WorldWideScience

Sample records for high-bandwidth force feedback

  1. High-bandwidth piezoresistive force probes with integrated thermal actuation

    International Nuclear Information System (INIS)

    Doll, Joseph C; Pruitt, Beth L

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond timescale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN nm −1 ) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors, while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using the open-source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20-fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. (paper)

  2. High bandwidth piezoresistive force probes with integrated thermal actuation

    Science.gov (United States)

    Doll, Joseph C.; Pruitt, Beth L.

    2012-01-01

    We present high-speed force probes with on-chip actuation and sensing for the measurement of pN-scale forces at the microsecond time scale. We achieve a high resonant frequency in water (1–100 kHz) with requisite low spring constants (0.3–40 pN/nm) and low integrated force noise (1–100 pN) by targeting probe dimensions on the order of 300 nm thick, 1–2 μm wide and 30–200 μm long. Forces are measured using silicon piezoresistors while the probes are actuated thermally with an aluminum unimorph and silicon heater. The piezoresistive sensors are designed using open source numerical optimization code that incorporates constraints on operating temperature. Parylene passivation enables operation in ionic media and we demonstrate simultaneous actuation and sensing. The improved design and fabrication techniques that we describe enable a 10–20 fold improvement in force resolution or measurement bandwidth over prior piezoresistive cantilevers of comparable thickness. PMID:23175616

  3. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  4. High-bandwidth memory interface

    CERN Document Server

    Kim, Chulwoo; Song, Junyoung

    2014-01-01

    This book provides an overview of recent advances in memory interface design at both the architecture and circuit levels. Coverage includes signal integrity and testing, TSV interface, high-speed serial interface including equalization, ODT, pre-emphasis, wide I/O interface including crosstalk, skew cancellation, and clock generation and distribution. Trends for further bandwidth enhancement are also covered.   • Enables readers with minimal background in memory design to understand the basics of high-bandwidth memory interface design; • Presents state-of-the-art techniques for memory interface design; • Covers memory interface design at both the circuit level and system architecture level.

  5. Force feedback and basic laparoscopic skills

    NARCIS (Netherlands)

    Chmarra, M.K.; Dankelman, J.; Van den Dobbelsteen, J.J.; Jansen, F.W.

    2008-01-01

    Background - Not much is known about the exact role offorce feedback in laparoscopy. This study aimed to determine whether force feedback influences movements of instruments during training in laparoscopic tasks and whether force feedback is required for training in basic laparoscopic force

  6. System analysis of force feedback microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Mario S. [CFMC/Dep. de Física, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Costa, Luca [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France); Université Joseph Fourier BP 53, 38041 Grenoble Cedex 9 (France); Chevrier, Joël [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France); Université Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Comin, Fabio [European Synchrotron Radiation Facility, 6 rue Jules Horowitz BP 220, 38043 Grenoble Cedex (France)

    2014-02-07

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions.

  7. System analysis of force feedback microscopy

    International Nuclear Information System (INIS)

    Rodrigues, Mario S.; Costa, Luca; Chevrier, Joël; Comin, Fabio

    2014-01-01

    It was shown recently that the Force Feedback Microscope (FFM) can avoid the jump-to-contact in Atomic force Microscopy even when the cantilevers used are very soft, thus increasing force resolution. In this letter, we explore theoretical aspects of the associated real time control of the tip position. We take into account lever parameters such as the lever characteristics in its environment, spring constant, mass, dissipation coefficient, and the operating conditions such as controller gains and interaction force. We show how the controller parameters are determined so that the FFM functions at its best and estimate the bandwidth of the system under these conditions

  8. Six axis force feedback input device

    Science.gov (United States)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  9. High bandwidth concurrent processing on commodity platforms

    CERN Document Server

    Boosten, M; Van der Stok, P D V

    1999-01-01

    The I/O bandwidth and real-time processing power required for high- energy physics experiments is increasing rapidly over time. The current requirements can only be met by using large-scale concurrent processing. We are investigating the use of a large PC cluster interconnected by Fast and Gigabit Ethernet to meet the performance requirements of the ATLAS second level trigger. This architecture is attractive because of its performance and competitive pricing. A major problem is obtaining frequent high-bandwidth I/O without sacrificing the CPU's processing power. We present a tight integration of a user-level scheduler and a zero-copy communication layer. This system closely approaches the performance of the underlying hardware in terms of both CPU power and I/O capacity. (0 refs).

