospace, Tsinghua University, Beijing 100084 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Porous surfaces are formed in Al alloy after wet ablation due to phase explosion. • A higher ablation rate is produced in glycerin than that in water and isopropanol. • Effect of liquid properties on mass-removal mechanisms was discussed. • Phase explosion and plasma-induced pressure contribute greatly to mass removal. • Density, heat conductivity and shock impendence of liquid affect ablation rates. - Abstract: In order to study the effect of liquid properties on laser ablation in liquids, aluminum 5A06 and titanium TB5 targets were irradiated by single-pulse infrared laser in isopropanol, distilled water, glycerin and as a comparison, in air, respectively. Craters induced by laser ablation were characterized using scanning electron and white-light interferometric microscopies. The results show that for liquid-mediated ablation, craters with porous surface structures were formed in aluminum target through phase explosion, while no micro-cavities were formed in titanium target owing to high critical temperature of titanium. In addition, ablation rates of aluminum and titanium targets vary with types of ambient media in accordance with such sequence: air < isopropanol < water < glycerin. Further, the influence of liquid properties on material-removal mechanisms for laser ablation in liquid is discussed. It is concluded that the density, thermal conductivity and acoustical impedance of liquid play a dominant role in laser ablation efficiency.

  4. Understanding of radiation effect on sinks in aluminum materials for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Il; Kim, Ji Hyun [UNIST, Daejeon (Korea, Republic of)

    2015-05-15

    Aluminum and its alloy are widely used in structural materials for research reactor such as guide tube and cladding because of its physical properties such as high thermal conductivity, neutron economy and corrosion resistant properties. Although aluminum and its alloy have excellent characteristic, radiation induced hardening and swelling are still important safety concern. From microstructural analysis, it was confirmed that dislocation loop, void and precipitate are major sinks which induced swelling and hardening. Among these defects, precipitation such as Mg{sub 2}Si and Si were generated by reaction between alloy elements and transmutations. Therefore, radiation induced swelling and hardening can be predicted by analyzing these defect. However, quantitative analysis of these defects has not been done by computational tools. Therefore, it is unclear that specific mechanism of alloy element effects on the irradiation swelling and hardening in aluminum alloys. Historically, radiation induced phenomena such as swelling, growth and hardening is simulated by Mean Field Radiation Damage Theory (MFRDT). From the MFRDT, reactions of irradiation defect and sink are calculated and then sink density is evolved at each type of sinks. The aim of this study is understanding of radiation effect on sink behavior. From the simplified reaction mechanism, defect concentration, sink density and irradiation hardening are calculated at each sink type. Transmutation effect was mostly dominant and dislocation loop and void effect were negligible.

  5. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    International Nuclear Information System (INIS)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y.

    2014-01-01

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets

  6. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  7. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.

    1977-01-01

    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  8. Thermomechanical treatment of welded joints of aluminum-lithium alloys modified by scandium

    Science.gov (United States)

    Malikov, A. G.

    2017-12-01

    At present, the aeronautical equipment manufacture involves up-to-date high-strength aluminum alloys of decreased density resulting from the lithium admixture. Various technologies of fusible welding of these alloys are being developed. The paper presents experimental investigations of the optimization of the laser welding of aluminum alloys with the scandium-modified welded joint after thermomechanical treatment. The effect of scandium on the micro- and macrostructure is studied along with strength characteristics of the welded joint. It is found that thermomechanical treatment allows us to obtain the strength of the welded joint 0.89 for the Al-Mg-Li system and 0.99 for the Al-Cu-Li system with the welded joint modified by scandium in comparison with the base alloy after treatment.

  9. First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile

    Science.gov (United States)

    Tang, Weiqiang; Xuan, Jin; Wang, Huizhi; Zhao, Shuangliang; Liu, Honglai

    2018-04-01

    Aluminum-ion batteries, emerging as a promising post-lithium battery solution, have been a subject of increasing research interest. Yet, most existing aluminum-ion research has focused on electrode materials development and synthesis. There has been a lack of fundamental understanding of the electrode processes and thus theoretical guidelines for electrode materials selection and design. In this study, by using density functional theory, we for the first time report a first-principles investigation on the thermodynamic and kinetic properties of aluminum intercalation into two common TiO2 polymorphs, i.e., anatase and rutile. After examining the aluminum intercalation sites, intercalation voltages, storage capacities and aluminum diffusion paths in both cases, we demonstrate that the stable aluminum intercalation site locates at the center of the O6 octahedral for TiO2 rutile and off center for TiO2 anatase. The maximum achievable Al/Ti ratios for rutile and anatase are 0.34375 and 0.36111, respectively. Although rutile is found to have an aluminum storage capacity slightly higher than anatase, the theoretical specific energy of rutile can reach 20.90 Wh kg-1, nearly twice as high as anatase (9.84 Wh kg-1). Moreover, the diffusion coefficient of aluminum ions in rutile is 10-9 cm2 s-1, significantly higher than that in anatase (10-20 cm2 s-1). In this regard, TiO2 rutile appears to be a better candidate than anatase as an electrode material for aluminum-ion batteries.

  10. Recent progress in the development and understanding of silicon surface passivation by aluminum oxide for photovoltaics

    NARCIS (Netherlands)

    Dingemans, G.; Kessels, W.M.M.

    2010-01-01

    In the recent years, considerable progress has been made in the understanding of the unique silicon surface passivation properties of aluminum oxide (Al2O3) films including its underlying mechanisms. Containing a high fixed negative charge density located close to the Si interface, Al2O3 provides a

  11. 75 FR 15743 - Application for a License To Export High-Enriched Uranium

    Science.gov (United States)

    2010-03-30

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant to 10 CFR 110.70(c) ``Public notice of receipt of an application,'' please take notice that the...-Enriched 160.0 kilograms To fabricate fuel France. Complex, March 3, 2010. Uranium (93.35%). uranium (149...

  12. Improving of Corrosion Resistance of Aluminum Alloys by Removing Intermetallic Compound

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Osami [Muroran it., Hokkaido (Japan)

    2008-06-15

    It is well known that iron is one of the most common impurity elements sound in aluminum and its alloys. Iron in the aluminum forms an intermetallic compounds such as FeAl{sub 3}. The FeAl{sub 3} particles on the aluminum surface are one of the most detrimental phases to the corrosion process and anodizing procedure for aluminum and its alloys. Trial and error surface treatment will be carried out to find the preferential and effective removal of FeAl{sub 3} particles on the surfaces without dissolution of aluminum matrix around the particles. One of the preferable surface treatments for the aim of getting FeAl{sub 3} free surface was an electrochemical treatment such as cathodic current density of -2 kAm{sup -2} in a 20-30 mass% HNO{sub 3} solution for the period of 300s. The corrosion characteristics of aluminum surface with FeAl{sub 3} free particles are examined in a 0.1 kmol/m{sup 3} NaCl solution. It is found that aluminum with free FeAl{sub 3} particles shows higher corrosion resistance than aluminum with FeAl{sub 3} particles.

  13. Fabrication and characterization of 6Li-enriched Li2TiO3 pebbles for a high Li-burnup irradiation test

    International Nuclear Information System (INIS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2006-10-01

    Lithium titanate (Li 2 TiO 3 ) pebbles are considered to be a candidate material of tritium breeders for fusion reactor from viewpoints of easy tritium release at low temperatures (about 300degC) and chemical stability. In the present study, trial fabrication tests of 6 Li-enriched Li 2 TiO 3 pebbles of 1mm in diameter were carried out by a wet process with a dehydration reaction, and characteristics of the 6 Li-enriched Li 2 TiO 3 pebbles were evaluated for preparation of a high Li-burnup test in a testing reactor. Powder of 96at% 6 Li-enriched Li 2 TiO 3 was prepared by a solid state reaction, and two kinds of 6 Li-enriched Li 2 TiO 3 pebbles, namely un-doped and TiO 2 -doped Li 2 TiO 3 pebbles, were fabricated by the wet process. Based on results of the pebble fabrication tests, two kinds of 6 Li-enriched Li 2 TiO 3 pebbles were successfully fabricated with target values (density: 80-85%T.D., grain size: 2 TiO 3 pebbles was a satisfying value of about 1.05. Contact strength of these pebbles was about 6300MPa, which was almost the same as that of the Li 2 TiO 3 pebbles with natural Li. (author)

  14. Structural and morphological changes in pseudobarrier films of anodic aluminum oxide caused by irradiation with high-energy particles

    International Nuclear Information System (INIS)

    Chernykh, M.A.; Belov, V.T.

    1988-01-01

    We have studied the structural and morphological changes, occurring under the electron beam in pseudobarrier films of anodic aluminum oxide, prepared in seven different solutions and irradiated beforehand by protons of x-rays, with the aim of elucidating the structure of anodic aluminum oxides. An increased stability of the pseudobarrier films of anodic aluminum oxide has been observed towards the action of the electron beam of an UEMV-100K microscope at standard working regimes (75 keV) as a result of irradiation with protons or x-rays. A difference has been found to exist between structural and morphological changes of anodic aluminum oxide films, prepared in different solutions, when irradiated with high-energy particles. A structural and phase inhomogeneity of amorphous pseudobarrier films of anodic aluminum oxide has been detected and its influence on the character of solid-phase transformations under the maximum-intensity electron beam

  15. Risk Assessment of Aluminum in Drinking Water between Two Residential Areas

    Directory of Open Access Journals (Sweden)

    Aizat I. Syazwan

    2011-09-01

    Full Text Available A cross-sectional study was conducted at Sungai Lembing (SL and Bukit Ubi (BU, Kuantan, Malaysia. The main objectives of this epidemiological study were to determine the aluminum concentration in drinking water, to compare with the government standard and to perform health risk assessment prediction among respondents from these two residential areas. A total of 100 respondents were selected from the study areas based on a few inclusive and exclusive criteria. Two duplicates of treated water samples were taken from each respondent's house using a 200 mL high-density polyethylene (HDPE bottle and 0.4 mL (69% pure concentrated nitric acid added as preservative. Aluminum concentrations were analyzed using Lambda 25 UV/V spectrophotometer. The result showed that the mean concentration of aluminum in drinking water from SL was 0.11 ± 0.0634 mg/L and 0.12 ± 0.0462 mg/L for BU. The mean value of Chronic Daily Intake (CDI in SL (0.0035 ± 0.0028 mg/kg/day was lower compared to BU (0.0037 ± 0.0021 mg/kg/day. The Hazard Index (HI calculation showed all respondents had HI less than 1. In conclusion, there was unlikely potential for adverse health effects from aluminum intake in drinking water. However, it was necessary for some action to be taken in order to reduce aluminum levels found in drinking water in both locations.

  16. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    Science.gov (United States)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  17. Intensity-dependent resonant transmission of x-rays in solid-density aluminum plasma

    Science.gov (United States)

    Cho, M. S.; Chung, H.-K.; Cho, B. I.

    2018-05-01

    X-ray free-electron lasers (XFELs) provide unique opportunities to generate and investigate dense plasmas. The absorption and transmission properties of x-ray photons in dense plasmas are important in characterizing the state of the plasmas. Experimental evidence shows that the transmission of x-ray photons through dense plasmas depends greatly on the incident XFEL intensity. Here, we present a detailed analysis of intensity-dependent x-ray transmission in solid-density aluminum using collisional-radiative population kinetics calculations. Reverse saturable absorption (RSA), i.e., an increase in x-ray absorption with intensity has been observed for photon energies below the K-absorption edge and in the intensity range of 1016-1017 W/cm2 for XFEL photons with 1487 eV. At higher intensities, a transition from RSA to saturable absorption (SA) is predicted; thus, the x-ray absorption decreases with intensity above a threshold value. For XFEL photon energies of 1501 eV and 1515 eV, the transition from RSA to SA occurs at XFEL intensities between 1017-1018 W/cm2. Electron temperatures are predicted to be in the range of 30-50 eV for the given experimental conditions. Detailed population kinetics of the charge states explains the intensity-dependent absorption of x-ray photons and the fast modulation of XFEL pulses for both RSA and SA.

  18. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    Science.gov (United States)

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  19. Variation of the Plasma Density in a Glow Discharge Upon the Application of A High Voltage

    International Nuclear Information System (INIS)

    Akman, S.

