WorldWideScience

Sample records for high-beta nstx plasmas

  1. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  2. Progress in understanding error-field physics in NSTX spherical torus plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Gates, D.A. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S.P. [Princeton Plasma Physics Laboratory (PPPL); Park, J.-K. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Berkery, J.W. [Columbia University; Egan, A. [University of Pennsylvania; Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. M. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Liu, Y. Q. [Culham Science Center, Abington, UK; Sontag, Aaron C [ORNL; Swanson, D. [Princeton Plasma Physics Laboratory (PPPL); Yuh, H. [Nova Photonics; Zhu, W. [Credit Suisse, New York, NY

    2010-01-01

    The low-aspect ratio, low magnetic field and wide range of plasma beta of NSTX plasmas provide new insight into the origins and effects of magnetic field errors. An extensive array of magnetic sensors has been used to analyse error fields, to measure error-field amplification and to detect resistive wall modes (RWMs) in real time. The measured normalized error-field threshold for the onset of locked modes shows a linear scaling with plasma density, a weak to inverse dependence on toroidal field and a positive scaling with magnetic shear. These results extrapolate to a favourable error-field threshold for ITER. For these low-beta locked-mode plasmas, perturbed equilibrium calculations find that the plasma response must be included to explain the empirically determined optimal correction of NSTX error fields. In high-beta NSTX plasmas exceeding the n = 1 no-wall stability limit where the RWM is stabilized by plasma rotation, active suppression of n = 1 amplified error fields and the correction of recently discovered intrinsic n = 3 error fields have led to sustained high rotation and record durations free of low-frequency core MHD activity. For sustained rotational stabilization of the n = 1 RWM, both the rotation threshold and the magnitude of the amplification are important. At fixed normalized dissipation, kinetic damping models predict rotation thresholds for RWM stabilization to scale nearly linearly with particle orbit frequency. Studies for NSTX find that orbit frequencies computed in general geometry can deviate significantly from those computed in the high-aspect ratio and circular plasma cross-section limit, and these differences can strongly influence the predicted RWM stability. The measured and predicted RWM stability is found to be very sensitive to the E x B rotation profile near the plasma edge, and the measured critical rotation for the RWM is approximately a factor of two higher than predicted by the MARS-F code using the semi-kinetic damping model.

  3. Progress in Understanding Error-field Physics in NSTX Spherical Torus Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    E. Menard, R.E. Bell, D.A. Gates, S.P. Gerhardt, J.-K. Park, S.A. Sabbagh, J.W. Berkery, A. Egan, J. Kallman, S.M. Kaye, B. LeBlanc, Y.Q. Liu, A. Sontag, D. Swanson, H. Yuh, W. Zhu and the NSTX Research Team

    2010-05-19

    The low aspect ratio, low magnetic field, and wide range of plasma beta of NSTX plasmas provide new insight into the origins and effects of magnetic field errors. An extensive array of magnetic sensors has been used to analyze error fields, to measure error field amplification, and to detect resistive wall modes in real time. The measured normalized error-field threshold for the onset of locked modes shows a linear scaling with plasma density, a weak to inverse dependence on toroidal field, and a positive scaling with magnetic shear. These results extrapolate to a favorable error field threshold for ITER. For these low-beta locked-mode plasmas, perturbed equilibrium calculations find that the plasma response must be included to explain the empirically determined optimal correction of NSTX error fields. In high-beta NSTX plasmas exceeding the n=1 no-wall stability limit where the RWM is stabilized by plasma rotation, active suppression of n=1 amplified error fields and the correction of recently discovered intrinsic n=3 error fields have led to sustained high rotation and record durations free of low-frequency core MHD activity. For sustained rotational stabilization of the n=1 RWM, both the rotation threshold and magnitude of the amplification are important. At fixed normalized dissipation, kinetic damping models predict rotation thresholds for RWM stabilization to scale nearly linearly with particle orbit frequency. Studies for NSTX find that orbit frequencies computed in general geometry can deviate significantly from those computed in the high aspect ratio and circular plasma cross-section limit, and these differences can strongly influence the predicted RWM stability. The measured and predicted RWM stability is found to be very sensitive to the E × B rotation profile near the plasma edge, and the measured critical rotation for the RWM is approximately a factor of two higher than predicted by the MARS-F code using the semi-kinetic damping model.

  4. High-beta plasma blobs in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    Full Text Available Equator-S frequently encountered, i.e. on 30% of the orbits between 1 March and 17 April 1998, strong variations of the magnetic field strength of typically 5–15-min duration outside about 9RE during the late-night/early-morning hours. Very high-plasma beta values were found, varying between 1 and 10 or more. Close conjunctions between Equator-S and Geotail revealed the spatial structure of these "plasma blobs" and their lifetime. They are typically 5–10° wide in longitude and have an antisymmetric plasma or magnetic pressure distribution with respect to the equator, while being altogether low-latitude phenomena 
    (≤ 15°. They drift slowly sunward, exchange plasma across the equator and have a lifetime of at least 15–30 min. While their spatial structure may be due to some sort of mirror instability, little is known about the origin of the high-beta plasma. It is speculated that the morningside boundary layer somewhat further tailward may be the source of this plasma. This would be consistent with the preference of the plasma blobs to occur during quiet conditions, although they are also found during substorm periods. The relation to auroral phenomena in the morningside oval is uncertain. The energy deposition may be mostly too weak to generate a visible signature. However, patchy aurora remains a candidate for more disturbed periods.

    Key words. Magnetospheric physics (plasma convection; plasma sheet; plasma waves and instabilities

  5. Progress toward commissioning and plasma operation in NSTX-U

    Science.gov (United States)

    Ono, M.; Chrzanowski, J.; Dudek, L.; Gerhardt, S.; Heitzenroeder, P.; Kaita, R.; Menard, J. E.; Perry, E.; Stevenson, T.; Strykowsky, R.; Titus, P.; von Halle, A.; Williams, M.; Atnafu, N. D.; Blanchard, W.; Cropper, M.; Diallo, A.; Gates, D. A.; Ellis, R.; Erickson, K.; Hosea, J.; Hatcher, R.; Jurczynski, S. Z.; Kaye, S.; Labik, G.; Lawson, J.; LeBlanc, B.; Maingi, R.; Neumeyer, C.; Raman, R.; Raftopoulos, S.; Ramakrishnan, R.; Roquemore, A. L.; Sabbagh, S. A.; Sichta, P.; Schneider, H.; Smith, M.; Stratton, B.; Soukhanovskii, V.; Taylor, G.; Tresemer, K.; Zolfaghari, A.; The NSTX-U Team

    2015-07-01

    The National Spherical Torus Experiment-Upgrade (NSTX-U) is the most powerful spherical torus facility at PPPL, Princeton USA. The major mission of NSTX-U is to develop the physics basis for an ST-based Fusion Nuclear Science Facility (FNSF). The ST-based FNSF has the promise of achieving the high neutron fluence needed for reactor component testing with relatively modest tritium consumption. At the same time, the unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. NSTX-U further aims to determine the attractiveness of the compact ST for addressing key research needs on the path toward a fusion demonstration power plant (DEMO). The upgrade will nearly double the toroidal magnetic field BT to 1 T at a major radius of R0 = 0.93 m, plasma current Ip to 2 MA and neutral beam injection (NBI) heating power to 14 MW. The anticipated plasma performance enhancement is a quadrupling of the plasma stored energy and near doubling of the plasma confinement time, which would result in a 5-10 fold increase in the fusion performance parameter nτ T. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the favourable trend in transport towards the low collisionality FNSF regime. The NSTX-U first plasma is planned for the Summer of 2015, at which time the transition to plasma operations will occur.

  6. Modeling of far SOL plasma transport in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Sergei Krasheninnikov; Alexander Pigarov

    2005-11-02

    For better understanding and characterization of non-diffusive transport occurring in the NSTX tokamak edge plasma, we performed extensive simulations of NSTX edge plasmas with the multi-fluid two-dimensional UEDGE code by using realistic model for impurity sputtering sources and hybrid model for anomalous cross-field transport. Our cross-field transport model incorporates the effects of non-diffusive intermittent transport by introducing anomalous convective velocities whose spatial profile is adjusted for each ion charge state to match available experimental data. The research in 2002-2005 financial years was focused on the following areas: (i) development of capabilities for UEDGE simulation of NSTX spectroscopy data (i.e., the 3D real-geometry postprocessor UEDGE tools for comparison between UEDGE and experimental data), (ii) simulation of multi-diagnostic data from NSTX with UEDGE, (iii) study of anomalous cross-field convective transport of impurity ions, (iv) analysis of divertor plasma opacity to resonance radiation, and (v) study the effects of ballooning-like anomalous cross-field transport and spherical-torus magnetic configuration on parallel plasma flows in the SOL.

  7. Feasibility study of ECRH in NSTX-U startup plasma

    Science.gov (United States)

    Lopez, N. A.; Poli, F.; Taylor, G.; Harvey, R.; Petrov, Yu.

    2016-10-01

    A key mission goal of the National Spherical Torus eXperiment Upgrade (NSTX-U) is the demonstration of fully non-inductive startup and operation. In part to accomplish this, a 1MW, 28 GHz ECRH system is presently being developed for implementation on NSTX-U in 2018. Like most spherical tokamaks, NSTX-U operates in the overdense regime (fpe>fce) , which limits traditional ECRH to the early startup phase. An extensive modelling effort of the propagation and absorption of EC waves in the evolving plasma is thus required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and for current drive during this window. In fact, the ECRH system will play an important role in preparing a target plasma for subsequent injection of IC waves and NBI. Here we assess the feasibility of O1-mode ECRH in NSTX-U startup plasma at full field of 1T through time-dependent simulations performed with the transport solver TRANSP. Linear ray-tracing calculations conducted by GENRAY are coupled into the TRANSP framework, allowing the plasma equilibrium and the temperature profiles to evolve self-consistently in response to the injected microwave power. Furthermore, we investigate additional possibilities of heating and current drive made available through coupling the injected O-mode power to the electrostatic EBW via the slow X-mode as an intermediary.

  8. High harmonic fast waves in high beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayuki

    1995-04-01

    High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong ({approximately} 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime ({beta}{sub i} = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and {alpha}-heating does not appear to modify the accessibility condition nor cause excessive wave absorption.

  9. Cluster observes formation of high-beta plasma blobs

    Directory of Open Access Journals (Sweden)

    G. Haerendel

    2004-07-01

    Full Text Available Late in a sequence of four moderate substorms on 26 July 2001, Cluster observed periods of a few minutes durations of high-beta plasma events (B<10nT, β=2-30, connected with dipolarizations of the magnetic field. Cluster was located near 02:45 MLT, at R=19RE and at about 5°N GSM. These events began late in the recovery phase of the second and about 5min before onset of the third substorm and lasted for three hours, way beyond the recovery phase of the fourth substorm. The most remarkable observation is that the onset coincided with the arrival of energetic (E~7keV O+ ions and energetic electrons obviously from the ionosphere, which tended to dominate the plasma composition throughout the remaining time. The magnetic flux and plasma transport is continuously directed equatorward and earthward, with oscillatory east-west movements superposed. Periods of the order of 5-10min and strong correlations between the magnetic elevation angle and log β (correlation coefficient 0.78 are highly reminiscent of the high-beta plasma blobs discovered with Equator-S and Geotail between 9 and 11RE in the late night/early morning sector (Haerendel et al., 1999.

    We conclude that Cluster observed the plasma blob formation in the tail plasma sheet, which seems to occur predominantly in the recovery and post-recovery phases of substorms. This is consistent with the finding of Equator-S and Geotail. The origin is a pulsed earthward plasma transport with velocity amplitudes of only several tens of km/s.

  10. The national spherical torus experiment (NSTX) research programme and progress towards high beta, long pulse operating scenarios

    Science.gov (United States)

    Synakowski, E. J.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Darrow, D. S.; Efthimion, P. C.; Fredrickson, E. D.; Gates, D. A.; Gilmore, M.; Grisham, L. R.; Hosea, J. C.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Maingi, R.; Manickam, J.; Maqueda, R.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Ono, M.; Paoletti, F.; Park, H. K.; Paul, S. F.; Peng, Y.-K. M.; Phillips, C. K.; Ramakrishnan, S.; Raman, R.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Skinner, C. H.; Soukhanovskii, V.; Stevenson, T.; Stutman, D.; Swain, D. W.; Taylor, G.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Budny, R.; Carter, M. D.; Chang, C. S.; Chrzanowski, J.; Davis, W.; Deng, B.; Doyle, E. J.; Dudek, L.; Egedal, J.; Ellis, R.; Ferron, J. R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Goldston, R. J.; Harvey, R.; Hatcher, R. E.; Hawryluk, R. J.; Heidbrink, W.; Hill, K. W.; Houlberg, W.; Jarboe, T. R.; Jardin, S. C.; Ji, H.; Kalish, M.; Lawrance, J.; Lao, L. L.; Lee, K. C.; Levinton, F. M.; Luhmann, N. C.; Majeski, R.; Marsala, R.; Mastravito, D.; Mau, T. K.; McCormack, B.; Menon, M. M.; Mitarai, O.; Nagata, M.; Nishino, N.; Okabayashi, M.; Oliaro, G.; Pacella, D.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Pinsker, R.; Porter, G. D.; Ram, A. K.; Redi, M.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Schaffer, M.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Takase, Y.; Tang, X.; Vero, R.; Wampler, W. R.; Wurden, G. A.; Xu, X. Q.; Yang, J. G.; Zeng, L.; Zhu, W.

    2003-12-01

    A major research goal of the national spherical torus experiment is establishing long-pulse, high beta, high confinement operation and its physics basis. This research has been enabled by facility capabilities developed during 2001 and 2002, including neutral beam (up to 7 MW) and high harmonic fast wave (HHFW) heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with \\beta _T \\equiv \\langle p \\rangle /(B_{T0}^{2}/2\\mu_{0}) of up to 35%. Normalized beta values often exceed the no-wall limit, and studies suggest that passive wall mode stabilization enables this for H mode plasmas with broad pressure profiles. The viability of long, high bootstrap current fraction operations has been established for ELMing H mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fuelling are likely contributing to a reduction in H mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary heated plasmas examined thus far. HHFW effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is obtained by comparision of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. Studies of emissions from electron Bernstein waves indicate a density scale length dependence of their transmission across the upper hybrid resonance near the plasma edge that is consistent with theoretical predictions. A peak heat flux to the divertor targets of 10 MW m-2 has been measured in the H mode, with large asymmetries being observed in the power deposition between the inner and outer strike points. Non-inductive plasma startup studies have focused on coaxial helicity injection. With this technique

  11. Electromagnetic gyrokinetic turbulence in high-beta helical plasmas

    Science.gov (United States)

    Ishizawa, Akihiro

    2013-10-01

    Gyrokinetic simulation of electromagnetic turbulence in finite-beta plasmas is important for predicting the performance of fusion reactors. Whereas in low-beta tokamaks the zonal flow shear acts to regulate ion temperature gradient (ITG) driven turbulence, it has often been observed that the kinetic ballooning mode (KBM) and, at moderate-beta, the ITG mode continue to grow without reaching a physically relevant level of saturation. The corresponding problem in helical high-beta plasmas, the identification of a saturation mechanism for microturbulence in regimes where zonal flow generation is too weak, is the subject of the present work. This problem has not been previously explored because of numerical difficulties associated with complex three-dimensional magnetic structures as well as multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The present study identifies a new saturation process of the KBM turbulence originating from the spatial structure of the KBM instabilities in a high-beta Large Helical Device (LHD) plasma. Specifically, the most unstable KBM in LHD has an inclined mode structure with respect to the mid-plane of a torus, i.e. it has finite radial wave-number in flux tube coordinates, in contrast to KBMs in tokamaks as well as ITG modes in tokamaks and helical systems. The simulations reveal that the growth of KBMs in LHD is saturated by nonlinear interactions of oppositely inclined convection cells through mutual shearing, rather than by the zonal flow shear. The mechanism is quantitatively evaluated by analysis of the nonlinear entropy transfer.

  12. Nonlinear Simulation of Plasma Response to the NSTX Error Field

    Science.gov (United States)

    Breslau, J. A.; Park, J. K.; Boozer, A. H.; Park, W.

    2008-11-01

    In order to better understand the effects of the time-varying error field in NSTX on rotation braking, which impedes RWM stabilization, we model the plasma response to an applied low-n external field perturbation using the resistive MHD model in the M3D code. As an initial benchmark, we apply an m=2, n=1 perturbation to the flux at the boundary of a non-rotating model equilibrium and compare the resulting steady-state island sizes with those predicted by the ideal linear code IPEC. For sufficiently small perturbations, the codes agree; for larger perturbations, the nonlinear correction yields an upper limit on the island width beyond which stochasticity sets in. We also present results of scaling studies showing the effects of finite resistivity on island size in NSTX, and of time-dependent studies of the interaction between these islands and plasma rotation. The M3D-C1 code is also being evaluated as a tool for this analysis; first results will be shown. J.E. Menard, et al., Nucl. Fus. 47, S645 (2007). W. Park, et al., Phys. Plasmas 6, 1796 (1999). J.K. Park, et al., Phys. Plasmas 14, 052110 (2007). S.C. Jardin, et al., J. Comp. Phys. 226, 2146 (2007).

  13. Effect of Boronization on Ohmic Plasmas in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H.; Kugel, H.; Maingi, R.; Wampler, W.R.; Blanchard, W.; Bell, M.; Bell, R.; LeBlanc, B.; Gates, D.; Kaye, S.; LaMarche, P.; Menard, J.; Mueller, D.; Na, H.K.; Nishino, N.; Paul, S.; Sabbagh, S.; Soukhanovskii, V.

    2001-03-27

    Boronization of the National Spherical Torus Experiment (NSTX) has enabled access to higher density, higher confinement plasmas. A glow discharge with 4 mTorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B+C areal density of 10 to the 18 (B+C) cm to the -2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by x15, carbon emission reduced by two and copper reduced to undetectable levels. After boronization, the plasma current flattop time increased by 70% enabling access to higher density, higher confinement plasmas.

  14. Electromagnetic instability in high-beta plasmas with generalized distribution functions

    Science.gov (United States)

    Buti, B.

    1974-01-01

    The electrostatic instabilities in an anisotropic plasma have been studied quite extensively, but the electromagnetic instabilities in high-beta plasmas, where they play an important role, have not been thoroughly investigated. Recently, Davidson and Wu (1970) looked into the ordinary mode electromagnetic instability which can arise in high-beta bi-Maxwellian plasmas. Here, the magnetic instability is discussed in (A, beta) space (A is the anisotropy in the temperature of the plasma species and beta is the ratio of the kinetic pressure to the magnetic pressure), which can occur in generalized non-Maxwellian plasmas with an inverted population of different species.

  15. Suppression of Electron Thermal Conduction in High $\\beta$ Plasma

    CERN Document Server

    Roberg-Clark, G T; Reynolds, C S; Swisdak, M

    2016-01-01

    Electron heat conduction is explored with particle-in-cell simulations and analytic modeling in a high $\\beta$ system relevant to galaxy clusters. Linear wave theory reveals that whistler waves are driven unstable by electron heat flux even when the heat flux is weak. The resonant interaction of electrons with these waves plays a critical role in controlling the impact of the waves on the heat flux. In a 1D model only electrons moving opposite in direction to the heat flux resonate with the waves and electron heat flux is only modestly reduced. In a 2D system transverse whistlers also resonate with electrons propagating in the direction of the heat flux and resonant overlap leads to strong suppression of electron heat flux. The results suggest that electron heat conduction might be strongly suppressed in galaxy clusters.

  16. Achieving a long-lived high-beta plasma state by energetic beam injection.

    Science.gov (United States)

    Guo, H Y; Binderbauer, M W; Tajima, T; Milroy, R D; Steinhauer, L C; Yang, X; Garate, E G; Gota, H; Korepanov, S; Necas, A; Roche, T; Smirnov, A; Trask, E

    2015-04-23

    Developing a stable plasma state with high-beta (ratio of plasma to magnetic pressures) is of critical importance for an economic magnetic fusion reactor. At the forefront of this endeavour is the field-reversed configuration. Here we demonstrate the kinetic stabilizing effect of fast ions on a disruptive magneto-hydrodynamic instability, known as a tilt mode, which poses a central obstacle to further field-reversed configuration development, by energetic beam injection. This technique, combined with the synergistic effect of active plasma boundary control, enables a fully stable ultra-high-beta (approaching 100%) plasma with a long lifetime.

  17. Magnetic Diagnostics For Equilibrium Reconstruction And Realtime Plasma Control In NSTX-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Stefan P. [PPPL; Erickson, Keith [PPPL; Kaita, Robert [PPPL; Lawson, John [PPPL; Mozulay, Robert [PPPL; Mueller, Dennis [PPPL; Que, Weiguo [PPPL; Rahman, Nabidur [PPPL; Schneider, Hans [PPPL; Smalley, Gustav [PPPL; Tresemer, Kelsey [PPPL

    2014-06-01

    This paper describes aspects of magnetic diagnostics for realtime control in NSTX-U. The sensor arrangement on the upgraded center column is described. New analog and digital circuitry for processing the plasma current rogowski data are presented. An improved algorithm for estimating the plasma vertical velocity for feedback control is presented.

  18. Operational characteristics and non-inductive plasmas on NSTX-U

    Science.gov (United States)

    Mueller, Dennis

    2016-10-01

    Start-up and ramp-up of NSTX-U plasmas with nearly full solenoid pre-charge required higher loop voltage than on NSTX in agreement with modeling. NSTX-U has operated with a plasma current (Ip) of 0.65 MA at a toroidal field (BT) of 0.63 T for 2s in L-Mode. These plasmas allowed for the initial investigation of error field correction which found a difference between correction during Ip flattop and during ramp-up. Plasma control using feedback on the X-Point locations or the X-point height and outer strike point locations is routinely used. Because an ST does not have a single coil set that controls the inner gap, it was challenging to control the time at which the plasma diverted. A novel approach was used to trade off accuracy on the outer plasma shape to achieve a reproducible inner gap. These control tools allowed study of ELMy H-mode operation at Ip = 1 MA with boronized walls. A major long-term goal for NSTX-U is totally non-inductive operation. The plan calls for initiating the plasma with coaxial helicity injection (CHI) heatied by ECH, then current drive and heating by HHFW and NBI. CHI will be used in the new geometry to demonstrate results comparable to NSTX and provide information to inform plans to upgrade the available voltage from 1.65 to 2 kV next year. Low Ip plasmas will be used to study the dependence of current drive on neutral beam voltage and injection angle. Work Supported by U.S.D.O.E. Contract No. DE-AC02-09CH11466.

  19. Surface chemistry analysis of lithium conditioned NSTX graphite tiles correlated to plasma performance

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.N., E-mail: chase.taylor@inl.gov [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Luitjohan, K.E. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Heim, B. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Kollar, L. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Allain, J.P. [Purdue University, School of Nuclear Engineering, West Lafayette, IN 47906 (United States); Birck Nanotechnology Center, Discovery Park, West Lafayette, IN 47907 (United States); Skinner, C.H.; Kugel, H.W.; Kaita, R.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2013-12-15

    Lithium wall conditioning in NSTX has resulted in reduced divertor recycling, improved energy confinement, and reduced frequency of edge-localized modes (ELMs), up to the point of complete ELM suppression. NSTX tiles were removed from the vessel following the 2008 campaign and subsequently analyzed using X-ray photoelectron spectroscopy as well as nuclear reaction ion beam analysis. In this paper we relate surface chemistry to deuterium retention/recycling, develop methods for cleaning of passivated NSTX tiles, and explore a method to effectively extract bound deuterium from lithiated graphite. Li–O–D and Li–C–D complexes characteristic of deuterium retention that form during NSTX operations are revealed by sputter cleaning and heating. Heating to ∼850 °C desorbed all deuterium complexes observed in the O 1s and C 1s photoelectron energy ranges. Tile locations within approximately ±2.5 cm of the lower vertical/horizontal divertor corner appear to have unused Li-O bonds that are not saturated with deuterium, whereas locations immediately outboard of this region indicate high deuterium recycling. X-ray photo electron spectra of a specific NSTX tile with wide ranging lithium coverage indicate that a minimum lithium dose, 100–500 nm equivalent thickness, is required for effective deuterium retention. This threshold is suspected to be highly sensitive to surface morphology. The present analysis may explain why plasma discharges in NSTX continue to benefit from lithium coating thickness beyond the divertor deuterium ion implantation depth, which is nominally <10 nm.

  20. Synthetic Aperture Microwave Imaging (SAMI) of the plasma edge on NSTX-U

    Science.gov (United States)

    Vann, Roddy; Taylor, Gary; Brunner, Jakob; Ellis, Bob; Thomas, David

    2016-10-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a unique phased-array microwave camera with a +/-40° field of view in both directions. It can image cut-off surfaces corresponding to frequencies in the range 10-34.5GHz; these surfaces are typically in the plasma edge. SAMI operates in two modes: either imaging thermal emission from the plasma (often modified by its interaction with the plasma edge e.g. via BXO mode conversion) or ``active probing'' i.e. injecting a broad beam at the plasma surface and imaging the reflected/back-scattered signal. SAMI was successfully pioneered on the Mega-Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy. SAMI has now been installed and commissioned on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton Plasma Physics Laboratory. The firmware has been upgraded to include real-time digital filtering, which enables continuous acquisition of the Doppler back-scattered active probing data. In this poster we shall present SAMI's analysis of the plasma edge on NSTX-U including measurements of the edge pitch angle on NSTX-U using SAMI's unique 2-D Doppler-backscattering capability.

  1. Impact of the Digital Coil Protection System and Plasma Shutdown Handler on NSTX-U Operations

    Science.gov (United States)

    Gerhardt, Stefan; Battaglia, D.; Boyer, M.; Erickson, K.; Mueller, D.; Myers, C.; Mueller, D.; Sabbagh, S. A.

    2016-10-01

    In order to prevent excessive forces on the NSTX-U vessel and coils, a digital coil protection system (DCPS) has been implemented. This system computes approximately 400 different forces/torques/stresses, and terminates the discharge if limits on those quantities are exceeded. It is desirable, however, to prevent these coil system trips from ever happening. Given that many of these limits would be reached during transients associated with disruptions, as ``discharge shutdown handler'' was coded in the plasma control system to automatically control the plasma shutdown. This is a state machine with five states, and a set of rules for transitioning between states. The first use of these systems during plasma operations on NSTX-U will be described, with a focus on operational experiences and directions for future improvements. Work Supported by U.S.D.O.E. Contract No. DE-AC02-09CH11466.

  2. Non-inductive Plasma Start-up and Current Ramp-up in NSTX-U

    Science.gov (United States)

    Raman, R.; Jarboe, T. R.; Jardin, S. C.; Kessel, C. E.; Mueller, D.; Nelson, B. A.; Poli, F.; Taylor, G.; NSTX Research Team; Princeton Plasma Physics Laboratory Team

    2013-10-01

    Results from NSTX Transient Coaxial Helicity Injection (CHI) experiments have demonstrated generation of 300 kA start-up currents, and when these discharges were coupled to induction they attained 1 MA of plasma current consuming 65% of the inductive flux of standard inductive-only discharges in NSTX. The NSTX-U device, which is now under construction at PPPL, will have numerous improvements to enhance transient CHI start-up. These are: (1) factor of two increase in toroidal field, (2) more than 2.5 times the injector flux, (3) increased CHI voltage, (4) full lithium coverage to reduce low-Z impurities and (5) 1 MW ECH system for increasing the electron temperature of CHI discharges to allow direct coupling to NBI current drive using a new second more tangential neutral beam system. In support of NSTX-U objectives for full non-inductive start-up and current ramp-up, the TSC code has been used for a full discharge simulation in which a transient CHI discharge is used as the front end of the non-inductive current ramp-up simulation. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.

  3. Suppression of diamagnetism by neutrals pressure in partially ionized, high-beta plasma

    Science.gov (United States)

    Shinohara, Shunjiro; Kuwahara, Daisuke; Yano, Kazuki; Fruchtman, Amnon

    2016-12-01

    Suppression of diamagnetism in a partially ionized plasma with high beta was experimentally investigated by the use of Langmuir and Hall sensor probes, focusing on a neutrals pressure effect. The plasma beta, which is the ratio of plasma to vacuum magnetic pressures, varied from ˜1% to >100% while the magnetic field varied from ˜120 G to ˜1 G. Here, a uniform magnetized argon plasma was operated mostly in an inductive mode, using a helicon plasma source of the Large Helicon Plasma Device [S. Shinohara et al., Phys. Plasmas 16, 057104 (2009)] with a diameter of 738 mm and an axial length of 4860 mm. Electron density varied from 5 × 1015 m-3 to power of 7 MHz and ˜3.5 kW, respectively. The observed magnetic field reduction rate, a decrease of the magnetic field divided by the vacuum one, was up to 18%. However, in a certain parameter regime, where the product of ion and electron Hall terms is a key parameter, the measured diamagnetic effect was smaller than that expected by the plasma beta. This suppressed diamagnetism is explained by the neutrals pressure replacing magnetic pressure in balancing plasma pressure. Diamagnetism is weakened if neutrals pressure is comparable to the plasma pressure and if the coupling of plasma and neutrals pressures by ion-neutral collisions is strong enough.

  4. Advanced operation scenarios toward high-beta, steady-state plasmas in KSTAR

    Science.gov (United States)

    Yoon, Si-Woo; Jeon, Y. M.; Woo, M. H.; Bae, Y. S.; Kim, H. S.; Oh, Y. K.; Park, J. M.; Park, Y. S.; Kstar Team

    2016-10-01

    For the realization of the fusion reactor, solving issues for high-beta steady-state operation is one of the essential topics for the present superconducting tokamaks and in this regard, KSTAR has been focusing on maximizing performance and increasing pulse length simultaneously. Typically, study on high beta operation has been focusing on advanced scenario limited at relatively short pulse discharge and partial success has been reported previously. However, it must be stressed that it is critical to verify compatibility of the developed scenario to long-pulse operation and compared with that of the short-pulse, it is turned out stable long-pulse operation is possible only with a reduced level of beta. In this work, the results of recent approaches in long-pulse operation are presented focusing respectively on high betaN, high betap and high li scenarios. For high betaN, the achieved level is close to 3 with Ip =0.4 MA, BT =1.4T and Pext 6MW and it is found to be limited by m/n =2/1 tearing mode and is also sensitive on the internal inductance. For high betap, conditions of the maximum betap is investigated mainly by parametric scans of plasma current (Ip =0.4-0.7 MA) and also neutral beam injection power (3-5MW). The achieved betap is also close to 3 with Ip =0.4 MA, BT =2.9T and Pext 6MW and it is found to be limited by heating power and without indication of MHD activities. Finally, attempt for high li discharge will be addressed on scenario development and transient results.

  5. Generation of Non-Inductive H-Mode Plasmas with 30 MHz Fast Wave Heating in NSTX-U

    Science.gov (United States)

    Taylor, G.; Bertelli, N.; Gerhardt, S. P.; Hosea, J. C.; Mueller, D.; Perkins, R. J.; Poli, F. M.; Wilson, J. R.; Raman, R.

    2016-10-01

    A Fusion Nuclear Science Facility based on a spherical tokamak must generate the plasma current (Ip) with little or no central solenoid field. The NSTX-U non-inductive (NI) plasma research program is addressing this goal by developing NI start-up, ramp-up and sustainment scenarios separately. 4 MW of 30 MHz fast wave power is predicted to ramp Ip to 400 kA, a level sufficient to avoid significant shine-through of 90 keV ions from neutral beam injection. In 2010, experiments in NSTX demonstrated that 1.4 MW of 30 MHz high-harmonic fast wave (HHFW) power could generate an Ip = 300 kA H-mode discharge with a NI Ip fraction, fNI, around 0.7 at the maximum axial toroidal field (BT(0)) in NSTX of 0.55 T. NSTX-U is a major upgrade of NSTX that will eventually allow the generation of plasmas with BT(0) up to 1 T. Full wave simulations of 30 MHz HHFW heating in NSTX-U predict reduced FW power loss in the plasma edge as BT(0) is increased. HHFW experiments this year aim to couple 3 - 4 MW of 30 MHz HHFW power into an Ip = 250 - 350 kA plasma with BT(0) up to 0.75 T to generate a fNI = 1 H-mode plasma. These experiments should benefit from the improved fast wave coupling predicted at higher BT(0) in NSTX-U. Work supported by USDOE Contract No. DE-AC02-09CH11466.

  6. Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Soukhanovskii; R. Maingi; R. Raman; H.W. Kugel; B.P. LeBlanc; L. Roquemore; C.H. Skinner; NSTX Research Team

    2002-06-12

    The Boundary Physics program of the National Spherical Torus Experiment (NSTX) is focusing on optimization of the edge power and particle flows in b * 25% L- and H-mode plasmas of t {approx} 0.8 s duration heated by up to 6 MW of high harmonic fast wave and up to 5 MW of neutral beam injection. Particle balance and core fueling efficiencies of low and high field side gas fueling of L-mode homic and NBI heated plasmas have been compared using an analytical zero dimensional particle balance model and measured ion and neutral fluxes. Gas fueling efficiencies are in the range of 0.05-0.20 and do not depend on discharge magnetic configuration, density or poloidal location of the injector. The particle balance modeling indicates that the addition of HFS fueling results in a reversal of the wall loading rate and higher wall inventories. Initial particle source estimates obtained from neutral pressure and spectroscopic measurements indicate that ion flux into the divertor greatly exceeds midplane ion flux from the main plasma, suggesting that the scrape-off cross-field transport plays a minor role in diverted plasmas. Present analysis provides the basis for detailed fluid modeling of core and edge particle flows and particle confinement properties of NSTX plasmas. This research was supported by the U.S. Department of Energy under contracts No. DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

  7. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  8. Progress towards high performance plasmas in the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S. M.; Bell, M. G.; Bell, R. E.; Bernabei, S; Bialek, J.; Biewer, T.; Blanchard, W.; Boedo, J.; Bush, C.; Carter, M. D.; Choe, W.; Crocker, N.; Darrow, D. S.; Davis, W.; Delgado-Aparicio, L.; Diem, S.; Ferron, J.; Field, A.; Foley, J.; Fredrickson, E. D.; Gates, D. A.; Gibney, T.; Harvey, R.; Hatcher, R. E.; Heidbrink, W.; Hill, K.; Hosea, J. C.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kessel, C.; Kubota, S.; Kugel, H. W.; Lawson, J.; LeBlanc, B. P.; Lee, K. C.; Levinton, F.; Maingi, R.; Manickam, J.; Maqueda, R.; Marsala, R.; Mastrovito, D.; Mau, T. K.; Medley, S. S.; Menard, J.; Meyer, H.; Mikkelsen, D. R.; Mueller, D.; Munsat, T.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ono, M.; Park, H.; Park, W.; Paul, S.; Peebles, T.; Peng, M.; Phillips, C.; Pigarov, A.; Pinsker, R.; Ram, A.; Ramakrishnan, S.; Raman, R.; Rasmussen, D.; Redi, M.; Rensink, M.; Rewoldt, G; Robinson, J.; Roney, P.; Roquemore, A. L.; Ruskov, E; Ryan, P.; Sabbagh, S. A.; Schneider, H.; Skinner, C. H.; Smith, D. R.; Sontag, A.; Soukhanovskii, V.; Stevenson, T.; Stotler, D.; Stratton, B.; Stutman, D.; Swain, D.; Synakowski, E.; Takase, Y.; Taylor, G.; Tritz, K.; Halle, A. von; Wade, M.; White, R.; Wilgen, J.; Williams, M.; Wilson, J. R.; Zhu, W.; Zweben, S. J.; Akers, R.; Beiersdorfer, P.; Betti, R.; Bigelow, T.; Bitter, M.; Bonoli, P.; Bourdelle, C.; Chang, C. S.; Chrzanowski, J.; Domier, C.; Dudek, L.; Efthimion, P. C.; Finkenthal, M.; Fredd, E.; Fu, G. Y.; Glasser, A.; Goldston, R. J.; Greenough, N. L.; Grisham, L. R.; Gorelenkov, N.; Guazzotto, L.; Hawryluk, R. J.; Hogan, J.; Houlberg, W.; Humphreys, D.; Jaeger, F.; Kalish, M.; Krasheninnikov, S.; Lao, L. L.; Lawrence, J.; Leuer, J.; Liu, D.; Luhmann, N. C.; Mazzucato, E.; Oliaro, G.; Pacella, D.; Parsells, R.; Schaffer, M.; Semenov, I.; Shaing, K. C.; Shapiro, M. A.; Shinohara, K.; Sichta, P.; Tang, X.; Vero, R.; Walker, D.; Wampler, W.

    2005-10-01

    The major objective of the National Spherical Torus Experiment (NSTX) is to understand basic toroidal confinement physics at low aspect ratio and high βT in order to advance the spherical torus (ST) concept. In order to do this, NSTX utilizes up to 7.5 MW of neutral beam injection, up to 6 MW of high harmonic fast waves (HHFWs), and it operates with plasma currents up to 1.5 MA and elongations of up to 2.6 at a toroidal field up to 0.45 T. New facility, and diagnostic and modeling capabilities developed over the past two years have enabled the NSTX research team to make significant progress towards establishing this physics basis for future ST devices. Improvements in plasma control have led to more routine operation at high elongation and high βT (up to ~40%) lasting for many energy confinement times. βT can be limited by either internal or external modes. The installation of an active error field (EF) correction coil pair has expanded the operating regime at low density and has allowed for initial resonant EF amplification experiments. The determination of the confinement and transport properties of NSTX plasmas has benefited greatly from the implementation of higher spatial resolution kinetic diagnostics. The parametric variation of confinement is similar to that at conventional aspect ratio but with values enhanced relative to those determined from conventional aspect ratio scalings and with a βT dependence. The transport is highly dependent on details of both the flow and magnetic shear. Core turbulence was measured for the first time in an ST through correlation reflectometry. Non-inductive start-up has been explored using PF-only and transient co-axial helicity injection techniques, resulting in up to 140 kA of toroidal current generated by the latter technique. Calculated bootstrap and beam-driven currents have sustained up to 60% of the flat-top plasma current in NBI discharges. Studies of HHFW absorption

  9. Unraveling wall conditioning effects on plasma facing components in NSTX-U with the Materials Analysis Particle Probe (MAPP)

    Science.gov (United States)

    Bedoya, F.; Allain, J. P.; Kaita, R.; Skinner, C. H.; Buzi, L.; Koel, B. E.

    2016-11-01

    A novel Plasma Facing Components (PFCs) diagnostic, the Materials Analysis Particle Probe (MAPP), has been recently commissioned in the National Spherical Torus Experiment Upgrade (NSTX-U). MAPP is currently monitoring the chemical evolution of the PFCs in the NSTX-U lower divertor at 107 cm from the tokamak axis on a day-to-day basis. In this work, we summarize the methodology that was adopted to obtain qualitative and quantitative descriptions of the samples chemistry. Using this methodology, we were able to describe all the features in all our spectra to within a standard deviation of ±0.22 eV in position and ±248 s-1 eV in area. Additionally, we provide an example of this methodology with data of boronized ATJ graphite exposed to NSTX-U plasmas.

  10. Investigation of instabilities and rotation alteration in high beta KSTAR plasmas

    Science.gov (United States)

    Park, Y. S.; Sabbagh, S. A.; Ko, W. H.; Bak, J. G.; Berkery, J. W.; Bialek, J. M.; Choi, M. J.; Hahn, S. H.; In, Y. K.; Jardin, S. C.; Jeon, Y. M.; Kim, J.; Kwak, J. G.; Lee, S. G.; Oh, Y. K.; Park, H. K.; Yoon, S. W.; Yun, G. S.

    2017-01-01

    H-mode plasma operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) device has been expanded to significantly surpass the ideal MHD no-wall beta limit. Plasmas with high normalized beta, βN, up to 4.3 have been achieved with reduced plasma internal inductance, li, to near 0.7, exceeding the computed n = 1 ideal no-wall limit by a factor of 1.6. Pulse lengths at maximum βN were extended to longer pulses by new, more rapid control. The stability of the observed m/n = 2/1 tearing mode that limited the achieved high βN is computed by the M3D-C1 code, and the effect of sheared toroidal rotation to tearing stability is examined. As a method to affect the mode stability in high βN plasmas, the non-resonant alteration of the rotation profile by non-axisymmetric magnetic fields has been used, enabling a study of the underlying neoclassical toroidal viscosity (NTV) physics and stability dependence on rotation. Non-axisymmetric field spectra were applied using in-vessel control coils (IVCCs) with varied n = 2 field configurations to alter the plasma toroidal rotation profile in high beta H-mode plasmas and to analyze their effects on the rotation. The rotation profile was significantly altered with rotation reduced by more than 60% without tearing activity or mode locking. To investigate the physical characteristics and scaling of the measured rotation braking by NTV, changes in the rotation profile are analytically examined in steady state. The expected NTV scaling with the square of the normalized applied field perturbation agrees with the measured profile change δB2.1-2.3. The NTV is also found to scale as Ti2.1-2.4, in general agreement with the low collisionality "1/ν" regime scaling of the NTV theory (TNTV-(1/ν) ∝ Ti2.5).

  11. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    G. Taylor, P.T. Bonoli, D.L. Green, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, R. Maingi, C.K. Phillips, P.M. Ryan, E.J. Valeo, J.R. Wilson, J.C. Wright, and the NSTX Team

    2011-06-08

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a noninductive current fraction, f{sub NI} {approx} 0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI} {approx} 0.35, when P{sub RF} {ge} 2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW

  12. Proceedings of the US-Japan workshop and the satellite meeting of ITC-9 on physics of high beta plasma confinement in innovative fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Seiichi; Yoshimura, Satoru [eds.

    1999-04-01

    The US-Japan Workshop on Physics of High Beta Plasma Confinement in Innovative Fusion System was held jointly with the Satellite Meeting of ITC-9 at National Institute for Fusion Science (NIFS), Toki-city during December 14-15, 1998. This proceedings book includes the papers of the talks given at the workshop. These include: Theoretical analysis on the stability of field reversed configuration (FRC) plasmas; Theory and Modeling of high {beta} plasmas; Recent progressive experiments in high {beta} systems; Formation of high {beta} plasmas using merging phenomenon; Theory and Modeling of a FRC Fusion Reactor. The 15 papers are indexed individually. (J.P.N.)

  13. Analysis of surface chemistry of boronized TZM samples in NSTX-U between plasma exposures

    Science.gov (United States)

    Schamis, Hanna; Bedoya, Felipe; Allain, Jean Paul; Kaita, Robert; Koel, Bruce

    2016-10-01

    In the National Spherical Torus Experiment Upgrade (NSTX-U) a new plasma facing component diagnostic, the Material Analysis and Particle Probe (MAPP), was installed. MAPP has the capability of conducting XPS studies on materials without exposing them to atmospheric conditions. MAPP was used to conduct XPS studies of TZM (99% Mo, 0.5% Ti, 0.08% Zr) samples. XPS gives information about the chemical composition of up to about 5 nm of the surface, and can be conducted on a day-to-day basis or at higher temporal resolutions e.g. close to in-between plasma shots. MAPP characterization gives insight on boron deposition and fuel retention by following the evolution of atomic concentrations and oxidation states. The data shows that the boron deposited layer was thicker than 5 nm. Additionally, the data shows evidence of sputtering of the boron layers following tens of plasma shots. The data also shows an increase in the oxygen concentration with plasma exposure. The next NSTX-U experimental campaign will feature TZM tiles in the lower divertor region, while the rest of the first wall will continue to be ATJ graphite. Our data provides the basis to analyze how the surface chemistry of the new set of tiles will be influenced by plasma operations, boron conditioning and carbon migration. Work supported by US DOE Contract No. DE-AC02-09CH11466, US DOE Contract No. DE-SC0010717, Award No. DE-SC0012890, and the DOE Science Undergraduate Laboratory Internship (SULI) Program.

  14. Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas

    Science.gov (United States)

    Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira

    2010-11-01

    As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.

  15. Overview of impurity control and wall conditioning in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    KUGEL,H.W.; MAINGI,R.; BELL,M.; BLANCHARD,W.; GATES,D.; JOHNSON,D.; KAITA,R.; KAYE,S.; MARQUEDA,R.; MENARD,J.; MUELLER,D.; ONO,M.; PENG,Y-K.M.; RAMAN,R.; RAMSEY,A.; ROQUEMORE,A.; SKINNER,C.; SABBAGH,S.; STUTMAN,D.; WAMPLER,WILLIAM R.; WILSON,J.R.; ZWEBEN,S.

    2000-05-25

    The National Spherical Torus Experiment (NSTX) started plasma operations in February 1999, and promptly achieved high current, inner wall limited, double null, and single null plasma discharges, initial Coaxial Helicity Injection, and High Harmonic Fast Wave results. NSTX is designed to study the physics of Spherical Tori (ST) in a device that can produce non-inductively sustained high-{beta} discharges in the 1 MA regime and to explore approaches toward a small, economical high power density ST reactor core. As expected, discharge reproducibility and performance were strongly affected by wall conditions. In this paper, the authors describe the internal geometry, and initial plasma discharge, impurity control, wall conditioning, erosion, and deposition results.

  16. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  17. Edge Recycling and Heat Fluxes in L- and H-mode NSTX Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Soukhanovskii; R. Maingi; R. Raman; H. Kugel; B. LeBlanc; A.L. Roquemore; C.J. Lasnier; the NSTX Research Team

    2003-08-05

    Introduction Edge characterization experiments have been conducted in NSTX to provide an initial survey of the edge particle and heat fluxes and their scaling with input power and electron density. The experiments also provided a database of conditions for the analyses of the NSTX global particle sources, core fueling, and divertor operating regimes.

  18. Steady-State Flows in Two-Fluid Models of NSTX and DIII-D Plasmas

    Science.gov (United States)

    Ferraro, N. M.; Jardin, S. C.; Chen, J.

    2009-05-01

    Accurate axisymmetric steady-states of a comprehensive two-fluid model are calculated for plasmas in diverted NSTX and DIII-D geometries using the M3D-C^1 code [1]. It is found that gyroviscosity may have a significant effect on the flows in steady-state when a localized density source is present. The model implemented in M3D-C^1 self-consistently includes the effects of flows, anisotropic viscosity, anisotropic thermal conductivity, and resistivity. Results for ohmically driven plasmas are presented. New capabilities of M3D-C^1 allow the three-dimensional linear stability of axisymmetric equilibria to be calculated; these capabilities and preliminary stability results are discussed. Also discussed are recent and future extensions to M3D-C^1, including heuristic bootstrap current models, coupling to a physics-based transport model, and nonlinear non-axisymmetric capability. 3pt[1] S. C. Jardin, J. Breslau, N. Ferraro, J. Comput. Phys, 226 (2007) 2146

  19. In-vacuo studies of Boronization and Lithiumization in NSTX-U and relationship to plasma performance

    Science.gov (United States)

    Bedoya, Carlos; Allain, Jean Paul; Kaita, Robert; Skinner, Charles; Filippo, Scotti; Koel, Bruce; UIUC Team; PPPL Collaboration; Princeton U Collaboration; Princeton U Collaboration

    2016-10-01

    A new plasma facing component (PFC) diagnostic, the MAPP probe, was installed on NSTX-U in the beginning of the 2015 campaign. MAPP was used to find qualitative correlations between PFC conditions and plasma performance. XPS data collected with MAPP suggests the formation of B4C following boron deposition (boronization). The depositions of these thin films seem to temporarily improve the plasma performance. The data shows how the atomic concentration of oxygen in the coatings rises from 5% to almost 30% after exposures to tens of plasma discharges. This oxidation coincides with the decrease in plasma performance. Increments in the content of oxygen (OII line) in the plasma were also observed with visible light spectroscopy over the same time range. MAPP is also able to measure the chemical state of graphite as a result of lithium evaporation onto PFCs (lithiumization). This work will report on the effect on the surface chemistry of ATJ graphite of lithium deposition and plasma exposure in NSTX-U. As it was the case with boronization, the relationship between plasma performance and PFC conditioning with lithium is investigated. Work supported by USDOE Contract DE-AC02-09CH11466, COLCIENCIAS Francisco Jose de Caldas Fellowship Program, USDOE Contract DE-SC0010717 and Award Number DE-SC0012890.

