WorldWideScience

Sample records for high-current microwave ion

  1. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam production.

    Science.gov (United States)

    Tanaka, M; Hara, S; Seki, T; Iga, T

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300 mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65 mA (high current density of 330 mA/cm(2), proton ratio of 87%, and beam energy of 30 keV) with a 5 mm diameter extraction aperture, pulse width of 400 micros, and 20 Hz repetition rate at 1.3 kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5 mm radius) and the lens was 36 mA and the 90% focused beam half-width was 1-2 mm.

  2. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam productiona)

    Science.gov (United States)

    Tanaka, M.; Hara, S.; Seki, T.; Iga, T.

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65mA (high current density of 330mA/cm2, proton ratio of 87%, and beam energy of 30keV) with a 5mm diameter extraction aperture, pulse width of 400μs, and 20Hz repetition rate at 1.3kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5mm radius) and the lens was 36mA and the 90% focused beam half-width was 1-2mm.

  3. High current density nanofilament cathodes for microwave amplifiers

    NARCIS (Netherlands)

    Schnell, J-P.; Minoux, E.; Gangloff, L.; Vincent, P.; Legagneux, P.; Dieumegard, D.; David, J.-F.; Peauger, F.; Hudanski, L.; Teo, K.B.K.; Lacerda, R.; Chhowalla, M.; Hasko, D.G.; Ahmed, H.; Amaratunga, G.A.J.; Milne, W.I.; Vila, L.; Dauginet-De Pra, L.; Demoustier-Champagne, S.; Ferain, E.; Legras, R.; Piraux, L.; Gröening, O.; Raedt, H. De; Michielsen, K.

    2004-01-01

    We study high current density nanofilament cathodes for microwave amplifiers. Two different types of aligned nanofilament array have been studied: first, metallic nanowires grown by electrodeposition into nanoporous templates at very low temperature (T

  4. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  5. New progress of high current gasdynamic ion source (invited)

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Vodopyanov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm-3) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10-4-10-3 mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ṡ mm ṡ mrad have been demonstrated in recent experiments.

  6. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  7. High-current ion beam from a moving plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.; John, P.K.; Ponomarenko, A.G.

    1979-05-01

    High-current ion beams in the 10--20-keV range are extracted from a moving plasma. Current densities up to 2.5 A/cm/sup 2/ are obtained at the plasma boundary, which is almost an order of magnitude larger than the Bohm current. Total currents of over 100 A are obtained from the plasma. Simple geometric focusing gives current densities approx.200 A/cm/sup 2/ at the focus.

  8. Microwave Discharge Ion Sources

    CERN Document Server

    Celona, L

    2013-01-01

    This chapter describes the basic principles, design features and characteristics of microwave discharge ion sources. A suitable source for the production of intense beams for high-power accelerators must satisfy the requirements of high brightness, stability and reliability. The 2.45 GHz off-resonance microwave discharge sources are ideal devices to generate the required beams, as they produce multimilliampere beams of protons, deuterons and singly charged ions. A description of different technical designs will be given, analysing their performance, with particular attention being paid to the quality of the beam, especially in terms of its emittance.

  9. Mass spectrometry improvement on an high current ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.G., E-mail: jgabriel@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Alegria, F.C., E-mail: falegria@lx.it.pt [Instituto Superior Tecnico/Technical University of Lisbon and Instituto de Telecomunicacoes, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal); Redondo, L.M., E-mail: lmredondo@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Rocha, J., E-mail: jrocha@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal)

    2011-12-15

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  10. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  11. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  12. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  13. High-power Čerenkov microwave oscillators utilizing High-Current nanosecond Electron beams

    Science.gov (United States)

    Korovin, S. D.; Polevin, S. D.; Rostov, V. V.

    1996-12-01

    A short review is given of results obtained at the Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences on generating high-power microwave radiation. Most of the research was devoted to a study of stimulated Čerenkov radiation from relativistic electron beams. It is shown that the efficiency of a relativistic 3-cm backward wave tube with a nonuniform coupling resistance can reach 35%. High-frequency radiation was discovered in the emission spectrum of the Čerenkov oscillators and it was shown that the nature of the radiation was associated with the stimulated scattering of low-frequency radiation by the relativistic electrons. Radiation with a power of 500 MW was obtained in the 8-mm wavelength range using a two-beam Čerenkov oscillator. High-current pulse-periodic nanosecond accelerators with a charging device utilizing a Tesla transformer were used in the experiments. The possibility was demonstrated of generating high-power microwave radiation with a pulse-repetition frequency of up to 100 Hz. An average power of ˜500 W was achieved from the relativistic oscillators. A relativistic backward wave tube with a high-current electron beam was used to make a prototype nanosecond radar device. Some of the results presented were obtained jointly with the Russian Academy of Sciences Institute of Applied Physics. Questions concerning multiwave Čerenkov interaction are not considered in this paper.

  14. Gridless, very low energy, high-current, gaseous ion source

    Energy Technology Data Exchange (ETDEWEB)

    Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2010-02-15

    We have made and tested a very low energy gaseous ion source in which the plasma is established by a gaseous discharge with electron injection in an axially diverging magnetic field. A constricted arc with hidden cathode spot is used as the electron emitter (first stage of the discharge). The electron flux so formed is filtered by a judiciously shaped electrode to remove macroparticles (cathode debris from the cathode spot) from the cathode material as well as atoms and ions. The anode of the emitter discharge is a mesh, which also serves as cathode of the second stage of the discharge, providing a high electron current that is injected into the magnetic field region where the operating gas is efficiently ionized. In this discharge configuration, an electric field is formed in the ion generation region, accelerating gas ions to energy of several eV in a direction away from the source, without the use of a gridded acceleration system. Our measurements indicate that an argon ion beam is formed with an energy of several eV and current up to 2.5 A. The discharge voltage is kept at less than 20 V, to keep below ion sputtering threshold for cathode material, a feature which along with filtering of the injected electron flow, results in extremely low contamination of the generated ion flow.

  15. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  16. Microwave proton source development for a high-current linac injector

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, J.; Bolme, G.; Geisik, C. [Los Alamos National Lab., NM (United States). Accelerator Operations and Technology Div.] [and others

    1995-09-01

    Powerful CW proton linear accelerators (100-mA at 0.5--1.0 GeV) are being proposed for spallation neutron-source applications. A 75-keV, 110-mA dc proton injector using a microwave ion source is being tested for these applications. It has achieved 80-keV, 110-mA hydrogen-ion-beam operation. Video and dc beam-current toroid diagnostics are operational, and an EPICS control system is also operational on the 75-keV injector. A technical base development program has also been carried out on a 50-keV injector obtained from Chalk River Laboratories, and it includes low-energy beam transport studies, ion source lifetime tests, and proton-fraction enhancement studies. Technical base results and the present status of the 75-keV injector will be presented.

  17. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  18. The microwave absorption of ceramic-cup microwave ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is 300~500W the microwave absorption efficiencies are more than 90% if the system is optimized and the magnetic field at the microwave window is 0.095T.

  19. Experimental study of a high-current FEM with a broadband microwave system

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, G.G.; Bratman, V.L.; Ginzburg, N.S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    One of the main features of FELs and FEMs is the possibility of fast and wideband tuning of the resonant frequency of active media, which can be provided by changing the particle energy. For a frequency adjustable FEM-oscillator, a broadband microwave system, which is simply combined with an electron-optical FEM system and consists of an oversized waveguide and reflectors based on the microwave beams multiplication effect has been proposed and studied successfully in {open_quotes}cold{close_quotes} measurements. Here, the operating ability of a cavity, that includes some key elements of the broadband microwave system, was tested in the presence of an electron beam. To provide large particle oscillation velocities in a moderate undulator field and the presence of a guide magnetic field, the FEM operating regime of double resonance was chosen. In this regime the cyclotron as well as undulator resonance conditions were satisfied. The FEM-oscillator was investigated experimentally on a high-current accelerator {open_quotes}Sinus-6{close_quotes} that forms an electron beam with particle energy 500keV and pulse duration 25ns. The aperture with a diameter 2.5mm at the center of the anode allows to pass through only the central fraction of the electron beam with a current about 100A and a small spread of longitudinal velocities of the particles. Operating transverse velocity was pumped into the electron beam in the pulse plane undulator of a 2.4cm period. The cavity with a frequency near 45GHz consists of a square waveguide and two reflectors. The broadband up-stream reflector based on the multiplication effect had the power reflectivity coefficient more than 90% in the frequency band 10% for the H{sup 10} wave of the square waveguide with the maximum about 100% at a frequency 45GHz. The down-stream narrow-band Bragg reflector had the power reflection coefficient approximately 80% in the frequency band of 4% near 45GHz for the operating mode.

  20. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  1. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M.A., E-mail: dorf1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Zorin, V.G.; Sidorov, A.V.; Bokhanov, A.F.; Izotov, I.V.; Razin, S.V.; Skalyga, V.A. [Institute of Applied Physics RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2014-01-01

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available; however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (∼100 kW) microwave (37.5 GHz) radiation provides a dense plasma (∼10{sup 13} cm{sup −3}) with a relatively low electron temperature (∼50–100 eV) and allows for the generation of high current (∼1 A/cm{sup 2}) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP.

  2. Development of heating device / development of the high current ion source for neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon Ju; Lee, Dong Gyu; Lee, Kyong Jin; Ko Tae Kyong [Cheju National Univ., Cheju (Korea)

    1998-08-01

    The design and fabrication of a high current ion source for NBI was carried out. The scale of an ion source was reduced for mock-up test. To develop the high current ion source with the high operational stability and the long lifetime, the parameters including an arc current, gas pressure and extraction voltage should be optimized. If fabricated ion source would be tested, its parameters could be optimized experimentally. Through the optimization of the ion source parameter, the core technology for NBI is established and the experiment of current drive in the fusion device can be performed. This technology also can be applied to the ion beam technology in the field of new material synthesis and semiconductor industry. 24 refs., 22 figs., 13 tabs. (Author)

  3. Ion density and dielectric breakdown in the afterglow of a high-current arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W.R.; Verhagen, F.C.M.; De Zeeuw, W.A.

    1984-01-01

    The ion density in the afterglow of a high-current atmospheric arc-discharge and electrical breakdown have been investigated in atomic (argon), molecular (nitrogen) and electronegative (carbon dioxide) media. From the decay with time of the ion density, effective recombination coefficients can be calculated. When the ion density is reduced to values below 2 x 10/sup 17/m/sup -3/, the afterglow plasma changes from a resistive into a dielectric medium. (J.C.R.)

  4. High-current negative hydrogen ion beam production in a cesium-injected multicusp source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Y.; Tsumori, K.; Kaneko, O. [National Inst. for Fusion Science, Nagoya (Japan)] [and others

    1997-12-31

    A high-current negative hydrogen ion source has been developed, where 16.2 A of the H{sup -} current was obtained with a current density of 31 mA/cm{sup 2}. The ion source is a multicusp source with a magnetic filter for negative ion production, and cesium vapor is injected into the arc chamber, leading to enhancement of the negative ion yields. The cesium-injection effects are discussed, based on the experimental observations. Although the surface production of the negative ions on the cesium-covered plasma grid is thought to be a dominant mechanism of the H{sup -} current enhancement, the cesium effects in the plasma volume, such as the cesium ionization and the electron cooling, are observed, and could contribute to the improved operation of the negative ion source. (author)

  5. New methods for high current fast ion beam production by laser-driven acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B. [Institute of Physics, ASCR, v.v.i., PALS Centre, Prague (Czech Republic); Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F. [INFN-Laboratori Nazionali del Sud, Catania, Messina University (Italy); Picciotto, A.; Serra, E. [Fondazione Bruno Kessler - IRST, Trento (Italy); Giuffrida, L. [CELIA, Centre Lasers Intenses et Applications (France); Mangione, A. [ITA - Istituto Tecnologie Avanzate, Trapani (Italy); Rosinski, M.; Parys, P. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  6. New methods for high current fast ion beam production by laser-driven accelerationa)

    Science.gov (United States)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Laska, L.; Jungwirth, K.; Ullschmied, J.; Mocek, T.; Korn, G.; Rus, B.

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 1016-1019 W/cm2. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  7. New methods for high current fast ion beam production by laser-driven acceleration.

    Science.gov (United States)

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  8. Detection and clearing of trapped ions in the high current Cornell photoinjector

    Science.gov (United States)

    Full, S.; Bartnik, A.; Bazarov, I. V.; Dobbins, J.; Dunham, B.; Hoffstaetter, G. H.

    2016-03-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.

  9. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  10. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  11. Detection and clearing of trapped ions in the high current Cornell photoinjector

    CERN Document Server

    Full, Steven; Bazarov, Ivan; Dobbins, John; Dunham, Bruce; Hoffstaetter, Georg

    2015-01-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high CW beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and CW beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates...

  12. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  13. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  14. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  15. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  16. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga.vadim@gmail.com [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Sidorov, A. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Maslennikova, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State Medical Academy, 10/1 Minina Sq., 603005 Nizhny Novgorod (Russian Federation); Volovecky, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Tarvainen, O. [University of Jyvaskyla, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2014-12-21

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D–D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm{sup 2} is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·10{sup 10} cm{sup −2}/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  17. Development of a high-current hydrogen-negative ion source for LHD-NBI system

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Oka, Yoshihide; Kaneko, Osamu; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi [National Inst. for Fusion Science, Toki, Gifu (Japan); Tanaka, Masanobu

    1998-08-01

    We have developed a high-current hydrogen-negative ion source for a negative-ion-based NBI system in Large Helical Device (LHD). The ion source is a cesium-seeded volume-production source equipped with an external magnetic filter. An arc chamber is rectangular, the dimensions of which are 35 cm x 145 cm in cross section and 21 cm in depth. A three-grid single-stage accelerator is divided into five sections longitudinally, each of which has 154(14 x 11) apertures in an area of 25 cm x 25 cm. The ion source was tested in the negative-NBI teststand, and 25 A of the negative ion beam is incident on a beamdump 13 m downstream with an energy of 104 keV for 1 sec. Multibeamlets of 770 are focused on a focal point 13 m downstream with an averaged divergence angle of 10 mrad by the geometrical arrangement of five sections of grid and the aperture displacement technique of the grounded grid. A uniform beam in the vertical direction over 125 cm is obtained with uniform plasma production in the arc chamber by balancing individual arc currents flowing through each filament. Long-pulse beam production was performed, and 1.3 MW of the negative ion beam is incident on the beamdump for 10 sec, and the temperature rise of the cooling water is almost saturated for the extraction and the grounded grids. These results satisfy the first-step specification of the LHD-NBI system. (author)

  18. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  19. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V.; Sidorov, A. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Strelkov, A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyväskylä, Jyväskylä (Finland)

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  20. Design and Construction of a Microwave Plasma Ion Source

    CERN Document Server

    Çınar, Kamil

    2011-01-01

    This thesis is about the designing and constructing a microwave ion source. The ions are generated in a thermal and dense hydrogen plasma by microwave induction. The plasma is generated by using a microwave source with a frequency of 2.45 GHz and a power of 700 W. The generated microwave is pulsing with a frequency of 50 Hz. The designed and constructed microwave system generates hydrogen plasma in a pyrex plasma chamber. Moreover, an ion extraction unit is designed and constructed in order to extract the ions from the generated hydrogen plasma. The ion beam extraction is achieved and ion currents are measured. The plasma parameters are determined by a double Langmuir probe and the ion current is measured by a Faraday cup. The designed ion extraction unit is simulated by using the dimensions of the designed and constructed ion extraction unit in order to trace out the trajectories of the extracted ions.

  1. Compact microwave ion source for industrial applications.

    Science.gov (United States)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-01

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  2. Design of a low voltage, high current extraction system for the ITER Ion Source

    Science.gov (United States)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; de Esch, H. P. L.; Fubiani, G.; Marcuzzi, D.; Petrenko, S.; Pilan, N.; Rigato, W.; Serianni, G.; Singh, M.; Sonato, P.; Veltri, P.; Zaccaria, P.

    2009-03-01

    A Test Facility is planned to be built in Padova to assemble and test the Neutral Beam Injector for ITER. In the same Test Facility the Ion Source will be tested in a dedicated facility planned to operate in parallel to the main 1 MV facility. Purpose of the full size Ion Source is to optimize the Ion Source performance by maximizing the extracted negative ion current density and its spatial uniformity and by minimizing the ratio of co-extracted electrons. In this contribution the design of the extractor and accelerator grids for a 100 kV, 60 A system is presented. The trajectories of the negative ions, calculated with the SLACCAD code [1], have been benchmarked by a new 2D code (BYPO [2]) which solves in a self consistent way the electric fields in presence of electric charge and magnetic fields. The energy flux intercepted by the grids is estimated by using the Montecarlo code EAMCC [3] and the grids designed according to the constraints set by the permanent magnets and by the cooling channels. The interaction of backstreaming ions due to the ionization process with the grids and the Ion Source backplate is investigated and its impact on the project and performance discussed.

  3. Low-energy, high-current, ion source with cold electron emitter

    Energy Technology Data Exchange (ETDEWEB)

    Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2012-02-15

    An ion source based on a two-stage discharge with electron injection from a cold emitter is presented. The first stage is the emitter itself, and the second stage provides acceleration of injected electrons for gas ionization and formation of ion flow (<20 eV, 5 A dc). The ion accelerating system is gridless; acceleration is accomplished by an electric field in the discharge plasma within an axially symmetric, diverging, magnetic field. The hollow cathode electron emitter utilizes an arc discharge with cathode spots hidden inside the cathode cavity. Selection of the appropriate emitter material provides a very low erosion rate and long lifetime.

  4. First test of BNL electron beam ion source with high current density electron beam

    Science.gov (United States)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  5. Improved Ion Resistance for III-V Photocathodes in High Current Guns

    Energy Technology Data Exchange (ETDEWEB)

    Mulhollan, Gregory, A.

    2012-11-16

    The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studies was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.

  6. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    Science.gov (United States)

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  7. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  8. Microwave quantum logic spectroscopy and control of molecular ions

    DEFF Research Database (Denmark)

    Shi, M.; F. Herskind, P.; Drewsen, M.;

    2013-01-01

    A general method for rotational microwave spectroscopy and control of polar molecular ions via direct microwave addressing is considered. Our method makes use of spatially varying AC Stark shifts, induced by far off-resonant, focused laser beams to achieve an effective coupling between the rotati......A general method for rotational microwave spectroscopy and control of polar molecular ions via direct microwave addressing is considered. Our method makes use of spatially varying AC Stark shifts, induced by far off-resonant, focused laser beams to achieve an effective coupling between...... the rotational state of a molecular ion and the electronic state of an atomic ion. In this setting, the atomic ion is used for read-out of the molecular ion state, in a manner analogous to quantum logic spectroscopy based on Raman transitions. In addition to high-precision spectroscopy, this setting allows...

  9. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  10. Measurement of ion species in high current ECR H{sup +}/D{sup +} ion source for IFMIF (International Fusion Materials Irradiation Facility)

    Energy Technology Data Exchange (ETDEWEB)

    Shinto, K., E-mail: shinto.katsuhiro@jaea.go.jp; Ichimiya, R.; Ihara, A.; Ikeda, Y.; Kasugai, A.; Kitano, T.; Kondo, K.; Takahashi, H. [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Senée, F.; Bolzon, B.; Chauvin, N.; Gobin, R.; Valette, M. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Ayala, J.-M.; Marqueta, A.; Okumura, Y. [IFMIF/EVEDA Project Team, Rokkasho, Aomori 039-3212 (Japan)

    2016-02-15

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H{sup +}) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D{sup +}) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H{sup +} ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H{sup +}/D{sup +} ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  11. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens

    Directory of Open Access Journals (Sweden)

    Jamil Anwar

    2015-01-01

    Full Text Available To understand the interactions of microwaves with dielectric materials and their conversion to thermal energy in aqueous systems, the effect of ionic concentration has been studied. Aqueous solutions of inorganic ions were exposed to microwaves (2.45 GHz in a modified oven under identical conditions. Difference in solution temperatures with reference to pure (deionized water was monitored in each case. A significant decrease in the temperature was observed with an increase in the quantity of ions. Experiments were repeated with several inorganic ions varying in size and charge. The information can be helpful in understanding the role of ions during dielectric heating.

  12. A 2.45GHz High Current Ion Source for Neutron Production%一台2.45GHz强流中子源

    Institute of Scientific and Technical Information of China (English)

    J.W.Kwan; R.Gough; R.Keller; B.A.Ludewigt; M.Regis; R.P.Wells; J.H.Vainionpaa

    2007-01-01

    A 2.45GHz microwave-driven ion source is being used to provide 40mA of deuterium ion beam (peak current)for an RFQ accelerator as part of a neutron source system.We have also designed a 60kV electrostatic LEBT using computer simulations.In our experiment,we measured the hydrogen and deuterium ion beam currents as functions of discharge power,gas flow,and magnetic field strength.The required beam current was obtained using less than 700W of net microwave power with a gas flow of less than 1.5sccm.From the rise time data,it Was determined that in order to obtain a high percentage of atomic ions in the beam,the beam extraction should start after lms of switching on the microwave power.At steady state,the proton fraction Was above 90%.

  13. Microwave quantum logic spectroscopy and control of molecular ions

    DEFF Research Database (Denmark)

    Shi, M.; F. Herskind, P.; Drewsen, M.

    2013-01-01

    A general method for rotational microwave spectroscopy and control of polar molecular ions via direct microwave addressing is considered. Our method makes use of spatially varying AC Stark shifts, induced by far off-resonant, focused laser beams to achieve an effective coupling between the rotati......A general method for rotational microwave spectroscopy and control of polar molecular ions via direct microwave addressing is considered. Our method makes use of spatially varying AC Stark shifts, induced by far off-resonant, focused laser beams to achieve an effective coupling between...... for rotational ground state cooling, and can be considered as a candidate for the quantum information processing with polar molecular ions. All elements of our proposal can be realized with currently available technology....

  14. Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries

    Science.gov (United States)

    Shi, Shaojun; Zhang, Saisai; Wu, Zhijun; Wang, Ting; Zong, Jianbo; Zhao, Mengxi; Yang, Gang

    2017-01-01

    In technologically important Li-rich layered cathode materials, the synthesis time is a critical determinant to overcome the practical difficulties. Normal technology costs at least one day or even more to obtain final Li-rich cathode material. Full microwave synthesis is performed here to obtain final Li1.2Mn0.56Ni0.16Co0.08O2 within 60 min with high time-efficiency and power economization. The as-prepared Li-rich oxides keep the spherical hierarchical structure of the precursor. Compared to the same material obtained by traditional calcination, it exhibits well-formed layered structure with higher ordered ion arrangement. X-ray photoelectron spectroscopy (XPS) indicates that microwave assisted heating contributes to a more ordered and stable surface with desired Mn, Co, Ni element states and less impurity. Thus, the as-prepared material reveals remarkable electrochemical property with high discharge capacity of 159.3 mAh g-1 at high current density of 2000 mA g-1. And 88.6% specific capacity is remained after 300 cycles at such high current density. Furthermore, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) are carried out to overall investigate and estimate the material. It is concluded that such full microwave synthesis is really promising as one of the dominant way to obtain Li-rich layered cathode material for applications.

  15. High current H{sub 2}{sup +} and H{sub 3}{sup +} beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Peng, Shixiang, E-mail: sxpeng@pku.edu.cn; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Tao; Guo, Zhiyu [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Zhang, Ailin [University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jia' er [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-02-15

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H{sub 2}{sup +} and H{sub 3}{sup +}) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H{sub 3}{sup +} ions with fraction 43.2% and 40 mA H{sub 2}{sup +} ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  16. Single-ion microwave near-field quantum sensor

    Science.gov (United States)

    Wahnschaffe, M.; Hahn, H.; Zarantonello, G.; Dubielzig, T.; Grondkowski, S.; Bautista-Salvador, A.; Kohnen, M.; Ospelkaus, C.

    2017-01-01

    We develop an intuitive model of 2D microwave near-fields in the unusual regime of centimeter waves localized to tens of microns. Close to an intensity minimum, a simple effective description emerges with five parameters that characterize the strength and spatial orientation of the zero and first order terms of the near-field, as well as the field polarization. Such a field configuration is realized in a microfabricated planar structure with an integrated microwave conductor operating near 1 GHz. We use a single 9 Be+ ion as a high-resolution quantum sensor to measure the field distribution through energy shifts in its hyperfine structure. We find agreement with simulations at the sub-micron and few-degree level. Our findings give a clear and general picture of the basic properties of oscillatory 2D near-fields with applications in quantum information processing, neutral atom trapping and manipulation, chip-scale atomic clocks, and integrated microwave circuits.

  17. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    Science.gov (United States)

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.

  18. Self-focusing of a high current density ion beam extracted with concave electrodes in a low energy region around 150 eV

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Laboratory of Physics, College of Science and Technologies, Nihon University, Tokyo (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Sakakita, H. [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki (Japan)

    2014-02-15

    Spontaneous self-focusing of ion beam with high current density (J{sub c} ∼ 2 mA/cm{sup 2}, I{sub b} ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135–150 eV, and the J{sub c} jumps up from 0.7 to 2 mA/cm{sup 2}. Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.

  19. Measurements of the Total Charge-Changing Cross Sections for Collisions of Fast Ions with Target Gas Using High Current Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Covo, Michel Kireeff; Molvik, Arthur W.; Kaganovich, Igor D.; Shnidman, Ariel; Vujic, Jasmina L.

    2009-04-13

    The sum of ionization and charge-exchange cross sections of several gas targets (H2, N2, He, Ne, Kr, Xe, Ar, and water vapor) impacted by 1MeV K+ beam are measured. In a high current ion beam, the self-electric field of the beam is high enough that ions produced from the gas ionization or charge exchange by the ion beam are quickly swept to the sides of accelerator. The flux of the expelled ions is measured by a retarding field analyzer. This allows accurate measuring of the total charge-changing cross sections (ionization plus charge exchange) of the beam interaction with gas. Cross sections for H2, He, and N2 are simulated using classical trajectory Monte Carlo (CTMC) method and compared with the experimental results, showing good agreement.

  20. Comparison of different plasma chambers in microwave ion source for the intense neutron tube

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The microwave absorption efficiency, which is relevant to magnet field and its distribution, is a major parameter of the microwave ion source (MWIS) for the intense neutron tube. Based on previous work, the relations between microwave absorption efficiency and plasma chamber structure and thickness of the microwave introduction window are studied. The microwave absorption efficiency reaches to 100% when plasma chamber is 100mm long and the window thickness is 30mm. The microwave absorption efficiency as a function of pressure is also presented.

  1. Blueprint for a microwave trapped-ion quantum computer

    DEFF Research Database (Denmark)

    Lekitsch, B.; Weidt, S.; Fowler, A. G.

    2017-01-01

    constructed using a modular approach. We present a blueprint for a trapped-ion based scalable quantum computer module which makes it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units......, are constructed using silicon microfabrication techniques and they are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength-radiation based quantum gate technology. To scale this microwave quantum computer architecture to an arbitrary size we...... present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high-error-threshold surface error correction code can be implemented in the proposed architecture to execute fault...

  2. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  3. Blueprint for a microwave trapped ion quantum computer.

    Science.gov (United States)

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  4. Ion gyroscale fluctuation measurement with microwave imaging reflectometer on KSTAR

    Science.gov (United States)

    Lee, W.; Leem, J.; Yun, G. S.; Park, H. K.; Ko, S. H.; Wang, W. X.; Budny, R. V.; Luhmann, N. C.; Kim, K. W.

    2016-11-01

    Ion gyroscale turbulent fluctuations with the poloidal wavenumber kθ ˜ 3 cm-1 have been measured in the core region of the neutral beam (NB) injected low confinement (L-mode) plasmas on Korea superconducting tokamak advanced research. The turbulence poloidal wavenumbers are deduced from the frequencies and poloidal rotation velocities in the laboratory frame, measured by the multichannel microwave imaging reflectometer. Linear and nonlinear gyrokinetic simulations also predict the unstable modes with the normalized wavenumber kθρs ˜ 0.4, consistent with the measurement. Comparison of the measured frequencies with the intrinsic mode frequencies from the linear simulations indicates that the measured ones are primarily due to the E × B flow velocity in the NB-injected fast rotating plasmas.

  5. An Experimental Study of Waveguide Coupled Microwave Heating with Conventional Multicusp Negative Ion Source

    CERN Document Server

    Komppula, J; Koivisto, H; Laulainen, J; Tarvainen, O

    2015-01-01

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RFdriven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H^- ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  6. An experimental study of waveguide coupled microwave heating with conventional multicusp negative ion sources

    Science.gov (United States)

    Komppula, J.; Kalvas, T.; Koivisto, H.; Laulainen, J.; Tarvainen, O.

    2015-04-01

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RF-driven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H- ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  7. Blueprint for a microwave trapped ion quantum computer

    Science.gov (United States)

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G.; Mølmer, Klaus; Devitt, Simon J.; Wunderlich, Christof; Hensinger, Winfried K.

    2017-01-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects. PMID:28164154

  8. 强流ECR离子源引出系统研究%Study on Extraction System for High Current ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    王云; 张文慧; 张子民; 张雪珍; 刘占稳; 陈志; 赵红卫; 赵阳阳; 孙良亭; 杨尧; 钱程; 武启; 马鸿义

    2013-01-01

      为了提高强流ECR离子源的引出束流品质,分别设计了1#和2#引出系统,利用束流引出模拟软件PBGUNS对1#和2#引出系统进行了质子束流引出与传输的模拟计算,结合实际测得的发射度数据分析引出系统,发现2#引出系统比1#引出系统引出束流品质高。对ECR离子源引出系统的电势等位线分布等参数引起的球差进行了简单数学推导及MATLAB绘图,并结合1#和2#引出系统束流相图模拟结果证明了球差会使引出束流品质有效发射度增长,通过适当加大电极孔径可改善束流聚焦情况,得到了束流光学聚焦较好的束流引出系统设计。%  To improve the quality of extracted ion beam from a high current ECR ion source, 1# and 2# extraction systems were designed and tested. The PBGUNS code was used to simulate the 1# and 2# extraction systems of proton ion beam. The emittance measurement results with the two different extraction systems were compared and analyzed with the simulation, the conclusion that more high quality beam extracted from 2# system than 1# system was got. The formula derivation of ECR ion source extraction system spherical aberration and MATLAB drawing was done by the analyzing on the distribution of extraction field equipotentials, effective emittance increasing caused by spherical aberration was proved by 1# and 2# extraction systems beam phase space simulation result, beam focusing would be improved if electrode hole size increasing appropriately and a general concept on good optics focusing of ion beam extraction system was proposed finally.

  9. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma source.

    Science.gov (United States)

    Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  10. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma sourcea)

    Science.gov (United States)

    Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  11. Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center

    Science.gov (United States)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.

  12. Effect of resonant microwave power on a PIG ion source. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 32 refs., 2 figs.

  13. Effect of resonant microwave power on a PIG ion source. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 32 refs., 2 figs.

  14. Microwave Synthesis of Cathode Material LixMn2O4 for Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    HAO Hua; LIU Han-xing; OUYANG Shi-xi

    2002-01-01

    LiMn2O4 was synthesized rapidly by microwa e heating. The product phases of the microwave synthesis and conventional solid-state synthesis were comparatively invesitigated. The capacity of microwave synthesis product decreases relatively slow. The lithium ion can be inserted into and extracted from the spinel framework structure fluently after cycling. But the capacity of the conventional solid-state synthesis product is more remarkably lowered. The spinel framework structure was destroyed which hindered the lithium ion from inserting and extracting. The influential factors of the process parameters are discussed such as heat preservation time, pre-heating at 400℃ for 24h and coupled agent.

  15. An experimental study of waveguide coupled microwave heating with conventional multicusp negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Komppula, J.; Kalvas, T.; Koivisto, H.; Laulainen, J.; Tarvainen, O.

    2015-04-08

    Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RF-driven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electron to H{sup −} ratio and the optimum pressure range were observed to be similar for both heating methods. The behaviour of the plasma implies that the energy transfer from the microwaves to the plasma electrons is mainly an off-resonance process.

  16. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation

    Science.gov (United States)

    Razin, S.; Zorin, V.; Izotov, I.; Sidorov, A.; Skalyga, V.

    2014-02-01

    We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80-100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2-1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.

  17. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions

    Science.gov (United States)

    Zhang, Jian-Wei; Miao, Kai; Wang, Li-Jun

    2015-01-01

    The Dick effect is one of the main limits to the frequency stability of a passive frequency standard, especially for the fountain clock and ion clock operated in pulsed mode which require unavoidable dead time during interrogation. Here we measure the phase noise of the interrogation oscillator applied in the microwave frequency standard based on laser-cooled 113Cd+ ions, and analyze the Allan deviation limited by the Dick effect. The results indicate that the Dick effect is one of the key issues for the cadmium ion clock to reach expected frequency stability. This problem can be resolved by interrogating the local oscillator continuously with two ion traps.

  18. Versatile microwave-driven trapped ion spin system for quantum information processing.

    Science.gov (United States)

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof

    2016-07-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer.

  19. Microwave frequency standard on 25Mg+ ions: expected characteristics and prospects

    Science.gov (United States)

    Zalivako, I. V.; Semerikov, I. A.; Borisenko, A. S.; Khabarova, K. Yu.; Sorokin, V. N.; Kolachevsky, N. N.

    2017-06-01

    A scheme of the new frequency standard is reported based on a microwave transition between hyperfine components of the ground state in 25Mg+ ions. It is proposed to capture ions into a linear quadrupole Paul trap and to perform the laser cooling, as well as to prepare the particle ensemble and to implement detection by using a single laser system based on a semiconductor laser. Characteristics of the suggested frequency standard are estimated.

  20. Microwave-assisted solid-state synthesis of oxide ion conducting stabilized bismuth vanadate phases

    Energy Technology Data Exchange (ETDEWEB)

    Vaidhyanathan, B.; Balaji, K.; Rao, K.J. [Indian Inst. of Science, Bangalore (India). Solid State and Structural Chemistry Unit

    1998-11-01

    A microwave-assisted method for the preparation of substituted bismuth vanadates has been described. The method consists of starting with the respective oxides mixed in stoichiometric proportions and exposing the mixture to microwaves. Substitution takes place at the vanadium sites and it has been possible to prepare Ag{sup +}-, Mn{sup 4+}-, Ga{sup 3+}-, Y{sup 3+}-, and Ce{sup 4+}-substituted compounds with up to 10% substitution. Mn{sup 4+}- and Ag{sup +}-substituted compounds are found to exhibit better oxygen ion conductivities than any reported so far in the literature.

  1. Microwave Hydrothermal Synthesis of Terbium Ions Complexed with Porous Graphene for Effective Absorbent for Organic Dye.

    Science.gov (United States)

    Chen, Keqin; Gao, Hui; Bai, Bowei; Liu, Wenjing; Li, Xiaolong

    2017-12-01

    A luminescent terbium ions/reduced graphene oxide complex (Tb-RGO) was successfully and rapidly synthesized by the microwave hydrothermal reaction via the interactions between terbium ions and the active oxygen functional groups of graphene oxide. The as-prepared material was porous stacked by multilayer graphene in all directions. Thus, the resulting product owed the high specific surface area, high adsorption capacity and ultra-fast adsorption rate. Combined with the characteristic photoluminescence derived from terbium ions, the material has potential applications in biosensing and environmental protection.

  2. Microwave Hydrothermal Synthesis of Terbium Ions Complexed with Porous Graphene for Effective Absorbent for Organic Dye

    Science.gov (United States)

    Chen, Keqin; Gao, Hui; Bai, Bowei; Liu, Wenjing; Li, Xiaolong

    2017-03-01

    A luminescent terbium ions/reduced graphene oxide complex (Tb-RGO) was successfully and rapidly synthesized by the microwave hydrothermal reaction via the interactions between terbium ions and the active oxygen functional groups of graphene oxide. The as-prepared material was porous stacked by multilayer graphene in all directions. Thus, the resulting product owed the high specific surface area, high adsorption capacity and ultra-fast adsorption rate. Combined with the characteristic photoluminescence derived from terbium ions, the material has potential applications in biosensing and environmental protection.