    2004-01-01

    It is emphasized and demonstrated that, during the formation of an ion-matrix sheath in a glow discharge upon the application of a high voltage pulse, the existing neutral plasma density should change as well. An explicit and practical expression for the neutral plasma density in terms of the gas pressure, secondary electron emission coefficient and the applied voltage is derived, so that the consequent sheath behavior can be formulated correctly. The theoretical result is compared with the data of an experiment, particularly designed and performed to test its validity, and found to be in good agreement with the latter

  20. The improvement of surface roughness for OAP aluminum mirrors: from terahertz to ultraviolet

    Science.gov (United States)

    Peng, Jilong; Yu, Qian; Shao, Yajun; Wang, Dong; Yi, Zhong; Wang, Shanshan

    2018-01-01

    Aluminum reflector, especially OAP (Off-Axis Parabolic) reflector, has been widely used in terahertz and infrared systems for its low cost, lightweight, good machinability, small size, simple structure, and having the same thermal expansion and contraction with the system structure which makes it have a wide temperature adaptability. Thorlabs, Daheng and other large optical components companies even have Aluminum OAP sold on shelf. Most of the precision Aluminum OAP is fabricated by SPDT (single point diamond turing). Affected by intermittent shock, the roughness of aluminum OAP mirrors through conventional single-point diamond lathes is around 7 nm which limits the scope of application for aluminum mirrors, like in the high power density terahertz/infrared systems and visible/UV optical systems. In this paper, a continuous process frock is proposed, which effectively reduces the influence of turning impact on the mirror roughness. Using this process, an off-axis parabolic aluminum reflector with an effective diameter of 50 mm, off-axis angle of 90 degree is fabricated, and the performances are validated. Measurement by VEECO NT1100 optical profiler with 20× objects, the surface roughness achieves 2.3 nm, and the surface figure error is within λ/7 RMS (λ= 632.8 nm) tested by FISB Aμ Phase laser interferometer with the help of a standard flat mirror. All these technical specifications are close to the traditional glass-based reflectors, and make it possible for using Aluminum reflectors in the higher LIDT (laser induced damage threshold) systems and even for the micro sensor of ionospheric for vacuum ultraviolet micro nano satellites.

  1. Aluminum hydride as a hydrogen and energy storage material: Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, J., E-mail: graetz@bnl.gov [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY (United States); Reilly, J.J. [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton, NY (United States); Yartys, V.A.; Maehlen, J.P. [Institute for Energy Technology, Kjeller (Norway); Bulychev, B.M. [Department of Chemistry, Lomonosov Moscow State University, Moscow (Russian Federation); Antonov, V.E. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Tarasov, B.P. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka (Russian Federation); Gabis, I.E. [Department of Physics, Saint-Petersburg State University, St. Petersburg (Russian Federation)

    2011-09-15

    Aluminum hydride (AlH{sub 3}) and its associated compounds make up a fascinating class of materials that have motivated considerable scientific and technological research over the past 50 years. Due primarily to its high energy density, AlH{sub 3} has become a promising hydrogen and energy storage material that has been used (or proposed for use) as a rocket fuel, explosive, reducing agent and as a hydrogen source for portable fuel cells. This review covers the past, present and future research on aluminum hydride and includes the latest research developments on the synthesis of {alpha}-AlH{sub 3} and the other polymorphs (e.g., microcrystallization reaction, batch and continuous methods), crystallographic structures, thermodynamics and kinetics (e.g., as a function of crystallite size, catalysts and surface coatings), high-pressure hydrogenation experiments and possible regeneration routes.

  2. Some new high energy materials and their formulations for specialized applications

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Jai Prakash [Directorate of Materials, DRDO HQrs, ' B' Wing, Sena Bhavan, New Delhi - 110 011 (India)

    2005-10-01

    Energetic materials form an integral part of most weapon systems and a large number of new high-energy materials: thermally stable explosives, high-performance explosives, melt-castable explosives, insensitive high explosives and energetic binders have been reported in the literature in recent years. Some explosive formulations based on these new energetic materials are also vaguely reported. This paper examines these materials and their formulations from the point of view of stability, reliability, safety and specific applications. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  3. Air liquefaction and enrichment system propulsion in reusable launch vehicles

    Science.gov (United States)

    Bond, W. H.; Yi, A. C.

    1994-07-01

    A concept is shown for a fully reusable, Earth-to-orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high-speed acceleration, both using liquid hydrogen for fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90% pure liquid oxygen as its oxidizer that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. This article shows an approach and the corresponding technology needs for using air liquefaction and enrichment system propulsion in a single-stage-to-orbit (SSTO) vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, in a direct substitution for aluminum or aluminum-lithium alloy, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.

  4. Biosorption of aluminum on Pseudomonas aeruginosa loaded on Chromosorb 106 prior to its graphite furnace atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Soylak, Mustafa

    2008-01-01

    A biosorption procedure for separation-enrichment of aluminum in environmental samples has been presented in this work. Pseudomonas aeruginosa loaded on Chromosorb 106 has been used as biosorbent for that purpose. P. aeruginosa is a gram-negative, aerobic rod. The influences of pH of the aqueous solution, eluent type, eluent volume, sample volume, etc. were examined on the quantitative recovery of aluminum in P. aeruginosa loaded on Chromosorb 106. The effects of concomitant ions on the recoveries of aluminum were also investigated. The detection limit based on 3 sigma for aluminum is 30 ng L -1 . Three certified reference materials (LGC 6010 Hard Drinking Water, NIST-SRM 1568a Rice Flour and NRCC-DORM-2 Dogfish Muscle) were analyzed for the validation of the presented procedure. The proposed procedure was applied to the determination of aluminum in environmental samples including natural water and food samples. The concentration of aluminum in real samples was found at ppb level

  5. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.

    Science.gov (United States)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M

    2016-01-28

    A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.

  6. Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity

    Science.gov (United States)

    2015-01-01

    We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility. PMID:25314576

  7. Influence of Mg O and B2O3 addition on reaction sintering, properties and microstructure of Aluminum titanate

    International Nuclear Information System (INIS)

    Ajami, R.; Sarpoolaki, H.; Akbari, G. H.

    2007-01-01

    The effect of Mg O and B 2 O 3 on the formation, physical properties, phase analysis and microstructure of aluminum titanate was investigated. Density results showed the sample containing of 1 wt percent B 2 O 3 and 2 wt percent Mg O leads to the highest density while the lowest density was seen in samples containing 1 wt percent B 2 O 3 compared to pure aluminum titanate. Regarding the phase analysis of samples, Mg O was found most effective additive on reaction sintering of aluminum titanate through the intermediate phases. Furthermore at the temperatures above 1350 d eg C , B 2 O 3 promote the formation reaction of aluminum titanate. Microstructural analysis showed the samples containing Mg O are fine grain and homogeneous. Thermal expansion coefficient of samples with additives is greater than pure aluminum titanate. Pure aluminum titanate samples and one containing B 2 O 3 additive decompose to Al 2 O 3 and TiO 2 after 5 hours heat treatment at 1150 d eg C while the samples containing 2 wt percent Mg O was stable even after 25 hours

  8. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    International Nuclear Information System (INIS)

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A.; Yudin, A. V.

    2011-01-01

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  9. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    Energy Technology Data Exchange (ETDEWEB)

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A., E-mail: trusov@itep.ru; Yudin, A. V. [Institute for Theoretical and Experimental Physics (Russian Federation)

    2011-03-15

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  10. Hydrolysis of aluminum dross material to achieve zero hazardous waste

    International Nuclear Information System (INIS)

    David, E.; Kopac, J.

    2012-01-01

    Highlights: ► The hydrolysis of aluminum dross in tap water generates pure hydrogen. ► Aluminum particles from dross are activated by mechanically milling technique. ► The process is completely greenhouse gases free and is cleanly to environment. ► Hydrolysis process leads to recycling of waste aluminum by hydrogen production. - Abstract: A simple method with high efficiency for generating high pure hydrogen by hydrolysis in tap water of highly activated aluminum dross is established. Aluminum dross is activated by mechanically milling to particles of about 45 μm. This leads to removal of surface layer of the aluminum particles and creation of a fresh chemically active metal surface. In contact with water the hydrolysis reaction takes place and hydrogen is released. In this process a Zero Waste concept is achieved because the other product of reaction is aluminum oxide hydroxide (AlOOH), which is nature-friendly and can be used to make high quality refractory or calcium aluminate cement. For comparison we also used pure aluminum powder and alkaline tap water solution (NaOH, KOH) at a ratio similar to that of aluminum dross content. The rates of hydrogen generated in hydrolysis reaction of pure aluminum and aluminum dross have been found to be similar. As a result of the experimental setup, a hydrogen generator was designed and assembled. Hydrogen volume generated by hydrolysis reaction was measured. The experimental results obtained reveal that aluminum dross could be economically recycled by hydrolysis process with achieving zero hazardous aluminum dross waste and hydrogen generation.

  11. Electrosynthesized polyaniline for the corrosion protection of aluminum alloy 2024-T3

    Directory of Open Access Journals (Sweden)

    Huerta-Vilca Domingo

    2003-01-01

    Full Text Available Adherent polyaniline films on aluminum alloy 2024-T3 have been prepared by electrodeposition from aniline containing oxalic acid solution. The most appropriate method to prepare protective films was a successive galvanostatic deposition of 500 seconds. With this type of film, the open circuit potential of the coating shifted around 0.065V vs. SCE compared to the uncoated alloy. The polyaniline coatings can be considered as candidates to protect copper-rich (3 - 5% aluminum alloys by avoiding the galvanic couple between re-deposited copper on the surface and the bulk alloy. The performance of the polyaniline films was verified by immersion tests up to 2.5 months. It was good with formation of some aluminum oxides due to electrolyte permeation so, in order to optimize the performance a coating formulation would content an isolation topcoat.

  12. Characterization of kaolin and granite waste for formulation of porcelain stoneware tiles

    International Nuclear Information System (INIS)

    Luna da Silveira, G.C.; Acchar, W.; Gomes, U.U.; Silva, B.K.O.; Luna da Silveira, R.V.; Labrincha, J.A.; Costa, M.C.P.

    2016-01-01

    To produce a stoneware tiles is necessary develop a formulation that satisfies their structural characteristics, micro-structural, physical and mechanical properties. Thus, in order to create a formulation for porcelain stoneware tiles that give use to kaolin and granite waste used in the production of ceramic materials were asked the following characterizations: chemical analysis, mineralogical, thermal and particle size. We found that in the kaolin sample it presents a rate of silicon oxide and aluminum oxide similar to those found in the work of other investigators, about 45.23% SiO2 and 37.39% Al_2O_3. In the granite waste, the percentage of silicon oxide and aluminum oxide are also similar to those observed in other studies, with about 74.89% SiO2 and 10.54% Al_2O_3. Both the percentage of SiO_2 and Al_2O_3 founded in these two samples satisfy the percentage required in the manufacturing of porcelain stoneware tiles. (author)

  13. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    Science.gov (United States)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  14. Nickel container of highly-enriched uranium bodies and sodium

    Science.gov (United States)

    Zinn, Walter H.

    1976-01-01

    A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.

  15. Nickel container of highly-enriched uranium bodies and sodium

    International Nuclear Information System (INIS)

    Zinn, W.H.

    1976-01-01

    A fuel element comprises highly enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel

  16. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  17. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  18. Characteristics of heat shrinkable high density polyethylene crosslinked by γ-irradiation

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang

    2001-01-01

    The effects of γ-irradiation on the crosslinking of high density polyethylene (HDPE) was investigated for the purpose of obtaining a suitable formulation for heat shrinkable materials. In this study the HDPE specimens were prepared by blending with cross linking agents and pressed into a 0.2 mm sheet at 180 .deg. C. γ-irradiation was conducted at 40 to 100 kGy in nitrogen. The heat shrinkable property and thermal mechanical property of the HDPE sheets have been investigated. It was found that the degree of crosslinking of the irradiated HDPE samples were increased with irradiation dose. Compared with the HDPE containing triallylisocyanurate, the HDPE containing trimethlol propane triacrylate shows a slight increase in crosslinking density. The heat transformation and dimension change of HDPE decreased with increasing radiation dose. The heat shrinkage of the samples increased with increasing annealing temperatures. The thermal resistance of HDPE increased upon the crosslinking of HDPE

  19. Analysis and Nanomold Design for Aluminum Nanoimprinting

    Directory of Open Access Journals (Sweden)

    Te-Hua Fang

    2014-11-01

    Full Text Available The nanoforging process and mechanism of pure aluminum samples is studied using molecular dynamics (MD simulations based on embedded atom method (EAM potential function. The effects of the forging temperature and the forging velocity are evaluated in terms of molecular trajectories, internal energy, and a radial distribution function. The simulation results clearly show that the internal energy of the workpiece exerted on it during the forging process have high energy with decreasing forging temperature ; however, with increasing forging velocity, the internal energy have higher energy. During the forging process, a special atomic structure in (011 and (0 slip planes was observed, and that represents the site of generation of dislocation and growth nucleation. When severe plastic deformation occurs, the density of the workpiece varied. The forged workpiece has similar distributions of atomic density after the loading for various forging temperatures and forging velocities.

  20. Powder metallurgy development at SRL

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1978-01-01

    Fuel for Savannah River Plant (SRP) reactors consists of extruded tubes with aluminum--uranium alloy cores clad with 8001 aluminum. The 235 U in the fuel is periodically recovered and recycled in new fuel assemblies. The buildup of 236 U in the enriched uranium requires increased total uranium contents to maintain reactivity in existing assembly designs. High level waste production from these tubes is proportional to the aluminum content; therefore, appreciable radioactive waste reductions result from lower aluminum--uranium ratios and thinner clad tubes. The casting process now used for fuel cores is limited to below 40 wt % U because of the reduced fabricability of high uranium alloys. To increase tube loading and reduce aluminum, the U 3 O 8 -Al powder metallurgy (P/M) process for fuel tubes is under development. Several fabricaion and irradiaion tests have been made using production conditions. Both small scale and production tests carried out at SRL for high-density P/M fuel development are discussed

  1. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  2. Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak.