  20. Plasma-Material Interface Development for Future Spherical Tokamak-based Devices in NSTX.

    Energy Technology Data Exchange (ETDEWEB)

    et. al, V

    2011-09-24

    The divertor plasma-material interface (PMI) must be able to withstand steady-state heat fluxes up to 10 MW/m{sup 2} (a limit imposed by the present day divertor material and engineering constraints) with minimal material erosion, as well as to provide impurity control and ion density pumping capabilities. In spherical tokamaks (STs), the compact divertor geometry and the requirement of low core electron collisionality n*{sub e} at n{sub e} < 0.5-0.7 n{sub G} (where n{sub G} is the Greenwald density) for increased neutral beam current drive efficiency impose much greater demands on divertor and first-wall particle and heat flux mitigation solutions. In NSTX, divertor heat flux mitigation and impurity control with an innovative 'snowflake' divertor configuration and ion density pumping by evaporated lithium wall and divertor coatings are studied. Lithium coatings have enabled ion density reduction up to 50% in NSTX through the reduction of wall and divertor recycling rates. The 'snowflake' divertor configuration was obtained in NSTX in 0.8-1 MA 4-6 MW NBI-heated H-mode lithium-assisted discharges using three divertor coils. The snowflake divertor formation was always accompanied by a partial detachment of the outer strike point with an up to 50% increase in divertor radiation from intrinsic carbon, the peak divertor heat flux reduction from 3-6 MW/m{sup 2} to 0.5-1 MW/m{sup 2}, and a significant increase in divertor volume recombination. High core confinement was maintained with the snowflake divertor, evidenced by the t{sub E}, W{sub MHD} and the H98(y,2) factors similar to those of the standard divertor discharges. Core carbon concentration and radiated power were reduced by 30-70%, apparently as a result of reduced divertor physical and chemical sputtering in the snowflake divertor and ELMs. In the SFD discharges, the MHD stability of the H-mode pedestal region was altered leading to the re-appearance of medium size (DW/W = 5-10%), Type I

  1. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    Science.gov (United States)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  2. Co-existence of Whistler Waves with Kinetic Alfven Wave Turbulence for the High-beta Solar Wind Plasma

    CERN Document Server

    Mithaiwala, Manish; Crabtree, Chris; Ganguli, Gurudas

    2012-01-01

    It is shown that the dispersion relation for whistler waves is identical for a high or low beta plasma. Furthermore in the high-beta solar wind plasma whistler waves meet the Landau resonance with electrons for velocities less than the thermal speed, and consequently the electric force is small compared to the mirror force. As whistlers propagate through the inhomogeneous solar wind, the perpendicular wave number increases through refraction, increasing the Landau damping rate. However, the whistlers can survive because the background kinetic Alfven wave turbulence creates a plateau by quasilinear diffusion in the solar wind electron distribution at small velocities. It is found that for whistler energy density of only ~10^-3 that of the kinetic Alfven waves, the quasilinear diffusion rate due to whistlers is comparable to KAW. Thus very small amplitude whistler turbulence can have a significant consequence on the evolution of the solar wind electron distribution function.

  3. A quantitative account of electron energy transport in an NSTX plasma*

    Science.gov (United States)

    Mikkelsen, Dave

    2007-11-01

    Anomalous electron transport in magnetized plasmas can be a major obstacle in the way toward practical nuclear fusion power, and it has been an outstanding problem for almost half a century. Here we report the first successful quantitative accounting of the electron thermal conductivity χe in a tokamak experiment due to imperfect magnetic surfaces^1 caused by the microtearing instabilities. The unstable spectrum is calculated with the GS2 code for a well-behaved H-mode plasma in NSTX (R/a=0.85m/0.67m) with 6 MW deuterium neutral beam heating at Ip=0.75 MA, Bt=0.5 T. The application of existing nonlinear theory^2 showed that the unstable modes can produce overlapping resistive layers and stochastic magnetic fields. The calculated χe based on the theory^1 is in good agreement with the values from transport analysis of the experimental data over the entire region (0.4 magnetic shear and an L-mode edge, microtearing modes are found to be stable. The central electron temperature is 50% higher (2 keV vs 1.3 keV) than in the comparison shot with the microtearing instability and the same controlled tokamak parameters like plasma current, density, magnetic field, plasma shape, position and neutral beam heating power. This is a strong indication that this instability may be the dominant mechanism responsible for the electron transport in this type of plasma. Since the microtearing mode is difficult to stabilize with velocity shear, this instability is an important limit^3 on the electron temperature in spherical tokamak configurations where the usual long wavelength instabilities are not present. *This work is carried out in collaboration with Drs. S. Kaye, D. R. Mikkelsen, J. Krommes, K. Hill, R. Bell, and B. LeBlanc. It is supported by USDoE contract No. DE-AC02-76CH03073. ^1A. B. Rechester, M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978). ^2J. F. Drake et al., Phys. Rev. Lett. 44, 994 (1980). ^3M. Kotschenreuther, W. Dorland et al., Nucl. Fusion 40, 677 (2000).

  4. Improved Confinement in JET High {beta} Plasmas with an ITER-Like Wall

    CERN Document Server

    Challis, C D; Beurskens, M; Buratti, P; Delabie, E; Drewelow, P; Frassinetti, L; Giroud, C; Hawkes, N; Hobirk, J; Joffrin, E; Keeling, D; King, D B; Maggi, C F; Mailloux, J; Marchetto, C; McDonald, D; Nunes, I; Pucella, G; Saarelma, S; Simpson, J

    2015-01-01

    The replacement of the JET carbon wall (C-wall) by a Be/W ITER-like wall (ILW) has affected the plasma energy confinement. To investigate this, experiments have been performed with both the C-wall and ILW to vary the heating power over a wide range for plasmas with different shapes.

  5. New electromagnetic mode in a non-Maxwellian high-beta plasma

    Science.gov (United States)

    Urrutia, J. M.; Stenzel, R. L.

    1984-01-01

    An electromagnetic (EM) mode outside of the electron cyclotron frequency in a dense plasma discharge is reported. The experimental plasma was generated in a weak, uniform magnetic field and natural magnetic fluctuations were monitored and examined for cross correlations. Wave dispersion, propagation direction polarization and the electron velocity distribution were also derived. The fluctuations observed were neither cyclotron harmonic waves nor whistlers and consisted of circularly polarized waves propagating along field lines in 3-6 cm diam flux tubes. The mode was carried away from the cathode by streaming energetic electrons. The results may be pertinent in studies of EM modes in auroral arcs or magnetic fluctuations in tokamaks with runaway electrons.

  6. Plasma behaviour at high beta and high density in the Madison Symmetric Torus RFP

    Energy Technology Data Exchange (ETDEWEB)

    Wyman, M. [University of Wisconsin, Madison; Chapman, B. E. [University of Wisconsin, Madison; Ahn, J. W. [University of Wisconsin, Madison; Almagri, A. F. [University of Wisconsin, Madison; Anderson, J. [University of Wisconsin, Madison; Bonomo, F. [Consorzio RFX, Italy; Bower, D L [University of California, Los Angeles; Combs, Stephen Kirk [ORNL; Craig, D. [University of Wisconsin, Madison; Foust, Charles R [ORNL

    2009-01-01

    Pellet fuelling of improved confinement Madison Symmetric Torus (MST) plasmas has resulted in high density and high plasma beta. The density in improved confinement discharges has been increased fourfold, and a record plasma beta (beta(tot) = 26%) for the improved confinement reversed-field pinch (RFP) has been achieved. At higher beta, a new regime for instabilities is accessed in which local interchange and global tearing instabilities are calculated to be linearly unstable, but experimentally, no severe effect, e. g., a disruption, is observed. The tearing instability, normally driven by the current gradient, is driven by the pressure gradient in this case, and there are indications of increased energy transport ( as compared with low-density improved confinement). Pellet fuelling is also compared with enhanced edge fuelling of standard confinement RFP discharges for the purpose of searching for a density limit in MST. In standard-confinement discharges, pellet fuelling peaks the density profile where edge fuelling cannot, but transport appears unchanged. For a limited range of plasma current, MST discharges with edge fuelling are constrained to a maximum density corresponding to the Greenwald limit. This limit is surpassed in pellet-fuelled improved confinement discharges.

  7. Production of high-beta magnetised plasmas by colliding supersonic flows from inverse wire arrays

    Science.gov (United States)

    Hare, Jack; Suttle, Lee; Lebedev, Sergey; Bennett, Matthew; Burdiak, Guy; Clayson, Thomas; Suzuki-Vidal, Francisco; Swadling, George; Patankar, Siddharth; Robinson, Timothy; Stuart, Nicholas; Smith, Roland; Yang, Qingguo; Wu, Jian; Rozmus, Wojciech

    2015-11-01

    HEDP often exhibit a high plasma β and an electron Hall parameter greater than one. This results in a complex interplay between the transport of heat and magnetic fields, relevant to the Magnetised Liner Inertial Fusion (MagLIF) concept. We can produce such plasmas by colliding two supersonic quasi-planar flows from two adjacent inverse wire arrays made from carbon. The standing shock formed by the collision heats and compresses the plasma. The plasma flows advect magnetic fields which are perpendicular to the flow direction. Depending on the experimental set up, this can result in either flux compression or reconnection in the interaction region. The experiments are conducted on MAGPIE (1.4 MA, 250 ns current pulse). The formed shock is stable over long timescales (~100 ns), and the electron temperature (100 eV) is close to the ion temperature (500 eV), measured by spatially resolved Thomson scattering. Magnetic fields above 5 T is observed using a Faraday rotation diagnostic, and an electron density of around 5x1017 cm-3 is measured by interferometry.

  8. MHD instabilities and their control in high-beta plasmas in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    In, Yongkyoon

    2013-02-06

    We established 3 specific tasks as follows: Task 1 - Investigate the MHD activity during the current ramp-up phase with shaped plasmas; Task 2 - Develop a theoretical model that may show the hollowness dependent instability; Task 3 - Explore the beta-limiting instabilities. To address each task, FAR-TECH actively participated in the 2012 KSTAR run-campaign, which helped us make productive progress. Specifically, the shaping dependence of MHD activity during current ramp-up phase was investigated using dedicated run-time in KSTAR (October 4 and 9, 2012), which was also attempted to address the hollowness of temperature (or pressure) profiles. Also, a performance-limiting disruption, which occurred in a relatively high intermediate beta plasma (shot 7110) in KSTAR ({beta}{sub N} ~ 1.7), was studied, and the preliminary analysis shows that the disruption might not be stability-limited but likely density-limited.

  9. Predictions and observations of global beta-induced Alfven-acoustic modes in JET and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N N [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Berk, H L [Institute for Fusion Studies, University of Texas, Austin, TX 78712 (United States); Crocker, N A [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kaye, S [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kubota, S [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Park, H [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Peebles, W [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Sabbagh, S A [Department of Applied Physics, Columbia University, New York, NY 10027-6902 (United States); Sharapov, S E [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Stutmat, D [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Tritz, K [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Levinton, F M [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States); Yuh, H [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States)

    2007-12-15

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.

  10. Improved-confinement plasmas at high temperature and high beta in the MST RFP

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, B. E. [University of Wisconsin, Madison; Ahn, J. W. [University of Wisconsin, Madison; Almagri, A. F. [University of Wisconsin, Madison; Anderson, J. [University of Wisconsin, Madison; Combs, Stephen Kirk [ORNL; Foust, Charles R [ORNL; Kaufman, M. [University of Wisconsin, Madison

    2009-01-01

    We have increased substantially the electron and ion temperatures, the electron density, and the total beta in plasmas with improved energy confinement in the Madison Symmetric Torus (MST). The improved confinement is achieved with a well-established current profile control technique for reduction of magnetic tearing and reconnection. A sustained ion temperature > 1 keV is achieved with intensified reconnection-based ion heating followed immediately by current profile control. In the same plasmas, the electron temperature reaches 2 keV, and the electron thermal diffusivity drops to about 2 m(2) s(-1). The global energy confinement time is 12 ms. This and the reported temperatures are the largest values yet achieved in the reversed-field pinch (RFP). These results were attained at a density similar to 10(19) m(-3). By combining pellet injection with current profile control, the density has been quadrupled, and total beta has nearly doubled to a record value of about 26%. The Mercier criterion is exceeded in the plasma core, and both pressure-driven interchange and pressure-driven tearing modes are calculated to be linearly unstable, yet energy confinement is still improved. Transient momentum injection with biased probes reveals that global momentum transport is reduced with current profile control. Magnetic reconnection events drive rapid momentum transport related to large Maxwell and Reynolds stresses. Ion heating during reconnection events occurs globally, locally, or not at all, depending on which tearing modes are involved in the reconnection. To potentially augment inductive current profile control, we are conducting initial tests of current drive with lower-hybrid and electron-Bernstein waves.

  11. Overview of Results from the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    Gates, D; Ahn, J; Allain, J; Andre, R; Bastasz, R; Bell, M; Bell, R; Belova, E; Berkery, J; Betti, R; Bialek, J; Biewer, T; Bigelow, T; Bitter, M; Boedo, J; Bonoli, P; Bozzer, A; Brennan, D; Breslau, J; Brower, D; Bush, C; Canik, J; Caravelli, G; Carter, M; Caughman, J; Chang, C; Choe, W; Crocker, N; Darrow, D; Delgado-Aparicio, L; Diem, S; D' Ippolito, D; Domier, C; Dorland, W; Efthimion, P; Ejiri, A; Ershov, N; Evans, T; Feibush, E; Fenstermacher, M; Ferron, J; Finkenthal, M; Foley, J; Frazin, R; Fredrickson, E; Fu, G; Funaba, H; Gerhardt, S; Glasser, A; Gorelenkov, N; Grisham, L; Hahm, T; Harvey, R; Hassanein, A; Heidbrink, W; Hill, K; Hillesheim, J; Hillis, D; Hirooka, Y; Hosea, J; Hu, B; Humphreys, D; Idehara, T; Indireshkumar, K; Ishida, A; Jaeger, F; Jarboe, T; Jardin, S; Jaworski, M; Ji, H; Jung, H; Kaita, R; Kallman, J; Katsuro-Hopkins, O; Kawahata, K; Kawamori, E; Kaye, S; Kessel, C; Kim, J; Kimura, H; Kolemen, E; Krasheninnikov, S; Krstic, P; Ku, S; Kubota, S; Kugel, H; La Haye, R; Lao, L; LeBlanc, B; Lee, W; Lee, K; Leuer, J; Levinton, F; Liang, Y; Liu, D; Luhmann, N; Maingi, R; Majeski, R; Manickam, J; Mansfield, D; Maqueda, R; Mazzucato, E; McCune, D; McGeehan, B; McKee, G; Medley, S; Menard, J; Menon, M; Meyer, H; Mikkelsen, D; Miloshevsky, G; Mitarai, O; Mueller, D; Mueller, S; Munsat, T; Myra, J; Nagayama, Y; Nelson, B; Nguyen, X; Nishino, N; Nishiura, M; Nygren, R; Ono, M; Osborne, T; Pacella, D; Park, H; Park, J; Paul, S; Peebles, W; Penaflor, B; Peng, M; Phillips, C; Pigarov, A; Podesta, M; Preinhaelter, J; Ram, A; Raman, R; Rasmussen, D; Redd, A; Reimerdes, H; Rewoldt, G; Ross, P; Rowley, C; Ruskov, E; Russell, D; Ruzic, D; Ryan, P; Sabbagh, S; Schaffer, M; Schuster, E; Scott, S; Shaing, K; Sharpe, P; Shevchenko, V; Shinohara, K; Sizyuk, V; Skinner, C; Smirnov, A; Smith, D; Smith, S; Snyder, P; Soloman, W; Sontag, A; Soukhanovskii, V; Stoltzfus-Dueck, T; Stotler, D; Strait, T; Stratton, B; Stutman, D; Takahashi, R; Takase, Y; Tamura, N; Tang, X; Taylor, G; Taylor, C; Ticos, C; Tritz, K; Tsarouhas, D; Turrnbull, A; Tynan, G; Ulrickson, M; Umansky, M; Urban, J; Utergberg, E; Walker, M; Wampler, W; Wang, J; Wang, W; Weland, A

    2009-01-05

    The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high {beta} operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies confirm the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance l{sub i} {approx} 0.4 with strong shaping ({kappa} {approx} 2.7, {delta} {approx} 0.8) with {beta}{sub N} approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction f{sub NI} {approx} 71%. Instabilities driven by super-Alfvenic ions are an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfvenic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. RWM/RFA feedback combined with n = 3 error field control was used on NSTX to maintain plasma rotation with {beta} above the no-wall limit. The impact of n > 1 error fields on stability is a important result for ITER. Other highlights are

  12. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  13. Hardwired Control Changes For NSTX DC Power Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The original TFTR Hardwired Control System (HCS) with electromechanical relays was used for NSTX DC Power loop control and protection during NSTX operations. As part of the NSTX Upgrade, the HCS is being changed to a PLC-based system with the same control logic. This paper gives a description of the changeover to the new PLC-based system __________________________________________________

  14. NSTX Research Program

    Science.gov (United States)

    Peng, Martin; Ono, Masayuki; Kaye, Stan

    1998-11-01

    NSTX (National Spherical Torus Experiment) is currently being built at PPPL to enable experimentation to prove the fusion physics principles of the Spherical Torus (ST) plasmas at the MA level in current. First plasma is scheduled for or before April 1999. A national NSTX Research Team is organized to plan, implement, and begin in May 1999 the experiments. Research topics of interest will encompass noninductive startup of large plasma current; heating and current drive via rf and neutral beam injection; stability and beta limits; transport and fluctuations; and edge and scrape-off layer. The Research Program sets a goal for Phase I to study during the first 12 months plasmas with Ohmic heating alone and with moderate levels of HHFW heating and current drive (up to 4 MW). Coaxial Helicity Injection will be tested for initiating large plasma currents; modern Thomson scattering systems will be implemented. Phases II (first-stability regime) and III (advanced physics regime) would follow with full HHFW, addition of NBI (up to 11 MW in total power), and additional modern diagnostics (e.g., MSE, 2D-3D fluctuations).

  15. Numerical Studies of Two-Fluid Axisymmetric Steady-States with Flow in Ohmic NSTX-like Plasmas

    Science.gov (United States)

    Ferraro, Nathaniel; Jardin, Stephen

    2008-11-01

    Axisymmetric steady-states of the resistive two-fluid equations, including flow and gyroviscosity, are obtained by evolving these nonlinear equations from an initial ideal MHD equilibrium using the code M3D-C^1 [1], which has now been extended to toroidal geometry. Steady-states for high-β, inductively driven discharges in diverted NSTX geometries are studied. Excellent agreement with theoretical predictions of cross-surface Pfirsch-Schlüter flows in the axisymmetric steady-states is found. The dependence of flow velocities with resistivity is explored. It is found that in the two-fluid model, the statistical steady-state may be a fixed point, a limit cycle, or chaotic, depending on the parameters. Two-fluid terms lead to a preferred direction of toroidal rotation. The inclusion of gyroviscosity is observed to alter the character of the steady-state. The three-dimensional linear stability of simple equilibria in this two-fluid model are also explored using M3D-C^1 [2]. [1] N. Ferraro, S. Jardin. Phys. Plasmas 13:092101 (2006). [2] S. Jardin, N. Ferraro, J. Breslau, J. Chen, and M. Chance. Initial results for linear 3D Toroidal Two-Fluid stability using M3D-C1. APS DPP Conference, Dallas, TX (2008).

  16. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Gorelenkova, M. V. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Heidbrink, W. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Stagner, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy

    2016-01-12

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a 'beam-in-a-box' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  17. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    Science.gov (United States)

    Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2016-02-01

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  18. A stable route to high-{beta}{sub p} plasmas with non-monotonic q-profiles

    Energy Technology Data Exchange (ETDEWEB)

    Soeldner, F.X.; Baranov, Y.; Bhatnagar, V.P.; Bickley, A.J.; Challis, C.D.; Fischer, B.; Gormezano, C.; Huysmans, G.T.A.; Kerner, W.; Rimini, F.; Sips, A.C.C.; Springmann, R.; Taroni, A. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Goedbloed, J.P.; Holties, H.A. [Institute for Plasmas Physics, Nieuwegein (Netherlands); Parail, V.V.; Pereverzev, G.V. [Kurchatov Institute of Atomic Energy, Moscow (Russian Federation)

    1994-07-01

    Steady-state operation of tokamak reactors seems feasible in so-called Advanced Scenarios with high bootstrap current in high-beta{sub p} operation. The stabilization of such discharges with noninductive profile control will be attempted on JET in pursuit of previous high bootstrap current studies. Results of modelling studies of full noninductive current drive scenarios in JET and ITER are presented. Fast Waves (FW), Lower Hybrid (LH) Waves and Neutral Beam Injection (NBI) are used for heating and current drive, alternatively or in combination. A stable route to nonmonotonic q-profiles has been found with a specific ramp-up scenario which combines LH-current drive (LHCD) and a fast Ohmic ramp-up. A hollow current profile with deep shear reversal over the whole central region is thereby formed in an early low-beta phase and frozen in by additional heating. (authors). 5 refs., 4 figs.

  19. Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R. W. [CompX, Del Mar, CA (United States)

    2009-11-12

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over

  20. Fringe-jump corrected far infrared tangential interferometer/polarimeter for a real-time density feedback control system of NSTX plasmas.

    Science.gov (United States)

    Juhn, J-W; Lee, K C; Hwang, Y S; Domier, C W; Luhmann, N C; Leblanc, B P; Mueller, D; Gates, D A; Kaita, R

    2010-10-01

    The far infrared tangential interferometer/polarimeter (FIReTIP) of the National Spherical Torus Experiment (NSTX) has been set up to provide reliable electron density signals for a real-time density feedback control system. This work consists of two main parts: suppression of the fringe jumps that have been prohibiting the plasma density from use in the direct feedback to actuators and the conceptual design of a density feedback control system including the FIReTIP, control hardware, and software that takes advantage of the NSTX plasma control system (PCS). By investigating numerous shot data after July 2009 when the new electronics were installed, fringe jumps in the FIReTIP are well characterized, and consequently the suppressing algorithms are working properly as shown in comparisons with the Thomson scattering diagnostic. This approach is also applicable to signals taken at a 5 kHz sampling rate, which is a fundamental constraint imposed by the digitizers providing inputs to the PCS. The fringe jump correction algorithm, as well as safety and feedback modules, will be included as submodules either in the gas injection system category or a new category of density in the PCS.

  1. EPOCH code simulation of a non-thermal distribution driven by neutral beam injection in a high-beta plasma

    Science.gov (United States)

    Necas, A.; Tajima, T.; Nicks, S.; Magee, R.; Clary, R.; Roche, T.; Tri Alpha Energy Team

    2016-10-01

    In Tri Alpha Energy's C-2U experiment, advanced beam-driven field-reversed configuration (FRC) plasmas were sustained via tangential neutral beam injection. The dominant fast ion population made a dramatic impact on the overall plasma performance. To explain an experimentally observed anomalous neutron signal (100x thermonuclear), we use EPOCH PIC code to simulate possible beam driven non-destructive instabilities that transfer energy from fast ions to the plasma, causing phase space bunching. We propose that the hydrogen beam ion population drives collective modes in the deuterium target plasma, giving rise to the instability and increased fusion rate. The instability changes character from electrostatic in the low beta edge to fully electromagnetic in the core, with an associated reduction in growth rates. The DD reactivity enhancement is calculated using a two-body correlation function and compared to the experimentally observed neutron yield. The high-energy tails in the distributions of the plasma deuterons and beam protons are observed via a mass-resolving Neutral Particle Analyzer (NPA) diagnostic. This observation is qualitatively consistent with EPOCH simulation of the beam-plasma instability.

  2. Amplitude limits and nonlinear damping of shear-Alfvén waves in high-beta low-collisionality plasmas

    Science.gov (United States)

    Squire, J.; Schekochihin, A. A.; Quataert, E.

    2017-05-01

    This work, which extends Squire et al (Astrophys. J. Lett. 2016 830 L25), explores the effect of self-generated pressure anisotropy on linearly polarized shear-Alfvén fluctuations in low-collisionality plasmas. Such anisotropies lead to stringent limits on the amplitude of magnetic perturbations in high-β plasmas, above which a fluctuation can destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, ‘interrupting’ the wave and stopping its oscillation. These effects are explored in detail in the collisionless and weakly collisional ‘Braginskii’ regime, for both standing and traveling waves. The focus is on simplified models in one dimension, on scales much larger than the ion gyroradius. The effect has interesting implications for the physics of magnetized turbulence in the high-β conditions that are prevalent in many astrophysical plasmas.

  3. PIC Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    CERN Document Server

    Riquelme, Mario; Verscharen, Daniel

    2014-01-01

    We use particle-in-cell (PIC) simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with the perpendicular pressure larger than the parallel pressure, and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular p...

  4. Particle-in-cell Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    Science.gov (United States)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-02-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  5. National NSTX Research Program

    Science.gov (United States)

    Peng, Y.-K. M. Peng

    1999-11-01

    The national NSTX (National Spherical Torus Experiment) Research Team plans to resume in Summer 1999 Spherical Torus Proof-of-Principle experimentation at the MA level. Research topics of interest will encompass noninductive startup of plasma current; heating and current drive via rf and neutral beam injection; stability and beta limits; transport and fluctuations; and edge and scrape-off layer. The Research Program sets a goal for studying during the 12-month period Ohmic heating plasmas and High Harmonic Fast Wave (HHFW) heating up to ~ 4 MW. Coaxial Helicity Injection will be tested for initiating substantial plasma currents. Modern diagnostics systems, including laser Thomson scattering will be brought online. Plans to investigate the "no-wall" regime with toroidal average beta up to 25% would follow using full HHFW and NBI power up to 11 MW for heating and current drive for up to ~ 5 s, aided by additional modern diagnostics (e.g., MSE, etc.). Database for this regime will be needed for designing Performance Extension tests at the 10-MA level of driven (Q 1) and possibly high-gain (Q 10) ST plasmas.

  6. Design and simulation of control algorithms for stored energy and plasma current in non-inductive scenarios on NSTX-U

    Science.gov (United States)

    Boyer, Mark; Andre, Robert; Gates, David; Gerhardt, Stefan; Menard, Jonathan; Poli, Francesca

    2015-11-01

    One of the major goals of NSTX-U is to demonstrate non-inductive operation. To facilitate this and other program goals, the center stack has been upgraded and a second neutral beam line has been added with three sources aimed more tangentially to provide higher current drive efficiency and the ability to shape the current drive profile. While non-inductive start-up and ramp-up scenarios are being developed, initial non-inductive studies will likely rely on clamping the Ohmic coil current after the plasma current has been established inductively. In this work the ability to maintain control of stored energy and plasma current once the Ohmic coil has been clamped is explored. The six neutral beam sources and the mid-plane outer gap of the plasma are considered as actuators. System identification is done using TRANSP simulations in which the actuators are modulated around a reference shot. The resulting reduced model is used to design an optimal control law with anti-windup and a recently developed framework for closed loop simulations in TRANSP is used to test the control. Limitations due to actuator saturation are assessed and robustness to beam modulation, changes in the plasma density and confinement, and changes in density and temperature profile shapes are studied. Supported by US DOE contract DE-AC02-09CH11466.

  7. Snowflake divertor configuration studies for NSTX-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A

    2011-11-12

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  8. Overview of NSTX Upgrade initial results and modelling highlights

    Science.gov (United States)

    Menard, J. E.; Allain, J. P.; Battaglia, D. J.; Bedoya, F.; Bell, R. E.; Belova, E.; Berkery, J. W.; Boyer, M. D.; Crocker, N.; Diallo, A.; Ebrahimi, F.; Ferraro, N.; Fredrickson, E.; Frerichs, H.; Gerhardt, S.; Gorelenkov, N.; Guttenfelder, W.; Heidbrink, W.; Kaita, R.; Kaye, S. M.; Kriete, D. M.; Kubota, S.; LeBlanc, B. P.; Liu, D.; Lunsford, R.; Mueller, D.; Myers, C. E.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Reinke, M.; Ren, Y.; Sabbagh, S. A.; Schmitz, O.; Scotti, F.; Sechrest, Y.; Skinner, C. H.; Smith, D. R.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Yuh, H.; Wang, Z.; Waters, I.; Ahn, J.-W.; Andre, R.; Barchfeld, R.; Beiersdorfer, P.; Bertelli, N.; Bhattacharjee, A.; Brennan, D.; Buttery, R.; Capece, A.; Canal, G.; Canik, J.; Chang, C. S.; Darrow, D.; Delgado-Aparicio, L.; Domier, C.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Fonck, R.; Gan, K.; Gates, D.; Goumiri, I.; Gray, T.; Hosea, J.; Humphreys, D.; Jarboe, T.; Jardin, S.; Jaworski, M. A.; Koel, B.; Kolemen, E.; Ku, S.; La Haye, R. J.; Levinton, F.; Luhmann, N.; Maingi, R.; Maqueda, R.; McKee, G.; Meier, E.; Myra, J.; Perkins, R.; Poli, F.; Rhodes, T.; Riquezes, J.; Rowley, C.; Russell, D.; Schuster, E.; Stratton, B.; Stutman, D.; Taylor, G.; Tritz, K.; Wang, W.; Wirth, B.; Zweben, S. J.

    2017-10-01

    The National Spherical Torus Experiment (NSTX) has undergone a major upgrade, and the NSTX Upgrade (NSTX-U) Project was completed in the summer of 2015. NSTX-U first plasma was subsequently achieved, diagnostic and control systems have been commissioned, the H-mode accessed, magnetic error fields identified and mitigated, and the first physics research campaign carried out. During ten run weeks of operation, NSTX-U surpassed NSTX record pulse-durations and toroidal fields (TF), and high-performance ~1 MA H-mode plasmas comparable to the best of NSTX have been sustained near and slightly above the n  =  1 no-wall stability limit and with H-mode confinement multiplier H98y,2 above 1. Transport and turbulence studies in L-mode plasmas have identified the coexistence of at least two ion-gyro-scale turbulent micro-instabilities near the same radial location but propagating in opposite (i.e. ion and electron diamagnetic) directions. These modes have the characteristics of ion-temperature gradient and micro-tearing modes, respectively, and the role of these modes in contributing to thermal transport is under active investigation. The new second more tangential neutral beam injection was observed to significantly modify the stability of two types of Alfven eigenmodes. Improvements in offline disruption forecasting were made in the areas of identification of rotating MHD modes and other macroscopic instabilities using the disruption event characterization and forecasting code. Lastly, the materials analysis and particle probe was utilized on NSTX-U for the first time and enabled assessments of the correlation between boronized wall conditions and plasma performance. These and other highlights from the first run campaign of NSTX-U are described.

  9. Control System for the NSTX Lithium Pellet Injector

    Energy Technology Data Exchange (ETDEWEB)

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  10. M3D-C1 simulations of the plasma response to n = 3 magnetic perturbations applied to the NSTX-U snowflake divertor

    Science.gov (United States)

    Canal, G. P.; Ferraro, N. M.; Evans, T. E.; Osborne, T. H.; Menard, J. E.; Ahn, J.-W.; Maingi, R.; Wingen, A.; Ciro, D.; Frerichs, H.; Schmitz, O.; Soukhanoviskii, V.; Waters, I.

    2016-10-01

    Single- and two-fluid resistive magnetohydrodynamic simulations, performed with the code M3D-C1, are used to investigate the effect of n = 3 magnetic perturbations on the SF divertor configuration. The calculations are based on simulated NSTX-U plasmas and the results show that additional and longer magnetic lobes are created in the null-point region of the SF configuration, compared to those in the conventional single-null. The intersection of these additional and longer lobes with the divertor plates are expected to cause more striations in the particle and heat flux target profiles. In addition, the results indicate that the size of the magnetic lobes, in both single-null and SF configurations, are more sensitive to resonant than to non-resonant magnetic perturbations. The results also suggest that lower values of current in non-axisymmetric control coils close enough to the primary x-point would be required to suppress edge localized modes in plasmas with the SF configuration. This work has been supported by the US Department of Energy, Office of Science, Office of Fusion Energy Science under DOE Award DE-SC0012706.

  11. Commissioning and Plans for the NSTX-U Facility

    Science.gov (United States)

    Ono, Masayuki; NSTX-U Team

    2016-10-01

    The National Spherical Torus Experiment - Upgrade (NSTX-U) has started its first year of plasma operations after the successful completion of the CD-4 milestones. The unique operating regimes of NSTX-U can contribute to several important issues in the physics of burning plasmas to optimize the performance of ITER. The major mission of NSTX-U is also to develop the physics and technology basis for an ST-based Fusion Nuclear Science Facility (FNSF). The new center stack will provide toroidal field of 1 Tesla at a major radius of 0.93 m which should enable a plasma current of up to 2 mega-Amp for 5 sec. A much more tangential 2nd NBI system, with 2-3 times higher current drive efficiency compared to the 1st NBI system, is installed. NSTX-U is designed to attain the 100% non-inductive operation needed for a compact FNSF design. With higher fields and heating powers of 14 MW, the NSTX-U plasma collisionality will be reduced by a factor of 3-6 to help explore the trend in transport towards the low collisionality FNSF regime. If the favorable trends observed on NSTX holds at low collisionality, high fusion neutron fluences could be achievable in very compact ST devices.

  12. Model Predictive Control with Integral Action for Current Density Profile Tracking in NSTX-U

    Science.gov (United States)

    Ilhan, Z. O.; Wehner, W. P.; Schuster, E.; Boyer, M. D.

    2016-10-01

    Active control of the toroidal current density profile may play a critical role in non-inductively sustained long-pulse, high-beta scenarios in a spherical torus (ST) configuration, which is among the missions of the NSTX-U facility. In this work, a previously developed physics-based control-oriented model is embedded in a feedback control scheme based on a model predictive control (MPC) strategy to track a desired current density profile evolution specified indirectly by a desired rotational transform profile. An integrator is embedded into the standard MPC formulation to reject various modeling uncertainties and external disturbances. Neutral beam powers, electron density, and total plasma current are used as actuators. The proposed MPC strategy incorporates various state and actuator constraints directly into the control design process by solving a constrained optimization problem in real-time to determine the optimal actuator requests. The effectiveness of the proposed controller in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Supported by the US DOE under DE-AC02-09CH11466.

  13. ECRH/EBWH system for NSTX-U

    Directory of Open Access Journals (Sweden)

    Hosea J.C.

    2012-09-01

    Full Text Available The National Spherical Torus Experiment Upgrade (NSTX-U will operate at an axial toroidal field of up to 1 T, about twice the field available on NSTX. A 28 GHz electron cylotron resonance heating (ECRH system is currently being planned for NSTX-U. A 1 MW 28 GHz gyrotron will be employed. Intially the system will use short, 10-50 ms, 1 MW pulses for ECRH-assisted discharge start-up. Later the pulse length will be extended to 1-5 s to study electron Bernstein wave heating (EBWH during the plasma current flat top. A mirror launcher will be used to couple microwave power to the plasma via O-mode to the slow X-mode to EBW (O-X-B double mode conversion. This paper presents a pre-conceptual design for the ECRH/EBWH system proposed for NSTX-U and includes ray tracing and Fokker-Planck modeling results for 28 GHz ECRH during plasma start-up and EBW heating and current drive during the plasma current flattop of a NSTX-U advanced H-mode plasma scenario.

  14. High-{beta} disruption in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Fredrickson, E.D.; Janos, A. [and others

    1995-07-01

    Three dimensional MHD simulations of high-{beta} plasmas show that toroidally localized high-n ballooning modes can be driven unstable by the local pressure steepening which arises from the evolution of low-n modes. Nonlinearly, the high-n mode becomes even more localized and produces a strong local pressure bulge which destroys the flux surfaces resulting in a thermal quench. The flux surfaces then recover temporarily but now contain large magnetic islands. This scenario is supported by experimental data.

  15. The role of parallel heat transport in the relation between upstream scrape-off layer widths and target heat flux width in H-mode plasmas of NSTX.

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, J W; Boedo, J A; Maingi, R; Soukhanovskii, V A

    2009-01-05

    The physics of parallel heat transport was tested in the Scrape-off Layer (SOL) plasma of the National Spherical Torus Experiment (NSTX) [M. Ono, et al., Nucl. Fusion 40, 557 (2000) and S. M. Kaye, et al., Nucl. Fusion 45, S168 (2005)] tokamak by comparing the upstream electron temperature (T{sub e}) and density (n{sub e}) profiles measured by the mid-plane reciprocating probe to the heat flux (q{sub {perpendicular}}) profile at the divertor plate measured by an infrared (IR) camera. It is found that electron conduction explains the near SOL width data reasonably well while the far SOL, which is in the sheath limited regime, requires an ion heat flux profile broader than the electron one to be consistent with the experimental data. The measured plasma parameters indicate that the SOL energy transport should be in the conduction-limited regime for R-R{sub sep} (radial distance from the separatrix location) < 2-3 cm. The SOL energy transport should transition to the sheath-limited regime for R-R{sub sep} > 2-3cm. The T{sub e}, n{sub e}, and q{sub {perpendicular}} profiles are better described by an offset exponential function instead of a simple exponential. The conventional relation between mid plane electron temperature decay length ({lambda}{sub Te}) and target heat flux decay length ({lambda}{sub q}) is {lambda}{sub Te} = 7/2{lambda}{sub q}, whereas the newly-derived relation, assuming offset exponential functional forms, implies {lambda}{sub Te} = (2-2.5){lambda}{sub q}. The measured values of {lambda}{sub Te}/{lambda}{sub q} differ from the new prediction by 25-30%. The measured {lambda}{sub q} values in the far SOL (R-R{sub sep} > 2-3cm) are 9-10cm, while the expected values are 2.7 < {lambda}{sub q} < 4.9 cm (for sheath-limited regime). We propose that the ion heat flux profile is substantially broader than the electron heat flux profile as an explanation for this discrepancy in the far SOL.

  16. Sawtooth crashes at high beta on JET

    Energy Technology Data Exchange (ETDEWEB)

    Alper, B.; Huysmans, G.T.A.; Sips, A.C.C. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Nave, M.F.F. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior Tecnico

    1994-07-01

    The sawtooth crashes on JET display features which depend on beta. The main observation is a transient bulging of flux surfaces (duration inferior to 30 microsec.), which is predominantly on the low field side and extends to larger radii as beta increases. This phenomenon reaches the plasma boundary when beta{sub N} exceeds 0.5 and in these cases is followed by an ELM within 50 microsec. These sawtooth/ELM events limit plasma performance. Modelling of mode coupling shows qualitative agreement between observations of the structure of the sawtooth precursor and the calculated internal kink mode at high beta. (authors). 6 refs., 5 figs.

  17. Diagnostic Development on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    A.L. Roquemore; D. Johnson; R. Kaita; et al

    1999-12-16

    Diagnostics are described which are currently installed or under active development for the newly commissioned NSTX device. The low aspect ratio (R/a less than or equal to 1.3) and low toroidal field (0.1-0.3T) used in this device dictate adaptations in many standard diagnostic techniques. Technical summaries of each diagnostic are given, and adaptations, where significant, are highlighted.

  18. Initial Development of the NSTX-U Snowflake Divertor Control

    Science.gov (United States)

    Vail, Patrick; Kolemen, Egemen; Welander, Anders; Lanctot, Matthew

    2015-11-01

    A feedback control system has been implemented at NSTX-U for real-time detection and manipulation of snowflake divertor (SFD) magnetic configurations. The SFD is an alternative magnetic divertor concept that is characterized by a second-order null formed by two x-points in close proximity. The SFD is an attractive option for heat flux mitigation for NSTX-U in which unmitigated peak heat fluxes in standard divertor operation near 20 MW/m2 may compromise plasma-facing components. The real-time control system at NSTX-U is capable of simultaneous control of multiple SFD parameters, such as the separation between the two x-points in the divertor region and their orientation. Control of SFD configurations in NSTX-U has been simulated in TOKSYS using the upgraded sets of poloidal field coils in both the upper and lower divertor regions. Performance of the real-time control system and its effect on plasma performance will be assessed experimentally as an initial step toward the development of the SFD concept at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.

  19. Assessment of NSTX-U pedestal control and disruption avoidance

    Science.gov (United States)

    Alexandre, Fil

    2015-11-01

    We report on the pedestal control and disruption avoidance strategies in NSTX-U. Edge localized modes (ELMs) represent a challenge to future fusion devices, due to the high heat fluxes on plasma facing surfaces. One aim of NSTX-U is to characterize the H-Mode pedestal structure at increased BT, Ip and NBI heating power and compare it to NSTX. We will assess the pedestal stability in both standard and snowflake configurations and identify the underlying mechanisms controlling the pedestal structure using the high spatial resolution edge diagnostics (e.g., BES, ME-SXR, bolometer). The new capabilities of NSTX-U will be used to effectively control the pedestal for optimum performance (e.g. LGI, molecular cluster injector). Control tools already deployed on EAST and DIII-D will be used. Disruptions also represent a major challenge for ITER and future devices due to the high heat fluxes on PFCs, electromagnetic forces on the structure and the generation of runaway electrons during the current quench. We will report on active resistive wall mode and plasma rotation control for disruption avoidance in NSTX-U. This work is supported by the US DOE under DE-AC02-09CH11466.

  20. Simulation of the time development of EBW emission from NSTX

    Science.gov (United States)

    Preinhaelter, J.; Urban, J.; Taylor, G.; Diem, S.; Vahala, L.; Vahala, G.

    2006-04-01

    Time evolution of ECE spectra in 20-40GHz range were simulated for NSTX plasmas. The code is based on the full wave solution of the cold plasma wave propagation used for determination of EBW-X-O and EBW-X mode conversion efficiencies and on the determination of the effective radiation temperature from simultaneous solution of EBW ray evolution and integration of the radiative transfer equation. The method was successfully used for determination of the central temperature in NSTX from detected EBW signal at 16.5GHz [1]. The time development of the frequency spectra of EBW emission from the new NSTX antenna is simulated. For the shots (#117970-#117982), the most intense radiation occurs at f = 25GHz. In this case EBW starts at the plasma center and is radiated mainly from the second harmonic [2]. We obtained detailed information how the ECE intensity is connected with the plasma parameters so the simulations allow determination of the EBW usability for plasma diagnostics and proposal of parameters for ECCD application. [1] J. Preinhaelter et al, 16th Topical Conf. on RF Power in Plasmas, Park City, Utah, B-05, AIP Conference Proceedings 787,ed. Stephen J. Wukitch, Paul T. Bonoli,(2005), 349-352. [2] J. Urban, J. Preinhaelter, G. Taylor, L. Vahala, G. Vahala: Simulation of ECE frequency spectra for NSTX and comparison with new radiometer results. 47th APS-DPP, October, 2005. Denver, Colorado *Work supported by U.S. Dept. of Energy.

  1. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-04-24

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  2. Neoclassical transport in high {beta} tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high {beta} large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high {beta} large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low {beta} values by a factor ({var_epsilon}/q{sup 2}{beta}){sup {1/2}} II. This factor is the ratio of plasma volume in the boundary layer to the volume in the core. The fraction of trapped particles on a given flux surface (f{sub t}) is also reduced by this factor so that {approximately} {sub ({var_epsilon}}/q{sup 2}{beta}){sup {1/2}}. Special attention is given to the current equation, since this is thought to be relevant at low 3 and therefore may also be relevant at high {beta}. The bootstrap current term is found to exceed the actual current by a factor of the square root of the aspect ratio.

  3. Power Supply Changes for NSTX Resistive Wall Mode Coils

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, S S.

    2013-06-28

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils need fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.

  4. Spectroscopic Analysis of Wall Conditioning Methods in NSTX

    Science.gov (United States)

    Forbes, Eleanor; Soukhanovskii, Vlad

    2015-11-01

    Plasma confinement and performance in NSTX are reliant upon well-conditioned plasma facing components (PFCs). Past conditioning techniques used in NSTX include hot and cold boronization, lithium pellet injection (LPI), and lithium evaporation. The influx of hydrogen-containing molecules and radicals can be studied through spectroscopic observation of the hydrogen to deuterium (H/D) intensity ratio in the edge plasma. A code to determine H/D ratios has been developed and tested on known light sources before being applied to data from prior NSTX experiments. In general, boronization was found to reduce the H/D ratio, with further H reduction seen from cold boronization when compared to hot boronization. No correlation between LPI and H/D ratio was observed. Lithium evaporation produced a significant H decrease. In the future this analysis will be applied immediately following NSTX-U pulses to provide data on plasma-surface interactions. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-AC52-07NA27344.

  5. High Harmonic Fast Wave heating and current drive for NSTX

    Science.gov (United States)

    Robinson, J. A.; Majeski, R.; Hosea, J.; Menard, J.; Ono, M.; Phillips, C. K.; Wilson, J. R.; Wright, J.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Ryan, P.; Swain, D.; Mau, T. K.; Chiu, S. C.; Smithe, D.

    1997-11-01

    Heating and noninductive current drive in NSTX will initially use 6 MW of rf power in the high harmonic fast wave (HHFW) regime. We present numerical modelling of HHFW heating and current drive in NSTX using the PICES, CURRAY, FISIC, and METS95 codes. High electron β during the discharge flattop in NSTX is predicted to result in off-axis power deposition and current drive. However, reductions in the trapped electron fraction (due also to high β effects) are predicted to result in adequate current drive efficiency, with ~ 400 - 500 kA of noninductive current driven. Sufficient per-pass absorption (>10%) to ensure effective electron heating is also expected for the startup plasma. Present plans call for a single twelve strap antenna driven by six FMIT transmitters operating at 30 MHz. The design for the antenna and matching system will also be discussed.

  6. Visible imaging of edge turbulence in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; S. Kaye; H. Kugel; F. Levinton; R. Maingi; L. Roquemore; S. Sabbagh; G. Wurden

    2000-06-21

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radial heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of ''gas puff imaging'' to locally illuminate the edge density turbulence.

  7. Visible imaging of edge turbulence in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben; R. Maqueda; K. Hill; D. Johnson; et al

    2000-06-13

    Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence.

  8. First results of NSTX-U SOL reflectometer

    Science.gov (United States)

    Lau, Cornwall; Caughman, John; Hosea, Joel; Perkins, Rory; Taylor, Gary; Wilgen, John

    2016-10-01

    The goal of the Oak Ridge National Laboratory (ORNL) scrape-off-layer (SOL) reflectometer is to measure the density profiles and fluctuations in front of the HHFW antenna on NSTX-U to help understand plasma-antenna coupling and RF-edge interactions, such as density profile modifications due to field-aligned power losses and/or parametric decay instabilities. Originally designed for NSTX parameters, the reflectometer has been upgraded to operate at the increased magnetic fields of NSTX-U by using a combination of O-mode cutoffs, and X-mode L and R cutoffs instead of only X-mode R-cutoff. The use of the X-mode L-cutoff, in particular, is necessary to achieve density profile measurements at the expected full magnetic field capability of NSTX-U. Reflectometer electronics and digitization systems were also upgraded to take measurements with a 20 μs time resolution, so as to reduce the effects of turbulence on the density profile measurement. The first results of these reflectometry measurements on NSTX-U will be shown for a range of plasma conditions. Demonstration that the reflectometer can measure the different cutoffs will also be shown. This work was supported at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725, and at the Princeton Plasma Physics Laboratory under DOE Contract No. DE-AC02-09CH11466.

  9. L-H Threshold Studies in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S M; Battaglia, D; Bell, R E; Chang, C S; Hosea, J; Kugel, H; LeBlanc, B P; Meyer, H; Park, G Y

    2011-09-06

    Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) have been run in support of the high priority ITER and ITPA issue of access to the H-mode. Specifically, a series of experiments showed reduced power threshold values for deuterium vs helium plasmas, and for plasmas with lower current, lower triangularity and with lithium conditioning. Application of n=3 fields at the plasma edge resulted in higher power thresholds. To within the constraints of temporal and spatial resolutions, no systematic difference in T{sub e}, n{sub e}, p{sub e}, T{sub i}, v or their derivatives was found in discharges that transitioned into the H-mode versus those at slightly lower power that did not. Finally, H{sub 98y,2} {approx} 1 confinement quality could be achieved for powers just above the threshold power in ELM-free conditions.