  3. Microwave Discharge Ion Engines onboard Hayabusa Asteroid Explorer

    Science.gov (United States)

    Kuninaka, Hitoshi

    2008-04-01

    The Hayabusa spacecraft rendezvoused with the asteroid Itokawa in 2005 after the powered flight in the deep space by the μl0 cathode-less electron cyclotron resonance ion engines. Though the spacecraft was seriously damaged after the successful soft-landing and lift-off, the xenon cold gas jets from the ion engines rescued it. New attitude stabilization method using a single reaction wheel, the ion beam jets, and the photon pressure was established and enabled the homeward journey from April 2007 aiming the Earth return on 2010. The total accumulated operational time of the ion engines reaches 31,400 hours at the end of 2007. One of four thrusters achieved 13,400-hour space operation.

  4. Study on the microwave ion source of 100-MeV proton linac

    CERN Document Server

    Kwon, Hyeok-Jung

    2016-01-01

    A microwave ion source is used as an ion source of 100-MeV proton accelerator at Korea Multipurpose Accelerator Complex (KOMAC). The specifications of the ion source are 50 keV in energy and 20 mA in peak current. The plasma is operated in CW mode using magnetron and the pulse beam is extracted using semiconductor switch located in the extraction power supply. The beam characteristics were measured based on the pulse voltage and current. A test stand was also installed to study the beam characteristics of the ion source in off-line. In this paper, the pulse beam characteristics of the ion source are presented and the installation of the test stand is reported.

  5. Studies on the coupling transformer to improve the performance of microwave ion source.

    Science.gov (United States)

    Misra, Anuraag; Pandit, V S

    2014-06-01

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.

  6. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Guo, J. W., E-mail: jwguo@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Sun, L.; Zhang, X. Z.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Zhao, H. W. [Institute of Modern Physics (IMP), Chinese Academy of Science, Lanzhou 730000 (China); Niu, X. J. [University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-02-15

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE{sub 01} mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE{sub 01}-HE{sub 11} mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE{sub 01}-HE{sub 11} converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper.

  7. Characteristics and potential applications of an ORNL microwave ECR multicusp plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.

    1990-01-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source that has two ECR plasma production regions and uses multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasma over large areas of 300 to 400 cm{sup 2} and could be scaled up to produce uniform plasma over 700 cm{sup 2} or larger. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The working gases used were argon, helium, hydrogen, and oxygen. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of the discharge parameters. The discharge characteristics and a hypothetical discharge mechanism for this plasma source are described and discussed. Potential applications, including plasma and ion-beam sources for manufacturing advanced microelectronics, for space electric propulsion, and for fusion research, are discussed. 10 refs., 10 figs.

  8. Potential applications of a new microwave ECR (electron cyclotron resonance) multicusp plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C.

    1990-01-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300 to 400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. 7 refs., 6 figs.

  9. Potential applications of a new microwave ECR multicusp plasma ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.C. (Fusion Energy Div., Oak Ridge National Lab., TN (USA))

    1991-05-01

    A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300-400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. (orig.).

  10. 24 GHz microwave mode converter optimized for superconducting ECR ion source SECRAL.

    Science.gov (United States)

    Guo, J W; Sun, L; Niu, X J; Zhang, X Z; Lu, W; Zhang, W H; Feng, Y C; Zhao, H W

    2016-02-01

    Over-sized round waveguide with a diameter about Ø33.0 mm excited in the TE01 mode has been widely adopted for microwave transmission and coupling to the ECR (Electron Cyclotron Resonance) plasma with the superconducting ECR ion sources operating at 24 or 28 GHz, such as SECRAL and VENUS. In order to study the impact of different microwave modes on ECRH (Electron Cyclotron Resonance Heating) efficiency and especially the production of highly charged ions, a set of compact and efficient TE01-HE11 mode conversion and coupling system applicable to 24 GHz SECRAL whose overall length is 330 mm has been designed, fabricated and tested. Good agreements between off-line tests and calculation results have been achieved, which indicates the TE01-HE11 converter meets the application design. The detailed results of the optimized coupling system will be presented in the paper.

  11. Individual-Ion Addressing with Microwave Field Gradients

    Science.gov (United States)

    2013-04-22

    MW. Near the center of the trap BMW can be approxi- mated for ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi x2 þ z2 p & 3 m by a y-independent x-z...resonance by BMW while the field strength is minimal at the position of qubit 1. The qubit transition is driven by Bk, the component of BMW parallel...configuration B. After applying BMW for duration TMW the positions are switched back to configuration A and the qubit states of both ions are detected [Fig

  12. Microwave receivers for fast-ion detection in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Furtula, V.

    2012-02-15

    The main objectives of this thesis are to determine fundamental properties of a millimeter wave radiometer used to detect radiation associated with dynamics of fast ions and to investigate possibilities for improvements and new designs. The detection of fast ions is based on a principle called collective Thomson scattering (CTS). The Danish CTS group has been involved in fusion plasma experiments for more than 10 years and the future plans will most probably include the International Thermonuclear Experimental Reactor (ITER). Current CTS systems designed by the Danish group are specified for the frequency range from 100 to 110 GHz. In this thesis we follow the path of the radiation from a fusion plasma to the data acquisition unit. Firstly, the scattered radiation passes through the quasi-optical system. Quasi-optical elements required to be installed on the high field side (HFS) on the ITER are assessed. For the ITER HFS receiver we have designed and measured the quasi-optical components that form a transmission link between the plasma and the radio frequency (RF) electronics. This HFS receiver is required to resolve the near parallel velocity components created by the alpha particles. Secondly, the radiation will encounter the RF part. This part is not yet designed for ITER, but instead the solution is addressed to the CTS receiver installed at ASDEX Upgrade (AUG).We have put effort to thoroughly examine and evaluate the performance of the receiver components and the receiver as an assembled unit. We have measured and analyzed all the receiver components starting from the two notch filters to the fifty square-law detector diodes. The receiver sensitivity is calculated from the system measurements and compared with the expected sensitivity based on the individual component measurements. Besides the system considerations we have also studied improvements of two critical components of the receiver. The first component is the notch filter, which is needed to block

  13. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Science.gov (United States)

    Torrisi, Giuseppe; Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Sorbello, Gino; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Isernia, Tommaso; Gammino, Santo

    2016-02-01

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 1011-1013 cm-3 and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called "frequency sweep" method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  14. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, Giuseppe [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University Mediterranea of Reggio Calabria, Reggio Calabria (Italy); Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Gammino, Santo [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Sorbello, Gino [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University of Catania, Catania, Italy and INFN-LNS, Catania (Italy); Isernia, Tommaso [University Mediterranea of Reggio Calabria, Reggio Calabria (Italy)

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  15. [Solid phase coordination synthesis and characterization of polymimide and Sm ion-under microwave radiation].

    Science.gov (United States)

    Lu, Jian-mei; Dai, Wei-quan; Ji, Shun-jun; Wang, Li-hua; Zhu, Xiu-lin

    2002-12-01

    Solid phase coordination reaction of Sm3+ and the resultant of the imidization of polycondensor of polycondensation and imidization of benzoguanamine(BGA) and 2, 4-tolylenediisocyanate (TDI) and pyromellitic dianhydride (PMIDA) under microwave irradiation were synthesized and studied. The effect of microwave irradiation time (power), the composition of reactants and the reaction temperature on the yield and Sm content in complexes were studied. The complex was determined by Fourier transform infrared absorption (FTIR), Fourier transform Roman spectrum (FTRS), scanning electric minor (SEM), 13C solid state nuclear magnetic resonance spectrometry and X-ray powder diffraction. The fluorescence intensity was measured by fluorescent emission spectrum and compared with thermal coordination. The magnetic susceptibilities were measured by magnetic curve. The results showed that the complex had not characteristic fluorescence of Sm3+, which illustrated that the first excitation level of Sm3+ and polymer could not match at all. But the complex showed good magnetic property of the ion.

  16. Studying Heavy Ion Collisions Using Methods From Cosmic Microwave Background (CMB Analysis

    Directory of Open Access Journals (Sweden)

    Gaardhøje J. J.

    2014-04-01

    Full Text Available We present and discuss a framework for studying the morphology of high-multiplicity events from relativistic heavy ion collisions using methods commonly employed in the analysis of the photons from the Cosmic Microwave Background (CMB. The analysis is based on the decomposition of the distribution of the number density of (charged particles expressed in polar and azimuthal coordinates into a sum of spherical harmonic functions. We present an application of the method exploting relevant symmetries to the study of azimuthal correlations arizing from collective flow among charged particles produced in relativistic heavy ion collisions. We discuss perspectives for event-by- event analyses, which with increasing collision energy will eventually open entirely new dimensions in the study of ultrarelaticistic heavy ion reactions.

  17. Afterglow of a microwave microstrip plasma as an ion source for mass spectrometry

    Science.gov (United States)

    Pfeuffer, Kevin P.; White, Allen; Broekaert, José A. C.; Hieftje, Gary M.

    2015-01-01

    A microwave-induced plasma that was previously used for optical emission spectrometry has been repurposed as an afterglow ion source for mass spectrometry. This compact microwave discharge, termed the microstrip plasma (MSP), is operated at 20-50 W and 2.45 GHz in helium at a flow of 300 mL/min. The primary background ions present in the afterglow are ionized and protonated water clusters. An exponential dilution chamber was used to introduce volatile organic compounds into the MSP afterglow and yielded limits of detection in the 40 ppb to 7 ppm range (v/v). A hydride-generation system was also utilized for detection of volatile hydride-forming elements (arsenic, antimony, tin) in the afterglow and produced limits of detection in the 10-100 ppb range in solution. The MSP afterglow was found capable of desorption and ionization of analyte species directly from a solid substrate, suggesting its use as an ion source for ambient desorption/ionization mass spectrometry.

  18. Development and Industrialization of Silver Electrolysis Process at a High Current Density in Copper Ions -free Electrolyte%无铜离子高电流密度银电解工艺的开发与产业化

    Institute of Scientific and Technical Information of China (English)

    谢太李; 黄强; 王日

    2012-01-01

    对贵溪冶炼厂传统银电解工艺存在的问题进行了分析,同时针对高电流密度下银电解工艺需解决的关键问题提出了解决方法,研发出无铜离子高电流密度(1000A/m2)银电解集成技术,并在贵溪冶炼厂工业生产中稳定运行多年.生产实践证明,此工艺具有简单、操作方便、产品质量稳定、单槽产能高、作业环境友好等优点.%In this paper, the existing problems in traditional silver electrolysis process are analyzed and the corresponding solutions are proposed. The author proposes solutions for the key problems in the traditional silver electrolysis process with high current density, which are supposed to be solved. A new process for silver electrolysis at the high current density of 1000 A/m2 in copper ions -free electrolyte was developed, and has been applied to industrial production in Guixi smelter for many years. The production practice shows that this process has advantages of being simple and environmentally - friendly with high capacity of single cell, and produces the product of high quality.

  19. Determination of nitrate in lettuce by ion chromatography after microwave water extraction

    Directory of Open Access Journals (Sweden)

    Humberto Brevilato Novaes

    2009-01-01

    Full Text Available Lettuce is worldwide known as the most important vegetable. In this context, most farmers are searching new techniques for best quality products including hydropony. However, nitrate is of great concern, since it has a negative impact on human metabolism. The main objective of the present work was to evaluate the nitrate content of lettuce produced by conventional and hydroponic systems. The determination was conducted by ion chromatography and a new method of extraction was tested using microwave oven digestion. The results indicated that nitrate level produced in the conventional system was lower than in the hydroponic system.

  20. Microwave-assisted chemical insertion: a rapid technique for screening cathodes for Mg-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kaveevivitchai, Watchareeya; Huq, Ashfia; Manthiram, Arumugam

    2016-12-19

    We report an ultrafast microwave-assisted solvothermal method for chemical insertion of Mg2+ ions into host materials using magnesium acetate [Mg(CH3COO)2] as a metal-ion source and diethylene glycol (DEG) as a reducing agent. For instance, up to 3 Mg ions per formula unit of a microporous host framework Mo2.5+yVO9+z could be inserted in as little as 30 min at 170–195 °C in air. This process is superior to the traditional method which involves the use of organometallic reagents, such as di-n-butylmagnesium [(C4H9)2Mg] and magnesium bis(2,6-di-tert-butylphenoxide) [Mg-(O-2,6-But2C6H3)2], and requires an inert atmosphere with extremely long reaction times. Considering the lack of robust electrolytes for Mg-ion batteries, this facile approach can be readily used as a rapid screening technique to identify potential Mg-ion electrode hosts without the necessity of fabricating electrodes and assembling electrochemical cells. Due to the mild reaction conditions, the overall structure and morphology of the Mg-ion inserted products are maintained and the compounds can be used successfully as a cathode in Mg-ion batteries. The combined synchrotron X-ray and neutron diffraction Rietveld analysis reveals the structure of the Mg-inserted compounds and gives an insight into the interactions between the Mg ions and the open-tunnel host framework.

  1. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  2. Microwave exfoliated graphene oxide/TiO2 nanowire hybrid for high performance lithium ion battery

    Science.gov (United States)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Islam, Md Tariqul; Karim, Hasanul; Ramabadran, Navaneet; Noveron, Juan C.; Lin, Yirong

    2015-09-01

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO2 nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode-electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge-discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  3. Evaluation of the frequency instability limited by Dick effect in the microwave 199Hg+ trapped-ion clock

    Science.gov (United States)

    Chen, Yi-He; She, Lei; Wang, Man; Yang, Zhi-Hui; Liu, Hao; Li, Jiao-Mei

    2016-12-01

    In the microwave 199Hg+ trapped-ion clock, the frequency instability degradation caused by the Dick effect is unavoidable because of the periodical interrogating field. In this paper, the general expression of the sensitivity function g(t) to the frequency fluctuation of the interrogating field with Nπ-pulse (N is odd) is derived. According to the measured phase noise of the 40.5-GHz microwave synthesizer, the Dick-effect limited Allan deviation of our 199Hg+ trapped-ion clock is worked out. The results indicate that the limited Allan deviations are about and respectively in the linear ion trap and in the two-segment extended linear ion trap under our present experimental parameters. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074248 and 11474320).

  4. CW/Pulsed H- ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    Science.gov (United States)

    Peng, S. X.; Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, A. L.; Zhang, J. F.; Zhao, J.; Guo, Z. Y.; Chen, J. E.

    2015-04-01

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10 mA pulsed mode H- beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H- source able to produce very intense H- beams with important variation of the duty factor[1]. Recently, a new version of 2.45 GHz microwave H- ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H- ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8 mA/30keV H- beam with rms emittance about 0.16 π.mm.mrad has been obtained with only 500 W rf power. The power efficiency reaches 21 mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20 mA H- ion beam at 35 keV with rms emittance about 0.2 π.mm.mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H- source body is ϕ116 mm × 124 mm, and the entire H- source infrastructure, including rf matching section, plasma chamber and extraction system, is ϕ310 × 180 mm. The high voltage region is limited with in a ϕ310 mm × 230 mm diagram. Details are given in this paper.

  5. Optimizing a microwave gas ion source for continuous-flow accelerator mass spectrometry.

    Science.gov (United States)

    von Reden, K F; Roberts, M L; Burton, J R; Beaupré, S R

    2012-02-01

    A 2.45 GHz microwave ion source coupled with a magnesium charge exchange canal (C × C) has been successfully adapted to a large acceptance radiocarbon accelerator mass spectrometry system at the National Ocean Sciences Accelerator Mass Spectrometry (AMS) Facility, Woods Hole Oceanographic Institution. CO(2) samples from various preparation sources are injected into the source through a glass capillary at 370 μl∕min. Routine system parameters are about 120-140 μA of negative (12)C current after the C × C, leading to about 400 (14)C counts per second for a modern sample and implying a system efficiency of 0.2%. While these parameters already allow us to perform high-quality AMS analyses on large samples, we are working on ways to improve the output of the ion source regarding emittance and efficiency. Modeling calculations suggest modifications in the extraction triode geometry, shape, and size of the plasma chamber could improve emittance and, hence, ion transport efficiency. Results of experimental tests of these modifications are presented.

  6. Thermal and fragility aspects of microwave synthesized glasses containing transition metal ions and heavy metal ions

    Science.gov (United States)

    Renuka, C.; Viswanatha, R.; Reddy, C. Narayana

    2017-02-01

    A simple, clean and energy efficient microwave heating route is used to prepare glasses in the systems xMnO-33(0.09PbCl2:0.91PbO)-(67-x) NaPO3 and xPbCl2-33PbO-(67-x) NaPO3 where 0.1 ≤ x ≤ 4 (mol%). Thermal data extracted from differential scanning calorimetry (DSC) thermograms are used to study the composition dependence of glass transition temperature (Tg), heat capacity, thermal stability and fragility. The decrease in glass transition temperature with modifier oxide (Na2O + MnO) content can be ascribed to network degradation and the volume increasing effect caused by PbCl2. The change in heat capacity of MnPb glass being greater than that of PbNP glass, suggests that MnPb glasses are more covalent than PbNP glasses. DSC thermograms taken at different heating rates (φ) reveal the dependence of Tg on φ, and the thermal stability of the glass increases due to MnO addition. Fragility aspects have also been studied by calculating the fragility functions ( {{Δ {{C}}_{{p}} }/{{{C}_{{pl}} }}{{and}}{[ {{NBO}} ]}/{{{V}_{{m}}3 {{T}}_{{g}} }}} ). Results obtained from both the fragility functions compare well and reveal the dependence of fragility functions on modifier content and PbCl2 mol%. Further, the decrease in Tg and Hv are suggested to be due to the increase in the number of non-bridging oxygens, which results in the lowering of stiffness and rigidity of the glass network. Analysis of the infrared spectra confirms that the glassy matrix is composed of P-O-P, P-O-Pb, P=O and P-O- bonding.

  7. Microwave emission related to cyclotron instabilities in a minimum-B electron cyclotron resonance ion source plasma

    Science.gov (United States)

    Izotov, I.; Tarvainen, O.; Mansfeld, D.; Skalyga, V.; Koivisto, H.; Kalvas, T.; Komppula, J.; Kronholm, R.; Laulainen, J.

    2015-08-01

    Electron cyclotron resonance ion sources (ECRIS) have been essential in the research and applications of nuclear physics over the past 40 years. They are extensively used in a wide range of large-scale accelerator facilities for the production of highly charged heavy ion beams of stable and radioactive elements. ECRISs are susceptible to kinetic instabilities due to resonance heating mechanism leading to anisotropic electron velocity distribution function. Instabilities of cyclotron type are a proven cause of frequently observed periodic bursts of ‘hot’ electrons and bremsstrahlung, accompanied with emission of microwave radiation and followed by considerable drop of multiply charged ions current. Detailed studies of the microwave radiation associated with the instabilities have been performed with a minimum-B 14 GHz ECRIS operating on helium, oxygen and argon plasmas. It is demonstrated that during the development of cyclotron instability ‘hot’ electrons emit microwaves in sub-microsecond scale bursts at temporally descending frequencies in the 8-15 GHz range with two dominant frequencies of 11.09 and 12.59 GHz regardless of ECRIS settings i.e. magnetic field strength, neutral gas pressure or species and microwave power. The experimental data suggest that the most probable excited plasma wave is a slow extraordinary Z-mode propagating quasi-longitudinally with respect to the external magnetic field.

  8. Reduction of Tb4+ions in luminescent Y2O3:Tb nanorods prepared by microwave hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    Jarosaw Kaszewski; Bartomiej S Witkowski; ukasz Wachnicki; Hanka Przybyliska; Bolesaw Kozankiewicz; Ewa Mijowska; Marek Godlewski

    2016-01-01

    Terbium doped yttrium oxide was prepared with the microwave hydrothermal method. The Y2O3:Tb nanomaterial crystal-lized as needle-like grains. Bright luminescence in the green region was observed. Significant luminescence intensity increase was obtained after thermal treatment. Reduction of terbium ions was observed after heating in the air atmosphere. Tb4+ions were found to be stabilized by crystal impurities. Hydroxyl species were found to have impact on vacancies elimination. The terbium ions were used as optical and magnetic indicator of the material properties.

  9. High PRF high current switch

    Science.gov (United States)

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  10. Calculation of Deposited Energy of Backstream Electrons for EAST NBI High Current Ion Source%EAST NBI 强流离子源反向电子流沉积计算

    Institute of Scientific and Technical Information of China (English)

    陈俞钱; 谢亚红; 胡纯栋

    2015-01-01

    中性束注入是大型托卡马克聚变装置成功和有效的辅助加热方法。中性束核心部件长脉冲弧放电离子源发展的关键在于引出系统和弧室背板(反向电子吸收板)的冷却。将反向电子吸收板永久磁体磁场简化成喇叭形磁场,即可将反向电子向反向电子吸收板的运动简化为带电粒子在喇叭形磁场的会聚螺旋运动。通过简化模型对轰击反向电子吸收板的电子流在反向电子吸收板上的沉积进行相关模拟计算,为长脉冲束引出系统做出优化借鉴。%The neutral beam injection (NBI) is a very successful and effective heating method in large Tokamak nuclear fusion device .The cooling of extraction system and back panel of arc chamber limits the development of the high current ion source w hich is the key part of NBI system .In this paper ,the magnetic field of the backstream electron dump plate permanent magnets was simplified as flaring magnetic field .So the move‐ment of backstream electrons can be simplified as helical movement of charged particle . The simulation of heat load of dump plate caused by backstream electrons was done by means of the simplified model ,w hich makes a good reference for optimizing the long pulse extraction system .

  11. Ion-beam and microwave-stimulated functionalization and derivatization of carbon nanotubes

    Science.gov (United States)

    Makala, Raghuveer S.

    Derivatizing carbon nanotubes (CNTs) with other low-dimensional nanostructures is of widespread interest for creating CNT-based nanocomposites and devices. Conventional routes based on wet-chemical oxidation or hydrophobic adsorption do not allow premeditated control over the location or spatial extent of functionalization. Moreover, aggressive oxidative treatments and agitation in corrosive environments lead to CNT shortening, damage, and incorporation of excess impurity concentrations. Thus, it is imperative to explore and develop alternative functionalization methods to overcome these shortcomings. The work presented in this thesis outlines two such methodologies: one based on focused ion irradiation for siteselective functionalization and the other that employs microwave-stimulation for mild, yet rapid and homogenous CNT functionalization. The utility of 10 and 30 kcV Ga+ focused ion beams (FIB) to thin, slice, weld, and alter the structure and composition at precise locations along the CNT axis is presented. This strategy of harnessing ion-beam-induced defect generation and doping is attractive for modulating chemical and electrical properties along the CNT length, and fabricate CNT-based heterostructures and networks. A novel approach that utilizes focused ion irradiation to site-selectively derivatize preselected segments of CNTs with controlled micro-/nano-scale lateral spatial resolution is demonstrated. Irradiation followed by air-exposure results in functionalized CNT segments ranging from the nanoscopic to the macroscopic scale. The functional moieties are utilized to site-selectively anchor Au nanoparticles, fluorescent nanospheres, an amino acid---lysine, a charge-transfer metalloprotein---azurin, and a photoactive protein---bacteriorhodopsin by means of electrostatic or covalent interactions. This approach is versatile and can be extended to obtaining other molecular moieties and derivatives opening up possibilities for building new types of nano

  12. Sideband-cooling of trapped ytterbium-ions in the microwave regime; Seitenbandkuehlung von gespeicherten Ytterbium-Ionen im Mikrowellenregime

    Energy Technology Data Exchange (ETDEWEB)

    Scharfenberger, Benedikt J.

    2012-12-14

    Trapped ions in a Paul trap are at present one of the most promising candidates for Quantum Information Processing (QIP). The technique that is used for this purpose in this experiment was introduced in 2001 by F. Mintert and Ch. Wunderlich. The core of this method is the use of atomic transitions in the radio- or microwave region, while a magnetic field gradient along the trap axis (where the ion chain is situated) lifts the degeneracy of the transition frequencies, such that the ions can be distinguished in frequency space; it also serves for the coupling of internal and external degrees of freedom of the ion chain. This method is called MAGIC (MAgnetic Gradient Induced Coupling). The performance of the measurements required that the apparatus of the experiment, which consists of laser sources, lambdameter, vacuum- and microwave system as well as imaging- and detection-units, had to be assembled and tested, which was an important prerequisite for the successful performance of the here described experiments. For the experiments it is advantageous to prepare the ions in an energetic state close to the motional ground state, which contributes to a reduction of the dephasing of the system while manipulating it with microwaves. By using the sideband-cooling technique to the sub-Doppler regime it is taken advantage of the fact, that ions in a linear trap are in good approximation situated in a harmonic oscillator potential and can therefore only populate discrete vibrational energy levels, whose frequency difference is given by the axial trap frequency {omega}{sub z}. If the system is excited by a microwave, which frequency is detuned from resonance to lower energies by a vibrational quantum, the ion looses one such phonon within each cooling-cycle. When this cycle is driven several times, the average phonon number and thus the temperature of the ion can be reduced efficiently and the ion can be initialized in a state close to the motional ground state. As sideband

  13. Peak effect at microwave frequencies in swift heavy ion irradiated YBa2Cu3O7- thin films

    Indian Academy of Sciences (India)

    Tamalika Banerjee; Avinash Bhangale; D Kanjilal; S P Pai; R Pinto

    2002-05-01

    The vortex dynamics at microwave frequencies in YBa2Cu3O7- (YBCO) films have been studied. We observe a peak in the microwave (4.88 and 9.55 GHz) surface resistance in some films in magnetic fields up to 0.8 T. This is associated with the `peak-effect’ phenomenon and reflects the order–disorder transformation of the flux line lattice near the transition temperature. Introduction of artificial pinning centers like columnar defects created as a result of irradiation with 200 MeV Ag ion (at a fluence of 4 × 1010 ions/cm2) leads to the suppression of the peak in films previously exhibiting `peak effect’.

  14. Profiles of ion beams and plasma parameters on a multi-frequencies microwaves large bore electron cyclotron resonance ion source with permanent magnets.

    Science.gov (United States)

    Kato, Yushi; Sakamoto, Naoki; Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yosuke; Nozaki, Dai; Sato, Fuminobu; Iida, Toshiyuki

    2012-02-01

    In order to contribute to various applications of plasma and beams based on an electron cyclotron resonance, a new concept on magnetic field with all magnets on plasma production and confinement has been proposed with enhanced efficiency for broad and dense ion beam. The magnetic field configuration consists of a pair of comb-shaped magnet surrounding plasma chamber cylindrically. Resonance zones corresponding for 2.45 GHz and 11-13 GHz frequencies are positioned at spatially different positions. We launch simultaneously multiplex frequencies microwaves operated individually, try to control profiles of the plasma parameters and the extracted ion beams, and to measure them in detail.

  15. Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption

    KAUST Repository

    Shen, Peng

    2016-05-12

    Abstract: Colloidal mesoporous magnetite nanoparticles with tunable porosity were realized by a simple and scalable solvothermal route with the aid of AOT as ligands. AOT was used to induce the anisotropic crystal growth of smaller nanocrystals and restrain their tight aggregation so as to form more mesoscale pores. Morphologies and microstructures investigation by SEM and TEM revealed that the bigger nanoparticles were composed of smaller nanocrystals with an average size of 18 nm. A possible formation mechanism was proposed for the mesoporous nanoparticles. Study of nitrogen adsorption–desorption isotherm revealed that the Brunauer–Emmett–Teller (BET) specific surface area of mesoporous nanoparticles is up to 209 m2/g, resulting from the slit-shaped pores created by the aggregation of polyhedral nanocrystals. Magnetic properties study indicated that the as-prepared nanoparticles are superparamagnetic at room temperature. Optimized mesoporous magnetite nanoparticles exhibit a maximum Cr(VI) ion sorption capacity of 12.9 mmol/g, and its absorption behavior followed a Freundlich model. Microwave absorption study indicated that porous nanoparticles own higher permeability values than that of solid nanoparticles, leading to a higher dielectric loss in the frequency range of 2–18 GHz. Graphical Abstract: [Figure not available: see fulltext.] © 2016, Springer Science+Business Media Dordrecht.

  16. Achromatic beam transport of High Current Injector

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  17. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    Science.gov (United States)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s‑1 (1013 s‑1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  18. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes.

    Science.gov (United States)

    Tsukizaki, Ryudo; Koizumi, Hiroyuki; Nishiyama, Kazutaka; Kuninaka, Hitoshi

    2011-12-01

    In order to reveal the physical processes taking place within the "μ10" microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p(5)((2)P(0) (3/2))6s[3/2](0) (2) which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10(18) m(-3) order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the μ10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

  19. Production of electron cyclotron resonance plasma by using multifrequencies microwaves and active beam profile control on a large bore electron cyclotron resonance ion source with permanent magnets.

    Science.gov (United States)

    Kato, Yushi; Watanabe, Takeyoshi; Matsui, Yuuki; Hirai, Yoshiaki; Kutsumi, Osamu; Sakamoto, Naoki; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    A new concept on magnetic field with all magnets on plasma production and confinement has been proposed to enhance efficiency of an electron cyclotron resonance (ECR) plasma for broad and dense ion beam source under the low pressure. The magnetic field configuration is constructed by a pair of magnets assembly, i.e., comb-shaped magnet which cylindrically surrounds the plasma chamber. The resonance zones corresponding to the fundamental ECR for 2.45 GHz and 11-13 GHz frequencies are constructed at different positions. The profiles of the plasma parameters in the ECR ion source are different from each frequency of microwave. Large bore extractor is set at the opposite side against the microwave feeds. It is found that differences of their profiles also appear at those of ion beam profiles. We conducted to launch simultaneously multiplex frequencies microwaves controlled individually, and tried to control the profiles of the plasma parameters and then those of extracted ion beam.

  20. High current regimes in RFX-mod

    Science.gov (United States)

    Valisa, M.; Bolzonella, T.; Buratti, P.; Carraro, L.; Cavazzana, R.; Dal Bello, S.; Martin, P.; Pasqualotto, R.; Sarff, J. S.; Spolaore, M.; Zanca, P.; Zanotto, L.; Agostini, M.; Alfier, A.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Cavinato, M.; Chitarin, G.; DeLorenzi, A.; DeMasi, G.; Escande, D. F.; Fassina, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guazzotto, L.; Guo, S. C.; Igochine, V.; Innocente, P.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; McCollam, K.; Milani, F.; Moresco, M.; Novello, L.; Ortolani, S.; Paccagnella, R.; Peruzzo, S.; Piovan, R.; Piron, L.; Pizzimenti, A.; Piovesan, P.; Pomaro, N.; Predebon, I.; Puiatti, M. E.; Rostagni, G.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Vianello, N.; Yadikin, D.; Zaccaria, P.; Zaniol, B.; Zilli, E.; Zuin, M.

    2008-12-01

    Optimization of machine operation, including plasma position control, density control and especially feedback control on multiple magnetohydrodynamic modes, has led RFX-mod to operate reliably at 1.5 MA, the highest current ever achieved on a reversed field pinch (RFP). At high current and low density the magnetic topology spontaneously self-organizes in an Ohmical helical symmetry, with the new magnetic axis helically twisting around the geometrical axis of the torus. The separatrix of the island disappears leaving a wide and symmetric thermal structure with large gradients in the electron temperature profile. The new topology still displays an intermittent nature but its overall presence has reached 85% of the current flat-top period. The large gradients in the electron temperature profile appear to be marginal for the destabilization of ion temperature gradient modes on the assumption that ions and electrons have the same gradients. There are indications that higher currents could provide the conditions under which to prove the existence of a true helical equilibrium as the standard RFP configuration.

  1. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muguira, L., E-mail: lmuguira@essbilbao.org [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Portilla, J. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Etxebarria, V. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain)

    2014-03-21

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  2. Experimental study of high current negative ion sources D{sup -} / H{sup -}. Analysis based on the simulation of the negative ion transport in the plasma source; Etude experimentale de sources a fort courant d`ions negatifs D{sup -} / H{sup -}. Analyse fondee sur la simulation du transport des ions dans le plasma de la source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.

    1996-10-30

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm{sup 2} of D{sup -}. The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm{sup 2} have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H{sup -}/D{sup -} and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author). 122 refs.

  3. Electromigration Issues in High Current Horn

    CERN Document Server

    Zhang, Wu; Hseuh, Brigitte; Sandberg, Jon; Simos, Nikolaos; Tuozzolo, Joseph; Weng, Wu-Tsung

    2005-01-01

    The secondary particle focusing horn for the AGS neutrino experiment proposal is a high current and high current density device. The peak current of horn is 300 kA. At the smallest area of horn, the current density is near 8 kA/mm2. At very high current density, a few kA/mm2, the electromigration phenomena will occur. Momentum transfer between electrons and metal atoms at high current density causes electromigration. The reliability and lifetime of focusing horn can be severely reduced by electromigration. In this paper, we discuss issues such as device reliability model, incubation time of electromigration, and lifetime of horn.

  4. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  5. Effect of swift heavy ion irradiation on surface resistance of DyBa2Cu3O7−δ thin films at microwave frequencies

    NARCIS (Netherlands)

    Ail, Ujwala; Banerjee, Tamalika; Bhangale, A.R.; Kanjilal, D.

    2002-01-01

    We report the observation of a pronounced peak in surface resistance at microwave frequencies of 4.88 GHz and 9.55 GHz and its disappearance after irradiation with swift ions in laser ablated DyBa2Cu3O7−δ (DBCO) thin films. The measurements were carried out in zero field as well as in the presence

  6. Techniques for Microwave Near-Field Quantum Control of Trapped Ions

    Science.gov (United States)

    2013-01-31

    a solid copper support [Fig. 1(a)]. This support structure also holds a printed circuit board for in-vacuum filtering of the control potentials. We... circuit board is used for connecting both rf electrodes to a resonant quarter-wave step-up transformer (Qres 350, when loaded with the trap) [46...mm. Each microwave electrode is connected to a microstrip line on the filter board, which is soldered to a SMA jack on the input end. The other end of

  7. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G.; Di Giugno, R.; Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F. P. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Celona, L.; Gammino, S.; Lanaia, D.; Ciavola, G. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Di Bartolo, F. [Universita di Messina, Ctr. da Papardo-Sperone, 98100 Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); IET-Institute of Energy Technology, LEC-Laboratory for Energy Conversion, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electrons will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.

  8. Plasma backflow phenomenon in high-current vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lijun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Jia Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang Ling [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Shi Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Dingge [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Gentils, Francois [Schneider Electric SAS, 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Jusselin, BenoIt [Schneider Electric SAS, 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)

    2007-10-07

    Based on the two-temperature magnetohydrodynamic model, a high-current vacuum arc (HCVA) in vacuum interrupters is simulated and analysed. The phenomenon of plasma backflow in arc column is found, which is ultimately ascribed to the strong magnetic pinch effect of HCVA. Due to plasma backflow, the maximal value of ion density at the cathode side is not located at the centre of the cathode side, but at the paraxial region of the cathode side, that is to say, ion density appears to sag at the centre of the cathode side (arc column seems to be divided into two parts). The sag of light intensity is also found by experiments.

  9. Effect of swift heavy ion irradiation on surface resistance of DyBa2Cu3O7- thin films at microwave frequencies

    Indian Academy of Sciences (India)

    Ujwala Ail; Tamalika Banerjee; A R Bhangale; D Kanjilal; R Pinto

    2002-05-01

    We report the observation of a pronounced peak in surface resistance at microwave frequencies of 4.88 GHz and 9.55 GHz and its disappearance after irradiation with swift ions in laser ablated DyBa2Cu3O7- (DBCO) thin films. The measurements were carried out in zero field as well as in the presence of magnetic fields (up to 0.8 T). The films were irradiated using 90 MeV oxygen ions at Nuclear Science Centre, New Delhi at a fluence of 3 × 1013 ions/cm2. Introduction of point defects and extended defects after irradiation suppresses the peak at 9.55 GHz whereas no suppression is observed at 4.88 GHz. These results and the vortex dynamics in the films at microwave frequencies before and after irradiation are discussed.