  10. RAID Disk Arrays for High Bandwidth Applications

    Science.gov (United States)

    Moren, Bill

    1996-01-01

    High bandwidth applications require large amounts of data transferred to/from storage devices at extremely high data rates. Further, these applications often are 'real time' in which access to the storage device must take place on the schedule of the data source, not the storage. A good example is a satellite downlink - the volume of data is quite large and the data rates quite high (dozens of MB/sec). Further, a telemetry downlink must take place while the satellite is overhead. A storage technology which is ideally suited to these types of applications is redundant arrays of independent discs (RAID). Raid storage technology, while offering differing methodologies for a variety of applications, supports the performance and redundancy required in real-time applications. Of the various RAID levels, RAID-3 is the only one which provides high data transfer rates under all operating conditions, including after a drive failure.

  11. Tactical Decision Aids High Bandwidth Links Using Autonomous Vehicles

    Science.gov (United States)

    2004-01-01

    1 Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) A. J. Healey, D. P. Horner, Center for Autonomous Underwater Vehicle...SUBTITLE Tactical Decision Aids (High Bandwidth Links Using Autonomous Vehicles ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  12. Use of force feedback to enhance graphical user interfaces

    Science.gov (United States)

    Rosenberg, Louis B.; Brave, Scott

    1996-04-01

    This project focuses on the use of force feedback sensations to enhance user interaction with standard graphical user interface paradigms. While typical joystick and mouse devices are input-only, force feedback controllers allow physical sensations to be reflected to a user. Tasks that require users to position a cursor on a given target can be enhanced by applying physical forces to the user that aid in targeting. For example, an attractive force field implemented at the location of a graphical icon can greatly facilitate target acquisition and selection of the icon. It has been shown that force feedback can enhance a users ability to perform basic functions within graphical user interfaces.

  13. The impact of force feedback level on steering performance

    NARCIS (Netherlands)

    Anand, S.; Terken, J.; Hogema, J.H.

    2013-01-01

    Steer-by-wire systems provide designers the ability to customize and personalize force feedback on the steering wheel, based on individual preferences. Earlier studies using subjective responses have shown that there are individual differences in preferences for force feedback. It has also been

  14. PC-based digital feedback control for scanning force microscope

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2002-01-01

    In the past, most digital feedback implementation for scanned-probe microscope were based on a digital signal processor (DSP). At present DSP plug-in card with the input-output interface module is still expensive compared to a fast pentium PC motherboard. For a magnetic force microscope (MFM) digital feedback has an advantage where the magnetic signal can be easily separated from the topographic signal. In this paper, a simple low-cost PC-based digital feedback and imaging system for Scanning Force Microscope (SFM) is presented. (Author)

  15. Electrotactile EMG feedback improves the control of prosthesis grasping force

    Science.gov (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  16. Force Feedback Control Method of Active Tuned Mass Damper

    Directory of Open Access Journals (Sweden)

    Xiuli Wang

    2017-01-01

    Full Text Available Active tuned mass dampers as vibration-control devices are widely used in many fields for their good stability and effectiveness. To improve the performance of such dampers, a control method based on force feedback is proposed. The method offers several advantages such as high-precision control and low-performance requirements for the actuator, as well as not needing additional compensators. The force feedback control strategy was designed based on direct-velocity feedback. The effectiveness of the method was verified in a single-degree-of-freedom system, and factors such as damping effect, required active force, actuator stroke, and power consumption of the damper were analyzed. Finally, a simulation study was performed by configuring a main complex elastic-vibration-damping system. The results show that the method provides effective control over modal resonances of multiple orders of the system and improves its dynamics performance.

  17. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  18. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  19. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  20. Review of high bandwidth fiber optics radiation sensors

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1985-01-01

    This paper summarizes the use of fiber optics or guided optical systems for radiation sensors. It is limited a passive systems wherein electrical is not required at the sensor location. However, electrically powered light sources, receivers and/or recorders may still be required for detection and data storage in sensor system operation. This paper emphasizes sensor technologies that permit high bandwidth measurements of transient radiation levels, and will also discuss several low bandwidth applications. 60 refs

  1. High bandwidth second-harmonic generation in partially deuterated KDP

    International Nuclear Information System (INIS)

    Webb, M.S.; Eimerl, D.; Velsko, S.P.