  10. Resistive Wall Mode Stability Forecasting in NSTX and NSTX-U

    Science.gov (United States)

    Berkery, Jack

    2016-10-01

    Disruption prevention in tokamak fusion plasmas requires accurate identification and prediction of global MHD instabilities. We examine, in the NSTX device and its upgrade NSTX-U, characterization and forecasting of resistive wall modes (RWMs), which are crucial components of disruption event chains. The kinetic RWM growth rate is solved by the MISK code through a dispersion relation combining ideal and kinetic mode energy functionals, δW and δWK . A model for the ideal n = 1 no-wall δW term, depending on parameters measurable in real-time, has been recently developed by using the DCON code on more than 5,000 NSTX equilibria. When applied to NSTX-U discharges at higher aspect ratio, the model accurately predicts the n = 1 no-wall limit calculated by DCON through the aspect ratio dependence of the model. Full MISK calculations of δWK cannot be performed in real time, but a simplified model based on physics insight from MISK takes a form that depends on ExB frequency, collisionality, and energetic particle fraction. The model will examine when the plasma toroidal rotation profile falls into weaker RWM stability regions based upon this kinetic modification to ideal theory, which contains broad stabilizing resonances via mode-particle interaction. This approach enables, for the first time, the ability to anticipate a growing RWM rather than reacting to one. The reduced model results are tested on a database of NSTX discharges with unstable RWMs. For each discharge, a newly-written disruption event characterization code (DECAF) finds the chain of events leading to a disruption by applying criteria that define each of the physical events. With a simple threshold test of mode amplitude an RWM event was found in each case, and 59% were within 20 wall times of the disruption. The earlier RWM warnings are not false positives; they caused significant, transient decreases in βN. Supported by U.S. D.O.E. contracts DE-FG02-99ER54524 and DE-AC02-09CH11466.

  11. A real-time velocity diagnostic for NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Podesta, M.; Bell, R. E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-03-15

    A new system for fast measurements of the plasma toroidal velocity has been installed on the National Spherical Torus Experiment, NSTX [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The diagnostic, based on active charge-exchange recombination spectroscopy, can measure at up to six radial locations with maximum sampling rate of 5 kHz. The system is interfaced in real time with the NSTX plasma control system, in order to feed back on plasma velocity by means of actuators such as neutral beams and external coils. The paper describes the design criteria and implementation of the diagnostic. Examples from the initial tests of the system during neon glows are also discussed.

  12. Development of the NSTX-U Advanced Divertor Control

    Science.gov (United States)

    Vail, Patrick; Kolemen, Egemen

    2016-10-01

    Advanced magnetic divertor configurations such as the snowflake (SF) divertor are being investigated at NSTX-U for reducing the peak heat flux onto plasma-facing components. Initial efforts include development of plasma scenarios incorporating SF configurations using an upgraded set of divertor coils as well as implementation of a feedback control system for real-time detection and manipulation of two closely-spaced magnetic null points. Closed-loop plasma simulations are performed to demonstrate precise control of various SF configurations. The simulations are then used to demonstrate that the controller can be enhanced to regulate additional parameters such as strike point location and divertor flux expansion. The advanced divertor control will be used in the coming years to enable experiments investigating the physics of advanced divertors at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.

  13. An overview of recent physics results from NSTX

    Science.gov (United States)

    Kaye, S. M.; Abrams, T.; Ahn, J.-W.; Allain, J. P.; Andre, R.; Andruczyk, D.; Barchfeld, R.; Battaglia, D.; Bhattacharjee, A.; Bedoya, F.; Bell, R. E.; Belova, E.; Berkery, J.; Berry, L.; Bertelli, N.; Beiersdorfer, P.; Bialek, J.; Bilato, R.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Boyer, M. D.; Boyle, D.; Brennan, D.; Breslau, J.; Brooks, J.; Buttery, R.; Capece, A.; Canik, J.; Chang, C. S.; Crocker, N.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; D'Ippolito, D.; Domier, C.; Ebrahimi, F.; Ethier, S.; Evans, T.; Ferraro, N.; Ferron, J.; Finkenthal, M.; Fonck, R.; Fredrickson, E.; Fu, G. Y.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gorelenkova, M.; Goumiri, I.; Gray, T.; Green, D.; Guttenfelder, W.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hirooka, Y.; Hooper, E. B.; Hosea, J.; Humphreys, D.; Jaeger, E. F.; Jarboe, T.; Jardin, S.; Jaworski, M. A.; Kaita, R.; Kessel, C.; Kim, K.; Koel, B.; Kolemen, E.; Kramer, G.; Ku, S.; Kubota, S.; LaHaye, R. J.; Lao, L.; LeBlanc, B. P.; Levinton, F.; Liu, D.; Lore, J.; Lucia, M.; Luhmann, N., Jr.; Maingi, R.; Majeski, R.; Mansfield, D.; Maqueda, R.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Mueller, D.; Munsat, T.; Muscatello, C.; Myra, J.; Nelson, B.; Nichols, J.; Ono, M.; Osborne, T.; Park, J.-K.; Peebles, W.; Perkins, R.; Phillips, C.; Podesta, M.; Poli, F.; Raman, R.; Ren, Y.; Roszell, J.; Rowley, C.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S. A.; Schuster, E.; Scotti, F.; Sechrest, Y.; Shaing, K.; Sizyuk, T.; Sizyuk, V.; Skinner, C.; Smith, D.; Snyder, P.; Solomon, W.; Sovenic, C.; Soukhanovskii, V.; Startsev, E.; Stotler, D.; Stratton, B.; Stutman, D.; Taylor, C.; Taylor, G.; Tritz, K.; Walker, M.; Wang, W.; Wang, Z.; White, R.; Wilson, J. R.; Wirth, B.; Wright, J.; Yuan, X.; Yuh, H.; Zakharov, L.; Zweben, S. J.

    2015-10-01

    The National Spherical Torus Experiment (NSTX) is currently being upgraded to operate at twice the toroidal field and plasma current (up to 1 T and 2 MA), with a second, more tangentially aimed neutral beam (NB) for current and rotation control, allowing for pulse lengths up to 5 s. Recent NSTX physics analyses have addressed topics that will allow NSTX-Upgrade to achieve the research goals critical to a Fusion Nuclear Science Facility. These include producing stable, 100% non-inductive operation in high-performance plasmas, assessing plasma-material interface (PMI) solutions to handle the high heat loads expected in the next-step devices and exploring the unique spherical torus (ST) parameter regimes to advance predictive capability. Non-inductive operation and current profile control in NSTX-U will be facilitated by co-axial helicity injection (CHI) as well as radio frequency (RF) and NB heating. CHI studies using NIMROD indicate that the reconnection process is consistent with the 2D Sweet-Parker theory. Full-wave AORSA simulations show that RF power losses in the scrape-off layer (SOL) increase significantly for both NSTX and NSTX-U when the launched waves propagate in the SOL. Toroidal Alfvén eigenmode avalanches and higher frequency Alfvén eigenmodes can affect NB-driven current through energy loss and redistribution of fast ions. The inclusion of rotation and kinetic resonances, which depend on collisionality, is necessary for predicting experimental stability thresholds of fast growing ideal wall and resistive wall modes. Neutral beams and neoclassical toroidal viscosity generated from applied 3D fields can be used as actuators to produce rotation profiles optimized for global stability. DEGAS-2 has been used to study the dependence of gas penetration on SOL temperatures and densities for the MGI system being implemented on the Upgrade for disruption mitigation. PMI studies have focused on the effect of ELMs and 3D fields on plasma detachment and heat

  14. Lithium Wall Conditioning And Surface Dust Detection On NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C H; Bell, M G; Friesen, F.Q.L.; Heim, B; Jaworski, M A; Kugel, H; Maingi, R; Rais, B

    2011-05-23

    Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors

  15. Overview of Results from the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    Gates, D. A.; Ahn, J.; Allain, J.; Andre, R.; Bastasz, R.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Biewer, T.; Bigelow, T.; Bitter, M.; Choe, W.; Crocker, N.; Darrow, D.; Delgado-Aparicio, L.; Diem, S.; D’Ippolito, D.; Domier, C.; Dorland, W.; Efthimion, P.; Ejiri, A.; Ershov, N.; Evans, T.; Feibush, E.; Fenstermacher, M.; Ferron, J.; Finkenthal, M.; Foley, J.; Frazin, R.; Fredrickson, E.; Fu, G.; Funaba, H.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Grisham, L.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hillesheim, J.; Hillis, D.; Hirooka, Y.; Hu, B.; Humphreys, D.; Idehara, T.; Indireshkumar, K.; Ishida, A.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Ji, H.; Jung, H.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kawahata, K.; Kawamori, E.; Kaye, S.; Kessel, C.; Kim, J.; Kimura, H.; Kolemen, E.; Krasheninnikov, S.; Krstic, P.; Ku, S.; Kubota, S.; Kugel, H.; La Haye, R.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Luhmann, Jr., N.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mitarai, O.; Mueller, D.; Mueller, S.; Munsat, T.; Myra, J.; Nagayama, Y.; Nelson, B.; Nguyen, X.; Nishino, N.; Nishiura, M.; Nygren, R.; Ono, M.; Osborne, T.; Pacella, D.; Park, H.; Park, J.; Paul, S.; Peebles, W.; Penaflor, B.; Peng, M.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, J.; Ram, A.; Raman, R.; Rasmussen, D.; Redd, A.; Reimerdes, H.; Rewo, G.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Sabbagh, S.; Schaffer, M.; Schuster, E.; Scott, S.; Shaing, K.; Sharpe, P.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C.; Smirnov, A.; Smith, D.; Smith, S.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Strait, T.; Stratton, B.; Stutman, D.; Takahashi, R.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Ticos, C.; Tritz, K.; Tsarouhas, D.; Turrnbull, A.; Tynan, G.; Ulrickson, M.; Umansky, M.; Urban, J.; Utergberg, E.; Walker, M.; Wampler, W.; Wang, J.; Wang, W.; Welander, A.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K.; Wright, J.; Xia, Z.; Xu, X.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zweben, S.

    2009-03-24

    The mission of NSTX is the demonstration of the physics basis required to extrapolate to the next steps for the spherical torus (ST), such as a plasma facing component test facility (NHTX) or an ST based component test facility (ST-CTF), and to support ITER. Key issues for the ST are transport, and steady state high β operation. To better understand electron transport, a new high-k scattering diagnostic was used extensively to investigate electron gyro-scale fluctuations with varying electron temperature gradient scale-length. Results from n = 3 braking studies are consistent with the flow shear dependence of ion transport. New results from electron Bernstein wave emission measurements from plasmas with lithium wall coating applied indicate transmission efficiencies near 70% in H-mode as a result of reduced collisionality. Improved coupling of High Harmonic Fast-Waves has been achieved by reducing the edge density relative to the critical density for surface wave coupling. In order to achieve high bootstrap current fraction, future ST designs envision running at very high elongation. Plasmas have been maintained on NSTX at very low internal inductance li ~0.4 with strong shaping (κ ~ 2.7, δ ~ 0.8) with βN approaching the with-wall beta limit for several energy confinement times. By operating at lower collisionality in this regime, NSTX has achieved record non-inductive current drive fraction fNI ~71%. Instabilities driven by super-Alfv´enic ions will be an important issue for all burning plasmas, including ITER. Fast ions from NBI on NSTX are super-Alfv´enic. Linear TAE thresholds and appreciable fast-ion loss during multi-mode bursts are measured and these results are compared to theory. The impact of n > 1 error fields on stability is a important result for ITER. RWM/RFA feedback combined with n=3 error field control was used on NSTX to maintain plasma rotation with β above the no-wall limit. Other highlights are: results

  16. High beta and confinement studies on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, G.A.; Bhattacharjee, A.; Iacono, R.; Mauel, M.E.; Sabbagh, S.A. (Columbia Univ., New York, NY (United States)); Kesner, J. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1992-01-01

    A new regime of high poloidal beta operation in TFTR was developed in the course of the first two years of this project (9/25/89 to 9/24/91). Our proposal to continue this successful collaboration between Columbia University and the Massachusetts Institute of Technology with the Princeton Plasma Physics Laboratory for a three year period (9/25/91 to 9/24/94) to continue to investigate improved confinement and tokamak performance in high poloidal beta plasmas in TFTR through the DT phase of operation was approved by the DOE and this is a report of our progress during the first 9 month budget period of the three year grant (9/25/91 to 6/24/92). During the approved three year project period we plan to (1) extend and apply the low current, high QDD discharges to the operation of TFTR using Deuterium and Tritium plasma; (2) continue the analysis and plan experiments on high poloidal beta phenomena in TFTR including: stability properties, enhanced global confinement, local transport, bootstrap current, and divertor formation; (3) plan and carry out experiments on TFTR which attempt to elevate the central q to values > 2 where entry to the second stability regime is predicted to occur; and (4) collaborate on high beta experiments using bean-shaped plasmas with a stabilizing conducting shell in PBX-M. In the seven month period covered by this report we have made progress in each of these four areas through the submission of 4 TFTR Experimental Proposals and the partial execution of 3 of these using a total of 4.5 run days during the August 1991 to February 1992 run.

  17. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  18. Evaporated lithium surface coatings in NSTX.

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gates, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Menard, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Maingi, R. (Oak Ridge National Laboratory, Oak Ridge, TN); Schneider, H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mueller, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wampler, William R.; Roquemore, A. L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kallman, Jeffrey K. (Princeton Plasma Physics Laboratory, Princeton, NJ); Sabbagh, S. (Columbia University, New York, NY); LeBlanc, B. (Princeton Plasma Physics Laboratory, Princeton, NJ); Raman, R. (University of Washington, Seattle, WA); Ono, M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wilgren, J. (Oak Ridge National Laboratory, Oak Ridge, TN); Allain, J.P. (Purdue University, West Lafayette, IN); Timberlake, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Stevenson, T. (Princeton Plasma Physics Laboratory, Princeton, NJ); Ross, P. W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Majeski, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kugel, Henry W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Skinner, C. H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gerhardt, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Paul, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Bell, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaye, S. M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaita, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Soukhanovskii, V. (Lawrence Livermore National Laboratory, Livermore, CA); Bell, Michael G. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mansfield, D. (Princeton Plasma Physics Laboratory, Princeton, NJ)

    2008-08-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

  19. Evaporated Lithium Surface Coatings in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL); Mansfield, D. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Allain, J. P. [Purdue University; Gates, D. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL); Ono, M. [Princeton Plasma Physics Laboratory (PPPL); Paul, S. [Princeton Plasma Physics Laboratory (PPPL); Raman, R. [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Ross, P. W. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Skinner, C. H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. [Lawrence Livermore National Laboratory (LLNL); Stevenson, T. [Princeton Plasma Physics Laboratory (PPPL); Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Wampler, W. R. [Sandia National Laboratories (SNL); Wilgen, John B [ORNL; Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL)

    2009-01-01

    Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density. (C) 2009 Elsevier B.V. All rights reserved

  20. Initial operation of the NSTX-Upgrade real-time velocity diagnostic

    Science.gov (United States)

    Podestà, M.; Bell, R. E.

    2016-12-01

    A real-time velocity (RTV) diagnostic based on active charge-exchange recombination spectroscopy is now operational on the National Spherical Torus Experiment-Upgrade (NSTX-U) spherical torus (Menard et al 2012 Nucl. Fusion 52 083015). The system has been designed to supply plasma velocity data in real time to the NSTX-U plasma control system, as required for the implementation of toroidal rotation control. Measurements are available from four radii at a maximum sampling frequency of 5 kHz. Post-discharge analysis of RTV data provides additional information on ion temperature, toroidal velocity and density of carbon impurities. Examples of physics studies enabled by RTV measurements from initial operations of NSTX-U are discussed.

  1. Results from the NSTX MSE-CIF diagnostic

    Science.gov (United States)

    Yuh, Howard Y.; Levinton, F. M.; Menard, J. E.

    2006-10-01

    A twelve channel Collisionally-Induced Fluorescence Motional Stark Effect diagnostic, covering the plasma minor radius on the outboard side, is routinely operated for the primary purpose of providing internal magnetic pitch angle measurements for equilibrium reconstruction. While the NSTX MSE-CIF requires the use of novel high-throughput, narrow bandpass (0.07 nm) Lyot filters to operate at low magnetic field (0.3-0.55T), a traditional PEM-based polarimeter is used to make the angular measurement. The polarimeter is calibrated by reconciling MSE measured angles with magnetic reconstructions during beam injection into gas-fill-torus with vacuum fields. It has recently been suggested that fast ions resulting from ionization of the beam neutrals with the fill gas may contaminate the measured angle by emitting additional Balmer-alpha after re-neutralizing via charge-exchange. Results from 3D simulations of this widely used MSE calibration technique from several machine geometries, including NSTX, C-Mod, and ITER will be presented. Highlights from MSE results for the 2006 NSTX run campaign will also be presented. Supported by DOE contracts DE-FG02-99ER54520 and DE-AC02-76CH03073.

  2. Neoclassical transport in high [beta] tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cowley, S.C.

    1992-12-01

    Neoclassical, transport in high [beta] large aspect ratio tokamaks is calculated. The variational method introduced by Rosenbluth, et al., is used to calculate the full Onsager matrix in the banana regime. These results are part of a continuing study of the high [beta] large aspect ratio equilibria introduced in Cowley, et al. All the neoclassical coefficients are reduced from their nominal low [beta] values by a factor ([var epsilon]/q[sup 2][beta])[sup [1/2

  3. NSTX: Facility/Research Highlights and Near Term Facility Plans

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono

    2008-11-19

    The National Spherical Torus Experiment (NSTX) is a collaborative mega-ampere-class spherical torus research facility with high power heating and current drive systems and the state-of-the-art comprehensive diagnostics. For the 2008 experimental campaign, the high harmonic fast wave (HHFW) heating efficiency in deuterium improved significantly with lithium evaporation and produced a record central Te of 5 keV. The HHFW heating of NBI-heated discharges was also demonstrated for the first time with lithium application. The EBW emission in H-mode was also improved dramatically with lithium which was shown to be attributable to reduced edge collisional absorption. Newly installed FIDA energetic particle diagnostic measured significant transport of energetic ions associated with TAE avalanche as well as n=1 kink activities. A full 75 channel poloidal CHERS system is now operational yielding tantalizing initial results. In the near term, major upgrade activities include a liquid-lithium divertor target to achieve lower collisionality regime, the HHFW antenna upgrades to double its power handling capability in H-mode, and a beam-emission spectroscopy diagnostic to extend the localized turbulence measurements toward the ion gyro-radius scale from the present concentration on the electron gyro-radius scale. For the longer term, a new center stack to significantly expand the plasma operating parameters is planned along with a second NBI system to double the NBI heating and CD power and provide current profile control. These upgrades will enable NSTX to explore fully non-inductive operations over a much expanded plasma parameter space in terms of higher plasma temperature and lower collisionality, thereby significantly reducing the physics parameter gap between the present NSTX and the projected next-step ST experiments.

  4. Concept of a charged fusion product diagnostic for NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Boeglin, W. U.; Valenzuela Perez, R. [Department of Physics, Florida International University, 11200 SW 8th Street, Miami, Florida 33199 (United States); Darrow, D. S. [Princeton Plasma Physics Laboratory, James Forrestal Campus, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2010-10-15

    The concept of a new diagnostic for NSTX to determine the time dependent charged fusion product emission profile using an array of semiconductor detectors is presented. The expected time resolution of 1-2 ms should make it possible to study the effect of magnetohydrodynamics and other plasma activities (toroidal Alfven eigenmodes (TAE), neoclassical tearing modes (NTM), edge localized modes (ELM), etc.) on the radial transport of neutral beam ions. First simulation results of deuterium-deuterium (DD) fusion proton yields for different detector arrangements and methods for inverting the simulated data to obtain the emission profile are discussed.

  5. APD detector electronics for the NSTX Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Johnson; B.P. LeBlanc; D.L. Long; G. Renda

    2000-08-07

    An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of {approximately}25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration.

  6. Investigation of HHFW and NBI Combined Heating in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    B.P. LeBlanc; R.E. Bell; S. Bernabei; T.M. Biewer; J.C. Hosea; J.R. Wilson

    2005-04-27

    A series of experiments was conducted to investigate the combined utilization of high-harmonics fast-wave (HHFW) and neutral-beam injection (NBI) auxiliary heating in National Spherical Torus Experiment (NSTX) plasmas. A modest increase of the total stored energy coincident with a near doubling of the neutron production rate is observed when NBI heating is added to HHFW in L-mode plasmas. An increase in the core electron temperature is also observed. On the other hand, essentially no stored energy augmentation nor neutron production rate enhancement is observed when applying HHFW during the ''H'' phase of NBI-driven H-mode plasmas. Spectroscopic measurements of the edge carbon line radiation indicate an unpredicted ion temperature increase, suggesting that edge effects are reducing the amount of HHFW power reaching the plasma core.

  7. Electron Bernstein Wave Emission and Mode Conversion Physics on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Diem, S J; Caughman, J B; Efthimion, P; Kugel, H; LeBlanc, B P; Preinhaelter, J; Sabbagh, S A; Urban, J

    2008-05-21

    NSTX is a spherical tokamak (ST) that operates with ne up to 1020 m-3 and BT less than 0.6 T, cutting off low harmonic electron cyclotron (EC) emission widely used for Te measurements on conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) can propagate in ST plasmas and is emitted at EC harmonics. These properties suggest thermal EBW emission (EBE) may be used for local Te measurements in the ST. Practically, a robust Te(R,t) EBE diagnostic requires EBW transmission efficiencies of > 90% for a wide range of plasma conditions. EBW emission and coupling physics were studied on NSTX with an obliquely viewing EBW to O-mode (B-X-O) diagnostic with two remotely steered antennas, coupled to absolutely calibrated radiometers. While Te(R,t) measurements with EBW emission on NSTX were possible, they were challenged by several issues. Rapid fluctuations in edge ne scale length resulted in > 20% changes in the low harmonic B-X-O transmission efficiency. Also, B-X-O transmission efficiency 2 during H-modes was observed to decay by a factor of 5-10 to less than a few percent. The B-X-O transmission behavior during H-modes was reproduced by EBE simulations that predict that EBW collisional damping can significantly reduce emission when Te < 30 eV inside the B-X-O mode conversion (MC) layer. Initial edge lithium conditioning experiments during H-modes have shown that evaporated lithium can increase Te inside the B-X-O MC layer, significantly increasing B-X-O transmission.

  8. Simultaneous feedback control of plasma rotation and stored energy on NSTX-U using neoclassical toroidal viscosity and neutral beam injection

    Science.gov (United States)

    Goumiri, I. R.; Rowley, C. W.; Sabbagh, S. A.; Gates, D. A.; Boyer, M. D.; Gerhardt, S. P.; Kolemen, E.; Menard, J. E.

    2017-05-01

    A model-based feedback system is presented enabling the simultaneous control of the stored energy through βn and the toroidal rotation profile of the plasma in National Spherical Torus eXperiment Upgrade device. Actuation is obtained using the momentum from six injected neutral beams and the neoclassical toroidal viscosity generated by applying three-dimensional magnetic fields. Based on a model of the momentum diffusion and torque balance, a feedback controller is designed and tested in closed-loop simulations using TRANSP, a time dependent transport analysis code, in predictive mode. Promising results for the ongoing experimental implementation of controllers are obtained.

  9. Ideal MHD stability of very high beta tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Chance, M.S.; Jardin, S.C.; Kessel, C.; Manickam, J.; Monticello, D. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Peng, Y.K.M.; Holmes, J.A.; Strickler, D.J.; Whitson, J.C. (Oak Ridge National Lab., TN (USA)); Glasser, A.H. (Los Alamos National Lab., NM (USA)); Sykes, A. (UKAEA Culham Lab., Abingdon (UK)); Ramos, J.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Plasma Fusion Center)

    1990-12-01

    Achieving very high {beta} and high {beta}{sub p} simultaneously in tokamaks generally implies that the second stability region against ballooning modes must be accessed. We describe several approaches for doing this, which are characterized by the choice of constraints imposed on the equilibrium profiles and the cross-sectional shape of the plasma. The combination of high toroidal beta, restricting the current density to vanish at the edge of the plasma and maintaining a monotonic q profile, proves to be the most stringent. Consideration of equilibria with high {epsilon}{beta}{sub p} but low {beta} facilitates accessibility with peaked pressure profiles and high values of q{sub 0}. Allowing the pressure gradient and, hence, the current density to be finite at the plasma edge allows all surfaces to lie within the second stability regime. For free boundary plasmas with divertors, the divertor stabilized edge region remains in the first stability regime while the plasma core reaches into the second regime. Careful tailoring of the profiles must be used to traverse the unstable barrier commonly seen near the edge of these plasmas. The CAMINO code allows us to compute s-{alpha} curves for general tokamak geometry. These diagrams enable us to construct equilibria whose profiles are only constrained, at worst, to be marginally stable everywhere, but do not necessarily satisfy the constraints on the current or {beta}. There are theoretical indications that under certain conditions the external kinks possess a second region of stability at high q{sub 0} that is analogous to that of the ballooning modes. It is found that extremely accurate numerical means must be developed and applied to confidently establish the validity of these results. 14 refs., 5 figs., 1 tab.

  10. Status and Plans for Infrared Thermography and Heat flux Measurements on NSTX-U

    Science.gov (United States)

    Gray, Travis; Ahn, Joon-Wook; Gan, Kaifu; McGann, Alistair; Reinke, Matthew; Maingi, Rajesh; Wirth, Brian

    2016-10-01

    Improvements and expansion of IR thermography tools on NSTX-U are being pursued to support a range of boundary physics research. Due to a carbon-lithium mixed material environment and upcoming use of high-Z materials, NSTX-U presents a challenge in determining the deposited power flux to plasma facing components (PFCs). The majority of the PFCs are graphite which has a high surface emissivity but extensive use of lithium wall conditioning creates a mixed material divertor environment. Furthermore, a row of low emissivity/highly reflective molybdenum tiles will be installed in the outboard divertor for the next run campaign. To overcome these challenges as well assess overall power balance in NSTX-U, infrared coverage of the PFCs has been increased. The lower divertor outer strike point (OSP) is observed by a 1.6 kHz IR camera equipped with dual-band optics to account for the changes in surface emissivity introduced with the addition of lithium [AG MCLean, RSI 2012]. A wide-angle view of the lower divertor and a tangential view of the HHFW antenna and limiters has been added for the commencement of plasma operations on the NSTX-U. Measurements of the lower divertor, inner strike point (ISP) as well as the upper diverter OSP will be implemented for the FY17 run campaign. The installation of the molybdenum tiles will also include calorimeters to further constrain the heat flux measurements on those tiles with plans to increase calorimeter coverage.

  11. Diagnostic options for radiative divertor feedback control on NSTX-U.

    Science.gov (United States)

    Soukhanovskii, V A; Gerhardt, S P; Kaita, R; McLean, A G; Raman, R

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q(peak) ≤ 15 MW/m(2)), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D(2) or CD(4) gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m(2), are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic "security" monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  12. Diagnostic options for radiative divertor feedback control on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V. A.; Gerhardt, S. P.; Kaita, R.; McLean, A. G.; Raman, R.

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (qpeak ≤ 15 MW/m2), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D2 or CD4 gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20–30 MW/m2, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic “security” monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  13. Strike Point Control for the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    Kolemen, E.; Gates, D. A.; Rowley, C. W.; Kasdin, N. J.; Kallman, J.; Gerhardt, S.; Soukhanovskii, V.; Mueller, D.

    2010-07-09

    This paper presents the first control algorithm for the inner and outer strike point position for a Spherical Torus (ST) fusion experiment and the performance analysis of the controller. A liquid lithium divertor (LLD) will be installed on NSTX which is believed to provide better pumping than lithium coatings on carbon PFCs. The shape of the plasma dictates the pumping rate of the lithium by channeling the plasma to LLD, where strike point location is the most important shape parameter. Simulations show that the density reduction depends on the proximity of strike point to LLD. Experiments were performed to study the dynamics of the strike point, design a new controller to change the location of the strike point to desired location and stabilize it. The most effective PF coils in changing inner and outer strike points were identified using equilibrium code. The PF coil inputs were changed in a step fashion between various set points and the step response of the strike point position was obtained. From the analysis of the step responses, PID controllers for the strike points were obtained and the controller was tuned experimentally for better performance. The strike controller was extended to include the outer-strike point on the inner plate to accommodate the desired low outer-strike points for the experiment with the aim of achieving "snowflake" divertor configuration in NSTX.

  14. Beam ion confinement on NSTX-U

    Science.gov (United States)

    Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.

    2016-10-01

    A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good beam ion confinement is essential to achieve the anticipated improvements in performance. In the planned beam ion confinement experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses from six neutral beam sources will be injected into center-stack limited L-mode plasmas to characterize the beam ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the beam ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The tangential and vertical Fast-Ion D-Alpha (FIDA) diagnostics and multi-view Solid State Neutral Particle Analyzer (SSNPA) arrays will be used to measure beam ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Beam ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental data and comparisons with classical predictions from NUBEAM modeling will be presented. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.

  15. Calculation of Divertor Thermal Response as a Function of Material Composition for NSTX

    Science.gov (United States)

    Chaffin, Michael; Maingi, Rajesh

    2007-11-01

    Present tokamak designs use a magnetic divertor to deposit heat from the edge plasma onto Plasma Facing Components (PFCs) designed to remove the heat. Studying how this heat is distributed under various discharge conditions gives insight into how heat deposition can be optimized, and how different materials respond to plasma heating. In the National Spherical Torus eXperiment (NSTX), infrared cameras are used to measure divertor surface temperature, from which heat flux is computed using a 1D semi-infinite slab model with constant thermal conductivity. Here, a 1D simulation of the PFCs incorporating temperature-dependent thermal properties is used to compute heat flux profiles resolved across time and tile thickness. The PFC response to a given heat flux is also computed, and comparisons of resulting temperature profiles are made for a variety of materials including ATJ graphite (presently in the NSTX divertor), pyrolytic graphite, molybdenum, and tungsten.

  16. Modeling of surface temperature effects on mixed material migration in NSTX-U

    Science.gov (United States)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2016-10-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  17. Magnetic Field Measurements in NSTX-U with the MSE-LIF Diagnostic

    Science.gov (United States)

    Levinton, Fred; Foley, Jill; Dicicco, Darrell; Cylinder, David; La Fleur, Hannah; Yuh, Howard

    2014-10-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) was installed on NSTX during the 2011 run year. The MSE-LIF will enable radially resolved measurements of the magnetic field pitch angle and magnitude, both of which can be used to constrain plasma equilibrium reconstructions. A diagnostic neutral beam with low axial energy spread, low divergence, and high reliability has been developed. It operates routinely at 35 kV and 40 mA. A laser has been developed with high power (~10 W) and optimal linewidth matched to the energy spread of the neutral beam (~6 GHz). The laser wavelength is near 651 nm for a match to the Doppler-shifted Balmer-alpha transition in the beam neutrals. The unique high-power, moderate linewidth laser system utilizes a 19 emitter diode laser bar and feedback from a volume Bragg grating for line width narrowing. A magnetic shield protects the ion source from the NSTX stray fields. Initial data in a gas-filled torus and low magnetic fields was taken on NSTX. Several improvements have been made to the system during the NSTX upgrade, including adding more spatial channels and several laser improvements. Supported by USDOE Grant No. DE-FG02-01ER54616.

  18. NSTX Report on FES Joint Facilities Research Milestone 2010

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R.; Ahn, J- W.; Gray, T. K.; McLean, A. G.; Soukhanovskii, V. A.

    2011-03-24

    Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ν*, beta β, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.

  19. Preparation of the liquid lithium divertor plates for NSTX

    Science.gov (United States)

    Nygren, R. E.; McKee, G. R.; Fordham, J. A.; Lewis, S. A.; Kugel, H.; Ellis, R. A.; Viola, M. E.; O'Dell, J. S.

    2011-10-01

    Each of the four toroidal panels of the liquid lithium divertor being installed in NSTX for operation in the 2010 campaign is a conical section inclined at 22° like the previous graphite divertor tiles. Each panel is a copper plate clad with stainless steel and a surface layer of porous plasma sprayed molybdenum (Mo) that will host lithium deposited from an evaporator. This paper describes the processes in fabrication; these include cutting to rough shape, die pressing into conical sections, machining to near final shape with holes for electrical heaters, thermocouples and a groove for a cooling tube, brazing of the 0.25-mm cladding and vacuum plasma spraying of the Mo coating.

  20. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    Science.gov (United States)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator

  1. Analysis of NSTX Upgrade OH Magnet and Center Stack

    Energy Technology Data Exchange (ETDEWEB)

    A. Zolfaghari, P. Titus, J. Chrzanowski, A. Salehzadeh, F. Dahlgren

    2010-11-30

    The new ohmic heating (OH) coil and center stack for the National Spherical Torus Experiment (NSTX) upgrade are required to meet cooling and structural requirements for operation at the enhanced 1 Tesla toroidal field and 2 MA plasma current. The OH coil is designed to be cooled in the time between discharges by water flowing in the center of the coil conductor. We performed resistive heating and thermal hydraulic analyses to optimize coolant channel size to keep the coil temperature below 100 C and meet the required 20 minute cooling time. Coupled electromagnetic, thermal and structural FEA analyses were performed to determine if the OH coil meets the requirements of the structural design criteria. Structural response of the OH coil to its self-field and the field from other coils was analyzed. A model was developed to analyze the thermal and electromagnetic interaction of centerstack components such as the OH coil, TF inner legs and the Bellville washer preload mechanism. Torsional loads from the TF interaction with the OH and poloidal fields are transferred through the TF flag extensions via a torque transfer coupling to the rest of the tokamak structure. A 3D FEA analysis was performed to qualify this design. The results of these analyses, which will be presented in this paper, have led to the design of OH coil and centerstack components that meet the requirements of the NSTX-upgrade structural design criteria.

  2. Comparison of Moderate to High Ion Cyclotron Absorption on Energetic Ions in NSTX and DIII-D

    Science.gov (United States)

    Burby, J.; Pinsker, R. I.; Choi, M.

    2009-11-01

    Strong absorption of fast waves (FWs) on injected deuterons at ion cyclotron harmonic numbers in the 4-10 range is observed on both DIII-D and NSTX. The results from fast ion Dα spectroscopic measurements from the two devices differ significantly: deposition on fast ions peaks near the cyclotron harmonic layer closest to the magnetic axis in the conventional-aspect-ratio DIII-D, while results from the low-aspect-ratio NSTX show a broader deposition profile [1]. One root of the difference stems from the absorbing fast ions sampling more harmonic layers in NSTX than in DIII-D. We investigate cyclotron absorption in cases with multiple harmonic layers within a single ion gyroradius and related phenomena numerically and analytically by examining the response of individual charged particles to rf fields in various field configurations. 8pt [1] M. Podesta et al., RF Power in Plasmas (Proc.18th Top. Conf., Gent, Belgium, 2009), to be published.

  3. Electromagnetic effects on dynamics of high-beta filamentary structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-01-15

    The impacts of the electromagnetic effects on blob dynamics are considered. Electromagnetic BOUT++ simulations on seeded high-beta blobs demonstrate that inhomogeneity of magnetic curvature or plasma pressure along the filament leads to bending of the blob filaments and the magnetic field lines due to increased propagation time of plasma current (Alfvén time). The bending motion can enhance heat exchange between the plasma facing materials and the inner scrape-off layer (SOL) region. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time. Using linear analysis and BOUT++ simulations, it is found that electromagnetic effects in high temperature and high density plasmas reduce the growth rate of resistive drift wave instability when resistivity drops below a certain value. The blobs temperature decreases in the course of its motion through the SOL and so the blob can switch from the electromagnetic to the electrostatic regime where resistive drift waves become important again.

  4. Perturbative momentum transport in MAST L-mode plasmas

    Science.gov (United States)

    Guttenfelder, W.; Field, A. R.; Lupelli, I.; Tala, T.; Kaye, S. M.; Ren, Y.; Solomon, W. M.

    2017-05-01

    Non-axisymmetric magnetic fields are used to perturbatively probe momentum transport physics in MAST L-mode plasmas. The low beta L-mode target was chosen to complement previous experiments conducted in high beta NSTX H-mode plasmas (β N  =  3.5-4.6) where an inward momentum pinch was measured. In those cases quasi-linear gyrokinetic simulations of unstable ballooning micro-instabilities predict weak or outward momentum convection, in contrast to the measurements. The weak pinch was predicted to be due to both electromagnetic effects at high beta and low aspect ratio minimizing the symmetry-breaking of the instabilities responsible for momentum transport. In an attempt to lessen these electromagnetic effects at low aspect ratio, perturbative experiments were run in MAST L-mode discharges at lower beta (β N  =  2). The perturbative transport analysis used the time-dependent response following the termination of applied 3D fields that briefly brake the plasma rotation (similar to the NSTX H-mode experiments). Assuming time-invariant diffusive (χ φ ) and convective (V φ ) transport coefficients, an inward pinch is inferred with magnitudes, (RV φ /χ φ )  =  (-1)-(-9), similar to those found in NSTX H-modes and in conventional tokamaks. However, if experimental uncertainties due to non-stationary conditions during and after the applied 3D field are considered, a weak pinch or even outward convection is inferred, (RV φ /χ φ )  =  (-1)-(+5). Linear gyrokinetic simulations indicate that for these lower beta L-modes, the predicted momentum pinch is predicted to be relatively small, (RV φ /χ φ )sim  ≈  -1. While this falls within the experimentally inferred range, the uncertainties are practically too large to quantitatively validate the predictions. Challenges and implications for this particular experimental technique are discussed, as well as additional possible physical mechanisms that may be important in

  5. NSTX-U Digital Coil Protection System Software Detailed Design

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-06-01

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  6. Recent progress towards an advanced spherical torus operating point in NSTX

    Science.gov (United States)

    Gerhardt, S. P.; Gates, D. A.; Kaye, S. M.; Maingi, R.; Menard, J. E.; Sabbagh, S. A.; Soukhanovskii, V.; Bell, M. G.; Bell, R. E.; Canik, J. M.; Fredrickson, E.; Kaita, R.; Kolemen, E.; Kugel, H.; Le Blanc, B. P.; Mastrovito, D.; Mueller, D.; Yuh, H.

    2011-07-01

    Progress in the development of integrated advanced ST plasma scenarios in NSTX (Ono et al 2000 Nucl. Fusion 40 557) is reported. Recent high-performance plasmas in NSTX following lithium coating of the plasma facing surfaces have achieved higher elongation and lower internal inductance than previously. Analysis of the thermal confinement in these lithiumized discharges shows a stronger plasma current and weaker toroidal field dependence than in previous ST confinement scaling studies; the ITER-98(y, 2) scaling expression describes these scenarios reasonably well. Analysis during periods free of MHD activity has shown that the reconstructed current profile can be understood as the sum of pressure driven, inductive and neutral beam driven currents, without requiring any anomalous fast-ion transport. Non-inductive fractions of 65-70%, and βP > 2, have been achieved at lower plasma current. Some of these low-inductance discharges have a significantly reduced no-wall βN limit, and often have βN at or near the with-wall limit. Coupled m/n = 1/1 + 2/1 kink/tearing modes can limit the sustained β values when rapidly growing ideal modes are avoided. A βN controller has been commissioned and utilized in sustaining high-performance plasmas. 'Snowflake' divertors compatible with high-performance plasmas have been developed. Scenarios with significantly larger aspect ratios have also been developed, in support of next-step ST devices. Overall, these NSTX plasmas have many characteristics required for next-step ST devices.

  7. Modeling of lithium granule injection in NSTX using M3D-C1

    Science.gov (United States)

    Fil, A.; Kolemen, E.; Ferraro, N.; Jardin, S.; Parks, P. B.; Lunsford, R.; Maingi, R.

    2017-05-01

    In this paper, we present simulations of pedestal control by lithium granule injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code (Jardin et al 2012 Comput. Sci. Discovery 5 014002), allowing the simulation of realistic lithium granule injections. 2D and 3D simulations of Li injections in NSTX H-mode plasmas are performed and the effect of granule size, injection angle and velocity on the pedestal gradient increase is studied. The amplitude of the local pressure perturbation caused by the granules is found to be highly dependent on the solid granule size. Adjusting the granule injection velocity allows one to inject more particles at the pedestal top. 3D simulations show the destabilization of high order MHD modes whose amplitude is directly linked to the localized pressure perturbation, which is found to depend on the toroidal localization of the granule density source.

  8. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean-Paul [Purdue Univ., West Lafayette, IN (United States)

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  9. Nonlinear simulations of beam-driven compressional Alfvén eigenmodes in NSTX

    Science.gov (United States)

    Belova, E. V.; Gorelenkov, N. N.; Crocker, N. A.; Lestz, J. B.; Fredrickson, E. D.; Tang, S.; Tritz, K.

    2017-04-01

    Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfvén eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n =4 -9 , and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfvén wave (KAW) that occurs on the high-field side at the Alfvén resonance location. High-frequency Alfvén eigenmodes are frequently observed in beam-heated NSTX plasmas, and have been linked to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beam-driven CAEs dissipate their energy at the resonance location, therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. A set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power.

  10. Detailed comparison of simulations, experiments, and theory of sub-cyclotron Alfven eigenmodes in NSTX

    Science.gov (United States)

    Lestz, Jeff; Belova, Elena; Gorelenkov, Nikolai; Tang, Shawn; Crocker, Neal

    2016-10-01

    High frequency compressional (CAE) and global (GAE) Alfvén eigenmodes are often driven unstable by super-Alfvénic beam ions in NSTX, and have been linked to anomalous electron temperature profile flattening at high beam power [D. Stutman, PRL 2009]. A large set of 3D MHD- δf hybrid simulations show that GAE are ubiquitous at beam energies Vb /VA > 2.5 , while CAE are not excited until Vb /VA > 4 . The frequency of the most unstable GAE changes significantly with the normalized beam energy, consistent with trends described by its dispersion and resonance condition. These simulation results are analyzed and compared with a new, extensive experimental survey of NSTX discharges, as well as analytic studies. Interestingly, simulations find no case where counter-propagating CAE are more unstable than co-CAE, whereas experiments routinely observe both co- and counter-CAE. Moreover, simulations find co-GAE to be very unstable for beams peaked around λ <= 0.5 , yet these modes have not yet been thoroughly investigated experimentally. Preliminary predictions are also made for the CAE/GAE instability in ITER-like plasmas, which are expected to operate near similar values of Vb /VA as those studied for NSTX. This work supported by DOE contracts DE-AC02-09CH11466 and DE-SC0011810.

  11. Predictions and observations of low-shear beta-induced shear Alfven-acoustic eigenmodes in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N.N. [Princeton Plasma Physics Laboratory, Princeton University (United States)], E-mail: ngorelen@pppl.gov; Berk, H.L. [IFS, Austin, Texas (United States); Fredrickson, E. [Princeton Plasma Physics Laboratory, Princeton University (United States); Sharapov, S.E. [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United States)

    2007-10-08

    New global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode (GAM) frequency have been found numerically and have been used to explain relatively low frequency experimental signals seen in NSTX and JET tokamaks. These global eigenmodes, referred to here as Beta-induced Alfven-Acoustic Eigenmodes (BAAE), exist in the low magnetic safety factor region near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes shifts as the safety factor, q, decreases. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high-beta >20%. In contrast to the mostly electrostatic character of GAMs the new global modes also contain an electromagnetic (magnetic field line bending) component due to the Alfven coupling, leading to wave phase velocities along the field line that are large compared to the sonic speed. Qualitative agreement between theoretical predictions and observations are found.

  12. High beta and second region stability analysis and ICRF edge modeling

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report describes the tasks accomplished under Department of Energy contract [number sign]DE-FG02-86ER53236 in modeling the edge plasma-antenna interaction that occurs during Ion Cyclotron Range of Frequency (ICRF) heating. This work has resulted in the development of several codes which determine kinetic and fluid modifications to the edge plasma. When used in combination, these code predict the level of impurity generation observed in experiments on the experiments on the Princeton Large Torus. In addition, these models suggest improvements to the design of ICRF antennas. Also described is progress made on high beta and second region analysis. Code development for a comprehensive infernal mode analysis code is nearing completion. A method has been developed for parameterizing the second region of stability and is applied to circular cross section tokamas. Various studies for high beta experimental devices such as PBX-M and DIII-D have been carried out and are reported on.

  13. System Modeling, Validation, and Design of Shape Controllers for NSTX

    Science.gov (United States)

    Walker, M. L.; Humphreys, D. A.; Eidietis, N. W.; Leuer, J. A.; Welander, A. S.; Kolemen, E.

    2011-10-01

    Modeling of the linearized control response of plasma shape and position has become fairly routine in the last several years. However, such response models rely on the input of accurate values of model parameters such as conductor and diagnostic sensor geometry and conductor resistivity or resistance. Confidence in use of such a model therefore requires that some effort be spent in validating that the model has been correctly constructed. We describe the process of constructing and validating a response model for NSTX plasma shape and position control, and subsequent use of that model for the development of shape and position controllers. The model development, validation, and control design processes are all integrated within a Matlab-based toolset known as TokSys. The control design method described emphasizes use of so-called decoupling control, in which combinations of coil current modifications are designed to modify only one control parameter at a time, without perturbing any other control parameter values. Work supported by US DOE under DE-FG02-99ER54522 and DE-AC02-09CH11466.

  14. RWM Critical Rotation Frequency and Beta Dependence in NSTX

    Science.gov (United States)

    Sontag, Aaron; Sabbagh, S. A.; Menard, J. E.; Battaglia, D. J.

    2005-10-01

    The resistive wall mode (RWM) can be stabilized by maintaining the plasma toroidal rotation frequency (φφ) above a critical rotation frequency (φcrit). Recent experiments on NSTX seek to determine φcrit and rotation profile effects through actively braking plasma rotation by the application of external magnetic fields. Results from these experiments indicate that maintaining φφ at the q = 2 surface above φA/4q^2 is a necessary condition for RWM stability where φA is the local Alfven frequency. This result is in agreement with a theoretical model derived from a drift-kinetic energy principle. Similarity experiments with DIII-D are being performed to examine the aspect ratio dependence of the φcrit scaling. When φφ at the q = 2 surface drops below φcrit, the growth of internal kink/ballooning modes can prevent the RWM from terminating the discharge. A small beta collapse which drops φcrit, accompanies this mode growth allowing a recovery of RWM rotational stabilization while maintaining βN> βN^no-wall.

  15. Operation of the NSTX Thomson Scattering System

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, B.P.; Bell, R.E.; Johnson, D.W.; Hoffman, D.E.; Long, D.C.; and Palladino, R.W.

    2002-09-03

    The NSTX multi-point Thomson scattering system has been in operation for nearly two years and provides routine Te(R,t) and ne(R,t) measurements. The laser beams from two 30-Hz Nd:YAG lasers are imaged by a spherical mirror onto 36 fiber-optics bundles. In the present configuration, the output ends of 20 of these bundles are instrumented with filter polychromators and avalanche photodiode detectors. In this paper, we discuss the laser implementation and the installed collection optics. We follow with examples of raw and analyzed data. We close with some comments about calibration.

  16. Development of an Internet-Enabled Tool for NSTX-U Thomson Diagnostic Data

    Science.gov (United States)

    Wallace, William; Diallo, Ahmed

    2016-10-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas.[1] OMFIT, from the General Atomics Fusion Theory Team, is a rich data workflow package used on DIII-D, NSTX-U, and other experiments to rapidly investigate and draw conclusions from collated data sets and simulations. OMFIT can also be used as a data access source into other toolkits and fusion analysis software. This project, written in Python and taking advantage of late-generation Internet software technologies, uses OMFIT to rapidly find and visualize Thomson diagnostic plasma characteristics enabling scientists to gain a quick understanding of shot behavior and timeframes.

  17. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Eden, G. G. van; Morgan, T. W. [Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven (Netherlands); Reinke, M. L.; Gray, T. K.; Lore, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Peterson, B. J.; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka 311-0193 (Japan); Pandya, S. N. [Institute for Plasma Research, Bhat Village, Gandhinagar, 382428 Gujarat (India)

    2016-11-15

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm{sup 2} Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  18. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    Science.gov (United States)

    van Eden, G. G.; Reinke, M. L.; Peterson, B. J.; Gray, T. K.; Delgado-Aparicio, L. F.; Jaworski, M. A.; Lore, J.; Mukai, K.; Sano, R.; Pandya, S. N.; Morgan, T. W.

    2016-11-01

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  19. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U.