  10. Microwave-assisted convenient syntheses of 2-indolizine derivatives from Morita-Baylis-Hillman adducts: new in silico potential ion channel modulators

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Saraghina M.D.; Oliveira, Ramon G. de; Vasconcellos, Mario L.A.A., E-mail: mlaav@quimica.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Departamento de Quimica

    2013-03-15

    In this work, a microwave-assisted synthesis study by microwave irradiation to produce indolizine-2-carbonitrile and indolizine-2-carboxylate in good to high yields (70 and 81%, respectively) in one step from Morita-Baylis-Hillman adducts (MBHA) is presented. These compounds were subsequently transformed to high yields (94 to 100%, respectively) in three 2-indolizine derivatives. The five synthesized compounds were designed in silico aiming to present potential selective activities as ion channel modulators. These activities were suggested by the score values using Molinspiration Cheminformatics program. (author)

  11. Mevva development for the new GSI high-current injector

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, B.H.; Emig, H.; Spaedtke, P. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1996-08-01

    To increase the intensity of the heavy ion synchrotron SIS for heavy elements by a factor of {approximately}50, a new prestripper accelerator is planned for Unilac and the heavy ion synchrotron SIS. It is designed to accept ions with mass/charge {le} 65 and an injection energy of 2.2 keV/u. A vacuum arc ion source with a strong axial magnetic field will deliver 15 mA of U{sup 4+} as heaviest element at a repetition rate of 1 Hz and a pulse length of 300 {mu}s. The investigation of the Mevva ion source with pulsed magnetic field of several kGauss have shown that ion currents of 8 mA U{sup 4+} can be measured at the authors test bench after 5m of transport and charge analysis (transmission at the test bench 25% only). The noise on the extracted ion beam was already {le}25%, a value similar to the Pig ion source in the sputter mode, but efficient high current beam transport probably requests further improvements.

  12. Plasma and Beam Production Experiments with HYBRIS, aMicrowave-assisted H- Ion

    Energy Technology Data Exchange (ETDEWEB)

    Keller, R. AUTHOR-Kwan, S.; Hahto, S.; Regis, M.; Wallig, J.

    2006-09-13

    A two-stage ion source concept had been presented a few years ago, consisting of a proven H- ion source and a 2.45-GHz Electron Cyclotron-Resonance (ECR) type ion source, here used as a plasma cathode. This paper describes the experimental development path pursued at Lawrence Berkeley National Laboratory, from the early concept to a working unit that produces plasma in both stages and creates a negative particle beam. Without cesiation applied to the second stage, the H{sup -} fraction of this beam is very low, yielding 75 micro-amperes of extracted ion beam current at best. The apparent limitations of this approach and envisaged improvements are discussed.

  13. CW/Pulsed H{sup −} ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, J. F.; Zhao, J.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, People' s Republic of China (China); Zhang, A. L. [University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China (China); Chen, J. E. [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, People' s Republic of China (China); University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China (China)

    2015-04-08

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10 mA pulsed mode H{sup −} beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H{sup −} source able to produce very intense H{sup −} beams with important variation of the duty factor{sup [1]}. Recently, a new version of 2.45 GHz microwave H{sup −} ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H{sup −} ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8 mA/30keV H{sup −} beam with rms emittance about 0.16 π·mm·mrad has been obtained with only 500 W rf power. The power efficiency reaches 21 mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20 mA H{sup −} ion beam at 35 keV with rms emittance about 0.2 π·mm·mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H{sup −} source body is ϕ116 mm × 124 mm, and the entire H{sup −} source infrastructure, including rf matching section, plasma chamber and extraction system, is ϕ310 × 180 mm. The high voltage region is limited with in a ϕ310 mm × 230 mm diagram. Details are given in this paper.

  14. Synthesis And Characterization Of An Ion Imprinted Polymer For Cadmium Using Quinaldic Acid As Complexing Agent And Applying By Microwave

    Directory of Open Access Journals (Sweden)

    Asmawati

    2015-01-01

    Full Text Available Abstract A Cd2 Ion Imprinted Polymer Cd-IIP has been synthesized by copolymerizaton of cadmium ion quinaldic acid complexing agent 4-vynil pyridine monomer dimethyl sulfoxide solvent ethyleneglycoldimethacrylate EGDMA cross-linker and 22-azobis-isobutyronitrile AIBN initiator. Polymerization was conducted using a microwave at a temperature of 70 oC with heating times of 45 minutes. The template Cd2 was removed by leaching the template with ethanol and 4 M HCl washed by aquabidest and dried in an oven at the temperature of 60oC. The polymer particles imprinted and nonimprinted were characterized using fourir transform infrared FTIR spectroscopy scanning electron microscopy SEM and energy dispersive spectroscopy EDS. The result showed that using heating time 45 minutes at temperature 70 oC the particle morphology is viewed like as the large homogeneous. So the imprinted polymer had bands at 3483 cm-1 1726 cm-1 and 1155 cm-1 indicating the presence of OH CO and C-O respectively.

  15. Theory of a stationary microwave discharge with multiply charged ions in an expanding gas jet

    Science.gov (United States)

    Shalashov, A. G.; Abramov, I. S.; Golubev, S. V.; Gospodchikov, E. D.

    2016-08-01

    The formation of a jet of a nonequilibrium multiply charged ion plasma is studied in the inhomogeneous gas jet. It is shown that the geometrical divergence of the jet restricts the maximum ion charge state and results in the spatial localization of the discharge. Stationary solutions corresponding to such regimes are constructed. The model proposed can be used to optimize modern experiments on generation of hard UV radiation due to the line emission of multiply ionized atoms in a gas jet heated by high-power millimeter and submillimeter radiation.

  16. Microwave-assisted synthesis of BSA-protected small gold nanoclusters and their fluorescence-enhanced sensing of silver(i) ions

    Science.gov (United States)

    Yue, Yuan; Liu, Tian-Ying; Li, Hong-Wei; Liu, Zhongying; Wu, Yuqing

    2012-03-01

    A one-step microwave-assisted method is used for the synthesis of small gold nanoclusters, Au16NCs@BSA, which are used as a fluorescence enhanced sensor for detection of silver(i) ions with high selectivity and sensitivity.A one-step microwave-assisted method is used for the synthesis of small gold nanoclusters, Au16NCs@BSA, which are used as a fluorescence enhanced sensor for detection of silver(i) ions with high selectivity and sensitivity. Electronic supplementary information (ESI) available: Experimental details of the synthesis of AuNCs@BSA and fluorescent detection, and Fig. S1-S10. See DOI: 10.1039/c2nr12056a

  17. The relationship between visible light emission and species fraction of the hydrogen ion beams extracted from 2.45 GHz microwave discharge

    CERN Document Server

    Cortázar, O D; Tarvainen, O; Kalvas, T; Koivisto, H

    2015-01-01

    The relationship between Balmer-α and Fulcher-band emissions with extracted H +, H+2 , and H+3 ions is demonstrated for a 2.45 GHz microwave discharge. Ion mass spectra and optical measurements of Balmer-α and Fulcher-band emissions have been obtained with a Wien Filter having an optical view-port on the plasma chamber axis. The beam of approximately 1 mA is analyzed for different plasma conditions simultaneously with the measurement of light emissions both with temporal resolution. The use of visible light emissions as a valuable diagnostic tool for monitoring the species fraction of the extracted beams is proposed.

  18. Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries

    Science.gov (United States)

    Alsharaeh, Edreese; Ahmed, Faheem; Aldawsari, Yazeed; Khasawneh, Majdi; Abuhimd, Hatem; Alshahrani, Mohammad

    2016-07-01

    In this work, holey reduced graphene oxide (HRGO) was synthesized by the deposition of silver (Ag) nanoparticles onto the reduced graphene oxide (RGO) sheets followed by nitric acid treatment to remove Ag nanoparticles by microwave irradiation to form a porous structure. The HRGO were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), and Raman spectroscopy. These novel HRGO exhibited high rate capability with excellent cycling stability as an anode material for lithium-ion batteries. The results have shown an excellent electrochemical response in terms of charge/discharge capacity (423 mAh/g at 100 mA/g). The cyclic performance was also exceptional as a high reversible capacity (400 mAh/g at 100 mA/g) was retained for 100 charge/discharge cycles. This fascinating electrochemical performance can be ascribed to their specific porous structure (2–5 nm pores) and high surface area (457 m2/g), providing numerous active sites for Li+ insertion, high electrical conductivity, low charge-transfer resistance across the electrolyte–electrode interface, and improved structural stability against the local volume change during Li+ insertion–extraction. Such electrodes are envisioned to be mass scalable with relatively simple and low-cost fabrication procedures, thereby providing a clear pathway toward commercialization.

  19. High-current electron gun with a planar magnetron integrated with an explosive-emission cathode

    Science.gov (United States)

    Kiziridi, P. P.; Ozur, G. E.

    2017-05-01

    A new high-current electron gun with plasma anode and explosive-emission cathode integrated with planar pulsed powered magnetron is described. Five hundred twelve copper wires 1 mm in diameter and 15 mm in height serve as emitters. These emitters are installed on stainless steel disc (substrate) with 3-mm distance between them. Magnetron discharge plasma provides increased ion density on the periphery of plasma anode formed by high-current Penning discharge ignited within several milliseconds after starting of the magnetron discharge. The increased on the periphery ion density improves the uniformity of high-current electron beam produced in such an electron gun.

  20. Unstable plasma characteristics in mirror field electron cyclotron resonance microwave ion source

    Indian Academy of Sciences (India)

    S K Angra; Parshant Kumar; R R Dongaonkar; R P Bajpai

    2000-05-01

    Electron cyclotron plasma reactor are prone to instabilities in specific input power [3–7] region (150–450 watts). In this region power absorption by gas molecules in the cavity is very poor and enhanced input power gets reflected substantially without increasing ion density. There are abrupt changes in plasma characteristics when input power was decreased from maximum to minimum, it was observed that reflected power changed from < 2% to ∼ 50%. Minimum two jumps in reflected power were noticed in this specific power region and these appear to be highly sensitive to three stub tuner position in the waveguide for this particular input power zone. Unstable plasma region of this source is found to be dependent upon the magnetic field strength. Some changes in reflected power are also noticed with pressure, flow and bias and they are random in nature.

  1. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  2. Energetic neutral contamination in modern high-current implanters

    Science.gov (United States)

    Cherekdjian, S.; Weisenberger, W.

    1991-04-01

    The presence of energetic neutrals in a high-current, high-energy implant can result in nonuniformities on a silicon wafer. A larger concern is when the energetic neutrals are not of the desired energy. This is a major consideration when designing ion implanters with pre- and post-acceleration stages. This paper investigates the levels of pre-accelerated boron neutrals present in a 180 kV boron implant. The machines investigated were a Nova 20A and an Applied Materials PI9000. A comparison of their vacuum systems and their ability to cope with photoresist batches and argon backfill are presented. Silicon wafers were mapped by four-point probe resistivity measurements and the levels of pre-accelerated neutrals were quantified by spreading resistance profiles (SRPs). It is clearly demonstrated that good uniformity on a bare silicon wafer is not an indicator of a clean ion beam. Even though it is well understood that this problem is vacuum-related, modern high-current implanters are still being built and marketed with improper vacuum isolation and insufficient pumping capability.

  3. Microwave Impedance Matching of A 2.45 GHz ECR Ion Source%2.45 GHz ECR离子源的微波阻抗匹配

    Institute of Scientific and Technical Information of China (English)

    钱程; 陈志; 马鸿义; 武启; 张文慧; 王云; 杨尧; 方兴; 孙良亭

    2013-01-01

    ECR离子源的等离子体阻抗对其微波传输与阻抗匹配设计至关重要.在中国科学院近代物理研究所现有的2.45 GHz ECR质子源上,对等离子体阻抗进行了测量.首先用水吸收负载代替等离子体负载测量得到了所用微波窗阻抗,然后根据质子源测量数据,推算得到了等离子体阻抗.实验结果表明,脊波导输出端阻抗与后续负载不完全匹配,等离子体阻抗随微波功率变化呈非线性.这些结果为ECR离子源过渡匹配和微波窗的设计提供了参考依据.%Plasma impedance of an ECR ion source is important for microwave transmission and impedance matching design. Plasma impedance was measured indirectly with the 2.45 GHz ECR proton source at the Institute of Modern Physics, Chinese Academy of Sciences. In the test, we got microwave window impedance by using water absorption load instead of plasma load, and the source plasma impedance was derived from the test data with the 2.45 GHz ECR proton source and microwave window impedance. The experimental results show that ridge waveguide output impedance and the subsequent load does not exactly match, plasma impedance variation is nonlinear with microwave power. The achieved result is useful in the design of ridged waveguide and microwave window.

  4. High-current, high-frequency capacitors

    Science.gov (United States)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  5. Quench properties of high current superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Garber, M; Sampson, W B

    1980-01-01

    A technique has been developed which allows the simultaneous determination of most of the important parameters of a high current superconductor. The critical current, propagation velocity, normal state resistivity, magnetoresistance, and enthalpy are determined as a function of current and applied field. The measurements are made on non-inductive samples which simulate conditions in full scale magnets. For wide, braided conductors the propagation velocity was found to vary approximately quadratically with current in the 2 to 5 kA region. A number of conductors have been tested including some Nb/sub 3/Sn braids which have critical currents in excess of 10 kA at 5 T, 4.2 K.

  6. Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Zhong Dong Peng; Yan Bing Cao; Guo Rong Hu; Ke Du; Xu Guang Gao; Zheng Wei Xiao

    2009-01-01

    A novel synthetic method of microwave processing to prepare Li2FeSiO4 cathode materials is adopted. The Li2FeSiO4 cathode material is prepared by mechanical ball-milling and subsequent microwave processing. Olivin-type Li2FeSiO4 sample with uniform and fine particle sizes is successfully and fast synthesized by microwave heating at 700 ℃ in 12 min. And the obtained Li2FeSiO4 materials show better electrochemical performance and microstructure than those of Li2FeSiO4 sample by the conventional solid-state reaction.

  7. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries

    Science.gov (United States)

    Youn, Duck Hyun; Jo, Changshin; Kim, Jae Young; Lee, Jinwoo; Lee, Jae Sung

    2015-11-01

    An ultrafast and simple strategy to synthesize metal sulfides (MoS2 and WS2) anchored on reduced graphene oxide (RGO) composites is reported as anode materials for lithium ion batteries (LIBs). Metal sulfide nanocrystals with homogeneous dispersion onto conducting RGO sheets are obtained in only 45 s by hybrid microwave annealing (HMA) method. The synthesized materials, especially MoS2/RGO composite, exhibit a high Li capacity, an excellent rate capability, and a stable cycling performance, comparable to the reported best MS2/carbon composite electrodes. The results highlight the effectiveness of HMA method to fabricate the metal sulfide/RGO composites with excellent electric properties.

  8. X-Pinch in High-Current Diode

    Science.gov (United States)

    Bryunetkin, B. A.; Faenov, A. Ya.; Ivanenkov, G. V.; Khakhalin, S. Ya.; Mingaleev, A. R.; Pikuz, S. A.; Romanova, V. M.; Shelkovenko, T. A.; Skobelev, I. Yu.

    1994-03-01

    The review of X-pinch investigations in high current diode of BIN facility (250 kA, 100 ns) is presented. The main purposes were to investigate pinch forming processes and hot dense plasma properties. X-pinch is also considered as a source for multiple charged ions spectroscopy and for X-ray optics testing. The set of diagnostics applied in these experiments allowed us to investigate the pinch forming processes in different configurations of crossed wires loads. High spectral and space resolved measurements of plasma radiation in 1-200 Å range, absolute energy measurements and electron beam registration were provided. Plasma parameters were obtained from relative intensities and shapes of multiple charged ions spectral lines. Electron density of plasma with the temperature Te = 0.2-1 keV variated from 1023 cm-3 in hot spot to 1018 cm-3 during plasma expansion. In recombining plasma, an inversion of Al He-like ions levels population was registrated. Total radiation output of 0.5 mm pinch reached hundreds Joules in 2-100 Å range during 100 ns.

  9. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries

    Science.gov (United States)

    Qin, Wei; Chen, Taiqiang; Lu, Ting; Chua, Daniel H. C.; Pan, Likun

    2016-01-01

    Layered nickel sulfide (NS)-reduced graphene oxide (RGO) composites are prepared via a simple microwave-assisted method and subsequent annealing in N2/H2 atmosphere. A detailed array of characterization tools are used to study their morphology, structure and electrochemical performance. It was found that these composites exhibit significantly improved sodium-ion storage ability as compared with pure NS under galvanostatic cycling at a specific current of 100 mA g-1 in a potential limitation of 0.005-3.0 V. Furthermore, the composite with the RGO content of 35 wt.% achieves a high maximum reversible specific capacity of about 391.6 mAh g-1 at a specific current of 100 mA g-1 after 50 cycles. These results prove that NS-RGO composites are highly promising when applied directly as anode materials in sodium-ion batteries.

  10. Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries

    Science.gov (United States)

    Antitomaso, P.; Fraisse, B.; Sougrati, M. T.; Morato-Lallemand, F.; Biscaglia, S.; Aymé-Perrot, D.; Girard, P.; Monconduit, L.

    2016-09-01

    Tin antimonide alloy was obtained for the first time using a very simple dry microwave route. Up to 1 g of well crystallized SnSb can be easily prepared in 90 s under air in an open crucible. A full characterization by X-ray diffraction and 119Sn Mössbauer spectroscopy demonstrated the benefit of carbon as susceptor, which avoid any oxide contamination. The microwave-prepared SnSb was tested as negative electrode material in Li batteries. Interesting results in terms of capacity and rate capability were obtained with up to 700 mAh/g sustained after 50 cycles at variable current. These results pave the way for the introduction of microwave synthesis as realistic route for a rapid, low cost and up-scalable production of electrode material for Li batteries or other large scale application types.

  11. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  12. Rare earth ions doped polyaniline/cobalt ferrite nanocomposites via a novel coordination-oxidative polymerization-hydrothermal route: Preparation and microwave-absorbing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunming; Jiang, Junjun; Liu, Xiaohua; Yin, Chengjie; Deng, Cuifen

    2016-04-15

    Polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} (RE=La, Ce, Y, x=0.05–0.25) nanocomposites were successfully synthesized by a novel coordination-oxidative polymerization-hydrothermal method, and doped by sulfosalicylic acid. The resultant nanocomposites were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and electromagnetic measurements. The composites mainly showed nanofibers with a diameter of ca. 70 nm and a length longer than 2 μm. The surface of composites was uniformly covered with numerous nanoparticles with an average size of ca. 10–20 nm. Microwave absorption properties of polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites doped with La ion were found to be better than those doped with Ce and Y ions. For the polyaniline/CoLa{sub x}Fe{sub 2−x}O{sub 4} nanocomposite, the optimal microwave absorption performance is at x=0.15, that is, the mass ratio of La in CoLa{sub x}Fe{sub 2−x}O{sub 4} is 7.5%, with the conductivity of the composite about 0.833 S/cm. Furthermore, when the layer thickness is 2 mm, the maximum reflection loss achieves the maximum number of −42.65 dB at 15.91 GHz with a bandwidth of 6.14 GHz above −10 dB loss, suggesting that these nanocomposites are excellent in microwave absorbing capacity. - Graphical abstract: Scheme PAn/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites prepared via a novel coordination-oxidative polymerization-hydrothermal route. - Highlights: • An organic–inorganic hybrid―polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} (RE=La, Ce, Y, x=0.05–0.25) nanocomposites was prepared via a novel coordination-oxidative polymerization-hydrothermal route. • The as-prepared polyaniline/CoRE{sub x}Fe{sub 2−x}O{sub 4} nanocomposites exhibit excellent microwave absorbing performance compared with the composites prepared by using conventional method. • The novel method reported in this work could

  13. Magnetic and microwave absorption properties of rare earth ions (Sm{sup 3+}, Er{sup 3+}) doped strontium ferrite and its nanocomposites with polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Xu, Yang; Mao, Hongkai [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-05-01

    M-type strontium ferrite substituted by RE (RE=Sm{sup 3+}, Er{sup 3+}) were prepared via a sol–gel method. Polypyrrole (PPy)/ferrite nanocomposites (with 20 wt% ferrite) were prepared by in situ polymerization method in the presence of ammonium persulfate. Effect of the substituted RE ions on structure, magnetic properties and microwave absorption properties were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. All XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. The crystallite size of synthesized particle is within the range of 22.2–38.1 nm. The structural in character of the composites were investigated with FT-IR analysis. It shows that the ferrite successfully packed by PPy. TEM photographs show that the particle size had grown up to 50–100 nm after coating with PPy. In the magnetization for the PPy/SrSm{sub 0.3}Fe{sub 11.7}O{sub 19} (SrEr{sub 0.3}Fe{sub 11.7}O{sub 19}) composites, the coercivity (H{sub c}) of the composites both increased compared with the undoped composite while the saturation magnetization (M{sub s}) appeared opposite change with different RE ions. Considering the electromagnetic loss and impedance matching comprehensively, the Er-doped ferrite/PPy composite got the better microwave absorption performance with the maximum RL value of −24.01 dB in 13.8 GHz at 3.0 mm. And its width (<−10 dB) has reached 7.2 GHz which has covered the whole Ku band. - Highlights: • The influence of RE ions on the structure of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on the magnetic properties of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on electromagnetic losses of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • PPy/SrEr{sub 0.3}Fe{sub 11.7}O{sub 19} possessed the excellent absorption property.

  14. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  15. Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia); Liu, Qi [School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-05

    Highlights: • Urchin-like NiO nanospheres were synthesised by a microwave hydrothermal method. • The NiO nanospheres consist of nanocrystals and porous structure. • NiO nanospheres exhibited a high reversible specific capacity of 1027 mA h g{sup −1}. • The NiO nanospheres also delivered a high supercapacitance of 736 F g{sup −1}. -- Abstract: Urchin-like NiO nanospheres were synthesised by a microwave hydrothermal method. The as-synthesised NiO nanospheres were characterised by X-ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. It was found that NiO nanosphere consists of a nanoporous structure and nanosize crystals. When applied as anode materials in lithium-ion batteries, NiO nanospheres exhibited a high reversible specific capacity of 1027 mA h g{sup −1}, an excellent cycling performance and a good high rate capability. NiO nanospheres also showed a high specific capacitance as electrode materials for supercapacitors.

  16. Microwave-Assisted Morphology Evolution of Fe-Based Metal-Organic Frameworks and Their Derived Fe2O3 Nanostructures for Li-Ion Storage.

    Science.gov (United States)

    Guo, Wenxiang; Sun, Weiwei; Lv, Li-Ping; Kong, Shaofeng; Wang, Yong

    2017-04-25

    The metal-organic-framework (MOF) approach is demonstrated as an effective strategy for the morphology evolution control of MIL-53(Fe) with assistance of microwave irradiation. Owing to the homogeneous nucleation offered by microwave irradiation and confined porosity and skeleton by MOF templates, various porous Fe2O3 nanostructures including spindle, concave octahedron, solid octahedron, yolk-shell octahedron, and nanorod with porosity control are derived by simply adjusting the irradiation time. The formation mechanism for the MOF precursors and their derived iron oxides with morphology control is investigated. The main product of the mesoporous yolk-shell octahedron-in-octahedron Fe2O3 nanostructure is also found to be a promising anode material for lithium-ion batteries due to its excellent Li-storage performance. It can deliver a reversible larger-than-theoretical capacity of 1176 mAh g(-1) after 200 cycles at 100 mA g(-1) and good high-rate performance (744 mAh g(-1) after 500 cycles at 1 A g(-1)).

  17. TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor

    Science.gov (United States)

    Kim, Hyun-Kyung; Mhamane, Dattakumar; Kim, Myeong-Seong; Roh, Ha-Kyung; Aravindan, Vanchiappan; Madhavi, Srinivasan; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-09-01

    TiO2-reduced graphene oxide (rGO) nanocomposite (TiO2-rGO) is fabricated by microwave-assisted forced hydrolysis and examined as prospective electrode for energy storage applications, especially in Li-ion battery (LIB) and Li-ion capacitor (LIC). First, the uniformly distributed nanoscopic TiO2 particulates (∼3 nm) over rGO nanosheets is evaluated as anode in half-cell assembly to ascertain the Li-insertion behavior and found that ∼0.68 mol Li (∼227 mAh g-1) is reversible. Then, "rocking-chair" type LIB is fabricated with spinel LiMn2O4 cathode, and the LiMn2O4/TiO2-rGO assembly exhibits high capacity (∼120 mAh g-1 at 0.1 C rate), good rate capability (∼53 mAh g-1 at 1 C rate), and excellent cycleability (∼90% initial reversible capacity after 1000 cycle) as well. Similarly, the LIC is also constructed with activated carbon cathode, and such configuration delivered a maximum energy density of ∼50 Wh kg-1 with ∼82% retention after 4000 cycles. The synergistic effect of both rGO and anatase nanoparticles provides excellent energy efficiency and battery performance in different kind of Li-ion based energy storage devices.

  18. Magnetic and microwave absorption properties of rare earth ions (Sm3+, Er3+) doped strontium ferrite and its nanocomposites with polypyrrole

    Science.gov (United States)

    Luo, Juhua; Xu, Yang; Mao, Hongkai

    2015-05-01

    M-type strontium ferrite substituted by RE (RE=Sm3+, Er3+) were prepared via a sol-gel method. Polypyrrole (PPy)/ferrite nanocomposites (with 20 wt% ferrite) were prepared by in situ polymerization method in the presence of ammonium persulfate. Effect of the substituted RE ions on structure, magnetic properties and microwave absorption properties were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. All XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. The crystallite size of synthesized particle is within the range of 22.2-38.1 nm. The structural in character of the composites were investigated with FT-IR analysis. It shows that the ferrite successfully packed by PPy. TEM photographs show that the particle size had grown up to 50-100 nm after coating with PPy. In the magnetization for the PPy/SrSm0.3Fe11.7O19 (SrEr0.3Fe11.7O19) composites, the coercivity (Hc) of the composites both increased compared with the undoped composite while the saturation magnetization (Ms) appeared opposite change with different RE ions. Considering the electromagnetic loss and impedance matching comprehensively, the Er-doped ferrite/PPy composite got the better microwave absorption performance with the maximum RL value of -24.01 dB in 13.8 GHz at 3.0 mm. And its width (<-10 dB) has reached 7.2 GHz which has covered the whole Ku band.

  19. Urchin-like CdS/ZrO{sub 2} nanocomposite prepared by microwave-assisted hydrothermal combined with ion-exchange and its multimode photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: qqhrlili@126.com, E-mail: qqhrll@163.com; Wang, Lili [Qiqihar University, College of Materials Science and Engineering (China); Zhang, Wenzhi [Qiqihar University, College of Chemistry and Chemical Engineering (China); Zhang, Xiuli; Chen, Xi; Dong, Xue [Qiqihar University, College of Materials Science and Engineering (China)

    2014-12-15

    A series of urchin-like CdS/ZrO{sub 2} nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet–visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N{sub 2} adsorption–desorption measurements. The results of the study revealed that the CdS/ZrO{sub 2} nanocomposites had mixed phases of tetragonal ZrO{sub 2} and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer–Emmett–Teller values, and the urchin-like CdS/ZrO{sub 2} structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO{sub 2} nanocomposite with CdS/ZrO{sub 2} molar ratio of 30 % was higher than those of CdS, ZrO{sub 2}, and other different ratios of CdS/ZrO{sub 2} nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO{sub 2} nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO{sub 2} nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO{sub 2} nanocomposites were further investigated by the photocatalytic reaction.

  20. High-Current Energy-Recovering Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  1. R and D status of high-current accelerators at IFP

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J. J.; Shi, J. S.; Xie, W. P. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan (China); and others

    2011-12-15

    High-current accelerators have many important applications in Z-pinches, high-power microwaves, and free electron lasers, imploding liners and radiography and so on. Research activities on Z-pinches, imploding liners, radiography at the Institute of Fluid Physics (IFP) are introduced. Several main high-current accelerators developed and being developed at IFP are described, such as the Linear Induction Accelerator X-Ray Facility Upgrade (LIAXFU, 12 MeV, 2.5 kA, 90 ns), the Dragon-I linear induction accelerator (20 MeV, 2.5 kA, 60 ns), and the Primary Test Stand for Z-pinch (PTS, 10 MA, 120 ns). The design of Dragon-II linear induction accelerator (20 MeV, 2.5 kA, 3 x 60 ns) to be built will be presented briefly.

  2. Microwave Ovens

    Science.gov (United States)

    ... ovens heat food using microwaves, a form of electromagnetic radiation similar to radio waves. Microwaves have three characteristics ... that their microwave oven products meet the strict radiation safety standard ... if your microwave oven has damage to its door hinges, latches, or seals, or ...

  3. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  4. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  5. A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors.

    Science.gov (United States)

    Mondal, Anjon Kumar; Su, Dawei; Chen, Shuangqiang; Kretschmer, Katja; Xie, Xiuqiang; Ahn, Hyo-Jun; Wang, Guoxiu

    2015-01-12

    A facile microwave method was employed to synthesize NiCo2 O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller methods. Owing to the porous nanosheet structure, the NiCo2 O4 electrodes exhibited a high reversible capacity of 891 mA h g(-1) at a current density of 100 mA g(-1) , good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2 O4 nanosheets demonstrated a specific capacitance of 400 F g(-1) at a current density of 20 A g(-1) and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode-electrolyte contact area and facilitate rapid ion transport.

  6. Speciation analysis of arsenic in prenatal and children's dietary supplements using microwave-enhanced extraction and ion chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Wolle, Mesay M; Rahman, G M Mizanur; Kingston, H M Skip; Pamuku, Matt

    2014-03-25

    A study was conducted to develop a microwave-enhanced extraction method for the determination of arsenic species in prenatal and children's dietary supplements prepared from plant materials. The method was optimized by evaluating the efficiency of various solutions previously used to extract arsenic from the types of plant materials used in the dietary supplement formulations. A multivitamin standard reference material (NIST SRM 3280) and a prenatal supplement sample were analyzed in the method optimization. The identified optimum conditions were 0.25 g of sample, 5 mL of 0.3 mol L(-1) orthophosphoric acid (H3PO4) and microwave heating at 90 °C for 30 min. The extracted arsenic was speciated by cation exchange ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS). The method detection limit (MDL) for the arsenic species was in the range 2-8 ng g(-1). Ten widely consumed prenatal and children's dietary supplements were analyzed using the optimized protocol. The supplements were found to have total arsenic in the concentration range 59-531 ng g(-1). The extraction procedure recovered 61-92% of the arsenic from the supplements. All the supplementary products were found to contain arsenite (As(3+)) and dimethylarsinic acid (DMA). Arsenate (As(5+)) was found in two of the supplements, and an unknown specie of arsenic was detected in one product. The results of the analysis were validated using mass balance by comparing the sum of the extracted and non-extracted arsenic with the total concentration of the element in the corresponding samples.

  7. Microwave Irradiation-Assisted Synthesis of a Novel Crown Ether Crosslinked Chitosan as a Chelating Agent for Heavy Metal Ions (M+n

    Directory of Open Access Journals (Sweden)

    Ibrahim A. Alsarra

    2010-09-01

    Full Text Available Microwave irradiation was used to obtain a di-Schiff base type crosslinked chitosan dibenzocrown ether (CCdBE via the reaction between the –NH2 and –CHO groups in chitosan and 4,4′-diformyldibenzo-18-c-6, respectively. The structure of the synthesized compound was characterized by elemental analysis, solid state 13C-NMR and FT-IR spectra analysis. The results showed that the mass fraction of nitrogen in the CCdBE derivative was much lower than those of chitosan. The FT-IR spectra of CCdBE revealed the expected chitosan-crown ether structure, as evidenced by the presence of the characteristic C=N and Ar peaks. The adsorption properties of CCdBE for Pd2+ and Hg2+ were investigated and the results demonstrated that the adsorbent has both desirable adsorption properties with a high particular adsorption selectivity for Hg2+ when in the presence of Pb2+ as well as selectivity coefficients for metal ions of KHg2+ /Pb2+ = 8.00 and KHg 2+/Pb2+ = 10.62 at pH values of 4 and 6, respectively. The reusability tests for CCdBE for Pb2+ adsorption showed that complete recovery of the ion was possible with CCdBE after 10-multiple reuses while CTS had no reusability at acidic solution because of its higher dissolution. The studied features of CCdBE suggested that the material could be considered as a new adsorbent. It is envisaged that the crosslinking of CTS into CCdBE would enhance practicality and effectiveness of adsorption in ion separation and removal procedures.

  8. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  9. Study of wavelet transform type high-current transformer

    Institute of Scientific and Technical Information of China (English)

    卢文科; 朱长纯; 刘君华; 张建军

    2002-01-01

    The wavelet transformation is applied to the high-current transformer.The high-current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high-current.The principle of the transformer is the Hall direct-measurement principle.The transformer has the following three characteristics:firstly, the effect of the remnant field of the iron core on the measurement is decreased;secondly,because the temperature compensation is adopted,the transformer has good temperature charactreristic;thirdly,be-cause the wavelet transfomation technology is adopted,the transformer has the capacity of good antijanming.

  10. Microwave Photonics

    OpenAIRE

    Seeds, A.J.; Liu, C. P.; T. Ismail; Fice, M. J.; Pozzi, F; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  11. Calculations of High-Current Characteristics of Silicon Diodes at Microwave Frequencies.

    Science.gov (United States)

    1984-10-01

    COMMANDER "- US ARMY TRAINING & DOCTRINE COMMAND HQ ATTN ATDO-TAG, WOLFORD AIR FORCE ELECTRONIC WARFARE A ATTN ATCD-M, GRAY CENTER (ESC) -1 FT MONROE, VA...MA 01803 ATTN ACQUISITIONS DEPARTMENT 345 EAST 47TH STREET ARNOLD ENGINEERING DEVELOPMENT NEW YORK, NY 10017 CENTER ATTN LARRY CHRISTENSEN GENERAL

  12. Rapid Polyol-Assisted Microwave Synthesis of Nanocrystalline LiFePO4/C Cathode for Lithium-Ion Batteries.

    Science.gov (United States)

    Paul, Baboo Joseph; Gim, Jihyeon; Baek, Sora; Kang, Jungwon; Song, Jinju; Kim, Sungjin; Kim, Jaekook

    2015-08-01

    Nanocrystalline LiFePO4/C has been synthesized under a very short period of time (90 sec) using a polyol-assisted microwave heating synthesis technique. The X-ray diffraction (XRD) data indicates that the rapidly synthesized materials correspond to phase pure olivine. Post-annealing of the as-prepared sample at 600 °C in argon atmosphere yields highly crystalline LiFePO4/C. The morphology of the samples studied using scanning electron microscopy (SEM) reveals the presence of secondary particles formed from aggregation of primary particles in the range of 30-50 nm. Transmission electron microscopy (TEM) images reveal a thin carbon layer coating on the surface of the primary particle. The charge/discharge studies indicate that the as-prepared and annealed LiFePO4/C samples delivered initial discharge capacities of 126 and 160 mA h g-1, respectively, with good capacity retentions at 0.05 mA cm-2 current densities. The post-annealing process indeed improves the crystallinity of the LiFePO4 nanocrystals, which enhances the electrode performance of LiFePO4/C.

  13. SnO2-Reduced Graphene Oxide Nanocomposites via Microwave Route as Anode for Sodium-Ion Battery

    Science.gov (United States)

    Han, Haixia; Jiang, Xiaoyu; Chen, Xin; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2016-10-01

    SnO2-reduced graphene oxide (SnO2-rGO) nanocomposites are successfully synthesized via a rapid microwave-assisted method (within 150 s). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations show the ultrafine SnO2 nanoparticles (~3 nm) are uniformly anchored onto the rGO. The typical SnO2-rGO exhibits a high initial reversible capacity of 260 mAh g-1 at 50 mA g-1, which is higher than that (45 mAh g-1) of the bare SnO2 electrode. The SnO2-rGO electrode also shows high cycling stability (79.6% capacity retention after 100 cycles) and rate capability (150 mAh g-1 at 500 mA g-1). The improved electrochemical performance of the SnO2-rGO is ascribed to extremely tiny SnO2 nanoparticles well distributed on the surface of the rGO and the conductive frameworks provided by rGO, so as to alleviate the aggregation of SnO2 and buffer the volumetric change during charging and discharging.

  14. PASOTRON high-energy microwave source

    Science.gov (United States)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  15. The Heidelberg High Current Injector A Versatile Injector for Storage Ring Experiments

    CERN Document Server

    Von Hahn, R; Repnow, R; Schwalm, D; Welsch, C P

    2004-01-01

    The High Current Injector (HCI) was designed and built as a dedicated injector for the Test Storage Ring in Heidelberg to deliver mainly singly charged Li- and Be-ions. After start for routine operation in 1999 the HCI delivered stable beams during the following years for about 50 % of the experiments with very high reliability. Due to the requirements from the experiment the HCI changed during that period from a machine for singly charged positive ions to an injector for a large variety of molecules as well as positively or negatively charged light ions. After successful commissioning of the custom built 18 GHz high power ECR-source at its present test location various modifications and additions were made in preparation of a possible conversion into an injector for highly charged heavy ions as a second phase. This paper gives an overview of the experience gained in the passed 5 years and presents the status of the upgrade of the HCI.