    Science.gov (United States)

    Ottesen, Andrea; Ramachandran, Padmini; Reed, Elizabeth; White, James R; Hasan, Nur; Subramanian, Poorani; Ryan, Gina; Jarvis, Karen; Grim, Christopher; Daquiqan, Ninalynn; Hanes, Darcy; Allard, Marc; Colwell, Rita; Brown, Eric; Chen, Yi

    2016-11-16

    Microbiota that co-enrich during efforts to recover pathogens from foodborne outbreaks interfere with efficient detection and recovery. Here, dynamics of co-enriching microbiota during recovery of Listeria monocytogenes from naturally contaminated ice cream samples linked to an outbreak are described for three different initial enrichment formulations used by the Food and Drug Administration (FDA), the International Organization of Standardization (ISO), and the United States Department of Agriculture (USDA). Enrichment cultures were analyzed using DNA extraction and sequencing from samples taken every 4 h throughout 48 h of enrichment. Resphera Insight and CosmosID analysis tools were employed for high-resolution profiling of 16S rRNA amplicons and whole genome shotgun data, respectively. During enrichment, other bacterial taxa were identified, including Anoxybacillus, Geobacillus, Serratia, Pseudomonas, Erwinia, and Streptococcus spp. Surprisingly, incidence of L. monocytogenes was proportionally greater at hour 0 than when tested 4, 8, and 12 h later with all three enrichment schemes. The corresponding increase in Anoxybacillus and Geobacillus spp.indicated these taxa co-enriched in competition with L. monocytogenes during early enrichment hours. L. monocytogenes became dominant after 24 h in all three enrichments. DNA sequences obtained from shotgun metagenomic data of Listeria monocytogenes at 48 h were assembled to produce a consensus draft genome which appeared to have a similar tracking utility to pure culture isolates of L. monocytogenes. All three methods performed equally well for enrichment of Listeria monocytogenes. The observation of potential competitive exclusion of L. mono by Anoxybacillus and Geobacillus in early enrichment hours provided novel information that may be used to further optimize enrichment formulations. Application of Resphera Insight for high-resolution analysis of 16S amplicon sequences accurately identified L. monocytogenes

  3. Selection of a glass-ceramic formulation to immobilize fluorinel- sodium calcine

    International Nuclear Information System (INIS)

    Staples, B.A.; Wood, H.C.

    1994-12-01

    One option for immobilizing calcined high level wastes produced by nuclear fuel reprocessing activities at the Idaho Chemical Processing Plant (ICPP) is conversion to a glass-ceramic form through hot isostatic pressing. Calcines exist in several different chemical compositions, and thus candidate formulations have been developed for converting each to glass-ceramic forms which are potentially resistant to aqueous corrosion and stable enough to qualify for repository storage. Fluorinel/Na, a chemically complex calcine type, is one of the types being stored at ICPP, and development efforts have identified three formulations with potential for immobilizing it. These are a glass forming additive that uses aluminum metal to enhance reactivity, a second glass forming additive that uses titanium metal to enhance reactivity and a third that uses not only a combination of silicon and titanium metals but enough phosphorous pentoxide to form a calcium phosphate host phase in the glass-ceramic product. Glass-ceramics of each formulation performed well in restricted characterization tests. However, none of the three was subjected to rigorous testing that would provide information on whether each was processable, that is able to retain favorable characteristics over a practical range of processing conditions

  4. Proteomic Markers of Functional Sperm Population in Bovines: Comparison of Low- and High-Density Spermatozoa Following Cryopreservation.

    Science.gov (United States)

    D'Amours, Olivier; Frenette, Gilles; Bourassa, Sylvie; Calvo, Ézéchiel; Blondin, Patrick; Sullivan, Robert

    2018-01-05

    Mammalian semen contains a heterogeneous population of sperm cells. This heterogeneity results from variability in the complex processes of cell differentiation in the testis, biochemical modifications undergone by spermatozoa during transit along the male reproductive tract, interactions with secretions from accessory sex glands at ejaculation, and, in the context of reproductive technologies, in the ability of ejaculated spermatozoa to resist damage associated with freeze-thaw procedures. When submitted to density gradient centrifugation, ejaculated spermatozoa distribute themselves into two distinct populations: a low-density population characterized by low motility parameters, and a high-density population with high motility characteristics. To understand the origin of ejaculated spermatozoa heterogeneity, cryopreserved semen samples from bulls used by the artificial insemination (A.I.) industry were submitted to Percoll gradient centrifugation. Proteins from low and high density spermatozoa were then extracted with sodium deoxycholate and submitted to proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) methodologies. Quantification of selected sperm proteins was confirmed by multiple reaction monitoring (MRM). Overall, 31 different proteins were more abundant in low-density spermatozoa, while 80 different proteins were more abundant in the high-density subpopulation. Proteins enriched in high-density spermatozoa were markers of sperm functionality such as the glycolytic process, binding to the egg zona pellucida, and motility. Low-density spermatozoa were not solely characterized by loss of proteins and their associated functions. Chaperonin-containing TCP1s and chaperones are hallmarks of the low-density subpopulation. iTRAQ analysis revealed that other proteins such as binder of sperm proteins, histone, GPX5, ELSPBP1, and clusterin are overexpressed in low-density spermatozoa suggesting that these proteins represent defects

  5. Reduced enrichment program for the FRM-II, status 2004

    International Nuclear Information System (INIS)

    Roehrmoser, A.; Petry, W.; Boening, K; Wieschalla, N.

    2005-01-01

    The new research reactor FRM-II of the Technische Universitaet Muenchen (TUM) has been designed to provide a maximal thermal neutron flux at mere 20 MW power. The single element design uses silicide fuel of densities 3.0 and 1.5 g/cm 3 of highly enriched uranium (HEU, 93 % U-235). With the nuclear license, that was granted in May 2003, a condition was imposed to reduce the enrichment of FRM-II to medium enriched uranium (MEU) with not more than 50 % U-235 until the end of the year 2010. The TUM has established an international working group to meet this target. This paper presents the backgrounds and the results and plannings for the first of three 2 1/2 year periods to reach the conversion in time. (author)

  6. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    Science.gov (United States)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  7. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...

  8. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    Science.gov (United States)

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology.

  9. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Chacon-Golcher, E.

    2002-01-01

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm 2 ) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield ( ) at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum values for a K + beam of ∼90 mA/cm 2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm 2 ) and low operating pressures ( e psilon) n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  10. Measurement of the enrichment of uranium in the pipework of a gas centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Packer, T.W.; Lees, E.W.; Close, D.; Nixon, K.V.; Pratt, J.C.; Strittmatter, R.

    1985-01-01

    The US and UK have been separately working on the development of a NDA instrument to determine the enrichment of gaseous UF 6 at low pressures in cascade header pipework in line with the conclusions of the Hexapartite Safeguards Project viz. the instrument is capable of making a ''go/no go'' decision of whether the enrichment is less than/greater than 20%. Recently, there has been a series of very useful technical exchanges of ideas and information between the two countries. This has led to a technical formulation for such an instrumentation based on γ-ray spectrometry which, although plant-specific in certain features, nevertheless is based on the same physical principles. Experimental results from commercially operating enrichment plants are very encouraging and indicate that a complete measurement including set up time on the pipe should be attainable in about 30 minutes when measuring pipes of diameter around 110 mm. 5 refs., 4 figs

  11. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    Full Text Available The aim of work is to study how the high-silicon aluminum AK12D alloy microstructure and MAO-process modes influence on characteristics (microhardness, porosity and thickness of the oxide layer of formed surface layer.Experimental methods of study:1 MAO processing of AK12D alloy disc-shaped samples. MAO modes features are concentration of electrolyte components – soluble water glass Na2SiO3 and potassium hydroxide (KOH. The content of two components both the soluble water glass and the potassium hydroxide was changed at once, with their concentration ratio remaining constant;2 metallographic analysis of AK12D alloy structure using an optical microscope «Olympus GX51»;3 image analysis of the system "alloy AK12D - MAO - layer" using a scanning electron microscope «JEOL JSM 6490LV»;4 hardness evaluation of the MAO-layers using a micro-hardness tester «Struers Duramin».The porosity, microhardness and thickness of MAO-layer formed on samples with different initial structures are analyzed in detail. Attention is paid to the influence of MAO process modes on the quality layer.It has been proved that the MAO processing allows reaching quality coverage with high microhardness values of 1200-1300HV and thickness up to 114 μm on high-silicon aluminum alloy. It has been found that the initial microstructure of alloy greatly affects the thickness of the MAO - layer. The paper explains the observed effect using the physical principles of MAO process and the nature of silicon particles distribution in the billet volume.It has been shown that increasing concentration of sodium silicate and potassium hydroxide in the electrolyte results in thicker coating and high microhardness.It has been revealed that high microhardness is observed in the thicker MAO-layers.Conclusions:1 The microstructure of aluminum AK12D alloy and concentration of electrolyte components - liquid glass Na2SiO3 and potassium hydroxide affect the quality of coating resulted from MAO

  12. [Atmospheric emission of PCDD/Fs from secondary aluminum metallurgy industry in the southwest area, China].

    Science.gov (United States)

    Lu, Yi; Zhang, Xiao-Ling; Guo, Zhi-Shun; Jian, Chuan; Zhu, Ming-Ji; Deng, Li; Sun, Jing; Zhang, Qin

    2014-01-01

    Five secondary aluminum metallurgy enterprises in the southwest area of China were measured for emissions of PCDD/Fs. The results indicated that the emission levels of PCDD/Fs (as TEQ) were 0.015-0.16 ng x m(-3), and the average was 0.093 ng x m(-3) from secondary aluminum metallurgy enterprises. Emission factors of PCDD/Fs (as TEQ) from the five secondary aluminum metallurgy enterprises varied between 0.041 and 4.68 microg x t(-1) aluminum, and the average was 2.01 microg x t(-1) aluminum; among them, PCDD/Fs emission factors from the crucible smelting furnace was the highest. Congener distribution of PCDD/F in stack gas from the five secondary aluminum metallurgies was very different from each other. Moreover, the R(PCDF/PCDD) was the lowest in the enterprise which was installed only with bag filters; the R(PCDF/PCDD) were 3.8-12.6 (the average, 7.7) in the others which were installed with water scrubbers. The results above indicated that the mechanism of PCDD/Fs formation was related to the types of exhaust gas treatment device. The results of this study can provide technical support for the formulation of PCDD/Fs emission standards and the best available techniques in the secondary aluminum metallurgy industry.

  13. New variational formulation of Maxwell-Vlasov and guiding center theories

    International Nuclear Information System (INIS)

    Pfirsch, D.

    1983-07-01

    A new variational formulation of Maxwell-Vlasov and related theories is given in terms of a common Lagrangian density for both the 'Vlasov particles' and the Maxwell fields. This formulation is used to derive in a consistent way, on the one hand, correct charge and current densities and, on the other, corresponding energy and energy flux densities. All of these densities generally show in addition to particle like contributions electric polarization and magnetization terms. By some limiting procedure collisionless guiding center theories with polarization drifts included are also treated. In this way local energy conservation laws are formulated for such theories, which has not been possible up to now. (orig.)

  14. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  15. Renormalization effects and phonon density of states in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2013-02-01

    Full Text Available Using the versatile double time thermodynamic Green's function approach based on many body theory the renormalized frequencies, phonon energy line widths, shifts and phonon density of states (PDOS are investigated via a newly formulated Hamiltonian (does not include BCS type Hamiltonian that includes the effects of electron-phonon, anharmonicities and that of isotopic impurities. The automatic appearance of pairons, temperature, impurity and electron-phonon coupling of renormalized frequencies, widths, shifts and PDOS emerges as a characteristic feature of present theory. The numerical investigations on PDOS for the YBa2Cu3O7 − δ crystal predicts several new feature of high temperature superconductors (HTS and agreements with experimental observations.

  16. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  17. Beryllium-aluminum alloys for investment castings

    International Nuclear Information System (INIS)

    Nachtrab, W.T.; Levoy, N.

    1997-01-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investment casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength

  18. Weight and volume estimates for aluminum-air batteries designed for electric vehicle applications

    Science.gov (United States)

    Cooper, J. F.

    1980-01-01

    The weights and volumes of reactants, electrolyte, and hardware components are estimated for an aluminum-air battery designed for a 40-kW (peak), 70-kWh aluminum-air battery. Generalized equations are derived which express battery power and energy content as functions of total anode area, aluminum-anode weight, and discharge current density. Equations are also presented which express total battery weight and volume as linear combinations of the variables, anode area and anode weight. The sizing and placement of battery components within the engine compartment of typical five-passenger vehicles is briefly discussed.

  19. The Pajarito Monitor: a high-sensitivity monitoring system for highly enriched uranium

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Coop, K.; Garcia, C.; Martinez, J.