    Science.gov (United States)

    van Eden, G G; Reinke, M L; Peterson, B J; Gray, T K; Delgado-Aparicio, L F; Jaworski, M A; Lore, J; Mukai, K; Sano, R; Pandya, S N; Morgan, T W

    2016-11-01

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm(2) Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  20. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R., E-mail: rmaingi@pppl.gov [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Osborne, T.H. [General Atomics, 3550 General Atomics Ct., San Diego, CA 92121 (United States); Bell, M.G.; Bell, R.E.; Boyle, D.P. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Canik, J.M. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Diallo, A.; Kaita, R.; Kaye, S.M.; Kugel, H.W.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Sabbagh, S.A. [Applied Physics and Applied Math Dept., Columbia University, New York, NY 10027 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Receiving 3, Route 1 North, Princeton, NJ 08543 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, 7000 East Ave, PO Box 808, Livermore, CA 94551 (United States)

    2015-08-15

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D{sub α} emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ{sub E} and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  1. The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Avasarala, S. [Princeton Plasma Physics Laboratory (PPPL); Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Berzak, L. [Princeton Plasma Physics Laboratory (PPPL); Beiersdorfer, P. [Lawrence Livermore National Laboratory (LLNL); Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Gransted, E. [Princeton Plasma Physics Laboratory (PPPL); Gray, T. [Princeton Plasma Physics Laboratory (PPPL); Jacobson, C. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. [Princeton Plasma Physics Laboratory (PPPL); Kozub, T. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Lepson, J. [Lawrence Livermore National Laboratory (LLNL); Lundberg, D. P. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Mansfield, D. [Princeton Plasma Physics Laboratory (PPPL); Paul, S. F. [Princeton Plasma Physics Laboratory (PPPL); Pereverzev, G. V. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. [Lawrence Livermore National Laboratory (LLNL); Strickler, T. [Princeton Plasma Physics Laboratory (PPPL); Stotler, D. [Princeton Plasma Physics Laboratory (PPPL); Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL)

    2010-01-01

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed. (c) 2010 Elsevier B.V. All rights reserved.

  2. OEDGE modeling of outer wall erosion in NSTX and the effect of changes in neutral pressure

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, J.H., E-mail: jnichols@pppl.gov; Jaworski, M.A.; Kaita, R.; Abrams, T.; Skinner, C.H.; Stotler, D.P.

    2015-08-15

    Gross erosion from the outer wall is expected to be a major source of impurities for high power fusion devices due to the low redeposition fraction. Scaling studies of sputtering from the all-carbon outer wall of NSTX are reported. It is found that wall erosion decreases with divertor plasma pressure in low/mid temperature regimes, due to increasing divertor neutral opacity. Wall erosion is found to consistently decrease with reduced recycling coefficient, with outer target recycling providing the largest contribution. Upper and lower bounds are calculated for the increase in wall erosion due to a low-field-side gas puff.

  3. Collisionless shock waves in space - A very high beta structure. [solar wind measurements

    Science.gov (United States)

    Formisano, V.; Russell, C. T.; Means, J. D.; Greenstadt, E. W.; Scarf, F. L.; Neugebauter, M.

    1975-01-01

    Measurements from six OGO-5 particle and field experiments are used to examine the structure of the earth's bow shock during a period of extremely high beta (the ratio of plasma thermal to magnetic energy density), as determined from simultaneous measurements of the upstream plasma on board the HEOS satellite. Even though the interplanetary field is nearly perpendicular to the shock normal, the shock is extremely turbulent. Large field increases are observed up to a factor of 20 above the upstream values. Ahead of these large enhancements, smaller magnetic effects accompanied by electrostatic noise, electron heating, and ion deflection are observed for several minutes. These observations suggest that a steady-state shock may not be able to form at very high beta. Further, they show that while the magnetic energy density may be relatively unimportant in the upstream flow, it can become very significant within the shock structure, and hence the magnetic field should not be ignored in theoretical treatments of very high beta shocks.

  4. Role of explosive instabilities in high-$\\beta$ disruptions in tokamaks

    CERN Document Server

    Aydemir, A Y; Lee, S G; Seol, J; Park, B H; In, Y K

    2016-01-01

    Intrinsically explosive growth of a ballooning finger is demonstrated in nonlinear magnetohydrodynamic calculations of high-$\\beta$ disruptions in tokamaks. The explosive finger is formed by an ideally unstable n=1 mode, dominated by an m/n=2/1 component. The quadrupole geometry of the 2/1 perturbed pressure field provides a generic mechanism for the formation of the initial ballooning finger and its subsequent transition from exponential to explosive growth, without relying on secondary processes. The explosive ejection of the hot plasma from the core and stochastization of the magnetic field occur in Alfv\\'enic time scales, accounting for the extremely fast growth of the precursor oscillations and the rapidity of the thermal quench in some high-$\\beta$ disruptions.

  5. Progress towards Steady State at Low Aspect Ratio on the National Spherical Torus Experiment (NSTX)

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Gates, J. Menard, R. Maingi, S. Kaye, S.A. Sabbagh, S. Diem, J.R.Wilson, M.G. Bell, R.E. Bell, J. Ferron, E.D. Fredrickson, C.E. Kessel, B.P. LeBlanc, F. Levinton, J. Manickam, D. Mueller, R. Raman, T. Stevenson, D. Stutman, G. Taylor, K. Tritz, H. Yu, and the NSTX Research Team

    2007-11-08

    Modifications to the plasma control capabilities and poloidal field coils of the National Spherical Torus Experiment (NSTX) have enabled a significant enhancement in shaping capability which has led to the transient achievement of a record shape factor (S ≡ q95 (Iρ/αΒτ)) of ~41 (MA m-1 Τ-1) simultaneous with a record plasma elongation of κ ≡ β /α ~ 3. This result was obtained using isoflux control and real-time equilibrium reconstruction. Achieving high shape factor together with tolerable divertor loading is an important result for future ST burning plasma experiments as exemplified by studies for future ST reactor concepts, as well as neutron producing devices, which rely on achieving high shape factors in order to achieve steady state operation while maintaining MHD stability. Statistical evidence is presented which demonstrates the expected correlation between increased shaping and improved plasma performance.

  6. Multi-species impurity granule injection and mass deposition projections in NSTX-U discharges

    Science.gov (United States)

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; Mansfield, D. K.; Jaworski, M. A.; Kaita, R.; Maingi, R.; Nagy, A.

    2017-07-01

    By employing a neutral gas shielding (NGS) model to characterize impurity granule injection, the ablation rates for three different species of granule: lithium, boron, and carbon, are determined. Utilizing the duration of ablation events recorded on experiments performed at DIII-D to calibrate the NGS model, we quantify the ablation rate with respect to the plasma density profile. The species-specific granule shielding constant is then used to model granule ablation within NSTX-U discharges. Simulations of 300, 500 and 700 micron diameter granules injected at 50 m s-1 are presented for NSTX-U L-mode type plasmas, as well as H-mode discharges with low natural ELM frequency. Additionally, ablation calculations of 500 micron granules of each species are presented at velocities ranging from 50-150 m s-1. In H-mode discharges these simulations show that the majority of the injected granule is ablated within or just past the edge steep gradient region. At this radial position, the perturbation to the background plasma generated by the ablating granule can lead to conditions advantageous for the rapid triggering of ELM crashes.

  7. Solid State Neutral Particle Analyzer Array on NSTX

    Science.gov (United States)

    Liu, D.; Shinohara, K.; Darrow, D. S.; Roquemore, A. L.; Medley, S. S.; Cecil, F. E.; Heidbrink, W. W.

    2004-11-01

    A Solid State Neutral Particle Analyzer (SSNPA) array has been installed on the National Spherical Torus Experiment (NSTX) to measure the energy distribution of charge exchange fast neutral particles. The array consists of four Si diode detectors on chords with fixed tangency radii (60, 90, 100, and 120 cm), which view across the three co-injection neutral beam (NB) lines. The calibrated energy range is 40 120KeV and its energy resolution is about 10KeV. Time resolved measurements have been obtained and compared with the E//B Neutral Particle Analyzer (NPA) results. It is observed that particle fluxes increase strongly and then decay rapidly to a steady level just after NB injection commences. Though this temporal behavior is also observed in the E//B NPA, it is not predicted in TRANSP simulations. In addition, the increase and decay rates in the two NPA systems are different. Example data from plasma discharges will be presented with explanations of these differences.

  8. Fast wave power flow along SOL field lines in NSTX

    Science.gov (United States)

    Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.

    2012-10-01

    On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.

  9. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms

  10. Simulation Results for the New NSTX HHFW Antenna Straps Design by Using Microwave Studio

    Energy Technology Data Exchange (ETDEWEB)

    Kung, C C; Brunkhorst, C; Greenough, N; Fredd, E; Castano, A; Miller, D; D& #x27; Amico, G; Yager, R; Hosea, J; Wilson, J R

    2009-05-26

    Experimental results have shown that the high harmonic fast wave (HHFW) at 30 MHz can provide substantial plasma heating and current drive for the NSTX spherical tokamak operation. However, the present antenna strap design rarely achieves the design goal of delivering the full transmitter capability of 6 MW to the plasma. In order to deliver more power to the plasma, a new antenna strap design and the associated coaxial line feeds are being constructed. This new antenna strap design features two feedthroughs to replace the old single feed-through design. In the design process, CST Microwave Studio has been used to simulate the entire new antenna strap structure including the enclosure and the Faraday shield. In this paper, the antenna strap model and the simulation results will be discussed in detail. The test results from the new antenna straps with their associated resonant loops will be presented as well.

  11. Utilizing solid impurity granules for ELM pacing in NSTX-U

    Science.gov (United States)

    Lunsford, Robert; Roquemore, L.; Jaworski, M. A.; Kaita, R.; Maingi, R.; NSTX-U Team

    2015-11-01

    Periodic edge localized modes (ELMs) rapidly transport stored energy from the edge plasma to the divertor. These events result in abrupt heating of the plasma facing components (PFCs) which reduces their effective lifetime as well as generating a strong impurity influx. If the frequency of these ELMs can be increased through controlled triggering, also known as pacing, then the inverse relationship between the peak heat flux and the frequency of the ELMs can be utilized to prevent material damage that could result from otherwise unmitigated ELMs. At NSTX, the ability of small (300 - 1000 micron) impurity granules to trigger and pace these ELMs is being explored. In these experiments, ELMs are triggered by seeding a density perturbation within the edge-pedestal region through low speed injection and ablation of impurity granules, thus generating a localized instability. Granules are dropped from a reservoir and transit a vertical flight tube at which point a rotating impeller imparts horizontal momentum into the falling granules. This drives them into the edge of the discharge at speeds ranging from 50-150 m/s and average injection frequencies of up to 200 Hz depending upon the settings of the injector. Results from the initial laboratory injection tests of lithium, boron carbide (B4C) and vitreous carbon granules and their subsequent implementation in NSTX-U experiments will be discussed. Work supported by DOE Contract No. DE-AC02-09CH11466.

  12. A parallelized Python based Multi-Point Thomson Scattering analysis in NSTX-U

    Science.gov (United States)

    Miller, Jared; Diallo, Ahmed; Leblanc, Benoit

    2014-10-01

    Multi-Point Thomson Scattering (MPTS) is a reliable and accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Nd:YAG (1064 nm) lasers are fired into the plasma with a frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the midplane of the tokamak pick up the light at various radii/scattering angles, and the avalanche photodiode's voltages are added to an MDSplus tree for later analysis. This project ports and optimizes the prior serial IDL MPTS code into a well-documented Python package that runs in parallel. Since there are 30 polychromators in the current NSTX setup (12 more will be added when NSTX-U is completed), using parallelism offers vast savings in performance. NumPy and SciPy further accelerate numerical calculations and matrix operations, Matplotlib and PyQt make an intuitive GUI with plots of the output, and Multiprocessing parallelizes the computationally intensive calculations. The Python package was designed with portability and flexibility in mind so it can be adapted for use in any polychromator-based MPTS system.

  13. On the Demand for High-Beta Stocks

    DEFF Research Database (Denmark)

    Christoffersen, Susan E. K.; Simutin, Mikhail

    2017-01-01

    Prior studies have documented that pension plan sponsors often monitor a fund’s performance relative to a benchmark. We use a first-difference approach to show that in an effort to beat benchmarks, fund managers controlling large pension assets tend to increase their exposure to high-beta stocks......, while aiming to maintain tracking errors around the benchmark. The findings support theoretical conjectures that benchmarking can lead managers to tilt their portfolio toward high-beta stocks and away from low-beta stocks, which can reinforce observed pricing anomalies....

  14. Proposal for the construction of a High-Beta Tokamak at LASL

    Energy Technology Data Exchange (ETDEWEB)

    Van der Laan, P.C.T.; Freidberg, J.P.; Thomas, K.S.

    1976-06-01

    The large heating rate inherent to implosion heating allows the rapid generation of high-beta tokamak plasmas. A study of these plasmas in the proposed HBT machine can give information on how MHD equilibrium and stability limit ..beta.. and q. Both a wide current profile and a moderate elongation of the minor cross section should help to raise the permissible peak ..beta.. values in HBT to at least 20 percent. The longer term loss processes occurring in MHD-stable plasmas are to be investigated. The main parameters of HBT are: R = 0.30 m, minor cross section a racetrack of width and height 0.24 m and 0.48 m, B/sub phi/ = 2 T, I/sub phi/ approximately 750 kA.

  15. Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2017-04-15

    Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety concerns (Federici et al., 2001) . It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance (Ono et al., 2013, 2014) . The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium (LL) divertor (RLLD) concept (Ono et al., 2013) and its variant, the active liquid lithium divertor concept (ARLLD) (Ono et al., 2014) , taking advantage of the enhanced non-coronal Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/s of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤450 °C than the first wall ∼600–700 °C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ∼1 l/s (l/s) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust/impurities are removed by relatively simple filter and cold/hot trap systems. Using a

  16. Startup of the experimental physics industrial control system at NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Sichta, P.; Dong, J.

    1999-12-17

    The Experimental Physics Industrial Control System (EPICS) is a set of software which is being used as the basis of the National Spherical Torus Experiment's (NSTX) Process Control System, a major element of the NSTX's Central Instrumentation and Control System. EPICS is a result of a co-development effort started by several US Department of Energy National Laboratories. EPICS is actively supported through an international collaboration made up of government and industrial users. EPICS' good points include portability, scalability, and extensibility. A drawback for small experiments is that a wide range of software skills are necessary to get the software tools running for the process engineers. The authors' experience in designing, developing, operating, and maintaining NSTX's EPICS (system) will be reviewed.

  17. Development of a Universal Networked Timer at NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Sichta, P.; Dong, J.; Lawson, J. E.; Oliaro, G.; Wertenbaker, J.

    2005-09-23

    A new Timing and Synchronization System component, the Universal Networked Timer (UNT), is under development at the National Spherical Torus Experiment (NSTX). The UNT is a second-generation multifunction timing device that emulates the timing functionality and electrical interfaces originally provided by various CAMAC modules. Using Field Programmable Gate Array (FPGA) technology, each of the UNT's eight channels can be dynamically programmed to emulate a specific CAMAC module type. The timer is compatible with the existing NSTX timing and synchronization system and will also support a (future) clock system with extended performance. To assist system designers and collaborators, software will be written to integrate the UNT with EPICS, MDSplus, and LabVIEW. This paper will describe the timing capabilities, hardware design, programming/software support, and the current status of the Universal Networked Timer at NSTX.

  18. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advance Studies), Toki 509-5292 (Japan); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan); Reinke, M. L.; Canik, J. M.; Lore, J. D.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Eden, G. G. van [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands)

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a time resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.

  19. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    CERN Document Server

    Zhang, J; Carter, T A; Kubota, S; Peebles, W A

    2010-01-01

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment (NSTX) with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation, it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength, and complicate...

  20. Modular Python-based Code for Thomson Scattering System on NSTX-U

    Science.gov (United States)

    Horowitz, Benjamin; Diallo, Ahmed; Feibush, Eliot; Leblanc, Benoit

    2013-10-01

    Fast accurate and reliable measurements of electron temperature and density profiles within magnetically confined plasmas are essential for full operation of fusion devices. We detail the design and implementation of a modular Pythonbased code for the Thomson Scattering diagnostic system of NSTX-U which offers improvements in speed by making full use of the Python's architecture, open-source module packages, and ability to be parallelized across many processors. SciPy's weave package allows the implementation of C/C++ code within our program to clear up bottlenecks in data fitting while not loosing the flexibility and clarity of Python, while Numpy and MatplotLib allow calculations and plotting of the processed data. Using the standard MDSplus input, we create a flexible and expandable algorithm structure which can be implemented on any fusion device utilizing polychromator-based Thomson scattering diagnostic system. Supported by DOE SULI Fellowship at Princeton Plasma Physics Lab.

  1. Development of a prototype infrared imaging bolometer for NSTX-U

    Science.gov (United States)

    van Eden, G. G.; Delgado-Aparicio, L. F.; Gray, T. K.; Jaworski, M. A.; Morgan, T. W.; Peterson, B. J.; Reinke, M. L.; Sano, R.; Mukai, K.; Differ/Pppl Collaboration; Nifs/Pppl Collaboration

    2015-11-01

    Measurements of the radiated power in fusion reactors are of high importance for studying detachment and the overall power balance. A prototype Infrared Video Bolometer (IRVB) is being developed for NSTX-U complementing resistive bolometer and AXUV diode diagnostics. The IRVB has proven to be a powerful tool on LHD and JT-60U for its 2D imaging quality and reactor environment compatibility. For NSTX-U, a poloidal view of the lower center stack and lower divertor are envisaged for the 2016 run campaign. The IRVB concept images radiation from the plasma onto a 2.5 μm thick 9 x 7 cm2 calibrated Pt foil and monitors its temperature evolution using an IR camera (SB focal plane, 2-12 μm, 128x128 pixels, 1.6 kHz). The power incident on the foil is calculated by solving the 2D +time heat diffusion equation. Benchtop characterization is presented, demonstrating a sensitivity of approximately 20 mK and a noise equivalent power density of 71.5 μW cm-2 for 4x20 bolometer super-pixels and a 50 Hz time response. The hardware design, optimization of camera and detector settings as well as first results of both synthetic and experimental origin are discussed.

  2. High beta and second region stability analysis and ICRF edge modeling. Progress report, March 15, 1988--May 14, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This report describes the tasks accomplished under Department of Energy contract {number_sign}DE-FG02-86ER53236 in modeling the edge plasma-antenna interaction that occurs during Ion Cyclotron Range of Frequency (ICRF) heating. This work has resulted in the development of several codes which determine kinetic and fluid modifications to the edge plasma. When used in combination, these code predict the level of impurity generation observed in experiments on the experiments on the Princeton Large Torus. In addition, these models suggest improvements to the design of ICRF antennas. Also described is progress made on high beta and second region analysis. Code development for a comprehensive infernal mode analysis code is nearing completion. A method has been developed for parameterizing the second region of stability and is applied to circular cross section tokamas. Various studies for high beta experimental devices such as PBX-M and DIII-D have been carried out and are reported on.

  3. Comparison of Measurement And Modeling Of Current Profile Changes Due To Neutral Bean Ion Redistribution During TAE Avalanches in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Douglas

    2013-07-09

    Brief "avalanches" of toroidal Alfven eigenmodes (TAEs) are observed in NSTX plasmas with several different n numbers simultaneously present. These affect the neutral beam ion distribution as evidenced by a concurrent drop in the neutron rate and, sometimes, beam ion loss. Guiding center orbit modeling has shown that the modes can transiently render portions of the beam ion phase space stochastic. The resulting redistribution of beam ions can also create a broader beam-driven current profile and produce other changes in the beam ion distribution function

  4. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J. [Princeton Plasma Physics Laboratory (PPPL); Ahn, Joonwook [ORNL; Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Bertelli, Nicola [Princeton Plasma Physics Laboratory (PPPL); Diallo, A. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S. [Princeton Plasma Physics Laboratory (PPPL); Gray, T. K. [Oak Ridge National Laboratory (ORNL); Green, David L [ORNL; Jaeger, E. F. [XCEL; Hosea, J. [Princeton Plasma Physics Laboratory (PPPL); Jaworski, M. A. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B [Princeton Plasma Physics Laboratory (PPPL); Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); McLean, Adam G [ORNL; Maingi, Rajesh [ORNL; Phillips, C. K. [Princeton Plasma Physics Laboratory (PPPL); Podesta, M. [Princeton Plasma Physics Laboratory (PPPL); Ryan, Philip Michael [ORNL; Sabbagh, S. A. [Columbia University; Scotti, F. [Princeton Plasma Physics Laboratory (PPPL); Taylor, G. [Princeton Plasma Physics Laboratory (PPPL); Wilson, J. R. [Princeton Plasma Physics Laboratory (PPPL)

    2013-01-01

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  5. NSTX ELM Pacing and L-H Threshold Experiments for ITER

    Science.gov (United States)

    Canik, J. M.; Maingi, R.; Sontag, A. C.; Gerhardt, S. P.; Kaye, S.; Bell, R. E.; Gates, D.; Goldston, R.; Leblanc, B. P.; Menard, J.; Park, J.-K.; Evans, T.; Osborne, T.; Sabbagh, S.; Unterberg, E. A.

    2009-11-01

    We present a summary of recent edge-localized mode (ELM) pacing and L-H power threshold (PLH) experiments performed in NSTX in support of ITER. ELM triggering using 3D magnetic perturbations was used to perform pacing during ELM-free H-modes induced by lithium conditioning, mitigating the impurity accumulation typically observed in these conditions. The waveform of the applied field has been tailored to provide high reliability triggering at frequencies of >60 Hz to reduce the average ELM size. ELM pacing was also performed using vertical position oscillations, with the ELM frequency increased to ˜30 Hz from a natural frequency of ˜15 Hz. PLH is reduced by ˜50% at low triangularity, and also decreased by ˜50% during discharge with thick lithium wall coatings. PLH was observed to increase strongly with plasma current during sustained H-modes. The influence of heating method, non-axisymmetric fields, and magnetic balance on PLH will be presented.

  6. Stochastic Orbit Loss of Neutral Beam Ions From NSTX Due to Toroidal Alfven Eigenmode Avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D S; Fredrickson, E D; Gorelenkov, N N; Gorelenkova, M; Kubota, S; Medley, S S; Podesta, M; Shi, L

    2012-07-11

    Short toroidal Alfven eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and sometimes a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions occurs. When beam ion orbits are followed with a guiding center code that incorporates plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are similar to those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary.

  7. USXR Based MHD, Transport, Equilibria and Current Profile Diagnostics for NSTX. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Finkenthal, Michael

    2009-06-01

    The present report resumes the research activities of the Plasma Spectroscopy/Diagnostics Group at Johns Hopkins University performed on the NSTX tokamak at PPPL during the period 1999-2009. During this period we have designed and implemented XUV based diagnostics for a large number of tasks: study of impurity content and particle transport, MHD activity, time-resolved electron temperature measeurements, ELM research, etc. Both line emission and continuum were used in the XUV range. New technics and novel methods have been devised within the framework of the present research. Graduate and post-graduate students have been involved at all times in addition to the senior research personnel. Several tens of papers have been published and lectures have been given based on the obtained results at conferences and various research institutions (lists of these activities were attached both in each proposal and in the annual reports submitted to our supervisors at OFES).

  8. Stabilizing effects of resistivity on low-n edge localized modes in NSTX

    CERN Document Server

    Banerjee, Debabrata; Maingi, Rajesh

    2016-01-01

    The stabilizing effects of enhanced edge resistivity on the low-n edge localized modes (ELMs) are reported for the first time in the context of ELM suppression in H-mode discharge due to Lithium-conditioning in the National Spherical Torus Experiment (NSTX). Here n is the toroidal mode number. Linear stability analysis of the corresponding experimental equilibrium suggests that the change in the equilibrium plasma density profile alone due to Lithium-conditioning may be insufficient for a complete suppression of ELMs. The enhanced resistivity due to the increased effective electric charge number Z eff after Lithium-conditioning can account for additional stabi- lization effect necessary for full ELM suppression. Remarkably, such a stabilizing effect of enhanced edge resistivity on the low-n ELMs only exists when two-fluid effects are considered in the MHD model.

  9. Effect of Externally Applied Perturbation Fields on Alfvénic MHD Activity in the NSTX Tokamak

    Science.gov (United States)

    Bortolon, Alessandro

    2014-10-01

    Observations from NSTX demonstrate that externally applied magnetic perturbations (MP) can alter the dynamic of beam driven Alfvén modes. Bursting Global Alfvén Eigenmodes (GAE, n = 7-9, 400-700 kHz) respond to pulses of static n = 3 fields (δB/B ~ 0.01 at the plasma edge) reducing mode amplitude, bursting period and frequency sweep by a factor of 2-3 [Bortolon et al., Phys. Rev. Lett. 110, 265008 (2013)]. Similar MP attenuate the amplitude of continuous Toroidal Alfvén Eigenmodes (TAE, n = 2-3, 50-90 kHz). Calculations of the perturbed beam-ion distribution function, considering MP from ideal or resistive plasma response, confirm an enhanced fast-ion transport consistent with a reduced drive for the GAE. At the same time, MP can also affect the Alfvén stability by altering the structure of Alfvén continua through modification of the kinetic profiles or introducing toroidal coupling as result of the broken axisymmetry. Computations of the n = 2 Alfvén continuum for NSTX equilibria with n = 3 MP show strong modification of the TAE continuum near the plasma edge, where coupling between n = 2 and n = 5 continuum modes reduces the gap, providing an additional damping for TAE modes extending in this region. DOE Contracts No. DE-FG02-06ER54867, DE-AC02-09CH11466.

  10. Dynamic Hysteresis Probes High-{\\beta} Nanolaser Emission Regimes

    CERN Document Server

    Pan, Si Hui; Amili, Abdelkrim El; Vallini, Felipe; Fainman, Yeshaiahu

    2016-01-01

    The quest for an integrated light source that promises high energy efficiency and fast modulation for high-performance photonic circuits has led to the development of room-temperature telecom-wavelength nanoscale laser with high spontaneous emission factors, \\beta. The coherence characterization of this type of lasers is inherently difficult with the conventional measurement of output light intensity versus input pump intensity due to the diminishing kink in the measurement curve. We demonstrate the transition from chaotic to coherent emission of a high-{\\beta} pulse-pump metallo-dielectric nanolaser can be determined by examining the width of a second order intensity correlation peak, which shrinks below and broadens above threshold. Photon fluctuation study, first one ever reported for this type of nanolaser, confirms the validity of this measurement technique. Additionally, we show that the width variation above threshold results from the delayed threshold phenomenon, providing the first indirect observati...

  11. Novel Use of Water Soluble "Aquapour" As A Temporary Spacer During Coil Winding For The NSTX-U Centerstack

    Energy Technology Data Exchange (ETDEWEB)

    Mardenfeld, Michael

    2013-07-01

    A major facility upgrade to the National Spherical Torus eXperiment (NSTX-U) is currently underway at Princeton Plasma Physics Laboratory (PPPL). A key component of NSTX-U is the fabrication of a new, higher field centerstack (CS). In order to simultaneously provide robust joints between the inner and outer legs of the Toroidal Field Coils (TF) and minimize radial build, the NSTX-U CS design requires that the Ohmic Heating solenoid (OH) be wound directly on the inner TF bundle. To protect the OH against thermal expansion stress during scenarios where the inner TF bundle is hot but the OH is relatively cool, the completed CS will have a 0.100 inch annular gap between the outer diameter of the TF bundle and the inner diameter of the OH solenoid. "Aquapour", a proprietary material produced by the Advanced Ceramics Manufacturing Company will be used during manufacture to produce this gap. After the TF bundle is vacuum pressure impregnated and cured, a cylindrical "clam shell" mold will be assembled around it, and a slurry of powdered Aquapour and water will be pumped into the annular space between the mold and TF bundle. Subsequent baking will turn the Aquapour solid, and a protective layer of wet lay-up fiberglass and resin will be added. The OH solenoid will be wound directly on this wet lay-up shell. After vacuum pressure impregnation of the OH, the water soluble Aquapour will be washed away, leaving the required radial clearance between the TF and OH. This paper will describe prototyping and testing of this process, and plans for use on the actual CS fabrication.

  12. Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime

    Science.gov (United States)

    Wang, W. X.; Ethier, S.; Ren, Y.; Kaye, S.; Chen, J.; Startsev, E.; Lu, Z.; Li, Z. Q.

    2015-10-01

    Highly distinct features of spherical tokamaks (ST), such as National Spherical Torus eXperiment (NSTX) and NSTX-U, result in a different fusion plasma regime with unique physics properties compared to conventional tokamaks. Nonlinear global gyrokinetic simulations critical for addressing turbulence and transport physics in the ST regime have led to new insights. The drift wave Kelvin-Helmholtz (KH) instability characterized by intrinsic mode asymmetry is identified in strongly rotating NSTX L-mode plasmas. While the strong E ×B shear associated with the rotation leads to a reduction in KH/ion temperature gradient turbulence, the remaining fluctuations can produce a significant ion thermal transport that is comparable to the experimental level in the outer core region (with no "transport shortfall"). The other new, important turbulence source identified in NSTX is the dissipative trapped electron mode (DTEM), which is believed to play little role in conventional tokamak regime. Due to the high fraction of trapped electrons, long wavelength DTEMs peaking around kθρs˜0.1 are destabilized in NSTX collisionality regime by electron density and temperature gradients achieved there. Surprisingly, the E ×B shear stabilization effect on DTEM is remarkably weak, which makes it a major turbulence source in the ST regime dominant over collisionless TEM (CTEM). The latter, on the other hand, is subject to strong collisional and E ×B shear suppression in NSTX. DTEM is shown to produce significant particle, energy and toroidal momentum transport, in agreement with experimental levels in NSTX H-modes. Moreover, DTEM-driven transport in NSTX parametric regime is found to increase with electron collision frequency, providing one possible source for the scaling of confinement time observed in NSTX H-modes. Most interestingly, the existence of a turbulence-free regime in the collision-induced CTEM to DTEM transition, corresponding to a minimum plasma transport in advanced ST

  13. Nonlinear simulations of Neutral-beam-driven Compressional Alfvén Eigenmodes / Kinetic Alfvén Waves in NSTX

    Science.gov (United States)

    Belova, Elena; Gorelenkov, N. N.; Crocker, N. A.; Lestz, J. B.; Fredrickson, E. D.; Tang, S.

    2016-10-01

    Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfvén eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n =4-9, and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfven wave (KAW) that occurs on the high-field side at the Alfven resonance location. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. This mechanism provides an alternative explanation to the observed reduced heating of the plasma core in the NSTX. A set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power. This research was supported by the U.S. DOE contract # DE-AC02-09CH11466.

  14. The high beta tokamak-extended pulse magnetohydrodynamic mode control research program

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, D A; Bialek, J; Byrne, P J; De Bono, B; Levesque, J P; Li, B Q; Mauel, M E; Navratil, G A; Pedersen, T S; Rath, N; Shiraki, D [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY (United States)

    2011-07-15

    The high beta tokamak-extended pulse (HBT-EP) magnetohydrodynamic (MHD) mode control research program is studying ITER relevant internal modular feedback control coil configurations and their impact on kink mode rigidity, advanced digital control algorithms and the effects of plasma rotation and three-dimensional magnetic fields on MHD mode stability. A new segmented adjustable conducting wall has been installed on the HBT-EP and is made up of 20 independent, movable, wall shell segments instrumented with three distinct sets of 40 saddle coils, totaling 120 in-vessel modular feedback control coils. Each internal coil set has been designed with varying toroidal angular coil coverage of 5, 10 and 15{sup 0}, spanning the toroidal angle range of an ITER port plug based internal coil to test resistive wall mode (RWM) interaction and multimode MHD plasma response to such highly localized control fields. In addition, we have implemented 336 new poloidal and radial magnetic sensors to quantify the applied three-dimensional fields of our control coils along with the observed plasma response. This paper describes the design and implementation of the new control shell incorporating these control and sensor coils on the HBT-EP, and the research program plan on the upgraded HBT-EP to understand how best to optimize the use of modular feedback coils to control instability growth near the ideal wall stabilization limit, answer critical questions about the role of plasma rotation in active control of the RWM and the ferritic resistive wall mode, and to improve the performance of MHD control systems used in fusion experiments and future burning plasma systems.

  15. Predictions of VRF on a Langmuir Probe under the RF Heating Spiral on the Divertor Floor on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Hosea, J C [PPPL; Perkins, R J [PPPL; Jaworski, M A [PPPL; Kramer, G J [PPPL; Ahn, J-W [ORNL

    2014-07-01

    RF heating deposition spirals are observed on the divertor plates on NSTX as shown in for a NB plus RF heating case. It has been shown that the RF spiral is tracked quite well by the spiral mapping of the strike points on the divertor plate of magnetic field lines passing in front of the high harmonic fast wave (HHFW) antenna on NSTX. Indeed, both current instrumented tiles and Langmuir probes respond to the spiral when it is positioned over them. In particular, a positive increment in tile current (collection of electrons) is obtained when the spiral is over the tile. This current can be due to RF rectification and/or RF heating of the scrape off layer (SOL) plasma along the magnetic field lines passing in front of the the HHFW antenna. It is important to determine quantitatively the relative contributions of these processes. Here we explore the properties of the characteristics of probes on the lower divertor plate to determine the likelyhood that the primary cause of the RF heat deposition is RF rectification.

  16. EBW PHYSICS OF ECE IN NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Linda Vahala

    2012-06-26

    Topics covered include: ray tracing and Fokker-Planck coupling; relativistic and electromagnetic effects in EBW damping (ray-tracing); O-X-EBW mode conversion efficiency limit due to finite beam divergence; general prospects for electron Bernstein wave heating and current drive in spherical tokamaks; sensitivity of EBW H&CD; collisional effects on EBW coupling; and EBW propagation in a high-temperature plasma.

  17. Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP

    Science.gov (United States)

    Boyer, M. D.; Andre, R. G.; Gates, D. A.; Gerhardt, S. P.; Menard, J. E.; Poli, F. M.

    2017-06-01

    This paper examines a method for real-time control of non-inductively sustained scenarios in NSTX-U by using TRANSP, a time-dependent integrated modeling code for prediction and interpretive analysis of tokamak experimental data, as a simulator. The actuators considered for control in this work are the six neutral beam sources and the plasma boundary shape. To understand the response of the plasma current, stored energy, and central safety factor to these actuators and to enable systematic design of control algorithms, simulations were run in which the actuators were modulated and a linearized dynamic response model was generated. A multi-variable model-based control scheme that accounts for the coupling and slow dynamics of the system while mitigating the effect of actuator limitations was designed and simulated. Simulations show that modest changes in the outer gap and heating power can improve the response time of the system, reject perturbations, and track target values of the controlled values.

  18. Evaluation of the High Power Performance of the Upgraded NSTX HHFW Antenna

    Science.gov (United States)

    Ryan, P. M.; McLean, A.; Hosea, J. C.; Leblanc, B. P.; Perkins, R. J.; Taylor, G.; Wilson, J. R.; Pinsker, R. I.; the NSTX Team

    2011-10-01

    The end-grounded straps of the NSTX HHFW antenna array were replaced in 2009 with center-grounded straps to reduce the interior voltages and electric fields in the plasma/Faraday shield region. After accumulated lithium deposits were removed from the antenna surface by plasma conditioning, reliable HHFW power was increased to 3-4 MW from the 2-3 MW levels of 2008. However, in 2010 reliable operation was limited to less than 2 MW, primarily due to changes in the antenna environment associated with the Liquid Li Divertor. The antennas have been cleaned of Li coatings and Li2CO3 dust in preparation for the 2011 campaign. The HHFW system will be operated early in the campaign to minimize the effects of Li accumulation in ascertaining the efficacy of reducing internal fields to increase reliability. A visible light camera covering the complete array will observe Li ablation from the powered antenna, and a newly installed IR camera covering ~40% of the array will monitor localized hot spot formation. Work supported by USDOE Contract Nos. DE-AC05-00OR22725 and DE-AC02-09CH11466.

  19. Stochastic orbit loss of neutral beam ions from NSTX due to toroidal Alfvén eigenmode avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Crocker, N. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Fredrickson, E. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, N. N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkova, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kubota, S. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Medley, S. S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Podestà, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shi, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); White, R. B. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2012-12-17

    Short toroidal Alfvén eigenmode (TAE) avalanche bursts in the National Spherical Torus Experiment (NSTX) cause a drop in the neutron rate and could also cause a loss of neutral beam ions at or near the full injection energy over an extended range of pitch angles. The simultaneous loss of wide ranges of pitch angle suggests stochastic transport of the beam ions takes place. When beam ion orbits are followed with a guiding centre code that incorporates the plasma's magnetic equilibrium plus the measured modes, the predicted ranges of lost pitch angle are like those seen in the experiment, with distinct populations of trapped and passing orbits lost. These correspond to domains where the stochasticity extends in the orbit phase space from the region of beam ion deposition to the loss boundary and the trajectories along which modes may transport particles extend from the deposition volume to the loss boundary.

  20. High-k Scattering Receiver Mixer Performance for NSTX-U

    Science.gov (United States)

    Barchfeld, Robert; Riemenschneider, Paul; Domier, Calvin; Luhmann, Neville; Ren, Yang; Kaita, Robert

    2016-10-01

    The High-k Scattering system detects primarily electron-scale turbulence k θ spectra for studying electron thermal transport in NSTX-U. A 100 mW, 693 GHz probe beam passes through plasma, and scattered power is detected by a 4-pixel quasi optical, mixer array. Remotely controlled receiving optics allows the scattering volume to be located from core to edge with a k θ span of 7 to 40 cm-1. The receiver array features 4 RF diagonal input horns, where the electric field polarization is aligned along the diagonal of a square cross section horn, at 30 mm channel spacing. The local oscillator is provided by a 14.4 GHz source followed by a x48 multiplier chain, giving an intermediate frequency of 1 GHz. The receiver optics receive 4 discreet scattering angles simultaneously, and then focus the signals as 4 parallel signals to their respective horns. A combination of a steerable probe beam, and translating receiver, allows for upward or downward scattering which together can provide information about 2D turbulence wavenumber spectrum. IF signals are digitized and stored for later computer analysis. The performance of the receiver mixers is discussed, along with optical design features to enhance the tuning and performance of the mixers. Work supported in part by U.S. DOE Grant DE-FG02-99ER54518 and DE-AC02-09CH1146.

  1. MHD Calculation of halo currents and vessel forces in NSTX VDEs

    Science.gov (United States)

    Breslau, J. A.; Strauss, H. R.; Paccagnella, R.

    2012-10-01

    Research tokamaks such as ITER must be designed to tolerate a limited number of disruptions without sustaining significant damage. It is therefore vital to have numerical tools that can accurately predict the effects of these events. The 3D nonlinear extended MHD code M3D [1] can be used to simulate disruptions and calculate the associated wall currents and forces. It has now been validated against halo current data from NSTX experiments in which vertical displacement events (VDEs) were deliberately induced by turning off vertical feedback control. The results of high-resolution numerical simulations at realistic Lundquist numbers show reasonable agreement with the data, supporting a model in which the most dangerously asymmetric currents and heat loads, and the largest horizontal forces, arise in situations where a fast-growing ideal 2,1 external kink mode is destabilized by the scraping-off of flux surfaces with safety factor q>2 during the course of the VDE. [4pt] [1] W. Park, et al., Phys. Plasmas 6 (1999) 1796.

  2. Progress In Understanding The Enhanced Petestal H-mode In NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, S. P.; Canik, J. M.; Maingi, R.; Battaglia, D.; Bell, R. E.; Guttenfelder, W.; LeBlanc, B. P.; Smith, D. R.; Yuh, H.; Sabbagh, S.

    2014-06-26

    ThIS paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from the plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.

  3. The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.

    2012-11-27

    Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.

  4. The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S. M.; Gerhardt, S.; Guttenfelder, W.; Maingi, R.; Bell, R. E.; Diallo, A.; LeBlanc, B. P.; Podesta, M.

    2012-11-28

    Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma

  5. Performance Assessment of Model-Based Optimal Feedforward and Feedback Current Profile Control in NSTX-U using the TRANSP Code

    Science.gov (United States)

    Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.

    2015-11-01

    Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.

  6. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    Science.gov (United States)

    Soukhanovskii, V. A.; Kaita, R.; Stratton, B.

    2016-11-01

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300-1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ˜10-15 ms is expected.

  7. Continued Development of Python-Based Thomson Data Analysis and Associated Visualization Tool for NSTX-U

    Science.gov (United States)

    Wallace, William; Miller, Jared; Diallo, Ahmed

    2015-11-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas. [1] Previous work [2] converted the single-processor IDL code into Python code, and prepared a new architecture for multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a software test suite for the new architecture which allowed identification of the code which generated the difference in output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internship (CCI) program.

  8. Development of a magnetohydrodynamic code for axisymmetric, high-. beta. plasmas with complex magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cook, G.O. Jr.

    1982-12-01

    The Topolotron is an axisymmetric, toroidal magnetic fusion concept in which two-dimensional effects are important, as well as all three magnetic field components. The particular MHD model employed is basically the one-fluid, two-temperature model using classical Braginskii transport with viscous effects ignored. The model is augmented by Saha-Boltzmann dissociation and partial ionization physics, a simple radiation loss mechanism, and an additional resistivity due to electron-neutral collisions. While retaining all velocity and magnetic field components, the assumption of axisymmetry is made, and the resulting equations are expanded in cylindrical coordinates. The major approximation technique is then applied: spline collocation, which reduces these equations to a set of ordinary differential equations.

  9. Parametric investigation of compressional and global Alfvén eigenmode instability and effect on thermal confinement in NSTX-U

    Science.gov (United States)

    Tang, S.; Crocker, N. A.; Carter, T. A.; Fredrickson, E. D.; Gorelenkov, N. N.; Guttenfelder, W.

    2016-10-01

    The leading candidates for anomalous electron transport in NSTX with increasing beam power are high-frequency Alfvén eigenmodes excited through Doppler-shifted cyclotron resonance with beam ions. However, there exists no current model for predicting the spectra, structure, and amplitude of these modes, which consist of compressional (CAE) and global (GAE) Alfvén eigenmodes. An existing database of neutral beam heated NSTX shots spanning a broad range of plasma parameters is extended to include measurements of CAE/GAE activity in order to statistically investigate the physics parameters controlling the characteristics of these modes and how they contribute to anomalous electron transport. Mode power is found to scale with beam power as |dB| P2.6. Average frequency is shown to correlate strongly with average toroidal mode number (|n| decreases as f increases) across a wide range of beam powers. This correlation might be explained by the parallel resonance condition expected to govern the instability of these modes. Central electron temperature is also found to correlate with mode frequency. A possible explanation is that the higher frequency, lower |n| modes are more effective at electron thermal transport. The physical causes of these correlations require further investigation. Supported by US DOE Contracts DE-SC0011810 & DE-AC02-09CH11466.

  10. Response of NSTX liquid lithium divertor to high heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Kallman, J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Foley, E.L. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Levinton, F. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2013-07-15

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ∼1.5 MW/m{sup 2} for 1–3 s. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the “bare” sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface.

  11. Comparison of fast ion confinement during on-axis and off-axis neutral beam experiments on NSTX-U

    Science.gov (United States)

    Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.; Medley, S. S.

    2015-11-01

    A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good fast ion confinement is essential to achieve the anticipated improvements in performance. In a planed ``sanity check'' experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses with different source mixes will be injected into quiescent L-mode plasmas to characterize the fast ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the fast ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The newly installed Solid State Neutral Particle Analyzer (SSNPA) and Fast-Ion D-Alapha (FIDA) diagnostics will be described and will be used to measure fast ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Fast ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental techniques, measurements of fast ion confinement time and distribution function, and comparisons with classical predictions from NUBEAM modeling will be presented in detail. Work supported by US DOE.

  12. Impact of ELM filaments on divertor heat flux dynamics in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, J.-W., E-mail: jahn@pppl.gov [Oak Ridge National Laboratory, Oak Ridge (United States); Maingi, R. [Princeton Plasma Physics Laboratory, Princeton (United States); Canik, J.M. [Oak Ridge National Laboratory, Oak Ridge (United States); Gan, K.F. [Institute of Plasma Physics, Chinese Academy of Science, Hefei (China); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore (United States)

    2015-08-15

    The ELM induced change in wetted area (A{sub wet}) and peak heat flux (q{sub peak}) of divertor heat flux is investigated as a function of the number of striations, which represent ELM filaments, observed in the heat flux profile in NSTX. More striations are found to lead to larger A{sub wet} and lower q{sub peak}. The typical number of striations observed in NSTX is 0–9, while 10–15 striations are normally observed in other machines such as JET, and the ELM contracts heat flux profile when the number of striations is less than 3–4 but broadens it with more of them. The smaller number of striations in NSTX is attributed to the fact that NSTX ELMs are against kink/peeling boundary with lower toroidal mode number (n = 1–5), while typical peeling–ballooning ELMs have higher mode number of n = 10–20. For ELMs with smaller number of striations, relative A{sub wet} change is rather constant and q{sub peak} change rapidly increases with increasing ELM size, while A{sub wet} change slightly increases leading to a weaker increase of q{sub peak} change for ELMs with larger number of striations, both of which are unfavourable trend for the material integrity of divertor tiles.

  13. Momentum-transport studies in high E x B shear plasmas in the National Spherical Torus Experiment.

    Science.gov (United States)

    Solomon, W M; Kaye, S M; Bell, R E; Leblanc, B P; Menard, J E; Rewoldt, G; Wang, W; Levinton, F M; Yuh, H; Sabbagh, S A

    2008-08-08

    Experiments have been conducted at the National Sperical Torus Experiment (NSTX) to study both steady state and perturbative momentum transport. These studies are unique in their parameter space under investigation, where the low aspect ratio of NSTX results in rapid plasma rotation with ExB shearing rates high enough to suppress low-k turbulence. In some cases, the ratio of momentum to energy confinement time is found to exceed five. Momentum pinch velocities of order 10-40 m/s are inferred from the measured angular momentum flux evolution after nonresonant magnetic perturbations are applied to brake the plasma.

  14. Energetic particles in spherical tokamak plasmas

    Science.gov (United States)

    McClements, K. G.; Fredrickson, E. D.

    2017-05-01

    Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion-ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion

  15. Erosion of lithium coatings on TZM molybdenum and graphite during high-flux plasma bombardment

    NARCIS (Netherlands)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; Stotler, D. P.; De Temmerman, G.; Morgan, T. W.; van den Berg, M. A.; van der Meiden, H. J.

    2014-01-01

    Abstract The rate at which Li films will erode under plasma bombardment in the NSTX-U divertor is currently unknown. It is important to characterize this erosion rate so that the coatings can be replenished before they are completely depleted. An empirical formula for the Li erosion rate as a

  16. Report of the Plasma Physics Laboratory

    Science.gov (United States)

    1982-03-01

    Theoretical and experimental work in plasma physics is summarized. Technological and engineering aspects of plasma experiments in the SPICA, TORTUR 2, and RINGBOOG 2 reactors are discussed with emphasis on screw pinch, turbulent heating, and gas blankets. The free boundary equilibrium in high beta Tokamak plasma, wave dynamics, and transport problems were investigated.

  17. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    Science.gov (United States)

    Muñoz Burgos, J. M.; Barbui, T.; Schmitz, O.; Stutman, D.; Tritz, K.

    2016-11-01

    Helium line-ratios for electron temperature (Te) and density (ne) plasma diagnostic in the Scrape-Off-Layer (SOL) and edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet, 667.8 and 728.1 nm, and triplet, 706.5 nm, visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of this powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. The analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer or by other conflicting lines from different ions.

  18. Collaborative Research and Development on Liquid Metal Plasma Facing Components

    Science.gov (United States)

    Jaworski, M. A.; Abrams, T.; Ellis, R.; Khodak, A.; Leblanc, B.; Menard, J.; Ono, M.; Skinner, C. H.; Stotler, D. P.; Detemmerman, G.; Gleeson, M. A.; Lof, A. R.; Scholten, J.; van den Berg, M. A.; van den Meiden, H. J.; Gray, T. K.; Sabbagh, S. A.; Soukhanovskii, V. A.; Hu, J.; Wang, L.; Zuo, G.

    2012-10-01

    Liquid metal plasma facing components (PFCs) provide the potential to avoid component replacement by continually replenishing the plasma-facing surface. Data during the NSTX liquid lithium divertor (LLD) campaign indicate that impurity accumulation on the static lithium resulted in a mixed-material surface. However, no lithium ejection nor substrate influx was observed during normal operation. This motivates research on flowing systems for near-term machines. Experiments on the Magnum-PSI linear test-stand and EAST tokamak have begun to explore issues related to near-surface lithium transport, surface evolution and coating lifetime for exposures of 5-10s. Technology development for a fully-flowing liquid lithium PFC is being conducted including construction of a liquid lithium flow loop and thermal-hydraulic studies of novel, capillary-restrained lithium PFCs for possible use on EAST and NSTX-U.