  16. Feasibility of halogen determination in noncombustible inorganic matrices by ion chromatography after a novel volatilization method using microwave-induced combustion.

    Science.gov (United States)

    Pereira, Rodrigo M; Costa, Vanize C; Hartwig, Carla A; Picoloto, Rochele S; Flores, Erico M M; Duarte, Fabio A; Mesko, Marcia F

    2016-01-15

    A microwave-induced combustion (MIC) system based on the volatilization process was applied for subsequent halogen determination from noncombustible inorganic matrices. Portland cement samples were selected to demonstrate the feasibility of the proposed method, allowing the subsequent determination of Cl and F by ion chromatography (IC). Samples were mixed with high-purity microcrystalline cellulose, wrapped with a polyethylene film and combusted in quartz closed vessels pressurized with oxygen (20bar). Water and NH4OH (10, 25 or 50m mol L(-1)) were evaluated for Cl and F absorption, but water was selected, using 5min of reflux after volatilization. Final solutions were also suitable for analysis by pontentiometry with ion-selective electrode (ISE) for both analytes, and no difference was found when comparing the results with IC. The accuracy of the proposed method for Cl was evaluated by analysis of certified reference materials (CRMs), and agreement with certified values ranged from 98% to 103%. Results were also compared to those using the procedure recommended by the American Society of Testing and Materials (ASTM) for the determination of total chlorides (C114-13), and no difference was found. Volatilization by MIC using a mixture of cement, cellulose and a biological CRM was carried out in order to evaluate the accuracy for F, and recovery was about 96%. The proposed method allowed suitable limits of detection for Cl and F by IC (99 and 18mg kg(-1), respectively) for routine analysis of cement. Using the proposed method, a relatively low standard deviation (method, were obtained. Therefore, the method for volatilization of Cl and F by MIC and subsequent determination by IC can be proposed as a suitable alternative for cement analysis.

  17. [Determination of amphetamines in human hair using dynamic liquid-phase microextraction and gas chromatography/selected ion monitoring-mass spectrometry after microwave derivatization].

    Science.gov (United States)

    Zhu, Dan; Meng, Pinjia; He, Hongyuan

    2007-01-01

    Human hair is an important specimen for drug abuse analysis owing to its easy collection, long surveillance time window and good correlation between the "degree of addiction" and actual drug concentration. A simple method for determination of 4 amphetamines in human hair was developed. The hair was digested under basic condition, and the drugs in it were extracted using microvolume of chloroform. The organic layer was then transferred into another tube to be derivatized with N-methyl-bis (trifluoroacetamide) (MBTFA) by microwave heating. Finally the reacted solution was detected by gas chromatography/selected ion monitoring-mass spectrometry (GC/SIM-MS) directly. 2-Methyl-phenyl ethylamine was used as an internal standard. Good linearities were obtained for 4 amphetamines with correlation coefficients better than 0.996. The limits of detection, based on a signal-to-noise ratio (S/N) of 3:1, were all about 50 pg/mg for amphetamine (AM) , methamphetamine (MAM), methylenedioxy-amphetamine (MDA), and methylenedioxy-methamphetamine (MDMA) in hair. The reproducibility of the method was satisfactory, with the relative standard deviations of 6.0% for AM, 13.9% for MAM, 10.2% for MDA and 9.2% for MDMA. Some real hair from the drug abusers was analyzed with this method. The minimal hair is less than 5 mg (about 20 cm). The method is highly sensitive, easy to operate, time-saving and economic, which can be used for trace analysis of amphetamines in human hair.

  18. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules

    Institute of Scientific and Technical Information of China (English)

    Jia Zhang[1; Yue Yuan[1; Yu Wang[2; Fanfei Sun[2; Gaolin Liang[1; Zheng Jiang[2; Shu-Hong Yu[1,3

    2015-01-01

    Even though great advances have been achieved in the synthesis of luminescent metal nanoclusters, it is still challenging to develop metal nanoclusters with high quantum efficiency as well as multiple sensing functionalities. Here, we demonstrate the rapid preparation of glutathione-capped Au/Ag nanoclusters (GS-Au/Ag NCs) using microwave irradiation and their unique sensing capacities. Compared to bare GS-Au NCs, the doped Au/Ag NCs possess an enhanced quantum yield (7.8% compared to 2.2% for GS-Au NCs). Several characterization techniques were used to elucidate the atomic composition, particulate character, and electronic structure of the fabricated NCs. According to the X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectra, a significant amount of Au exists in the oxidized state as Au(I), and the Ag atoms are positively charged. In contrast to those nanoclusters that detect only one analyte, the GS-Au/Ag NCs can be used as a versatile sensor for metal ions, anions, and small molecules. In this manner, the NCs can be regarded as a unique sensor-on-a-nanoparticle.

  19. High current density stability of ohmic contacts to silicon carbide

    Science.gov (United States)

    Downey, Brian P.

    The materials properties of SiC, such as wide bandgap, high breakdown electric field, and good thermal conductivity, make it an appealing option for high temperature and high power applications. The replacement of Si devices with SiC components could lead to a reduction in device size, weight, complexity, and cooling requirements along with an increase in device efficiency. One area of concern under high temperature or high current operation is the stability of the ohmic contacts. Ohmic contact degradation can cause an increase in parasitic resistance, which can diminish device performance. While contact studies have primarily focused on the high temperature stability of ohmic contacts to SiC, different failure mechanisms may arise under high current density stressing due to the influence of electromigration. In addition, preferential degradation may occur at the anode or cathode due to the directionality of current flow, known as a polarity effect. The failure mechanisms of ohmic contacts to p-type SiC under high current density stressing are explored. Complementary materials characterization techniques were used to analyze contact degradation, particularly the use of cross-sections prepared by focused ion beam for imaging using field emission scanning electron microscopy and elemental analysis using Auger electron spectroscopy. Initially the degradation of commonly studied Ni and Al-based contacts was investigated under continuous DC current. The contact metallization included a bond pad consisting of a TiW diffusion barrier and thick Au overlayer. The Ni contacts were found to degrade due to the growth of voids within the ohmic contact layer, which were initially produced during the high temperature Ni/SiC ohmic contact anneal. The Al-based contacts degraded due to the movement of Al from the ohmic contact layer to the surface of the Au bond pad, and the movement of Au into the ohmic contact layer from the bond pad. The inequality of Al and Au fluxes generated

  20. Measurements of actinometry and ions energy in a microwave discharge; Mediciones de actinometria y energia de iones en una descarga de microondas

    Energy Technology Data Exchange (ETDEWEB)

    Becerril, F.; Camps, E. [Instituto Nacional de Investigaciones Nucleares, Departamento de Fisica, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Villagran, M. [CI-UNAM, Mexico D.F. (Mexico); Muhl, S. [IIM-UNAM, Mexico D.F. (Mexico)

    1998-07-01

    In the present work it is showed the implementation of the plasma diagnostic technique through actinometry which allows to determine the absolute density of excited species. It is showed the range of the technique application, for the case of N{sub 2}-H{sub 2} mixtures plasmas used for the metals nitridation. The effects of magnetic field and the work pressure over ions energy were determined, using a Faraday cup type energy analyser. The results showed that in our device it is possible to vary such energy in a range between 10-45 eV, which amplify the range of applications perceptibly in comparison with another type of discharges. (Author)

  1. Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Laboratory of Advanced Materials, Fudan University, Shanghai 200438 (China); Chen, Qiuhang; Zhang, Wanlu; Mei, Shiliang; He, Liangjie; Zhu, Jiatao [Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Institute for Electric Light Sources, Fudan University, Shanghai 200433 (China); Chen, Guoping [School of Information Science and Technology, Fudan University, Shanghai 200433 (China); Guo, Ruiqian, E-mail: rqguo@fudan.edu.cn [Engineering Research Center of Advanced Lighting Technology, Ministry of Education, Institute for Electric Light Sources, Fudan University, Shanghai 200433 (China)

    2015-10-01

    Highlights: • ZnSe-based QDs were formed via a microwave-assisted aqueous approach. • The stabilizer, ZnS coats and UV irradiation played a role in the PL enhancement. • Tunable white-light-emitting Mn:ZnSe QDs and Cu,Mn:ZnSe/ZnS QDs were synthesized. • The formation mechanism of Cu,Mn:ZnSe QDs was clarified. • The corresponding CIE color coordinates of different PL spectra were obtained. - Abstract: Synthesis of bright white-light emitting Mn and Cu co-doped ZnSe/ZnS core/shell quantum dots (QDs) (Cu,Mn:ZnSe/ZnS) was reported. Water-soluble ZnSe-based QDs with Mn and Cu doping were prepared using a versatile hot-injection method in aqueous solution with a microwave-assisted approach. Influence of the Se/S ratio, stabilizer, refluxing time and the concentration of Cu/Mn dopant ions on the particle size and photoluminescence (PL) were investigated. The as-prepared QDs in the different stages of growth were characterized by X-ray powder diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), UV–visible (UV–vis) spectrophotometer, and fluorescence spectrophotometer. It is found that these ZnSe-based QDs synthesized under mild conditions exhibit emission in the range of 390–585 nm. The PL quantum yield (QY) of the as-prepared water-soluble ZnSe QDs can be up to 24.3% after the UV-irradiation treatment. The band-gap emission of ZnSe is effectively restrained through Mn and Cu doping. The refluxing time influences the doping of not only Mn, but also Cu, which leads to the best refluxing time of Mn:ZnSe and the red-shift of the emission of Cu:ZnSe d-dots. Co-doping induced white-light emission (WLE) from Cu,Mn:ZnSe/ZnS core/shell QDs were obtained, which can offer the opportunity for future-generation white-light emitting diodes (LEDs)

  2. Cu-ZSM-11 catalysts prepared with microwave irradiation ion-exchange method and direct decomposition of NO over MeOx/Cu-ZSM-11 with microwave irradiation%微波离子交换法制备Cu-ZSM-11及微波辐照MeOx/Cu-ZSM-11催化分解NO

    Institute of Scientific and Technical Information of China (English)

    罗羽裳; 周继承; 徐文涛; 游志敏; 龙伟; 蒋沧海

    2016-01-01

    Cu-ZSM-11 molecular sieve was prepared by the microwave ion-exchange method. The heating behavior of several kinds of metal oxides under microwave irradiation was investigated. Some metal oxide (MnO2>CuO>Ni2O3)which is of good absorption property for microwave was selected to be used for mixing with Cu-ZSM-11 catalyst to prepare the microwave catalysts. Direct decomposition of NO over the microwave catalyst MeOx/Cu-ZSM-11 was conducted with microwave irradiation, and their performance was investigated under microwave irradiation and traditional heating modes respectively. The results show that the conversion rate of decomposing NO is significantly higher under microwave irradiation than under traditional heating; and at catalyst bed temperature 350℃, the NO conversion is achieved up to 99.30% and N2 selectivity 99.9%. Furthermore, under microwave irradiation, the conversion of decomposing NO is higher for the mixture catalyst MeOx/Cu-ZSM-11 than for alone metal oxides and alone Cu-ZSM-11, indicating that microwave irradiation plays important role in catalytic decomposition of nitrogen oxide. The results indicate also that over MeOx/Cu-ZSM-11 with microwave irradiation, oxygen concentration in steam has almost no influences on its catalytic activity for NO decomposition,i.e. microwave irradiation can remove oxygen inhibition in decomposition reaction and keep unique selective effect. Similarly, the influence of water vapor in stream is also much less under microwave irradiation. The exit gas temperature is almost not change for Microwave–assisted reaction, and is the same as the reaction temperature 500—600℃ for conventional heating mode reaction.%用微波辐照离子交换法制备了Cu-ZSM-11,制备的Cu-ZSM-11和金属氧化物(MeOx)机械混合制备了微波催化剂 MeOx/Cu-ZSM-11。考察了 MeOx 在微波辐照下的升温行为,筛选出吸波性能好的 MeOx (MnO2>CuO>Ni2O3)为吸波组分。分别考察了微波辐

  3. High-current cyclotron to drive an electronuclear assembly

    CERN Document Server

    Alenitsky, Yu G

    2002-01-01

    The proposal on creation of a high-current cyclotron complex for driving an electronuclear assembly reported at the 17th Meeting on Accelerators of Charged Particles is discussed. Some changes in the basic design parameters of the accelerator are considered in view of new results obtained in the recent works. It is shown that the cyclotron complex is now the most real and cheapest accelerator for production of proton beams with a power of up to 10 MW. Projects on design of a high-current cyclotron complex for driving an electronuclear subcritical assembly are presented.

  4. Microfabricated ion frequency standard

    Science.gov (United States)

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  5. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  6. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  7. Progress and upgrading of the Heidelberg high current injector

    Indian Academy of Sciences (India)

    Roland Repnow

    2002-11-01

    A specialized rf-accelerator system HSI consisting of two RFQ’s and 8 rf seven-gap cavities was built for injection of high intensities of singly charged heavy ions into the Heidelberg heavy ion storage ring TSR. With different ion sources, this system now is used to deliver positive or negative, atomic and molecular ion beams with energies between 150 keV/a.m.u. and 5.3 MeV/a.m.u. final energy. For a future replacement of the MP-tandem-postaccelerator-system the new HSI-accelerator is to be equipped with an ECR source for high intensities of highly charged ions. An advanced commercial ECR source with a 18 GHz rf klystron and an adjustable extraction system for adaption of a wide range of injection energies has been commissioned at the manufacturer and is delivered. Test bench operation presently is in preparation at Heidelberg. A stripper section with an achromatic charge state selector is under construction between injector and postaccelerator. Other ion sources, e.g., for ultra cold $H^{+}_{3}$ molecular ion beams are under development.

  8. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  9. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  10. Mechanism of Microwave Effects on Conductivity of Solution

    Institute of Scientific and Technical Information of China (English)

    Su Yongqing

    2006-01-01

    The relation between microwave conductivity and normal conductivity of solution is compared in this thesis. By building mathematical model and theoretical analyses, it indicates that the relationship of in situ conductivity of solution in microwave field and temperature is similar to that in non-microwave field. It can be expressed by quadratic equation but the values of both conductivities are different. Microwave field has effect on the mean path δ or hot vibrational frequency v of ions in solution. In microwave field, the mean energy barrier, which ions must surmount as they transit, is the function relation to temperature.

  11. Development of RF linac for high-current applications

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.C.D.; Lawrence, G.P.; Schneider, J.D.

    1997-12-31

    High-current proton linacs are promising sources of neutrons for material processing and research applications. Recently, a linac design that makes use of a combination of normal-conducting (NC) and superconducting (SC) linac technologies has been proposed for the US Accelerator Production of Tritium Project. As a result, a multi-year engineering development and demonstration (ED and D) program is underway. In this paper, the authors will describe the design and merits of the NC/SC hybrid approach. The scope, technology issues, and present status of the ED and D Program, and the participation of industry will also be described.

  12. Development of high current injector for tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takashi; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan); Kishimoto, Naoki; Saito, Tetsuya; Mori, Yoshiharu

    1997-02-01

    The development of the electrostatic type tandem accelerators has been carried out so far, but by the recent remarkable progress of negative ion sources, the beam current which was inconceivable so far has become obtainable, and the use as the electrostatic type tandem accelerators is expanding rapidly. The problem which must be solved in the development of a high energy, large current heavy ion injection device is the development of an injector. As to the generation of negative ions, by the development of plasma sputter negative ion sources, the almost satisfactory performance has been obtained in beam current, emittance, life and so on, but as for the transport and control of generated negative ion beam, there is the large problem of spatial charge effect. This time, the verifying test on this problem was carried out, therefore, its contents and results are reported. The equipment which was developed this time was delivered to the Institute for Materials Research. Its specifications are shown. The whole constitution, negative ion source, and beam transport system are described. Beam generation test and spatial charge effect test are reported. The test stand was made, and in the verifying test, the maximum beams of 4 mA in Cu and 3 mA in Ni were able to be generated and transported. The effect of the countermeasures to spatial charge effect was confirmed. (K.I.)

  13. Microwave generator

    Science.gov (United States)

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  14. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  15. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  16. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  17. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  18. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  19. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  20. Method for making a high current fiber brush collector

    Science.gov (United States)

    Scuro, S. J.

    1986-05-01

    An axial-type homopolar motor having high density, high current fiber brush collectors affording efficient, low contact resistance and low operating temperatures is discussed. The collectors include a ring of concentric row of brushes in equally spaced beveled holes soldered in place using a fixture for heating the ring to just below the solder melting point at a soldering iron for the local application of additional heat at each brush. Prior to soldering, an oxide film is formed on the surfaces of the brushes and ring, and the bevels are burnished to form a wetting surface. Flux applied with the solder at each bevel removes to an effective soldering depth the oxide film on the brushes and the holes.

  1. Development of high current beam ns pulsed system

    CERN Document Server

    Shen Guan Ren; Gao Fu; Guan Xia Ling; LiuNaiYi

    2001-01-01

    The development of high current beam ns pulsed system of CPNG and its characteristic, main technological performance and application are introduced. Firstly, important parameters of the system are calculated using theoretical model, the design requirements of some important parts are understood. Some mistakes in physics conception are corrected. Second, the chopper is designed for parallel plate deflector, chopping aperture and sine wave voltage sweeping device. It is emphasized that the conception of parallel plate load impedance is the capacitance load, but not the 50 ohm load impedance. The dynamic capacitance value has been measured. The output emphasizes the output voltage amplitude, but not the output power for sweeping device. The display system of output sweeping voltage was set up and it is sure that the maximum output voltage(V-V) is >=4000 V. The klystron buncher are re-designed. It is emphasized to overcome difficulty of support high voltage electrode in the klystron and insulator of input sine wa...

  2. Grad-B drift transport of high current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Backstrom, R.C.; Halbleib, J.A.; Wright, T.P.

    1983-01-01

    Grad-B transport, bunching and focusing of relativistic electron beams has been proposed as a method of increasing the power delivered to an ICF target by an order of magnitude. Recent experiments have demonstrated the efficient transport of high current electron beams over 1.0 m distances in the 1/r azimuthal magnetic field of a current-carrying wire. The electron drift velocity was measured as a function of wire current and found to be in good agreement with theory. Measurements of x-ray production in a tantalum target were used as a diagnostic tool to study transport efficiency. A theoretical model of the experiment was developed to calculate bremsstrahlung production in the target, assuming 100 percent transport efficiency. This model predicted radial x-ray dose profiles in the experimental converter assembly which were in good agreement with the measurements.

  3. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  4. Recent Progress on High-Current SRF Cavities at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand

    2010-05-01

    JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, a practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.

  5. Interdigitated back contact solar cell with high-current collection

    Science.gov (United States)

    Garner, C. M.; Nasby, R. D.; Sexton, F. W.; Rodriguez, J. L.; Norwood, D. P.

    Internal current collection efficiencies greater than 90% and energy conversion efficiencies of 18 % at 30 suns were measured on a laboratory version of the interdigitated back contact (IBC) solar cell. A phosphorous gettering diffusion was performed on the front surface and then etched off to achieve these high current collection efficiencies. Thermal oxides were grown on the front and back of the cell to passivate the silicon surfaces. Although the internal collection efficiencies of the cell were high, series resistance caused the fill factor (FF) to decrease at concentrations above 30 suns. Dark current measurements on cells with a new grid spacing indicate that the series resistance is much lower than in the previous cell design. It is suggested that this should result in higher efficiencies at high concentration.

  6. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  7. Upgrading of the high-current accelerator 'Tonus'

    CERN Document Server

    Ryabchikov, A I; Karpov, V B; Usov, Y P

    2001-01-01

    In the paper presented,the new technical development of the high-current electron accelerator 'Tonus - NT' (Tomsk nanosecond accelerator - new technologies ) is described. It has been developed taking into account the experience of 30-years exploitation of the previous analogue - the accelerator 'Tonus'. The scheme of the accelerator includes the high-voltage transformer with resonant contours (Tesla transformer) charging the double forming line filled with the transformer oil and the high-voltage diode. The gas-filled trigatron spark gap with up to 10 atm operating pressure is used for the double forming line switching. The main accelerator parameters are as follows:accelerating voltage range 0.4-1.7 MeV, line impedance 36.6 OMEGA, pulse duration 60 ns, pulse repetition rate up to 10 pps.

  8. High current gain silicon-based spin transistor

    CERN Document Server

    Dennis, C L; Ensell, G J; Gregg, J F; Thompson, S M

    2003-01-01

    A silicon-based spin transistor of novel operating principle has been demonstrated in which the current gain at room temperature is 1.4 (n-type) and 0.97 (p-type). This high current gain was obtained from a hybrid metal/semiconductor analogue to the bipolar junction transistor which functions by tunnel-injecting carriers from a ferromagnetic emitter into a diffusion driven silicon base and then tunnel-collecting them via a ferromagnetic collector. The switching of the magnetic state of the collector ferromagnet controls the collector efficiency and the current gain. Furthermore, the magnetocurrent, which is determined to be 98% (140%) for p-type (n-type) in -110 Oe, is attributable to the spin-polarized base diffusion current.

  9. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  10. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Tamura, M.; Aihara, T.; Uchiyama, A. [SHI Accelerator Service Ltd., 1-17-6 Osaki, Shinagawa, Tokyo 141-0032 (Japan)

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  11. Improved Turn-on Characteristics of Fast High Current Thyristors

    CERN Document Server

    Ducimetière, L; Vossenberg, Eugène B

    1999-01-01

    The beam dumping system of CERN's Large Hadron Collider (LHC) is equipped with fast solid state closing switches, designed for a hold-off voltage of 30 kV and a quasi half sine wave current of 20 kA, with 3 ms rise time, a maximum di/dt of 12 kA/ms and 2 ms fall time. The design repetition rate is 20 s. The switch is composed of ten Fast High Current Thyristors (FHCT’s), which are modified symmetric 4.5 kV GTO thyristors of WESTCODE. Recent studies aiming at improving the turn-on delay, switching speed and at decreasing the switch losses, have led to test an asymmetric not fully optimised GTO thyristor of WESTCODE and an optimised device of GEC PLESSEY Semiconductor (GPS), GB. The GPS FHCT, which gave the best results, is a non irradiated device of 64 mm diameter with a hold-off voltage of 4.5 kV like the symmetric FHCT. Tests results of the GPS FHCT show a reduction in turn-on delay of 40 % and in switching losses of almost 50 % with respect to the symmetric FHCT of WESTCODE. The GPS device can sustain an i...

  12. High Current Density 2D/3D Esaki Tunnel Diodes

    CERN Document Server

    Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-01-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  13. High-current carbon-epoxy capillary cathode

    Science.gov (United States)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.

    2012-07-01

    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  14. Wideband digital phase comparator for high current shunts

    CERN Document Server

    Pogliano, Umberto; Serazio, Danilo

    2011-01-01

    A wideband phase comparator for precise measurements of phase difference of high current shunts has been developed at INRIM. The two-input digital phase detector is realized with a precision wideband digitizer connected through a pair of symmetric active guarded transformers to the outputs of the shunts under comparison. Data are first acquired asynchronously, and then transferred from on-board memory to host memory. Because of the large amount of data collected the filtering process and the analysis algorithms are performed outside the acquisition routine. Most of the systematic errors can be compensated by a proper inversion procedure. The system is suitable for comparing shunts in a wide range of currents, from several hundred of milliampere up to 100 A, and frequencies ranging between 500 Hz and 100 kHz. Expanded uncertainty (k=2) less than 0.05 mrad, for frequency up to 100 kHz, is obtained in the measurement of the phase difference of a group of 10 A shunts, provided by some European NMIs, using a digit...

  15. Interdigitated back contact solar cell with high-current collection

    Energy Technology Data Exchange (ETDEWEB)

    Garner, C. M.; Nasby, R. D.; Sexton, F. W.; Rodriguez, J. L.; Norwood, D. P.

    1981-01-01

    Internal current-collection efficiencies greater than 90 percent and energy-conversion efficiencies of 18 percent at 30 suns have been measured on a laboratory version of the interdigitated back contact (IBC) solar cell. The quantum efficiency at 600 nm was greater than 90 percent which implies a minority carrier lifetime of greater than 350 ..mu..sec and a front surface recombination velocity of less than 30 cm/sec on the better devices. To achieve these high-current collection efficiencies, a phosphorous gettering diffusion was performed on the front surface and then etched off. Also, thermal oxides were grown on the front and back of the cell to passivate the silicon surfaces. Although the internal collection efficiencies of the cell were high, series resistance caused the fill factor (FF) to decrease at concentrations above 30 suns. Dark current measurements on cells with a new grid spacing indicate that the series resistance is much lower than in the previous cell design. This should result in higher efficiencies at high concentration.

  16. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  17. Ultra Fast Shutter Driven by Pulsed High Current

    Institute of Scientific and Technical Information of China (English)

    Zeng Jiangtao; Sun Fengju; Qiu Aici; Yin Jiahui; Guo Jianming; Chen Yulan

    2005-01-01

    Radiation simulation utilizing plasma radiation sources (PRS) generates a large number of undesirable debris, which may damage the expensive diagnosing detectors. An ultra fast shutter (UFS) driven by pulsed high current can erect a physical barrier to the slowly moving debris after allowing the passage of X-ray photons. The UFS consists of a pair of thin metal foils twisting the parallel axes in a Nylon cassette, compressed with an outer magnetic field, generated from a fast capacitor bank, discharging into a single turn loop. A typical capacitor bank is of 7.5μF charging voltages varying from 30 kV to 45 kV, with corresponding currents of approximately 90kA to140 kA and discharging current periods of approximately 13.1 μs. A shutter closing time as fast as 38 microseconds has been obtained with an aluminium foil thickness of 100 micrometers and a cross-sectional area of 15 mm by 20 mm. The design, construction and the expressions of the valve-closing time of the UFS are presented along with the measured results of valve-closing velocities.

  18. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  19. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  20. Optimization of Superconducting Focusing Quadrupoles for the HighCurrent Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, GianLuca; Gourlay, Steve; Gung, Chen-yu; Hafalia, Ray; Lietzke, Alan; Martovetski, Nicolai; Mattafirri, Sara; Meinke, Rainer; Minervini, Joseph; Schultz, Joel; Seidl, Peter

    2005-09-16

    The Heavy Ion Fusion (HIF) program is progressing through a series of physics and technology demonstrations leading to an inertial fusion power plant. The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is exploring the physics of intense beams with high line-charge density. Superconducting focusing quadrupoles have been developed for the HCX magnetic transport studies. A baseline design was selected following several pre-series models. Optimization of the baseline design led to the development of a first prototype that achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, without training, with measured field errors at the 0.1% level. Based on these results, the magnet geometry and fabrication procedures were adjusted to improve the field quality. These modifications were implemented in a second prototype. In this paper, the optimized design is presented and comparisons between the design harmonics and magnetic measurements performed on the new prototype are discussed.

  1. Evidence for large-area superemission into a high-current glow discharge

    Science.gov (United States)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1988-10-01

    This letter presents evidence for large-area (≊1 cm2) cathode superemission (˜10 000 A/cm2) into a high-current glow discharge in a pseudospark or back lighted thyratron switch. Cathodes studied with a scannning electron microscope following operation at 6-8 kA, ≊1 μs pulse length, and 105 pulses in a low-pressure H2 discharge show evidence of melting of a thin surface layer within a radius of ˜4 mm, indicating that the discharge is a superdense glow with a cross-sectional area of the order of 1 cm2, rather than an arc. Further supporting evidence is provided by streak camera data. An ion beam present during the avalanche phase of the discharge is responsible for heating the cathode surface resulting in a significant field-enhanced thermionic emission.

  2. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Haixiang [College of Science, China Agricultural University, Beijing 100094 (China); Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Department of Basic Agricultural Science, Hebei North College, Zhangjiakou Hebei 075131 (China); Wang Liping [College of Science, China Agricultural University, Beijing 100094 (China); Qiu Yueming [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Zhou Zhiqiang [College of Science, China Agricultural University, Beijing 100094 (China)]. E-mail: zqzhou@cau.edu.cn; Zhong Weike [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China); Li Xiang [Inspection Technology and Equipment Institute, Chinese Academy of Inspection and Quarantine, Beijing 100025 (China)

    2007-03-14

    A new method was developed for the rapid screening and confirmation analysis of barbital, amobarbital and phenobarbital residues in pork by gas chromatography-tandem mass spectrometry (GC/MS/MS) with ion trap MSD. The residual barbiturates in pork were extracted by ultrasonic extraction, cleaned up on a multiwalled carbon nanotubes (MWCNTs) packed solid phase extraction (SPE) cartridge and applied acetone-ethyl acetate (3:7, v/v) mixture as eluting solvent and derivatized with CH{sub 3}I under microwave irradiation. The methylated barbiturates were separated on a TR-5MS capillary column and detected with an ion trap mass detector. Electron impact ion source (EI) operating MS/MS mode was adopted for identification and external standard method was employed for quantification. One precursor ion m/z 169 was selected for analysis of barbital and amobarbital and m/z 232 was selected for phenobarbital. The product ions were obtained under 1.0 V excitation voltage. Good linearities (linear coefficient R > 0.99) were obtained at the range of 0.5-50 {mu}g kg{sup -1}. Limit of detection (LOD) of barbital was 0.2 {mu}g kg{sup -1} and that of amobarbital and phenobarbital were both 0.1 {mu}g kg{sup -1} (S/N {>=} 3). Limit of quatification (LOQ) was 0.5 {mu}g kg{sup -1} for three barbiturates (S/N {>=} 10). Satisfying recoveries ranging from 75% to 96% of the three barbiturates spiked in pork were obtained, with relative standard deviations (R.S.D.) in the range of 2.1-7.8%.

  3. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Megía-Macías, A.; Vizcaíno-de-Julián, A. [E.S.S. Bilbao, Edificio Cosimet, Landabarri 2, 48940-Leioa, Vizcaya (Spain); Cortázar, O. D., E-mail: dcortazar@essbilbao.org [E.S.S. Bilbao, Edificio Cosimet, Landabarri 2, 48940-Leioa, Vizcaya (Spain); Universidad de Castilla-La Mancha, ETSII, C.J. Cela s/n, 13170 Ciudad Real (Spain)

    2014-03-15

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  4. Multicusp ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Leung, K.N. (Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States))

    1994-04-01

    During the last decade, different types of multicusp ion sources, such as high current, high concentration H[sup +], H[sup +][sub 2], or N[sup +] ion sources, negative ion sources, radio-frequency-driven sources, and high charge state ion sources have been developed at the Lawrence Berkeley Laboratory. This article reviews the history of the research and development of these ion sources and their applications.

  5. A resonant series counterpulse technique for high current opening switches

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, E. van [Delft Univ. of Technology (Netherlands). Lab. for Power Electronics and Electrical Machines; Gelder, P. van [TNO PML-Pulse Physics Lab., Delft (Netherlands)

    1995-01-01

    A counterpulse technique for the controlled interruption of very high currents in inductive storage pulsed power systems is described and analyzed, and some simulation results of its performance are presented. The accompanying circuit comprises a pre-charged capacitor bank, connected in series with the inductive load, which has to be provided with a current pulse. Upon actuation, a resonant counterpulse current is created in the opening switch, connected in parallel with the current source and the load. In this way, the opening switch is opened at low current. A separate closing switch prevents closing of the opening switch at high voltage. Operation of the opening switch, often a mechanical switch, at low current and low voltage prevents arc erosion of the contacts. The advantage of this circuit compared to other counterpulse circuits is that the capacitor bank does not experience a voltage reversal. Electrolytic capacitors, which have a high energy density, are applied. The remaining energy of the capacitor bank after opening the opening switch, is transferred to the load. The required initial voltage of the capacitor bank is only a few hundred volts, whereas it may be above a kilovolt in other circuits. Another advantage of the method described here is that the load does not experience a pre-current, causing unwanted preheating of the load, before the resonant current is activated. At the moment, work is being performed at the Pulse Physics Laboratory to develop the resonant series counterpulse circuit for use with rail accelerators, which must be supplied with current pulses in the millisecond range up to the mega-ampere level.

  6. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  7. Large dynamic range diagnostics for high current electron LINACs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel [JLAB

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  8. Large dynamic range diagnostics for high current electron LINACs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, P., E-mail: Pavel.Evtushenko@jlab.org [Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  9. Insights into a microwave susceptible agent for minimally invasive microwave tumor thermal therapy.

    Science.gov (United States)

    Shi, Haitang; Liu, Tianlong; Fu, Changhui; Li, Linlin; Tan, Longfei; Wang, Jingzhuo; Ren, Xiangling; Ren, Jun; Wang, Jianxin; Meng, Xianwei

    2015-03-01

    This work develops a kind of sodium alginate (SA) microcapsules as microwave susceptible agents for in vivo tumor microwave thermal therapy for the first time. Due to the excellent microwave susceptible properties and low bio-toxicity, excellent therapy efficiency can be achieved with the tumor inhibiting ratio of 97.85% after one-time microwave thermal therapy with ultralow power (1.8 W, 450 MHz). Meanwhile, the mechanism of high microwave heating efficiency was confirmed via computer-simulated model in theory, demonstrating that the spatial confinement efficiency of microcapsule walls endows the inside ions with high microwave susceptible properties. This strategy offers tremendous potential applications in clinical tumor treatment with the benefits of safety, reliability, effectiveness and minimally invasiveness.

  10. Measurement of x-ray energy spectrum by using HPGe detection in 14.5 GHz ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Chang, Dae Sik; Oh, Byung Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seo, Chang Seog; Kim, Yong Kyun [Institute for Basic Science, Daejeon (Korea, Republic of)

    2013-04-15

    The Electron Cyclotron Resonance (ECR) ion source is used to produce intense, high charge state ion beams of intermediate and heavy mass elements. It is widely used to produce ion beams for accelerator, atomic physics research and industrial application. The basic principle of the ECR ion source is the resonance absorption of energy by electron from microwave that has the same frequency as the electron's frequency in the resonance zone. The ECR ion source produces soft and hard x-rays because of efficient heating of electrons. The x-rays are created by electron-ion collisions in the ECR plasma or, when free electrons collide with ECR plasma chamber wall. The generated x-rays are influenced by various input parameters of the ECR ion source. In this study, The x-ray spectrum was measured by using a 14.5 GHz ECR ion source at Korea Atomic Energy Research Institute (KAERI). ECR ion source is used to generate ion beams of heavy mass elements. KAERI has a 14.5 GHz ECR ion source to produce high current ion beam. In this study, experimental condition is provided to generate stable plasma through x-ray spectrum measurement. In the future, x-rays spectra will be measured at various operation conditions such as gas-pressure, trim coil and solenoid current.

  11. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    Science.gov (United States)

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.

  12. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    Science.gov (United States)

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-01

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of J ×B propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (Te) of hundreds of eV in the arc as revealed by the simulation. Hence Te of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90eV, which is confirmed by Langmuir electric probe measurements. Density ne of this metal plasma is shown to be in the range 4×1021-6×1021m-3 and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2×106cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  13. Effect of Er3+ ions on the phase formation and properties of In2O3nanostructures crystallized upon microwave heating

    Science.gov (United States)

    Lemos, Samantha C. S.; Romeiro, Fernanda C.; de Paula, Leonardo F.; Gonçalves, Rosana F.; de Moura, Ana P.; Ferrer, Mateus M.; Longo, Elson; Patrocinio, Antonio Otavio T.; Lima, Renata C.

    2017-05-01

    Regular sized nanostructures of indium oxide (In2O3) were homogeneously grown using a facile route, i.e. a microwave-hydrothermal method combined with rapid thermal treatment in a microwave oven. The presence of Er3+ doping plays an important role in controlling the formation of cubic (bcc) and rhombohedral (rh) In2O3 phases. The samples presented broad photoluminescent emission bands in the green-orange region, which were attributed to the recombination of electrons at oxygen vacancies. The photocatalytic activities of pure bcc-In2O3 and a bcc-rh-In2O3 mixture towards the UVA degradation of methylene blue (MB) were also evaluated. The results showed that Er+3 doped In2O3 exhibited the highest photocatalytic activity with a photonic efficiency three times higher than the pure oxide. The improved performance was attributed to the higher surface area, the greater concentration of electron traps due the presence of the dopant and the possible formation of heterojunctions between the cubic and rhombohedral phases.