    1984-01-01

    The Pajarito Monitor for Special Nuclear Material is a high-sensitivity gamma-ray monitoring system for detecting small quantities of highly enriched uranium transported by pedestrians or motor vehicles. The monitor consists of two components: a walk-through personnel monitor and a vehicle monitor. The personnel monitor has a plastic-scintillator detector portal, a microwave occupancy monitor, and a microprocessor control unit that measures the radiation intensity during background and monitoring periods to detect transient diversion signals. The vehicle monitor examines stationary motor vehicles while the vehicle's occupants pass through the personnel portal to exchange their badges. The vehicle monitor has four groups of large plastic scintillators that scan the vehicle from above and below. Its microprocessor control unit measures separate radiation intensities in each detector group. Vehicle occupancy is sensed by a highway traffic detection system. Each monitor's controller is responsible for detecting diversion as well as serving as a calibration and trouble-shooting aid. Diversion signals are detected by a sequential probability ratio hypothesis test that minimizes the monitoring time in the vehicle monitor and adapts itself well to variations in individual passage speed in the personnel monitor. Designed to be highly sensitive to diverted enriched uranium, the monitoring system also exhibits exceptional sensitivity for plutonium

  20. Recrystallization in Commercially Pure Aluminum

    DEFF Research Database (Denmark)

    Bay, Bent; Hansen, Niels

    1984-01-01

    Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree of defor......Recrystallization behavior in commercial aluminum with a purity of 99.4 pct was studied by techniques such as high voltage electron microscopy, 100 kV transmission electron microscopy, and light microscopy. Sample parameters were the initial grain size (290 and 24 microns) and the degree...... are discussed and compared with results from an earlier study1 covering the recrystallization behavior of commercial aluminum of the same purity deformed at higher degrees of deformation (50 to 90 pct reduction in thickness by cold-rolling)....

  1. Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts

    International Nuclear Information System (INIS)

    Thomas, W.E.

    1976-04-01

    This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U 3 O 8 to UF 6 conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent 235 U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent 235 U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor

  2. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    Science.gov (United States)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  3. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    Science.gov (United States)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  4. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  5. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  6. 78 FR 17942 - Request To Amend a License To Export High-Enriched Uranium

    Science.gov (United States)

    2013-03-25

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export High-Enriched Uranium Pursuant... Administration. Enriched Uranium contained in 99.7 Reactor in the be processed for March 6, 2013 (93.35%)) kilograms Czech Republic to medical isotope March 11, 2013 uranium) the list of production at the XSNM3622...

  7. Research reactor core conversion from the use of highly enriched uranium to the use of low enriched uranium fuels guidebook

    International Nuclear Information System (INIS)

    1980-08-01

    In view of the proliferation concerns caused by the use of highly enriched uranium (HEU) and in anticipation that the supply of HEU to research and test reactors will be more restricted in the future, this document has been prepared to assist reactor operators in determining whether conversion to the use of low enriched uranium (LEU) fuel designs is technically feasible for their specific reactor, and to assist in making a smooth transition to the use of LEU fuel designs where appropriate

  8. Study of the U3O8-Al thermite reaction and strength of reactor fuel tubes

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1984-01-01

    Research and test reactors are presently operated with aluminum-clad fuel elements containing highly enriched uranium-aluminum alloy cores. To lower the enrichment and still maintain reactivity, the uranium content of the fuel element will need to be higher than currently achievable with alloy fuels. This will necessitate conversion to other forms such as U 3 O 8 -aluminum cermets. Above the aluminum melting point, U 3 O 8 and aluminum undergo an exothermic thermite reaction and cermet fuel cores tend to keep their original shape. Both factors could affect the course and consequences of a reactor accident, and therefore prompted an investigation of the behavior of cermet fuels at elevated temperatures. Tests were carried out using pellets and extruded tube sections with 53 wt % U 3 O 8 in aluminum. This content corresponds to a theoretical uranium density of 1.9 g/cc. Results indicate that the thermite reaction occurs at about 900 0 C in air without a violent effect. The heat of reaction was approximately 123 cal/g of U 3 O 8 -aluminum fuel. Tensile and compressive strength of the fuel tube section is low above 660 0 C. In tension, sections failed at about the aluminum melting point. In compression with 2 psi average axial stress, failure occurred at 917 0 C, while 7 psi average axial stress produced failure at 669 0 C. (author)

  9. Study of the U3O8-Al thermite reaction and strength of reactor fuel tubes

    International Nuclear Information System (INIS)

    Peacock, H.B.

    1983-01-01

    Research and test reactors are presently operated with aluminum-clad fuel elements containing highly enriched uranium-aluminum alloy cores. To lower the enrichment and still maintain reactivity, the uranium content of the fuel element will need to be higher than currently achievable with alloy fuels. This will necessitate conversion to other forms such as U 3 O 8 -aluminum cermets. Above the aluminum melting point, U 3 O 8 and aluminum undergo an exothermic thermite reaction and cermet fuel cores tend to keep their original shape. Both factors could affect the course and consequences of a reactor accident, and prompted an investigation of the behavior of cermet fuels at elevated temperatures. Tests were carried out using pellets and extruded tube-sections with 53 wt % U 3 O 8 in aluminum. This content corresponds to a theoretical uranium density of 1.9 g/cc. Results indicate that the thermite reaction occurs at about 900 0 C in air without a violent effect. The heat of reaction was approximately 123 cal/g of U 3 O 8 -aluminum fuel. Tensile and compressive strength of the fuel tube section is low above 660 0 C. In tension, sections failed at about the aluminum melting point. In compression with 2-psi average axial stress, failure occurred at 917 0 C, while 7 psi average axial stress produced failure at 669 0 C

  10. Improving the wettability of aluminum on carbon nanotubes

    International Nuclear Information System (INIS)

    So, Kang Pyo; Lee, Il Ha; Duong, Dinh Loc; Kim, Tae Hyung; Lim, Seong Chu; An, Kay Hyeok; Lee, Young Hee

    2011-01-01

    Research highlights: → The wettability of CNT in Al metal was improved by electroplating method. → This involves two steps: (i) Al electroplating and (ii) additional Al wetting. → The large surface tension difference was overcome by forming Al-C covalent bonds. → Al-C covalent bond was verified by Raman spectroscopy and XPS. → Density functional calculations confirmed structural model of CNT-vacancy-O-Al. - Abstract: The wetting of a metal on carbon nanotubes is fundamentally difficult due to the unusually large difference between their surface tensions and is a bottleneck for making metal-carbon nanotube (CNT) composites. Here, we report a simple method to enhance the wettability of metal particles on the CNT surface by applying aluminum, which is the material with the largest surface tension. This method involves two steps: (i) Al nanoparticles are decorated on multiwalled carbon nanotubes by electroplating and (ii) Al powder is further spread on Al-electroplated CNTs, followed by high-temperature annealing to accommodate complete wetting of the aluminum. The large surface tension difference is overcome by forming strong Al-C covalent bonds initiated by defects of the CNTs. The decrease in the D-band intensity, the G-band shift in the Raman spectroscopy and the formation of Al-C covalent bonds, as confirmed by X-ray photoelectron spectroscopy, were in agreement with our structural model of CNT-vacancy-O-Al determined by density functional calculations.

  11. Patterns of binding of aluminum-containing adjuvants to Haemophilus influenzae type b and meningococcal group C conjugate vaccines and components

    Science.gov (United States)

    Otto, Robert B.D.; Burkin, Karena; Amir, Saba Erum; Crane, Dennis T.; Bolgiano, Barbara

    2015-01-01

    The basis of Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup C (MenC) glycoconjugates binding to aluminum-containing adjuvants was studied. By measuring the amount of polysaccharide and protein in the non-adsorbed supernatant, the adjuvant, aluminum phosphate, AlPO4, was found to be less efficient than aluminum hydroxide, Al(OH)3 at binding to the conjugates, at concentrations relevant to licensed vaccine formulations and when equimolar. At neutral pH, binding of TT conjugates to AlPO4 was facilitated through the carrier protein, with only weak binding of AlPO4 to CRM197 being observed. There was slightly higher binding of either adjuvant to tetanus toxoid conjugates, than to CRM197 conjugates. This was verified in AlPO4 formulations containing DTwP–Hib, where the adsorption of TT-conjugated Hib was higher than CRM197-conjugated Hib. At neutral pH, the anionic Hib and MenC polysaccharides did not appreciably bind to AlPO4, but did bind to Al(OH)3, due to electrostatic interactions. Phosphate ions reduced the binding of the conjugates to the adjuvants. These patterns of adjuvant adsorption can form the basis for future formulation studies with individual and combination vaccines containing saccharide-protein conjugates. PMID:26194164

  12. Effects of high thermal neutron fluences on Type 6061 aluminum

    International Nuclear Information System (INIS)

    Weeks, J.R.; Czajkowski, C.J.; Farrell, K.

    1992-01-01

    The control rod drive follower tubes of the High Flux Beam Reactor are contructed from precipitation-hardened 6061-T6 aluminum alloy and they operate in the high thermal neutron flux regions of the core. It is shown that large thermal neutron fluences up to ∼4 x 10 23 n/cm 2 at 333K cause large increases in tensile strength and relatively modest decreases in tensile elongation while significantly reducing the notch impact toughness at room temperature. These changes are attributed to the development of a fine distribution of precipitates of amorphous silicon of which about 8% is produced radiogenically. A proposed role of thermal-to-fast flux ratio is discussed

  13. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-01-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  14. High density harp for SSCL linac

    International Nuclear Information System (INIS)

    Fritsche, C.T.; Krogh, M.L.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities

  15. Experiments on the Haeffner effect i. e. isotope enrichment on passage of high current densities through metallic melts. [Lithium]. Versuche zum Haeffner-Effekt (Isotopenanreicherung beim Durchgang von Gleichstrom hoher Stromdichte durch Metallschmelzen)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G

    1962-01-01

    The Haeffner effect (E. Haeffner 1953) found first with mercury and later confirmed with several other metals consists in an enrichment of the lighter isotopes at the anode end, and of the heavier isotopes at the cathode end. In the present work measurements were made on molten lithium. To keep current intenisities within reasonable limits the experiments were done in steel capillaries of 0.6 mm inner diameter and lengths 22-43 cm. Current densities were 6000-7400 A/cm/sup 2/ and the duration 150 h. Neutron activation was used as isotope analysis method. Surprisingly and in contrast to previous measurements an enrichment of Li/sub 6/ of about 1% was found at the ends of the capillary relative to its middle. This was independent of the current direction. No explanation of the effect is given.

  16. Mesoporous aluminum phosphite

    International Nuclear Information System (INIS)

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-01-01

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S + I - surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N 2 adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  17. High regression rate, high density hybrid fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  18. Nanoindentation characterization of deformation and failure of aluminum oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J.J.; Wang, K.; Fujita, T. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); McCauley, J.W. [US Army Research Laboratory, Aberdeen Proving Ground, MD 21078 (United States); Singh, J.P. [US Army International Technology Center, Tokyo 106-0032 (Japan); Chen, M.W., E-mail: mwchen@wpi-aimr.tohoku.ac.jp [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2011-02-15

    A systematic study of the mechanical deformation and failure of transparent ceramic aluminum oxynitride (AlON) has been conducted using a depth-sensitive nanoindentation technique combined with transmission electron microscopy (TEM) and Raman spectroscopy. Although discrete displacement bursts appear in the load-depth profiles at high applied forces, a detectable high-pressure phase transition has not been found by means of micro-Raman spectroscopy and TEM. Instead, a high density of dissociated <1 1 0> dislocations can be observed underneath the nanoindenters, suggesting that extensive plastic deformation takes place in the brittle ceramic at high contact pressures. Moreover, nanoindentation-induced micro-cracks oriented along well-defined crystallographic planes can also be observed, consistent with the low fracture toughness of AlON evaluated by an indentation method using Laugier's equation.

  19. Packaging material and aluminum. Hoso zairyo to aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, T [Mitsubishi Aluminum Co. Ltd., Tokyo (Japan)

    1992-02-01

    The present paper introduces aluminum foil packaging materials among the relation between packing materials and aluminum. The characteristics of aluminum foil in the packaging area are in its barrier performance, non-toxicity, tastelessness and odorlessness. Its excellent functions and processibility suit best as functional materials for food, medicine and industrial material packaging. While an aluminum foil may be used as a single packing material as in foils used in homes, many of it as a packaging material are used in combination with adhesives, papers or plastic films, or coated or printed. It is used as composite materials laminated or coated with other materials according to their use for the purpose of complementing the aluminum foil as the base material. Representative method to laminate aluminum foils include the wet lamination, dry lamination, thermally dissolved lamination and extruded lamination. The most important quality requirement in lamination is the adhesion strength, which requires a close attention in selecting the kinds of adhesive, laminating conditions, and aging conditions. 8 figs., 6 tabs.