  19. Electromagnetic stabilization of tokamak microturbulence in a high-$\\beta$ regime

    CERN Document Server

    Citrin, J; Goerler, T; Jenko, F; Mantica, P; Told, D; Bourdelle, C; Hatch, D R; Hogeweij, G M D; Johnson, T; Pueschel, M J; Schneider, M

    2014-01-01

    The impact of electromagnetic stabilization and flow shear stabilization on ITG turbulence is investigated. Analysis of a low-$\\beta$ JET L-mode discharge illustrates the relation between ITG stabilization, and proximity to the electromagnetic instability threshold. This threshold is reduced by suprathermal pressure gradients, highlighting the effectiveness of fast ions in ITG stabilization. Extensive linear and nonlinear gyrokinetic simulations are then carried out for the high-$\\beta$ JET hybrid discharge 75225, at two separate locations at inner and outer radii. It is found that at the inner radius, nonlinear electromagnetic stabilization is dominant, and is critical for achieving simulated heat fluxes in agreement with the experiment. The enhancement of this effect by suprathermal pressure also remains significant. It is also found that flow shear stabilization is not effective at the inner radii. However, at outer radii the situation is reversed. Electromagnetic stabilization is negligible while the flow...

  20. Overview of L-H power threshold studies in NSTX

    Science.gov (United States)

    Maingi, R.; Kaye, S. M.; Bell, R. E.; Biewer, T. M.; Chang, C. S.; Gates, D. A.; Gerhardt, S. P.; Hosea, J.; LeBlanc, B. P.; Meyer, H.; Mueller, D.; Park, G.-Y.; Raman, R.; Sabbagh, S. A.; Stevenson, T. A.; Wilson, J. R.

    2010-06-01

    A summary of results from recent L-H power threshold (PLH) experiments in the National Spherical Torus Experiment is presented. First PLH (normalized linearly by plasma density) was found to be a minimum in double-null configuration, tending to increase as the plasma was shifted more strongly towards lower- or upper-single null configuration with either neutral beam or rf heating. The measured PLH/ne was comparable with neutral beam or rf heating, suggesting that rotation was not playing a dominant role in setting the value of PLH. The role of triangularity (δbot) in setting PLH/ne is less clear: while 50% less auxiliary heating power was required to access H-mode at low δbot than at high δbot, the high δbot discharges had lower ohmic heating and higher dW/dt, leading to comparable loss of power over a range of δbot. In addition, the dependences of PLH on the density, species (helium versus deuterium), plasma current, applied non-axisymmetric error fields and lithium wall conditioning are summarized.

  1. SPIRAL field mapping on NSTX for comparison to divertor RF heat deposition

    Science.gov (United States)

    Hosea, J. C.; Perkins, R.; Jaworski, M. A.; Kramer, G. J.; Ahn, J.-W.; Bertelli, N.; Gerhardt, S.; Gray, T. K.; LeBlanc, B. P.; Maingi, R.; Phillips, C. K.; Roquemore, L.; Ryan, P. M.; Sabbagh, S.; Taylor, G.; Tritz, K.; Wilson, J. R.; NSTX Team

    2014-02-01

    Field-aligned losses of HHFW power in the SOL of NSTX have been studied with IR cameras and probes, but the interpretation of the data depends somewhat on the magnetic equilibrium reconstruction. Both EFIT02 and LRDFIT04 magnetic equilibria have been used with the SPIRAL code to provide field mappings in the scrape off layer (SOL) on NSTX from the midplane SOL in front of the HHFW antenna to the divertor regions, where the heat deposition spirals are measured. The field-line mapping spiral produced at the divertor plate with LRDFIT04 matches the HHFW-produced heat deposition best, in general. An independent method for comparing the field-line strike patterns on the outer divertor for the two equilibria is provided by measuring Langmuir probe characteristics in the vicinity of the outer vessel strike radius (OVSR) and observing the effect on floating potential, saturation current, and zero-probe-voltage current (IV=0) with the crossing of the OVSR over the probe. Interestingly, these comparisons also reveal that LRDFIT04 gives the more accurate location of the predicted OVSR, and confirm that the RF power flow in the SOL is essentially along the magnetic field lines. Also, the probe characteristics and IV=0 data indicate that current flows under the OVSR in the divertor tiles in most cases studied.

  2. Dependence of the L-H power threshold on magnetic balance and heating method in NSTX

    Science.gov (United States)

    Maingi, R.; Biewer, T.; Meyer, H.; Bell, R.; Leblanc, B.; Chang, C. S.

    2007-11-01

    H-mode access is a critical issue for next step devices, such as the International Thermonuclear Experimental Reactor (ITER), which is projected to have a modest heating power margin over the projected L-H power threshold (PLH). The importance of a second X-point in setting the value of PLH has been clarified in recent experiments on several tokamaks. Specifically a reduction of PLH was observed when the magnetic configuration was changed from single null (SN) to double null (DN) in the MAST, NSTX, and ASDEX-Upgrade devices [1]. Motivated by these results, detailed PLH studies on NSTX have compared discharges with neutral beam and rf heating, as a function of drsep. Similar PLH values and edge parameters are observed with the two heating methods in the same magnetic configuration, with PLH ˜ 0.6 MW lowest in DN and increasing to ˜ 1.1 MW and 2-4 MW in lower-SN and upper-SN configurations respectively (ion grad-B-drift towards lower X-point). The evolution of the experimental profiles of parameters in L-mode before the L/H transition will be compared with simulations using the XGC code (C.S. Chang). [1] MEYER, H. et al., Nucl. Fusion 46 (2006) 64.

  3. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L [PPPL; Bell, R E [PPPL; Faust, I [MIT; Tritz, K [The Johns Hopkins University, Baltimore, MD, 21209, USA; Diallo, A [PPPL; Gerhardt, S P [PPPL; Kozub, T A [PPPL; LeBlanc, B P [PPPL; Stratton, B C [PPPL

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  4. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    Science.gov (United States)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  5. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J.P., E-mail: allain@purdue.ed [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Rokusek, D.L.; Harilal, S.S. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Nieto-Perez, M. [CICATA-IPN, Cerro Blanco 141 Cimatario, Queretaro, QRO 76090 (Mexico); Skinner, C.H.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  6. Impact of ideal MHD stability limits on high-beta hybrid operation

    Science.gov (United States)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  7. Free-boundary high-beta tokamaks. II. Mathematical intermezzo: Hilbert transforms and conformal mapping

    Science.gov (United States)

    Goedbloed, J. P.

    1982-11-01

    Mathematical techniques are described that facilitate the reduction of the stability problem of a toroidal free-boundary high-β tokamak equilibrium with skin currents to one that is basically one-dimensional. This includes the conformal mapping of the simply connected plasma region onto a circular disk and the conformal mapping of the doubly connected vacuum region onto an annulus by means of the Theodorsen and Garrick nonlinear integral equations. Henrici's method of constructing the discretized Hilbert transforms for periodic functions on the boundaries of these domains provides both the basis for constructing the mappings and the tool for the study of the perturbations. The methods are applied to problems of two-dimensional potential flow with a discontinuity of which the stability of sharp-boundary high-β tokamaks is just a special case.

  8. The Role of Lithium Conditioning in Achieving High Performance, Long Pulse H-mode Discharges in the NSTX and EAST Devices

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, Rajesh [PPPL; Mansfield, D. K. [PPPL; Gong, X. Z. [IPPCAS; Sun, Z. [IPPCAS; Bell, M. G. [PPPL

    2014-10-01

    In this paper, the role of lithium wall conditioning on the achievement of high performance, long pulse discharges in the National Spherical Torus Experiment (NSTX) and the Experimental Advanced Superconducting Tokamak (EAST) is documented. Common observations include recycling reduction and elimination of ELMs. In NSTX, lithium conditioning typically resulted in ELM-free operation with impurity accumulation, which was ameliorated e.g. with pulsed 3D fields to trigger controlled ELMs. Active lithium conditioning in EAST discharges has overcome this problem, producing an ELM-free Hmode with controlled density and impurities.

  9. Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma

    CERN Document Server

    Liu, Wei

    2010-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...

  10. Final Report on The Theory of Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Cowley

    2008-06-17

    Report describes theoretical research in the theory of fusion plasmas funded under grant DE-FG02-04ER54737. This includes work on: explosive instabilities, plasma turbulence, Alfven wave cascades, high beta (pressure) tokamaks and magnetic reconnection. These studies have lead to abetter understanding of fusion plasmas and in particular the future behavior of ITER. More than ten young researchers were involved in this research -- some were funded under the grant.

  11. Status and Plans for the National Spherical Torus Experimental Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

    2005-07-27

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  12. Status and Plans for the National Spherical Torus Experimental Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono; M.G. Bell; R.E. Bell; J.M. Bialek; T. Bigelow; M. Bitter; plus 148 additional authors

    2005-07-27

    An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.

  13. Plasma Interactions with Mixed Materials and Impurity Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beiersdorfer, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chernov, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frolov, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Magee, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rudd, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Umansky, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs of future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.

  14. Magnetic equilibria for X-Diverted plasmas

    Science.gov (United States)

    Pekker, M.; Valanju, P.; Kotschenreuther, M.; Wiley, J.; Mahajan, S.

    2006-10-01

    The X-divertor has been proposed to solve heat exhaust problems for reactors beyond ITER. By generating an extra X-point downstream from the main X-point, the X-divertor greatly expands magnetic flux at the divertor plates. As a result, the heat is distributed over a larger area and the line length is greatly increased. We have developed coil sets for X-diverted magnetic equilibria for many devices (NSTX, PEGASUS, EAST, HL-2A, CREST, and a CTF). These demonstrate that the XD configuration can be created for highly shaped plasmas using moderate coil currents. For reactors, all coils can be placed behind 1 m of shielding. We have also shown that XD configurations are robust to modest plasma perturbations and VDEs; this is in contrast to the sensitivity of highly tilted divertor plates.

  15. Axisymmetric equilibria with pressure anisotropy and plasma flow

    CERN Document Server

    Evangelias, Achilleas

    2016-01-01

    In this Master thesis we investigate the influence of pressure anisotropy and incompressible flow of arbitrary direction on the equilibrium properties of magnetically confined, axisymmetric toroidal plasmas. The main novel contribution is the derivation of a pertinent generalised Grad-Shafranov equation. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy, through an anisotropy function assumed to be uniform on the magnetic surfaces, and plasma flow, via the...

  16. Electromagnetic effects on plasma blob-filament transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu [University of California, San Diego, La Jolla, CA (United States); Angus, J.R. [Naval Research Laboratory, Washington, DC (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Krasheninnikov, Sergei I. [University of California, San Diego, La Jolla, CA (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation)

    2015-08-15

    Both microscopic and macroscopic impacts of the electromagnetic effects on blob dynamics are considered. Linear stability analysis and nonlinear BOUT++ simulations demonstrate that electromagnetic effects in high temperature or high beta plasmas suppress the resistive drift wave turbulence in the blob when resistivity drops below a certain value. In the course of blob’s motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important. It is found that inhomogeneity of magnetic curvature or plasma pressure along the filament length leads to bending of the high-beta blob filaments. This is caused by the increase of the propagation time of plasma current (Alfvén time) in higher-density plasma. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time.

  17. Onset and Saturation of a Non-resonant Internal Mode in NSTX and Implications For AT Modes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Breslau, M.S. Chance, J. Chen, G.Y. Fu, S,. Gerhardt, N. Gorelenkov, S.C. Jardin and J. Manickam

    2011-08-01

    Motivated by experimental observations of apparently triggerless tearing modes, we have performed linear and nonlinear MHD analysis showing that a non-resonant mode with toroidal mode number n = 1 can develop in the National Spherical Torus eXperiment (NSTX) at moderate normalized βN when the shear is low and the central safety factor q0 is close to but greater than one. This mode, which is related to previously identified ‘infernal’ modes, will saturate and persist, and can develop poloidal mode number m = 2 magnetic islands in agreement with experiments. We have also extended this analysis by performing a free-boundary transport simulation of an entire discharge and showing that, with reasonable assumptions, we can predict the time of mode onset. __________________________________________________

  18. High beta-palmitate fat controls the intestinal inflammatory response and limits intestinal damage in mucin Muc2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available BACKGROUND: Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha'-palmitate, the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate, the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha'-palmitate fat (HAPF diet and high beta-palmitate fat (HBPF diet on colitis development in Muc2 deficient (Muc2(-/- mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer. METHODS: Muc2(-/- mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed. RESULTS: Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2(-/- mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1, genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis. CONCLUSIONS: This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2(-/- mice by inducing an immunosuppressive Treg cell response.

  19. Spontaneous formation of zero magnetic field region near the axis of a high-{beta} mirror device

    Energy Technology Data Exchange (ETDEWEB)

    Lotov, K.V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1996-04-01

    It is shown that in open field line geometry with high expansion ratios of the flux conserver there appears a region of zero magnetic field near the axis. Once the zero-field region is formed, all magnetic field is concentrated in the thin near-wall layer, where high gradients of plasma pressure are present as well. These gradients cause enhanced plasma and heat diffusion. {copyright} {ital 1996 American Institute of Physics.}

  20. Drift Kelvin-Helmholtz instabilities in space plasmas

    Science.gov (United States)

    Sharma, Avadhesh C.; Srivastava, Krishna M.

    1992-01-01

    Drift Kelvin-Helmholtz instabilities of a finite-beta plasma in equilibrium electric and magnetic fields which are perpendicular to each other are studied using two fluid equations. Three types of these instabilities are considered including the magnetosonic instability of a finite beta-homogeneous plasma, the electrostatic drift instability of an inhomogeneous low-beta plasma, and the magneto-acoustic instability of a high-beta inhomogeneous isothermal plasma. It is shown that the electric field has either stabilizing or destabilizing effect depending on conditions under consideration.

  1. High Voltage Ramp Generator for Electro-Optically Tunable Filter for the MSE-CIF Diagnostics on NSTX.

    Science.gov (United States)

    Wu, Ying; Levinton, Fred

    2004-11-01

    The motional Stark effect (MSE) diagnostic is routinely used to determine the q-profile in large fusion devices. To apply the MSE diagnostic to experiments with low magnetic fields such as NSTX (<1 T), a tunable birefringent Lyot filter is used with high throughput and high resolution which allows for a good signal-to-noise ratio. The birefringent filter is made from lithium-niobate crystals, which are coated with a layer of indium tin-oxide (ITO). The ITO layer is a transparent conductive coating. By applying an electric field across the crystal the index of refraction is varied. This allows tunability of the filter. Putting multiple crystals together and tuning them individually it is possible to pass certain wavelengths of light and reject others. A high voltage ramp generator circuit is under development to ramp a 5 kV signal using a simple design involving MOSFET ladders. The goal is to design the circuit so that it can ramp ±5000 volts at a frequency of around 1 kHz. This would allow the filter to sweep over a range of ˜ 1nm.

  2. Dependence of the L-H transition on X-point geometry and divertor recycling on NSTX

    Science.gov (United States)

    Battaglia, D. J.; Chang, C. S.; Kaye, S. M.; Kim, K.; Ku, S.; Maingi, R.; Bell, R. E.; Diallo, A.; Gerhardt, S.; LeBlanc, B. P.; Menard, J.; Podesta, M.; the NSTX Team

    2013-11-01

    The edge electron (Te) and ion temperature (Ti) at the time of the L-H transition increase when the X-point radius (RX) is reduced to a high-triangularity shape while maintaining constant edge density. Consequently the L-H power threshold (PLH) is larger for the high-triangularity shape. This supports the prediction that a single-particle loss hole, whose properties are strongly linked to RX and Ti, influences the edge radial electric field (Er) and Er × B flow-shearing rate available for turbulence suppression. Simulations using XGC0, a full-f drift-kinetic neoclassical code, indicate that maintaining a constant Er × B flow-shearing rate does require a larger heat flux and edge Ti as RX decreases. NSTX also observes a decrease in PLH when the divertor recycling is decreased using lithium coatings. However, the edge Te and Ti at the L-H transition appear independent of the divertor recycling for a constant shape. XGC0 calculations demonstrate that more heat flux is needed to maintain the edge Ti and the Er × B flow-shearing rate as the contribution of divertor recycling to the overall neutral fuelling rate increases.

  3. Predicting high harmonic ion cyclotron heating efficiency in Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Green, David L [ORNL; Jaeger, E. F. [XCEL; Berry, Lee A [ORNL; Chen, Guangye [ORNL; Ryan, Philip Michael [ORNL; Canik, John [ORNL

    2011-01-01

    Observations of improved radio frequency (RF) heating efficiency in high-confinement (H-) mode plasmas on the National Spherical Tokamak Experiment (NSTX) are investigated by whole-device linear simulation. We present the first full-wave simulation to couple kinetic physics of the well confined core plasma to the poorly confined scrape-off plasma. The new simulation is used to scan the launched fast-wave spectrum and examine the steady-state electric wave field structure for experimental scenarios corresponding to both reduced, and improved RF heating efficiency. We find that launching toroidal wave-numbers that required for fast-wave propagation excites large amplitude (kVm 1 ) coaxial standing modes in the wave electric field between the confined plasma density pedestal and conducting vessel wall. Qualitative comparison with measurements of the stored plasma energy suggest these modes are a probable cause of degraded heating efficiency. Also, the H-mode density pedestal and fast-wave cutoff within the confined plasma allow for the excitation of whispering gallery type eigenmodes localised to the plasma edge.

  4. Effects of sertraline on brain current source of the high beta frequency band: analysis of electroencephalography during audiovisual erotic stimulation in males with premature ejaculation.

    Science.gov (United States)

    Kwon, O Y; Kam, S C; Choi, J H; Do, J M; Hyun, J S

    2011-01-01

    To identify the effects of sertraline, a selective serotonin reuptake inhibitor, for the treatment of premature ejaculation (PE), changes in brain current-source density (CSD) of the high beta frequency band (22-30 Hz) induced by sertraline administration were investigated during audiovisual erotic stimulation. Eleven patients with PE (36.9±7.8 yrs) and 11 male volunteers (24.2±1.9 years) were enrolled. Scalp electroencephalography (EEG) was conducted twice: once before sertraline administration and then again 4 h after the administration of 50 mg sertraline. Statistical non-parametric maps were obtained using the EEG segments to detect the current-density differences in the high beta frequency bands (beta-3, 22-30 Hz) between the EEGs before and after sertraline administration in the patient group and between the patient group and controls after the administration of sertraline during the erotic video sessions. Comparing between before and after sertraline administration in the patients with PE, the CSD of the high beta frequency band at 4 h after sertraline administration increased significantly in both superior frontal gyri and the right medial frontal gyrus (P<0.01). The CSD of the beta-3 band of the patients with PE were less activated significantly in the middle and superior temporal gyrus, lingual and fusiform gyrus, inferior occipital gyrus and cuneus of the right cerebral hemisphere compared with the normal volunteers 4 h after sertraline administration (P<0.01). In conclusion, sertraline administration increased the CSD in both the superior frontal and right middle temporal gyrus in patients with PE. The results suggest that the increased neural activity in these particular cerebral regions after sertraline administration may be associated with inhibitory effects on ejaculation in patients with PE.

  5. Validation of coupled core-edge pedestal-SOL modeling against DIII-D high beta discharges

    Science.gov (United States)

    Park, J. M.; Green, D.; Batchelor, D.; Elwasif, W.; Snyder, P. B.; Meneghini, O.; Candy, J.; Kim, K.

    2016-10-01

    A new core-edge pedestal-SOL modeling has been validated against the DIII-D experiments by integrating three independent, compound workflows of FASTRAN (1D core), EPED (edge pedestal), and C2 (2D SOL) within the Integrated Plasma Simulator (IPS) framework. The FASTRAN workflow computes all transport channels including the density, temperature, rotation, and plasma current, self-consistently with an EPED1 edge pedestal, MHD equilibrium, external heating and current drives. The particle and energy fluxes are matched at the separatrix between the FASTRAN-EPED and C2 workflows in an iterative steady-state solution procedure to determine the density and temperature at the separatrix, which is used to provide improved EPED1 input and to efficiently close the strong dependency loop among the regions. The result reproduces the experimental profiles from the magnetic axis to divertor/wall for the DIII-D high β discharges, guiding an optimum core-edge solution for the βN > 4 steady-state operation. Work supported in part by the US DoE under DE-AC05-00OR22725 and DE-FC02-06ER54873.

  6. PLASMA ENERGETIC PARTICLES SIMULATION CENTER (PEPSC)

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Herbert L.

    2014-05-23

    The main effort of the Texas group was to develop theoretical and simplified numerical models to understand chirping phenomena often seen for Alfven and geodesic acoustic waves in experimental plasmas such as D-III-D, NSTX and JET. Its main numerical effort was to modify the AEGIS code, which was originally developed as an eigenvalue solver. To apply to the chirping problem this code has to be able to treat the linear response to the continuum and the response of the plasma to external drive or to an internal drive that comes from the formation of phase space chirping structures. The theoretical underpinning of this investigation still needed to be more fully developed to understand how to best formulate the theoretical problem. Considerable progress was made on this front by B.N. Breizman and his collaborators and a new reduced model was developed by H. L. Berk and his PhD student, G. Wang which can be uses as simplified model to describe chirping in a large aspect ratio tokamak. This final report will concentrate on these two directions that were developed as well as results that were found in the work with the AEGIS code and in the progress in developing a novel quasi-linear formulation for a description of Alfvenic modes destabilized by energetic particles, such as alpha particles in a burning plasma.

  7. Electromagnetic drift waves dispersion for arbitrarily collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Angus, J. R. [Naval Research Laboratory, 4555 Overlook Avenue, Washington, DC 20375 (United States)

    2015-07-15

    The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionless and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.

  8. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    Science.gov (United States)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  9. Effect of Sertraline on Current-Source Distribution of the High Beta Frequency Band: Analysis of Electroencephalography under Audiovisual Erotic Stimuli in Healthy, Right-Handed Males.

    Science.gov (United States)

    Lee, Seung Hyun; Hyun, Jae Seog; Kwon, Oh-Young

    2010-08-01

    The purpose of this study was to examine the cerebral changes in high beta frequency oscillations (22-30 Hz) induced by sertraline and by audiovisual erotic stimuli in healthy adult males. Scalp electroencephalographies (EEGs) were conducted twice in 11 healthy, right-handed males, once before sertraline intake and again 4 hours thereafter. The EEGs included four sessions recorded sequentially while the subjects were resting, watching a music video, resting, and watching an erotic video for 3 minutes, 5 minutes, 3 minutes, and 5 minutes, respectively. We performed frequency-domain analysis using the EEGs with a distributed model of current-source analysis. The statistical nonparametric maps were obtained from the sessions of watching erotic and music videos (perotic stimuli decreased the current-source density of the high beta frequency band in the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in the baseline EEGs taken before sertraline intake (perotic stimuli did not induce any changes in current-source distribution of the brain 4 hours after sertraline intake. It is speculated that erotic stimuli may decrease the function of the middle frontal gyrus, the precentral gyrus, the postcentral gyrus, and the supramarginal gyrus of the left cerebral hemisphere in healthy adult males. This change may debase the inhibitory control of the brain against erotic stimuli. Sertraline may reduce the decrement in inhibitory control.

  10. New Outreach Initiatives at the Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Zwicker, Andrew; Dominguez, Arturo; Greco, Shannon; Ortiz, Deedee; Delooper, John

    2015-11-01

    In FY15, PPPL concentrated its efforts on a portfolio of outreach activities centered around plasma science and fusion energy that have the potential to reach a large audience and have a significant and measurable impact. The overall goal of these outreach activities is to expose the public (within New Jersey, the US and the world) to the Department of Energy's scientific endeavors and specifically to PPPL's research regarding fusion and plasma science. The projects include several new activities along with upgrades to existing ones. The new activities include the development of outreach demos for the plasma physics community and the upgrade of the Internet Plasma Physics Experience (IPPEX). Our first plasma demo is a low cost DC glow discharge, suitable for tours as well as for student laboratories (plasma breakdown, spectroscopy, probes). This has been field tested in a variety of classes and events. The upgrade to the IPPEX web site includes a new template and a new interactive virtual tokamak. Future work on IPPEX will provide users limited access to data from NSTX-U. Finally, our Young Women's Conference was expanded and improved. These and other new outreach activities will be presented.

  11. Understanding plasma facing surfaces in magnetic fusion devices

    Science.gov (United States)

    Skinner, C. H.; Capece, A. M.; Koel, B. E.; Roszell, J. P.

    2013-09-01

    The plasma-material interface is recognized to be the most critical challenge in the realization of fusion energy. Liquid metals offer a self-healing, renewable interface that bypasses present issues with solid, neutron-damaged materials such as tungsten. Lithium in particular has dramatically improved plasma performance in many tokamaks through a reduction of hydrogen recycling. However the detailed chemical composition and properties of the top few nm that interact with the plasma are often obscure. Surface analysis has proven to be a key tool in semiconductor processing and a new laboratory has been established at PPPL to apply surface science techniques to plasma facing materials. We have shown that lithiated PFC surfaces in tokamaks will likely be oxidized during the intershot interval. Present work is focused on deuterium uptake of solid and liquid metals for plasma density control and sub-micron scale wetting of liquid metals on their substrates. The long-term goal is to provide a material database for designing liquid metal plasma facing components for tokamaks such as National Spherical Torus Experiment-Upgrade (NSTX-U) and Fusion Nuclear Science Facility-ST (FNSF-ST). Support was provided through DOE-PPPL Contract Number is DE-AC02-09CH11466.

  12. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Virginia Finley

    2001-04-20

    The results of the 1999 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 1999. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality--an alternative energy source. 1999 marked the first year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. The 1999 performance of the Princeton Plasma Physics Laboratory was rated ''outstanding'' by the U.S. Department of Energy in the Laboratory Appraisal report issued early in 2000. The report cited the Laboratory's consistently excellent scientific and technological achievements, its successful management practices, and included high marks in a host of other areas including environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary

  13. Blob birth and transport in NSTX: GPI data analysis and theory

    Science.gov (United States)

    Myra, J. R.; Stotler, D. P.; Maqueda, R.; Boedo, J.; Munsat, T.

    2005-10-01

    Movies of blobs (i.e. convecting filamentary structures in the scrape-off-layer) taken with the gas-puff-imaging (GPI) diagnostic are used to extract blob parameters: birth zone, scale size, radial velocity vx and (with DEGAS-2 modeling to infer plasma density and temperature from the He 5876 emission), density and temperature. These measured properties are compared with theory. It is shown that the birth zone and blob parameters are related to the local maximum of the edge ∇ln suggesting blob generation by an underlying edge instability. The observed blobs are plotted on a theoretical regime diagram,ootnotetextJ.R. Myra, D.A. D'Ippolito, Lodestar Report #LRC-05-105, May, 2005. and mostly lie in the sheath-connected regime. The observed vx are equal to, or exceed, a minimum velocity scaling predicted by theory. The excess depends on position and is qualitatively consistent with separatrix effects. However, some additional physics not in the present model also influences vx.

  14. SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Dan [Johns Hopkins University

    2014-09-10

    The present report summarizes the results obtained during a one-year extension of DoE grant “SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas”, at Johns Hopkins University, aimed at completing the development of a new type of magnetic fusion plasma diagnostic, the XUV Transmission Grating Imaging Radiometer (TGIR). The TGIR enables simultaneous spatially and spectrally resolved measurements of the XUV/VUV radiated power from impurities in fusion plasmas, with high speed. The instrument was successfully developed and qualified in the laboratory and in experiments on a tokamak. Its future applications will be diagnostic of the impurity content and transport in the divertor and edge of advanced magnetic fusion experiments, such as NSTX Upgrade.

  15. Compositional changes of lithium coatings on TZM molybdenum during plasma bombardment

    Science.gov (United States)

    Abrams, T.; Jaworski, M. A.; Kaita, R.; de Temmerman, G.; Gleeson, M. A.; Lof, A. R.; Scholten, J.; van den Berg, M. A.; van der Meiden, H. J.; Raman, P.; Ruzic, D. N.

    2012-10-01

    The Titanium-Zirconium-Molybdenum alloy TZM has previously been used as a metallic plasma-facing component in Alcator C-Mod is being considered for use in NSTX-Upgrade. The time evolution of lithium (Li) coatings on TZM are studied in Magnum-PSI, a linear plasma device capable of ion fluxes up to 10^25 m-2s-1 at electron temperatures mean free path (MFP) of Li was calculated and validations against the ADAS collisional-radiative model (CRM) will be reported. Separate measurements with a 100-1000 eV D^+ ion beam incident on Li-coated TZM were also obtained and compared with theoretical predictions of physical sputtering rates.

  16. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2002-04-22

    The results of the 2000 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of PPPL's operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2000. The Princeton Plasma Physics Laboratory has engaged in fusion energy research since 1951. The long-range goal of the U.S. Magnetic Fusion Energy Research Program is to create innovations to make fusion power a practical reality -- an alternative energy source. The year 2000 marked the second year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion power plants. With its completion within budget and ahead of its target schedule, NSTX first plasma occurred on February 12, 1999. In 2000, PPPL's radiological environmental monitoring program measured tritium in the air at on-site and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations with limits set by the Environmental Protection Agency (EPA). Also included in PPPL's radiological environmental monitoring program, are precipitation, surface

  17. A 'multi-colour' SXR diagnostic for time and space-resolved measurements of electron temperature, MHD activity and particle transport in MCF plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Aparicio, L F [Johns Hopkins University, Department of Physics and Astronomy, Baltimore, MD 21218 (United States); Stutman, D [Johns Hopkins University, Department of Physics and Astronomy, Baltimore, MD 21218 (United States); Tritz, K [Johns Hopkins University, Department of Physics and Astronomy, Baltimore, MD 21218 (United States); Finkenthal, M [Johns Hopkins University, Department of Physics and Astronomy, Baltimore, MD 21218 (United States); Bell, R [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Gates, D [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Kaita, R [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); LeBlanc, B [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Maingi, R [Oak Ridge National Laboratory/UT-Battelle, Oak Ridge, TN 37831 (United States); Yuh, H [Nova Photonics, Inc., One Oak Place, Princeton, NJ 08540 (United States); Levinton, F [Nova Photonics, Inc., One Oak Place, Princeton, NJ 08540 (United States); Heidbrink, W [University of California-Irvine, Department of Physics and Astronomy, Irvine, CA 92697 (United States)

    2007-08-01

    A fast ({<=}0.1 ms) and compact 'multi-colour' soft x-ray array has been developed for time and space-resolved electron temperature (T{sub e}) measurements in magnetically confined fusion (MCF) plasmas. The electron temperature is obtained by modelling the slope of the continuum radiation from ratios of the available 1D-Abel inverted radial emissivity profiles over different energy ranges, with no a priori assumptions of plasma profiles, magnetic field reconstruction constraints or need of shot-to-shot reproducibility. This technique has been used to perform fast T{sub e} measurements in the National Spherical Torus Experiment (NSTX), avoiding the limitations imposed by the well-known multi-point Thompson scattering, electron cyclotron emission and electron Bernstein wave mode conversion diagnostics. The applicability of this 'multi-colour' technique for magnetohydrodynamic (MHD) mode recognition and a variety of perturbative electron and impurity transport studies in MCF plasmas is also discussed. Reconstructed 'multi-colour' emissivity profiles for a variety of NSTX scenarios are presented here for the first time.

  18. Burning plasma regime for Fussion-Fission Research Facility

    Science.gov (United States)

    Zakharov, Leonid E.

    2010-11-01

    The basic aspects of burning plasma regimes of Fusion-Fission Research Facility (FFRF, R/a=4/1 m/m, Ipl=5 MA, Btor=4-6 T, P^DT=50-100 MW, P^fission=80-4000 MW, 1 m thick blanket), which is suggested as the next step device for Chinese fusion program, are presented. The mission of FFRF is to advance magnetic fusion to the level of a stationary neutron source and to create a technical, scientific, and technology basis for the utilization of high-energy fusion neutrons for the needs of nuclear energy and technology. FFRF will rely as much as possible on ITER design. Thus, the magnetic system, especially TFC, will take advantage of ITER experience. TFC will use the same superconductor as ITER. The plasma regimes will represent an extension of the stationary plasma regimes on HT-7 and EAST tokamaks at ASIPP. Both inductive discharges and stationary non-inductive Lower Hybrid Current Drive (LHCD) will be possible. FFRF strongly relies on new, Lithium Wall Fusion (LiWF) plasma regimes, the development of which will be done on NSTX, HT-7, EAST in parallel with the design work. This regime will eliminate a number of uncertainties, still remaining unresolved in the ITER project. Well controlled, hours long inductive current drive operation at P^DT=50-100 MW is predicted.

  19. Varying the Pre-discharge Lithium Wall Coatings to Alter the Characteristics of the ELM-free H-mode Pedestal in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Boyle, J.M. Canik, R. Maing, P.B. Snyder, T.H. Osborne, and the NSTX Team

    2012-06-28

    A previous experiment in the National Spherical Torus Experiment (NSTX) showed pre-discharge lithium deposition gradually suppresed edge-localized modes (ELMs) and had nearly continuous relationships with reduced recycling and transport. In this paper, additional data filled gaps in the earlier experiment, and demonstrates that recycling, confinement, and pedestal structure continued to improve with additional lithium, even after ELMs were completely suppressed. New analysis shows that toroidal rotation and ion temperature also increased continuously with additional lithium. Besides its evolution with additional lithium, we also characterize the time evolution of the ELM-free H-mode pedestal as average density rose and impurities accumulated. We find that the pedestal structure, divertor heat flux and Dalpha profiles, and inferred recycling coefficient did not change significantly, at least until radiative losses become dominant. This suggests that the low-recycling properties of lithium were not significantly degraded over the duration of the discharge.

  20. Compensation of Transverse Field Asymmetry in the High-beta Quarter-wave Resonator of the HIE-ISOLDE Linac at CERN

    CERN Document Server

    Fraser, M A; D'Elia, A; Jones, R M

    2009-01-01

    The superconducting upgrade of the REX-ISOLDE radioactive ion beam (RIB) post-accelerator at CERN will utilise a compact lattice comprising quarter-wave resonators (QWRs) and solenoids, accelerating beams in the mass range 2.5 < A/q < 4.5 to over 10 MeV/u. The short and independently phased quarter-wave structures allow for the acceleration of RIBs over a variable velocity profile and provide an unrivalled longitudinal acceptance when coupled with solenoid focusing. The incorporation of the solenoids into the cryomodule shortens the linac, whilst maximising the acceptance, but the application of solenoid focusing in the presence of asymmetric QWR fields can have consequences for the beam quality. The rotation of an asymmetric beam produces an effective emittance growth in the laboratory reference system. We present modifications of the cavity geometry to optimise the symmetry of the transverse fields in the high-beta QWR. A racetrack shaped beam port is analysed and a modification made to the inner cond...

  1. Advanced Plasma Diagnostic Analysis using Neural Networks

    Science.gov (United States)

    Tritz, Kevin; Reinke, Matt

    2016-10-01

    Machine learning techniques, specifically neural networks (NN), are used with sufficient internal complexity to develop an empirically weighted relationship between a set of filtered X-ray emission measurements and the electron temperature (Te) profile for a specific class of discharges on NSTX. The NN response matrix is used to calculate the Te profile directly from the filtered X-ray diode measurements which extends the electron temperature time response from the 60Hz Thomson Scattering profile measurements to fast timescales (>10kHz) and greatly expands the applicability of Te profile information to fast plasma phenomena, such as ELM dynamics. This process can be improved by providing additional information which helps the neural network refine the relationship between Te and the corresponding X-ray emission. NN supplement limited measurements of a particular quantity using related measurements with higher time or spatial resolution. For example, the radiated power (Prad) determined using resistive foil bolometers is related to similar measurements using AXUV diode arrays through a complex and slowly time-evolving quantum efficiency curve in the VUV spectral region. Results from a NN trained using Alcator C-Mod resistive foil bolometry and AXUV diodes are presented, working towards hybrid Prad measurements with the quantitative accuracy of resistive foil bolometers and with the enhanced temporal and spatial resolution of the unfiltered AXUV diode arrays. Work supported by Department of Energy Grant #: DE-FG02-09ER55012.

  2. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    Science.gov (United States)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  3. The Center for Momentum Transport and Flow Organization in Plasmas - Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Munsat, Tobin [Univ. of Colorado, Boulder, CO (United States)

    2015-12-14

    Overview of University of Colorado Efforts: The University of Colorado group has focused on two primary fronts during the grant period: development of a variety of multi-point diagnostic and/or imaging analysis techniques, and momentum-transport related experiments on a variety of devices (NSTX at PPPL, CSDX at UCSD, LAPD at UCLA, DIII-D at GA). Experimental work has taken advantage of several diagnostic instruments, including fast-framing cameras for imaging of electron density fluctuations (either directly or using injected gas puffs), ECEI for imaging of electron temperature fluctuations, and multi-tipped Langmuir and magnetic probes for corroborating measurements of Reynolds and Maxwell stresses. Mode Characterization in CSDX: We have performed a series of experiments at the CSDX linear device at UCSD, in collaboration with Center PI G. Tynan's group. The experiments included a detailed study of velocity estimation techniques, including direct comparisons between Langmuir probes and image-based velocimetry from fast-framing camera data. We used the camera data in a second set of studies to identify the spatial and spectral structure of coherent modes, which illuminates wave behavior to a level of detail previously unavailable, and enables direct comparison of dispersion curves to theoretical estimates. In another CSDX study, similar techniques were used to demonstrate a controlled transition from nonlinearly coupled discrete eigenmodes to fully developed broadband turbulence. The axial magnetic field was varied from 40-240 mT, which drove the transition. At low magnetic fields, the plasma is dominated by drift waves. As the magnetic field is increased, a strong potential gradient at the edge introduces an ExB shear-driven instability. At the transition, another mode with signatures of a rotation-induced Rayleigh–Taylor instability appears at the central plasma region. Concurrently, large axial velocities were found in the plasma core. For larger magnetic

  4. Application and Continued Development of Thin Faraday Collectors as a Lost Ion Diagnostic for Tokamak Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    F. Ed Cecil

    2011-06-30

    This report summarizes the accomplishment of sixteen years of work toward the development of thin foil Faraday collectors as a lost energetic ion diagnostic for high temperature magnetic confinement fusion plasmas. Following initial, proof of principle accelerator based studies, devices have been tested on TFTR, NSTX, ALCATOR, DIII-D, and JET (KA-1 and KA-2). The reference numbers refer to the attached list of publications. The JET diagnostic KA-2 continues in operation and hopefully will provide valuable diagnostic information during a possible d-t campaign on JET in the coming years. A thin Faraday foil spectrometer, by virtue of its radiation hardness, may likewise provide a solution to the very challenging problem of lost alpha particle measurements on ITER and other future burning plasma machines.

  5. Wall mode stabilization at slow plasma rotation

    Science.gov (United States)

    Hu, Bo; Betti, Riccardo; Reimerdes, Holger; Garofalo, Andrea; Manickam, Janardhan

    2007-11-01

    Unstable pressure-driven external kink modes, which become slowly growing resistive wall modes (RWMs) in the presence of a resistive wall, can lead to tokamak plasma disruptions at high beta. It has been shown that RWMs are stabilized by fast plasma rotation (about 1-2% of the Alfv'en frequency) in experiments. Conventional theories attribute the RWM suppression to the dissipation induced by the resonances between plasma rotation and ion bounce/transit or shear Alfv'en frequencies [1]. In those theories, the kinetic effects associated with the plasma diamagnetic frequencies and trapped-particle precession drift frequencies are neglected. It has been observed in recent experiments [2,3] that the RWM suppression also occurs at very slow plasma rotation (about 0.3% of the Alfv'en frequency), where the conventional dissipation is too small to fully suppress the RWMs. Here it is shown, that the trapped-particle kinetic contribution associated with the precession motion [4] is large enough to stabilize the RWM in DIII-D at low rotation. Work supported by the US-DoE OFES. [1] A. Bondeson and M. S. Chu, Physics of Plasmas, 3,3013 (1996). [2] H. Reimerdes et al., Physical Review Letters, 98,055001 (2007). [3] M. Takechi et al., Physical Review Letters, 98,055002 (2007). [4] B. Hu and R. Betti, Physical Review Letters, 93,105002 (2004).

  6. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  7. Plasma harmonics

    CERN Document Server

    Ganeev, Rashid A

    2014-01-01

    Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o

  8. Dispersion Relations and Polarizations of Low-frequency Waves in Two-fluid Plasmas

    CERN Document Server

    Zhao, Jinsong

    2015-01-01

    Analytical expressions for the dispersion relations and polarizations of low-frequency waves in magnetized plasmas based on two-fluid model are obtained. The properties of waves propagating at different angles (to the ambient magnetic field $\\mathbf{B}_{0}$) and \\beta (the ratio of the plasma to magnetic pressures) values are investigated. It is shown that two linearly polarized waves, namely the fast and Alfv\\'{e}n modes in the low-\\beta $\\left( \\beta \\ll 1\\right)$ plasmas, the fast and slow modes in the \\beta \\sim 1 plasmas, and the Alfv\\'{e}n and slow modes in the high-\\beta $\\left( \\beta \\gg 1\\right)$ plasmas, become circularly polarized at the near-parallel (to $\\mathbf{B}_{0}$) propagation. The negative magnetic-helicity of the Alfv\\'{e}n mode occurs only at small or moderate angles in the low-\\beta plasmas, and the ion cross-helicity of the slow mode is nearly the same as that of the Alfv\\'{e}n mode in the high-\\beta plasmas. It also shown the electric polarization $\\delta E_{z}/\\delta E_{y}$ decreases...

  9. Fusion programs in applied plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  10. Erosion of lithium coatings on TZM molybdenum and graphite during high-flux plasma bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R.; Stotler, D.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); De Temmerman, G.; Morgan, T.W.; Berg, M.A. van den; Meiden, H.J. van der [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Trilateral Euregio Cluster, Associate EURATOM-FOM, BL-3430 BE Nieuwegein (Netherlands)

    2014-12-15

    Highlights: • A formula for temperature-dependent lithium sputtering and evaporation is proposed. • This formula was tested using the Magnum-PSI linear plasma device. • Lithium-coated TZM molybdenum and graphite samples were exposed to plasmas. • Measured Li erosion rates are significantly lower than the formula predicts. • Evidence of lithium diffusion into graphite substrates was also observed. - Abstract: The rate at which Li films will erode under plasma bombardment in the NSTX-U divertor is currently unknown. It is important to characterize this erosion rate so that the coatings can be replenished before they are completely depleted. An empirical formula for the Li erosion rate as a function of deuterium ion flux, incident ion energy, and Li temperature was developed based on existing theoretical and experimental work. These predictions were tested on the Magnum-PSI linear plasma device capable of ion fluxes >10{sup 24} m{sup −2} s{sup −1}, ion energies of 20 eV and Li temperatures >800 °C. Li-coated graphite and TZM molybdenum samples were exposed to a series of plasma pulses during which neutral Li radiation was measured with a fast camera. The total Li erosion rate was inferred from measurements of Li-I emission. The measured erosion rates are significantly lower than the predictions of the empirical formula. Strong evidence of fast Li diffusion into graphite substrates was also observed.

  11. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    Science.gov (United States)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  12. Dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fortov, Vladimir E; Khrapak, Aleksei G; Molotkov, Vladimir I; Petrov, Oleg F [Institute for High Energy Densities, Associated Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Khrapak, Sergei A [Max-Planck-Institut fur Extraterrestrische Physik, Garching (Germany)

    2004-05-31

    The properties of dusty plasmas - low-temperature plasmas containing charged macroparticles - are considered. The most important elementary processes in dusty plasmas and the forces acting on dust particles are investigated. The results of experimental and theoretical investigations of different states of strongly nonideal dusty plasmas - crystal-like, liquid-like, gas-like - are summarized. Waves and oscillations in dusty plasmas, as well as their damping and instability mechanisms, are studied. Some results on dusty plasma investigated under microgravity conditions are presented. New directions of experimental research and potential applications of dusty plasmas are discussed. (reviews of topical problems)

  13. Plasma engineering analysis of a small torsatron reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lacatski, J.T.; Houlberg, W.A.; Uckan, N.A.

    1985-10-01

    This study examines the plasma physics and reactor engineering feasibility of a small, medium aspect ratio, high-beta, l = 2, D-T torsatron power reactor, based on the magnetic configuration of the Advanced Toroidal Facility, Oak Ridge National Laboratory. Plasma analyses are performed to assess whether confinement in a small, average radius plasma is sufficient to yield an ignited or high-Q driven device. Much of the physics assessment focuses on an evaluation of the radial electric field created by the nonambipolar particle flux. Detailed transport simulations are done with both fixed and self-consistent evolution of the radial electric field. Basic reactor engineering considerations taken into account are neutron wall loading, maximum magnetic field at the helical coils, coil shield thickness, and tritium breeding blanket-shield thickness.

  14. Studies of Dynamic, Radiative Macroscopic Magnetized HED Plasmas with Closed B-Field Lines

    Energy Technology Data Exchange (ETDEWEB)

    Frese, Michael H. [NumerEx, LLC, Albuquerque, NM (United States); Frese, Sherry D. [NumerEx, LLC, Albuquerque, NM (United States)

    2013-11-01

    The purpose of this research has been to study the physics of macroscopic magnetized high-energy-density laboratory plasmas (HEDLPs) created through the compression of a high-beta compact toroid (CT) plasma having closed magnetic field lines. The high-beta CT chosen for this work is a field-reversed configuration (FRC). The basic approach is to investigate CT plasmas as they are compressed to a HED state by the electromagnetic implosion of a surrounding metallic shell or solid liner (Figure 1). The shell provides an axisymmetric, electrically-conducting boundary around the plasma and its supporting magnetic field and is imploded by means of the magnetic pressure force arising from axial current flow in the liner interacting with its associated azimuthal magnetic field. Compression of the CT will bring the plasma to fusion temperatures at higher densities and magnetic fields (multi-MegaGauss [MG]) than have previously been present in conventional magnetic fusion approaches. The resulting energy densities will be ~1 Mbar or greater and thus will place the plasma in a parameter space intermediate to MFE and IFE. This work has been a collaboration between the Air Force Research Laboratory, Los Alamos National Laboratory, and NumerEx, LLC.

  15. The effects of plasma beta and anisotropy instabilities on the dynamics of reconnecting magnetic fields in the heliosheath

    CERN Document Server

    Schoeffler, K M; Swisdak, M

    2011-01-01

    The plasma {\\beta} (the ratio of the plasma pressure to the magnetic pressure) of a system can have a large effect on its dynamics as high {\\beta} enhances the effects of pressure anisotropies. We investigate the effects of {\\beta} in a system of stacked current sheets that break up into magnetic islands due to magnetic reconnection. We find significant differences between {\\beta} 1. At low {\\beta} growing magnetic islands are modestly elongated and become round as contraction releases magnetic stress and reduces magnetic energy. At high {\\beta} the increase of the parallel pressure in contracting islands causes saturation of modestly elongated islands as island cores approach the marginal firehose condition. Only highly elongated islands reach finite size. The kinking associated with the Weibel and firehose instabilities prevents full contraction of these islands, leading to a final state of highly elongated islands in which further reconnection is suppressed. The results are directly relevant to reconnecti...

  16. Turbulence and selective decay in the SSX plasma wind tunnel

    Science.gov (United States)

    Gray, Tim; Brown, Michael; Dandurand, Dan; Fisher, Mike; Flanagan, Ken; Weinhold, Darren; Lukin, V.

    2011-10-01

    A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0 . 08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >= 50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti = 25 eV, ne >=1015 cm-3, and B = 0 . 25 T. The relaxed state is rapidly attained in 1-2 axial Alfvén times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇ × B --> = λ B --> . While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β = 0 . 5) and does not have a flat λ profile. Merging with plasma plumes injected from both ends of the cylinder will be compared to the non-merging plasmas. Supported by US DOE and NSF.

  17. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  18. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  19. A nonlinear theory of the parallel firehose and gyrothermal instabilities in a weakly collisional plasma

    CERN Document Server

    Rosin, M S; Rincon, F; Cowley, S C

    2010-01-01

    Plasmas have a natural tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius with growth rates of a fraction of the ion cyclotron frequency - much faster than either the global dynamics or local turbulence. The instabilities can dramatically modify the macroscopic dynamics of the plasma. Nonlinear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta. This nonlinear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel firehose instability in a high-beta plasma. A closed nonlinear equation for the firehose turbulence is derived and solved. In the nonlinear regime, the instability leads to secular (~t) growth of magnetic fluctuations. The fluctuations develop a k^{-3} spectrum, extending from scales somewhat larger than r...

  20. Examining Helium Line Intensities and Ratios in a Linear Helium Plasma to Identify Te and ne

    Science.gov (United States)

    Ray, H.; Biewer, T. M.; Unterberg, E. A.; Fehling, D. T.; Isler, R. C.