  14. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  15. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  16. Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for Li-ion batteries

    Science.gov (United States)

    Ludwig, Jennifer; Marino, Cyril; Haering, Dominik; Stinner, Christoph; Gasteiger, Hubert A.; Nilges, Tom

    2017-02-01

    High-performance particles of the high-voltage cathode material LiCoPO4 for Li-ion batteries are synthesized by a simple and rapid one-step microwave-assisted solvothermal route at moderate temperatures (250 °C). Using a variety of water/alcohol 1:1 (v:v) solvent mixtures, including ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (TTEG), polyethylene glycol 400 (PEG), and benzyl alcohol (BA), the focus of the study is set on optimizing the electrochemical performance of the material by controlling the particle size and morphology. Scanning electron microscopy studies reveal a strong influence of the co-solvent on the particle size and morphology, resulting in the formation of variations between square, rhombic and hexagonal platelets. According to selected area electron diffraction experiments, the smallest crystal dimension is in the [010] direction for all materials, which is along the lithium diffusion pathways of the olivine crystal structure. The anisotropic crystal orientations with enhanced Li-ion diffusion properties result in high initial discharge capacities and gravimetric energy densities (up to 141 mAh g-1 at 0.1 C and 677 Wh kg-1 for LiCoPO4 obtained from TEG), excellent rate capabilities, and cycle life for 20 cycles.

  17. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    Science.gov (United States)

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  18. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  19. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  20. ECR微波等离子体离子输运的数值模拟%NUMERICAL METHOD OF ION TRANSPORT IN ECR MICROWAVE PLASMA WITH PLANAR AND CYLINDER MODELS

    Institute of Scientific and Technical Information of China (English)

    宫野; 宋远红; 温晓军; 邓新绿

    2001-01-01

    Monte Carlo method is used to simulate such a complete course, inwhich the ions pass through the neutral region, the sheath, and the shield region of a virtual cathode formed by secondary electrons near the workpiece surface, finally come to be absorbed by the surface of the workpiece with negative bias in ECR microwave plasma. Discussion covers the connection problem of neutral region and sheath at the sheath edge. The non-linear Poisson equation is solved with “trial” method, and results in smooth and self-consistent spectrum of potential and distributions of ion energy and angle at the surface of workpiece.%建立了ECR微波等离子体源离子输运的平板和圆柱模型,对离子历经的空间区域的输运过程进行了数值研究.采用MonteCarlo(M-C)方法模拟了存在外磁场情况下,离子离开放电室后历经中性区、鞘层区、最后被加负偏压的工件表面吸收的全过程.考虑了离子与中性粒子的电荷交换碰撞和弹性散射,统一处理了中性区和鞘层区电势的衔接.采用曲线拟合,电势自洽迭代方法把中性区和鞘层区衔接起来,得到了光滑自洽的电势分布曲线和鞘层区不同位置处的速度分布、能量分布及角分布.

  1. Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, M.M.; Kostecki, R.; Marcinek, M.; Wilcoc, J.D.

    2008-12-10

    In this paper, we report results of a novel synthesis method of thin film conductive carbon coatings on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} cathode active material powders for lithium-ion batteries. Thin layers of graphitic carbon were produced from a solid organic precursor, anthracene, by a one-step microwave plasma chemical vapor deposition (MPCVD) method. The structure and morphology of the carbon coatings were examined using SEM, TEM, and Raman spectroscopy. The composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes were electrochemically tested in lithium half coin cells. The composite cathodes made of the carbon-coated LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder showed superior electrochemical performance and increased capacity compared to standard composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes.

  2. A particle-core-MD model for intrabeam scattering and halo formation in high current beams in a FODO channel

    CERN Document Server

    Uhlmann, N; Comunian, M; Pisent, A

    2002-01-01

    An essential problem for the successful operation of high current linear ion accelerators is the control of beam losses due to halo particles. As a possible mechanism for the formation of such a halo we concentrate on the interplay between intrabeam scattering (IBS) and the incidence of particles which are driven to high amplitudes by resonances with the nonlinear space charge fields of a mismatched beam. Since a fully microscopic numerical treatment including all the mutual Coulomb interactions between the beam ions requires much too high computational effort, we developed an approximative method. These particle-core-molecular-dynamics (PCMD) simulations suitably join the mean-field description of the time evolution of the beam in framework of the envelope equations and a microscopic calculation of the Coulomb interactions between pseudo-particles with a renormalized charge. With this method we studied matched and mismatched continuous KV-beams in a FODO channel. In first simulation runs we observed a signif...

  3. Physico-chemical and mechanical modifications of polyethylene and polypropylene by ion implantation, micro-wave plasma, electron beam radiation and gamma ray irradiation; Modifications physico-chimiques et mecaniques du polyethylene et du polypropylene par implantation ionique, plasma micro-ondes, bombardement d`electrons et irradiation gamma

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.D.

    1995-03-29

    A polyolefin surface becomes wettable when treated by micro-wave plasma or low-dose nitrogen ion implantation. A short time argon plasma treatment is sufficient to obtain polarizable peroxides on a polyolefin. X-ray photoelectron spectroscopy analyses, paramagnetic electronic resonance analyses, peroxides decomposition, wettability measurements and infrared active spectra analyses have shown that oxidized structures obtained from different treatment techniques play an important role in the interpretation of surface chemical properties of the polymer. Micro-wave plasma treatment, and in particular argon plasma treatment, yields more polarizable groups than ion implantation and is interesting for grafting. Hardness and elasticity modulus, measured by nano-indentation on a polyolefin, increase with an appropriate ion implantation dose. A 1.4 x 10{sup 17} ions.cm{sup -2} dose can multiply by 15 the hardness of high molecular weight polyethylene, and by 7 the elasticity modulus for a 30 nm depth. The viscous-plastic to quasi-elastic transition is shown. The thickness of the modified layer is over 300 nm. The study of friction between a metal sphere and a polyethylene cupula shows that ion implantation in the polymer creates a reticulated hard and elastic layer which improves its mechanical properties and reduces the erosion rate. Surface treatments on polymers used as biomaterials allow to adapt the surface properties to specific applications. 107 refs., 66 figs., 19 tabs., 4 annexes.

  4. 微波消解-离子色谱法测定面制品中磷酸盐含量%Determination of phosphate in wheat flour products by microwave digestion -ion chromatography

    Institute of Scientific and Technical Information of China (English)

    杨笑; 陈波

    2014-01-01

    为建立用微波消解进行样品前处理,离子色谱法测定面制品中的磷酸盐含量的检测方法。用离子色谱带电导检测器进行分离测定,色谱柱为 IonPac AS19(4×250 mm),35 mmol /L 氢氧化钾为淋洗液,流速为1.0 mL/min。结果表明加标回收率在97.0%~115.0%范围,相对标准偏差均小于0.5%,在1.0~50.0 mg/L 范围呈现良好的线性关系,回归系数大于0.999。该法具有操作简便、分析快速、准确等优点,能满足面制品中磷酸盐含量检测要求。%Phosphate in wheat flour products,which was pretreated by microwave digestion technique, was determined by ion chromatography equipped with a conductivity detector.The chromatographic col-umn was IonPac AS19(4 ×250 mm)and the mobile phase was 35 mmol /L KOH solution at a flow rate of 1.0 mL/min.The result showed that the recovery rate for this method was 97.0%~115.0% and the rel-ative standard deviation was less than 0.5% .The linear regression coefficientwas higher than 0.999 within the concentration range of 1.0 ~50.0 mg/L.As a simple and rapid testing,this method showed satisfied accuracy and was suitable for the determination of phosphate in wheat flour products.

  5. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  6. One-step microwave preparation of a Mn3O4 nanoparticles/exfoliated graphite composite as superior anode materials for Li-ion batteries

    Science.gov (United States)

    Zhao, Yun; Ma, Canliang; Li, Yong

    2017-04-01

    The fabrication of exfoliated graphite (EG) is highly polluting due to the discharge of large amount of manganese-contained wastewater. Here, a facile and green chemistry route is developed to prepare a Mn3O4 nanoparticles (NPs)/EG composite by artfully tuning the traditional fabrication process of EG. During this treatment, Mn3O4-NPs with high crystallinity and uniform dimension of ∼7 nm are found to be homogeneously and firmly anchored on the surface of EG. The composite as an anode material of Li-ion batteries exhibits favorable electrochemical performances, such as decay-free charge capacity of 655 mAh g-1 extending to 120 cycles and excellent rate capability.

  7. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; Boomgaard, van den Th.; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from outsid

  8. Development and Characterization of Diamond Film and Compound Metal Surface High Current Photocathodes

    Science.gov (United States)

    Shurter, R. P.; Moir, D. C.; Shurter, R. P.; Moir, D. C.

    1997-05-01

    High current photocathodes operating in vacuum environments as high as 10-5 torr are being developed at Los Alamos for use in a new generation of linear induction accelerators. We report high quantum efficiencies and high current densities in wide bandgap semiconductor and compound metal surface thermally augmented photocathode materials illuminated by ultraviolet laser radiation.

  9. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; van den Boomgaard, Anthonie; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from

  10. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  11. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  12. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of)

    2016-02-15

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  13. First results of 28 GHz superconducting electron cyclotron resonance ion source for KBSI accelerator

    Science.gov (United States)

    Park, Jin Yong; Lee, Byoung-Seob; Choi, Seyong; Kim, Seong Jun; Ok, Jung-Woo; Yoon, Jang-Hee; Kim, Hyun Gyu; Shin, Chang Seouk; Hong, Jonggi; Bahng, Jungbae; Won, Mi-Sook

    2016-02-01

    The 28 GHz superconducting electron cyclotron resonance (ECR) ion source has been developed to produce a high current heavy ion for the linear accelerator at KBSI (Korea Basic Science Institute). The objective of this study is to generate fast neutrons with a proton target via a p(Li,n)Be reaction. The design and fabrication of the essential components of the ECR ion source, which include a superconducting magnet with a liquid helium re-condensed cryostat and a 10 kW high-power microwave, were completed. The waveguide components were connected with a plasma chamber including a gas supply system. The plasma chamber was inserted into the warm bore of the superconducting magnet. A high voltage system was also installed for the ion beam extraction. After the installation of the ECR ion source, we reported the results for ECR plasma ignition at ECRIS 2014 in Russia. Following plasma ignition, we successfully extracted multi-charged ions and obtained the first results in terms of ion beam spectra from various species. This was verified by a beam diagnostic system for a low energy beam transport system. In this article, we present the first results and report on the current status of the KBSI accelerator project.

  14. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  15. Microwave Radiometer (MWR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, VR

    2006-08-01

    The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

  16. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  17. Beam-plasma instability in charged plasma in the absence of ions

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, Alexander E. [National Research Nuclear University “MEPhI,” Kashirskoe Highway, 31, Moscow 115409, Russia and Sarov State Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Dukhova Str., 6, Sarov, Nizhni Novgorod Region 607186 (Russian Federation); Petrik, Alexey G. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Kurkin, Semen A.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E., E-mail: hramovae@gmail.com [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2016-04-15

    We report on the possibility of the beam-plasma instability development in the system with electron beam interacting with the single-component hot electron plasma without ions. As considered system, we analyse the interaction of the low-current relativistic electron beam (REB) with squeezed state in the high-current REB formed in the relativistic magnetically insulated two-section vircator drift space. The numerical analysis is provided by means of 3D electromagnetic simulation in CST Particle Studio. We have conducted an extensive study of characteristic regimes of REB dynamics determined by the beam-plasma instability development in the absence of ions. As a result, the dependencies of instability increment and wavelength on the REB current value have been obtained. The considered process brings the new mechanism of controlled microwave amplification and generation to the device with a virtual cathode. This mechanism is similar to the action of the beam-plasma amplifiers and oscillators.

  18. High power microwave source for a plasma wakefield experiment

    Science.gov (United States)

    Shafir, G.; Shlapakovski, A.; Siman-Tov, M.; Bliokh, Yu.; Leopold, J. G.; Gleizer, S.; Gad, R.; Rostov, V. V.; Krasik, Ya. E.

    2017-01-01

    The results of the generation of a high-power microwave (˜550 MW, 0.5 ns, ˜9.6 GHz) beam and feasibility of wakefield-excitation with this beam in under-dense plasma are presented. The microwave beam is generated by a backward wave oscillator (BWO) operating in the superradiance regime. The BWO is driven by a high-current electron beam (˜250 keV, ˜1.5 kA, ˜5 ns) propagating through a slow-wave structure in a guiding magnetic field of 2.5 T. The microwave beam is focused at the desired location by a dielectric lens. Experimentally obtained parameters of the microwave beam at its waist are used for numerical simulations, the results of which demonstrate the formation of a bubble in the plasma that has almost 100% electron density modulation and longitudinal and transverse electric fields of several kV/cm.

  19. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaolong, E-mail: luxl@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Junrun [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Qian, Xiangping; Xu, Dapeng; Lan, Changlin [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Yao, Zeen, E-mail: zeyao@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft–Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  20. Color sensing under microwaves

    Science.gov (United States)

    Choudhury, Debesh

    2013-09-01

    Inspired by recent results of artificial color due to Caulfield, we carry out intuitive experimental investigations on color sensing under microwave illumination. Experiemnts have been carried out using a Gunn diode as the microwave source and a microwave diode as a detector. More precise experimental studies have also been carried out utilizing a vector network analyzer. Preliminary results of the experiments validate the feasibility of sensing and discriminating otherwise visual colors under microwave illumination. Caulfield's presumption possibly paves the way for artificial color perception using microwaves.

  1. Continuous Microwave Excitation of Excimer Lamps.

    Science.gov (United States)

    Hassal, Scott Bradley

    1991-01-01

    For decades, microwaves have been used to create gas discharges for many applications. This thesis deals with the use of microwaves to excite gas discharges for incoherent optical sources, with particular emphasis on excimer systems. In addition, microwave excitation of a gas laser is considered. A novel apparatus was designed and built to couple 2.45-GHz microwave radiation into a gas discharge. The microwave resonator is the essential part of this equipment, and a detailed discussion of its design and performance is given. The resonator is characterized both theoretically and experimentally in order to determine the coupling efficiency and peak electric-field strength. Specialized theory is developed in order to evaluate many parameters of a microwave-excited discharge. The phenomenon of skin effect is investigated quantitatively and expressions for the plasma frequency and electron density are developed in terms of collision frequency and observable parameters (e.g., skin depth). Expressions for peak electric-field strength, ionization coefficient and collisionless electron energy are also developed. The results of an extensive investigation of continuous-wave microwave-excited excimer fluorescence are reported. Rare-gas halide, homonuclear halogen and heteronuclear halogen systems are examined and the corresponding ultraviolet spectra are presented. Truly continuous excimer emission has been achieved (for the first time) on several transitions. For systems of particular interest (e.g. XeCl and KrCl), the effects of total pressures and gas composition on fluorescence output are investigated, and the appropriate spectra are presented. Finally, the potential operation of microwave-excited carbon dioxide and argon-ion gas lasers is investigated, and upper limits are deduced for the small-signal gain under various conditions.

  2. High brightness microwave lamp

    Science.gov (United States)

    Kirkpatrick, Douglas A.; Dolan, James T.; MacLennan, Donald A.; Turner, Brian P.; Simpson, James E.

    2003-09-09

    An electrodeless microwave discharge lamp includes a source of microwave energy, a microwave cavity, a structure configured to transmit the microwave energy from the source to the microwave cavity, a bulb disposed within the microwave cavity, the bulb including a discharge forming fill which emits light when excited by the microwave energy, and a reflector disposed within the microwave cavity, wherein the reflector defines a reflective cavity which encompasses the bulb within its volume and has an inside surface area which is sufficiently less than an inside surface area of the microwave cavity. A portion of the reflector may define a light emitting aperture which extends from a position closely spaced to the bulb to a light transmissive end of the microwave cavity. Preferably, at least a portion of the reflector is spaced from a wall of the microwave cavity. The lamp may be substantially sealed from environmental contamination. The cavity may include a dielectric material is a sufficient amount to require a reduction in the size of the cavity to support the desired resonant mode.

  3. 宽带微波馈入对于具有常规磁场构型的ECR离子源性能的提高%Enhancing the Performances of Conventional B-Geometry ECR Ion Sources with Broadband Microwave Radiation

    Institute of Scientific and Technical Information of China (English)

    G.D.Alton; Y.Kawai; Y.Liu; O.Tarvainen; P.Suominen; H.Koivisto

    2007-01-01

    As clearly demonstrated at several laboratories,the performances of electron-cyclotron resonance (ECR)ion sources can be enhanced by increasing the physical sizes(volumes)of embedded ECR zones.Enlarged ECR zones have been achieved by engineering the central magnetic field region of these sources so they are uniformly-distributed"volumes"in resonance with single-frequency rf power.Alternatively.the number of ECR surfaces in conventional minimum-B geometry sources can be increased by heating their plasmas with multiple,discrete frequency microwave radiation.Broadband rf power offers a simple,low cost and arguably more effective means for increasing the physical sizes of the ECR zones within the latter source type.In this article,theoretical arguments are made in support of the volume effect and the charge-state enhancing effects of broadband microwave radiation (bandwidth:200MHz) plasma heating are demonstrated by comparing the high-charge-states of Ar ion beams,produced by powering a conventional minimum-B geometry,6.4GHz ECR ion source,equipped with a biased disk,with those produced by conventional bandwidth(bandwidth:~1.5MHz) radiation.

  4. Influence of pulse line switch inductance on output characteristics of high-current nanosecond accelerators

    Science.gov (United States)

    Mashchenko, A. I.; Vintizenko, I. I.

    2016-06-01

    Various types of high-current nanosecond accelerators are simulated numerically using an equivalent circuit representation. The influence of pulse forming line switch inductance on the amplitude and waveform of output voltage and current pulses is analyzed.

  5. PROSPECTS OF HIGH-CURRENT ELECTRON BEAMS APPLICATION TO RADIATION POLYETHYLENE CROSS-LINKING

    Directory of Open Access Journals (Sweden)

    A.G. Gurin

    2013-09-01

    Full Text Available A possibility of applying a pulse-periodic high-current induction electron accelerators to radiation polyethylene cross-linking is considered in the article. A comparative analysis with other devices used for irradiation is made.

  6. High-voltage, high-current, solid-state closing switch

    Energy Technology Data Exchange (ETDEWEB)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  7. Microwave heating and the acceleration of polymerization processes

    Science.gov (United States)

    Parodi, Fabrizio

    1999-12-01

    Microwave power irradiation of dielectrics is nowadays well recognized and extensively used as an exceptionally efficient and versatile heating technique. Besides this, it revealed since the early 1980s an unexpected, and still far from being elucidated, capacity of causing reaction and yield enhancements in a great variety of chemical processes. These phenomena are currently referred to as specific or nonthermal effects of microwaves. An overview of them and their interpretations given to date in achievements in the microwave processing of slow-curing thermosetting resins is also given. Tailored, quaternary cyanoalkoxyalkyl ammonium halide catalysts, further emphasizing the microwave enhancements of curing kinetics of isocyanate/epoxy and epoxy/anhydride resin systems, are here presented. Their catalytic efficiency under microwave irradiation, microwave heatability, and dielectric properties are discussed and interpreted by the aid of the result of semi-empirical quantum mechanics calculations and molecule dynamics simulations in vacuo. An ion-hopping conduction mechanism has been recognized as the dominant source of the microwave absorption capacities of these catalysts. Dipolar relaxation losses by their strongly dipolar cations, viceversa, would preferably be responsible for the peculiar catalytic effects displayed under microwave heating. This would occur through a well-focused, molecular microwave overheating of intermediate reactive anionic groupings, they could indirectly cause as the nearest neighbors of such negatively-charged molecular sites.

  8. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); Fang, X.; Guo, J. W.; Yang, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  9. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  10. Using your microwave oven. Lesson 6, Microwave oven management

    OpenAIRE

    Woodard, Janice Emelie, 1929-

    1984-01-01

    Discusses cooking and reheating foods in microwave ovens, and adapting conventional recipes for the microwave. Revised Includes the publication: Adapting conventional recipes to microwave cooking : fact sheet 84 by Janice Woodard, Rebecca Lovingood, R.H. Trice.

  11. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  12. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  13. Microwave-induced thermogenetic activation of single cells

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, N. A. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Fedotov, I. V. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Ermakova, Yu. G.; Matlashov, M. E.; Belousov, V. V. [M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997 (Russian Federation); Sidorov-Biryukov, D. A.; Fedotov, A. B. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Zheltikov, A. M. [Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025 (Russian Federation); Kurchatov Institute National Research Center, Moscow 123182 (Russian Federation)

    2015-04-20

    Exposure to a microwave field is shown to enable thermogenetic activation of individual cells in a culture of cell expressing thermosensitive ion channels. Integration of a microwave transmission line with an optical fiber and a diamond quantum thermometer has been shown to allow thermogenetic single-cell activation to be combined with accurate local online temperature measurements based on an optical detection of electron spin resonance in nitrogen–vacancy centers in diamond.

  14. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  15. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  16. Advances in microwaves 3

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 3 covers the advances and applications of microwave signal transmission and Gunn devices. This volume contains six chapters and begins with descriptions of ground-station antennas for space communications. The succeeding chapters deal with beam waveguides, which offer interesting possibilities for transmitting microwave energy, as well as with parallel or tubular beams from antenna apertures. A chapter discusses the electron transfer mechanism and the velocity-field characteristics, with a particular emphasis on the microwave properties of Gunn oscillators. The l

  17. Artificial color perception using microwaves

    CERN Document Server

    Choudhury, Debesh

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving colors using microwaves.

  18. Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications.

    Science.gov (United States)

    Nasir, Saima; Ali, Mubarak; Ramirez, Patricio; Gómez, Vicente; Oschmann, Bernd; Muench, Falk; Tahir, Muhammad Nawaz; Zentel, Rudolf; Mafe, Salvador; Ensinger, Wolfgang

    2014-08-13

    We designed and characterized a cylindrical nanopore that exhibits high electrochemical current rectification ratios at low and intermediate electrolyte concentrations. For this purpose, the track-etched single cylindrical nanopore in polymer membrane was coated with a gold (Au) layer via electroless plating technique. Then, a non-homogeneous fixed charge distribution inside the Au-coated nanopore was obtained by incorporating thiol-terminated uncharged poly(N-isopropylacrylamide) chains in series to poly(4-vinylpyridine) chains, which were positively charged at acidic pH values. The functionalization reaction was checked by measuring the current-voltage curves prior to and after the chemisorption of polymer chains. The experimental nanopore characterization included the effects of temperature, adsorption of chloride ions, electrolyte concentration, and pH of the external solutions. The results obtained are further explained in terms of a theoretical continuous model. The combination of well-established chemical procedures (thiol and self-assembled monolayer formation chemistry, electroless plating, ion track etching) and physical models (two-region pore and Nernst-Planck equations) permits the obtainment of a new nanopore with high current rectification ratios. The single pore could be scaled up to multipore membranes of potential interest for pH sensing and chemical actuators.

  19. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  20. Design study of a beta=0.09 high current superconducting half wave resonator

    CERN Document Server

    Zhong, Hu-Tan-Xiang; Fan, Pei-Liang; Quan, Sheng-Wen; Liu, Ke-Xin

    2016-01-01

    There's presently a growing demand for high current proton and deuteron linear accelerators based on superconducting technology to better support various fields of science. A \\b{eta}=0.09 162.5 MHz high current superconducting half wave resonator (HWR) has been designed at Peking University to accelerate 100 mA proton beam or 50 mA deuteron beam after the RFQ accelerating structure. The detailed electromagnetic design, multipacting simulation, mechanical analysis of the cavity will be given in this paper.

  1. High-power microwave development in Russia

    Science.gov (United States)

    Gauthier, Sylvain

    1995-03-01

    This is a survey of Russian research and development in high-power microwave (HPM) sources. It emphasizes those sources of nanoseconds pulse duration time which have potential weapon as well as radar applications. It does not cover the whole range of Russian HPM research and development but concentrates on those aspects which may lead to military applications. Russian investigators have achieved many world firsts in HPM generation; for example, a multiwave Cerenkov generator with a peak output power of 15 gigawatts. Their successes are based on their impressive capability in pulsed power technology which has yielded high-current generators of terawatt peak power. They have transformed the energy of these currents into microwave radiation using tubes of both conventional and novel designs exploiting relativistic electron beams. Recently, the development of high-current mini-accelerators has moved relativistic electron-beam (REB) HPM generation out of the laboratory and enabled the development of deployable military systems with peak powers in the gigawatt range. As a result, they now see development of a REB-based radar systems as one of the most promising directions in radar systems. Details of such a system are described and the implications for HPM weapons are considered.

  2. The Cosmic Microwave Background

    OpenAIRE

    Silk, Joseph

    2002-01-01

    This set of lectures provides an overview of the basic theory and phenomenology of the cosmic microwave background. Topics include a brief historical review; the physics of temperature and polarization fluctuations; acoustic oscillations of the primordial plasma; the space of inflationary cosmological models; current and potential constraints on these models from the microwave background; and constraints on inflation.

  3. Microwave Enhanced Reactive Distillation

    NARCIS (Netherlands)

    Altman, E.

    2011-01-01

    The application of electromagnetic irradiation in form of microwaves (MW) has gathered the attention of the scientific community in recent years. MW used as an alternative energy source for chemical syntheses (microwave chemistry) can provide clear advantages over conventional heating methods in ter

  4. Production of high current proton beams using complex H-rich molecules at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A., E-mail: a.adonin@gsi.de; Barth, W.; Heymach, F.; Hollinger, R.; Vormann, H.; Yakushev, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291 (Germany)

    2016-02-15

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH{sub 3}{sup +},C{sub 2}H{sub 4}{sup +},C{sub 3}H{sub 7}{sup +}) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  5. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eckstrom, D.J.; Williams, M.S. [SRI International, Menlo Park, CA (United States)

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  6. High current electric arcs above the In-Ga-Sn eutectic alloy

    Science.gov (United States)

    Klementyeva, I. B.; Pinchuk, M. E.

    2016-11-01

    The results of investigations of high-current dc and ac arc discharges of atmospheric pressure emerging above the free surface of liquid metal (In-Ga-Sn eutectic alloy) are presented in the paper. The mechanism of the arc formation due to pinch-effect is discussed here.

  7. Development and characterization of diamond film and compound metal surface high current photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.; Springer, R.W.; Archuleta, T.A.

    1997-09-01

    High current photocathodes operating in vacuum environments as high as 8xE-5 torr are being developed at Los Alamos for use in a new generation of linear induction accelerators. We report quantum efficiencies in wide bandgap semiconductors, pure metals, and compound metal surfaces photocathode materials illuminated by ultraviolet laser radiation.

  8. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode...

  9. Low energy high current pulsed electron beam treatment for improving surface microstructure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J; Allain-Bonasso, N; Zhang, X D; Hao, S Z; Grosdider, T; Dong, C [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Zou, J X, E-mail: jiang.wu@univ-metz.fr, E-mail: thierry.grosdidier@univ-metz.fr [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-06-15

    Low energy high current pulsed electron beam (LEHCPEB) is a fairly new technique for surface modifications authorizing improvement in wear and corrosion properties as well as texture changes and hardening. This contribution highlights some microstructure modifications encountered at the surface of HCPEB treated steels and bulk metallic glasses taking into account the effects of surface melting and the effects of the induced stress.

  10. Behaviour of bipolar membranes at high current density. Water diffusion limitation

    NARCIS (Netherlands)

    Krol, J.J.; Jansink, M.G.J.; Wessling, Matthias; Strathmann, H.

    1998-01-01

    In this paper the behaviour of bipolar membranes at very high current density is discussed. Current–voltage curves are determined, both for the Tokuyama Soda BP-1 and the WSI Technologies bipolar membrane. The current–voltage curves are characterised by an inflection point at which a drastic

  11. Laser ion source studies at CERN

    CERN Document Server

    Tambini, J

    1995-01-01

    The plasma produced when a powerful laser pulse is focused onto a target surface in vacuum can provide a copious source of highly charged ions. Ions can then be extracted from the plasma to form a high current, short pulse length ion beam. Experimental laser ion sources have been the subject of investigation in medical physics and particle accelerator applications; a laser ion source is an option for the injection system of heavy ions for the Large Hadron Collider at CERN where a high intensity lead ion beam is required. This paper describes work carried out at CERN to develop a CO2 laser ion source.

  12. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  13. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  14. Artificial color perception using microwaves

    OpenAIRE

    Choudhury, Debesh; Caulfield, H. John

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving...

  15. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  16. Integrated microwave photonics

    CERN Document Server

    Marpaung, David; Heideman, Rene; Leinse, Arne; Sales, Salvador; Capmany, Jose

    2012-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

  17. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  18. The Microwave Hall Effect

    OpenAIRE

    2015-01-01

    This paper describes a simple microwave apparatus to measure the Hall effect in semiconductor wafers. The advantage of this technique is that it does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing the semiconductor wafer into a slot cut in an X-band (8 - 12 GHz) waveguide series tee, injecting microwave power into the two opposite arms of the tee, and measuring the microwave output at the third arm. A magnetic field applied perpendicular to ...

  19. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  20. Large area polycrystalline diamond films as high current photocathodes for linear induction accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Shurter, R.P.; Moir, D.C.; Devlin, D.J.; Springer, R.W.

    1997-08-01

    Investigations are underway at Los Alamos to develop a new generation of high current, low source temperature photo cathodes able to operate in vacuum environments with pressures above 10e-6 torr without poisoning or degradation of emission properties. Polycrystalline diamond films are emerging as the ideal material for these photocathodes. Robustness, high quantum efficiency and high thermal conductivity are fundamental necessary attributes that are found in diamond. The high electron/hole mobility in the boron doped diamond lattice and the ability to create a negative electron affinity surface through downward band bending allow for high current density emission with quantum efficiencies of 0.5% when illuminated by a ArF laser. We report the results to date toward the development of a four kiloampere photocathode with a source temperature below 5eV for the DARHT linear induction Accelerator

  1. MIDOT: A novel probe for monitoring high-current flat transmission lines

    Science.gov (United States)

    Omar, K.; Novac, B. M.; Graneau, N.; Senior, P.; Smith, I. R.; Sinclair, M.

    2016-12-01

    A novel inductive probe, termed MIDOT, was developed for monitoring high-current flat transmission lines. While being inexpensive the probe does not require calibration, is resistant to both shock waves and temperature variations, and it is easy to manufacture and mount. It generates strong output signals that are relatively easy to interpret and has a detection region limited to a pre-defined part of the transmission line. The theoretical background related to the MIDOT probes, together with their practical implementation in both preliminary experimentation and high-current tests, is also presented in the paper. The novel probe can be used to benchmark existing 2D numerical codes used in calculating the current distribution inside the conductors of a transmission line but can also easily detect an early movement of a transmission line component. The probe can also find other applications, such as locating the position of a pulsed current flowing through a thin wire.

  2. Dosimetric response for crystalline and nanostructured aluminium oxide to a high-current pulse electron beam.

    Science.gov (United States)

    Nikiforov, S V; Kortov, V S

    2014-11-01

    The main thermoluminescent (TL) and dosimetric properties of the detectors based on anion-defective crystalline and nanostructured aluminium oxide after exposure to a high-current pulse electron beam are studied. TL peaks associated with deep-trapping centres are registered. It is shown that the use of deep-trap TL at 200-600°С allows registering absorbed doses up to 750 kGy for single-crystalline detectors and those up to 6 kGy for nanostructured ones. A wide range of the doses registered, high reproducibility of the TL signal and low fading contribute to a possibility of using single-crystalline and nanostructured aluminium oxide for the dosimetry of high-current pulse electron beams.

  3. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  4. A mechanical connector design for high-current, high-coulomb pulsed power systems

    Energy Technology Data Exchange (ETDEWEB)

    Susoeff, A.R.; Hawke, R.S.; Leighton, K.S.

    1992-02-25

    A technique to make reliable high-current, high-coulomb electrical contact was developed for transmitting power into railguns. The method uses spring loaded removable connectors that are installed independently from the launcher. The simple rod-type design and absence of fastener holes allow maximum utilization of material mechanical properties. Repeated experiments with 9.5-mm diameter connectors demonstrated reliable pulsed charge transfer of 200 coulombs at currents of over 400kA. 20 refs.

  5. Simulation of Electron Beam Dynamics in a Nonmagnetized High-Current Vacuum Diode

    CERN Document Server

    Anishchenko, Sergey

    2016-01-01

    The electron beam dynamics in a nonmagnetized high-current vacuum diode is analyzed for different cathode-anode gap geometries. The conditions enabling to achieve the minimal {initial} momentum spread in the electron beam are found out. A drastic rise of current density in a vacuum diode with a ring-type cathode is described. The effect is shown to be caused by electrostatic repulsion.

  6. Influence of the Thomson effect on the pulse heating of high-current electrical contacts

    Science.gov (United States)

    Merkushev, A. G.; Pavleino, M. A.; Pavleino, O. M.; Pavlov, V. A.

    2014-09-01

    Pulse heating of high-current contacts is notable for the presence of considerable temperature gradients in the contact area, which cause the Thomson effect—the appearance of thermoelectric currents. The amount of this effect against conventional Joule heat release is quantitatively estimated. Pulse heating of electrical contacts is numerically simulated with the use of the Comsol program package. It is demonstrated that thermoelectric currents make a negligible contribution to heating in the case of copper contacts.

  7. Enhanced D-T supershot performance at high current using extensive lithium conditioning in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, D.K.; Strachan, J.D.; Bell, M.G.; Scott, S.D.; Budny, R.; Bell, R.E.; Bitter, M.; Darrow, D.S.; Fredrickson, E.; Grek, B. [and others

    1995-05-01

    A substantial improvement in supershot fusion plasma performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive Li conditioning of the TFTR limiter. This combination has resulted in not only significantly higher global energy confinement times than had previously been obtained in high current supershots, but also the highest ratio of central fusion output power to input power observed to date.

  8. A REVIEW ON: A SIGNIFICANCE OF MICROWAVE ASSIST TECHNIQUE IN GREEN CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Manoj S. Charde

    2012-05-01

    Full Text Available Microwave Assisted Synthesis is rapidly becoming the method of choice in modern synthesis and discovery chemistry laboratories. Microwave-assisted synthesis improves both throughput and turn-around time for chemists by offering the benefits of drastically reduced reaction times, increased yields, and purer products. In this type of synthesis we applying microwave irradiation to chemical reactions. The fundamental mechanism of microwave heating involves agitation of polar molecules or ions that oscillate under the effect of an oscillating electric or magnetic field. In the presence of an oscillating field, particles try to orient themselves or be in phase with the field. Only materials that absorb microwave radiation are relevant to microwave chemistry. These materials can be categorized according to the three main mechanisms of heating, namely. Dipolar polarization, Conduction mechanism, Interfacial polarization. Microwave chemistry apparatus are classified: Single-mode apparatus and Multi-mode apparatus. Although occasionally known by such acronyms as 'MEC' (Microwave-Enhanced Chemistry or ‘MORE’ synthesis (Microwave-organic Reaction Enhancement, these acronyms have had little acceptance outside a small number of groups. The ability to combine microwave technology with in-situ reaction monitoring as an analytical tools will offer opportunities for chemists to optimize the reaction conditions. Different compounds convert microwave radiation to heat by different amounts. This selectivity allows some parts of the object being heated to heat more quickly or more slowly than others (particularly the reaction vessel.

  9. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Kim, Alexandre A. (High Current Electronic Institute (HCEI), Tomsk, RUSSIA); Wakeland, Peter Eric (Ktech Corporation, Albuquerque, NM); McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-04-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  10. The development of safe high current operation in JET-ILW

    Energy Technology Data Exchange (ETDEWEB)

    Rimini, Fernanda G., E-mail: fernanda.rimini@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alves, Diogo [Instituto de Plasmas e Fusão Nuclear, IST, Universidade de Lisboa (Portugal); Arnoux, Gilles [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Baruzzo, Matteo [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX Padova (Italy); Belonohy, Eva [Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany); Carvalho, Ivo [Instituto de Plasmas e Fusão Nuclear, IST, Universidade de Lisboa (Portugal); Felton, Robert [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Joffrin, Emmanuel [IRFM-CEA, Centre de Cadarache, 13108 Sant-Paul-lez-Durance (France); Lomas, Peter; McCullen, Paul [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Neto, Andre [Fusion for Energy, 08019 Barcelona (Spain); Nunes, Isabel [Instituto de Plasmas e Fusão Nuclear, IST, Universidade de Lisboa (Portugal); Reux, Cedric [IRFM-CEA, Centre de Cadarache, 13108 Sant-Paul-lez-Durance (France); Stephen, Adam; Valcarcel, Daniel [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Wiesen, Sven [IEK-4, Forschungszentrum Jüulich GmbH, Partner in the Trilateral Euregio Cluster, Juelich (Germany)

    2015-10-15

    Highlights: • JET is unique in its capability to operate in DT and at high plasma current. • Studies of high current H-mode are integral part of JET ITER-like Wall programme. • Focus is on safety wrt transient & steady-state heat loads on ILW components. • Early real-time detection of off-normal events and disruption effects mitigation. • This work successfully delivered H-mode scenario up to 4 MA. - Abstract: The JET tokamak is unique amongst present fusion devices in its capability to operate at high plasma current, providing the closest plasma parameters to ITER. The physics benefits of high current operation have to be balanced against the risks to the integrity of the machine due to high force disruptions. The installation of the ITER-Like Wall (ILW) has added risks due to the thermal characteristics of the metal Plasma Facing Components. This paper describes the operational aspects of the scientific development of high current H-mode plasmas with the ILW, focusing on disruption prediction, avoidance and amelioration. The development yielded baseline H-mode plasmas up to 4 MA/3.74 T, comparable to the maximum current achieved in JET in Carbon-Wall (CFC) conditions with similar divertor geometry.