    1992-01-01

    We have experimentally determined the spectrally noncritical phasematching behavior of Type I frequency doubling in KDP and its dependence on deuteration level in partially deuterated KDP. The first order wavelength sensitivity parameter∂Δk/∂γ for Type I doubling of 1.053 μm light vanishes for a KD*P crystal with a deuteration level between 10 and 14%. Very high bandwidth frequency doubling of Nd:glass lasers is possible with such a crystal

  2. A kinesthetic washout filter for force-feedback rendering.

    Science.gov (United States)

    Danieau, Fabien; Lecuyer, Anatole; Guillotel, Philippe; Fleureau, Julien; Mollet, Nicolas; Christie, Marc

    2015-01-01

    Today haptic feedback can be designed and associated to audiovisual content (haptic-audiovisuals or HAV). Although there are multiple means to create individual haptic effects, the issue of how to properly adapt such effects on force-feedback devices has not been addressed and is mostly a manual endeavor. We propose a new approach for the haptic rendering of HAV, based on a washout filter for force-feedback devices. A body model and an inverse kinematics algorithm simulate the user's kinesthetic perception. Then, the haptic rendering is adapted in order to handle transitions between haptic effects and to optimize the amplitude of effects regarding the device capabilities. Results of a user study show that this new haptic rendering can successfully improve the HAV experience.

  3. Can augmented force feedback facilitate virtual target acquisition tasks?

    NARCIS (Netherlands)

    Houtsma, A.J.M.; Keuning - van Oirschot, H.; Westwood, J.D.; Haluck, R.S.

    2006-01-01

    This study investigates facilitation of a manual target acquisition task by the application of appropriate force feedback through the control device (e.g., mouse, joystick, trackball). Typical manual movements with these devices were measured, and models of such movements were used to predict an

  4. Force feedback facilitates multisensory integration during robotic tool use

    NARCIS (Netherlands)

    Sengül, A.; Rognini, G.; van Elk, M.; Aspell, J.E.; Bleuler, H.; Blanke, O.

    2013-01-01

    The present study investigated the effects of force feedback in relation to tool use on the multisensory integration of visuo-tactile information. Participants learned to control a robotic tool through a surgical robotic interface. Following tool-use training, participants performed a crossmodal

  5. Fundamentals of force feedback and application to a surgery simulator.

    Science.gov (United States)

    Maass, Heiko; Chantier, Benjamin B A; Cakmak, Hueseyin K; Trantakis, Christos; Kuehnapfel, Uwe G

    2003-01-01

    Force feedback increases the effectiveness of virtual-reality surgery training systems. An overview of the fundamentals of applying force feedback is presented. An impedance control technique and data processing methods for stability preservation are illustrated. A flexible interface for general force-feedback applications has been developed. This interface is capable of controlling several different force-feedback hardware systems, including the SensAble PHANTOM, the Laparoscopic Impulse Engines from Immersion, and the VS-One virtual endoscopic surgery trainer. The findings are evaluated using the main simulation system, KISMET, and the modeling tools KISMO and VESUV. Within the scope of a cooperative project called HapticIO (funded by the German Ministry of Education and Research [BMBF]), new haptic devices have been designed for virtual neuroendoscopy and laparoscopy. The concept and implementations presented in this paper have been found to be flexible, stable and suitable for universal use. The impedance method, combined with the open-loop feed-forward control technique, is well suited and appropriate for the task.

  6. Hybrid viscous damper with filtered integral force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan; Brodersen, Mark L.

    2016-01-01

    In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...... is controlled by a filtered integral force feedback strategy, where the main feature is the filter, which is designed to render a damper force that in a phase-plane representation operates in front of the corresponding damper velocity. It is demonstrated that in the specific parameter regime where the damper...