    2015-11-01

    Oak Ridge National Laboratory's prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device dedicated to the understanding of plasma material interaction physics. A photomultiplier tube (PMT) based diagnostic system called a filterscope examines the visible light emission from Proto-MPEX. The filterscope is a non-invasive, high sensitivity, and high temporal resolution compact system with multiple PMT channels. Three PMTs contain He I narrow bandpass filters of wavelengths 667.9, 723.6, and 706.7 nm for line ratio analysis. Helium line intensities and ratios have been widely applied on astrophysical plasmas and machines such as JET and NSTX to determine profiles of electron temperatures, Te, and densities, ne. Ratios of the He I intensities measured by the filterscope are compared to calculated intensity ratios determined through a collisional radiative model (CRM) as follows: An excited He atom in state P will de-excite to a lower energy level Q by emitting a photon of a specific wavelength. A CRM uses the interactions P has with Q and other energy levels to calculate the population density of P. The calculated population density is used to determine the spectral line intensity of the wavelength analyzed. The aforementioned process is performed for each of the He I bandpass filters, and ratios dependent on Te and ne are calculated and compared to the filterscopes measured ratios. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  1. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Finley, V.L. and Levine, J.D.

    1999-01-10

    The results of the 1997 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the U.S. Department of Energy and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1997, PPPL's Tokamak Fusion Test Reactor (TFTR) completed fifteen years of fusion experiments begun in 1982. Over the course of three and half years of deuterium-tritium (D-T) plasma experiments, PPPL set a world record of 10.7 million watts of controlled fusion power, more than 700 tritium shots pulsed into the reactor vessel generating more than 5.6 x 1020 neutron and 1.6 gigajoules of fusion energy and researchers studied plasma science experimental data, which included "enhanced reverse shear techniques." As TFTR was completing its historic operations, PPPL participated with the Oak Ridge National Laboratory, Columbia University, and the University of Washington (Seattle) in a collaboration effort to design the National Spherical Torus Experiment (NSTX). This next device, NSTX, is located in the former TFTR Hot Cell on D site, and it is designed to be a smaller and more economical torus fusion reactor. Construction of this device began in late 1997, and first plasma in scheduled for early 1999. For 1997, the U.S. Department of Energy in its Laboratory Appraisal report rated the overall performance of Princeton Plasma Physics Laboratory as "excellent." The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey

  2. The Center for Momentum Transport and Flow Organization in Plasmas - Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Munsat, Tobin [Univ. of Colorado, Boulder, CO (United States)

    2015-12-14

    Overview of University of Colorado Efforts: The University of Colorado group has focused on two primary fronts during the grant period: development of a variety of multi-point diagnostic and/or imaging analysis techniques, and momentum-transport related experiments on a variety of devices (NSTX at PPPL, CSDX at UCSD, LAPD at UCLA, DIII-D at GA). Experimental work has taken advantage of several diagnostic instruments, including fast-framing cameras for imaging of electron density fluctuations (either directly or using injected gas puffs), ECEI for imaging of electron temperature fluctuations, and multi-tipped Langmuir and magnetic probes for corroborating measurements of Reynolds and Maxwell stresses. Mode Characterization in CSDX: We have performed a series of experiments at the CSDX linear device at UCSD, in collaboration with Center PI G. Tynan's group. The experiments included a detailed study of velocity estimation techniques, including direct comparisons between Langmuir probes and image-based velocimetry from fast-framing camera data. We used the camera data in a second set of studies to identify the spatial and spectral structure of coherent modes, which illuminates wave behavior to a level of detail previously unavailable, and enables direct comparison of dispersion curves to theoretical estimates. In another CSDX study, similar techniques were used to demonstrate a controlled transition from nonlinearly coupled discrete eigenmodes to fully developed broadband turbulence. The axial magnetic field was varied from 40-240 mT, which drove the transition. At low magnetic fields, the plasma is dominated by drift waves. As the magnetic field is increased, a strong potential gradient at the edge introduces an ExB shear-driven instability. At the transition, another mode with signatures of a rotation-induced Rayleigh–Taylor instability appears at the central plasma region. Concurrently, large axial velocities were found in the plasma core. For larger magnetic

  3. L-H power threshold scaling with magnetic geometry on NSTX and the role of ion orbit loss

    Science.gov (United States)

    Battaglia, D. J.; Chang, C.-S.; Kaye, S. M.; Ku, S.; Maingi, R.; NSTX Team

    2011-10-01

    The L-H power threshold (PLH) on the National Spherical Torus Experiment varies with X-point radius (RX) , plasma current (Ip) , the direction of the ion grad-B drift and the amount of lithium evaporated on the divertor surfaces. The edge Te and Ti (where Te ~ Ti) just prior to the time of the L-H transition vary with the magnetic geometry, but are fairly independent of the neutral fueling rate and lithium conditioning. These observations are consistent with the X-transport theory, which describes the mean edge radial electric field (Er) profile required to prevent non-ambipolar ion loss in a diverted plasma. A guiding-center orbit calculation in the absence of electric fields, collisions and flows provides insight into the dependence of the ion loss, and thus Er, on the magnetic geometry and edge Ti. For example, the number of ion loss orbits remains constant as RX is reduced from 0.64m to 0.47m only if the edge Ti increases by 60%. This is in agreement with self-consistent calculations of Er using the neoclassical XGC0 code and experiments that measured edge Te and Ti to be 40 - 60% larger. Similar agreement is also observed between guiding-center calculations, XGC0 results and the measured PLH versus Ip and ion grad-B direction. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  4. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    Science.gov (United States)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  5. Characteristics of confinement and fusion reactivity in JT-60U high-{beta}{rho} and TFTR supershot regimes with deuterium neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.K.; Bell, M.G.; Yamada, M.

    1995-03-01

    The high performance regimes achieved in JT-60U and TFTR have produced peak DD fusion neutron rates up to 5.6 {times} 10{sup 16}/s for similar heating beam powers, in spite of considerable differences in machine operation and plasma configuration. A common scaling for the DD fusion neutron rate (S{sub DD} {proportional_to} P{sub abs}{sup 2.0} H{sub ne} V{sub p}{sup {minus}0.9}) is obtained, where P{sub abs} and H{sub ne} are the absorbed beam power and beam fueling peaking factor, respectively, and V{sub p} is the plasma volume. The maximum stored energy obtained in each machine has been up to 5.4 MJ in TFTR and 8.7 MJ in JT-60U. Further improvements in the fusion neutron rate and the stored energy are limited by the {beta}-limit in Troyon range, {beta}{sub N} {approximately} 2.0--2.5. A common scaling for the stored energy (W{sub tot} {proportional_to} P{sub abs}V{sub p}H{sub ne}{sup 0.2}) is also proposed.

  6. The Madison plasma dynamo experiment: a facility for studying laboratory plasma astrophysics

    CERN Document Server

    Cooper, C M; Brookhart, M; Clark, M; Collins, C; Ding, W X; Flanagan, K; Khalzov, I; Li, Y; Milhone, J; Nornberg, M; Nonn, P; Weisberg, D; Whyte, D G; Zweibel, E; Forest, C B

    2013-01-01

    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic (MHD) instabilities and other high-$\\beta$ phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets which create an axisymmetric multicusp that contains $\\sim$14 m$^{3}$ of nearly magnetic field free plasma that is well confined and highly ionized $(>50\\%)$. At present, up to 8 lanthanum hexaboride (LaB$_6$) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating (ECH) power is planned for additional electron heating. The LaB$_6$ cathodes are positioned in the magnetized edge to drive toroidal rotation through ${\\bf J}\\times{\\bf B}$ torques that propagate into the unmagnetized core plasma. Dynamo studies...

  7. Plasma Antenna

    OpenAIRE

    N M Vijay

    2014-01-01

    The fundamental base of plasma antenna is the use of an ionized medium as a conductor. The plasma antenna is a radiofrequency antenna formed by a plasma columns, Filaments or sheets, which are excited by a surface wave. The relevance of this device is how rapidly it can be turned on and off, only applying an electrical pulse. Besides its wide carrier frequency, the great directivity and controllable antenna shape. Otherwise a disadvantage is that it needs energy to be ionized....

  8. Plasma physics

    CERN Document Server

    Drummond, James E

    2013-01-01

    A historic snapshot of the field of plasma physics, this fifty-year-old volume offers an edited collection of papers by pioneering experts in the field. In addition to assisting students in their understanding of the foundations of classical plasma physics, it provides a source of historic context for modern physicists. Highly successful upon its initial publication, this book was the standard text on plasma physics throughout the 1960s and 70s.Hailed by Science magazine as a ""well executed venture,"" the three-part treatment ranges from basic plasma theory to magnetohydrodynamics and microwa

  9. Plasma-surface interactions in TFTR D-T experiments

    Energy Technology Data Exchange (ETDEWEB)

    Owens, D.K.; Adler, H.; Alling, P. [Princeton Univ., NJ (United States). Plasma Physics Lab.] [and others

    1995-03-01

    TFTR has begun its campaign to study deuterium-tritium fusion under reactor-like conditions. Variable amounts of deuterium and tritium neutral beam power have been used to maximize fusion power, study alpha heating, investigate alpha particle confinement, and search for alpha driven plasma instabilities. Additional areas of study include energy and particle transport and confinement, ICRF heating schemes for DT plasmas, tritium retention, and fusion in high {beta}{sub p} plasmas. The majority of this work is done in the TFTR supershot confinement regime. To obtain supershots, extensive limiter conditioning using helium fueled ohmic discharges and lithium pellet injection into ohmic and neutral beam heated plasmas is performed, resulting in a low recycling limiter. The relationship between recycling and core plasma confinement has been studied by using helium, deuterium and high-Z gas puffs to simulate high recycling limiter conditions. These studies show that confinement in TFTR supershots is very sensitive to the influx of neutral particles at the plasma edge.

  10. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  11. Scattering of radio frequency waves by turbulence in fusion plasmas

    Science.gov (United States)

    Ram, Abhay K.

    2016-10-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments and incoherent fluctuations due to turbulence are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on RF waves has not been quantified experimentally, there are telltale signs, arising from differences between results from simulations and from experiments, that fluctuations can modify the spectrum of RF waves. Any effect on RF waves in the scrape-off layer can have important experimental consequences. For example, electron cyclotron waves are expected to stabilize the deleterious neoclassical tearing mode (NTM) in ITER. Spectral and polarization changes due to scattering will modify the spatial location and profile of the current driven by the RF waves, thereby affecting the control of NTMs. Pioneering theoretical studies and complementary computer simulations have been pursued to elucidate the impact of fluctuations on RF waves. From the full complement of Maxwell's equations for cold, magnetized plasmas, it is shown that the Poynting flux in the wake of filaments develops spatial structure due to diffraction and shadowing. The uniformity of power flow into the plasma is affected by side-scattering, modifications to the wave spectrum, and coupling to plasma waves other than the incident RF wave. The Snell's law and the Fresnel equations have been reformulated within the context of magnetized plasmas. They are distinctly different from their counterparts in scalar dielectric media, and reveal new and important physical insight into the scattering of RF waves. The Snell's law and Fresnel equations are the basis for the Kirchhoff approximation necessary to determine properties of the scattered waves. Furthermore, this theory is also relevant for studying back

  12. Plasma chromograninx

    DEFF Research Database (Denmark)

    Goetze, Jens P; Hilsted, Linda M; Rehfeld, Jens F

    2014-01-01

    Cardiovascular risk assessment remains difficult in elderly patients. We examined whether chromogranin A (CgA) measurement in plasma may be valuable in assessing risk of death in elderly patients with symptoms of heart failure in a primary care setting. A total of 470 patients (mean age 73 years......) were followed for 10 years. For CgA plasma measurement, we used a two-step method including a screening test and a confirmative test with plasma pre-treatment with trypsin. Cox multivariable proportional regression and receiver-operating curve (ROC) analyses were used to assess mortality risk...... of follow-up showed significant additive value of CgA confirm measurements compared with NT-proBNP and clinical variables. CgA measurement in the plasma of elderly patients with symptoms of heart failure can identify those at increased risk of short- and long-term mortality....

  13. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  14. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  15. Development of diffractive XUV-VUV light extractors for fusion plasma diagnostic

    Science.gov (United States)

    Stutman, D.; Caravelli, G.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Kaita, R.; Roquemore, L.

    2009-11-01

    The diagnostic and control of next generation MFE and ICF fusion experiments will require optical light extractors capable of withstanding intense plasma and radiation exposure. A solution applicable from the XUV to the infrared is to use free-standing diffractive optics such as transmission gratings or zone plates. Here we present results on XUV-VUV diffractive extractors for the diagnostic of boundary MFE plasmas. For the VUV range we developed Si transmission gratings having 1 μm period, 5 μm thickness, 40% open fraction, 1x2 mm active area, and coated with Ni, while for the XUV range we use SiN gratings having 0.2 μm period, 0.3 μm thickness, 1x1 mm area, and coated with Ta. The grating extractors are spectrally and spatially calibrated in the laboratory using a newly developed extended XUV-VUV source and will be employed for imaging spectrometry on the NSTX experiment. The operational characteristics of the extended source and first space resolved XUV-VUV spectra will be presented. Work supported by DoE Grant DE-FG02-99ER54523 at JHU and Contract DE-AC02-09CH11466 at PU.

  16. Resistive wall mode and neoclassical tearing mode coupling in rotating tokamak plasmas

    CERN Document Server

    McAdams, Rachel; Chapman, I T

    2013-01-01

    A model system of equations has been derived to describe a toroidally rotating tokamak plasma, unstable to Resistive Wall Modes (RWMs) and metastable to Neoclassical Tearing Modes (NTMs), using a linear RWM model and a nonlinear NTM model. If no wall is present, the NTM growth shows the typical threshold/saturation island widths, whereas a linearly unstable kink mode grows exponentially in this model plasma system. When a resistive wall is present, the growth of the linearly unstable RWM is accelerated by an unstable island: a form of coupled RWM-NTM mode. Crucially, this coupled system has no threshold island width, giving the impression of a triggerless NTM, observed in high beta tokamak discharges. In addition, increasing plasma rotation at the island location can mitigate its growth, but does not restore the threshold width.

  17. A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities

    CERN Document Server

    Kunz, M W; Cowley, S C; Binney, J J; Sanders, J S

    2010-01-01

    We consider the problem of self-regulated heating and cooling in galaxy clusters and the implications for cluster magnetic fields and turbulence. Viscous heating of a weakly collisional magnetised plasma is regulated by the pressure anisotropy with respect to the local direction of the magnetic field. The intracluster medium is a high-beta plasma, where pressure anisotropies caused by the turbulent stresses and the consequent local changes in the magnetic field will trigger very fast microscale instabilities. We argue that the net effect of these instabilities will be to pin the pressure anisotropies at a marginal level, controlled by the plasma beta parameter. This gives rise to local heating rates that turn out to be comparable to the radiative cooling rates. Furthermore, we show that a balance between this heating and Bremsstrahlung cooling is thermally stable, unlike the often conjectured balance between cooling and thermal conduction. Given a sufficient (and probably self-regulating) supply of turbulent ...

  18. plasma treatment

    Directory of Open Access Journals (Sweden)

    Puač Nevena

    2014-11-01

    Full Text Available In this paper we will present results for plasma sterilization of planktonic samples of two reference strains of bacteria, Pseudomonas aeruginosa ATCC 27853 and Enterococcus faecalis ATCC 29212. We have used a plasma needle as a source of non-equilibrium atmospheric plasma in all treatments. This device is already well characterized by OES, derivative probes and mass spectrometry. It was shown that power delivered to the plasma is bellow 2 W and that it produces the main radical oxygen and nitrogen species believed to be responsible for the sterilization process. Here we will only present results obtained by electron paramagnetic resonance which was used to detect the OH, H and NO species. Treatment time and power delivered to the plasma were found to have the strongest influence on sterilization. In all cases we have observed a reduction of several orders of magnitude in the concentration of bacteria and for the longest treatment time complete eradication. A more efficient sterilization was achieved in the case of gram negative bacteria.

  19. Plasma metallization

    CERN Document Server

    Crowther, J M

    1997-01-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of s...

  20. Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Virginia L. Finley

    2004-04-07

    The purpose of this report is to provide the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and nonradioactive pollutants (if any) that are added to the environment as a result of the Princeton Plasma Physics Laboratory's (PPPL) operations. The results of the 2001 environmental surveillance and monitoring program for PPPL are presented and discussed. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2001. PPPL has engaged in fusion energy research since 1951. The vision of the Laboratory is to create innovations to make fusion power a practical reality--a clean, alternative energy source. The Year 2001 marked the third year of National Spherical Torus Experiment (NSTX) operations and Tokamak Fusion Test Reactor (TFTR) dismantlement and deconstruction activities. A collaboration among fourteen national laboratories, universities, and research institutions, the NSTX is a major element in the U.S. Fusion Energy Sciences Program. It has been designed to test the physics principles of spherical torus (ST) plasmas. The ST concept could play an important role in the development of smaller, more economical fusion reactors. In 2001, PPPL's radiological environmental monitoring program measured tritium in the air at on- and off-site sampling stations. PPPL is capable of detecting small changes in the ambient levels of tritium by using highly sensitive monitors. The operation of an in-stack monitor located on D-site is a requirement of the National Emission Standard for Hazardous Air Pollutants (NESHAPs) regulations; also included in PPPL's radiological environmental monitoring program, are water monitoring--precipitation, ground-, surface-, and waste-waters. PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the D-site stack; the data are presented in this report. Groundwater monitoring

  1. Plasma dynamo

    CERN Document Server

    Rincon, F; Schekochihin, A A; Valentini, F

    2015-01-01

    Magnetic fields pervade the entire Universe and, through their dynamical interactions with matter, affect the formation and evolution of astrophysical systems from cosmological to planetary scales. How primordial cosmological seed fields arose and were further amplified to $\\mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major theoretical puzzle still largely unconstrained by observations. Extragalactic plasmas are weakly collisional (as opposed to collisional magnetohydrodynamic fluids), and whether magnetic-field growth and its sustainment through an efficient dynamo instability driven by chaotic motions is possible in such plasmas is not known. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field a...

  2. Plasma medicine

    CERN Document Server

    Fridman, Alexander

    2012-01-01

    This comprehensive text is suitable for researchers and graduate students of a 'hot' new topic in medical physics. Written by the world's leading experts,  this book aims to present recent developments in plasma medicine, both technological and scientific, reviewed in a fashion accessible to the highly interdisciplinary audience consisting of doctors, physicists, biologists, chemists and other scientists, university students and professors, engineers and medical practitioners. The book focuses on major topics and covers the physics required to develop novel plasma discharges relevant for medic

  3. In situ ``artificial plasma'' calibration of tokamak magnetic sensors

    Science.gov (United States)

    Shiraki, D.; Levesque, J. P.; Bialek, J.; Byrne, P. J.; DeBono, B. A.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.; Rath, N.

    2013-06-01

    A unique in situ calibration technique has been used to spatially calibrate and characterize the extensive new magnetic diagnostic set and close-fitting conducting wall of the High Beta Tokamak-Extended Pulse (HBT-EP) experiment. A new set of 216 Mirnov coils has recently been installed inside the vacuum chamber of the device for high-resolution measurements of magnetohydrodynamic phenomena including the effects of eddy currents in the nearby conducting wall. The spatial positions of these sensors are calibrated by energizing several large in situ calibration coils in turn, and using measurements of the magnetic fields produced by the various coils to solve for each sensor's position. Since the calibration coils are built near the nominal location of the plasma current centroid, the technique is referred to as an "artificial plasma" calibration. The fitting procedure for the sensor positions is described, and results of the spatial calibration are compared with those based on metrology. The time response of the sensors is compared with the evolution of the artificial plasma current to deduce the eddy current contribution to each signal. This is compared with simulations using the VALEN electromagnetic code, and the modeled copper thickness profiles of the HBT-EP conducting wall are adjusted to better match experimental measurements of the eddy current decay. Finally, the multiple coils of the artificial plasma system are also used to directly calibrate a non-uniformly wound Fourier Rogowski coil on HBT-EP.

  4. Plasma physics and engineering

    CERN Document Server

    Fridman, Alexander

    2011-01-01

    Part I: Fundamentals of Plasma Physics and Plasma ChemistryPlasma in Nature, in the Laboratory, and in IndustryOccurrence of Plasma: Natural and Man MadeGas DischargesPlasma Applications, Plasmas in IndustryPlasma Applications for Environmental ControlPlasma Applications in Energy ConversionPlasma Application for Material ProcessingBreakthrough Plasma Applications in Modern TechnologyElementary Processes of Charged Species in PlasmaElementary Charged Particles in Plasma and Their Elastic and Inelastic CollisionsIonization ProcessesMechanisms of Electron Losses: The Electron-Ion RecombinationEl

  5. Magnetoresistive waves in plasmas

    Science.gov (United States)

    Felber, F. S.; Hunter, R. O., Jr.; Pereira, N. R.; Tajima, T.

    1982-10-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed.

  6. Electrosurgical plasmas

    Science.gov (United States)

    Stalder, Kenneth R.; McMillen, Donald F.; Woloszko, Jean

    2005-06-01

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  7. Electrosurgical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stalder, Kenneth R; McMillen, Donald F; Woloszko, Jean [ArthroCare Corp., Sunnyvale, CA 94085-3523 (United States)

    2005-06-07

    Electrosurgical medical devices based on repetitively pulsed nonequilibrium micron-scale to millimetre-scale plasma discharges in saline solutions are described. The formation of vapour layers (bubbles) around active electrodes appears to be a common feature at moderate (<300 V rms) voltages, and dissociation, excitation and ionization of the vapour in these bubbles produces chemical conditions that are thought to be the source of beneficial tissue removal and treatment. Experimental data are discussed, as are the results of modelling efforts of the plasma chemistry. Hydroxyl radicals, hydrogen atoms and other species are observed spectroscopically and their interactions with collagen, a common component of tissue encountered in surgical situations, are considered. Several pathways by which hydroxyl radicals interacting with collagen can lead to tissue removal are discussed.

  8. Plasma physics

    CERN Document Server

    Cairns, R A

    1985-01-01

    This book is intended as an introduction to plasma physics at a level suitable for advanced undergraduates or beginning postgraduate students in physics, applied mathematics or astrophysics. The main prerequisite is a knowledge of electromagnetism and of the associated mathematics of vector calculus. SI units are used throughout. There is still a tendency amongst some plasma physics researchers to· cling to C.g.S. units, but it is the author's view that universal adoption of SI units, which have been the internationally agreed standard since 1960, is to be encouraged. After a short introductory chapter, the basic properties of a plasma con­ cerning particle orbits, fluid theory, Coulomb collisions and waves are set out in Chapters 2-5, with illustrations drawn from problems in nuclear fusion research and space physics. The emphasis is on the essential physics involved and (he theoretical and mathematical approach has been kept as simple and intuitive as possible. An attempt has been made to draw attention t...

  9. Plasma pharmacy - physical plasma in pharmaceutical applications.

    Science.gov (United States)

    von Woedtke, Th; Haertel, B; Weltmann, K-D; Lindequist, U

    2013-07-01

    During the last years the use of physical plasma for medical applications has grown rapidly. A multitude of findings about plasma-cell and plasma-tissue interactions and its possible use in therapy have been provided. One of the key findings of plasma medical basic research is that several biological effects do not result from direct plasma-cell or plasma-tissue interaction but are mediated by liquids. Above all, it was demonstrated that simple liquids like water or physiological saline, are antimicrobially active after treatment by atmospheric pressure plasma and that these effects are attributable to the generation of different low-molecular reactive species. Besides, it could be shown that plasma treatment leads to the stimulation of specific aspects of cell metabolism and to a transient and reversible increase of diffusion properties of biological barriers. All these results gave rise to think about another new and innovative field of medical plasma application. In contrast to plasma medicine, which means the direct use of plasmas on or in the living organism for direct therapeutic purposes, this field - as a specific field of medical plasma application - is called plasma pharmacy. Based on the present state of knowledge, most promising application fields of plasma pharmacy might be: plasma-based generation of biologically active liquids; plasma-based preparation, optimization, or stabilization of - mainly liquid - pharmaceutical preparations; support of drug transport across biological barriers; plasma-based stimulation of biotechnological processes.

  10. Finite-amplitude shear-Alfv\\'en waves do not propagate in weakly magnetized collisionless plasmas

    CERN Document Server

    Squire, J; Schekochihin, A A

    2016-01-01

    It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfv\\'en fluctuations above a critical amplitude $\\delta B_{\\perp}/B_{0} \\sim \\beta^{\\,-1/2}$, where $\\beta$ is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfv\\'en-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in the high-$\\beta$ conditions prevalent in many astrophysical plasmas, as well as for the solar wind at $\\sim 1 \\mathrm{AU}$ where $\\beta \\gtrsim 1$.

  11. Climatology of high-β plasma measurements in Earth's inner magnetosphere

    Science.gov (United States)

    Cohen, Ross; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, A. R.; Kim, Hyomin; Manweiler, Jerry W.

    2017-01-01

    Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high-resolution measurements of Earth's ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high-beta (β) plasma events (defined here as β > 1) as measured by the RBSPICE instrument in the ˜45 keV to ˜600 keV proton energy range in the inner magnetosphere (L hours. While most of these events have a β less than 2, there are a number of observations reaching β greater than 4. Other observations of particular note are high-β events during relatively minor geomagnetic storms and examples of very long duration high-β plasmas. We show that high-β plasmas are a relatively common occurrence in the inner magnetosphere during both quiet and active times. As such, the waves generated by these plasmas may have an underappreciated role in the inner magnetosphere, and thus the study of these plasmas and their instabilities may be more important than has been currently addressed.

  12. Turbulence, selective decay, and merging in the SSX plasma wind tunnel

    Science.gov (United States)

    Gray, Tim; Brown, Michael; Flanagan, Ken; Werth, Alexandra; Lukin, V.

    2012-10-01

    A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0.08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti= 25 eV, ne>=10^15 cm-3, and B = 0.25 T. The relaxed state is rapidly attained in 1--2 axial Alfv'en times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β= 0.5) and does not have a flat λ profile. Merging of two plasmoids in this configuration results in noticeably more dynamic activity compared to a single plasmoid. These episodes of activity exhibit s

  13. Plasma Shape and Current Density Profile Control in Advanced Tokamak Operating Scenarios

    Science.gov (United States)

    Shi, Wenyu

    The need for new sources of energy is expected to become a critical problem within the next few decades. Nuclear fusion has sufficient energy density to potentially supply the world population with its increasing energy demands. The tokamak is a magnetic confinement device used to achieve controlled fusion reactions. Experimental fusion technology has now reached a level where tokamaks are able to produce about as much energy as is expended in heating the fusion fuel. The next step towards the realization of a nuclear fusion tokamak power plant is ITER, which will be capable of exploring advanced tokamak (AT) modes, characterized by a high fusion gain and plasma stability. The extreme requirements of the advanced modes motivates researchers to improve the modeling of the plasma response as well as the design of feedback controllers. This dissertation focuses on several magnetic and kinetic control problems, including the plasma current, position and shape control, and data-driven and first-principles-driven modeling and control of plasma current density profile and the normalized plasma pressure ratio betaN. The plasma is confined within the vacuum vessel by an external electromagnetic field, produced primarily by toroidal and poloidal field coils. The outermost closed plasma surface or plasma boundary is referred to as the shape of the plasma. A central characteristic of AT plasma regimes is an extreme elongated shape. The equilibrium among the electromagnetic forces acting on an elongated plasma is unstable. Moreover, the tokamak performance is improved if the plasma is located in close proximity to the torus wall, which guarantees an efficient use of available volume. As a consequence, feedback control of the plasma position and shape is necessary. In this dissertation, an Hinfinity-based, multi-input-multi-output (MIMO) controller for the National Spherical Torus Experiment (NSTX) is developed, which is used to control the plasma position, shape, and X

  14. Plasma Free Metanephrines

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Plasma Free Metanephrines Share this page: Was this page helpful? Also known as: Plasma Metanephrines Formal name: Fractionated Plasma Free Metanephrines (Metanephrine ...

  15. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  16. Plasma physics and fusion plasma electrodynamics

    CERN Document Server

    Bers, Abraham

    2016-01-01

    Plasma is a ubiquitous state of matter at high temperatures. The electrodynamics of plasmas encompasses a large number of applications, from understanding plasmas in space and the stars, to their use in processing semiconductors, and their role in controlled energy generation by nuclear fusion. This book covers collective and single particle dynamics of plasmas for fully ionized as well as partially ionized plasmas. Many aspects of plasma physics in current fusion energy generation research are addressed both in magnetic and inertial confinement plasmas. Linear and nonlinear dynamics in hydrodynamic and kinetic descriptions are offered, making both simple and complex aspects of the subject available in nearly every chapter. The approach of dividing the basic aspects of plasma physics as "linear, hydrodynamic descriptions" to be covered first because they are "easier", and postponing the "nonlinear and kinetic descriptions" for later because they are "difficult" is abandoned in this book. For teaching purpose...

  17. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  18. International movement of plasma and plasma contracting.

    Science.gov (United States)

    Farrugia, A

    2005-01-01

    Plasma fractionation is a global business characterised by technological stability, increasing consolidation and a high level of regulatory oversight. All these factors affect the ease with which plasma derivatives can be accessed in the world market. As domestic regulatory measures in the first world blood economies become increasingly resonant to the precautionary approach, the availability of plasma as a raw material, as well as its cost, become an increasingly significant component in the cost of the final product. This decreases the amount of plasma which fractionators are able to allocate for export activities. Also, regulatory standards in the country of manufacture will reflect priorities in that country which may not be similar to those in export markets, but which will affect entry to those markets. While many countries possess a fractionation capacity, the limiting factor in supply worldwide is the amount of plasma available, and nationalistic drivers for each country to have its own plant are inimical to product safety and supply. Rather, the provision of sufficient supplies of domestic plasma should be the focus of resource allocation, with a choice of an appropriate contract fractionator. However, contract fractionation too may be affected by domestic considerations unrelated to the needs of the country of plasma origin. This chapter will review the global plasma market and the influences on plasma and plasma product movement across national borders. Problems in ensuring adequate safety and supply will be identified, and some tentative approaches to the amelioration of current barriers to the provision of plasma derivatives will be outlined.

  19. Fusion programs in applied plasma physics. Final report, fiscal years 1989--1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA`s experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.

  20. Communication through Plasma Sheaths

    CERN Document Server

    Korotkevich, A O; Zakharov, V E

    2007-01-01

    We wish to transmit messages to and from a hypersonic vehicle around which a plasma sheath has formed. For long distance transmission, the signal carrying these messages must be necessarily low frequency, typically 2 GHz, to which the plasma sheath is opaque. The idea is to use the plasma properties to make the plasma sheath appear transparent.

  1. Introduction to plasma dynamics

    CERN Document Server

    Morozov, A I

    2013-01-01

    As the twenty-first century progresses, plasma technology will play an increasing role in our lives, providing new sources of energy, ion-plasma processing of materials, wave electromagnetic radiation sources, space plasma thrusters, and more. Studies of the plasma state of matter not only accelerate technological developments but also improve the understanding of natural phenomena. Beginning with an introduction to the characteristics and types of plasmas, Introduction to Plasma Dynamics covers the basic models of classical diffuse plasmas used to describe such phenomena as linear and shock w

  2. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  3. A Collective Scattering System for Measuring Electron Gyroscale Fluctuations on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. R.; Mazzucato, E.; Lee, W.; Park, H. K.; Domier, C. W.; Luhmann, Jr., N. C.

    2009-02-13

    A collective scattering system has been installed on the National Spherical Torus Experiment (NSTX) to measure electron gyroscale fluctuations in NSTX plasmas. Up to five distinct wavenumbers are measured simultaneously, and the large toroidal curvature of NSTX plasmas provides enhanced spatial localization. Steerable optics can position the scattering volume throughout the plasma from the magnetic axis to the outboard edge. Initial measurements indicate rich turbulent dynamics on the electron gyroscale. The system will be a valuable tool for investigating the connection between electron temperature gradient turbulence and electron thermal transport in NSTX plasmas.

  4. R&D Status for In-Situ Plasma Surface Cleaning of SRF Cavities at Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    S.-H. Kim, M.T. Crofford, M. Doleans, J.D. Mammosser, J. Saunders

    2011-03-01

    The SNS SCL is reliably operating at 0.93 GeV output energy with an energy reserve of 10MeV with high availability. Most of the cavities exhibit field emission, which directly or indirectly (through heating of end groups) limits the gradients achievable in the high beta cavities in normal operation with the beam. One of the field emission sources would be surface contaminations during surface processing for which mild surface cleaning, if any, will help in reducing field emission. An R&D effort is in progress to develop in-situ surface processing for the cryomodules in the tunnel without disassembly. As the first attempt, in-situ plasma processing has been applied to the CM12 in the SNS SRF facility after the repair work with a promising result. This paper will report the R&D status of plasma processing in the SNS.

  5. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law

    CERN Document Server

    Joglekar, A S; Fox, W; Bhattacharjee, A

    2015-01-01

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\\`enic flows. We find that this mechanism is only relevant in a high $\\beta$ plasma. However, the Hall parameter $\\omega_c \\tau_{ei}$ can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  6. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  7. Nonlinear plasma wave in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-08-15

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.

  8. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  9. Reviews of plasma physics

    CERN Document Server

    2008-01-01

    "Reviews of Plasma Physics Volume 24," edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence

  10. Reviews of plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Shafranov, Vitalii Dmitrievich (ed.); Bakunin, Oleg G. (comps.) [Rossijskij Nauchnyj Tsentr ' ' Kurchatovskij Inst.' ' , Moscow (Russian Federation). Nuclear Fusion Inst.; Rozhansky, V. [St. Petersburg State Polytechnical Univ. (Russian Federation)

    2008-07-01

    Reviews of Plasma Physics Volume 24, edited by V.D. Shafranov, presents two reviews from the cutting-edge of Russian plasma physics research. The first review by V.A. Rozhansky devoted to the mechanisms of transverse conductivity and generation of self-consistent electric fields in strongly ionized magnetized plasma. The second review by O.G. Bakunin considers numerous aspects of turbulent transport in plasma and fluids. This review is focused on scaling arguments for describing anomalous diffusion in the presence of complex structures. These topics are especially important for fusion plasma research, plasma astrophysics, discharge physics, and turbulence (orig.)

  11. Paradigm Changes in High Temperature Plasma Physics Research and Implications for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon K. Park

    2008-02-22

    Significant high temperature plasma research in both the magnetic and inertial confinement regimes led to the official launching of the International Thermonuclear Experimental Reactor (ITER) project which is aimed at challenging controlled fusion power for human kind. In particular, such an endeavor originated from the fruitful research outcomes from the world wide magnetic confinement devices (primarily based on the Tokamak approach) mainly in advanced countries (US, EU, and Japan). In recent years, all new steady state capable Tokamak devices are operated and/or constructed in Asian countries and incidentally, the majority of the ITER consortium consists of Asian countries. This provides an opportunity to revisit the unresolved essential physics issues and/or extend the understanding of the transient physics to the required steady state operation so that ITER can benefit from these efforts. The core physics of a magnetically confined hot plasma has two essential components; plasma stability and cross-field energy transport physics. Complete understanding of these two areas is critical for the successful operation of ITER and perhaps, Demo reactor construction. In order to have stable high beta plasmas with a sufficiently long confinement time, the physics of an abrupt disruption and sudden deterioration of the energy transport must be understood and conquered. Physics issues associated with transient harmful MHD behavior and turbulence based energy transport are extremely complicated and theoretical understanding needs a clear validation and verification with a new research approach such as a multi-dimensional visualization.

  12. Internal Magnetic Field, Temperature and Density Measurements on Magnetized HED plasmas using Pulsed Polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Roger J. [Univ. of Washington, Seattle, WA (United States)

    2016-10-20

    The goals were to collaborate with the MSX project and make the MSX platform reliable with a performance where pulsed polarimetry would be capable of adding a useful measurement and then to achieve a first measurement using pulsed polarimetry. The MSX platform (outside of laser blow off plasmas adjacent to magnetic fields which are low beta) is the only device that can generate high beta magnetized collisionless supercritical shocks, and with a large spatial size of ~10 cm. Creating shocks at high Mach numbers and investigating the dynamics of the shocks was the main goal of the project. The MSX shocks scale to astrophysical magnetized shocks and potentially throw light on the generation of highly energetic particles via a mechanism like the Fermi process.

  13. Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations

    CERN Document Server

    Hellinger, Petr

    2014-01-01

    Kinetic instabilities in weakly collisional, high beta plasmas are investigated using two-dimensional hybrid expanding box simulations with Coulomb collisions modeled through the Langevin equation (corresponding to the Fokker-Planck one). The expansion drives a parallel or perpendicular temperature anisotropy (depending on the orientation of the ambient magnetic field). For the chosen parameters the Coulomb collisions are important with respect to the driver but are not strong enough to keep the system stable with respect to instabilities driven by the proton temperature anisotropy. In the case of the parallel temperature anisotropy the dominant oblique fire hose instability efficiently reduces the anisotropy in a quasilinear manner. In the case of the perpendicular temperature anisotropy the dominant mirror instability generates coherent compressive structures which scatter protons and reduce the temperature anisotropy. For both the cases the instabilities generate temporarily enough wave energy so that the ...

  14. Multifield measurement of magnetic fluctuation-induced particle flux in a high-temperature toroidal plasma

    Science.gov (United States)

    Lin, L.; Ding, W. X.; Brower, D. L.

    2016-12-01

    Magnetic fluctuation-induced particle transport is explored in the high-temperature, high-beta interior of the Madison symmetric torus (MST) reversed-field pinch by performing a multifield measurement of the correlated product of magnetic and density fluctuations associated with global resistive tearing modes. Local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of Faraday-effect polarimetry measurements. Reconstructed 2D images of density and current density perturbations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved. The convective magnetic fluctuation-induced particle flux profile is measured for both standard and high-performance plasmas in MST with tokamak-like confinement, showing large reduction in the flux during improved confinement.

  15. Whistler-mode phenomena in electron MHD plasmas

    Science.gov (United States)

    Stenzel, R. L.

    2003-12-01

    While the linear properties of plane whistler waves are well known, many new phenomena of bounded wavepackets and nonlinear effects are worth to describe. The present talk will review laboratory observations of whistler filaments, whistler vortices, whistler wings, whistler-sound modes in high-beta plasmas, nonlinear whistlers forming magnetic null points, and magnetic reconnection in EMHD plasmas. The time-varying magnetic field of a spatially bounded whistler wave packet consists of 3-D vortices. Each vortex can be decomposed into linked toroidal and poloidal field components. The self-helicity is positive for propagation along the field, negative for opposite propagation. Helicity injection from a suitable source produces unidirectional propagation. Magnetic helicity changes sign, i.e., is not conserved, when the propagation direction along B changes, for example due to reflection or propagation through a magnetic null point. In ideal EMHD the electric and magnetic forces on the electrons are equal, -n e E +J x B=0, i.e., the electron fluid is not compressed. Force-free vortices do not interact during collisions. Vortices are excited with pulsed magnetic antennas or pulsed electrodes. Both transient currents and fields can form vortices that propagate in the whistler mode. Moving dc magnets or dc current systems can also induce whistler modes in a magnetized plasma. These form a Cherenkov-like radiation pattern, a ``whistler wing.'' Nonlinear phenomena arise from wave-induced modifications of the electron temperature, density and magnetic field. In collisional plasmas electrons are heated by strong whistlers. Modifications of the classical conductivity leads to current filamentation. On a slower time scale density modifications arise from ambipolar fields associated with electron heating. In a filamentation instability a strong whistler wave is ducted along a narrow field-aligned density depression. The ion density is also modified by the ac electric field of

  16. Hot plasma dielectric tensor

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    The hot plasma dielectric tensor is discussed in its various approximations. Collisionless cyclotron resonant damping and ion/electron Bernstein waves are discussed to exemplify the significance of a kinetic description of plasma waves.

  17. Special issue: Plasma Conversion

    NARCIS (Netherlands)

    Nozaki, T.; Bogaerts, A.; Tu, X.; van de Sanden, M. C. M.

    2017-01-01

    With growing concern of energy and environmental issues, the combination of plasma and heterogeneous catalysts receives special attention in greenhouse gas conversion, nitrogen fixation and hydrocarbon chemistry. Plasma gas conversion driven by renewable electricity is particularly important for the

  18. Sustained Rotational Stabilization of DIII-D Plasmas Above the No-Wall Beta Limit

    Science.gov (United States)

    Garofalo, A. M.

    2001-10-01

    Sustained stabilization of the n=1 kink mode by plasma rotation at beta approaching twice the stability limit calculated without a wall has been achieved in DIII-D by a combination of error field reduction and sufficient rotation drive. Previous experiments have transiently exceeded the no-wall beta limit, but demonstration of sustained rotational stabilization has remained elusive. Recent theory(A. Boozer, Phys. Rev. Lett. 86), 5059 (2001). predicts a resonant response to error fields in a plasma approaching marginal stability to a low-n kink mode. Enhancement of magnetic non-axisymmetry in the plasma leads to strong damping of the toroidal rotation, precisely in the high-beta regime where it is needed for stabilization. This ``error field amplification," EFA, is demonstrated in DIII-D experiments: applied n=1 error fields cause enhanced plasma response and strong rotation damping at beta above the no-wall limit, but have little effect at lower beta. The discovery of EFA has led to sustained operation above the no-wall limit through improved error field correction using an external coil set. The required correction is determined both by optimizing the external currents with respect to the plasma rotation, and by use of feedback to detect and minimize the plasma response to error fields as beta increases. Stability analysis and rotation braking experiments at different beta values show that beta is maintained 50% higher than the no-wall stability limit for duration greater than 1 second, and approaches beta twice the no-wall limit in several cases, with steady-state rotation levels. The results suggest that improved error field correction could allow plasmas to be maintained well above no-wall beta limit for as long as sufficient torque is provided.

  19. Microwave Argon Plasma Torch

    Science.gov (United States)

    2013-07-01

    an electron-ion pair in the discharge. Fig. 2. EEDF is non - Maxwellian and changes along the plasma column The electron–neutral collision...plasma radius. Even at atmospheric pressure the EEDF is non - Maxwellian and it is changing along the plasma column. ...18 31st ICPIG, July 14-19, 2013, Granada, Spain EEDF usually strongly differs from Maxwellian and chages along the plasma column (this is

  20. Introduction to Plasma Physics

    Science.gov (United States)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  1. Plasma physics an introduction

    CERN Document Server

    Fitzpatrick, Richard

    2014-01-01

    Plasma Physics: An Introduction is based on a series of university course lectures by a leading name in the field, and thoroughly covers the physics of the fourth state of matter. This book looks at non-relativistic, fully ionized, nondegenerate, quasi-neutral, and weakly coupled plasma. Intended for the student market, the text provides a concise and cohesive introduction to plasma physics theory, and offers a solid foundation for students wishing to take higher level courses in plasma physics.

  2. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  3. Plasma in dentistry

    OpenAIRE

    Cha, Seunghee; Park, Young-Seok

    2014-01-01

    This review describes the contemporary aspects of plasma application in dentistry. Previous studies on plasma applications were classified into two categories, surface treatment and direct applications, and were reviewed, respectively according to the approach. The current review discussed modification of dental implant surface, enhancing of adhesive qualities, enhancing of polymerization, surface coating and plasma cleaning under the topics of surface treatment. Microbicidal activities, deco...

  4. The Plasma Universe

    Science.gov (United States)

    Suplee, Curt

    2009-09-01

    Preface; 1. The fourth state of matter; 2. The music and dance of plasmas; 3. The Sun-Earth connection; 4. Bringing the Sun to Earth: the story of controlled thermonuclear fusion; 5. The cosmic plasma theater: galaxies, stars, and accretion disks; 6. Putting plasmas to work; Index.

  5. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  6. Plasma Therapy: An Overview

    Directory of Open Access Journals (Sweden)

    Rajkumar Diwan

    2011-01-01

    Full Text Available Definition: Plasma, the fourth state of matter, is a collection of charged particles (electrons, ions, neutral atoms. Recent demonstration of plasma technology in treatment of living cells, tissue and organs are creating a new field at the intersection of plasma science and technology with biology and medicine known as plasma medicine. Plasma medicine is one of the newest fields of modem applied plasma chemistry. It appeared several years ago and comprises studies concerning the direct action of low-temperature, one atmosphere air plasma (cold plasma/nonthermal plasmalnonequilibrium on body tissues for various noninvasive therapeutic treatments or diagnostics purpose. The study of plasma holds promise for a myriad of applications ranging from lasers and electronics, hazardous decontamination, sterilization and disinfection of foods, soil, water, instruments, to medical uses in wound healing and treating certain types of tumors and cancers. Plasma represents a new state-of-the-art sterilization and disinfection treatment for certain oral and environmental pathogens, heat-sensitive materials, hard and soft surfaces, and may assist health care facilities in the management of various health concerns. The role that low temperature atmospheric pressure plasma (LTAPP could play in the inactivation of pathogenic microorganisms might prove to be a new, faster, more economical alternative.

  7. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  8. Laminar Plasma Dynamos

    CERN Document Server

    Wang, Z; Barnes, C W; Barnes, D C; Wang, Zhehui; Pariev, Vladimir I.; Barnes, Cris W.; Barnes, Daniel C.

    2002-01-01

    A new kind of dynamo utilizing flowing laboratory plasmas has been identified. Conversion of plasma kinetic energy to magnetic energy is verified numerically by kinematic dynamo simulations for magnetic Reynolds numbers above 210. As opposed to intrinsically-turbulent liquid-sodium dynamos, the proposed plasma dynamos correspond to laminar flow topology. Modest plasma parameters, 1-20 eV temperatures, 10^{19}-10^{20} m^{-3} densities in 0.3-1.0 m scale-lengths driven by velocities on the order of the Alfven Critical Ionization Velocity (CIV), self-consistently satisfy the conditions needed for the magnetic field amplication. Growth rates for the plasma dynamos are obtained numerically with different geometry and magnetic Reynolds numbers. Magnetic-field-free coaxial plasma guns can be used to sustain the plasma flow and the dynamo.

  9. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  10. Plasmas for medicine

    Science.gov (United States)

    von Woedtke, Th.; Reuter, S.; Masur, K.; Weltmann, K.-D.

    2013-09-01

    Plasma medicine is an innovative and emerging field combining plasma physics, life science and clinical medicine. In a more general perspective, medical application of physical plasma can be subdivided into two principal approaches. (i) “Indirect” use of plasma-based or plasma-supplemented techniques to treat surfaces, materials or devices to realize specific qualities for subsequent special medical applications, and (ii) application of physical plasma on or in the human (or animal) body to realize therapeutic effects based on direct interaction of plasma with living tissue. The field of plasma applications for the treatment of medical materials or devices is intensively researched and partially well established for several years. However, plasma medicine in the sense of its actual definition as a new field of research focuses on the use of plasma technology in the treatment of living cells, tissues, and organs. Therefore, the aim of the new research field of plasma medicine is the exploitation of a much more differentiated interaction of specific plasma components with specific structural as well as functional elements or functionalities of living cells. This interaction can possibly lead either to stimulation or inhibition of cellular function and be finally used for therapeutic purposes. During recent years a broad spectrum of different plasma sources with various names dedicated for biomedical applications has been reported. So far, research activities were mainly focused on barrier discharges and plasma jets working at atmospheric pressure. Most efforts to realize plasma application directly on or in the human (or animal) body for medical purposes is concentrated on the broad field of dermatology including wound healing, but also includes cancer treatment, endoscopy, or dentistry. Despite the fact that the field of plasma medicine is very young and until now mostly in an empirical stage of development yet, there are first indicators of its enormous

  11. Nonlinear Plasma Wave in Magnetized Plasmas

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke

    2013-01-01

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].

  12. High Power, Solid-State RF Generation for Plasma Heating

    Science.gov (United States)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Pierren, Chris

    2016-10-01

    Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems. Eagle Harbor Technologies (EHT), Inc. is developing an all-solid-state RF plasma heating system that uses EHT's nanosecond pulser technology in an inductive adder configuration to drive nonlinear transmission lines (NLTL). The system under development does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. The inductive adder can produce 0 to20 kV pulses into 50 Ohms with sub-10 ns rise times. The inductive adder has been used to drive NLTLs near 2 GHz with other frequencies to be tested in the future. EHT will present experimental results, including RF measurements with D-dot probes and capacitve voltage probes. During this program, EHT will test the system on Helicity Injected Torus at the University of Washington and the High Beta Tokamak at Columbia University.