  11. High Current Systems for HyperV and PLX Plasma Railguns

    Science.gov (United States)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  12. High Current Systems for HyperV and PLX Plasma Railguns

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Wu, Linchun; Elton, Raymond; Witherspoon, F. Douglas

    2010-11-01

    HyperV has been developing coaxial pulsed, plasma railgun accelerators for PLX and other high momentum plasma experiments. The full scale HyperV coaxial gun accelerates plasma armatures using a contoured electrode gap designed to mitigate the blow-by instability. Previous experiments with the full scale gun successfully formed and accelerated annular plasma armatures, but were limited to currents of up to only ˜400 kA. In order to increase full scale gun performance to the design goal of 200 μg at 200 km/s, the pulse forming networks required upgrading to support currents up to ˜1 MA. A high voltage, high current field-effect sparkgap switch and low inductance transmission line were designed and constructed to handle the increased current pulse. We will describe these systems and present initial test data from high current operation of the full-scale coax gun along with plans for future testing. Similar high current accelerator banks, switches, and TM lines will also be required to power PLX railguns which are planned to operate at 8000 μg at 50 km/s. The design of that experiment may require the capacitor banks to be located as much as 10 feet from the gun. We discuss the available options for low inductance connections for these systems.

  13. Microwave Service Towers

    Data.gov (United States)

    Department of Homeland Security — This file is an extract of the Universal Licensing System (ULS) licensed by the Wireless Telecommunications Bureau (WTB). It consists of Microwave Transmitters (see...

  14. Microwave Radiometer Profiler

    Data.gov (United States)

    Oak Ridge National Laboratory — The microwave radiometer profiler (MWRP) provides vertical profiles of temperature, humidity, and cloud liquid water content as a function of height or pressure at...

  15. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  16. Microwave Oven Observations.

    Science.gov (United States)

    Sumrall, William J.; Richardson, Denise; Yan, Yuan

    1998-01-01

    Explains a series of laboratory activities which employ a microwave oven to help students understand word problems that relate to states of matter, collect data, and calculate and compare electrical costs to heat energy costs. (DDR)

  17. Microwave Radiometer - high frequency

    Data.gov (United States)

    Oak Ridge National Laboratory — The Microwave Radiometer-High Frequency (MWRHF) provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two...

  18. Microwave workshop for Windows

    Directory of Open Access Journals (Sweden)

    Colin White

    1995-12-01

    Full Text Available A suite of three programs has been developed to support the teaching of microwave theory and design. A secondary function of the package is to support microwave engineers by providing a library of utilities to assist their design function. All three programs were written in Visual Basic and are aimed at supporting both tutor-directed and student-centred learning methodologies. The development team consisted of three final-year degree students.

  19. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  20. Design studies of a high-current radiofrequency quadrupole for accelerator-driven systems programme

    Indian Academy of Sciences (India)

    S V L S Rao; P Singh

    2010-02-01

    A 3 MeV, 30 mA radiofrequency quadrupole (RFQ) accelerator has been designed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC, India. The beam and cavity dynamics studies were performed using the computer codes LIDOS, TOUTATIS, SUPERFISH and CST microwave studio. We have followed the conventional design technique with slight modifications and compared that with the equipartitioned (EP) type of design. The sensitivity of the RFQ to the variation of input beam Twiss–Courant parameters and emittance has also been studied. In this article we discuss both design strategies and the details of the 3D cavity simulation studies.

  1. High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments

    Directory of Open Access Journals (Sweden)

    Michael G. Mazarakis

    2009-05-01

    Full Text Available The linear transformer driver (LTD is a new method for constructing high current, high-voltage pulsed accelerators. The salient feature of the approach is switching and inductively adding the pulses at low voltage straight out of the capacitors through low inductance transfer and soft iron core isolation. Sandia National Laboratories are actively pursuing the development of a new class of accelerator based on the LTD technology. Presently, the high current LTD experimental research is concentrated on two aspects: first, to study the repetition rate capabilities, reliability, reproducibility of the output pulses, switch prefires, jitter, electrical power and energy efficiency, and lifetime measurements of the cavity active components; second, to study how a multicavity linear array performs in a voltage adder configuration relative to current transmission, energy and power addition, and wall plug to output pulse electrical efficiency. Here we report the repetition rate and lifetime studies performed in the Sandia High Current LTD Laboratory. We first utilized the prototype ∼0.4-MA, LTD I cavity which could be reliably operated up to ±90-kV capacitor charging. Later we obtained an improved 0.5-MA, LTD II version that can be operated at ±100  kV maximum charging voltage. The experimental results presented here were obtained with both cavities and pertain to evaluating the maximum achievable repetition rate and LTD cavity performance. The voltage adder experiments with a series of double sized cavities (1 MA, ±100  kV will be reported in future publications.

  2. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  3. Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....

  4. High-current quasi-square-wave millisecond light source for high-speed photography

    Science.gov (United States)

    Lin, Wenzheng; Jiang, Aibao; Zhuo, Meizhen

    1993-01-01

    A novel powerful strobe for high-speed photography is described which can replace the high power cw light source, to save energy and synchroflash with the camera. In this strobe, three- phase transformerless direct rectifier, high current SCR switch and pre-ionization technique are used so that the energy consumption goes down greatly, and its total weight is less than 25 Kg. Its principal parameters are as follows: average power, 50 KW; light emitting pulse width, 1 - 100 ms; pulse rise time, less than 0.05 ms; pulse fall time, less than 0.1 ms.

  5. Design and simulation of a beam position monitor for the high current proton linac

    Institute of Scientific and Technical Information of China (English)

    RUAN Yu-Fang; XU Tao-Guang; FU Shi-Nian

    2009-01-01

    In this paper, the 2-D electrostatic field software, POISSON, is used to calculate the characteristic impedance of a BPM (beam position monitor) for a high current proton linac. Furthermore, the time-domain 3-D module of MAFIA with a beam microbunch at a varying offset from the axis is used to compute the induced voltage on the electrodes as a function of time. Finally, the effect of low 13 beams on the induced voltage, the sensitivity and the signal dynamic range of the BPM are discussed.

  6. Coherent Effects of High Current Beam in Project-X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  7. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  8. A carbon nanotube field emission cathode with high current density and long-term stability

    Science.gov (United States)

    Calderón-Colón, Xiomara; Geng, Huaizhi; Gao, Bo; An, Lei; Cao, Guohua; Zhou, Otto

    2009-08-01

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. However, problems including short lifetime at high current density, instability under high voltage, poor emission uniformity, and pixel-to-pixel inconsistency are still major obstacles for device applications. We developed an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The cathodes have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. The application of this CNT electron source for high-resolution x-ray imaging is demonstrated.

  9. Efficiency of pulse high-current generator energy transfer into plasma liner energy

    Science.gov (United States)

    Oreshkin, V. I.

    2013-08-01

    The efficiency of capacitor-bank energy transfer from a high-current pulse generator into kinetic energy of a plasma liner has been analyzed. The analysis was performed using a model including the circuit equations and equations of the cylindrical shell motion. High efficiency of the energy transfer into kinetic energy of the liner is shown to be achieved only by a low-inductance generator. We considered an "ideal" liner load in which the load current is close to zero in the final of the shell compression. This load provides a high (up to 80%) efficiency of energy transfer and higher stability when compressing the liner.

  10. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  11. High current, low voltage carbon nanotube enabled vertical organic field effect transistors.

    Science.gov (United States)

    McCarthy, Mitchell A; Liu, Bo; Rinzler, Andrew G

    2010-09-08

    State-of-the-art performance is demonstrated from a carbon nanotube enabled vertical field effect transistor using an organic channel material. The device exhibits an on/off current ratio >10(5) for a gate voltage range of 4 V with a current density output exceeding 50 mA/cm(2). The architecture enables submicrometer channel lengths while avoiding high-resolution patterning. The ability to drive high currents and inexpensive fabrication may provide the solution for the so-called OLED backplane problem.

  12. Anomalous Microwave Emission

    CERN Document Server

    Kogut, A J

    1999-01-01

    Improved knowledge of diffuse Galactic emission is important to maximize the scientific return from scheduled CMB anisotropy missions. Cross-correlation of microwave maps with maps of the far-IR dust continuum show a ubiquitous microwave emission component whose spatial distribution is traced by far-IR dust emission. The spectral index of this emission, beta_{radio} = -2.2 (+0.5 -0.7) is suggestive of free-free emission but does not preclude other candidates. Comparison of H-alpha and microwave results show that both data sets have positive correlations with the far-IR dust emission. Microwave data, however, are consistently brighter than can be explained solely from free-free emission traced by H-alpha. This ``anomalous'' microwave emission can be explained as electric dipole radiation from small spinning dust grains. The anomalous component at 53 GHz is 2.5 times as bright as the free-free emission traced by H-alpha, providing an approximate normalization for models with significant spinning dust emission.

  13. Power lateral pnp transistor operating with high current density in irradiated voltage regulator

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2013-01-01

    Full Text Available The operation of power lateral pnp transistors in gamma radiation field was examined by detection of the minimum dropout voltage on heavily loaded low-dropout voltage regulators LM2940CT5, clearly demonstrating their low radiation hardness, with unacceptably low values of output voltage and collector-emitter voltage volatility. In conjunction with previous results on base current and forward emitter current gain of serial transistors, it was possible to determine the positive influence of high load current on a slight improvement of voltage regulator LM2940CT5 radiation hardness. The high-current flow through the wide emitter aluminum contact of the serial transistor above the isolation oxide caused intensive annealing of the positive oxide-trapped charge, leading to decrease of the lateral pnp transistor's current gain, but also a more intensive recovery of the small-signal npn transistors in the control circuit. The high current density in the base area of the lateral pnp transistor immediately below the isolation oxide decreased the concentration of negative interface traps. Consequently, the positive influence of the reduced concentration of the oxide-trapped charge on the negative feedback reaction circuit, together with the favourable effect of reduced interface traps concentration, exceeded negative influence of the annealed oxide-trapped charge on the serial pnp transistor's forward emitter current gain.

  14. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  15. High-current-density gun with a LaB6 cathode

    Science.gov (United States)

    Ebihara, K.; Hiramatsu, S.

    1996-08-01

    To develop a high-current electron gun for an induction linac, a prototype of a Pierce-type electron gun using planar 12-mm-diam lanthanum hexaboride (LaB6) is studied as a thermionic emitter at high current densities. The cathode is heated up to temperatures of 1750 °C by electron bombardment and thermal radiation from a tungsten heater. The heater that has the highest temperature in the gun is thermally isolated from the outer vacuum chamber with heat shields. The bombardment voltage of ˜1 kV is typically applied to a gap between the cathode and the heater. The gun has been operated up to voltages of 55 kV, obtaining a maximum current density of 20 A/cm2 with a pulse width of 250 ns at a cathode temperature of 1600 °C. High-voltage pulsing results show that the gun, with applied voltages of over 40 kV, is operated in space-charge-limited region at temperatures of over 1600 °C; also it is operated in a temperature-limited region at temperatures of less than 1500 °C. An effective work function of 2.68 eV is obtained. The cathode, when heated up to 1600 °C, emits over 7 A of electrons with a ˜20% reduction after 850 h of continuous operation. These measurements were made between vacuum pressures of 10-6 and 10-7 Torr.

  16. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  17. RF properties of 700 MHz, = 0.42 elliptical cavity for high current proton acceleration

    Indian Academy of Sciences (India)

    Amitava Roy; J Mondal; K C Mittal

    2008-12-01

    BARC is developing a technology for the accelerator-driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator-driven subcritical system project. We have studied RF properties of 700 MHz, = 0.42 single cell elliptical cavity for possible use in high current proton acceleration. The cavity shape optimization studies have been done using SUPERFISH code. A calculation has been done to find out the velocity range over which this cavity can accelerate protons efficiently and to select the number of cells/cavity. The cavity's peak electric and magnetic fields, power dissipation c, quality factor and effective shunt impedance 2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameters for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  18. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  19. Surface modification of Al-Pb alloy by high current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    LU You; LI Shi-long; AN Jian; LIU Yong-bing

    2006-01-01

    Al-Pb alloy was modified by high current pulsed electron beam and the microstructure, hardness and tribological characteristics were characterized by scanning electron microscopy, electronic microanalysis probe microanalysis, Knoop hardness indentation and pin-on-disc type wear testing machine. The results show that the microstructure and hardness can be greatly improved, and the modification layer consists of a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone and a transition zone followed by the substrate. The tribological properties of high current pulsed electron beam irradiated Al-Pb alloy are correspondingly improved largely. Optical observation and scanning electron microscopy analysis reveal that the low wear rate and lowest level in coefficient of friction at high load level for irradiated Al-Pb alloy are due to the formation of a lubricious tribolayer covering the worn surface, which is a mixture of Al2O3, Pb3O4 and silicate. The wear mode varies from oxidative wear at low load to film spalling at high load and, finally, adhesive wear.

  20. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  1. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  2. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  3. Analysis of sub-1 keV implants in silicon using SIMS, SRP, MEISS and DLTS: The xRLEAP low energy, high current implanter evaluated

    Energy Technology Data Exchange (ETDEWEB)

    Foad, M.A.; England, J.G.; Moffatt, S. [Applied Materials Implant Division, West Sussex (United Kingdom); Armour, D.G. [Univ. of Salford (United Kingdom)

    1996-12-31

    Ultra shallow junctions can be formed, amongst other techniques, by very low energy ion implantation. The Implant Division of Applied Materials have recently developed a low energy, high current ion implanter, the xRLEAP (xR family, Low Energy Advance Process). This implanter is capable of delivering product worthy beam currents, in the milli-ampere regime down to energies of few hundred electron volts. A series of B and BF{sub 2} implants were carried out onto non-amorphised, 200mm Si wafers using beam energies in the range 0.2keV < E < 1keV. As-implanted and annealed samples were profiled using Secondary Ion Mass Spectrometry (SIMS). Surface damage due to implantation was evaluated using Medium Energy Ion Scattering Spectroscopy (MEISS). The carrier concentration profiles and junction depths of the annealed samples were investigated using Spreading Resistance Probe (SRP). Samples with ultra shallow junctions, < 0.07{mu}m, were examined using Deep Level Transient Spectroscopy (DLTS) for the first time.

  4. Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper(II) ions and direct red 80 dye: A multi-component adsorption system

    OpenAIRE

    Oladipo, Akeem Adeyemi; Gazi, Mustafa

    2015-01-01

    We present a novel microwave initiated preparation of polyacrylamide/activated carbon hydrogel (PAAm-FAc) in this article and characterized by FT-IR, pHzpc and Boehm titration. The adsorbent was assessed for competitive adsorption of copper(II) and direct red 80 from a binary mixture in a single-staged batch process as a function of volume of binary mixture/mass of adsorbent (V0/M0) ratio at varying orders of second pollutant concentration. A competitive, multi-component Langmuir isotherm was...

  5. Numerical Simulation of High-current Vacuum Arc in Short Gap%Numerical Simulation of High-current Vacuum Arc in Short Gap

    Institute of Scientific and Technical Information of China (English)

    XIANG Chuan; LIAO Min-fu; DONG Hua-jun; HUANG Zhi-hui; ZOU Ji-yan

    2011-01-01

    The plasma status of vacuum arc before arc current zero, has a great influence on the interruption perform- ance of the vacuum circuit breakers. In this paper, a vacuum arc model in a short gap was established based on the magnet hydrodynamic (MHD) and a common computational fluid dynamics (CFD) software was utilized to specially investigate the properties of this arc. The spatial distributions of plasma pressure, plasma density, ion axial velocity, and axial current density in front of the anode surface of vacuum arc in this case were obtained. Simulation results in- dicate that: from the cathode to the anode, both of the plasma pressure and the plasma density increase gradually, and the plasma axial velocity decreases gradually; the axial current density in front of anode has a large radial gradient, and the maximum value is still smaller than the threshold current density for the anode-spot formation, thus, the anode is still passive. The comparison between the plasma density of simulation and the CMOS images taken by the high-speed camera indicates that they are in reasonable agreement with each other and demonstrates the feasibility of the vacuum arc model.

  6. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  7. Microwave-assisted Chemical Transformations

    Science.gov (United States)

    In recent years, there has been a considerable interest in developing sustainable chemistries utilizing green chemistry principles. Since the first published report in 1986 by Gedye and Giguere on microwave assisted synthesis in household microwave ovens, the use of microwaves as...

  8. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  9. Physics of the Microwave Oven

    Science.gov (United States)

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  10. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...

  11. Microwave Frequency Polarizers

    Science.gov (United States)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  12. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  13. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  14. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  15. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  16. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  17. High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2.

    Science.gov (United States)

    Mleczko, Michal J; Xu, Runjie Lily; Okabe, Kye; Kuo, Hsueh-Hui; Fisher, Ian R; Wong, H-S Philip; Nishi, Yoshio; Pop, Eric

    2016-08-23

    Two-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 μm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick). High-field electrical measurements and electrothermal modeling demonstrate that ultrathin WTe2 can carry remarkably high current density (approaching 50 MA/cm(2), higher than most common interconnect metals) despite a very low thermal conductivity (of the order ∼3 Wm(-1) K(-1)). These results suggest several pathways for air-stable technological viability of this layered semimetal.

  18. A diagnostic system for electrical faults in a high current discharge plasma setup.

    Science.gov (United States)

    Nigam, S; Aneesh, K; Navathe, C P; Gupta, P D

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ∼4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  19. A new high current laboratory and pulsed homopolar generator power supply at the University of Texas

    Science.gov (United States)

    Floyd, J. E.; Aanstoos, T. A.

    1984-03-01

    The University of Texas at Austin is constructing a facility for research in pulse power technology for the Center for Electromechanics at the Balcones Research Center. The facility, designed to support high-current experiments, will be powered by six homopolar generators, each rated at 10 MJ and arranged to allow matching the requirements of resistive and inductive loads at various voltage and current combinations. Topics covered include the high bay, the power supply configuration and parameters, the speed and field control, and the magnetic circuit. Also considered are the removable air-cooled brushes, the water-cooled field coils, the hydraulic motor sizing and direct coupling, the low-impedance removable field coils, and the hydrostatic bearing design.

  20. High Current Planar Magnetics for High Efficiency Bidirectional DC-DC Converters for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    Efficiency is one of the main concerns during the design phase of switch mode power supply. Planar magnetics based on PCB windings have the potential to reduce the magnetic manufacturing cost however, one of their main drawbacks comes from their low filling factor and high stray capacitance....... This paper presents an analysis of different planar windings configurations focusing on dc and ac resistances in order to achieve highly efficiency in dc-dc converters. The analysis considers different copper thicknesses form 70 μm up to 1500 μm (extreme copper PCB) taking into account manufacturing...... complexity and challenges. The analysis is focused on a high current inductor for a dc-dc converter for fuel cell applications and it is based on FEM simulations. Analysis and results are verified on a 6 kW dc-dc isolated full bridge boost converter prototype based on fully planar magnetics achieving a peak...

  1. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-02-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  2. Soft switching (ZVZCS) high current, low voltage modular power converter (13 kA, 16 V)

    CERN Document Server

    Bordry, Frederick; Thiesen, H

    2001-01-01

    The Large Hadron Collider (LHC) is the next accelerator being constructed at the European Laboratory for Particle Physics (CERN). The superconducting LHC particle accelerator requires high currents (13 kA) and relatively low voltages (16 V) for its magnets. This paper describes the development and the production of a (13 kA, 16 V) power converter. The converter is made with a modular concept with five current sources (3.25 kA, 16 V) in parallel. The 3.25 kA sources are built as plug-in modules: a diode rectifier on the AC mains, a zero voltage zero current switching (ZVZCS) inverter working at 25 k Hz and an output stage. The obtained performance is presented and discussed. (6 refs).

  3. Microstructure Analysis of HPb59-1 Brass Induced by High Current Pulsed Electron Beam

    Science.gov (United States)

    Lyu, Jike; Gao, Bo; Hu, Liang; Lu, Shuaidan; Tu, Ganfeng

    2016-08-01

    In this paper, the effects of high current pulsed electron beam (HCPEB) on the microstructure evolution of casting HPb59-1 (Cu 57.1 mass%, Pb 1.7 mass% and Zn balance) alloy were investigated. The results showed a "wavy" surface which was formed with Pb element existing in the forms of stacking block and microparticles on the top surface layer after treatment. Nanocrystalline structures including Pb grains and two phases (α and β) were formed on the top remelted layer and their sizes were all less than 100 nm. The disordered β phase was generated in the surface layer after HCPEB treatment, which is beneficial for the improvement of surface properties. Meanwhile, there was a large residual stress on the alloy surface, along with the appearance of microcracks, and the preferred orientations of grains also changed.

  4. A diagnostic system for electrical faults in a high current discharge plasma setup

    Science.gov (United States)

    Nigam, S.; Aneesh, K.; Navathe, C. P.; Gupta, P. D.

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ˜4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  5. Microstructures and properties of zirconium-702 irradiated by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shen [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Engineering Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013 (China); Lv, Peng; Zhang, Conglin; Huang, Wei [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-01

    Highlights: • Zirconium-702 irradiated by high current pulsed electron beam was investigated. • Irradiated surface was melted and martensitic phase transformation occurred. • High density dislocations and deformation twins were formed in melted layer. • Micropores and ultrafine structures were also obtained on the irradiated surface. • Microhardness and corrosion resistance were improved after HCPEB irradiation. - Abstract: The microstructure, hardness and corrosion resistance of zirconium-702 before and after high-current pulsed electron beam (HCPEB) irradiation have been investigated. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results indicate that the sample surface was melted after HCPEB irradiation, and martensitic phase transformation occurred. Besides, two kinds of craters as well as ultrafine structures were obtained in the melted layer. TEM observations suggest that high density dislocations and deformation twins were formed after HCPEB irradiation. With the increasing of pulses, microhardness of the irradiated samples was increased from the initial 178 Hv to 254 Hv. The corrosion resistance was tested by using electrode impedance spectroscopy (EIS) and potentiodynamic polarization curves. Electrochemical results show that, after HCPEB irradiation, all the samples had better corrosion resistance in 1 mol HNO{sub 3} solution compared to the initial one, among which the 5-pulsed sample owned the best corrosion resistance. Ultrafine structures, martensitic phase transformation, surface porosities, dislocations and deformation twins are believed to be the dominant reasons for the improvement of the hardness and corrosion resistance.

  6. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  7. Microwave Radiation Hazards

    Directory of Open Access Journals (Sweden)

    G. Subrahmanian

    1973-07-01

    Full Text Available Excessive exposure to microwave radiation could lead to biological damage. The criteria for maximum permissible exposure limits derived from experiments by several countries are discussed. Recommendations made for safety of operating personnel based on a recent protection survey are also presented.

  8. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  9. Leakage of Microwave Ovens

    Science.gov (United States)

    Abdul-Razzaq, W.; Bushey, R.; Winn, G.

    2011-01-01

    Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…

  10. Invisible to Microwaves

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Scientists can't yet make an invisibility cloak like the one that Harry Potter uses.But,for the first time,they've constructed a simple cloaking(1)d__that makes itself and something placed inside it invisible to microwaves.

  11. Non-Linear Excitation of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Hirsfield, J. L.

    1974-01-01

    The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....

  12. Performance and scalability of isolated DC-DC converter topologies in low voltage, high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaisanen, V.

    2012-07-01

    Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding

  13. Optimization of solenoid based low energy beam transport line for high current H+ beams

    Science.gov (United States)

    Pande, R.; Singh, P.; Rao, S. V. L. S.; Roy, S.; Krishnagopal, S.

    2015-02-01

    A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H2+ and H3+ from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H2+ and H3+ to less than 3.3% of the total beam current.

  14. High power electron and ion beam research and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nation, J.A.; Sudan, R.N. (eds.)

    1977-01-01

    Topics covered in volume II include: collective accelerators; microwaves and unneutralized E-beams; technology of high-current E-beam accelerators and laser applications of charged-particle beams. Abstracts of twenty-nine papers from the conference were prepared for the data base in addition to six which appeared previously. (GHT)

  15. Gas and metal ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Oaks, E. [High Current Electronics Institute, Tomsk (Russian Federation)]|[State Academy of Control System and Radioelectronics, Tomsk (Russian Federation); Yushkov, G. [High Current Electronics Institute, Tomsk (Russian Federation)

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  16. Model of convection mass transfer in titanium alloy at low energy high current electron beam action

    Science.gov (United States)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.

    2017-01-01

    The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.

  17. Comparison of Parmela and MAFIA Simulations of Beam Dynamics in High Current Photoinjector

    CERN Document Server

    Kurennoy, Sergey S

    2004-01-01

    A high-current RF photoinjector producing low-emittance electron beam is an important technology for high-power CW FEL. LANL-AES team designed a 2.5-cell, pi-mode, 700-MHz normal-conducting RF photoinjector with magnetic emittance compensation. With the electric field gradients of 7, 7, and 5 MV/m in the three subsequent cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Beam dynamics in the photoinjector has been modeled in details. In addition to the usual approach, with fields calculated by Superfish-Poisson and beam simulations performed by Parmela, we also used MAFIA group of codes, both to calculate cavity fields and to model beam dynamics with its particle-in-cell module TS. The second way naturally includes wake-field effects into consideration. The simulation results and comparison between two approaches will be presented.

  18. Switching processes in TGS crystals irradiated by high-current electron beam

    CERN Document Server

    Efimov, V V; Klevtsova, E A; Tyutyunnikov, S I

    2002-01-01

    The relaxation processes study of the dielectric permittivity epsilon during commutation of the external electric field in triglycine sulphate (NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4 (TGS) single crystal plates before and after irradiation by a high-current pulsed electron beam with different doses at various temperatures is presented. The parameters of the electron beam produced by the accelerator facility as a source were: energy E = 250 keV, current density I = 1000 A/cm sup 2 , fluence F = 15 J/cm sup 2 , pulse duration tau = 300 ns, beam density 5 centre dot sup 1 5 electrons/cm sup 2 per pulse. It was shown that the dependences of epsilon (t) are described by the Kohlrausch law: epsilon (t) approx exp (-t/tau) supalpha, where alpha is the average relaxation time of the all volume samples, 0 < alpha <1. Besides, it was found that switching processes in the irradiated crystals were much more intensive than those in the non-irradiated ones. The relaxation times decrease with rising...

  19. High Current Density, Long Life Cathodes for High Power RF Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research,, Inc.; Collins, George [Calabazas Creek Research, Inc.; Falce, Lou [Consultant; Schwartzkopf, Steve [Ron Witherspoon, Inc.; Busbaher, Daniel [Semicon Associates

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  20. Deformation of contact surfaces in a vacuum interrupter after high-current interruptions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haoran; Wang, Zhenxing, E-mail: zxwang@xjtu.edu.cn; Zhou, Zhipeng; Jiang, Yanjun; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-07

    In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal can be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E{sup −3}, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.

  1. Electromagnetic and beam dynamics studies of a high current drift tube linac for LEHIPA

    Science.gov (United States)

    Roy, S.; Rao, S. V. L. S.; Pande, R.; Krishnagopal, S.; Singh, P.

    2014-06-01

    We have performed detailed electromagnetic and beam dynamics studies of a 352.21 MHz drift-tube linac (DTL) that will accelerate a 30 mA CW proton beam from 3 to 20 MeV. At such high currents space charge effects are important, and therefore the effect of linear as well as non-linear space charge has been studied (corresponding to uniform and Gaussian initial beam distributions), in order to avoid space charge instabilities. To validate the electromagnetic simulations, a 1.2 m long prototype of the DTL was fabricated. RF measurements performed on the prototype were in good agreement with the simulations. A detailed simulation study of beam halos was also performed, which showed that beyond a current of 10 mA, significant longitudinal beam halos are excited even for a perfectly matched beam, whereas for a mis-matched beam transverse beam halos are also excited. However, these do not lead to any beam loss within the DTL.

  2. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Wang, Langping, E-mail: aplpwang@hit.edu.cn; Wang, Xiaofeng

    2016-08-01

    Highlights: • An annular cathode for HCPEB irradiation of circular components was designed. • The processing window for the annular cathode is obtained. • Irradiation thickness uniformity along the circumferential direction exceeds 90%. - Abstract: In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  3. Prediction of SFL Interruption Performance from the Results of Arc Simulation during High-Current Phase

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea

    2015-09-01

    The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.

  4. High Current Matching over Full-Swing and Low-Glitch Charge Pump Circuit for PLLs

    Directory of Open Access Journals (Sweden)

    De-zhi Wang

    2013-04-01

    Full Text Available A high current matching over full-swing and low-glitch charge pump (CP circuit is proposed. The current of the CP is split into two identical branches having one-half the original current. The two branches are connected in source-coupled structure, and a two-stage amplifier is used to regulate the common-source voltage for the minimum current mismatch. The proposed CP is designed in TSMC 0.18µm CMOS technology with a power supply of 1.8 V. SpectreRF based simulation results show the mismatch between the current source and the current sink is less than 0.1% while the current is 40 µA and output swing is 1.32 V ranging from 0.2 V to 1.52 V. Moreover, the transient output current presents nearly no glitches. The simulation results verify the usage of the CP in PLLs with the maximum tuning range from the voltage-controlled oscillator, as well as the low power supply applications.

  5. Evaluation of conductor stresses in a pulsed high-current toroidal transformer

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Peter J [Los Alamos National Laboratory; Rousculp, Chritopher L [Los Alamos National Laboratory; Reass, William A [Los Alamos National Laboratory; Oro, David M [Los Alamos National Laboratory; Merrill, Frank E [Los Alamos National Laboratory; Greigo, Jeffery R [Los Alamos National Laboratory; Reinovsky, Robert E [Los Alamos National Laboratory

    2009-01-01

    The Precision, High-Energy Density, Liner Implosion Experiment (PHELIX) pulsed power driver is currently under development at Los Alamos National Laboratory. When operational PHELIX will provide 5-10 MAmps of peak current with pulse rise-time of {approx} 5-10 ms. Crucial to the performance of PHELIX is a multi-turn primary, single-turn secondary, current step-up toroidal transformer, R{sub major} {approx} 30 cm, R{sub minor} {approx} 10 cm. The transformer lifetime should exceed 100 shots. Therefore it is essential that the design be robust enough to survive the magnetic stresses produced by high currents. In order to evaluate their design, two methods have been utilized. First, an analytical evaluation has been performed. By identifying the magnetic forces as J{sub 1}{sup 2}/2 {del}L{sub 1} + J{sub 1}J{sub 2}{del}M{sub 12}, where J{sub 1} and J{sub 2} are currents in two circuits, coupled by mutual inductance M{sub 12} and L{sub 1} is the self-inductance of the circuit carrying current J{sub 1}, analytical estimates of stress can be obtained. These results are then compared to a computational MHD model of the same system and to a full finite-element, electromagnetic simulation.

  6. Electromigration in Sn–Ag solder thin films under high current density

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Kotadia, H. [Physics Department, School of Natural and Mathematical Sciences, King' s College London, Strand, London WC2R 2LS (United Kingdom); Xu, S. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kow-loon Tong, Hong Kong (China); Lu, H. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Mannan, S.H. [Physics Department, School of Natural and Mathematical Sciences, King' s College London, Strand, London WC2R 2LS (United Kingdom); Bailey, C. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kow-loon Tong, Hong Kong (China)

    2014-08-28

    The electro-migration behavior of a Sn–Ag solder thin film stripe that is deposited on a glass substrate has been investigated under a high current density in the absence ofthermo-migration. The distribution of voids and hillocks at current densities of 4.4–6.0 × 10{sup 4} A/cm{sup 2} has been analyzed optically and using electron microscopy. The voids mainly formed at the cathode side of the stripe where maximum current density was predicted but voids also formed along a line that crosses the stripe. This was explained in terms of the initial voids forming at locations of maximum current density concentration, altering these locations, and then expanding into them. The movement of the maximum current density location is caused by redistribution of current as the voids form. An atomic migration model has been developed and used in this work. It was found that if thermal gradients were completely neglected, the model was unable to account for the divergence of atomic flux density which is necessary for void nucleation. However, the temperature dependence of the diffusivity of atoms is sufficient to account for void nucleation within the timescale of the experiments. - Highlights: • Experimental and computational study of electron migration in a SnAg film • The calculated atomic flux divergence has been used to predict void formation. • Voids caused by electromigration observed at current crowding sites and in other regions.

  7. Use of catalytic anodes for zinc electrowinning at high current densities from purified electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Bestetti, M.; Ducati, U. [Polytechnic of Milan, Dept. of Applied Physical Chemistry, Milan (Italy); Kelsall, G.H. [T.H. Huxley School, Imperial College, London (United Kingdom); Li, G. [Cominco Research, Cominco Limited, Trail, British Columbia (Canada); Guerra, E. [Univ. of British Columbia, Dept. of Metals and Materials Engineering, Victoria, British Columbia (Canada)

    2001-07-01

    Substantial energy savings are possible in zinc electrowinning by substituting catalytic oxygen evolution anodes for conventional lead-silver anodes. However, it is well known that the harmful effects of impurities usually present in zinc electrolyte solutions limit the service life of catalytic anodes, though their purification by solvent extraction could obviate such problems. Laboratory-scale zinc deposition experiments, with synthetic electrolytes have been performed to determine the effects of current density, temperature, and electrolyte composition on cell voltages and current efficiencies. These data sets were used in an assessment of the optimum design parameters of the tank house. Zinc electrowinning at high current densities (higher than 2000 A/m{sup 2}) using catalytic anodes and purified solutions (e.g., by solvent extraction), is proposed as an alternative to the conventional process, which is based on lead-silver anodes working at relatively low current densities (ca. 500 A/m{sup 2}). Finally, a system for continuous deposition and stripping of the metal is discussed. (author)

  8. Deformation of contact surfaces in a vacuum interrupter after high-current interruptions

    Science.gov (United States)

    Wang, Haoran; Wang, Zhenxing; Zhou, Zhipeng; Jiang, Yanjun; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan

    2016-08-01

    In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal can be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E-3, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.

  9. Quench propagation in High Temperature Superconducting materials integrated in high current leads

    CERN Document Server

    Milani, D

    2001-01-01

    High temperature superconductors (HTS) have been integrated in the high current leads for the Large Hadron Collider (LHC), under construction at CERN, in order to reduce the heat leak into the liquid helium bath due to the joule effect. The use of the HTS technology in the lower part of the current leads allowed to significantly reduce the heat charge on the cryogenic system. Hybrid current leads have been designed to fulfill the LHC requirements with respect to thermal load; several tests have been performed to study the lead behavior especially during a quench transient. Quench experiments have been performed at CERN on 13 kA prototypes to determine the adequate design and protection. In all the tests it is possible to know the temperature profile of the HTS only with the help of quench simulations that model the thermo-hydraulic processes during quench. The development of a theoretical model for the simulation allows reducing the number of test to perform and to scale the experimental result to other curre...

  10. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  11. Synthesis and characterization of silver-carbon nanoparticles produced by high-current pulsed arc

    Energy Technology Data Exchange (ETDEWEB)

    Maya, F., E-mail: fermr@correo.unam.m [Departamento de Microscopia Electronica, Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih., CP 3110 (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 (Mexico); Muhl, S.; Pena, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 (Mexico); Miki-Yoshida, M. [Departamento de Microscopia Electronica, Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih., CP 3110 (Mexico)

    2009-12-31

    In this paper, we report the formation of silver-carbon encapsulated metal nanoparticles (EMN's) using a high-current pulsed arc system in an argon atmosphere. The deposits were studied by Optical Extinction Spectroscopy (OES), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM); the chemical analysis of the deposits was performed using Energy Dispersion X-ray spectroscopy (EDX). Using the total nanoparticle diameter, the bulk crystalline density of silver and an estimate amorphous carbon (a-C) density we have calculated the size of the silver nucleus and the thickness of the a-C coating as a function of the argon gas pressure. The OES spectra of the EMN's exhibited two peaks characteristic of the Surface Plasmon Resonance (SPR) of elongated/very close silver nanoparticles; a subsequent thermal annealing strongly increased the SPR peaks. The double peak SPR spectra were modeled using calculations based on the existence of silver nanoparticles in the form of prolate spheroids. The main advantage of our preparation method is that the metal nanoparticles are encapsulated in a-C from the beginning and this layer acts as an efficient chemical barrier.