  7. Attainment and retention of force moderation following laparoscopic resection training with visual force feedback.

    Science.gov (United States)

    Hernandez, Rafael; Onar-Thomas, Arzu; Travascio, Francesco; Asfour, Shihab

    2017-11-01

    Laparoscopic training with visual force feedback can lead to immediate improvements in force moderation. However, the long-term retention of this kind of learning and its potential decay are yet unclear. A laparoscopic resection task and force sensing apparatus were designed to assess the benefits of visual force feedback training. Twenty-two male university students with no previous experience in laparoscopy underwent relevant FLS proficiency training. Participants were randomly assigned to either a control or treatment group. Both groups trained on the task for 2 weeks as follows: initial baseline, sixteen training trials, and post-test immediately after. The treatment group had visual force feedback during training, whereas the control group did not. Participants then performed four weekly test trials to assess long-term retention of training. Outcomes recorded were maximum pulling and pushing forces, completion time, and rated task difficulty. Extreme maximum pulling force values were tapered throughout both the training and retention periods. Average maximum pushing forces were significantly lowered towards the end of training and during retention period. No significant decay of applied force learning was found during the 4-week retention period. Completion time and rated task difficulty were higher during training, but results indicate that the difference eventually fades during the retention period. Significant differences in aptitude across participants were found. Visual force feedback training improves on certain aspects of force moderation in a laparoscopic resection task. Results suggest that with enough training there is no significant decay of learning within the first month of the retention period. It is essential to account for differences in aptitude between individuals in this type of longitudinal research. This study shows how an inexpensive force measuring system can be used with an FLS Trainer System after some retrofitting. Surgical

  8. Force feedback in a piezoelectric linear actuator for neurosurgery.

    Science.gov (United States)

    De Lorenzo, Danilo; De Momi, Elena; Dyagilev, Ilya; Manganelli, Rudy; Formaglio, Alessandro; Prattichizzo, Domenico; Shoham, Moshe; Ferrigno, Giancarlo

    2011-09-01

    Force feedback in robotic minimally invasive surgery allows the human operator to manipulate tissues as if his/her hands were in contact with the patient organs. A force sensor mounted on the probe raises problems with sterilization of the overall surgical tool. Also, the use of off-axis gauges introduces a moment that increases the friction force on the bearing, which can easily mask off the signal, given the small force to be measured. This work aims at designing and testing two methods for estimating the resistance to the advancement (force) experienced by a standard probe for brain biopsies within a brain-like material. The further goal is to provide a neurosurgeon using a master-slave tele-operated driver with direct feedback on the tissue mechanical characteristics. Two possible sensing methods, in-axis strain gauge force sensor and position-position error (control-based method), were implemented and tested, both aimed at device miniaturization. The analysis carried out was aimed at fulfilment of the psychophysics requirements for force detection and delay tolerance, also taking into account safety, which is directly related to the last two issues. Controller parameters definition is addressed and consideration is given to development of the device with integration of a haptic interface. Results show better performance of the control-based method (RMSE sensors. Force feedback in minimally invasive surgery allows the human operator to manipulate tissues as if his/her hands were in contact with the patient organs. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Forcings and feedbacks by land ecosystem changes on climate change

    Science.gov (United States)

    Betts, R. A.

    2006-12-01

    Vegetation change is involved in climate change through both forcing and feedback processes. Emissions of CO{2} from past net deforestation are estimated to have contributed approximately 0.22 0.51 Wm - 2 to the overall 1.46 Wm - 2 radiative forcing by anthropogenic increases in CO{2} up to the year 2000. Deforestation-induced increases in global mean surface albedo are estimated to exert a radiative forcing of 0 to -0.2 Wm - 2, and dust emissions from land use may exert a radiative forcing of between approximately +0.1 and -0.2 Wm - 2. Changes in the fluxes of latent and sensible heat due to tropical deforestation are simulated to have exerted other local warming effects which cannot be quantified in terms of a Wm - 2 radiative forcing, with the potential for remote effects through changes in atmospheric circulation. With tropical deforestation continuing rapidly, radiative forcing by surface albedo change may become less useful as a measure of the forcing of climate change by changes in the physical properties of the land surface. Although net global deforestation is continuing, future scenarios used for climate change prediction suggest that fossil fuel emissions of CO{2} may continue to increase at a greater rate than land use emissions and therefore continue to increase in dominance as the main radiative forcing. The CO{2} rise may be accelerated by up to 66% by feedbacks arising from global soil carbon loss and forest dieback in Amazonia as a consequence of climate change, and Amazon forest dieback may also exert feedbacks through changes in the local water cycle and increases in dust emissions.

  10. Virtual grasping: closed-loop force control using electrotactile feedback.

    Science.gov (United States)

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  11. Virtual Grasping: Closed-Loop Force Control Using Electrotactile Feedback

    Directory of Open Access Journals (Sweden)

    Nikola Jorgovanovic

    2014-01-01

    Full Text Available Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously “unseen” objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  12. Imaging stability in force-feedback high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Kim, Byung I.; Boehm, Ryan D.