  20. PRESSURE-IMPULSE DIAGRAM OF MULTI-LAYERED ALUMINUM FOAM PANELS UNDER BLAST PRESSURE

    Directory of Open Access Journals (Sweden)

    CHANG-SU SHIM

    2013-06-01

    Full Text Available Anti-terror engineering has increasing demand in construction industry, but basis of design (BOD is normally not clear for designers. Hardening of structures has limitations when design loads are not defined. Sacrificial foam claddings are one of the most efficient methods to protect blast pressure. Aluminum foam can have designed yield strength according to relative density and mitigate the blast pressure below a target transmitted pressure. In this paper, multi-layered aluminum foam panels were proposed to enhance the pressure mitigation by increasing effective range of blast pressure. Through explicit finite element analyses, the performance of blast pressure mitigation by the multi-layered foams was evaluated. Pressure-impulse diagrams for the foam panels were developed from extensive analyses. Combination of low and high strength foams showed better applicability in wider range of blast pressure.

  1. The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains

    DEFF Research Database (Denmark)

    Nistelberger, H. M.; Smith, O.; Wales, Nathan

    2016-01-01

    . It has been suggested that high-throughput sequencing (HTS) technologies coupled with DNA enrichment techniques may overcome some of these limitations. Here we report the findings of HTS and target enrichment on four important archaeological crops (barley, grape, maize and rice) performed in three...... lightly-charred maize cob. Even with target enrichment, this sample failed to yield adequate data required to address fundamental questions in archaeology and biology. We further reanalysed part of an existing dataset on charred plant material, and found all purported endogenous DNA sequences were likely...

  2. Transformations of highly enriched uranium into metal or oxide

    International Nuclear Information System (INIS)

    Nollet, P.; Sarrat, P.

    1964-01-01

    The enriched uranium workshops in Cadarache have a double purpose on the one hand to convert uranium hexafluoride into metal or oxide, and on the other hand to recover the uranium contained in scrap materials produced in the different metallurgical transformations. The principles that have been adopted for the design and safety of these workshops are reported. The nuclear safety is based on the geometrical limitations of the processing vessels. To establish the processes and the technology of these workshops, many studies have been made since 1960, some of which have led to original achievements. The uranium hexafluoride of high isotopic enrichment is converted either by injection of the gas into ammonia or by an original process of direct hydrogen reduction to uranium tetrafluoride. The uranium contained m uranium-zirconium metal scrap can be recovered by combustion with hydrogen chloride followed treatment of the uranium chloride by fluorine in order to obtain the uranium in the hexafluoride state. Recovery of the uranium contained m various scrap materials is obtained by a conventional refining process combustion of metallic scrap, nitric acid dissolution of the oxide, solvent purification by tributyl phosphate, ammonium diuranate precipitation, calcining, reduction and hydro fluorination into uranium tetrafluoride, bomb reduction by calcium and slag treatment. Two separate workshops operate along these lines one takes care of the uranium with an isotopic enrichment of up to 3 p. 100, the other handles the high enrichments. The handling of each step of this process, bearing in mind the necessity for nuclear safety, has raised some special technological problems and has led to the conception of new apparatus, in particular the roasting furnace for metal turnings, the nitric acid dissolution unit, the continuous precipitator and ever safe filter and dryer for ammonium diuranate, the reduction and hydro fluorination furnace and the slag recovery apparatus These are

  3. A comprehensive review on recent progress in aluminum–air batteries

    Directory of Open Access Journals (Sweden)

    Yisi Liu

    2017-07-01

    Full Text Available The aluminum–air battery is considered to be an attractive candidate as a power source for electric vehicles (EVs because of its high theoretical energy density (8100 Wh kg−1, which is significantly greater than that of the state-of-the-art lithium-ion batteries (LIBs. However, some technical and scientific problems preventing the large-scale development of Al–air batteries have not yet to be resolved. In this review, we present the fundamentals, challenges and the recent advances in Al–air battery technology from aluminum anode, air cathode and electrocatalysts to electrolytes and inhibitors. Firstly, the alloying of aluminum with transition metal elements is reviewed and shown to reduce the self-corrosion of Al and improve battery performance. Additionally for the cathode, extensive studies of electrocatalytic materials for oxygen reduction/evolution including Pt and Pt alloys, nonprecious metal catalysts, and carbonaceous materials at the air cathode are highlighted. Moreover, for the electrolyte, the application of aqueous and nonaqueous electrolytes in Al–air batteries are discussed. Meanwhile, the addition of inhibitors to the electrolyte to enhance electrochemical performance is also explored. Finally, the challenges and future research directions are proposed for the further development of Al–air batteries. Keywords: Aluminum–air battery, Aluminum anode, Air cathode, Oxygen reduction reaction, Electrolytes

  4. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai

    2015-02-01

    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  5. ENRICHMENT PROGRAM FOR ACADEMICALLY TALENTED JUNIOR HIGH SCHOOL STUDENTS FROM LOW INCOME FAMILIES.

    Science.gov (United States)

    PRESSMAN, HARVEY

    A PROPOSAL FOR AN ENRICHMENT PROGRAM FOR ACADEMICALLY TALENTED JUNIOR HIGH SCHOOL STUDENTS FROM LOW-INCOME FAMILIES IN CERTAIN AREAS OF BOSTON IS PRESENTED. BASIC ASSUMPTIONS ARE THAT THERE IS AND OBVIOUS AND PRESSING NEED TO GIVE EXTRA HELP TO THE ABLE STUDENT FROM A DISADVANTAGED BACKGROUND, AND THAT A RELATIVELY BRIEF ENRICHMENT EXPERIENCE FOR…

  6. Chromatographic and Spectral Analysis of Two Main Extractable Compounds Present in Aqueous Extracts of Laminated Aluminum Foil Used for Protecting LDPE-Filled Drug Vials

    Science.gov (United States)

    Akapo, Samuel O.; Syed, Sajid; Mamangun, Anicia; Skinner, Wayne

    2009-01-01

    Laminated aluminum foils are increasingly being used to protect drug products packaged in semipermeable containers (e.g., low-density polyethylene (LDPE)) from degradation and/or evaporation. The direct contact of such materials with primary packaging containers may potentially lead to adulteration of the drug product by extractable or leachable compounds present in the closure system. In this paper, we described a simple and reliable HPLC method for analysis of an aqueous extract of laminated aluminum foil overwrap used for packaging LDPE vials filled with aqueous pharmaceutical formulations. By means of combined HPLC-UV, GC/MS, LC/MS/MS, and NMR spectroscopy, the two major compounds detected in the aqueous extracts of the representative commercial overwraps were identified as cyclic oligomers with molecular weights of 452 and 472 and are possibly formed from poly-condensation of the adhesive components, namely, isophthalic acid, adipic acid, and diethylene glycol. Lower molecular weight compounds that might be associated with the “building blocks” of these compounds were not detected in the aqueous extracts. PMID:20140083

  7. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts

    Directory of Open Access Journals (Sweden)

    Benjamin F. Schultz

    2016-07-01

    Full Text Available In order to gain a better understanding of the reactions and strengthening behavior in cast aluminum alloy/silica composites synthesized by stir mixing, experiments were conducted to incorporate low cost foundry silica sand into aluminum composites with the use of Mg as a wetting agent. SEM and XRD results show the conversion of SiO2 to MgAl2O4 and some Al2O3 with an accompanying increase in matrix Si content. A three-stage reaction mechanism proposed to account for these changes indicates that properties can be controlled by controlling the base Alloy/SiO2/Mg chemistry and reaction times. Experimental data on changes of composite density with increasing reaction time and SiO2 content support the three-stage reaction model. The change in mechanical properties with composition and time is also described.

  8. Helium trapping in aluminum and sintered aluminum powders

    International Nuclear Information System (INIS)

    Das, S.K.; Kaminsky, M.; Rossing, T.

    1975-01-01

    The surface erosion of annealed aluminum and of sintered aluminum powder (SAP) due to blistering from implantation of 100-keV 4 He + ions at room temperature has been investigated. A substantial reduction in the blistering erosion rate in SAP was observed from that in pure annealed aluminum. In order to determine whether the observed reduction in blistering is due to enhanced helium trapping or due to helium released, the implanted helium profiles in annealed aluminum and in SAP have been studied by Rutherford backscattering. The results show that more helium is trapped in SAP than in aluminum for identical irradiation conditions. The observed reduction in erosion from helium blistering in SAP is more likely due to the dispersion of trapped helium at the large Al-Al 2 O 3 interfaces and at the large grain boundaries in SAP than to helium release

  9. Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru).

    Science.gov (United States)

    de Meyer, Caroline M C; Rodríguez, Juan M; Carpio, Edward A; García, Pilar A; Stengel, Caroline; Berg, Michael

    2017-12-31

    This paper presents a first integrated survey on the occurrence and distribution of geogenic contaminants in groundwater resources of Western Amazonia in Peru. An increasing number of groundwater wells have been constructed for drinking water purposes in the last decades; however, the chemical quality of the groundwater resources in the Amazon region is poorly studied. We collected groundwater from the regions of Iquitos and Pucallpa to analyze the hydrochemical characteristics, including trace elements. The source aquifer of each well was determined by interpretation of the available geological information, which identified four different aquifer types with distinct hydrochemical properties. The majority of the wells in two of the aquifer types tap groundwater enriched in aluminum, arsenic, or manganese at levels harmful to human health. Holocene alluvial aquifers along the main Amazon tributaries with anoxic, near pH-neutral groundwater contained high concentrations of arsenic (up to 700μg/L) and manganese (up to 4mg/L). Around Iquitos, the acidic groundwater (4.2≤pH≤5.5) from unconfined aquifers composed of pure sand had dissolved aluminum concentrations of up to 3.3mg/L. Groundwater from older or deeper aquifers generally was of good chemical quality. The high concentrations of toxic elements highlight the urgent need to assess the groundwater quality throughout Western Amazonia. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation.

    Science.gov (United States)

    Mackenzie, S G; Leinonen, I; Ferguson, N; Kyriazakis, I

    2016-05-28

    The objective of this study was to develop a novel methodology that enables pig diets to be formulated explicitly for environmental impact objectives using a Life Cycle Assessment (LCA) approach. To achieve this, the following methodological issues had to be addressed: (1) account for environmental impacts caused by both ingredient choice and nutrient excretion, (2) formulate diets for multiple environmental impact objectives and (3) allow flexibility to identify the optimal nutritional composition for each environmental impact objective. An LCA model based on Canadian pig farms was integrated into a diet formulation tool to compare the use of different ingredients in Eastern and Western Canada. By allowing the feed energy content to vary, it was possible to identify the optimum energy density for different environmental impact objectives, while accounting for the expected effect of energy density on feed intake. A least-cost diet was compared with diets formulated to minimise the following objectives: non-renewable resource use, acidification potential, eutrophication potential, global warming potential and a combined environmental impact score (using these four categories). The resulting environmental impacts were compared using parallel Monte Carlo simulations to account for shared uncertainty. When optimising diets to minimise a single environmental impact category, reductions in the said category were observed in all cases. However, this was at the expense of increasing the impact in other categories and higher dietary costs. The methodology can identify nutritional strategies to minimise environmental impacts, such as increasing the nutritional density of the diets, compared with the least-cost formulation.

  11. Graphene-aluminum nanocomposites

    International Nuclear Information System (INIS)

    Bartolucci, Stephen F.; Paras, Joseph; Rafiee, Mohammad A.; Rafiee, Javad; Lee, Sabrina; Kapoor, Deepak; Koratkar, Nikhil

    2011-01-01

    Highlights: → We investigated the mechanical properties of aluminum and aluminum nanocomposites. → Graphene composite had lower strength and hardness compared to nanotube reinforcement. → Processing causes aluminum carbide formation at graphene defects. → The carbides in between grains is a source of weakness and lowers tensile strength. - Abstract: Composites of graphene platelets and powdered aluminum were made using ball milling, hot isostatic pressing and extrusion. The mechanical properties and microstructure were studied using hardness and tensile tests, as well as electron microscopy, X-ray diffraction and differential scanning calorimetry. Compared to the pure aluminum and multi-walled carbon nanotube composites, the graphene-aluminum composite showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler.

  12. Noble gas enrichment studies at JET

    International Nuclear Information System (INIS)

    Groth, M.; Andrew, P.; Fundamenski, W.; Guo, H.Y.; Hillis, D.L.; Hogan, J.T.; Horton, L.D.; Matthews, G.F.; Meigs, A.G.; Morgan, P.M.; Stamp, M.F.; Hellermann, M. von

    2001-01-01

    Adequate helium exhaust has been achieved in reactor-relevant ELMy H-mode plasmas in JET performed in the MKII AP and MKII GB divertor geometry. The divertor-characteristic quantities of noble gas compression and enrichment have been experimentally inferred from Charge Exchange Recombination Spectroscopy measurements in the core plasma, and from spectroscopic analysis of a Penning gauge discharge in the exhaust gas. The retention of helium was found to be satisfactory for a next-step device, with enrichment factors exceeding 0.1. The helium enrichment decreases with increasing core plasma density, while the neon enrichment has the opposite behaviour. Analytic and numerical analyses of these plasmas using the divertor impurity code package DIVIMP/NIMBUS support the explanation that the enrichment of noble gases depends significantly on the penetration depth of the impurity neutrals with respect to the fuel atoms. Changes of the divertor plasma configuration and divertor geometry have no effect on the enrichment

  13. Strengthening Aluminum Alloys for High Temperature Applications Using Nanoparticles of Al203 and Al3-X Compounds (X= Ti, V, Zr)

    Science.gov (United States)

    Lee, Jonathan A.