  12. High-current electron beam generation in a diode with a multicapillary dielectric cathode

    Science.gov (United States)

    Gleizer, J. Z.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.; Krasik, Ya. E.

    2008-02-01

    Results of high-current electron beam generation in an ˜200kV, ˜250ns diode with a multicapillary dielectric cathode (MCDC) assisted by either velvet-type or ferroelectric plasma sources (FPSs) are presented. Multicapillary cathodes made of cordierite, glass, and quartz glass samples were studied. It was found that the source of electrons is the plasma ejected from capillaries. The plasma parameters inside capillary channels and in the vicinity of the cathode surface were determined during the accelerating pulse using visible range spectroscopy. It was shown that glass multicapillary cathodes are characterized by less surface erosion than the cordierite cathodes. Also, it was found that multicapillary cathodes assisted by a FPS showed longer lifetime and better vacuum compatibility than multicapillary cathodes assisted by a velvet-type igniter. Finally, it was found that quartz glass MCDC assisted by FPS is characterized by almost simultaneous formation of the plasma in a cross-sectional area of the dielectric sample with respect to the beginning of the accelerating pulse. The latter is explained by intense UV radiation which synchronized formation of parallel discharges due to induced secondary electron emission.

  13. The RF-System of the New Gsi High Current Linac Hsi

    CERN Document Server

    Hutter, G; Hartmann, W; Kube, G; Pilz, M; Vinzenz, W

    2000-01-01

    The RF part of the new high current injector-linac HSI consists of five cavities with the new operating frequency of 36 MHz instead of 27 MHz of the removed Wideroe type injector. The calculated power requirements of the cavities including beam load in three structures were between 110 kW for a rebuncher and 1.75 MW pulse-power for the two IH-cavities. The beam load is up to 150 kW for the RFQ and up to 750 kW for the two drift tube tanks. An additional 36 MHz debuncher in the transfer line to the Synchrotron (SIS) will need 120 kW pulse power. We decided to fulfil these demands with amplifiers of only two power classes, namely three amplifiers with 2 MW and six amplifiers with 200 kW pulse output power. The latter ones are also used as drivers for the 2 MW stages. The 200 kW amplifiers were specified in detail by GSI and ordered in the industry. The three 2 MW final amplifiers were designed, constructed and built by GSI. The paper gives an overview of the complete RF system and the operating performance of a...

  14. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.

  15. Integrating a Machine Protection System for High-Current Free Electron Lasers and Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Trent Allison; James Coleman; Richard Evans; Al Grippo; Kevin Jordan

    2002-09-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high-current accelerators. The MPS needs to monitor the status of all devices that could enter the beam path, the beam loss monitors (BLMs), magnet settings, beam dump status, etc. This information is then presented to the electron source controller, which must limit the beam power or shut down the beam completely. The MPS for the energy recovery linac (ERL) at the Jefferson Lab Free Electron Laser [1] generates eight different power limits, or beam modes, which are passed to the drive laser pulse controller (DLPC) (photocathode source controller). These range from no beam to nearly 2 megawatts of electron beam power. Automatic masking is used for the BLMs during low-power modes when one might be using beam viewers. The system also reviews the setup for the two different beamlines, the IR path or the UV path, and will allow or disallow operations based on magnet settings and valve positions. This paper will describe the approach taken for the JLab 10-kW FEL. Additional details can be found on our website http://laser.jlab.org [2].

  16. Crystallization of Ti33Cu67 metallic glass under high-current density electrical pulses

    Directory of Open Access Journals (Sweden)

    Mali Vyacheslav

    2011-01-01

    Full Text Available Abstract We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2 intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2 and the pulse duration was 140 μs, though the calculated temperature increase due to Joule heating was not enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases. A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced local melting and rapid solidification. PACS: 81; 81.05.Bx; 81.05.Kf.

  17. A strong-focusing 800 MeV cyclotron for high-current applications

    Science.gov (United States)

    Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.

    2013-04-01

    A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.

  18. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    Science.gov (United States)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  19. Surface Modification of Light Alloys by Low-Energy High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    X. D. Zhang

    2012-01-01

    Full Text Available This paper reviews results obtained by the research groups developing the low-energy high-current pulsed electron beam (LEHCPEB in Dalian (China and Metz (France on the surface treatment of light alloys. The pulsed electron irradiation induces an ultra-fast thermal cycle at the surface combined with the formation of thermal stress and shock waves. As illustrated for Mg alloys and Ti, this results in deep subsurface hardening (over several 100 μm which improves the wear resistance. The analysis of the top surface melted surface of light alloys also often witnesses evaporation and condensation of chemical species. This phenomenon can significantly modify the melt chemistry and was also suggested to lead to the development of specific solidification textures in the rapidly solidified layer. The potential use of the LEHCPEB technique for producing thermomechanical treatments under the so-called heating mode and, thus, modify the surface crystallographic texture, and enhance solid-state diffusion is also demonstrated in the case of the FeAl intermetallic compound.

  20. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers

    Science.gov (United States)

    Song, Li; Toth, Geza; Wei, Jinquan; Liu, Zheng; Gao, Wei; Ci, Lijie; Vajtai, Robert; Endo, Morinobu; Ajayan, Pulickel M.

    2012-01-01

    We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5-20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m - 1 and over 1 × 105 A cm - 2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.

  1. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  2. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2012-01-01

    Full Text Available Four techniques using high-current pulsed electron beam (HCPEB were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the matrix, such as the quasicrystal phase Mg30Zn60Y10 in the quasicrystal alloy Mg67Zn30Y3. The third technique involves the refinement of eutectic silicon phase in hypereutectic Al-15Si alloys to fine particles with the size of several nanometers through solid solution and precipitation refinement. Finally, in the deformation zone induced by HCPEB irradiation, the grain size can be refined to several hundred nanometers, such as the grain size of the hypereutectic Al-15Si alloys in the deformation zone, which can reach ~400 nm after HCPEB treatment for 25 pulses. Therefore, HCPEB technology is an efficient way to obtain surface nanostructure.

  3. Microstructures and properties of zirconium-702 irradiated by high current pulsed electron beam

    Science.gov (United States)

    Yang, Shen; Cai, Jie; Lv, Peng; Zhang, Conglin; Huang, Wei; Guan, Qingfeng

    2015-09-01

    The microstructure, hardness and corrosion resistance of zirconium-702 before and after high-current pulsed electron beam (HCPEB) irradiation have been investigated. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results indicate that the sample surface was melted after HCPEB irradiation, and martensitic phase transformation occurred. Besides, two kinds of craters as well as ultrafine structures were obtained in the melted layer. TEM observations suggest that high density dislocations and deformation twins were formed after HCPEB irradiation. With the increasing of pulses, microhardness of the irradiated samples was increased from the initial 178 Hv to 254 Hv. The corrosion resistance was tested by using electrode impedance spectroscopy (EIS) and potentiodynamic polarization curves. Electrochemical results show that, after HCPEB irradiation, all the samples had better corrosion resistance in 1 mol HNO3 solution compared to the initial one, among which the 5-pulsed sample owned the best corrosion resistance. Ultrafine structures, martensitic phase transformation, surface porosities, dislocations and deformation twins are believed to be the dominant reasons for the improvement of the hardness and corrosion resistance.

  4. An analysis of the anomalous high-current cathode emission in pseudospark and back-of-the-cathode lighted thyratron switches

    Science.gov (United States)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1989-06-01

    An analysis of the anomalously large cathode emission recently observed in the superdense glow of pseudospark and back-lighted thyratrons is presented. These switches are low-pressure (27 PaH2) glow-discharge pulsed-power devices. After operating at peak discharge currents of 6 to 8 kA and pulse durations of 0.5 to 1 microsec., the surface surrounding the cathode hole was found to have been homogeneously melted within a radius of approx. 4 mm indicating that the discharge is a superdense glow discharge, not an arc, with a cross-sectional area on the order of 1 sq cm. This conclusion is also supported by streak camera measurements. The current density at the cathode surface under these conditions is 5 to 10 kA/sq cm, several orders of magnitude larger than that of thermionic cathodes in common thyratrons. This high-current density is explained by intense cathode heating from a high-current density ion beam produced in the cathode fall during the initial stage of current buildup. The surface heating resulting from this beam yields a significant field-enhanced thermionic emission of electrons.

  5. Microwave assisted synthesis of core–shell LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C nanocomposite cathode for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanhuan [Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Yunxing [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Chen, Long; Jiang, Haobin [Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Wei, Jinping [Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China); Wang, Hongbo [China Aviation Lithium Battery Co. Ltd., Luoyang 471003 (China); Wang, Yaping, E-mail: wangyaping@ujs.edu.cn [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2014-12-25

    Highlights: • We firstly report a fast microwave heating way to prepare LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C. • The reversible discharge capacity of LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C is about 169 mA h g{sup −1}. • LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C nanocomposite elucidates excellent cyclic stability. • LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C nanocomposite exhibits attractive rate capability. - Abstract: A microwave assisted method is developed for synthesizing pure LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4} and LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C nanocomposite. Olivine LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4} coated with uniform amorphous carbon film of ∼5 nm in thickness with an average size of ∼200 nm is successfully obtained. Compared with pure LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}, LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C composite presents enhanced electrochemical Li-ion intercalation performances. It exhibits a high discharge capacity of 169 mA h g{sup −1} at 0.1 C (theoretical capacity is 170 mA h g{sup −1}). The capacity retention is 99% after 30 cycles. Furthermore, the capacities are still retained 101 at 5 C and 76 mA h g{sup −1} and 20 C, respectively. Carbon coating can significantly improve the Li-ion diffusion, the reversibility of lithium extraction/insertion and electrical conductivity of LiCo{sub 1/3}Mn{sub 1/3}Fe{sub 1/3}PO{sub 4}.

  6. The Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Jones Aled

    1998-01-01

    Full Text Available We present a brief review of current theory and observations of the cosmic microwave background (CMB. New predictions for cosmological defect theories and an overview of the inflationary theory are discussed. Recent results from various observations of the anisotropies of the microwave background are described and a summary of the proposed experiments is presented. A new analysis technique based on Bayesian statistics that can be used to reconstruct the underlying sky fluctuations is summarised. Current CMB data is used to set some preliminary constraints on the values of fundamental cosmological parameters $Omega$ and $H_circ$ using the maximum likelihood technique. In addition, secondary anisotropies due to the Sunyaev-Zel'dovich effect are described.

  7. Smoothing of Discharge Inhomogeneities at High Currents in Gasless High Power Impulse Magnetron Sputtering

    CERN Document Server

    Andersson, Joakim; Anders, André

    2014-01-01

    The discharges in high power impulse magnetron sputtering (HiPIMS) have been reported to consist of azimuthally inhomogeneous plasma with locally increased light emission. The luminous zones seemingly travel around the racetrack and are implicated in generation of the high ion kinetic energies observed in HiPIMS. We show that the inhomogeneities smooth out at high discharge current to yield azimuthally homogeneous plasma. This may have implications for the spatial and kinetic energy distribution of sputtered particles, and therefore also on the thin films deposited by high power impulse magnetron sputtering.

  8. Microwave observations for forecasting energetic particles from the Sun

    Science.gov (United States)

    Zucca, Pietro; Nuñez, Marlon; Klein, Karl-Ludwig; Malandraki, Olga; Pavlos, Evgenios; Miteva, Rositsa

    2017-04-01

    Solar energetic particles (SEPs), especially protons and heavy ions, are a major space weather hazard when they impact spacecraft and the terrestrial atmosphere. Forecasting schemes have been developed, which use earlier signatures of particle acceleration to predict the arrival of solar protons and ions in the space environment of the Earth. In this study, we investigate the advantages of microwave observations for forecasting the SEP occurrence and SEP energy spectrum. The UMASEP scheme forecasts the occurrence and the importance of a SEP event based on combined observations of soft X-rays, their time derivative, and protons above 10 MeV at geosynchronous orbit. We explore the possibility to replace the derivative of the soft X-ray time history by the microwave time history in the UMASEP scheme. For the forecast of the SEP energy spectrum, we investigate if the hardness or softness of the proton spectrum in interplanetary space can be predicted from the shape of the microwave spectrum. The technique developed by Chertok et al (2009) is to use the ratio of peak microwave flux densities near 9 and 15 GHz as a predictor. Here, we tested this scheme over solar cycle 23 and 24. A detailed analysis of the results including limitations the methods are presented. We conclude that microwave patrol observations improve SEP forecasting schemes that employ soft X-rays. High-quality microwave data available in real time appear as a significant addition to our ability to predict SEP occurrence and their energy spectrum. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 637324

  9. Microwave Processing of Materials

    Science.gov (United States)

    1994-01-01

    Pennsylvania: Materials Research Society. Wagner, C., and W. Schottky. 1930. Zeitschrift fuer Physikalische Chemie. BL11:163. Walkiewicz, J. W., A. E. Clark...Science and Engineering. 66:468--469. Bloch, F. 1928. Zeitschrift fuer Physik. 52:555. Boch, P., N. Lequeux and P. Piluso. 1992. Reaction Sintering...Frankel, J. 1926. Zeitschrift fuer Physik. 35:652. Fukushima, H., T. Yamaka, and M. Matsui. 1990. Microwave Heating of Ceramics and its Application to

  10. SUNIST Microwave Power System

    Institute of Scientific and Technical Information of China (English)

    Feng Songlin; Yang Xuanzong; Feng Chunhua; Wang Long; Rao Jun; Feng Kecheng

    2005-01-01

    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device.The 2.45 GHz/100 kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  11. Microwave Multicomponent Synthesis

    Directory of Open Access Journals (Sweden)

    Helmut M. Hügel

    2009-12-01

    Full Text Available In the manner that very important research is often performed by multidisciplinary research teams, the applications of multicomponent reactions involving the combination of multiple starting materials with different functional groups leading to the higher efficiency and environmentally friendly construction of multifunctional/complex target molecules is growing in importance. This review will explore the advances and advantages in microwave multicomponent synthesis (MMS that have been achieved over the last five years.

  12. High current density PQQ-dependent alcohol and aldehyde dehydrogenase bioanodes.

    Science.gov (United States)

    Aquino Neto, Sidney; Hickey, David P; Milton, Ross D; De Andrade, Adalgisa R; Minteer, Shelley D

    2015-10-15

    In this paper, we explore the bioelectrooxidation of ethanol using pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenase (ADH and AldDH) enzymes for biofuel cell applications. The bioanode architectures were designed with both direct electron transfer (DET) and mediated electron transfer (MET) mechanisms employing high surface area materials such as multi-walled carbon nanotubes (MWCNTs) and MWCNT-decorated gold nanoparticles, along with different immobilization techniques. Three different polymeric matrices were tested (tetrabutyl ammonium bromide (TBAB)-modified Nafion; octyl-modified linear polyethyleneimine (C8-LPEI); and cellulose) in the DET studies. The modified Nafion membrane provided the best electrical communication between enzymes and the electrode surface, with catalytic currents as high as 16.8 ± 2.1 µA cm(-2). Then, a series of ferrocene redox polymers were evaluated for MET. The redox polymer 1,1'-dimethylferrocene-modified linear polyethyleneimine (FcMe2-C3-LPEI) provided the best electrochemical response. Using this polymer, the electrochemical assays conducted in the presence of MWCNTs and MWCNTs-Au indicated a Jmax of 781 ± 59 µA cm(-2) and 925 ± 68 µA cm(-2), respectively. Overall, from the results obtained here, DET using the PQQ-dependent ADH and AldDH still lacks high current density, while the bioanodes that operate via MET employing ferrocene-modified LPEI redox polymers show efficient energy conversion capability in ethanol/air biofuel cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    Science.gov (United States)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  14. Characterization of a high current pulsed arc using optical emission spectroscopy

    Science.gov (United States)

    Sousa Martins, R.; Zaepffel, C.; Chemartin, L.; Lalande, Ph; Soufiani, A.

    2016-10-01

    In this paper, we present the investigation realized on an experimental setup that simulates an arc column subjected to the transient phase of a lightning current waveform in laboratory conditions. Optical emission spectroscopy is employed to assess space- and time-resolved properties of this high current pulsed arc. Different current peak levels are utilised in this work, ranging from 10 kA to 100 kA, with a peak time around 15 µs. Ionic lines of nitrogen and oxygen are used to determine the radial profiles of temperature and electron density of the arc channel over time from 2 µs to 36 µs. A combination of 192 N II and O II lines is considered in the calculation of the bound-bound contribution of the absorption coefficient of the plasma channel. Calculations of the optical thickness showed that self-absorption of these ionic lines in the arc column is important. To obtain temperature and electron density profiles in the arc, we solved the radiative transfer equation across the channel under an axisymmetric assumption and considering the channel formed by uniform concentric layers. For the 100 kA current peak level, the temperature reaches more than 38 000 K and the electron density reaches 5  ×  1018 cm-3. The pressure inside the channel is calculated using the air plasma composition at local thermodynamic equilibrium, and reaches 45 bar. The results are discussed and utilised to estimate the electrical conductivity of the arc channel.

  15. Quasi-1D van der Waals materials as high current-density local interconnects (Conference Presentation)

    Science.gov (United States)

    Stolyarov, Maxim; Aytan, Ece; Bloodgood, Matthew; Salguero, Tina T.; Balandin, Alexander A.

    2016-09-01

    The continuous downscaling of interconnect dimensions in combination with the introduction of low-k dielectrics has increased the number of heat dissipation, integration and reliability challenges in modern electronics. As a result, there is a strong need for new materials that have high current-carrying capacity for applications as nanoscale interconnects. In this presentation, we show that quasi-one-dimensional (1D) van der Waals metals such as TaSe3 have excellent breakdown current density exceeding that of 5 MA/cm2. This value is above that currently achievable in conventional copper or aluminum wires. The quasi-1D van der Waals materials are characterized by strong bonds along one dimension and weak van der Waals bonds along two other dimensions. The material for this study was grown by the chemical vapor transport (CVT) method. Both mechanical and chemical exfoliation methods were used to fabricate nanowires with lateral dimensions below 100 nm. The dimensions of the quasi-1D nanowires were verified with scanning electron microscopy (SEM) and atomic force microscopy (AFM). The metal (Ti/Au) contacts for the electrical characterization were deposited using electron beam evaporation (EBE). The measurements were conducted on a number of prototype interconnects with multiple electric contacts to ensure reproducibility. The obtained results suggest that quasi-1D van der Waals metals present a feasible alternative to conventional copper interconnects in terms of the current-carrying capacity and the breakdown current-density. This work was supported, in part, by the SRC and DARPA through STARnet Center for Function Accelerated nanoMaterial Engineering (FAME).

  16. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2015-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  17. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  18. Microwave sterilization method and apparatus

    OpenAIRE

    V. N. Vasilenko; Minuhin, V. V.; Podorozhnyak, A. A.; Trubaev, S. I.

    1995-01-01

    Experience of industrially developed countries in utilization of microwave radiation has been analyzed. Apparatus for realization of microwave method of sterilization has been designed. A number of experiments for the estimation of bactericidal, sporacidal, and virusidal properties of microwave radiation action has been carried out in 3 to 13 cm wavelength band. B. Lycheniform shtumm G., B. Subtilis ATTC 6633, E. Coli ATTC 25922 and bacterial virus FX 174 were used as test microbes. Effect of...

  19. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  20. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  1. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  2. Numerical modeling of microwave heating

    Directory of Open Access Journals (Sweden)

    Shukla A.K.

    2010-01-01

    Full Text Available The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.

  3. The Microwave SQUID Multiplexer

    Science.gov (United States)

    Mates, John Arthur Benson

    2011-12-01

    This thesis describes a multiplexer of Superconducting Quantum Interference Devices (SQUIDs) with low-noise, ultra-low power dissipation, and great scalability. The multiplexer circuit measures the magnetic flux in a large number of unshunted rf SQUIDs by coupling each SQUID to a superconducting microwave resonator tuned to a unique resonance frequency and driving the resonators from a common feedline. A superposition of microwave tones measures each SQUID simultaneously using only two coaxial cables between the cryogenic device and room temperature. This multiplexer will enable the instrumentation of arrays with hundreds of thousands of low-temperature detectors for new applications in cosmology, materials analysis, and nuclear non-proliferation. The driving application of the Microwave SQUID Multiplexer is the readout of large arrays of superconducting transition-edge sensors, by some figures of merit the most sensitive detectors of electromagnetic signals over a span of more than nine orders of magnitude in energy, from 40 GHz microwaves to 200 keV gamma rays. Modern transition-edge sensors have noise-equivalent power as low as 10-20 W / Hz1/2 and energy resolution as good as 2 eV at 6 keV. These per-pixel sensitivities approach theoretical limits set by the underlying signals, motivating a rapid increase in pixel count to access new science. Compelling applications, like the non-destructive assay of nuclear material for treaty verification or the search for primordial gravity waves from inflation use arrays of these detectors to increase collection area or tile a focal plane. We developed three generations of SQUID multiplexers, optimizing the first for flux noise 0.17 muPhi0 / Hz1/2, the second for input current noise 19 pA / Hz1/2, and the last for practical multiplexing of large arrays of cosmic microwave background polarimeters based on transition-edge sensors. Using the last design we demonstrated multiplexed readout of prototype polarimeters with the

  4. Non-Ionizing Radiation Used in Microwave Ovens

    Science.gov (United States)

    ... in Microwave Ovens Non-Ionizing Radiation Used in Microwave Ovens Explore the interactive, virtual community of RadTown USA ! ... learn more About Non-Ionizing Radiation Used in Microwave Ovens Microwave Oven. Microwave ovens use electromagnetic waves that ...

  5. High dopant activation of phosphorus in Ge crystal with high-temperature implantation and two-step microwave annealing

    Science.gov (United States)

    Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi

    2016-09-01

    In this letter, high-temperature ion implantation and low-temperature microwave annealing were employed to achieve high n-type active concentrations, approaching the solid solubility limit, in germanium. To use the characteristics of microwave annealing more effectively, a two-step microwave annealing process was employed. In the first annealing step, a high-power (1200 W; 425 °C) microwave was used to achieve solid-state epitaxial regrowth and to enhance microwave absorption. In the second annealing step, contrary to the usual process of thermal annealing with higher temperature, a lower-power (900 W; 375 °C) microwave process was used to achieve a low sheet resistance, 78Ω/◻, and a high carrier concentration, 1.025 × 1020 P/cm3, which is close to the solid solubility limit of 2 × 1020 P/cm3.

  6. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    Science.gov (United States)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-08-01

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  7. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: Microwave Asher A tool using microwave oxygen plasma to remove organics on the surfaces Specifications / Capabilities: Frequency: 2.45 GHz...

  8. The European Microwave Week 2008 and its Microwave Conferences

    NARCIS (Netherlands)

    Hoogeboom, P.; Van Vliet, F.

    2009-01-01

    Under the auspices of the European Microwave Association (EuMA) the 11th annual European Microwave Week was organized in the Amsterdam RAI Congress Centre, The Netherlands, 27-31 October 2008. This major event consisted this year of five conferences, an exhibition, and various side events. The 38th

  9. Microwave Coupling to ECR and Alternative Heating Methods

    CERN Document Server

    Celona, L

    2013-01-01

    The Electron Cyclotron Resonance Ion Source (ECRIS) is nowadays the most effective device that can feed particle accelerators in a continuous and reliable way, providing high-current beams of low- and medium-charge-state ions and relatively intense currents for highly charged ions. The ECRIS is an important tool for research with ion beams (in surface, atomic, and nuclear science) while, on the other hand, it implies plasma under extreme conditions and thus constitutes an object of scientific interest in itself. The fundamental aspect of the coupling between the electromagnetic wave and the plasma is hereinafter treated together with some variations to the classical ECR heating mechanism, with particular attention being paid to the frequency tuning effect and two-frequency heating. Considerations of electron and ion dynamics will be presented together with some recent observations connecting the beam shape with the frequency of the electromagnetic wave feeding the cavity. The future challenges of higher-charg...

  10. Effects of heavy ions on the visual functions and electrophysiology of rodents: the ALTEA-MICE study ALTEA-MICE TEAM 02064 Retrieving of surface parameters over the tibetan plateau with microwave remote sensing

    Science.gov (United States)

    Wang, J.; Gao, F.; Li, X.

    ALTEA-MICE is a multidisciplinary international project sponsored by NASA and by the Italian Space Agency (ASI) and Institute of Nuclear Physics (INFN) to investigate the effects of heavy ions on the visual system of mice. Both normal and mutant mice with gene defects affecting photoreceptor or bipolar cell function will be studied, with the scientific focus spanning from in vitro models to in vivo approaches and from cell to system physiology. Experiments are being performed at the Brookhaven National Laboratories with application of standardized electrophysiological techniques. The retina and visual cortex of adult mice and in vitro (retinal or cortical) cell preparations are radiated with short (2-5 msec) bursts of heavy (e.g. Silicon) ions, delivered by a collimated 3 mm beam. Mice are anesthetized and implanted with chronic electrodes in the visual cortex during pulsed radiation. Preliminary experiments performed with the GSI accelerator (Darmstadt, FRG) allow to record transient electrophysiological responses of the mouse visual cortex to bursts of particles in an order of magnitude of ~2 GeV, comparable to an energy loss of a bragging Fe in the eye, with 100-350 ms latency from pulsed radiation. The study protocol, experimental set-up, and preliminary results will be presented. Results from the GSI and BNL study will be outlined. The ALTEA -MICE project is expected to provide the scientific background needed to supplement the ALTEA project on astronauts and to yield information about the (electrophysiological correlates) of the functional brain impairment eventually induced by heavy ions in specific instances (e.g. during long-term operations in microgravity).

  11. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  12. Microwave Sterilization in School Microbiology.

    Science.gov (United States)

    Wynn, Brian; Dixon, Angela

    1988-01-01

    Described are two investigations carried out in a high school biology department using a domestic microwave oven to compare the relative attributes of the autoclave and microwave oven in school use. Discussed are equipment, methods, and results of each investigation. (Author/CW)

  13. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue, fl

  14. More Experiments with Microwave Ovens

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular…

  15. More Experiments with Microwave Ovens

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter; Karstadt, Detlef

    2004-01-01

    Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular…

  16. PROGRAMMING THE MICROWAVE-OVEN

    NARCIS (Netherlands)

    KOK, LP; VISSER, PE; BOON, ME

    1994-01-01

    Microwaves can be used to stimulate chemical bonding, diffusion of reagents into and out of the specimen, and coagulation processes in preparatory techniques. Temperature plays an important role in these processes. There are several ways of controlling the temperature of microwave-exposed tissue,

  17. High Current Density Effect on In-situ Atomic Migration Characteristics of a BiTe Thin Film System

    Science.gov (United States)

    Kim, Seunghyun; Park, Yong-Jin; Joo, Young-Chang; Park, Young-Bae

    2013-10-01

    Understanding fundamental atomic migration characteristics of multicomponent chalcogenide materials such as GeSbTe (GST) and BiTe are important in order to investigate the failure mechanism related to the electrical reliability of thermoelectric materials under high current density. In this work, high current density effect on the in-situ atomic migration characteristics of the BiTe thermoelectric thin films was conducted by real-time observation inside an scanning electron microscope chamber. Under the high current density conditions ranging from 0.83×106 to 1.0×106 A/cm2 at 100 °C, Te migrated toward the cathode, and Bi migrated toward the anode because the electrostatic force was dominant by very high Joule heating effect.

  18. Temporal behavior of microwave sheath-voltage combination plasma

    CERN Document Server

    Kar, Satyananda; Raja, Laxminarayan L

    2015-01-01

    Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an "oxidized state" (OS) at the early time of the microwave plasma and the other is "ionized sputter state" (ISS) at the later times. Transition of the plasma from OS to ISS, results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions and the density is order 10^11 cm^-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition and higher density plasma (10^12 cm^-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). O...

  19. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    lifetime and the potential for an all transparent display. And because carbon nanotubes (CNTs) and organics are used, CN-VFET and CN-VOLET devices are compatible with flexible displays. This dissertation describes the first ever demonstration of CN-VFETs and CN-VOLETs and relates their performance to the specific properties of the CNTs and the new device architecture. In the work that followed, the CN-VFET was systematically optimized overcoming the problems revealed in the demonstration devices. The large undesired hysteresis was decreased by 96%, the on/off ratio was improved three orders of magnitude and the operating voltages were reduced to state of the art values. Additionally, the current output per device area of the CN-VFET was demonstrated to be greater than any other low resolution patterned organic transistor by a factor of 3.9. Moreover, it was demonstrated that the CNTs induce a reorientation of the high mobility plane in small molecule organics like pentacene to coincide with the vertical direction, giving additional explanation for the large currents observed in the CN-VFET. The ability to drive high currents and potentially inexpensive fabrication may provide the solution for the AMOLED backplane problem.

  20. OLEDs under high current densities. Transient electroluminescence turn-on peaks and singlet-triplet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Kasemann, Daniel

    2012-02-27

    This work focuses on a better understanding of the behavior of organic light emitting devices (OLEDs) under intense electrical excitation. Attaining high exciton densities in organic semiconductors by electrical excitation is of special interest for the field of organic semiconductor lasers (OSLs). In these devices, the high singlet exciton density needed in the active layer to obtain population inversion is easily created by pulsed optical pumping, but direct electrical pumping has not been achieved yet. First, the steps necessary to achieve stable high current densities in organic semiconductors are discussed. After determining the optimal excitation scheme using single p-doped transport layers, the device complexity is increased up to full p-i-n OLEDs with their power dependent emission spectra. For this purpose, two exemplary emitter systems are chosen: the fluorescent laser dye 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) doped into Aluminum(III)bis (2-methyl-8-quinolinato)-4-phenylphenolate (Alq{sub 3}) and the efficient phosphorescent emitter system N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine (alpha-NPD) doped by Iridium(III) bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate) (Ir(MDQ){sub 2}(acac)). For pulsed excitation using 50 ns pulses and a repetition rate of 1 kHz, single 100 nm thin p- and n-doped transport layers sustain current densities of over 6 kA/cm{sup 2}. While the maximum current density decreases with increasing device thickness, the full OLEDs still sustain current densities beyond 800 A/cm{sup 2} and exhibit a continuously increasing emission intensity with increasing input power. Next, the time-resolved emission behavior of the singlet and triplet emitter device at high excitation densities is analyzed on the nanosecond scale. Here, the peak emission intensity of the phosphorescent emitter system is found to be more than eight times lower than for the singlet emitter system at comparable current

  1. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  2. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation......State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...

  3. Microwave plasma combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    P.M. Kanilo; V.I. Kazantsev; N.I. Rasyuk; K. Schuenemann; D.M. Vavriv [Institute of Machine Building Problems of the National Academy of Sciences of Ukraine, Kharkov (Ukraine)

    2003-01-01

    Microwave plasma is studied as an alternative to oil or gas fuel for ignition and stabilisation of burning of lean coal. The study is performed on an experimental set-up, which includes a burner with a microwave plasma generator, coal and air supply systems, and measurement equipment. Power and thermochemical characteristics of the coal-plasma interaction have been measured and analysed. The obtained results indicate an essential intensification of ignition and combustion processes in the microwave burner compared to those in conventional burners. In particular, it has been demonstrated that the microwave energy consumption is only about 10% of the required expenditure of oil or gas, measured in heat equivalent. A design of an industrial microwave-plasma burner is proposed. Prospects of such burner for applications at industrial boilers of power plants are discussed. 6 refs., 4 figs., 2 tabs.

  4. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU; TaJung

    2001-01-01

    The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.  ……

  5. Microwave-Accelerated Organic Reactions

    Institute of Scientific and Technical Information of China (English)

    LU TaJung

    2001-01-01

    @@ The use of microwave technology in accelerating organic reactions has received intense attention leading to immense growth recently. Accordingly, we have been interested in improving the efficacy of organic processes by microwave irradiation. Here we report our results on the microwave assisted 1,3-dipolar cycloaddition reaction of nitrile oxides with allylic alcohols, the cleavage reaction of 1,3-diketones under alkaline conditions, and the formation of carbamates from isocyanates with alcohols. The reactions carried out under microwave irradiation, in general, required considerably less reaction time and afforded the desired products in higher yields than those under classical conditions. In all the cases we have studied, the procedures are simplified, the purity of the products are higher, and the cost of reaction is greatly reduced employing microwave.

  6. Status of high current R&D Energy Recovery LINAC at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kayran, D.; Altinbas Z.; Beavis D.; Ben-Zvi I.; Calaga R.; Gassner D.M.; Hahn H.; Hammons L.; Jain A.; Jamilkowski J.; Lambiase R.; Lederle D.; Litvinenko V.N.; Laloudakis N.; Mahler G.; McIntyre G.; Meng W.; Oerter B.; Pate D.; Phillips D.; Reich J.; Roser T.; Schultheiss C.; Seda T.; Sheehy B.; Srinivasan-Rao T.; Than R.; Tuozzolo J.; Weiss D.; Xu W.; Zaltsman A.

    2011-03-28

    An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing of concepts relevant for high-energy coherent electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch ({approx} 5 nC) and low normalized emittance ({approx} 5 mm-mrad) at an energy of 20 MeV. Flexible lattice of ERL loop provides a test-bed for investigating issues of transverse and longitudinal instabilities, and diagnostics for intense CW e-beam. The superconducting 703 MHz RF photoinjector is considered as an electron source for such a facility. We will start with a straight pass (gun - 5 cell cavity - beam stop) test for the SRF Gun performance studies. Later, we will install and test a novel injection line concept for emittance preservation in a lower energy merger. In this paper we present the status and our plans for construction and commissioning of this facility.

  7. Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator

    CERN Document Server

    Coniglio, Angela; Sandri, Sandro

    2005-01-01

    Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron...

  8. A compact and high current FFAG for the production of radioisotopes for medical application

    CERN Document Server

    Bruton, David; Edgecock, Rob; Seviour, Rebecca; Johnstone, Carol

    2017-01-01

    A low energy Fixed Field Alternating Gradient(FFAG)accelerator has been designed for the production of radioisotopes. Tracking studies have been conducted using the OPAL code, including the effects of space charge. Radioisotopes have a wide range of uses in medicine, and recent disruption to the supply chain has seen a renewed effort to find alternative isotopes and production methods. The design features separate sector magnets with non-scaling, non-linear field gradients but without the counter bends commonly found in FFAG’s. The machine is isochronous at the level of 0.3% up to at least 28MeV and hence able to operate in Continuous Wave (CW) mode. Both protons and helium ions can be used with this design and it has been demonstrated that proton beams with currents of up to 20 mA can be accelerated. An interesting option for the production of radioisotopes is the use of a thin internal target. We have shown that this design has large acceptance, ideal for allowing the beam to be recirculated through t...

  9. Photoelectrolysis of water at high current density - Use of ultraviolet laser excitation

    Science.gov (United States)

    Bocarsly, A. B.; Bolts, J. M.; Cummins, P. G.; Wrighton, M. S.

    1977-01-01

    The behavior of TiO2 and SrTiO3 photoanodes in cells for the photoelectrolysis of H2O has been investigated for high-intensity 351-,364-nm excitation from an Ar ion laser. Intensities up to 380 W/sq cm have been used. For TiO2 a small amount of surface decomposition is found after irradiation at high intensity, whereas SrTiO3 undergoes no detectable changes. Current-voltage properties for both electrodes are essentially independent of light intensity up to the level of 380 W/sq cm, and there is little if any change in quantum efficiency for electron flow. Photocurrent densities have been shown to exceed 5 A/sq cm for O2 evolution. Data show that the energy storage rate associated with the SrTiO3 photoelectrolysis can exceed 30 W/sq cm; this represents the highest demonstrated rate of sustained optical-to-chemical energy conversion.