    2013-01-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate

  13. Forcing, feedback and internal variability in global temperature trends.

    Science.gov (United States)

    Marotzke, Jochem; Forster, Piers M

    2015-01-29

    Most present-generation climate models simulate an increase in global-mean surface temperature (GMST) since 1998, whereas observations suggest a warming hiatus. It is unclear to what extent this mismatch is caused by incorrect model forcing, by incorrect model response to forcing or by random factors. Here we analyse simulations and observations of GMST from 1900 to 2012, and show that the distribution of simulated 15-year trends shows no systematic bias against the observations. Using a multiple regression approach that is physically motivated by surface energy balance, we isolate the impact of radiative forcing, climate feedback and ocean heat uptake on GMST--with the regression residual interpreted as internal variability--and assess all possible 15- and 62-year trends. The differences between simulated and observed trends are dominated by random internal variability over the shorter timescale and by variations in the radiative forcings used to drive models over the longer timescale. For either trend length, spread in simulated climate feedback leaves no traceable imprint on GMST trends or, consequently, on the difference between simulations and observations. The claim that climate models systematically overestimate the response to radiative forcing from increasing greenhouse gas concentrations therefore seems to be unfounded.

  14. High Bandwidth Optical Links for Micro-Satellite Support

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)

    2016-01-01

    A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.

  15. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  16. Optimal feedback control of the forced van der Pol system

    International Nuclear Information System (INIS)

    Chagas, T.P.; Toledo, B.A.; Rempel, E.L.; Chian, A.C.-L.; Valdivia, J.A.

    2012-01-01

    A simple feedback control strategy for chaotic systems is investigated using the forced van der Pol system as an example. The strategy regards chaos control as an optimization problem, where the maximum magnitude Floquet multiplier of a target unstable periodic orbit (UPO) is used as a cost function that needs to be minimized. Thus, the method obtains the optimal control gain in terms of the stability of the target UPO. This strategy was recently proposed for the proportional feedback control (PFC) method. Here, it is extended to the highly popular delayed feedback control (DFC) method. Since the DFC method treats the system as a delay-differential equation whose phase space is infinite-dimensional, the characteristic multipliers are found through a truncation in the number of delayed states. Control of a target UPO is achieved for several values of the forcing amplitude. We compare the DFC and PFC methods in terms of stability of the controlled orbit, steady state error and control effort.

  17. Distributed force feedback in the spinal cord and the regulation of limb mechanics.

    Science.gov (United States)

    Nichols, T Richard

    2018-03-01

    This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.

  18. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    Science.gov (United States)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  19. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    International Nuclear Information System (INIS)

    Bippes, Christian A; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA

  20. Ultra-high bandwidth quantum secured data transmission

    Science.gov (United States)

    Dynes, James F.; Tam, Winci W.-S.; Plews, Alan; Fröhlich, Bernd; Sharpe, Andrew W.; Lucamarini, Marco; Yuan, Zhiliang; Radig, Christian; Straw, Andrew; Edwards, Tim; Shields, Andrew J.

    2016-10-01

    Quantum key distribution (QKD) provides an attractive means for securing communications in optical fibre networks. However, deployment of the technology has been hampered by the frequent need for dedicated dark fibres to segregate the very weak quantum signals from conventional traffic. Up until now the coexistence of QKD with data has been limited to bandwidths that are orders of magnitude below those commonly employed in fibre optic communication networks. Using an optimised wavelength divisional multiplexing scheme, we transport QKD and the prevalent 100 Gb/s data format in the forward direction over the same fibre for the first time. We show a full quantum encryption system operating with a bandwidth of 200 Gb/s over a 100 km fibre. Exploring the ultimate limits of the technology by experimental measurements of the Raman noise, we demonstrate it is feasible to combine QKD with 10 Tb/s of data over a 50 km link. These results suggest it will be possible to integrate QKD and other quantum photonic technologies into high bandwidth data communication infrastructures, thereby allowing their widespread deployment.