    2007-01-01

    In this paper the effect of nanoparticles A12O3 and A13-X compounds (X= Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their chemical stability and low diffusions rates in aluminum matrix at high temperatures. The strengthening mechanism for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. Samples were prepared from A12O3 nanoparticle preforms, which were produced using ceramic injection molding process and pressure infiltrated by molten aluminum. A12O3 nanoparticles can also be homogeneously mixed with aluminum powder and consolidated into samples through hot pressing and sintering. On the other hand, the Al3-X nanoparticles are produced as precipitates via in situ reactions with molten aluminum alloys using conventional casting techniques. The degree of alloy strengthening using nanoparticles will depend on the materials, particle size, shape, volume fraction, and mean inter-particle spacing.

  14. Element segregation behavior of aluminum-copper alloy ZL205A

    Directory of Open Access Journals (Sweden)

    Fan Li

    2014-11-01

    Full Text Available In aluminum-copper alloy, the segregation has a severe bad effect on the alloying degree, strength and corrosion resistance. A deeper understanding of element segregation behavior will have a great significance on the prevention of segregation. In the study, the element segregation behavior of ZL205A aluminum-copper alloy was investigated by examining isothermally solidified samples using scanning electron microscopy and energy dispersive spectroscopy. The calculated results of segregation coefficients show that Cu and Mn are negative segregation elements; while Ti, V and Zr are positive segregation elements. The sequence of element segregation degree from the greatest to the least in ZL205A alloy is Cu, Mn, V, Ti, Zr and Al. The density of residual liquid is expected to increase with a decrease in the quenching temperature ranging from 630 ºC to 550 ºC. The calculated results confirm that the quenching temperature has an insignificant effect on the liquid density; and the variation of density is mainly due to element segregation. Consequently, segregations of Al, Cu and Mn lead to an increase in density, but Ti, V and Zr present the opposite effect. The contribution of each element to the variation of the liquid density was analyzed. The sequence of contributions of alloying elements to the variation of total liquid density is Cu﹥Al﹥Mn﹥V﹥Ti﹥Zr.

  15. Fast Enrichment Screening for Safeguards Applications

    International Nuclear Information System (INIS)

    Simpson, A.; McElhaney, S.

    2010-01-01

    Methods for rapid non-destructive uranium enrichment classification of large containers are of importance to safeguards and counter-terrorism agencies. There is a need to quickly categorize and segregate suspect items as 'depleted' or 'enriched' on a 'Go/No Go' basis. Recent improvements in gamma spectroscopy technologies have provided the capability to perform rapid field analysis using portable and hand-held devices such as battery-operated medium and high resolution detectors (including lanthanum halide and high purity germanium). Furthermore a new generation of portal monitors are currently under development with advanced spectroscopic capabilities. Instruments and technologies that were previously the domain of complex lab systems are now widely available as touch-screen 'off-the-shelf' units. Despite such advances, the task of enrichment analysis remains a complex exercise. This is particularly so when surveying large items such as drums and crates containing debris of unknown density and composition contaminated with uranium. The challenge is equally applicable to safeguards inspectors evaluating large items and for interdiction of illicit special nuclear materials in mass transport e.g. shipping containers at ports and borders. The variable shielding, container size, lack of matrix knowledge, wall thickness and self-shielding compound this problem. Performing an accurate assessment within the short count time window demanded of the field operative, leads to the need for a reliable method that can adapt to such conditions and is robust to a wide dynamic range of counting statistics. Several methods are evaluated with reference to the performance metrics defined in applicable standards. The primary issue is to minimize the bias that can result from attenuation effects, particularly as the gamma emissions from U235 are low energy and therefore highly susceptible to absorption in large containers with metal scrap. Use of other radiometric signatures such as

  16. Friction stir welding of T joints of dissimilar aluminum alloy: A review

    Science.gov (United States)

    Thakare, Shrikant B.; Kalyankar, Vivek D.

    2018-04-01

    Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.

  17. Studies of aluminum in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using /sup 14/C autoradiography to measure the uptake of /sup 14/C 2-deoxy-D-glucose (/sup 14/C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-..mu..m resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The /sup 14/C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of /sup 14/C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10/sup 9/ Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab.

  18. Studies of aluminum in rat brain

    International Nuclear Information System (INIS)

    Lipman, J.J.; Brill, A.B.; Som, P.; Jones, K.W.; Colowick, S.; Cholewa, M.

    1985-01-01

    The effects of high aluminum concentrations in rat brains were studied using 14 C autoradiography to measure the uptake of 14 C 2-deoxy-D-glucose ( 14 C-2DG) and microbeam proton-induced x-ray emission (microPIXE) with a 20-μm resolution to measure concentrations of magnesium, aluminum, potassium, and calcium. The aluminum was introduced intracisternally in the form of aluminum tartrate (Al-T) while control animals were given sodium tartrate (Na-T). The 14 C was administered intravenously. The animals receiving Al-T developed seizure disorders and had pathological changes that included cerebral cortical atrophy. The results showed that there was a decreased uptake of 14 C-2DG in cortical regions in which increased aluminum levels were measured, i.e., there is a correlation between the aluminum in the rat brain and decreased brain glucose metabolism. A minimum detection limit of about 16 ppM (mass fraction) or 3 x 10 9 Al atoms was obtained for Al under the conditions employed. 14 refs., 4 figs., 1 tab

  19. Magnetic losses at high flux densities in nonoriented Fe-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appino, C.; Fiorillo, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Ragusa, C. [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)], E-mail: carlo.ragusa@polito.it; Xie, B. [Dipartimento di Ingegneria Elettrica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2008-10-15

    We present and discuss power loss measurements performed in Fe-(3.5 wt%)Si nonoriented laminations up to very high flux densities. The results are obtained on disk samples using a 1D/2D single-sheet tester, where the fieldmetric and the thermometric methods are applied upon overlapping polarization ranges. The power loss in the highest polarization regimes (e.g. J{sub p}>1.8 T) is measured, in particular, by the rate of rise of temperature method, both under controlled and uncontrolled flux density waveform, the latter case emulating the conditions met in practical unsophisticated experiments. Lack of control at such extreme J{sub p} levels is conducive to strong flux distortion, but the correspondingly measured loss figure can eventually be converted to the one pertaining to sinusoidal induction at the same J{sub p} values. This is demonstrated as a specific application of the statistical theory of magnetic losses, where the usual formulation for the energy losses in magnetic sheets under distorted induction is exploited in reverse fashion.

  20. Synthesis and Characterization of High Aluminum Zeolite X from Technical Grade Materials

    Directory of Open Access Journals (Sweden)

    Seyed Kamal Masoudian

    2013-06-01

    Full Text Available Zeolites are widely used as ion exchangers, adsorbents, separation materials and catalyst due to their well-tailored and highly-reproducible structures; therefore, the synthesis of zeolite from low grade resources can be interested. In the present work, high aluminum zeolite X was prepared from mixing technical grade sodium aluminate and sodium silicate solutions at temperatures between 70°C and 100°C. The synthesized zeolite X was characterized by SEM and X-ray methods according to ASTM standard procedures. The results showed that aging of the synthesis medium at the room temperature considerably increased the selectivity of zeolite X formation. On the other hand, high temperature of reaction mixture during crystallization formed zeolite A in the product; therefore, it decreased the purity of zeolite X. In addition, it was found that increasing H2O/Na2O and decreasing Na2O/SiO2 molar ratios in the reaction mixture resulted product with higher purity. © 2013 BCREC UNDIP. All rights reservedReceived: 7th January 2013; Revised: 7th April 2013; Accepted: 19th April 2013[How to Cite: Masoudian, S. K., Sadighi, S., Abbasi, A. (2013. Synthesis and Characterization of High Alu-minum Zeolite X from Technical Grade Materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 54-60. (doi:10.9767/bcrec.8.1.4321.54-60][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4321.54-60] | View in  |

  1. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate

    DEFF Research Database (Denmark)

    Rotaru, Amelia-Elena; Probian, Christina; Wilkes, Heinz

    2010-01-01

    The identity of the microorganisms capable of anaerobic p-xylene degradation under denitrifying conditions is hitherto unknown. Here, we report highly enriched cultures of freshwater denitrifying bacteria that grow anaerobically with p-xylene as the sole organic carbon source and electron donor. ...

  2. Lithium-aluminum-magnesium electrode composition

    Science.gov (United States)

    Melendres, Carlos A.; Siegel, Stanley

    1978-01-01

    A negative electrode composition is presented for use in a secondary, high-temperature electrochemical cell. The cell also includes a molten salt electrolyte of alkali metal halides or alkaline earth metal halides and a positive electrode including a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent and a magnesium-aluminum alloy as a structural matrix. Various binary and ternary intermetallic phases of lithium, magnesium, and aluminum are formed but the electrode composition in both its charged and discharged state remains substantially free of the alpha lithium-aluminum phase and exhibits good structural integrity.

  3. Phonon optimized interatomic potential for aluminum

    Directory of Open Access Journals (Sweden)

    Murali Gopal Muraleedharan

    2017-12-01

    Full Text Available We address the problem of generating a phonon optimized interatomic potential (POP for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA to optimize the free parameters in an empirical interatomic potential (EIP. For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT calculations. Existing potentials for aluminum, such as the embedded atom method (EAM and charge-optimized many-body (COMB3 potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE, employing Fermi’s Golden Rule to predict the phonon-phonon relaxation times.

  4. Phonon optimized interatomic potential for aluminum

    Science.gov (United States)

    Muraleedharan, Murali Gopal; Rohskopf, Andrew; Yang, Vigor; Henry, Asegun

    2017-12-01

    We address the problem of generating a phonon optimized interatomic potential (POP) for aluminum. The POP methodology, which has already been shown to work for semiconductors such as silicon and germanium, uses an evolutionary strategy based on a genetic algorithm (GA) to optimize the free parameters in an empirical interatomic potential (EIP). For aluminum, we used the Vashishta functional form. The training data set was generated ab initio, consisting of forces, energy vs. volume, stresses, and harmonic and cubic force constants obtained from density functional theory (DFT) calculations. Existing potentials for aluminum, such as the embedded atom method (EAM) and charge-optimized many-body (COMB3) potential, show larger errors when the EIP forces are compared with those predicted by DFT, and thus they are not particularly well suited for reproducing phonon properties. Using a comprehensive Vashishta functional form, which involves short and long-ranged interactions, as well as three-body terms, we were able to better capture interactions that reproduce phonon properties accurately. Furthermore, the Vashishta potential is flexible enough to be extended to Al2O3 and the interface between Al-Al2O3, which is technologically important for combustion of solid Al nano powders. The POP developed here is tested for accuracy by comparing phonon thermal conductivity accumulation plots, density of states, and dispersion relations with DFT results. It is shown to perform well in molecular dynamics (MD) simulations as well, where the phonon thermal conductivity is calculated via the Green-Kubo relation. The results are within 10% of the values obtained by solving the Boltzmann transport equation (BTE), employing Fermi's Golden Rule to predict the phonon-phonon relaxation times.

  5. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    Science.gov (United States)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  6. A Very High Uranium Density Fission Mo Target Suitable for LEU Using atomization Technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. K.; Kim, K. H.; Lee, Y. S.; Ryu, H. J.; Woo, Y. M.; Jang, S. J.; Park, J. M.; Choi, S. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Currently HEU minimization efforts in fission Mo production are underway in connection with the global threat reduction policy. In order to convert HEU to LEU for the fission Mo target, higher uranium density material could be applied. The uranium aluminide targets used world widely for commercial {sup 99}Mo production are limited to 3.0 g-U/cc in uranium density of the target meat. A consideration of high uranium density using the uranium metal particles dispersion plate target is taken into account. The irradiation burnup of the fission Mo target are as low as 8 at.% and the irradiation period is shorter than 7 days. Pure uranium material has higher thermal conductivity than uranium compounds or alloys. It is considered that the degradation by irradiation would be almost negligible. In this study, using the computer code of the PLATE developed by ANL the irradiation behavior was estimated. Some considerations were taken into account to improve the irradiation performance further. It has been known that some alloying elements of Si, Cr, Fe, and Mo are beneficial for reducing the swelling by grain refinement. In the RERTR program recently the interaction problem could be solved by adding a small amount of Si to the aluminum matrix phase. The fabrication process and the separation process for the proposed atomized uranium particles dispersion target were reviewed

  7. Composite superconductors with copper-aluminum stabilizing matrix

    International Nuclear Information System (INIS)

    Keilin, V.E.; Anashkin, O.P.; Krivikh, A.V.; Kiriya, I.V.; Kovalev, I.A.; Dolgosheev, P.I.; Rychagov, A.V.; Sytnikov, V.E.