  10. 11. international conference on ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, D.; Lyneis, C.; Cheng, D.; Galloway, M.L.; Leitner, M.; Todd, D.S.; Ciavola, G.; Gammino, S.; Celona, L.; Ando, L.; Torrisi, L.; Cavenago, M.; Galata, A.; Spaedtke, P.; Tinschert, K.; Lang, R.; Iannucci, R.; Leroy, R.; Barue, C.; Hitz, D.; Koivisto, H.; Suominen, P.; Tarvainen, O.; Beijers, H.; Brandenburg, S.; Vanrooyen, D.; Hillo, C.; Kuchler, D.; Homeyer, H.; Rohrich, J.; Schachter, L.; Dobrescu, S.; Nakagawa, T.; Higurashi, Y.; Kidera, M.; Aihara, T.; Kase, M.; Goto, A.; Yang, Y.; Zhao, H.W.; Zhang, Z.M.; Zhang, X.Z.; Guo, X.H.; He, W.E.; Sun, L.T.; Yuan, P.; Song, M.T.; Xie, Z.Q.; Cao, Y.; Zhan, W.L.; Wei, B.W.; Bricault, P.; Lau, C.; Essabaa, S.; Cheikh Mhamed, M.; Bajeat, O.; Ducourtieux, M.; Lefort, H.; Panteleev, V.N.; Barzakh, A.E.; Fedorov, D.V.; Ionan, A.M.; Mezilev, K.A.; Moroz, F.V.; Orlov, S.Y.; Volkov, Y.M.; Andrighetto, A.; Lhersonneau, G.; Rizzi, V.; Tecchio, L.B.; Dubois, M.; Gaubert, G.; Jardins, P.; Lecesne, N.; Leroy, R.; Pacquet, J.Y.; Saint Laurent, M.G.; Villari, A.C.O.; Bajeat, O.; Essabaa, S.; Lau, C.; Menna, M.; Franberg, H.; Ammann, M.; Gdggeler, H.W.; Koster, U.; Allen, F.; Biedermann, C.; Radtke, R.; Ames, F.; Baartman, R.; Bricault, P.; Jayamanna, K.; Lamy, T.; McDonald, M.; Olivo, M.; Schmorl, P.; Yuan, D.H.L.; Asaji, T.; Sasaki, H.; Kato, Y.; Atabaev, B.; Radjabov, S.S.; Akhmadjanova, M.K.; Yuzikaeva, F.R.; Baoqun, Cui; Liqiang, Li; Yingjun, Ma; Shengyun, Zhu; Cong, Jiang

    2005-07-01

    This document gathers the summaries of the presentations made at ICIS05 (international conference on ion sources). It can be organized into 3 main topics: 1) 'fundamentals and theory' that deals with plasma, beam extraction, transport and emittance, diagnostics and simulation; 2) 'various types of ion sources' that include ECRIS, EBIS, microwave, negative, radioactive, polarized and laser ion sources, and charge breeders; and 3) 'ion sources and applications' in fields like accelerator injection, fusion energy, space propulsion, mass spectrometry, and neutron and cluster and rare nuclide production.

  11. Enhancing the performances of ECR Ion Sources

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Liu, Y.

    1999-03-29

    The performances of ECR ion sources can be enhanced in the spatial domain by tailoring the central magnetic field so that it is uniformly distributed over a large plasma volume and is of magnitude so as to be in resonance with single frequency microwave radiation. Analogously, the performances of conventional minimum-B ECR ion sources can be enhanced in the frequency domain by injecting multiple discrete frequency or broadband microwave radiation into their plasma volumes. In this report, examples of both the spatial-and frequency-domain techniques will be given. For example, the design aspects of an all permanent-magnet ''volume-type'' (spatial-domain) ECR ion source will be described and the effects of injecting multiple frequencies (frequency-domain) on the charge-state-distributions extracted from a conventional minimum-B ECR ion source will be presented.

  12. Microwave systems design

    CERN Document Server

    Awang, Zaiki

    2014-01-01

    The aim of this book is to serve as a design reference for students and as an up-to-date reference for researchers. It also acts as an excellent introduction for newcomers to the field and offers established rf/microwave engineers a comprehensive refresher.  The content is roughly classified into two – the first two chapters provide the necessary fundamentals, while the last three chapters focus on design and applications. Chapter 2 covers detailed treatment of transmission lines. The Smith chart is utilized in this chapter as an important tool in the synthesis of matching networks for microwave amplifiers. Chapter 3 contains an exhaustive review of microstrip circuits, culled from various references. Chapter 4 offers practical design information on solid state amplifiers, while Chapter 5 contains topics on the design of modern planar filters, some of which were seldom published previously. A set of problems at the end of each chapter provides the readers with exercises which were compiled from actual uni...

  13. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet-carbon nanotube hybrids.

    Science.gov (United States)

    Deng, Jian-Hua; Cheng, Lin; Wang, Fan-Jie; Li, Guo-Zheng; Li, De-Jun; Cheng, Guo-An

    2014-12-10

    Achieving high current and longtime stable field emission from large area (larger than 1 mm(2)), densely arrayed emitters is of great importance in applications for vacuum electron sources. We report here the preparation of graphene nanosheet-carbon nanotube (GNS-CNT) hybrids by following a process of iron ion prebombardment on Si wafers, catalyst-free growth of GNSs on CNTs, and high-temperature annealing. Structural observations indicate that the iron ion prebombardment influences the growth of CNTs quite limitedly, and the self-assembled GNSs sparsely distributed on the tips of CNTs with their sharp edges unfolded outside. The field emission study indicates that the maximum emission current density (Jmax) is gradually promoted after these treatments, and the composition with GNSs is helpful for decreasing the operation fields of CNTs. An optimal Jmax up to 85.10 mA/cm(2) is achieved from a 4.65 mm(2) GNS-CNT sample, far larger than 7.41 mA/cm(2) for the as-grown CNTs. This great increase of Jmax is ascribed to the reinforced adhesion of GNS-CNT hybrids to substrates. We propose a rough calculation and find that this adhesion is promoted by 7.37 times after the three-step processing. We consider that both the ion prebombardment produced rough surface and the wrapping of CNT foot by catalyst residuals during thermal processing are responsible for this enhanced adhesion. Furthermore, the three-step prepared GNS-CNT hybrids present excellent field emission stability at high emission current densities (larger than 20 mA/cm(2)) after being perfectly aged.

  14. Microwave Frequency Multiplier

    Science.gov (United States)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  15. High Current and High Power Fast Kicker System Conceptual Design and Technology Overview for DeeMe Experiment

    Science.gov (United States)

    2013-06-01

    HIGH CURRENT AND HIGH POWER FAST KICKER SYSTEM CONCEPTUAL DESIGN AND TECHNOLOGY OVERVIEW FOR DEEME EXPERIMENT∗ W. Zhangξ Collider -Accelerator... Collider -Accelerator Department, Brookhaven National Laboratory, , Upton, New York, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...challenging technical area in high power kicker design for high energy hadron accelerators. Almost all high power kickers are designed, developed, and

  16. Characterization and Performance of a High-Power Solid-State Laser for a High-Current Photocathode Injector

    CERN Document Server

    Zhang, S; Neil, G; Shinn, M D

    2005-01-01

    We report the characterization and performance of a diode-pumped, high-power, picosecond laser system designed for high-current photo-cathode accelerator injector at repetition rates of both 75MHz and 750MHz. Our characterization includes measurement of the system's amplitude stability, beam quality, pulsewidth, and phase noise for both frequencies.

  17. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...

  18. The Liverpool Microwave Palaeointensity System

    Science.gov (United States)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot

    2016-04-01

    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  19. Ge and Ti post-ion acceleration from laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.i [INFN-LNS di Catania, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Giuffrida, L. [INFN-LNS di Catania, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, 23 Hery Str. 01-497 Warsaw (Poland); Schallhorn, C. [Department of Physics, University of California, Portola Plaza 430, 90095 Los Angeles, CA (United States)

    2010-09-15

    Laser ion sources (LIS) are employed with success to generate, in vacuum, Ge and Ti ion beams with high current, ion energy, charge states and directivity. Nanoseconds infrared laser pulses, with intensities of the order of 10{sup 10} W/cm{sup 2}, induce high ablation in Ge and Ti targets. Ions are produced in vacuum with energy distribution following the Coulomb-Boltzmann-shifted distribution and they are ejected mainly along the normal to the target surface. The free ion expansion process occurs in a constant-potential chamber placed at 30 kV positive voltage. An electric field of 5 kV/cm was used to accelerate the ions emitted from the plasma at INFN-LNS laser facility. Time-of-flight technique is employed to measure the mean ion energies of the post-accelerated particles. Ion charge states and energy distributions were measured through an ion energy spectrometer.

  20. Ge and Ti post-ion acceleration from laser ion source

    Science.gov (United States)

    Torrisi, L.; Giuffrida, L.; Rosinski, M.; Schallhorn, C.

    2010-09-01

    Laser ion sources (LIS) are employed with success to generate, in vacuum, Ge and Ti ion beams with high current, ion energy, charge states and directivity. Nanoseconds infrared laser pulses, with intensities of the order of 10 10 W/cm 2, induce high ablation in Ge and Ti targets. Ions are produced in vacuum with energy distribution following the Coulomb-Boltzmann-shifted distribution and they are ejected mainly along the normal to the target surface. The free ion expansion process occurs in a constant-potential chamber placed at 30 kV positive voltage. An electric field of 5 kV/cm was used to accelerate the ions emitted from the plasma at INFN-LNS laser facility. Time-of-flight technique is employed to measure the mean ion energies of the post-accelerated particles. Ion charge states and energy distributions were measured through an ion energy spectrometer.

  1. Microwave radiometry and applications

    Science.gov (United States)

    Polívka, Jiří

    1995-09-01

    The radiometry in general is a method of detecting the radiation of matter. All material bodies and substances radiate energy in the form of electromagnetic waves according to Planck s Law. The frequency spectrum of such thermal radiation is determined, beyond the properties of a blackbody, by the emissivity of surfaces and by the temperature of a particular body. Also, its reflectivity and dispersion take part. Investigating the intensity of radiation and its spectral distribution, one may determine the temperature and characterize the radiating body as well as the ambient medium, all independently of distance. With the above possibilities, the radiometry represents a base of scientific method called remote sensing. Utilizing various models, temperature of distant bodies and images of observed scenes can be determined from the spatial distribution of radiation. In this method, two parameters are of paramount importance: the temperature resolution, which flows out from the detected energy, and the spatial resolution (or, angular resolution), which depends upon antenna size with respect to wavelength. An instrument usable to conduct radiometric observations thus consists of two basic elements: a detector or radiometer, which determines the temperature resolution, and an antenna which determines the angular or spatial resolution. For example, a photographic camera consists of an objective lens (antenna) and of a sensitive element (a film or a CCD). In remote sensing, different lenses and reflectors and different sensors are employed, both adjusted to a particular spectrum region in which certain important features of observed bodies and scenes are present: frequently, UV and IR bands are used. The microwave radiometry utilizes various types of antennas and detectors and provides some advantages in observing various scenes: the temperature resolution is recently being given in milikelvins, while the range extends from zero to millions of Kelvins. Microwaves also offer

  2. Microwave Radiometry in Remote Sensing

    DEFF Research Database (Denmark)

    Gudmandsen, Preben

    1982-01-01

    Microwave radiometry has shown its capabilities of observing and monitoring large-scale geophysical observables from space. Examples are sea surface temperature and surface wind over the ocean, sea ice extent, concentration and category and snow cover extent and water content. At low microwave...... frequencies the atmosphere is virtually transparent even with clouds which make microwave radiometry very valuable in regions with frequent cloud cover such as the temperate and arctic zones. At high frequencies, however, atmospheric absorption will degrade measurements of earth surfaces but this phenomenon...

  3. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  4. Microwave Plasma Synthesis of Nanopowders

    Institute of Scientific and Technical Information of China (English)

    Joseph; Lik; Hang; Chau

    2007-01-01

    1 Results and Discussion Nanopowders were synthesized by using microwave plasma synthesis technique.The microwave plasma was operated in atmospheric pressure at a frequency of 2.45 GHz.The reaction temperature is directly related to the power of the microwave generator that can be controlled by adjusting the actual operating current.Firstly,ionization and dissociation of precursor species will be occurred in the plasma,nucleus can then be formed by the collision of these molecules,followed by the growth...

  5. Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nishiokada, Takuya, E-mail: nishiokada@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu; Kato, Yushi [Division of Electrical, Electronic, and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Muramatsu, Masayuki; Kitagawa, Atsushi [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-855 (Japan)

    2016-02-15

    Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.

  6. Microwave Magnetoelectric Devices

    Directory of Open Access Journals (Sweden)

    A. S. Tatarenko

    2012-01-01

    Full Text Available Tunable microwave magnetoelectric devices based on layered ferrite-ferroelectric structures are described. The theory and experiment for attenuator, band-pass filter and phase shifter are presented. Tunability of the ME devices characteristics can be executed by application of an electric field. This electric tuning is relatively fast and is not power-consuming. The attenuator insertion losses vary from 26 dB to 2 dB at frequency 7251 MHz. The tuning range of 25 MHz of band-pass filter at frequency 7360 MHz was obtained. A maximum phase shift of 30–40 degree at the frequency region 6–9 GHz was obtained.

  7. Cryogenic coaxial microwave filters

    CERN Document Server

    Tancredi, G; Meeson, P J

    2014-01-01

    At millikelvin temperatures the careful filtering of electromagnetic radiation, especially in the microwave regime, is critical for controlling the electromagnetic environment for experiments in fields such as solid-state quantum information processing and quantum metrology. We present a design for a filter consisting of small diameter dissipative coaxial cables that is straightforward to construct and provides a quantitatively predictable attenuation spectrum. We describe the fabrication process and demonstrate that the performance of the filters is in good agreement with theoretical modelling. We further perform an indicative test of the performance of the filters by making current-voltage measurements of small, underdamped Josephson Junctions at 15 mK and we present the results.

  8. Cosmic microwave background theory.

    Science.gov (United States)

    Bond, J R

    1998-01-06

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in -space are consistent with a DeltaT flat in frequency and broadly follow inflation-based expectations. That the levels are approximately (10(-5))2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Lambda cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 +/- 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 +/- 0.08 for DMR plus the SK95 experiment; 1.00 +/- 0.04 for DMR plus all smaller angle experiments; 1.00 +/- 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Lambda and moderate constraints on Omegatot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant.

  9. Fast microwave assisted pyrolysis of biomass using microwave absorbent.

    Science.gov (United States)

    Borges, Fernanda Cabral; Du, Zhenyi; Xie, Qinglong; Trierweiler, Jorge Otávio; Cheng, Yanling; Wan, Yiqin; Liu, Yuhuan; Zhu, Rongbi; Lin, Xiangyang; Chen, Paul; Ruan, Roger

    2014-03-01

    A novel concept of fast microwave assisted pyrolysis (fMAP) in the presence of microwave absorbents was presented and examined. Wood sawdust and corn stover were pyrolyzed by means of microwave heating and silicon carbide (SiC) as microwave absorbent. The bio-oil was characterized, and the effects of temperature, feedstock loading, particle sizes, and vacuum degree were analyzed. For wood sawdust, a temperature of 480°C, 50 grit SiC, with 2g/min of biomass feeding, were the optimal conditions, with a maximum bio-oil yield of 65 wt.%. For corn stover, temperatures ranging from 490°C to 560°C, biomass particle sizes from 0.9mm to 1.9mm, and vacuum degree lower than 100mmHg obtained a maximum bio-oil yield of 64 wt.%. This study shows that the use of microwave absorbents for fMAP is feasible and a promising technology to improve the practical values and commercial application outlook of microwave based pyrolysis.

  10. Non-fusion applications of RF and microwave technology

    Energy Technology Data Exchange (ETDEWEB)

    Caughman, J.B.O.; Baity, F.W.; Bigelow, T.S.; Gardner, W.L.; Hoffman, D.J.; Forrester, S.C.; White, T.L.

    1995-12-01

    The processing of materials using rf and/or microwave power is a broad area that has grown significantly in the past few years. The authors have applied rf and microwave technology in the areas of ceramic sintering, plasma processing, and waste processing. The sintering of ceramics in the frequency range of 50 MHz-28 GHz has lead to unique material characteristics compared to materials that have been sintered conventionally. It has been demonstrated that sintering can be achieved in a variety of materials, including alumina, zirconia, silicon carbide, and boron carbide. In the area of plasma processing, progress has been made in the development and understanding of high density plasma sources, including inductively coupled plasma (ICP) sources. The effects of processing conditions on the ion energy distribution at the substrate surface (a critical processing issue) have been determined for a variety of process gases. The relationship between modeling and experiment is being established. Microwave technology has also been applied to the treatment of radioactive and chemical waste. The application of microwaves to the removal of contaminated concrete has been demonstrated. Details of these programs and other potential application areas are discussed.

  11. Microwave synthesis of LiCoO2 cathode materials

    Institute of Scientific and Technical Information of China (English)

    YU Yong-li; ZHAI Xiu-jing; FU Yan; YAO Guang-chun

    2005-01-01

    LiCoO2 powder used as cathode material for lithium ion battery was synthesized by microwave heating markedly affect the purity, morphology and electrochemical behaviors of the samples. X-ray diffraction (XRD) patterns display that the samples synthesized at 360 W for 10 min are pure layered LiCoO2, and SEM photos show that the powders are crystalline with well-defined facets whose sizes are about 5 μm. The performance of Co3O4 and starting materials by microwave heating and conventional heating was investigated. It is indicated that Co3O4 decomposes into CoO in microwave field at 750 ℃ and the mechanism of preparing LiCoO2 by microwave heating is different from that by conventional heating. The electrochemical behaviors of samples were tested. As a result, the highest specific discharge capacity is 134.3 mAh/g and the coulomb efficiency is 92.56%.

  12. Develop Prototype Microwave Interferometry Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Converse, M. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-15

    A prototype microwave interferometer was created at NSTec to characterize moving conductive fronts in upcoming experiments. The interferometer is capable of operation in the ~26-40 GHz band, and interrogating fronts with more than 1 W of power.

  13. Ordered mesoporous silica: microwave synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fantini, M.C.A. [IF-USP, CP 66318, 05315-970, Sao Paulo, SP (Brazil)]. E-mail: mfantini@if.usp.br; Matos, J.R. [IQ-USP, CP 26077, 05599-970, Sao Paulo, SP (Brazil); Silva, L.C. Cides da [IQ-USP, CP 26077, 05599-970, Sao Paulo, SP (Brazil); Mercuri, L.P. [IQSC-USP, CP 780, 13560-970, Sao Carlos, SP (Brazil); Chiereci, G.O. [IQSC-USP, CP 780, 13560-970, Sao Carlos, SP (Brazil); Celer, E.B. [Department of Chemistry, Kent State University, Kent, OH 44240 (United States); Jaroniec, M. [Department of Chemistry, Kent State University, Kent, OH 44240 (United States)

    2004-09-25

    Ordered mesoporous silicas, FDU-1, synthesized by using triblock copolymer, EO{sub 39}BO{sub 47}EO{sub 39}, as template were hydrothermally treated in a microwave oven at 373 K for different periods of time. The structural and morphological properties of these silicas were investigated by X-ray diffraction and nitrogen adsorption and compared with those for the FDU-1 samples prepared by conventional hydrothermal treatment at 373 K. All samples were calcined at 813 K in N{sub 2} and air. This procedure succeeded in producing ordered cage-like mesoporous structures even after 15 min of the microwave treatment. The best sample was obtained after 60 min of the microwave treatment, which is reflected by narrow pore size distribution, uniform pore size entrances and thick mesopore walls. Longer time of the microwave treatment increased nonuniformity of the pore entrance sizes as evidenced by changes in the hysteresis loops of nitrogen adsorption isotherms.

  14. Microwave transistor oscillator frequency tripling

    OpenAIRE

    B. A. Kotserzhynskyi

    2010-01-01

    The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  15. Microwave transistor oscillator frequency tripling

    Directory of Open Access Journals (Sweden)

    B. A. Kotserzhynskyi

    2010-01-01

    Full Text Available The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  16. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  17. Microwave Ferrites for Cryogenic Applications

    OpenAIRE

    G. Dionne

    1997-01-01

    Recent advances in microwave ferrite device technology have seen the introduction of superconductivity that virtually eliminates insertion losses due to electrical conduction in microstrip circuits. The conventional ferrimagnetic spinel and garnet compositions, however, are not generally optimized for temperatures in the vicinity of 77 K and may require chemical redesign in order to realize the full potential of these devices. For microwave transmission, absorption losses may be reduced by a ...

  18. Microwave applications of soft ferrites

    CERN Document Server

    Pardavi-Horvath, M P

    2000-01-01

    Signal processing requires broadband, low-loss, low-cost microwave devices (circulators, isolators, phase shifters, absorbers). Soft ferrites (garnets, spinels, hexaferrites), applied in planar microwave devices, are reviewed from the point of view of device requirements. Magnetic properties, specific to operation in high-frequency electromagnetic fields, are discussed. Recent developments in thick film ferrite technology and device design are reviewed. Magnetic losses related to planar shape and inhomogeneous internal fields are analyzed.

  19. A Transient-State Simulation of lonization Effects in a Microwave Tube

    Institute of Scientific and Technical Information of China (English)

    GONG Hua-Rong; GONG Yu-Bin; WEI Yan-Yu; LU Zhi-Gang; FAN Mei; WANG Wen-Xiang

    2006-01-01

    A model for studying the ionization effects in a microwave tube has been developed. This model is simulated by a two-dimensional particle-in-cell code with the Mont Carlo collision model for the electron-neutral ionization process. The transient-state process of ion noise and ion focusing effects are observed. A simple theory about ion motion is given for interpreting the phenomenon of the ion moving to the wall of the tube when the beam is not neutralized. The computed result agrees with the experiment and simulation result.

  20. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    Science.gov (United States)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  1. Microwave Drying of Moist Coals

    Science.gov (United States)

    Salomatov, Vl. V.; Karelin, V. A.; Sladkov, S. O.; Salomatov, Vas. V.

    2017-03-01

    Physical principles and examples of practical implementation of drying large bodies of coal by microwave radiation are considered. It is shown that energy consumption in microwave drying of brown coals decreases to 1.5-1.8 (kW·h)/ kg as compared with traditional types of drying, for which the expenditures of energy amount to 3.0 (kW·h)/kg. In using microwave drying, the technological time of drying decreases to 4 h, whereas the time of convective drying, with other things being equal, comes to 8-20 h. Parallel with microwave radiation drying, grinding of a fuel takes place, as well as entrainment of such toxic and ecologically harmful elements as mercury, chlorine, phosphorus, sulfur, and nitrogen. An analysis of the prospects of using a microwave energy for drying coal fuel has shown that microwave radiation makes it possible to considerably economize in energy, increase explosional safety, improve the ecological situation, and reduce the metal content and overall dimensions of the equipment.

  2. Study of federal microwave standards

    Energy Technology Data Exchange (ETDEWEB)

    David, L.

    1980-08-01

    Present and future federal regulatory processes which may impact the permissible levels of microwave radiation emitted by the SPS Microwave Power Transmission (MPTS) were studied. An historical development of US occupational and public microwave standards includes an overview of Western and East European philosophies of environmental protection and neurophysiology which have led to the current widely differing maximum permissible exposure limits to microwaves. The possible convergence of microwave standards is characterized by a lowering of Western exposure levels while Eastern countries consider standard relaxation. A trend toward stricter controls on activities perceived as harmful to public health is under way as is interest in improving the federal regulatory process. Particularly relevant to SPS is the initiation of long-term, low-level microwave exposure programs. Coupled with new developments in instrumentation and dosimetry, the results from chronic exposure program and population exposure studies could be expected within the next five to ten years. Also discussed is the increasing public concern that rf energy is yet another hazardous environmental agent.

  3. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  4. Microwave assisted esterification of acidified oil from waste cooking oil by CERP/PES catalytic membrane for biodiesel production.

    Science.gov (United States)

    Zhang, Honglei; Ding, Jincheng; Zhao, Zengdian

    2012-11-01

    The traditional heating and microwave assisted method for biodiesel production using cation ion-exchange resin particles (CERP)/PES catalytic membrane were comparatively studied to achieve economic and effective method for utilization of free fatty acids (FFAs) from waste cooking oil (WCO). The optimal esterification conditions of the two methods were investigated and the experimental results showed that microwave irradiation exhibited a remarkable enhanced effect for esterification compared with that of traditional heating method. The FFAs conversion of microwave assisted esterification reached 97.4% under the optimal conditions of reaction temperature 60°C, methanol/acidified oil mass ratio 2.0:1, catalytic membrane (annealed at 120°C) loading 3g, microwave power 360W and reaction time 90min. The study results showed that it is a fast, easy and green way to produce biodiesel applying microwave irradiation.

  5. On the suitability of longitudinal profile measurements using Coherent Smith-Purcell radiation for high current proton beams

    CERN Document Server

    Barros, Joanna; Vieille-Grosjean, Mélissa; Kittelmann, Irena Dolenc; Thomas, Cyrille

    2014-01-01

    The use of Smith-Purcell radiation to measure electrons longitudinal profiles has been demonstrated at several facilities in the picosecond and sub-picosecond range. There is a strong interest for the development of non intercepting longitudinal profile diagnostics for high current proton beams. We present here results of simulations on the expected yield of longitudinal profile monitors using Smith-Purcell radiation for such proton beams.

  6. Surface Nanocrystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    OpenAIRE

    2013-01-01

    The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB) technique. The structures of the nanocrystallized surface were characterized by X-ray diffraction and electron microscopy. Two nanostructures consisting of fine austenite grains (50–150 nm) and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that th...

  7. Stabilized γ-BIMNVOX solid electrolyte: Ethylene glycol–citrate sol–gel synthesis, microwave-assisted calcination, and structural and electrical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Al-Areqi, Niyazi A.S., E-mail: niyazi.alareqi@gmail.com [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Beg, Saba [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Al-Alas, Ahlam [Department of Chemistry, Faculty of Applied Science, Taiz University, Taiz, Republic of Yemen (Yemen); Hafeez, Shehla [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India)

    2013-12-25

    Highlights: •γ-BIMNVOX was synthesized by ethylene glycol–citrate sol–gel route. •γ-BIMNVOX crystallizes by 25-min microwave-assisted calcination. •Smaller particle sizes for microwave calcined BIMNVOX samples. •Best oxide-ion performance for microwave calcined BIMNVOX samples. -- Abstract: Samples of γ-BIMNVOX (Bi{sub 2}V{sub 1−x}Mn{sub x}O{sub 5.5−x/2}; 0.13 ⩽ x ⩽ 0.20) system were synthesized by an ethylene glycol–citrate sol–gel route. The resulting xerogels were then calcined by the microwave heating using a modified domestic microwave oven operated at 2.45 GHz. Microwave-assisted calcination samples in comparison with other conventionally calcined samples were characterized in terms of phase crystallization, stabilization and particle size using simultaneous thermogravimetric–differential thermal analysis (TG–DTA), X-ray powder diffraction (XRPD) and scanning electron microscopy (SEM). The AC impedance spectroscopy was employed for electrical characterization. It was found that the microwave-assisted calcination route successfully produces better crystalline stabilized γ-BIMNVOX samples with appreciably small average particle sizes after only 25 min of microwave heating. The electrical properties of microwave calcined γ-BIMNVOX system make it an advanced low-temperature solid electrolyte suitable for use in oxide-ion based electrochemical applications.

  8. Microwave Sterilization and Depyrogenation System

    Science.gov (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.

    2009-01-01

    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time

  9. A two-component model for the electron distribution function in a high-current pseudospark or back-lighted thyratron

    Science.gov (United States)

    Bauer, Hannes R.; Kirkman, George; Gundersen, Martin A.

    1990-04-01

    Temperature, energy, and densities of two electron distribution function components, including an isotropic bulk part and an anisotropic beam, are analyzed for a hydrogen pseudospark and/or backlighted thyratron switch plasma with a peak electron density of 1-3 x 10 to the 15th/cu cm and peak current density of about 10 kA/sq cm. Estimates of a very small cathode-fall width during the conduction phase and high electric field strengths lead to the injection of an electron beam with energies of about 100 eV and density (1-10) x 10 to the 13th/cu cm into a Maxwellian bulk plasma. Collisional and radiative processes of monoenergetic beam electrons, bulk plasma electrons and ions, and atomic hydrogen are modeled by a set of rate equations, and line intensity ratios are compared with measurements. Under these high-current conditions, for an initial density nH2 = 10 to the 16th/cu cm and electron temperature of 0.8-1 eV, the estimated beam density is about (1-10) x 10 to the 13th/cu cm.

  10. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Kevin S. (Ketech Corporation, Albuquerque, NM); Long, Finis W.; Sinebryukhov, Vadim A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Kim, Alexandre A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Wakeland, Peter Eric (Ketech Corporation, Albuquerque, NM); McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Savage, Mark Edward; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-09-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores

  11. Prevention of sulfur diffusion using MoS2-intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries.

    Science.gov (United States)

    Tiwari, Anand P; Yoo, HeeJoun; Lee, JeongTaik; Kim, Doyoung; Park, Jong Hyeok; Lee, Hyoyoung

    2015-07-28

    We report new three-dimensional (3D)-nanostructured MoS2-carbonaceous materials in which MoS2 sheets are intercalated between the graphite layers that possess a multiply repeated graphite/MoS2/graphite structure which prevents the aggregation of MoS2 and diffusion of sulfur from carbonaceous materials, enhancing the cycling stability of Li-ion batteries. We developed an efficient and scalable process applicable to mass production for synthesizing non-aggregated MoS2-intercalated 3D hybrid-nanostructured graphite based on stress induced and microwave irradiation. X-ray diffraction, X-ray photospectroscopy, Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy analyses demonstrated that the as-synthesized materials consisted of MoS2-intercalated 3D hybrid-nanostructured graphite platelets that had a multiply repeated graphite/MoS2/graphite structure. The obtained MoS2-graphite powder surpasses MoS2 as an anode material in terms of specific capacity, cyclic stability, and rate performances at high current densities for Li-ion batteries. The electrochemical impedance spectroscopy demonstrated that the graphite sheets not only reduced the contact resistance in the electrode but also facilitated electron transfer in the lithiation/delithiation processes. The superior electrochemical performances especially for the cycling stability of the Li-ion battery originate from prevention of the sulfur diffusion of the MoS2-intercalated 3D-nanostructured graphite.

  12. Anomalous Microwave Emission from Spinning Dust and its Polarization Spectrum

    CERN Document Server

    Hoang, Thiem

    2015-01-01

    Nearly twenty years after the discovery of anomalous microwave emission (AME) that contaminates to the cosmic microwave background (CMB) radiation, its origin remains inconclusive. Observational results from numerous experiments have revealed that AME is most consistent with spinning dust emission from rapidly spinning ultrasmall interstellar grains. In this paper, I will first review our improved model of spinning dust, which treats realistic dynamics of wobbling non-spherical grains, impulsive interactions of grains with ions in the ambient plasma, and some other important effects. I will then discuss recent progress in quantifying the polarization of spinning dust emission from polycyclic aromatic hydrocarbons. I will finish with a brief discussion on remaining issues about the origins of AME.

  13. Imaging Techniques for Microwave Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Donne, T. [FOM-Institute for Plasma Physics Rijnhuizen, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Luhmann Jr, N.C. [University of California, Davis, CA 95616 (United States); Park, H.K. [POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Tobias, B.

    2011-07-01

    Advances in microwave technology have made it possible to develop a new generation of microwave imaging diagnostics for measuring the parameters of magnetic fusion devices. The most prominent of these diagnostics is electron cyclotron emission imaging (ECE-I). After the first generation of ECE-I diagnostics utilized at the TEXT-U, RTP and TEXTOR tokamaks and the LHD stellarator, new systems have recently come into operation on ASDEX-UG and DIII-D, soon to be followed by a system on KSTAR. The DIII-D and KSTAR systems feature dual imaging arrays that observe different parts of the plasma. The ECE-I diagnostic yields two-dimensional movies of the electron temperature in the plasma and has given already new insights into the physics of sawtooth oscillations, tearing modes and edge localized modes. Microwave Imaging Reflectometry (MIR) is used on LHD to measure electron density fluctuations. A pilot MIR system has been tested at TEXTOR and, based on the promising results, a new system is now under design for KSTAR. The system at TEXTOR was used to measure the plasma rotation velocity. The system at KSTAR and also the one on LHD will be/are used for measuring the profile of the electron density fluctuations in the plasma. Other microwave imaging diagnostics are phase imaging interferometry, and imaging microwave scattering. The emphasis in this paper will be largely focused on ECE-I. First an overview of the advances in microwave technology are discussed, followed by a description of a typical ECE-I system along with some typical experimental results. Also the utilization of imaging techniques in other types of microwave diagnostics will be briefly reviewed. This document is composed of the slides of the presentation. (authors)

  14. Microwave Argon Plasma Torch

    Science.gov (United States)

    2013-07-01

    an electron-ion pair in the discharge. Fig. 2. EEDF is non - Maxwellian and changes along the plasma column The electron–neutral collision...plasma radius. Even at atmospheric pressure the EEDF is non - Maxwellian and it is changing along the plasma column. ...18 31st ICPIG, July 14-19, 2013, Granada, Spain EEDF usually strongly differs from Maxwellian and chages along the plasma column (this is

  15. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    Science.gov (United States)

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  16. Near-field scanning microwave microscopy of microwave devices

    Science.gov (United States)

    Vlahacos, C. P.; Steinhauer, David E.; Dutta, S.; Anlage, S. M.; Wellstood, F. C.; Newman, H.

    1997-03-01

    We have developed a scanning microwave microscope which can presently image features with a spatial resolution of 10-100 μm in the frequency range 5-15 GHz.(C. P. Vlahacos, et al.), Appl. Phys. Lett. 69, 3272 (1996).^,(S. M. Anlage, et al.), IEEE. Trans. Appl. Supercond. (1997). The microscope consists of a resonant section of a coaxial cable which is terminated with a small-diameter open-ended coaxial probe. Images are made by scanning the sample under the probe while recording the induced near-field microwave voltage as a function of sample position. We will present images for several microwave devices, including an X-band microstrip planar ferrite circulator and a high-temperature superconducting microstrip YBa_2Cu_3O_7-δ resonator, and compare them to the calculated field profiles.

  17. Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes.

    Science.gov (United States)

    Kang, Wenpei; Tang, Yongbing; Li, Wenyue; Li, Zhangpeng; Yang, Xia; Xu, Jun; Lee, Chun-Sing

    2014-06-21

    A composite of porous CuCo2O4 nanocubes well wrapped by reduced graphene oxide (rGO) sheets has been synthesized by a facile microwave-assisted solvothermal reaction and applied as anode in lithium ion batteries (LIBs). The porous structure of the CuCo2O4 nanocubes not only provides a high surface area for contact with the electrolyte, but also assists by accommodating volume change upon charging-discharging. Impedance measurements and transmission electron microscopy show that incorporation of rGO further decreases the charge transfer resistance and improves the structural stability of the composite. As an anode material for a LIB, the composite exhibits a high stable capacity of ∼ 570 mA h g(-1) at a current density of 1000 mA g(-1) after 350 cycles. With a high specific surface area and a low charge transfer resistance, the composite anode shows impressive performance especially at high current density. The LIB shows a high capacity of ∼ 450 mA h g(-1) even at a high current density of 5000 mA g(-1), demonstrating the composite's potential for applications in LIBs with long cycling life and high power density.

  18. Micron-focused ion beamlets

    Science.gov (United States)

    Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2010-05-01

    A multiple beam electrode system (MBES) is used to provide focused ion beamlets of elements from a compact microwave plasma. In this study, a honeycomb patterned plasma electrode with micron size apertures for extracting ion beamlets is investigated. The performance of the MBES is evaluated with the help of two widely adopted and commercially available beam simulation tools, AXCEL-INP and SIMION, where the input parameters are obtained from our experiments. A simple theoretical model based upon electrostatic ray optics is employed to compare the results of the simulations. It is found that the results for the beam focal length agree reasonably well. Different geometries are used to optimize the beam spot size and a beam spot ˜5-10 μm is obtained. The multiple ion beamlets will be used to produce microfunctional surfaces on soft matter like polymers. Additionally, the experimental set-up and plans are presented in the light of above applications.

  19. Microwave Radiometer for Aviation Safety Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SBIR Phase I Project proposes a new passive microwave airborne sensor for in flight icing hazard detection, Microwave Radiometer for Aviation Safety. A feasibility...

  20. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Microwave AsherA tool using microwave oxygen plasma to remove organics on the surfacesSpecifications / Capabilities:Frequency: 2.45 GHzPower:...