  1. Managing high-bandwidth real-time data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David D. [Los Alamos National Laboratory; Brandt, Scott A [Los Alamos National Laboratory; Bent, John M [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory

    2009-09-23

    There exist certain systems which generate real-time data at high bandwidth, but do not necessarily require the long-term retention of that data in normal conditions. In some cases, the data may not actually be useful, and in others, there may be too much data to permanently retain in long-term storage whether it is useful or not. However, certain portions of the data may be identified as being vitally important from time to time, and must therefore be retained for further analysis or permanent storage without interrupting the ongoing collection of new data. We have developed a system, Mahanaxar, intended to address this problem. It provides quality of service guarantees for incoming real-time data streams and simultaneous access to already-recorded data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and large data elements equally well. We will show that a prototype version of this system provides better performance than a flat file (traditional filesystem) based version, particularly with regard to quality of service guarantees and hard real-time requirements.

  2. Integration of a force feedback joystick with a VR system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A C [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report shows the result carried out at the Robotics and Information Systems Division of ENEA (National Agency for New Technology, Energy and the Environment) in the Casaccia Centre (Rome). The study presents an approach to the problem of integrating force feedback with a complete real-time virtual environment system: in particular bulky computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-quality forces are to be obtained. The control system has been developed for the force-feedback joystick Impulse 2000, from Immersion Co., and the integration of it to a virtual environment is presented here. Technical issues related to the development of control architectures for Internet-based exchange of haptic information, in a stable way are discussed. [Italian] Il presente rapporto descrive il lavoro eseguito nella divisione robotica e informatica del dipartimento innovazione dell'ENEA del centro ricerche della Casaccia (Roma): il sistema di controllo del dispositivo con ritorno di forza in un sistema RV (real-time virtual environment system) ed illustra l'approccio a questa problematica ed in particolare la lentezza di esecuzione del ciclo di calcoli per la resa delle immagini da parte del sistema grafico e del ciclio per la simulazione della dinamica di sistema. Viene descritto il sistema di controllo per il joystick con ritorno di forza Impulse 2000 (Immersion Co.) e la sua integrazione ad un ambiente virtuale. Sono inoltre discusse le problematiche connesse allo sviluppo di sistemi che consentano lo scambio dell'informazione tattile attraverso Internet.

  3. Integration of a force feedback joystick with a VR system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A.C. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione

    1999-07-01

    The report shows the result carried out at the Robotics and Information Systems Division of ENEA (National Agency for New Technology, Energy and the Environment) in the Casaccia Centre (Rome). The study presents an approach to the problem of integrating force feedback with a complete real-time virtual environment system: in particular bulky computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-quality forces are to be obtained. The control system has been developed for the force-feedback joystick Impulse 2000, from Immersion Co., and the integration of it to a virtual environment is presented here. Technical issues related to the development of control architectures for Internet-based exchange of haptic information, in a stable way are discussed. [Italian] Il presente rapporto descrive il lavoro eseguito nella divisione robotica e informatica del dipartimento innovazione dell'ENEA del centro ricerche della Casaccia (Roma): il sistema di controllo del dispositivo con ritorno di forza in un sistema RV (real-time virtual environment system) ed illustra l'approccio a questa problematica ed in particolare la lentezza di esecuzione del ciclo di calcoli per la resa delle immagini da parte del sistema grafico e del ciclio per la simulazione della dinamica di sistema. Viene descritto il sistema di controllo per il joystick con ritorno di forza Impulse 2000 (Immersion Co.) e la sua integrazione ad un ambiente virtuale. Sono inoltre discusse le problematiche connesse allo sviluppo di sistemi che consentano lo scambio dell'informazione tattile attraverso Internet.

  4. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.

    Science.gov (United States)

    Ben-Tzvi, Pinhas; Ma, Zhou

    2015-11-01

    This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.

  5. Assessing the quality of force feedback in soft tissue simulation.

    Science.gov (United States)

    Basafa, Ehsan; Sefati, Shahin; Okamura, Allison M

    2011-01-01

    Many types of deformable models have been proposed for simulation of soft tissue in surgical simulators, but their realism in comparison to actual tissue is rarely assessed. In this paper, a nonlinear mass-spring model is used for realtime simulation of deformable soft tissues and providing force feedback to a human operator. Force-deformation curves of real soft tissue samples were obtained experimentally, and the model was tuned accordingly. To test the realism of the model, we conducted two human-user experiments involving palpation with a rigid probe. First, in a discrimination test, users identified the correct category of real and virtual tissue better than chance, and tended to identify the tissues as real more often than virtual. Second, users identified real and virtual tissues by name, after training on only real tissues. The sorting accuracy was the same for both real and virtual tissues. These results indicate that, despite model limitations, the simulation could convey the feel of touching real tissues. This evaluation approach could be used to compare and validate various soft-tissue simulators.