  13. Plasma Biomedicine in Orthopedics

    Science.gov (United States)

    Hamaguchi, Satsohi

    2012-10-01

    Various effects of plasmas irradiation on cells, tissues, and biomaterials relevant for orthopedic applications have been examined. For direct application of plasmas to living cells or tissues, dielectric barrier discharges (DBDs) with helium flows into ambient air were used. For biomaterial processing, on the other hand, either helium DBDs mentioned above or low-pressure discharges generated in a chamber were used. In this presentation, plasma effects on cell proliferation and plasma treatment for artificial bones will be discussed. First, the conditions for enhanced cell proliferation in vitro by plasma applications have been examined. The discharge conditions for cell proliferation depend sensitively on cell types. Since cell proliferation can be enhanced even when the cells are cultured in a plasma pre-treated medium, long-life reactive species generated in the medium by plasma application or large molecules (such as proteins) in the medium modified by the plasma are likely to be the cause of cell proliferation. It has been found that there is strong correlation between (organic) hydroperoxide generation and cell proliferation. Second, effects of plasma-treated artificial bones made of porous hydroxyapatite (HA) have been examined in vitro and vivo. It has been found that plasma treatment increases hydrophilicity of the surfaces of microscopic inner pores, which directly or indirectly promotes differentiation of mesenchymal stem cells introduced into the pores and therefore causes faster bone growth. The work has been performed in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  14. Plasma detachment in linear devices

    Science.gov (United States)

    Ohno, N.

    2017-03-01

    Plasma detachment research in linear devices, sometimes called divertor plasma simulators, is reviewed. Pioneering works exploring the concept of plasma detachment were conducted in linear devices. Linear devices have contributed greatly to the basic understanding of plasma detachment such as volume plasma recombination processes, detached plasma structure associated with particle and energy transport, and other related issues including enhancement of convective plasma transport, dynamic response of plasma detachment, plasma flow reversal, and magnetic field effect. The importance of plasma detachment research using linear devices will be highlighted aimed at the design of future DEMO.

  15. Advanced plasma diagnostics for plasma processing

    Science.gov (United States)

    Malyshev, Mikhail Victorovich

    1999-10-01

    A new, non-intrusive, non-perturbing diagnostic method was developed that can be broadly applied to low pressure, weakly ionized plasmas and glow discharges-trace rare gases optical emission spectroscopy (TRG-OES). The method is based on a comparison of intensities of atomic emission from trace amounts of inert gases (He, Ne, Ar, Kr, and Xe) that are added to the discharge to intensities calculated from the theoretical model. The model assumes a Maxwellian electron energy distribution function (EEDF), computes the population of emitting levels both from the ground state and the metastable states of rare gases, and from the best fit between theory and experiment determines electron temperature (Te). Subject to conditions, TRG-OES can also yield electron density or its upper or lower limit. From the comparison of the emission from levels excited predominantly by high energy electrons to that excited by low energy electrons, information about the EEDF can be obtained. The use of TRG-OES also allows a traditionally qualitative actinometry technique (determination of concentration of radical species in plasma through optical emission) to become a precise quantitative method by including Te and rare gases metastables effects. A combination of TRG-OES, advanced actinometry, and Langmuir probe measurements was applied to several different plasma reactors and regimes of operation. Te measurements and experiments to correct excitation cross section were conducted in a laboratory helical resonator. Two chamber configuration of a commercial (Lam Research) metal etcher were studied to determine the effects of plasma parameters on plasma-induced damage. Two different methods (RF inductive coupling and ultra-high frequency coupling) for generating a plasma in a prototype reactor were also studied. Pulsed plasmas, a potential candidate to eliminate the plasma-induced damage to microelectronics devices that occurs in manufacturing due to differential charging of the wafer, have

  16. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  17. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  18. Introduction to Complex Plasmas

    CERN Document Server

    Bonitz, Michael; Ludwig, Patrick

    2010-01-01

    Complex plasmas differ from traditional plasmas in many ways: these are low-temperature high pressure systems containing nanometer to micrometer size particles which may be highly charged and strongly interacting. The particles may be chemically reacting or be in contact with solid surfaces, and the electrons may show quantum behaviour. These interesting properties have led to many applications of complex plasmas in technology, medicine and science. Yet complex plasmas are extremely complicated, both experimentally and theoretically, and require a variety of new approaches which go beyond standard plasma physics courses. This book fills this gap presenting an introduction to theory, experiment and computer simulation in this field. Based on tutorial lectures at a very successful recent Summer Institute, the presentation is ideally suited for graduate students, plasma physicists and experienced undergraduates.

  19. Ultracold Neutral Plasmas

    CERN Document Server

    Killian, T C; Gupta, P; Laha, S; Martinez, Y N; Mickelson, P G; Nagel, S B; Saenz, A D; Simien, C E; Killian, Thomas C.

    2005-01-01

    Ultracold neutral plasmas are formed by photoionizing laser-cooled atoms near the ionization threshold. Through the application of atomic physics techniques and diagnostics, these experiments stretch the boundaries of traditional neutral plasma physics. The electron temperature in these plasmas ranges from 1-1000 K and the ion temperature is around 1 K. The density can approach $10^{11}$ cm$^{-3}$. Fundamental interest stems from the possibility of creating strongly-coupled plasmas, but recombination, collective modes, and thermalization in these systems have also been studied. Optical absorption images of a strontium plasma, using the Sr$^+$ ${^2S_{1/2}} -> {^2P_{1/2}}$ transition at 422 nm, depict the density profile of the plasma, and probe kinetics on a 50 ns time-scale. The Doppler-broadened ion absorption spectrum measures the ion velocity distribution, which gives an accurate measure of the ion dynamics in the first microsecond after photoionization.

  20. What is a plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory

    2012-08-30

    This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

  1. Pulsed plasma electron sourcesa)

    Science.gov (United States)

    Krasik, Ya. E.; Yarmolich, D.; Gleizer, J. Z.; Vekselman, V.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.

    2009-05-01

    There is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E ≤105 V/cm and duration ≤10-5 s. In this review, several types of plasma electron sources will be considered, namely, passive (metal ceramic, velvet and carbon fiber with and without CsI coating, and multicapillary and multislot cathodes) and active (ferroelectric and hollow anodes) plasma sources. The operation of passive sources is governed by the formation of flashover plasma whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode plasma sources the plasma parameters are controlled by the driving pulse and discharge current, respectively. Using different time- and space-resolved electrical, optical, spectroscopical, Thomson scattering and x-ray diagnostics, the parameters of the plasma and generated electron beam were characterized.

  2. Techniques For Injection Of Pre-Charaterized Dust Into The Scrape Off Layer Of Fusion Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Roquemore, A. L.; John, B.; Friesen, F.; Hartzfeld, K.; Mansfield, D. K.

    2011-07-21

    Introduction of micron-sized dust into the scrape-off layer (SOL) of a plasma has recently found many applications aimed primarily at determining dust behavior in future fusion reactors. The dust particles are typically composed of materials intrinsic to a fusion reactor. On DIII-D and TEXTOR carbon dust has been introduced into the SOL using a probe inserted from below into the divertor region. On NSTX, both Li and tungsten dust have been dropped from the top of the machine into the SOL throughout the duration of a discharge, by utilizing a vibrating piezoelectric based particle dropper. The original particle dropper was developed to inject passivated Li powder {approx} 40 {mu}m in diameter into the SOL to enhance plasma performance. A simplified version of the dropper was developed to introduce trace amounts of tungsten powder for only a few discharges, thus not requiring a large powder reservoir. The particles emit visible light from plasma interactions and can be tracked by either spectroscopic means or by fast frame rate visible cameras. This data can then be compared with dust transport codes such as DUSTT to make predictions of dust behavior in next-step devices such as ITER. For complete modeling results, it is desired to be able to inject pre-characterized dust particles in the SOL at various known poloidal locations, including near the vessel midplane. Purely mechanical methods of injecting particles are presently being studied using a modified piezoelectric-based powder dropper as a particle source and one of several piezo-based transducers to deflect the particles into the SOL. Vibrating piezo fans operating at 60 Hz with a deflection of {+-}2.5 cm can impart a significant horizontal boost in velocity. The highest injection velocities are expected from rotating paddle wheels capable of injecting particles at 10's of meters per second depending primarily on the rotation velocity and diameter of the wheel. Several injection concepts have been tested

  3. Space plasma physics research

    Science.gov (United States)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  4. Atmospheric Plasma Depainting

    Science.gov (United States)

    2014-11-19

    Plasma Carbon Dioxide Water Vapor 11 Atmospheric Plasma Depainting, ASETSDefense, Nov 19, 2014 Features and Benefits of APCR Technology Feature...Depainting, ASETSDefense, Nov 19, 2014 14 APC on Aluminum Removal to Primer RAM on Carbon Fiber Partial Topcoat Removal APC Topcoat RAM...60Hz Plasma Flux™ Power Supply VENT To Facility HEPA <= Filtration COTS Six-Axis Robot Aircraft part Particulate Collection System

  5. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  6. Plasma adiabatic lapse rate

    CERN Document Server

    Amendt, Peter; Wilks, Scott

    2012-01-01

    The plasma analog of an adiabatic lapse rate (or temperature variation with height) in atmospheric physics is obtained. A new source of plasma temperature gradient in a binary ion species mixture is found that is proportional to the concentration gradient and difference in average ionization states . Application to inertial-confinement-fusion implosions indicates a potentially strong effect in plastic (CH) ablators that is not modeled with mainline (single-fluid) simulations. An associated plasma thermodiffusion coefficient is derived, and charge-state diffusion in a single-species plasma is also predicted.

  7. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  8. Physics of Plasmas

    CERN Document Server

    Woods, Leslie Colin

    2003-01-01

    A short, self-sufficient introduction to the physics of plasma for beginners as well as researchers in a number of fields. The author looks at the dynamics and stability of magnetoplasma and discusses wave and transport in this medium. He also looks at such applications as fusion research using magnetic confinement of Deuterium plasma, solar physics with its plasma loops reaching high into the corona, sunspots and solar wind, engineering applications to metallurgy, MHD direct generation of electricity, and railguns, finally touching on the relatively new and difficult subject of dusty plasmas.

  9. Princeton Plasma Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  10. Solid expellant plasma generator

    Science.gov (United States)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  11. Plasma processing for VLSI

    CERN Document Server

    Einspruch, Norman G

    1984-01-01

    VLSI Electronics: Microstructure Science, Volume 8: Plasma Processing for VLSI (Very Large Scale Integration) discusses the utilization of plasmas for general semiconductor processing. It also includes expositions on advanced deposition of materials for metallization, lithographic methods that use plasmas as exposure sources and for multiple resist patterning, and device structures made possible by anisotropic etching.This volume is divided into four sections. It begins with the history of plasma processing, a discussion of some of the early developments and trends for VLSI. The second section

  12. Plasma and particles

    Science.gov (United States)

    Špatenka, Petr; Vacková, Tat'ana; Nováček, Vojtěch; Jeníková, Zdenka

    2016-12-01

    Plasma has been proved as a standard industrial method for surface treatment of solid bulk materials. Recently plasma has also been used in connection with production, treatment and functionalization of powder and granulate materials. Functionalization was originally developed for hydrophylization of hydrophobic surfaces of particles made from various materials. An industrial scale device with a capacity of several hundreds of tons per year based on plasma treatment will be presented. As examples of the applications are given plasma treated polyethylene powder dispersed in the water; and very good adhesion of polymer powders to metals or glass, which is promising for development of new generation of thermoplastic composites.

  13. Ultracold neutral plasmas

    Science.gov (United States)

    Lyon, M.; Rolston, S. L.

    2017-01-01

    By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.

  14. Nonlinear Simulation Studies of Tokamaks and STs

    Energy Technology Data Exchange (ETDEWEB)

    W. Park; J. Breslau; J. Chen; G.Y. Fu; S.C. Jardin; S. Klasky; J. Menard; A. Pletzer; B.C. Stratton; D. Stutman; H.R. Strauss; L.E. Sugiyama

    2003-07-07

    The multilevel physics, massively parallel plasma simulation code, M3D, has been used to study spherical tori (STs) and tokamaks. The magnitude of outboard shift of density profiles relative to electron temperature profiles seen in NSTX [National Spherical Torus Experiment] under strong toroidal flow is explained. Internal reconnection events in ST discharges can be classified depending on the crash mechanism, just as in tokamak discharges; a sawtooth crash, disruption due to stochasticity, or high-beta disruption. Toroidal shear flow can reduce linear growth of internal kink. It has a strong stabilizing effect nonlinearly and causes mode saturation if its profile is maintained, e.g., through a fast momentum source. Normally, however, the flow profile itself flattens during the reconnection process, allowing a complete reconnection to occur. In some cases, the maximum density and pressure spontaneously occur inside the island and cause mode saturation. Gyrokinetic hot particle/MHD hybrid studies of NSTX show the effects of fluid compression on a fast-ion-driven n = 1 mode. MHD studies of recent tokamak experiments with a central current hole indicate that the current clamping is due to sawtooth-like crashes, but with n = 0.

  15. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  16. EDITORIAL: Plasma jets and plasma bullets Plasma jets and plasma bullets

    Science.gov (United States)

    Kong, M. G.; Ganguly, B. N.; Hicks, R. F.

    2012-06-01

    Plasma plumes, or plasma jets, belong to a large family of gas discharges whereby the discharge plasma is extended beyond the plasma generation region into the surrounding ambience, either by a field (e.g. electromagnetic, convective gas flow, or shock wave) or a gradient of a directionless physical quantity (e.g. particle density, pressure, or temperature). This physical extension of a plasma plume gives rise to a strong interaction with its surrounding environment, and the interaction alters the properties of both the plasma and the environment, often in a nonlinear and dynamic fashion. The plasma is therefore not confined by defined physical walls, thus extending opportunities for material treatment applications as well as bringing in new challenges in science and technology associated with complex open-boundary problems. Some of the most common examples may be found in dense plasmas with very high dissipation of externally supplied energy (e.g. in electrical, optical or thermal forms) and often in or close to thermal equilibrium. For these dense plasmas, their characteristics are determined predominantly by strong physical forces of different fields, such as electrical, magnetic, thermal, shock wave, and their nonlinear interactions [1]. Common to these dense plasma plumes are significant macroscopic plasma movement and considerable decomposition of solid materials (e.g. vaporization). Their applications are numerous and include detection of elemental traces, synthesis of high-temperature materials and welding, laser--plasma interactions, and relativistic jets in particle accelerators and in space [2]-[4]. Scientific challenges in the understanding of plasma jets are exciting and multidisciplinary, involving interweaving transitions of all four states of matter, and their technological applications are wide-ranging and growing rapidly. Using the Web of Science database, a search for journal papers on non-fusion plasma jets reveals that a long initial phase up

  17. [Acute plasma cell leukemia].

    Science.gov (United States)

    Monsalbe, V; Domíngues, C; Roa, I; Busel, D; González, S

    1989-01-01

    Plasma Cell Leukemia is a very rare form of plasmocytic dyscrasia, whose clinical and pathological characteristics warrant its recognition as a distinct subentity. We report the case of a 60 years old man who presented a rapidly fatal acute plasma cell leukemia, with multiple osteolytic lesions, hipercalcemia, renal and cardiac failure.

  18. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi [Department of Engineering Physics and Mechanics, Graduate School of Engineering, Kyoto University, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from a plasma reflects the anisotropic properties of the plasma, especially the angular anisotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and the GAMMA-10 tandem mirror machines. The soft x-ray laser line from the neonlike germanium was also found polarized. (author)

  19. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iwamae, Atsushi; Inoue, Takeru; Tanaka, Akihiro; Kawakami, Kazuki; Fujimoto, Takashi [Kyoto Univ., Dept. of Engineering Physics, Kyoto (Japan)

    2000-03-01

    Polarization of radiation emitted from plasma reflects the anisotropic properties of the plasma, especially the angular isotropic distribution of electron velocities. Polarization has been observed on impurity ion lines from the WT-3 tokamak and GAMMA 10 tandem mirror device. (author)

  20. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  1. Plasma etching an introduction

    CERN Document Server

    Manos, Dennis M

    1989-01-01

    Plasma etching plays an essential role in microelectronic circuit manufacturing. Suitable for researchers, process engineers, and graduate students, this book introduces the basic physics and chemistry of electrical discharges and relates them to plasma etching mechanisms. Throughout the volume the authors offer practical examples of process chemistry, equipment design, and production methods.

  2. Modelling of Complex Plasmas

    NARCIS (Netherlands)

    Akdim, M.R. (Mohamed Reda)

    2003-01-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a r

  3. "Angular" plasma cell cheilitis.

    Science.gov (United States)

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida, Hiram Larangeira; Lorencette, Nádia Aparecida; Netto, José Fillus

    2014-03-17

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  4. "Angular" plasma cell cheilitis

    OpenAIRE

    da Cunha Filho, Roberto Rheingantz; Tochetto, Lucas Baldissera; Tochetto, Bruno Baldissera; de Almeida Jr, Hiram Larangeira; Lorencette, Nadia Aparecida; Netto, Jose Fillus

    2014-01-01

    Plasma cell cheilitis is an extremely rare disease, characterized by erythematous-violaceous, ulcerated and asymptomatic plaques, which evolve slowly. The histological characteristics include dermal infiltrate composed of mature plasmocytes. We report a case of Plasma cell angular cheilitis in a 58-year-old male, localized in the lateral oral commissure.

  5. Introduction to Plasma Spectroscopy

    CERN Document Server

    Kunze, H-J

    2009-01-01

    Based on lectures given at the Ruhr-University of Bochum for graduate students and postgraduates starting in plasma physics as well as from low- to high-density hot plasmas, this book introduces basic ideas and fundamental concepts and typical instrumentation from the X-ray to the infrared spectral regions

  6. Collisionless damping of circularly polarized nonlinear Alfvén waves in solar wind plasmas with and without beam protons

    Energy Technology Data Exchange (ETDEWEB)

    Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190, Toyama City, Toyama 930-8555 (Japan); Hada, T. [Department of Earth System Science and Technology, Kyushu University, 6-1, Kasuga City, Fukuoka 816-8580 (Japan); Tsubouchi, K., E-mail: nariyuki@edu.u-toyama.ac.jp [Graduate School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-10-01

    The damping process of field-aligned, low-frequency right-handed polarized nonlinear Alfvén waves (NAWs) in solar wind plasmas with and without proton beams is studied by using a two-dimensional ion hybrid code. The numerical results show that the obliquely propagating kinetic Alfvén waves (KAWs) excited by beam protons affect the damping of the low-frequency NAW in low beta plasmas, while the nonlinear wave-wave interaction between parallel propagating waves and nonlinear Landau damping due to the envelope modulation are the dominant damping process in high beta plasmas. The nonlinear interaction between the NAWs and KAWs does not cause effective energy transfer to the perpendicular direction. Numerical results suggest that while the collisionless damping due to the compressibility of the envelope-modulated NAW plays an important role in the damping of the field-aligned NAW, the effect of the beam instabilities may not be negligible in low beta solar wind plasmas.

  7. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    CERN Document Server

    Dmitriev, A V; 10.1029/2011JA016861

    2013-01-01

    Here, we present a case study of THEMIS and ground-based observations on the dayside magnetopause, and geomagnetic field perturbations related to the interaction of an interplanetary directional discontinuity (DD), as observed by ACE, within the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an 'expansion-compression-expansion' (ECE) sequence that lasted for 15 min. The compression was caused by a very dense, cold, and fast high-beta magnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of the magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse 'decrease-peak-decrease' (DPD) that was observed at low and middle latitudes by the INTERMAGNET network of ground-based magnetometers. The characteristics of th...

  8. Challenges in the extrapolation from DD to DT plasmas: experimental analysis and theory based predictions for JET-DT

    Science.gov (United States)

    Garcia, J.; Challis, C.; Gallart, D.; Garzotti, L.; Görler, T.; King, D.; Mantsinen, M.; contributors, JET

    2017-01-01

    A strong modelling program has been started in support of the future JET-DT campaign with the aim of guiding experiments in deuterium (D) towards maximizing fusion energy production in Deuterium-Tritium (DT). Some of the key elements have been identified by using several of the most updated and sophisticated models for predicting heat and particle transport, pedestal pressure and heating sources in an integrated modelling framework. For the high beta and low gas operational regime, the density plays a critical role and a trend towards higher fusion power is obtained at lower densities. Additionally, turbulence stabilization by E  ×  B flow shear is shown to generate an isotope effect leading to higher confinement for DT than DD and therefore plasmas with high torque are suitable for maximizing fusion performance. Future JET campaigns will benefit from this modelling activity by defining clear priorities on their scientific program.

  9. Innovations in plasma sensors

    Science.gov (United States)

    Zurbuchen, Thomas H.; Gershman, Daniel J.

    2016-04-01

    During the history of space exploration, ever improving instruments have continued to enable new measurements and discoveries. Focusing on plasma sensors, we examine the processes by which such new instrument innovations have occurred over the past decades. Due to risk intolerance prevalent in many NASA space missions, innovations in plasma instrumentation occur primarily when heritage systems fail to meet science requirements, functional requirements as part of its space platform, or design constraints. We will review such innovation triggers in the context of the design literature and with the help of two case studies, the Fast Imaging Plasma Spectrometer on MErcury Surface, Space ENvironment, GEochemistry, and Ranging and the Fast Plasma Investigation on Magnetosphere Multiscale. We will then discuss the anticipated needs for new plasma instrument innovations to enable the science program of the next decade.

  10. Wakes in inhomogeneous plasmas

    CERN Document Server

    Kompaneets, Roman; Nosenko, Vladimir; Morfill, Gregor E

    2014-01-01

    The Debye shielding of a charge immersed in a flowing plasma is an old classic problem in plasma physics. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the substantial inhomogeneity of the levitation region. We address the role of the plasma inhomogeneity by rigorously calculating the point charge potential in the collisionless Bohm sheath. We demonstrate that the inhomogeneity can dramatically modify the wake, making it non-oscillatory and weaker.

  11. Basic plasma physics

    CERN Document Server

    Ghosh, Basudev

    2014-01-01

    Basic Plasma Physics is designed to serve as an introductory compact textbook for advanced undergraduate, postgraduate and research students taking plasma physics as one of their subject of study for the first time. It covers the current syllabus of plasma physics offered by the most universities and technical institutions. The book requires no background in plasma physics but only elementary knowledge of basic physics and mathematics. Emphasis has been given on the analytical approach. Topics are developed from first principle so that the students can learn through self-study. One chapter has been devoted to describe some practical aspects of plasma physics. Each chapter contains a good number of solved and unsolved problems and a variety of review questions, mostly taken from recent examination papers. Some classroom experiments described in the book will surely help students as well as instructors.

  12. Microphysics of cosmic plasmas

    CERN Document Server

    Bykov, Andrei; Cargill, Peter; Dendy, Richard; Wit, Thierry; Raymond, John

    2014-01-01

    This title presents a review of the detailed aspects of the physical processes that underlie the observed properties, structures and dynamics of cosmic plasmas. An assessment of the status of understanding of microscale processes in all astrophysical collisionless plasmas is provided. The topics discussed include  turbulence in astrophysical and solar system plasmas as a phenomenological description of their dynamic properties on all scales; observational, theoretical and modelling aspects of collisionless magnetic reconnection; the formation and dynamics of shock waves; and a review and assessment of microprocesses, such as the hierarchy of plasma instabilities, non-local and non-diffusive transport processes and ionisation and radiation processes.  In addition, some of the lessons that have been learned from the extensive existing knowledge of laboratory plasmas as applied to astrophysical problems are also covered.   This volume is aimed at graduate students and researchers active in the areas of cosmi...

  13. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  14. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    as reactive splvent (as shown in Figure 1). 1] H. Biederman, in Plasma Polymer Films. (ed.) H. Biederman. Imperial College Press, Singapore, 13-24 ~OO~· '. , [2] R. d'Agostino et.a!. in Plasma Depd~itiqn, 'Treatment, and Etching ofPolymers. (ed.) R. d'Agostino, Academic Press, U.S. (1990). [3] F. F. Shi......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...

  15. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Phadnaik Mangesh

    2010-01-01

    Full Text Available Plasma cell granuloma is a rare reactive lesion composed of polyclonal plasma cells. It manifests primarily in the lungs, but may occur in various other anatomic locations like the oral cavity. Intraoral plasma cell granulomas involving the tongue, lip, oral mucosa and gingiva have been reported in the past. This case presents a 54-year-old female with chronic periodontitis and mandibular anterior gingival overgrowth treated by Phase I therapy (scaling and root planing and excisional biopsy. Histological examination revealed inflammatory cell infiltrate containing sheets of plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma. This case highlights the need to biopsy for unusual lesions to rule out potential neoplasms.

  16. Helical plasma thruster

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, A. D., E-mail: bekl@bk.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk (Russian Federation)

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  17. Diagnostics of Nanodusty Plasma

    Science.gov (United States)

    Greiner, Franko; Groth, Sebastian; Tadsen, Bejamin; Piel, Alexander

    2015-11-01

    The diagnostic of nanodusty plasmas, i.e. plasmas including nano-sized dust particles, is a challenging task. For both, the diagnostic of the nanodusty plasma itself, and the in-situ diagnostic of the nanoparticles, no standard diagnostic exist. Nanodust particle size and density can be estimated using light scattering techniques, namely kinetic Mie ellipsometry and extinction measurements. The charge of the nanoparticles can be estimated from the analysis of dust density waves (DDW). Parameters like the electron density, which give information about the plasma itself, may be deduced from the DDW analysis. We present detailed investigations on nanodust in a reactive Argon-Acetylene plasma created in an rf-driven parallel plate reactor at low pressure using the above mentioned portfolio of diagnostic. Funded by DFG under contract SFB TR-24/A2.

  18. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  19. Electronegative Plasma Instabilities in Industrial Pulsed Plasmas

    Science.gov (United States)

    Pribyl, Patrick; Hansen, Anders; Gekelman, Walter

    2016-10-01

    Electronegative gases that are important for industrial etch processes have a series of instabilities that occur at process relevant conditions. These have been studied since the 1990s, but are becoming a much more important today as plasma reactors are being pushed to produce ever finer features, and tight control of the etch process is becoming crucial. The experiments are being done in a plasma etch tool that closely simulates a working industrial device. ICP coils in different configurations are driven by a pulsed RF generators operating at 2-5 MHz. A computer controlled automated probe drive can access a volume above the substrate. The probe can be a Langmuir probe, a ``Bdot'' probe, or an emissive probe the latter used for more accurate determination of plasma potential. A microwave interferometer is available to measure line-averaged electron density. The negative ion instability is triggered depending upon the gas mix (Ar,SF6) , pressure and RF power. The instability can be ``burned through'' by rapidly pulsing the RF power. In this study we present measurements of plasma current and density distribution over the wafer before, after and during the rapid onset of the instability. Work suported by NSF-GOALI Award and done at the BAPSF.

  20. Nonthermal plasma chemistry and physics

    CERN Document Server

    Meichsner, Jurgen; Schneider, Ralf; Wagner, Hans-Erich

    2013-01-01

    In addition to introducing the basics of plasma physics, Nonthermal Plasma Chemistry and Physics is a comprehensive presentation of recent developments in the rapidly growing field of nonthermal plasma chemistry. The book offers a detailed discussion of the fundamentals of plasma chemical reactions and modeling, nonthermal plasma sources, relevant diagnostic techniques, and selected applications.Elucidating interconnections and trends, the book focuses on basic principles and illustrations across a broad field of applications. Expert contributors address environmental aspects of plasma chemist

  1. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  2. Urine and plasma propranolol.

    Science.gov (United States)

    Andreasen, F; Jakobsen, P; Kornerup, H J; Pedersen, E B; Pedersen, O L

    1983-01-01

    Eight hypertensive patients who had been followed in an outpatient clinic during long-term therapy with propranolol (40 to 160 mg twice daily) were studied during a 24-hr stay in the ward. The usual oral dose was given and the total and free plasma concentrations were determined during the 24 hr and the urinary excretion of unchanged drug was measured. Average free plasma concentration of propranolol (y free) was calculated from: y free = Excreted propranolol (ng/24 hr)/Creatinine clearance (ml/24 hr). There was a significant relationship between log y free and average free plasma concentration (means free) determined from the directly measured plasma concentration curve: log y free = 0.0743 means free - 0.0466 (r = 0.98, P less than 0.001). In another group of propranolol-treated hypertensive patients there was a significant positive relationship between orosomucoid concentration and reciprocal of the free propranolol fraction in plasma. From this relationship the average total drug concentration (y total) was calculated from y free; there was a significant correlation with directly measured total plasma level: log y total = 0.0038 . means total + 1.0895 (r = 0.91, P less than 0.001). It is suggested that individually determined values of y free below 30 ng/ml and y total below 400 ng/ml (the concentration range studied) can be used to calculate the average mean 24-hr free and total plasma concentrations.

  3. Dense Hypervelocity Plasma Jets

    Science.gov (United States)

    Case, Andrew; Witherspoon, F. Douglas; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We are developing high velocity dense plasma jets for fusion and HEDP applications. Traditional coaxial plasma accelerators suffer from the blow-by instability which limits the mass accelerated to high velocity. In the current design blow-by is delayed by a combination of electrode shaping and use of a tailored plasma armature created by injection of a high density plasma at a few eV generated by arrays of capillary discharges or sparkgaps. Experimental data will be presented for a complete 32 injector gun system built for driving rotation in the Maryland MCX experiment, including data on penetration of the plasma jet through a magnetic field. We present spectroscopic measurements of plasma velocity, temperature, and density, as well as total momentum measured using a ballistic pendulum. Measurements are in agreement with each other and with time of flight data from photodiodes and a multichannel PMT. Plasma density is above 10^15 cm-3, velocities range up to about 100 km/s. Preliminary results from a quadrature heterodyne HeNe interferometer are consistent with these results.

  4. Plasma Science Committee (PLSC)

    Science.gov (United States)

    1990-12-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences - National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues.

  5. Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique

    OpenAIRE

    Ensinger, Wolfgang

    1996-01-01

    Influence of plasma density and plasma sheath dynamics on the ion implantation by plasma immersion technique / B. Rauschenbach ... - In: Nuclear instruments and methods in physics research. B. 113. 1996. S. 266-269

  6. Stirring Unmagnetized Plasma

    CERN Document Server

    Collins, C; Wallace, J; Jara-Almonte, J; Reese, I; Zweibel, E; Forest, C B; 10.1103/PhysRevLett.108.115001

    2012-01-01

    A new concept for spinning unmagnetized plasma is demonstrated experimentally. Plasma is confined by an axisymmetric multi-cusp magnetic field and biased cathodes are used to drive currents and impart a torque in the magnetized edge. Measurements show that flow viscously couples momentum from the magnetized edge (where the plasma viscosity is small) into the unmagnetized core (where the viscosity is large) and that the core rotates as a solid body. To be effective, collisional viscosity must overcome the ion-neutral drag due to charge exchange collisions.

  7. Optical plasma microelectronic devices

    CERN Document Server

    Forati, Ebrahim; Dill, Thyler; Sievenpiper, Dan

    2015-01-01

    The semiconductor channel in conventional microelectronic devices was successfully replaced with an optically triggered gas plasma channel. The combination of DC and laser-induced gas ionizations controls the conductivity of the channel, enabling us to realize different electronic devices such as transistors, switches, modulators, etc. A special micro-scale metasurface was used to enhance the laser-gas interaction, as well as combining it with DC ionization properly. Optical plasma devices benefit form the advantages of plasma/vacuum electronic devices while preserving most of the integrablity of semiconductor based devices.

  8. Radiofrequency power in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document includes the various communications that were presented at the 11th topical conference on radio frequency power in plasmas which took place in Palm Springs in May 1995. It includes current diffusion studies to assess the non-inductive current deposition profiles, experiments for plasma to reach quickly an equilibrium state, and modelling of electrons in plasma. Some comparison studies also reveal the efficiency of the Quasi-Optical Grill antenna for reactor applications. Finally, a scenario for efficient mode conversion heating in the ion cyclotron range of frequency is presented. Separate abstracts were prepared for the 6 papers in this volume. (TEC).

  9. Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas

    OpenAIRE

    Titus, Monica Joy

    2010-01-01

    The semiconductor industry's continued trend of manufacturing device features on the nanometer scale requires increased plasma processing control and improved understanding of plasma characteristics and plasma-surface interactions. This dissertation presents a series of experimental results for focus studies conducted in an inductively coupled plasma (ICP) system. First novel "on-wafer" diagnostic tools are characterized and related to plasma characteristics. Second, plasma-polymer interactio...

  10. Measurement and Modelling of Tearing Mode Stability for Steady-State Plasmas in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Turco, F; Luce, T; Ferron, J; Petty, C; Politzer, P; Turnbull, A; Brennan, D; Murakami, M; LoDestro, L; Pearlstein, L; Casper, T; Jayakumar, R; Holcomb, C

    2009-06-23

    High-beta, quasi-steady state scenarios represent a fundamental step towards the performance required for future fusion reactors. In DIII-D steady-state scenario discharges, the normalized beta {beta}{sub N} {triple_bond} {beta}(%) {center_dot} a(m) {center_dot} B{sub T}(T)/I{sub p}(MA) (where {beta} is the ratio of the plasma pressure to the magnetic field pressure, {alpha} the plasma minor radius, B{sub T} the toroidal magnetic field and I{sub p} the plasma current) exceeds the no-wall ideal kink beta limit. The performance of this scenario is limited by the onset of an n = 1 tearing mode, which appears on the resistive evolution time-scale (1-2 s) at constant pressure and causes both a loss of confinement and a radial redistribution of the current density from which the available current drive sources cannot recover. It is routinely observed that the injection of electron cyclotron current drive (ECCD), with a broad deposition localized around {rho} {approx} 0.35, can prevent the mode from appearing. It must be noted that this is not a case of a direct stabilization due to the interaction with the mode's rational surface. These variations of the scenario are illustrated in Fig. 1, where the total injected power [neutral beam injection (NBI) and ECCD], {beta}{sub N} and the n = 1 magnetic perturbation at the outer wall are shown. In case (a), the onset of the n = 1 mode is observed when the EC power is not present or if it is stopped before the end of the high {beta} phase, whereas in case (b) the difference is pointed out between broad and narrow current deposition (with the narrow deposition case becoming unstable). The current density profile evolution and the MHD modes of several sets of significant discharges with and without ECCD (at different locations) have been analyzed, using motional Stark effect (MSE) spectroscopy measurements for the former and edge magnetic probes measurements, toroidal rotation profiles and fast electron cyclotron emission

  11. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Amitkumar B Pandav

    2012-01-01

    Full Text Available Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma.

  12. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  13. Understanding Micro Plasmas

    CERN Document Server

    Winter, J; Böke, M; Ellerweg, D; Hemke, T; Knake, N; Mussenbrock, T; Niermann, B; Schröder, D; der Gathen, V Schulz-von; von Keudell, A

    2011-01-01

    Micro plasmas are operated around atmospheric pressure exhibiting pronounced non-equilibrium characteristics, i.e. they possess energetic electrons while ions and neutrals remain cold. They have gained significant interest due to their enormous application potential e.g. in the biomedical, surface modification and light source areas, just to name a few. Many different configurations are in use. Their understanding and quantification is mandatory for further progress in applications. We report on recent progress in the diagnostics and simulation of the entire micro plasma system from gas introduction, via the plasma discharge up to the samples at the example of a plasma jet operated in He/O2 in an ambient air environment.

  14. Plasma Cell Cheilitis

    Directory of Open Access Journals (Sweden)

    Thami Gurvinder P

    1999-01-01

    Full Text Available A case of plasma cell cheilitis with good response to glucocorticoids, is described for its rarity and probable aetiological correlation with habit of use of nasal snuff is discussed.

  15. The plasma scalpel.

    Science.gov (United States)

    Link, W J; Incropera, F P; Glover, J L

    1976-01-01

    The plasma scalpel simultaneously cuts tissue and cauterizes blood vessels measuring 3 mm in diameter with a small, hot (3000 C) gas jet. In animal studies, the amount of hemorrhage has been shown to be less with the plasma scalpel than with steel or electrosurgical scalpels, and incisions have healed without complications. Amount of damaged tissue is limited. Human trials are under way, and the device shows promise as a clinical tool.

  16. Plasma Spray Forming

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the course of plasma spray, the plasma jet is comprehensively functioned by such effects as thermal pinch, magnetic pinch and mechanical compression and the flow is jetting at a high speed, the energy is concentrated and its center temperature is so high as to reach upwards of 15 000 ℃ which is capable of melting various kinds of materials inclusive of ceramic, it has a broad applied prospects in the fields of automobile, electronics, telecommunications, medical treatment, air navigation & space navigati...

  17. Plasma-aided manufacturing

    Science.gov (United States)

    Shohet, J. L.

    1993-12-01

    Plasma-aided manufacturing is used for producing new materials with unusual and superior properties, for developing new chemical compounds and processes, for machining, and for altering and refining materials and surfaces. Plasma-aided manufacturing has direct applications to semiconductor fabrication, materials synthesis, welding, lighting, polymers, anti-corrosion coatings, machine tools, metallurgy, electrical and electronics devices, hazardous waste removal, high performance ceramics, and many other items in both the high-technology and the more traditional industries in the United States.

  18. Particle acceleration by plasma

    CERN Document Server

    Ogata, A

    2002-01-01

    Plasma acceleration is carried out by using potential of plasma wave. It is classified by generation method of plasma wave such as the laser wake-field acceleration and the beat wave acceleration. Other method using electron beam is named the plasma wake-field acceleration (or beam wake-field acceleration). In this paper, electron acceleration by laser wake-field in gas plasma, ion source by laser radiation of solid target and nanoion beam generation by one component of plasma in trap are explained. It is an applicable method that ions, which run out from the solid target irradiated by laser, are used as ion source of accelerator. The experimental system using 800 nm laser, 50 mJ pulse energy and 50 fs pulse width was studied. The laser intensity is 4x10 sup 1 sup 6 Wcm sup - sup 2 at the focus. The target film of metal and organic substance film was used. When laser irradiated Al target, two particles generated, in front and backward. It is new fact that the neutral particle was obtained in front, because it...

  19. Pressure-anisotropy-driven microturbulence and magnetic-field evolution in shearing, collisionless plasma

    CERN Document Server

    Melville, S; Kunz, M W

    2015-01-01

    The nonlinear state of a high-beta collisionless plasma is investigated when an imposed linear shear amplifies or diminishes a uniform magnetic field, driving pressure anisotropies and hence firehose/mirror instabilities. The evolution of the resulting microscale turbulence is considered when the shear is switched off or reversed after one shear time (mimicking local behaviour of a macroscopic flow), so a new macroscale configuration is superimposed on the microscale state left behind by the previous one. There is a threshold value of plasma beta: when $\\beta\\ll\\Omega/S$ (ion cyclotron frequency/shear rate), the emergence of firehose/mirror fluctuations driven unstable by shear and their disappearance when the shear is removed/reversed are quasi-instantaneous compared to the shear time, viz., the decay time of these fluctuations is $\\sim\\beta/\\Omega \\ll 1/S$ (this result follows from the free decay of the fluctuations being constrained by the same marginal-stability thresholds as their growth). In contrast, w...

  20. D-T burning plasma characteristics in an A=2 tokamak reactor

    Institute of Scientific and Technical Information of China (English)

    石秉仁

    2005-01-01

    The deuterium-tritium (D-T) burning plasma characteristic in an aspect ratio A=2 tokamak reactor is studied based on a simple equilibrium configuration, the Soloviev-type configuration. Operation limits for the Troyon beta value and for the Greenwald density value as well as for the ITER H-mode confinement scaling are used as the benchmark.It is found that in addition to suitable elongation, large triangularity has advantage for arriving at high beta value and obtaining high fusion power output. Compared to the present ITER design, the A=2 system can have very good merit for the avoidance of disruptions by setting rather high edge q value while keeping relatively large total toroidal current.The main disadvantage of decreasing the aspect ratio is due to the loss of more useful space in the inward region that leads to the decrease of toroidal magnetic field in the plasma region, then worsening the fusion merit. Our analysis and calculation also present a trade-off in this respect. Due to simple equilibrium configuration assumed, some other important issues such as the bootstrap current alignment cannot be optimized. However, the present analysis can offer an insight into the advantages of the medium aspect ratio reactor system that is a blank in present-day tokamak study.

  1. Plasma Injection Schemes for Laser-Plasma Accelerators

    OpenAIRE

    J. Faure

    2017-01-01

    Plasma injection schemes are crucial for producing high-quality electron beams in laser-plasma accelerators. This article introduces the general concepts of plasma injection. First, a Hamiltonian model for particle trapping and acceleration in plasma waves is introduced; ionization injection and colliding-pulse injection are described in the framework of this Hamiltonian model. We then proceed to consider injection in plasma density gradients.

  2. Plasma surface modification of polymers

    Science.gov (United States)

    Hirotsu, T.

    1980-01-01

    Thin plasma polymerization films are discussed from the viewpoint of simplicity in production stages. The application of selective, absorbent films and films used in selective permeability was tested. The types of surface modification of polymers discussed are: (1) plasma etching, (2) surface coating by plasma polymerized thin films, and (3) plasma activation surface graft polymerization.

  3. Plasma-based accelerator structures

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl B. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  4. Plasma accelerator experiments in Yugoslavia

    Science.gov (United States)

    Purić, J.; Astashynski, V. M.; Kuraica, M. M.; Dojčinovié, I. P.

    2002-12-01

    An overview is given of the results obtained in the Plasma Accelerator Experiments in Belgrade, using quasi-stationary high current plasma accelerators constructed within the framework of the Yugoslavia-Belarus Joint Project. So far, the following plasma accelerators have been realized: Magnetoplasma Compressor type (MPC); MPC Yu type; one stage Erosive Plasma Dynamic System (EPDS) and, in final stage of construction two stage Quasi-Stationary High Current Plasma Accelerator (QHPA).

  5. Plasma transport in the Scrape-off-Layer of magnetically confined plasma and the plasma exhaust

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Naulin, Volker; Nielsen, Anders Henry

    An overview of the plasma dynamics in the Scrape-off-Layer (SOL) of magnetically confined plasma is presented. The SOL is the exhaust channel of the warm plasma from the core, and the understanding of the SOL plasma dynamics is one of the key issues in contemporary fusion research. It is essential...

  6. Turbulent complex (dusty) plasma

    Science.gov (United States)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  7. Plasma treatment of onychomycosis

    Science.gov (United States)

    Xiong, Zilan; Roe, Jeff; Grammer, Tim; Him, Yeon-Ho; Graves, David B.

    2015-09-01

    Onychomycosis or fungal infection of the toenail or fingernail is a common affliction. Approximately 10% of the world's adult population is estimated to suffer from onychomycosis. Current treatment options such as topical creams, oral drugs, or laser treatments are generally limited by a variety of problems. We present results for an alternative onychomycosis treatment scheme using atmospheric pressure cold air plasmas. Using thinned cow hoof as a model nail material, we tested the ability of various plasma sources to act through the model nail to eradicate either bacteria or fungus deposited on the opposite side. Following 20 minute exposure to a surface microdischarge (SMD) device operating in room air, we observed a ~ 2 log reduction of E. coli. A similar result was obtained against T. rubrum after 45 min plasma treatment. NOx species concentration penetrating through the model nail as well as uptake into the nail were measured as a function of nail thickness. We propose that these plasma-generated species, or perhaps their reaction products, are responsible for at least part of the observed anti-microbial effect. We also explore the use of ultraviolet light acting in synergy with plasma-generated chemical species.

  8. Plasma coal reprocessing

    Science.gov (United States)

    Messerle, V. E.; Ustimenko, A. B.

    2013-12-01

    Results of many years of investigations of plasma-chemical technologies for pyrolysis, hydrogenation, thermochemical preparation for combustion, gasification, and complex reprocessing of solid fuels and hydrocarbon gas cracking are represented. Application of these technologies for obtaining the desired products (hydrogen, industrial carbon, synthesis gas, valuable components of the mineral mass of coal) corresponds to modern ecological and economical requirements to the power engineering, metallurgy, and chemical industry. Plasma fuel utilization technologies are characterized by the short-term residence of reagents within a reactor and the high degree of the conversion of source substances into the desired products without catalyst application. The thermochemical preparation of the fuel to combustion is realized in a plasma-fuel system presenting a reaction chamber with a plasmatron; and the remaining plasma fuel utilization technologies, in a combined plasma-chemical reactor with a nominal power of 100 kW, whose zone of the heat release from an electric arc is joined with the chemical reaction zone.

  9. Alcohol and plasma triglycerides.

    Science.gov (United States)

    Klop, Boudewijn; do Rego, Ana Torres; Cabezas, Manuel Castro

    2013-08-01

    This study reviews recent developments concerning the effects of alcohol on plasma triglycerides. The focus will be on population, intervention and metabolic studies with respect to alcohol and plasma triglycerides. Alcohol consumption and fat ingestion are closely associated and stimulated by each other via hypothalamic signals and by an elevated cephalic response. A J-shaped relationship between alcohol intake and plasma triglycerides has been described. A normal body weight, polyphenols in red wine and specific polymorphisms of the apolipoprotein A-V and apolipoprotein C-III genes may protect against alcohol-associated hypertriglyceridemia. In contrast, obesity exaggerates alcohol-associated hypertriglyceridemia and therefore the risk of pancreatitis. High alcohol intake remains harmful since it is associated with elevated plasma triglycerides, but also with cardiovascular disease, alcoholic fatty liver disease and the development of pancreatitis. Alcohol-induced hypertriglyceridemia is due to increased very-low-density lipoprotein secretion, impaired lipolysis and increased free fatty acid fluxes from adipose tissue to the liver. However, light to moderate alcohol consumption may be associated with decreased plasma triglycerides, probably determined by the type of alcoholic beverage consumed, genetic polymorphisms and lifestyle factors. Nevertheless, patients should be advised to reduce or stop alcohol consumption in case of hypertriglyceridemia.

  10. Plasma diagnostics in plasma processing for nanotechnology and nanolevel chemistry

    Directory of Open Access Journals (Sweden)

    Hiroshi Akatsuka

    2004-01-01

    Full Text Available The author reviews the role of various plasma diagnostics in plasma processing for nanotechnology, and points out some essential methods of spectroscopic methods to diagnose plasmas for nanoprocessing. Two experimental examples are discussed between the characteristics of nanomaterials and plasma parameters. One is measurement of rotation temperature in processing of carbon nanotube. The other is that of vibrational temperature in surface nitriding of titanium by nitrogen plasma processing. We summarize what to measure and how to measure them from the technical viewpoint of plasma diagnostics.

  11. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  12. Plasma rico en plaquetas Platelet -rich plasma

    Directory of Open Access Journals (Sweden)

    J. González Lagunas

    2006-04-01

    Full Text Available El Plasma Rico en Plaquetas es una suspensión concentrada de la sangre centrifugada que contiene elevadas concentraciones de trombocitos. Durante los últimos años, este producto ha aparecido de forma repetida en publicaciones científicas y en medios de comunicación generales como un producto que por sus características induce la curación y regeneración de los tejidos. La premisa de su uso es que las elevadas concentraciones de plaquetas en el PRP, liberan cantidades significativas de factores de crecimiento. En este artículo se van a recoger las evidencias científicas que se han presentado en la literatura médica con respecto al PRP y a la curación ósea, así como las diferentes aplicaciones clínicas que se han sugerido.Platelet-rich plasma is a by-product of centrifuged whole blood that contains high levels of thrombocytes. In the last decade, scientific and media interest has been generated by this product that apparently has the capacity of inducing and promoting tissue healing and regeneration. The premise of its use is that the large number of platelets in PRP release significant amounts of growth factors. In this paper, a critical review of the medical literature regarding PRP and bone healing will be presented. Also, the suggested clinical applications of the product will be addressed.

  13. Plasma Colloquium Travel Grant Program

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R.D.

    1998-09-14

    OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

  14. Quantum Plasmas An Hydrodynamic Approach

    CERN Document Server

    Haas, Fernando

    2011-01-01

    This book provides an overview of the basic concepts and new methods in the emerging scientific area known as quantum plasmas. In the near future, quantum effects in plasmas will be unavoidable, particularly in high density scenarios such as those in the next-generation intense laser-solid density plasma experiment or in compact astrophysics objects. Currently, plasmas are in the forefront of many intriguing questions around the transition from microscopic to macroscopic modeling of charged particle systems. Quantum Plasmas: an Hydrodynamic Approach is devoted to the quantum hydrodynamic model paradigm, which, unlike straight quantum kinetic theory, is much more amenable to investigate the nonlinear realm of quantum plasmas. The reader will have a step-by-step construction of the quantum hydrodynamic method applied to plasmas. The book is intended for specialists in classical plasma physics interested in methods of quantum plasma theory, as well as scientists interested in common aspects of two major areas of...