    1992-01-01

    A new type of composite superconductors has been developed. They consist of one or several (cabled) multifilamentary wires with low Cu-to-Sc ratio which are embedded and soldered into grooves made in matrix of rectangular cross-section. The latter consists of aluminum core metallurgically plated with a thin copper sheath. Such conductors combine the advantages of both aluminum and copper as stabilizing materials. They have low density, exhibit almost not magnetoresistance, are relatively cheap and can be produced in very long pieces. Copper plating offers the possibility of soft soldering thus ensuring good electrical and thermal contact between superconducting wires and stabilizing matrix, and helping to join pieces to each other. the properties of two Nb-Ti conductors (3.5 x 2 mm 2 and 7x4 mm 2 ) are described in more detail. The first is used in SC coils for whole-body magnetoresonance tomography, and the second will be used in a open-quotes thinclose quotes coil for charged particles detector. The influence of aluminum purity on SC magnet behavior is also briefly discussed

  8. Preparation of boron-rich aluminum boride nanoparticles by RF thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sooseok [Inha University, Department of Chemical Engineering and Regional Innovation Center for Environmental Technology of Thermal Plasma (Korea, Republic of); Matsuo, Jiro; Cheng, Yingying [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering (Japan); Watanabe, Takayuki, E-mail: watanabe@chemenv.titech.ac.jp [Kyushu University, Department of Chemical Engineering (Japan)

    2013-08-15

    Boron-rich compounds of AlB{sub 12} and AlB{sub 10} nanoparticles were synthesized by a radiofrequency thermal plasma. Aluminum and boron raw powders were evaporated in virtue of high enthalpy of the thermal plasma in upstream region, followed by the formation of aluminum boride nanoparticles in the tail region of plasma flame with rapid quenching. A high production rate of aluminum boride was confirmed by the X-ray diffraction measurement in the case of high input power, high boron content in raw material and helium inner gas. Polyhedral nanoparticles of 20.8 nm in mean size were observed by a transmission electron microscope. In the raw powder mixture of aluminum, titanium, and boron, titanium-boride nanoparticles were synthesized preferentially, because the Gibbs free energy for the boridation of titanium is lower than that of aluminum. Since the nucleation temperature of boron is higher than that of aluminum, the condensation of metal monomers onto boron nuclei results in the formation of boron-rich aluminum boride nanoparticles.

  9. Polarization and EIS studies to evaluate the effect of aluminum concentration on the corrosion behavior of SAC105 solder alloy

    Directory of Open Access Journals (Sweden)

    Liyana N. K.

    2018-03-01

    Full Text Available This paper presents an investigation on corrosion behavior of Sn-1.0Ag-0.5Cu-XAl (X = 0, 0.1, 0.5, 1.0 by means of polarization and electrochemical impedance spectroscopy (EIS measurements in 3.5 wt.% NaCl solution. The results show that addition of aluminum into SAC105 shifts the corrosion current density and passivation current density towards more positive values. It is also found that with an increase in aluminum concentration in SAC105 solder alloy, the corrosion current density increases and polarization resistance decreases. This suggests that SAC105 with the highest concentration of Al has the lowest corrosion resistance. In this case, the corrosion behavior seems to be attributed to anodic dissolution of aluminum and Sn-matrix.

  10. COMBINATION OF DENSITY AND ENERGY MODULATION IN MICROBUNCHING ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Cheng Ying [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Microbunching instability (MBI) has been one of the most challenging issues in the transport of high-brightness electron beams for modern recirculating or energy recovery linac machines. Recently we have developed and implemented a Vlasov solver [1] to calculate the microbunching gain for an arbitrary beamline lattice, based on the extension of existing theoretical formulation [2-4] for the microbunching amplification from an initial density perturbation to the final density modulation. For more thorough analyses, in addition to the case of (initial) density to (final) density amplification, we extend in this paper the previous formulation to more general cases, including energy to density, density to energy and energy to energy amplifications for a recirculation machine. Such semi-analytical formulae are then incorporated into our Vlasov solver, and qualitative agreement is obtained when the semi-analytical Vlasov results are compared with particle tracking simulation using ELEGANT [5].

  11. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  12. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  13. Magnetization of High Density Hadronic Fluid

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, Constanca; da Providencia, João

    2012-01-01

    In the present paper the magnetization of a high density relativistic fluid of elementary particles is studied. At very high densities, such as may be found in the interior of a neutron star, when the external magnetic field is gradually increased, the energy of the normal phase of the fluid...... in the particle fluid. For nuclear densities above 2 to 3 rho(0), where rho(0) is the equilibrium nuclear density, the resulting magnetic field turns out to be rather huge, of the order of 10(17) Gauss....

  14. On The Generation of Interferometric Colors in High Purity and Technical Grade Aluminum: An Alternative Green Process for Metal Finishing Industry

    International Nuclear Information System (INIS)

    Chen, Yuting; Santos, Abel; Ho, Daena; Wang, Ye; Kumeria, Tushar; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-01-01

    Graphical abstract: Toward green processes in metal finishing industry by rationally designed electrochemical anodization. Biomimetic photonic films based on nanoporous anodic alumina produced in high purity and technical grade aluminum foils display vivid colors that can be precisely tuned across the visible spectrum. The presented method is a solid rationale aimed toward green processes for metal finishing industry. - Highlights: • Environmentally friendly approach to color aluminum through biomimetic photonic films. • Nanoporous anodic alumina distributed Bragg Reflectors (NAA-DBRs). • Rationally designed galvanostatic pulse anodization approach. • Macroscopic and microscopic differences in high purity and technical grade aluminum. • Substitute method for conventional coloring processes in metal finishing industry. - Abstract: Metal finishing industry is one of the leading pollutants worldwide and green approaches are urgently needed in order to address health and environmental issues associated with this industrial activity. Herein, we present an environmentally friendly approach aimed to overcome some of these issues by coloring aluminum through biomimetic photonic films based on nanoporous anodic alumina distributed Bragg Reflectors (NAA-DBRs). Our study aims to compare the macroscopic and microscopic differences between the resulting photonic films produced in high purity and technical grade aluminum in terms of color features, appearance, electrochemical behavior and internal nanoporous structure in order to establish a solid rationale toward optimal fabrication processes that can be readily incorporated into industrial methodologies. The obtained results reveal that our approach, based on a rational galvanostatic pulse anodization approach, makes it possible to precisely generate a complete palette of colors in both types of aluminum substrates. As a result of its versatility, this method could become a promising alternative to substitute

  15. Analysis and calculation of macrosegregation in a casting ingot. MPS solidification model. Volume 1: Formulation and analysis

    Science.gov (United States)

    Maples, A. L.; Poirier, D. R.

    1980-01-01

    The physical and numerical formulation of a model for the horizontal solidification of a binary alloy is described. It can be applied in an ingot. The major purpose of the model is to calculate macrosegregation in a casting ingot which results from flow of interdendritic liquid during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, was modeled as flow through a porous medium. The symbols used are defined. The physical formulation of the problem leading to a set of equations which can be used to obtain: (1) the pressure field; (2) the velocity field: (3) mass flow and (4) solute flow in the solid plus liquid zone during solidification is presented. With these established, the model calculates macrosegregation after solidification is complete. The numerical techniques used to obtain solution on a computational grid are presented. Results, evaluation of the results, and recommendations for future development of the model are given. The macrosegregation and flow field predictions for tin-lead, aluminum-copper, and tin-bismuth alloys are included as well as comparisons of some of the predictions with published predictions or with empirical data.

  16. Aluminum and gallium nuclei as microscopic probes for pulsed electron-nuclear double resonance diagnostics of electric-field gradient and spin density in garnet ceramics doped with paramagnetic ions

    Science.gov (United States)

    Uspenskaya, Yu. A.; Mamin, G. V.; Babunts, R. A.; Badalyan, A. G.; Edinach, E. V.; Asatryan, H. R.; Romanov, N. G.; Orlinskii, S. B.; Khanin, V. M.; Wieczorek, H.; Ronda, C.; Baranov, P. G.

    2018-03-01

    The presence of aluminum and gallium isotopes with large nuclear magnetic and quadrupole moments in the nearest environment of impurity ions Mn2+ and Ce3+ in garnets made it possible to use hyperfine and quadrupole interactions with these ions to determine the spatial distribution of the unpaired electron and the gradient of the electric field at the sites of aluminum and gallium in the garnet lattice. High-frequency (94 GHz) electron spin echo detected electron paramagnetic resonance and electron-nuclear double resonance measurements have been performed. Large difference in the electric field gradient and quadrupole splitting at octahedral and tetrahedral sites allowed identifying the positions of aluminum and gallium ions in the garnet lattice and proving that gallium first fills tetrahedral positions in mixed aluminum-gallium garnets. This should be taken into account in the development of garnet-based scintillators and lasers. It is shown that the electric field gradient at aluminum nuclei near Mn2+ possessing an excess negative charge in the garnet lattice is ca. 2.5 times larger than on aluminum nuclei near Ce3+.

  17. Target-dependent enrichment of virions determines the reduction of high-throughput sequencing in virus discovery.

    Directory of Open Access Journals (Sweden)

    Randi Holm Jensen

    Full Text Available Viral infections cause many different diseases stemming both from well-characterized viral pathogens but also from emerging viruses, and the search for novel viruses continues to be of great importance. High-throughput sequencing is an important technology for this purpose. However, viral nucleic acids often constitute a minute proportion of the total genetic material in a sample from infected tissue. Techniques to enrich viral targets in high-throughput sequencing have been reported, but the sensitivity of such methods is not well established. This study compares different library preparation techniques targeting both DNA and RNA with and without virion enrichment. By optimizing the selection of intact virus particles, both by physical and enzymatic approaches, we assessed the effectiveness of the specific enrichment of viral sequences as compared to non-enriched sample preparations by selectively looking for and counting read sequences obtained from shotgun sequencing. Using shotgun sequencing of total DNA or RNA, viral targets were detected at concentrations corresponding to the predicted level, providing a foundation for estimating the effectiveness of virion enrichment. Virion enrichment typically produced a 1000-fold increase in the proportion of DNA virus sequences. For RNA virions the gain was less pronounced with a maximum 13-fold increase. This enrichment varied between the different sample concentrations, with no clear trend. Despite that less sequencing was required to identify target sequences, it was not evident from our data that a lower detection level was achieved by virion enrichment compared to shotgun sequencing.

  18. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Science.gov (United States)

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-01-01

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601

  19. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    Directory of Open Access Journals (Sweden)

    Marijn Billiet

    2015-10-01

    Full Text Available Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  20. Indium--tin oxide films radio frequency sputtered from specially formulated high density indium--tin oxide targets

    International Nuclear Information System (INIS)

    Kulkarni, S.; Bayard, M.

    1991-01-01

    High density ITO (indium--tin oxide) targets doped with Al 2 O 3 and SiO 2 manufactured in the Tektronix Ceramics Division have been used to rf sputter ITO films of various thicknesses on borosilicate glass substrates. Sputtering in an oxygen--argon gas mixture and annealing in forming gas, resulted in ITO films exhibiting 90% transmission at 550 nm and a sheet resistance of 15 Ω/sq for a thickness of 1100 A. Sputtering in an oxygen--argon gas mixture and annealing in air increased sheet resistance without a large effect on the transmission. Films sputtered in argon gas alone were transparent in the visible and the sheet resistance was found to be 100--180 Ω/sq for the same thickness, without annealing

  1. Highly selective enrichment of phosphorylated peptides using titanium dioxide

    DEFF Research Database (Denmark)

    Thingholm, Tine; Jørgensen, Thomas J D; Jensen, Ole N

    2006-01-01

    -column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline...... a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro...... solution (pH > or = 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass...

  2. Thermal breeder fuel enrichment zoning

    International Nuclear Information System (INIS)

    Capossela, H.J.; Dwyer, J.R.; Luce, R.G.; McCoy, D.F.; Merriman, F.C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect. 1 figure

  3. High Resolution Mass Spectrometry of Polyfluorinated Polyether-Based Formulation

    Science.gov (United States)

    Dimzon, Ian Ken; Trier, Xenia; Frömel, Tobias; Helmus, Rick; Knepper, Thomas P.; de Voogt, Pim

    2016-02-01

    High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects. The different plots of MW and the nth-order mass defects (up to n = 3) could aid in assessing the structure of the different repeating units and estimating their absolute and relative number per molecule. The three major repeating units were -C2H4O-, -C2F4O-, and -CF2O-. Tandem MS was used to identify the end groups that appeared to be phosphates, as well as the possible distribution of the repeating units. Reversed-phase HPLC separated of the polymer molecules on the basis of number of nonpolar repeating units. The elucidated structure resembles the structure in the published manufacturer technical data. This analytical approach to the characterization of a PFPE-based formulation can serve as a guide in analyzing not just other PFPE-based formulations but also other fluorinated and non-fluorinated polymers. The information from MS is essential in studying the physico-chemical properties of PFPEs and can help in assessing the risks they pose to the environment and to human health.