  15. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M

    2013-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic......-pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds...... regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem cell transplantation if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding...

  16. Photon kinetics in plasmas

    Directory of Open Access Journals (Sweden)

    V.G. Morozov

    2009-01-01

    Full Text Available We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and nonrelativistic heavy particles. Using the non-equilibrium Green's function technique in many-particle QED, we show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-Lorentzian parts that describe resonant (propagating photons and off-shell parts corresponding to virtual photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma effects on radiative processes are discussed.

  17. Large area plasma source

    Science.gov (United States)

    Foster, John (Inventor); Patterson, Michael (Inventor)

    2008-01-01

    An all permanent magnet Electron Cyclotron Resonance, large diameter (e.g., 40 cm) plasma source suitable for ion/plasma processing or electric propulsion, is capable of producing uniform ion current densities at its exit plane at very low power (e.g., below 200 W), and is electrodeless to avoid sputtering or contamination issues. Microwave input power is efficiently coupled with an ionizing gas without using a dielectric microwave window and without developing a throat plasma by providing a ferromagnetic cylindrical chamber wall with a conical end narrowing to an axial entrance hole for microwaves supplied on-axis from an open-ended waveguide. Permanent magnet rings are attached inside the wall with alternating polarities against the wall. An entrance magnet ring surrounding the entrance hole has a ferromagnetic pole piece that extends into the chamber from the entrance hole to a continuing second face that extends radially across an inner pole of the entrance magnet ring.

  18. Plasma Simulation Program

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2011-10-04

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a

  19. The 2012 Plasma Roadmap

    Science.gov (United States)

    Samukawa, Seiji; Hori, Masaru; Rauf, Shahid; Tachibana, Kunihide; Bruggeman, Peter; Kroesen, Gerrit; Whitehead, J. Christopher; Murphy, Anthony B.; Gutsol, Alexander F.; Starikovskaia, Svetlana; Kortshagen, Uwe; Boeuf, Jean-Pierre; Sommerer, Timothy J.; Kushner, Mark J.; Czarnetzki, Uwe; Mason, Nigel

    2012-06-01

    Low-temperature plasma physics and technology are diverse and interdisciplinary fields. The plasma parameters can span many orders of magnitude and applications are found in quite different areas of daily life and industrial production. As a consequence, the trends in research, science and technology are difficult to follow and it is not easy to identify the major challenges of the field and their many sub-fields. Even for experts the road to the future is sometimes lost in the mist. Journal of Physics D: Applied Physics is addressing this need for clarity and thus providing guidance to the field by this special Review article, The 2012 Plasma Roadmap. Although roadmaps are common in the microelectronic industry and other fields of research and development, constructing a roadmap for the field of low-temperature plasmas is perhaps a unique undertaking. Realizing the difficulty of this task for any individual, the plasma section of the Journal of Physics D Board decided to meet the challenge of developing a roadmap through an unusual and novel concept. The roadmap was divided into 16 formalized short subsections each addressing a particular key topic. For each topic a renowned expert in the sub-field was invited to express his/her individual visions on the status, current and future challenges, and to identify advances in science and technology required to meet these challenges. Together these contributions form a detailed snapshot of the current state of the art which clearly shows the lifelines of the field and the challenges ahead. Novel technologies, fresh ideas and concepts, and new applications discussed by our authors demonstrate that the road to the future is wide and far reaching. We hope that this special plasma science and technology roadmap will provide guidance for colleagues, funding agencies and government institutions. If successful in doing so, the roadmap will be periodically updated to continue to help in guiding the field.

  20. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  1. Kinetics of complex plasmas

    CERN Document Server

    Sodha, Mahendra Singh

    2014-01-01

    The presentation in the book is based on charge balance on the dust particles, number and energy balance of the constituents and atom-ion-electron interaction in the gaseous plasma. Size distribution of dust particles, statistical mechanics, Quantum effects in electron emission from and accretion on dust particles and nonlinear interaction of complex plasmas with electric and electromagnetic fields have been discussed in the book. The book introduces the reader to basic concepts and typical applications. The book should be of use to researchers, engineers and graduate students.

  2. Plasma Cell Disorders.

    Science.gov (United States)

    Castillo, Jorge J

    2016-12-01

    Plasma cell disorders are benign, premalignant, and malignant conditions characterized by the presence of a monoclonal paraprotein detected in serum or urine. These conditions are biologically, pathologically, and clinically heterogeneous. There have been major advances in the understanding of the biology of these diseases, which are promoting the development of therapies with novel mechanisms of action. Novel agents such as proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies have gained approval in the United States and Europe for the treatment of plasma cell disorders. Such therapies are translating into higher rates of response and survival and better toxicity profiles. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Plasma YKL-40

    DEFF Research Database (Denmark)

    Jensen, Peter; Wiell, C; Milting, K

    2013-01-01

    Background  Plasma YKL-40 is an inflammatory biomarker. No useful biomarker exists in patients with psoriasis or psoriatic arthritis. Objective  To measure YKL-40 and high-sensitivity C-reactive protein (hs-CRP) in patients with psoriasis or psoriatic arthritis before and during treatment. Methods......-CRP at inclusion and during 48 weeks of adalimumab treatment. The patients with psoriatic arthritis were divided into responders and non-responders. Results  In patients with psoriasis, the baseline median PASI score was 10.8 and baseline YKL-40 was 45 μg/L. Seventeen per cent had elevated plasma YKL-40 compared...

  4. Plasma polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Takashi; Iwamae, Atsushi (eds.) [Kyoto Univ. (Japan). Dept. of Mechanical Engineering and Science

    2008-07-01

    Plasma Polarization Spectroscopy (PPS) is now becoming a standard diagnostic technique for working with laboratory plasmas. This new area needs a comprehensive framework, both experimental and theoretical. This book reviews the historical development of PPS, develops a general theoretical formulation to deal with this phenomenon, along with an overview of relevant cross sections, and reports on laboratory experiments so far performed. It also includes various facets that are interesting from this standpoint, e.g. X-ray lasers and effects of microwave irradiation. It also offers a timely discussion of instrumentation that is quite important in a practical PPS experiment. (orig.)

  5. Plasma Assisted Combustion

    Science.gov (United States)

    2007-02-28

    pressure hydrogen is given in Fig. 2.14. The regions typical for “common” glow discharges (negative glow, Faraday dark space, and positive column) are...Hollenstein Ch. Plasma Phys. Control. Fusion, 42 (2000) 93. [107] M.A. Heald and C.B. Wahrton, Plasma diagnostics with microwaves, John Wi- ley &Sons, New York...Nitrous Oxide J. Chem. Soc. Faraday Trans. 69 352 [194] Albers E A, Hoyermann K, Schacke H, Schmatjko K J, Wagner H Gg, Wolfrum J 1975 Absolute Rate

  6. High-beta turbulence in two-dimensional magnetohydrodynamics

    Science.gov (United States)

    Fyfe, D.; Montgomery, D.

    1975-01-01

    Incompressible turbulent flows were investigated in the framework of ideal magnetohydrodynamics. Equilibrium canonical distributions are determined in a phase whose coordinates are the real and imaginary parts of the Fourier coefficients for the field variables. The magnetic field and fluid velocity have variable x and y components, and all field quantities are independent of z. Three constants of the motion are found which survive the truncation in Fourier space and permit the construction of canonical distributions with three independent temperatures. Spectral densities are calculated. One of the more novel physical effects is the appearance of macroscopic structures involving long wavelength, self-generated, magnetic fields ("magnetic islands"). In the presence of finite dissipation, energy cascades to higher wave numbers can be accompanied by vector potential cascades to lower wave numbers, in much the same way that in the fluid dynamic case, energy cascades to lower wave numbers accompany entropy cascades to higher wave numbers.

  7. Hie-Isolde High Beta Cavity Study and Measurements

    CERN Document Server

    D'Elia, A; Pasini, M

    2009-01-01

    The upgrade of the ISOLDE machine at CERN foresees a superconducting linac based on two gap independently phased Nb sputtered Quarter Wave Resonators (QWRs) working at 101.28MHz and producing an accelerating field of 6MV/m on axis. A careful study of the fields in the cavity has been carried out in order to pin down the crucial e-m parameters of the structure such as peak fields, quality factor and e-m power dissipated on the cavity wall. A tuning system with about 200kHz frequency range has been developed in order to cope with fabrication tolerances. In this paper we will report on the cavity simulations. The tuning plate design will be described. Finally the frequency measurements on a cavity prototype at room temperature will be presented.

  8. Stochastically sustained population oscillations in high-beta nanolasers

    CERN Document Server

    Lebreton, A; Takemura, N; Kuwata-Gonokami, M; Robert-Philip, I; Beveratos, A

    2012-01-01

    Non-linear dynamical systems involving small populations of individuals may sustain oscillations in the population densities arising from the discrete changes in population numbers due to random events. By applying these ideas to nanolasers operating with small numbers of emitting dipoles and photons at threshold, we show that such lasers should display photon and dipole population cycles above threshold, which should be observable as a periodic modulation in the second-order correlation function of the nanolaser output. Such a modulation was recently reported in a single-mode vertical-cavity surface-emitting semiconductor laser.

  9. Development of high $\\beta^*$-optics for ALICE

    CERN Document Server

    Hermes, Pascal Dominik; Wessels, Johannes Peter

    This thesis describes a feasibility study for a special optical configuration in Insertion Region 2 (IR2) of the Large Hadron Collider (LHC), which is host of the ALICE detector. This configuration allows the study of elastic and diffractive scattering during LHC high-intensity proton operation, in parallel to the nominal physics studies in all LHC experiments at the design energy of 7 TeV per beam. Such measurements require the instal- lation of additional Roman Pot (RP) detectors in the very forward region, at longitudinal distances of 150 m to 220 m from the Interaction Point (IP). Apart from being adjusted for a specific betatron phase advance between the IP and the RP detectors, such a configuration must be optimized for the largest possible $\\beta^*$ -value, to be sensitive for the smallest possible four-momentum transfer $|t|$. A value of $\\beta^*$ = 18 m is compatible with a bunch spacing of 25 ns, considering the LHC design emittance of N = 3.75 μm rad, and a required bunch-bunch separation of $12 \\...

  10. High beta lasing in micropillar cavities with adiabatic layer design

    DEFF Research Database (Denmark)

    Lermer, M.; Gregersen, Niels; Lorke, M.;

    2013-01-01

    We report on lasing in optically pumped adiabatic micropillar cavities, based on the AlAs/GaAs material system. A detailed study of the threshold pump power and the spontaneous emission β factor in the lasing regime for different diameters dc is presented. We demonstrate a reduction of the thresh...

  11. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  12. Plasma scattering of electromagnetic radiation

    CERN Document Server

    Sheffield, John

    1975-01-01

    Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the ge

  13. Some plasma aspects and plasma diagnostics of ion sources.

    Science.gov (United States)

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  14. The field of plasmas. L'univers des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bradu, P. (Direction des Recherches, Etudes et Techniques d' Armement (DRET), (France))

    1999-01-01

    Plasma is the fourth state of matter and it is the most spread at the scale of universe. Plasma is involved in natural phenomena such as Saint-Elmo's fires, aurora borealis or lightning discharges. Thanks to its particular properties plasma is used in many fields of technology. We find plasmas in light bulbs, television screens and in diverse industrial processes such as laser isotope separation, sterilization, surface coating, or waste treatment where a plasma torch is used to reduce waste into its elementary components trapped in the molten bulk. Spatial propulsion could soon benefit by the application of magnetohydrodynamics effects to plasmas. Thermonuclear reactors where fusion reactions take place in a very hot plasma could be the source of energy for the next century. This book deals with all the aspects of plasma in the technology of today. (A.C.) 21 refs.

  15. The field of plasmas; L`univers des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bradu, P. [Direction des Recherches, Etudes et Techniques d`Armement (DRET), (France)

    1999-12-01

    Plasma is the fourth state of matter and it is the most spread at the scale of universe. Plasma is involved in natural phenomena such as Saint-Elmo`s fires, aurora borealis or lightning discharges. Thanks to its particular properties plasma is used in many fields of technology. We find plasmas in light bulbs, television screens and in diverse industrial processes such as laser isotope separation, sterilization, surface coating, or waste treatment where a plasma torch is used to reduce waste into its elementary components trapped in the molten bulk. Spatial propulsion could soon benefit by the application of magnetohydrodynamics effects to plasmas. Thermonuclear reactors where fusion reactions take place in a very hot plasma could be the source of energy for the next century. This book deals with all the aspects of plasma in the technology of today. (A.C.) 21 refs.

  16. Microwave Probing of Air-Plasma and Plasma Metamaterials

    Science.gov (United States)

    Schneider, Katherine; Rock, Ben; Helle, Mike

    2016-10-01

    Plasma metamaterials are of recent interest due to their unique ability to be engineered with specific electromagnetic responses. One potential metamaterial architecture is based on a `forest' of plasma rods that can be produced using intense laser plasma filaments. In our work, we use a continuous microwave source at 26.5 GHz to measure a single air plasma filament characteristics generated from a 5 mJ laser pulse within a cylindrical hole in a Ka-band waveguide. Preliminary results show the air plasma produces a strong shock and acts to reflect microwave radiation. A computational comparison using 3D EM modeling is performed to examine the reflection and transmission properties of a single plasma rod, and further, to investigate an array of plasma rods as a potential plasma based metamaterial.

  17. Partially ionized plasmas including the third symposium on uranium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M. [ed.

    1976-09-01

    Separate abstracts are included for 28 papers on electrically generated plasmas, fission generated plasmas, nuclear pumped lasers, gaseous fuel reactor research, and applications. Five papers have been previously abstracted and included in ERA.

  18. Plasma detachment with molecular processes in divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, N.; Ezumi, N.; Nishijima, D.; Takamura, S. [Dept. of Energy Engineering and Science, Graduate School of Engineering, Nagoya Univ., Nagoya, Aichi (Japan); Krasheninnikov, S.I.; Pigarov, A.Yu. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States)

    2000-01-01

    Molecular processes in detached recombining plasmas are briefly reviewed. Several reactions with vibrationally excited hydrogen molecule related to recombination processes are described. Experimental evidence of molecular activated recombination observed in a linear divertor plasma simulator is also shown. (author)

  19. Plasma flow in peripheral region of detached plasma in linear plasma device

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tanaka, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column in both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.

  20. Laser-plasma-based linear collider using hollow plasma channels

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B., E-mail: CBSchroeder@lbl.gov; Benedetti, C.; Esarey, E.; Leemans, W.P.

    2016-09-01

    A linear electron–positron collider based on laser-plasma accelerators using hollow plasma channels is considered. Laser propagation and energy depletion in the hollow channel is discussed, as well as the overall efficiency of the laser-plasma accelerator. Example parameters are presented for a 1-TeV and 3-TeV center-of-mass collider based on laser-plasma accelerators.

  1. Computations in Plasma Physics.

    Science.gov (United States)

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  2. Merging of plasma currents

    NARCIS (Netherlands)

    Bergmans, J.; Schep, T. J.

    2001-01-01

    The merging process of current filaments in a strongly magnetized plasma is described. The evolution is calculated using a contour dynamics method, which accurately tracks piecewise constant distributions of the conserved quantities. In the interaction of two screened currents, both develop dipolar

  3. Microscopic plasma Hamiltonian

    Science.gov (United States)

    Peng, Y.-K. M.

    1974-01-01

    A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.

  4. Flare Plasma Iron Abundance

    Science.gov (United States)

    Dennis, Brian R.; Dan, Chau; Jain, Rajmal; Schwartz, Richard A.; Tolbert, Anne K.

    2008-01-01

    The equivalent width of the iron-line complex at 6.7 keV seen in flare X-ray spectra suggests that the iron abundance of the hottest plasma at temperatures >approx.10 MK may sometimes be significantly lower than the nominal coronal abundance of four times the photospheric value that is commonly assumed. This conclusion is based on X-ray spectral observations of several flares seen in common with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Solar X-ray Spectrometer (SOXS) on the second Indian geostationary satellite, GSAT-2. The implications of this will be discussed as it relates to the origin of the hot flare plasma - either plasma already in the corona that is directly heated during the flare energy release process or chromospheric plasma that is heated by flare-accelerated particles and driven up into the corona. Other possible explanations of lower-than-expected equivalent widths of the iron-line complex will also be discussed.

  5. Quark gluon plasma

    Indian Academy of Sciences (India)

    C P Singh

    2000-04-01

    Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.

  6. Pulsed Plasma Electron Sources

    Science.gov (United States)

    Krasik, Yakov

    2008-11-01

    Pulsed (˜10-7 s) electron beams with high current density (>10^2 A/cm^2) are generated in diodes with electric field of E > 10^6 V/cm. The source of electrons in these diodes is explosive emission plasma, which limits pulse duration; in the case E Hadas and Ya. E. Krasik, Europhysics Lett. 82, 55001 (2008).

  7. Plasma Theory and Simulation.

    Science.gov (United States)

    1982-12-31

    expan- sion of a warm plasma; launching and propagation and decay of very large amplitude waves (8GK, solitons, etc.); thermal barriers (really...25.373.1981. ION-10N TWO-STREAM IN THERMAL BARRIERS : Vincent-lhonal,U.C.Berkeley. We present stu- dies or the eleclroTatic ion-ion two-stream instability as

  8. Plasma Theory and Simulation.

    Science.gov (United States)

    1980-09-30

    William Nevins L439 LLL (422-7032) Lecturers , UCB; Physicists -LLL Dr. William Fawley Guest, UCB; Physicist LLL L321 LLL (422-9272) Yu-Jiuan Chen, Douglas... MHD - Particle Codes." Three abstracts of papers prepared for the APS Division of Plasma Physics Meeting, November 10-14, 1980, at San Diego, follow

  9. Vacuum plasma spray coating

    Science.gov (United States)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  10. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  11. Magnetized Plasma Experiments Using Thermionic- Thermoelectronic Plasma Emitter

    Science.gov (United States)

    Kawamori, Eiichirou; Cheng, C. Z.; Fujikawa, Nobuko; Lee, Jyun-Yi; Peng, Albert

    2008-11-01

    We are developing a magnetic mirror device, which is the first magnetized plasma device in Taiwan, to explore basic plasma sciences relevant to fusion, space and astrophysical plasmas. Our research subjects include electromagnetically induced transparency (EIT), Alfven wave physics, and plasma turbulence. A large diameter (> 200 mm) plasma emitter1, which utilizes thermionic- thermoelectronic emission from a mixture of LaB6 (Lanthanum-hexaboride) and beta-eucryptite (lithium type aluminosylicate) powders, is employed as a plasma source because of its production ability of fully ionized plasma and controllability of plasma emission rate. The plasma emitter has been installed recently and investigation of its characteristics will be started. The employment of beta-eucryptite in plasma emitter is the first experimental test because such investigation of beta-eucryptite has previously been used only for Li+-ion source2. Our plan for magnetized plasma experiments and results of the plasma emitter investigation will be presented. 1. K. Saeki, S. Iizuka, N. Sato, and Y. Hatta, Appl. Phys. Lett., 37, 1980, pp. 37-38. 2. M. Ueda, R. R. Silva, R. M. Oliveira, H. Iguchi, J. Fujita and K. Kadota, J. Phys. D: Appl. Phys. 30 1997, pp. 2711--2716.

  12. The 2017 Plasma Roadmap: Low temperature plasma science and technology

    Science.gov (United States)

    Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...

  13. Modelling the Plasma Jet in Multi-Arc Plasma Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Schein, J.; Zimmermann, S.; Möhwald, K.; Lummer, C.

    2016-08-01

    Particle in-flight characteristics in atmospheric plasma spraying process are determined by impulse and heat energy transferred between the plasma jet and injected powder particles. One of the important factors for the quality of the plasma-sprayed coatings is thus the distribution of plasma gas temperatures and velocities in plasma jet. Plasma jets generated by conventional single-arc plasma spraying systems and their interaction with powder particles were subject matter of intensive research. However, this does not apply to plasma jets generated by means of multi-arc plasma spraying systems yet. In this study, a numerical model has been developed which is designated to dealing with the flow characteristics of the plasma jet generated by means of a three-cathode spraying system. The upstream flow conditions, which were calculated using a priori conducted plasma generator simulations, have been coupled to the plasma jet simulations. The significances of the relevant numerical assumptions and aspects of the models are analyzed. The focus is placed on to the turbulence and diffusion/demixing modelling. A critical evaluation of the prediction power of the models is conducted by comparing the numerical results to the experimental results determined by means of emission spectroscopic computed tomography. It is evident that the numerical models exhibit a good accuracy for their intended use.

  14. Theory of gas discharge plasma

    CERN Document Server

    Smirnov, Boris M

    2015-01-01

    This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.

  15. Modelling of Complex Plasmas

    Science.gov (United States)

    Akdim, Mohamed Reda

    2003-09-01

    Nowadays plasmas are used for various applications such as the fabrication of silicon solar cells, integrated circuits, coatings and dental cleaning. In the case of a processing plasma, e.g. for the fabrication of amorphous silicon solar cells, a mixture of silane and hydrogen gas is injected in a reactor. These gases are decomposed by making a plasma. A plasma with a low degree of ionization (typically 10_5) is usually made in a reactor containing two electrodes driven by a radio-frequency (RF) power source in the megahertz range. Under the right circumstances the radicals, neutrals and ions can react further to produce nanometer sized dust particles. The particles can stick to the surface and thereby contribute to a higher deposition rate. Another possibility is that the nanometer sized particles coagulate and form larger micron sized particles. These particles obtain a high negative charge, due to their large radius and are usually trapped in a radiofrequency plasma. The electric field present in the discharge sheaths causes the entrapment. Such plasmas are called dusty or complex plasmas. In this thesis numerical models are presented which describe dusty plasmas in reactive and nonreactive plasmas. We started first with the development of a simple one-dimensional silane fluid model where a dusty radio-frequency silane/hydrogen discharge is simulated. In the model, discharge quantities like the fluxes, densities and electric field are calculated self-consistently. A radius and an initial density profile for the spherical dust particles are given and the charge and the density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric field distribution through its charge and the density of the plasma through recombination of positive ions and electrons at its surface. In the model this process gives an extra production of silane radicals, since the growth of dust is

  16. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in National Spherical Torus Experiment

    Science.gov (United States)

    Guttenfelder, W.; Kaye, S. M.; Ren, Y.; Solomon, W.; Bell, R. E.; Candy, J.; Gerhardt, S. P.; LeBlanc, B. P.; Yuh, H.

    2016-05-01

    This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio National Spherical Torus Experiment (NSTX) H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles, and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at a finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.

  17. Effect of plasma processing reactor circuitry on plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, S.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1997-12-31

    It is well known that external circuitry greatly influences the performance of plasma processing reactors. Simulation of external circuits difficult since the time in which the external circuit attains the steady-state is several orders of magnitude longer than typical plasma simulation time scales. In this paper, the authors present a technique to simulate the external circuit concurrently with the plasma, and implement it into the Hybrid Plasma Equipment Model (HPEM). The resulting model is used to investigate the influence of external circuitry on plasma behavior.

  18. Numerical simulation of dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Winske, D.

    1995-09-01

    The numerical simulation of physical processes in dusty plasmas is reviewed, with emphasis on recent results and unresolved issues. Three areas of research are discussed: grain charging, weak dust-plasma interactions, and strong dust-plasma interactions. For each area, we review the basic concepts that are tested by simulations, present some appropriate examples, and examine numerical issues associated with extending present work.

  19. The Plasma Archipelago: Plasma Physics in the 1960s

    Science.gov (United States)

    Weisel, Gary J.

    2017-09-01

    With the foundation of the Division of Plasma Physics of the American Physical Society in April 1959, plasma physics was presented as the general study of ionized gases. This paper investigates the degree to which plasma physics, during its first decade, established a community of interrelated specialties, one that brought together work in gaseous electronics, astrophysics, controlled thermonuclear fusion, space science, and aerospace engineering. It finds that, in some regards, the plasma community was indeed greater than the sum of its parts and that its larger identity was sometimes glimpsed in inter-specialty work and studies of fundamental plasma behaviors. Nevertheless, the plasma specialties usually worked separately for two inter-related reasons: prejudices about what constituted "basic physics," both in the general physics community and within the plasma community itself; and a compartmentalized funding structure, in which each funding agency served different missions.

  20. The Plasma Chemistry of Polymer Surfaces

    CERN Document Server

    Friedrich, Jö

    2012-01-01

    This book illustrates plasma properties, polymer characteristics, surface specifics, and how to purposefully combine plasma and polymer chemistry. In so doing, it covers plasma polymerization, surface functionalization, etching, crosslinking, and deposition of monotype functional-group-bearing plasma polymers. It explains different techniques and plasma types, such as pressure-pulsed, remote, low-wattage plasmas and plasma polymerization in liquids. Finally, among the numerous applications discussed are plasmas for chemical synthesis, industrial processes or the modification of membranes and p

  1. Modulational interactions in quantum plasmas

    CERN Document Server

    Sayed, Fatema; Tyshetskiy, Yuriy; Ishihara, Osamu

    2013-01-01

    A formalism for treating modulational interactions of electrostatic fields in collisionless quantum plasmas is developed, based on the kinetic Wigner-Poisson model of quantum plasma. This formalism can be used in a range of problems of nonlinear interaction between electrostatic fields in a quantum plasma, such as development of turbulence, self-organization, as well as transition from the weak turbulent state to strong turbulence. In particular, using this formalism, we obtain the kinetic quantum Zakharov equations, that describe nonlinear coupling of high frequency Langmuir waves to low frequency plasma density variations, for cases of non-degenerate and degenerate plasma electrons.

  2. Closed inductively coupled plasma cell

    Science.gov (United States)

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  3. Experimental plasma research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  4. Experimental Plasma Research project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

  5. Plasma chemistry for inorganic materials

    Science.gov (United States)

    Matsumoto, O.

    1980-01-01

    Practical application of plasma chemistry to the development of inorganic materials using both low temperature and warm plasmas are summarized. Topics cover: the surface nitrification and oxidation of metals; chemical vapor deposition; formation of minute oxide particles; the composition of oxides from chloride vapor; the composition of carbides and nitrides; freezing high temperature phases by plasma arc welding and plasma jet; use of plasma in the development of a substitute for petroleum; the production of silicon for use in solar cell batteries; and insulating the inner surface of nuclear fusion reactor walls.

  6. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  7. Basics of plasma astrophysics

    CERN Document Server

    Chiuderi, Claudio

    2015-01-01

    This book is an introduction to contemporary plasma physics that discusses the most relevant recent advances in the field and covers a careful choice of applications to various branches of astrophysics and space science. The purpose of the book is to allow the student to master the basic concepts of plasma physics and to bring him or her up to date in a number of relevant areas of current research. Topics covered include orbit theory, kinetic theory, fluid models, magnetohydrodynamics, MHD turbulence, instabilities, discontinuities, and magnetic reconnection. Some prior knowledge of classical physics is required, in particular fluid mechanics, statistical physics, and electrodynamics. The mathematical developments are self-contained and explicitly detailed in the text. A number of exercises are provided at the end of each chapter, together with suggestions and solutions.

  8. Adiabatic plasma buncher

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Katsouleas, T.C. [Los Angeles Univ. of Southern California, Los Angeles, CA (United States); Serafini, L. [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Ben Zvi, I. [Brookhaven National Laboratory, Upton, NY (United States)

    2000-07-01

    In this paper is presented a new scheme of injection into a plasma accelerator, aimed at producing a high quality beam while relaxing the demands on the bunch length of the injected beam. The beam dynamics in the injector, consisting of a high voltage pulsed photo-diode, is analyzed and optimized to produce a {lambda}{sub p}/20 long electron bunch at 2.5 MeV. This bunch is injected into a plasma wave in which it compresses down to {lambda}{sub p}/100 while simultaneously accelerating up to 250 MeV. This simultaneous bunching and acceleration of a high quality beam requires a proper combination of injection energy and injection phase. Preliminary results from simulations are shown to assess the potentials of the scheme.

  9. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  10. Cosmic Plasma Wakefield Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P

    2004-04-26

    Recently we proposed a new cosmic acceleration mechanism which was based on the wakefields excited by the Alfven shocks in a relativistically owing plasma. In this paper we include some omitted details, and show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f({epsilon}) {proportional_to} 1/{epsilon}{sup 2}. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations.

  11. Plasma Trytophan and Sleep

    Science.gov (United States)

    Chen, C. N.; Kalucy, R. S.; Hartmann, M. K.; Lacey, J. H.; Crisp, A. H.; Bailey, J. E.; Eccleston, E. G.; Coppen, A.

    1974-01-01

    Free, bound, and total plasma tryptophan (F.P.T., B.P.T., and T.P.T.) levels have been measured throughout the night in six young female volunteers. All-night polygraphic sleep recordings were also made. No direct temporal relationship was found between plasma tryptophan levels and specific sleep stages. The mean F.P.T. levels, however, were found to have a positive correlation with rapid-eye-movement (R.E.M.) sleep and a negative correlation with non-R.E.M. sleep. An inverse relationship existed between the F.P.T. and B.P.T. levels. There appeared to be a diurnal variation in F.P.T. levels, with high readings in the first half of the night. PMID:4373116

  12. Microinstabilities in stellarator plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Nasim, M.H.; Persson, M. [Department of Electromagnetics and Euratom/VR Association, Chalmers University of Technology, Goeteborg (Sweden)

    2003-07-01

    Linear stability and localization of ion temperature gradient modes in fully 3-dimensional stellarator plasmas is calculated in the electrostatic limit. A ballooning mode formalism with WKB assumption is applied to reduce the equations into ordinary differential equation along the field lines which are solved numerically for different plasma parameters. The results are correlated with the geometrical effects such as magnetic curvature, local magnetic shear and its integrated value along the field line and the effects of trapped electrons are also investigated. The eigenfunctions of the most unstable modes are found to be localized but the nodes in the amplitude of the eigenfunctions may be large depending upon the location on the magnetic surface. The results are compared and contrasted with calculations in tokamak geometry and the implications on future stellarator design is also discussed. (orig.)

  13. Plasma dust crystallization

    Science.gov (United States)

    Goree, John; Thomas, H.; Morfill, G.

    1994-01-01

    In a ground-based definition study, a concept for a new type of microgravity experiment is developed. We formed a new state of matter: a crystalline lattice structure of charged micron-size spheres, suspended in a charge-neutral plasma. The plasma is formed by a low-pressure radio-frequency argon discharge. Solid microspheres are introduced, and they gain a negative electric charge. They are cooled by molecular drag on the ambient neutral gas. They are detected by laser light scattering and video photography. Laboratory experiments have demonstrated that a two-dimensional nonquantum lattice forms through the Coulomb interaction of these spheres. Microgravity is thought to be required to observe a three-dimensional structure.

  14. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  15. Topics in Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, Linda [Old Dominion Univ., Norfolk, VA (United States)

    2015-05-31

    During the period 1998-2013, research under the auspices of the Department of Energy was performed on RF waves in plasmas. This research was performed in close collaboration with Josef Preinhaelter, Jakub Urban, Vladimir Fuchs, Pavol Pavlo and Frantisek Zacek (Czech Academy of Sciences), Martin Valovic and Vladimir Shevchenko (Culham). This research is detailed and all 38 papers which were published by this team are cited.

  16. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  17. Dusty plasma (Yukawa) rings

    CERN Document Server

    Sheridan, T E

    2010-01-01

    One-dimensional and quasi-one-dimensional strongly-coupled dusty plasma rings have been created experimentally. Longitudinal (acoustic) and transverse (optical) dispersion relations for the 1-ring were measured and found to be in very good agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-H\\"uckel) potential. These rings provide a new system in which to study one-dimensional and quasi-one-dimensional physics.

  18. Plasma antioxidants from chocolate

    OpenAIRE

    Serafini, M; Bugianesi, R.; Maiani, G.; Valtuena, S.; De Santis, S.; Crozier, A.

    2003-01-01

    There is some speculation that dietary flavonoids from chocolate, in particular (-)epicatechin, may promote cardiovascular health as a result of direct antioxidant effects or through antithrombotic mechanisms. Here we show that consumption of plain, dark chocolate results in an increase in both the total antioxidant capacity and the (-)epicatechin content of blood plasma, but that these effects are markedly reduced when the chocolate is consumed with milk or if milk is incorporated as milk ch...

  19. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  20. Dense Plasma Focus Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Shengtai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jungman, Gerard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hayes-Sterbenz, Anna Catherine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  1. Plasma Processing of Materials

    Science.gov (United States)

    1985-02-22

    used in France. In this case, three ’ movable electrodes arranged about the central axis with a coaxial sheath gas are employed. Initially the...Demiocratic Republic plasma furnace. chrome -magnesite; the bottom section is lined with rammed chrome -magnesite refractory. Due to the high heat loads... sheath injector design, cathode tip shape, and degree of water cooling are important parameters in providing a stable, uncontaminating, long-lifetime

  2. Plasma is a strategic resource.

    Science.gov (United States)

    Strengers, Paul F W; Klein, Harvey G

    2016-12-01

    Plasma-derived medicinal products (PDMPs) such as immunoglobulins and clotting factors are listed by the World Health Organization as essential medicines. These and other PDMPs are crucial for the prophylaxis and treatment of patients with bleeding disorders, immune deficiencies, autoimmune and inflammatory diseases, and a variety of congenital deficiency disorders. While changes in clinical practice in developed countries have reduced the need for red blood cell transfusions thereby significantly reducing the collection volumes of whole blood and recovered plasma suitable for fractionation, the need for PDMPs worldwide continues to increase. The majority of plasma supplies for the manufacture of PDMPs is met by the US commercial plasma industry. However, geographic imbalance in the collection of plasma raises concerns that local disruptions of plasma supplies could result in regional and global shortages of essential PDMPs. Plasma, which fits the definition of a strategic resource, that is, "an economically important raw material which is subject to a higher risk of supply interruption," should be considered a strategic resource comparable to energy and drinking water. Plasma collections should be increased outside the United States, including in low- and middle-income countries. The need for capacity building in these countries is an essential part to strengthen quality plasma collection. This will require changes in national and regional policies. We advocate the need for the restoration of an equitable balance of the international plasma supply to reduce the risk of supply shortages worldwide. Strategic independence of plasma should be endorsed on a global level. © 2016 AABB.

  3. Electrosurgical Plasma Discharges

    Science.gov (United States)

    Stalder, K. R.; Woloszko, J.

    2002-10-01

    Electrosurgical instruments employing plasmas to volumetrically ablate tissue are now enjoying widespread use in medical applications. We have studied several commercially available instruments in which luminous plasma discharges are formed near electrodes immersed in saline solutions when sufficiently large amplitude bipolar voltage waveforms are applied. Different aqueous salt solutions have been investigated, including isotonic NaCl solution as well as solutions of KCl, and BaCl_2. With strong driving voltage applied, a vapor layer is formed as well as visible and UV optical emissions. Spectroscopic measurements reveal the predominant emissions are from the low ionization potential salt species, but significant emissions from electron impact dissociated water fragments such as OH and H-atoms also are observed. The emissions also coincide with negative bias on the active electrode. These optical emissions are consistent with an electron density of about 10^12cm-3 and an electron temperature of about 4 eV. Experimental results and model calculations of the vapor layer formation process and plasma formation in the high-field region will be discussed.

  4. Plasma Modeling of Electrosurgery

    Science.gov (United States)

    Jensen, Scott; Friedrichs, Daniel; Gilbert, James; Park, Wounjhang; Maksimovic, Dragan

    2014-10-01

    Electrosurgery is the use of high frequency alternating current (AC) to illicit a clinical response in tissue, such as cutting or cauterization. Power electronics converters have been demonstrated to generate the necessary output voltage and current for electrosurgery. The design goal of the converter is to regulate output power while supplying high frequency AC. The design is complicated by fast current and voltage transients that occur when the current travels through air in the form of an arc. To assist in designing a converter that maintains the desired output power during these transients, we have used the COMSOL Plasma Module to determine the output voltage and current characteristics during an arc. This plasma model, used in conjunction with linear circuit elements, allows the full electrosurgical system to be validated. Two models have been tested with the COMSOL Plasma Module. One is a four-species, four-reaction model based on the local field approximation technique. The second simulates the underlying air chemistry using 30 species, 151 chemical reactions, and a coupled electron energy distribution function. Experimental output voltage and current samples have been collected and compared to both models.

  5. Sterilization by oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Adir Jose; Mansano, Ronaldo Domingues; Andreoli Pinto, Terezinha de Jesus; Ruas, Ronaldo; Silva Zambon, Luis da; Silva, Monica Valero da; Verdonck, Patrick Bernard

    2004-07-31

    The use of polymeric medical devices has stimulated the development of new sterilization methods. The traditional techniques rely on ethylene oxide, but there are many questions concerning the carcinogenic properties of the ethylene oxide residues adsorbed on the materials after processing. Another common technique is the gamma irradiation process, but it is costly, its safe operation requires an isolated site and it also affects the bulk properties of the polymers. The use of a gas plasma is an elegant alternative sterilization technique. The plasma promotes an efficient inactivation of the micro-organisms, minimises the damage to the materials and presents very little danger for personnel and the environment. Pure oxygen reactive ion etching type of plasmas were applied to inactivate a biologic indicator, the Bacillus stearothermophilus, to confirm the efficiency of this process. The sterilization processes took a short time, in a few minutes the mortality was complete. In situ analysis of the micro-organisms' inactivating time was possible using emission spectrophotometry. The increase in the intensity of the 777.5 nm oxygen line shows the end of the oxidation of the biologic materials. The results were also observed and corroborated by scanning electron microscopy.

  6. Modeling electronegative plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, A.J.; Lieberman, M.A. [Univ. of California, Berkley, CA (United States)

    1995-12-31

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  7. PLASMA CELL LEUKEMIA

    Science.gov (United States)

    de Larrea, Carlos Fernandez; Kyle, Robert A.; Durie, Brian GM; Ludwig, Heinz; Usmani, Saad; Vesole, David H.; Hajek, Roman; Miguel, Jésus San; Sezer, Orhan; Sonneveld, Pieter; Kumar, Shaji K.; Mahindra, Anuj; Comenzo, Ray; Palumbo, Antonio; Mazumber, Amitabha; Anderson, Kenneth C.; Richardson, Paul G.; Badros, Ashraf Z.; Caers, Jo; Cavo, Michele; LeLeu, Xavier; Dimopoulos, Meletios A.; Chim, CS; Schots, Rik; Noeul, Amara; Fantl, Dorotea; Mellqvist, Ulf-Henrik; Landgren, Ola; Chanan-Khan, Asher; Moreau, Philippe; Fonseca, Rafael; Merlini, Giampaolo; Lahuerta, JJ; Bladé, Joan; Orlowski, Robert Z.; Shah, Jatin J.

    2014-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic-pathologic entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10 9/L) of plasma cells in the peripheral blood. It is proposed that the thresholds for diagnosis be reexamined and consensus recommendations are made for diagnosis, as well as, response and progression criteria. Induction therapy needs to begin promptly and have high clinical activity leading to rapid disease control in an effort to minimize the risk of early death. Intensive chemotherapy regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem-cell transplantation (HDT/ASCT) if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding of the pathogenesis of PCL. PMID:23288300

  8. Electron waves and resonances in bounded plasmas

    CERN Document Server

    Vandenplas, Paul E

    1968-01-01

    General theoretical methods and experimental techniques ; the uniform plasma slab-condenser system ; the hollow cylindrical plasma ; scattering of a plane electromagnetic wave by a plasma column in steady magnetic fields (cold plasma approximation) ; hot non-uniform plasma column ; metallic and dielectric resonance probes, plasma-dielectric coated antenna, general considerations.

  9. Proton driven plasma wakefield generation in a parabolic plasma channel

    Science.gov (United States)

    Golian, Y.; Dorranian, D.

    2016-11-01

    An analytical model for the interaction of charged particle beams and plasma for a wakefield generation in a parabolic plasma channel is presented. In the suggested model, the plasma density profile has a minimum value on the propagation axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. While previous works investigated on the simulation results and on the perturbation techniques in case of laser wakefield accelerations for a parabolic channel, we have carried out an analytical model and solved the accelerating field equation for proton beam in a parabolic plasma channel. The solution is expressed by Whittaker (hypergeometric) functions. Effects of plasma channel radius, proton bunch parameters and plasma parameters on the accelerating processes of proton driven plasma wakefield acceleration are studied. Results show that the higher accelerating fields could be generated in the PWFA scheme with modest reductions in the bunch size. Also, the modest increment in plasma channel radius is needed to obtain maximum accelerating gradient. In addition, the simulations of longitudinal and total radial wakefield in parabolic plasma channel are presented using LCODE. It is observed that the longitudinal wakefield generated by the bunch decreases with the distance behind the bunch while total radial wakefield increases with the distance behind the bunch.

  10. Plasma Torch for Plasma Ignition and Combustion of Coal

    Science.gov (United States)

    Ustimenko, Alexandr; Messerle, Vladimir

    2015-09-01

    Plasma-fuel systems (PFS) have been developed to improve coal combustion efficiency. PFS is a pulverized coal burner equipped with arc plasma torch producing high temperature air stream of 4000 - 6000 K. Plasma activation of coal at the PFS increases the coal reactivity and provides more effective ignition and ecologically friendly incineration of low-rank coal. The main and crucial element of PFS is plasma torch. Simplicity and reliability of the industrial arc plasma torches using cylindrical copper cathode and air as plasma forming gas predestined their application at heat and power engineering for plasma aided coal combustion. Life time of these plasma torches electrodes is critical and usually limited to 200 hours. Considered in this report direct current arc plasma torch has the cathode life significantly exceeded 1000 hours. To ensure the electrodes long life the process of hydrocarbon gas dissociation in the electric arc discharge is used. In accordance to this method atoms and ions of carbon from near-electrode plasma deposit on the active surface of the electrodes and form electrode carbon condensate which operates as ``actual'' electrode. Complex physicochemical investigation showed that deposit consists of nanocarbon material.

  11. Online plasma diagnostics of a laser-produced plasma

    Science.gov (United States)

    Kai, Gao; Nasr, A. M. Hafz; Song, Li; Mohammad, Mirzaie; Guangyu, Li; Quratul, Ain

    2017-01-01

    In this study, we report a laser interferometry experiment for the online-diagnosing of a laser-produced plasma. The laser pulses generating the plasma are ultra-fast (30 femtoseconds), ultra-intense (tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration (LWFA) mechanism. A probe laser beam (λ = 800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse, allowing online plasma density diagnostics. The interferometer setup is based on the NoMarski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium. A high-dynamic range CCD camera is used to record the interference patterns. Based upon the Abel inversion technique, we obtained a 3D density distribution of the plasma density.

  12. Clinical use of Plasma and Plasma Fractions in Bleeding Disorders

    Institute of Scientific and Technical Information of China (English)

    王兆钺

    2008-01-01

    Internal and/or external bleeding is a common and sometimes very severe clinical manifestations of disorders of hemostasis. It may follow minor trauma or may arise apparently spontaneously. Disorders of hemostasis are generally divided into those caused by abnormalities of platelets, abnormalities of blood vessels, abnormalities of plasma coagulation factors, and hyperfibrinolysis, or com-binations of these. The use of plasma and plasma fractions dependents on the causing diseases and their severity. Several plasma products and plasma fractions are availa-ble in China and other plasma components and deriva-tives are commercially obtained. There have been the guidelines for their clinical use, and the revised ones will soon be published by Chinese Medical Association.

  13. Abelianization of QCD plasma instabilities

    Science.gov (United States)

    Arnold, Peter; Lenaghan, Jonathan

    2004-12-01

    QCD plasma instabilities appear to play an important role in the equilibration of quark-gluon plasmas in heavy-ion collisions in the theoretical limit of weak coupling (i.e. asymptotically high energy). It is important to understand what nonlinear physics eventually stops the exponential growth of unstable modes. It is already known that the initial growth of plasma instabilities in QCD closely parallels that in QED. However, once the unstable modes of the gauge fields grow large enough for non-Abelian interactions between them to become important, one might guess that the dynamics of QCD plasma instabilities and QED plasma instabilities become very different. In this paper, we give suggestive arguments that non-Abelian self-interactions between the unstable modes are ineffective at stopping instability growth, and that the growing non-Abelian gauge fields become approximately Abelian after a certain stage in their growth. This in turn suggests that understanding the development of QCD plasma instabilities in the nonlinear regime may have close parallels to similar processes in traditional plasma physics. We conjecture that the physics of collisionless plasma instabilities in SU(2) and SU(3) gauge theory becomes equivalent, respectively, to (i) traditional plasma physics, which is U(1) gauge theory, and (ii) plasma physics of U(1)×U(1) gauge theory.

  14. The diverse applications of plasma

    Science.gov (United States)

    Sharma, Mukul; Dubey, Shivani; Darwhekar, Gajanan; Jain, Sudhir Kumar

    2015-07-01

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  15. The diverse applications of plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul, E-mail: mukulsharma@acropolis.edu.in; Darwhekar, Gajanan, E-mail: gdarwhekar@acropolis.edu.in [Acropolis Institute of Pharmaceutical Education & Research, Indore MP India (India); Dubey, Shivani, E-mail: dubeyshivani08@rediffmail.com [Mata Gujri College of Professional Studies, Indore MP India (India); Jain, Sudhir Kumar, E-mail: sudhirkjain1@rediffmail.com [School of Studies in Microbiology, Vikram University, Ujjain MP India (India)

    2015-07-31

    Plasma being the fourth state of matter has always been an attraction for Physicists and Chemists. With the advent of time, plasma energy has been recognized in having widening horizons in the field of Biomedical Sciences. Plasma medicine can be subdivided into three main fields; Non-thermal atmospheric-pressure direct plasma for medical therapy; Plasma-assisted modification of bio-relevant surfaces and Plasma-based bio-decontamination and sterilization. The basis of the research is that as it has free carrier molecules, it has the ability to target specific cells and regulate functions like wound healing. Plasma does not harm healthy human cells but can kill bacteria and possibly even cancer cells to help treat various diseases. Nosocomial infection control, prevention and containment of contagious diseases, disinfection of medical devices, surface treatment (heat and UV sensitive surfaces) are research of interest. Recent success in generating plasma at very low temperature ie. Cold plasma makes the therapy painless. It has the ability to activate cellular responses and important mechanisms in the body. They target specific molecules such as prothrombin for blood coagulation, cytokines for killing bacteria, and angiogenesis for tissue regeneration. Plasma has bactericidal, fungicidal and virucidal properties. Plasma technology has flourishing future in diverse fields like Textiles, Nanofabrication, Automotives, Waste management, Microbiology, Food Hygiene, Medical Science like Skin treatments, sterilisation of wounds, Hand disinfection, Dental treatments etc. Food hygiene using plasma can be achieved in disinfection of food containers, food surface disinfection, hygiene in food handling, preparation and packaging. Therefore Plasma is most promising field for budding Scientist for fluorishing research in Biological Sciences.

  16. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2013-10-01

    sensitive surfaces. In this paper, the consumed power for plasma generation (plasma power) has been estimated from voltage-current waveform analysis in... consumed power for plasma generation is calculated by integrating the product of the discharge voltage and current over one cycle; according to the...Faculty Symposium: Course Design for the Millennial Student, Texas A&M University – Corpus Christi, 2011. (Showcased by the Center for Faculty

  17. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    research associates. The PI and the research team have published over 10 journal articles and over 50 conference proceedings and over 50 symposiums...reflections. Optical interference filters with center wavelength at 5322 or 632.82 nm are used in front of the ICCD to suppress the plasma self- luminescence ...wavelength at 532 ± 2 nm was used in front of the ICCD to suppress the plasma jet self- luminescence . The shadow of the laser induced plasma falls onto

  18. A contoured gap coaxial plasma gun with injected plasma armature

    Science.gov (United States)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 1017 cm-3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  19. A contoured gap coaxial plasma gun with injected plasma armature.

    Science.gov (United States)

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  20. Electron density and plasma dynamics of a colliding plasma experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.; Hock, C.; Manegold, T.; Bohlender, B.; Jacoby, J. [Plasma Physics Group, Institute of Applied Physics, Goethe University, 60438 Frankfurt am Main (Germany)

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor of 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.