  4. Structure-terahertz property relationship in yttrium aluminum garnet ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Steere, D.W.; Clark, B.M.; Sundaram, S.K. [Alfred University, Terahertz and Millimeter Waves Laboratory (T-Lab), Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred, NY (United States); Gaume, R. [Townes Laser Institute and the NanoScience Technology Center, CREOL, The College of Optics and Photonics, Orlando, FL (United States)

    2017-08-15

    Terahertz (THz) transmission measurements on chemically variant yttrium aluminum garnet (YAG) ceramics are described. Chemical compositions and processing parameters were varied to determine the effect of stoichiometry, density, and pore volume distribution on the optical and dielectric properties in the THz frequency regime. Density has the largest effect on properties out of the parameters that were investigated. In addition, a linear correlation between cubic root of real permittivity at 1 THz and average density of these samples is observed. Our results show promise for design and fabrication of advanced optical materials and devices with desired THz properties via controlling density and porosity of the materials. (orig.)

  5. Source-driven noise analysis measurements with neptunium metal reflected by high enriched uranium

    International Nuclear Information System (INIS)

    Valentine, Timothy E.; Mattingly, John K.

    2003-01-01

    Subcritical noise analysis measurements have been performed with neptunium ( 237 Np) sphere reflected by highly enriched uranium. These measurements were performed at the Los Alamos Critical Experiment Facility in December 2002 to provide an estimate of the subcriticality of 237 Np reflected by various amounts of high-enriched uranium. This paper provides a description of the measurements and presents some preliminary results of the analysis of the measurements. The measured and calculated spectral ratios differ by 15% whereas the 'interpreted' and calculated k eff values differ by approximately 1%. (author)

  6. Nuclear criticality safety for warehousing of 55-gal drums containing highly enriched uranium metal

    International Nuclear Information System (INIS)

    Robinson, R.C.; Dodds, H.L.

    1989-01-01

    Subcritical data for six separate arrays of 55-gal 17H steel shipping/storage containers is calculated and used to determine safe storage limits for U(97.5)-metal in a warehouse environment at the Oak Ridge Y-12 Plant. Results are presented for three different forms of fissile material: 97.5 wt% 235 U enriched metal (ρ 0 = 18.76 g/cm 3 ) cylinders, metal spheres, and low density (ρ = 0.25 ρ 0 ) metal cylinders

  7. A neutronics feasibility study for the LEU conversion of Poland's Maria research reactor

    International Nuclear Information System (INIS)

    Bretscher, M. M.

    1998-01-01

    The MARIA reactor is a high-flux multipurpose research reactor which is water-cooled and moderated with both beryllium and water. Standard HEU (80% 235 U)fuel assemblies consist of six concentric fuel tubes of a U-Al alloy clad in aluminum. Although the inventory of HEU (80%) fuel is nearly exhausted, a supply of highly-loaded 36%-enriched fuel assemblies is available at the reactor site. Neutronic equilibrium studies have been made to determine the relative performance of fuels with enrichments of 80%, 36% and 19.7%. These studies indicate that LEU (19.7%) densities of about 2.5 gU/cm 3 and 3.8 gU/cm 3 are required to match the performance of the MARIA reactor with 80%-enriched and with 36%-enriched fuels, respectively

  8. Reshock Response of 2A12 Aluminum Alloy at High Pressures

    International Nuclear Information System (INIS)

    Ri-Li, Hou; Jian-Xiang, Peng; Fu-Qian, Jing; Jian-Hua, Zhang; Ping, Zhou

    2009-01-01

    By means of mounting the specimen on a low-impedance buffer, reshock experiments were carried out on a 2A12 aluminum alloy up to shock stresses of 67.6 GPa. Reshock wave profiles from the initial shock stresses of 60.9–67.6 GPa were measured with a velocity interferometer, and it shows that the 2A12 aluminum alloy characterizes as quasi-elastic response during recompression process. The Lagrange longitudinal velocities along the reloading path from initial shock state were obtained from two shots of experiments, while the bulk velocities at corresponding shock stresses were determined via extrapolating from the public reported unloading plastic sound velocities. Combining the reshock and the release experimental results, the yield strength of 2A12 aluminum alloy at shock stress of 60.9 GPa was estimated to be about 1.7 GPa

  9. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  10. Surplus Highly Enriched Uranium Disposition Program plan

    International Nuclear Information System (INIS)

    1996-10-01

    The purpose of this document is to provide upper level guidance for the program that will downblend surplus highly enriched uranium for use as commercial nuclear reactor fuel or low-level radioactive waste. The intent of this document is to outline the overall mission and program objectives. The document is also intended to provide a general basis for integration of disposition efforts among all applicable sites. This plan provides background information, establishes the scope of disposition activities, provides an approach to the mission and objectives, identifies programmatic assumptions, defines major roles, provides summary level schedules and milestones, and addresses budget requirements

  11. Advanced Neutron Source enrichment study. Volume 2: Appendices -- Final report, Revision 12/94

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.

    1994-01-01

    A study has been performed of the impact on performance of using low enriched uranium (20% 235 U) or medium enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations. There are 26 appendices in this volume

  12. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  13. Microstructural analysis of sinterized aluminum powder obtained by the high energy milling of beverage cans

    International Nuclear Information System (INIS)

    Souza, Jose Raelson Pereira de; Peres, Mauricio Mhirdaui

    2016-01-01

    The objective is the study of the effect of high energy milling on the sintering of aluminum from beverage cans. The selected aluminum cans were cut and subjected to high energy milling under a common atmosphere (in the air). In milling, three grams of aluminum was used to maintain the ratio of 10/1 between the mass of the beads and the material. The milling time was varied in 1h, 1.5h and 2h, keeping the other variables constant. The particle size distribution was measured by laser granulometry, for further compaction and sintering at a temperature of 600 ° C for 2 h. The samples were characterized by scanning electron microscopy (SEM). The granulometric analysis of the powders found that higher milling times produced finer particles. Powders with granulometry of less than 45 μm were obtained at 1 h, 1.5 h and 2 h times. The times of 1.5h and 2h promoted finer particles with better distribution of size. The SEM analyzes showed little variation in the shape of the particles as a function of the variation of the grinding times, presenting irregularities in the platelet geometry. The sintering time and temperature were effective in the densification of the powder particles, which were influenced by the average particle size

  14. Patterns of binding of aluminum-containing adjuvants to Haemophilus influenzae type b and meningococcal group C conjugate vaccines and components.

    Science.gov (United States)

    Otto, Robert B D; Burkin, Karena; Amir, Saba Erum; Crane, Dennis T; Bolgiano, Barbara

    2015-09-01

    The basis of Haemophilus influenzae type b (Hib) and Neisseria meningitidis serogroup C (MenC) glycoconjugates binding to aluminum-containing adjuvants was studied. By measuring the amount of polysaccharide and protein in the non-adsorbed supernatant, the adjuvant, aluminum phosphate, AlPO4, was found to be less efficient than aluminum hydroxide, Al(OH)3 at binding to the conjugates, at concentrations relevant to licensed vaccine formulations and when equimolar. At neutral pH, binding of TT conjugates to AlPO4 was facilitated through the carrier protein, with only weak binding of AlPO4 to CRM197 being observed. There was slightly higher binding of either adjuvant to tetanus toxoid conjugates, than to CRM197 conjugates. This was verified in AlPO4 formulations containing DTwP-Hib, where the adsorption of TT-conjugated Hib was higher than CRM197-conjugated Hib. At neutral pH, the anionic Hib and MenC polysaccharides did not appreciably bind to AlPO4, but did bind to Al(OH)3, due to electrostatic interactions. Phosphate ions reduced the binding of the conjugates to the adjuvants. These patterns of adjuvant adsorption can form the basis for future formulation studies with individual and combination vaccines containing saccharide-protein conjugates. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. On the Effect of Natural Aging Prior to Low Temperature ECAP of a High-Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Sebastian Fritsch

    2018-01-01

    Full Text Available Severe plastic deformation (SPD can be used to generate ultra-fine grained microstructures and thus to increase the strength of many materials. Unfortunately, high strength aluminum alloys are generally hard to deform, which puts severe limits on the feasibility of conventional SPD methods. In this study, we use low temperature equal-channel angular pressing (ECAP to deform an AA7075 alloy. We perform ECAP in a custom-built, cooled ECAP-tool with an internal angle of 90° at −60 °C and with an applied backpressure. In previous studies, high-strength age hardening aluminum alloys were deformed in a solid solution heat treated condition to improve the mechanical properties in combination with subsequent (post-ECAP aging. In the present study, we systematically vary the initial microstructure—i.e., the material condition prior to low temperature ECAP—by (pre-ECAP natural aging. The key result of the present study is that precipitates introduced prior to ECAP speed up grain refinement during ECAP. Longer aging times lead to accelerated microstructural evolution, to increasing strength, and to a transition in fracture behavior after a single pass of low temperature ECAP. These results demonstrate the potential of these thermo-mechanical treatments to produce improved properties of high-strength aluminum alloys.

  16. Stress Concentration Factor of Expanded Aluminum Tubes Using Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    L Mhamdi

    2013-06-01

    Full Text Available This paper discusses the development of semi-empirical relations for the maximum stress concentration factor (SCF around circular holes embedded in aluminum tubes under various expansion ratios and mandrel angles. Finite element models were developed to study the expansion of a typical aluminum tube with embedded holes of various sizes. An elastic perfectly-plastic material behaviour was used to describe the structural response of the tubes under expansion. Various hole-diameter-to-tubewall- thickness ratios, tube expansion ratios, and mandrel angles were considered to determine the stress state around the hole at zero and 90 degree locations from which the maximum SCF was determined. Semi-empirical relations for the maximum SCF using the Lagrange interpolation formulation were developed. The developed relations were found to predict the SCFs accurately.

  17. Investigating aluminum alloy reinforced by graphene nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S.J., E-mail: shaojiuyan@126.com [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Dai, S.L.; Zhang, X.Y.; Yang, C.; Hong, Q.H.; Chen, J.Z. [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Lin, Z.M. [Aviation Industry Corporation of China, Beijing 100022 (China)

    2014-08-26

    As one of the most important engineering materials, aluminum alloys have been widely applied in many fields. However, the requirement of enhancing their mechanical properties without sacrificing the ductility is always a challenge in the development of aluminum alloys. Thanks to the excellent physical and mechanical properties, graphene nanoflakes (GNFs) have been applied as promising reinforcing elements in various engineering materials, including polymers and ceramics. However, the investigation of GNFs as reinforcement phase in metals or alloys, especially in aluminum alloys, is still very limited. In this study, the aluminum alloy reinforced by GNFs was successfully prepared via powder metallurgy approach. The GNFs were mixed with aluminum alloy powders through ball milling and followed by hot isostatic pressing. The green body was then hot extruded to obtain the final GNFs reinforced aluminum alloy nanocomposite. The scanning electron microscopy and transmission electron microscope analysis show that GNFs were well dispersed in the aluminum alloy matrix and no chemical reactions were observed at the interfaces between the GNFs and aluminum alloy matrix. The mechanical properties' testing results show that with increasing filling content of GNFs, both tensile and yield strengths were remarkably increased without losing the ductility performance. These results not only provided a pathway to achieve the goal of preparing high strength aluminum alloys with excellent ductilitybut they also shed light on the development of other metal alloys reinforced by GNFs.

  18. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    International Nuclear Information System (INIS)

    Carter, R.E.

    1985-01-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  19. Licensing considerations in converting NRC-licensed non-power reactors from high-enriched to low-enriched uranium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R E

    1985-07-01

    During the mid-1970s, there was increasing concern with the possibility that highly enriched uranium (HEU), widely used in non-power reactors around the world, might be diverted from its intended peaceful uses. In 1982 the U.S. Nuclear Regulatory Commission (NRC) issued a policy statement that was intended to conform with the perceived international thinking, and that addressed the two relevant areas in which NRC has statutory responsibility, namely, export of special nuclear materials for non-USA non-power reactors, and the licensing of USA-based non-power reactors not owned by the Federal government. To further address the second area, NRC issued a proposed rule for public comment that would require all NRC-licensed non-power reactors using HEU to convert to low enriched uranium (LEU) fuel, unless they could demonstrate a unique purpose. Currently the NRC staff is revising the proposed rule. An underlying principle guiding the staff is that as long as a change in enrichment does not lead to safety-related reactor modifications, and does not involve an unreviewed safety question, the licensee could convert the core without prior NRC approval. At the time of writing this paper, a regulatory method of achieving this principle has not been finalized. (author)

  20. Fabrication of high quality ordered porous anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Liu Kai; Du Kai; Chen Jing; Zhou Lan; Zhang Lin; Fang Yu

    2010-01-01

    The preparation of porous anodic aluminum oxide (AAO) templates has been studied with oxalic acid as electrolyte. The morphology of the as-prepared templates has been characterized by field-emission scanning electron microscope (FE-SEM). The pores distributed orderly and uniformly with the diameter ranging from 40 nm to 70 nm. The experimental results indicate that electrolyte concentration, oxidation voltage, oxidation temperature and oxidation time affect the structure of AAO templates. Ordered porous AAO templates can be derived without annealing and finishing. X-ray diffraction (XRD) analysis indicates that the aluminum oxide film is mainly composed of amorphous Al 2 O 3 . (authors)