  6. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.

    Science.gov (United States)

    Currie, Maria E; Talasaz, Ali; Rayman, Reiza; Chu, Michael W A; Kiaii, Bob; Peters, Terry; Trejos, Ana Luisa; Patel, Rajni

    2017-09-01

    The objective of this work was to determine the effect of both direct force feedback and visual force feedback on the amount of force applied to mitral valve tissue during ex vivo robotics-assisted mitral valve annuloplasty. A force feedback-enabled master-slave surgical system was developed to provide both visual and direct force feedback during robotics-assisted cardiac surgery. This system measured the amount of force applied by novice and expert surgeons to cardiac tissue during ex vivo mitral valve annuloplasty repair. The addition of visual (2.16 ± 1.67), direct (1.62 ± 0.86), or both visual and direct force feedback (2.15 ± 1.08) resulted in lower mean maximum force applied to mitral valve tissue while suturing compared with no force feedback (3.34 ± 1.93 N; P forces on cardiac tissue during robotics-assisted mitral valve annuloplasty suturing, force feedback may be required. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Nahavandi, Saeid; Smith, Julian

    2014-06-01

    Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems. The proposed methods and studies have some shortcomings. The main focus of this research is to overcome some of these limitations and to study the effects of force feedback in palpation in a more realistic fashion. A parallel robot assisted minimally invasive surgery system (PRAMiSS) with force feedback capabilities was employed to study the effects of realistic force feedback in palpation of artificial tissue samples. PRAMiSS is capable of actually measuring the tip/tissue interaction forces directly from the surgery site. Four sets of experiments using only vision feedback, only force feedback, simultaneous force and vision feedback and direct manipulation were conducted to evaluate the role of sensory feedback from sideways tip/tissue interaction forces with a scale factor of 100% in characterising tissues of varying stiffness. Twenty human subjects were involved in the experiments for at least 1440 trials. Friedman and Wilcoxon signed-rank tests were employed to statistically analyse the experimental results. Providing realistic force feedback in robotic assisted surgery systems improves the quality of tissue characterization procedures. Force feedback capability also increases the certainty of characterizing soft tissues compared with direct palpation using the lateral sides of index fingers. The force feedback capability can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations.

  8. Improving training of laparoscopic tissue manipulation skills using various visual force feedback types

    NARCIS (Netherlands)

    Smit, Daan; Spruit, Edward; Dankelman, J.; Tuijthof, G.J.M.; Hamming, J; Horeman, T.

    2017-01-01

    Background Visual force feedback allows trainees to learn laparoscopic tissue manipulation skills. The aim of this experimental study was to find the most efficient visual force feedback method to acquire these skills. Retention and transfer validity to an untrained task were assessed. Methods

  9. In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers.

    Science.gov (United States)

    Cochems, P; Kirk, A; Zimmermann, S

    2014-12-01

    Parasitic elements play an important role in the development of every high performance circuit. In the case of high gain, high bandwidth transimpedance amplifiers, the most important parasitic elements are parasitic capacitances at the input and in the feedback path, which significantly influence the stability, the frequency response, and the noise of the amplifier. As these parasitic capacitances range from a few picofarads down to only a few femtofarads, it is nearly impossible to measure them accurately using traditional LCR meters. Unfortunately, they also cannot be easily determined from the transfer function of the transimpedance amplifier, as it contains several overlapping effects and its measurement is only possible when the circuit is already stable. Therefore, we developed an in-circuit measurement method utilizing minimal modifications to the input stage in order to measure its parasitic capacitances directly and with unconditional stability. Furthermore, using the data acquired with this measurement technique, we both proposed a model for the complicated frequency response of high value thick film resistors as they are used in high gain transimpedance amplifiers and optimized our transimpedance amplifier design.

  10. Research of the master-slave robot surgical system with the function of force feedback.

    Science.gov (United States)

    Shi, Yunyong; Zhou, Chaozheng; Xie, Le; Chen, Yongjun; Jiang, Jun; Zhang, Zhenfeng; Deng, Ze

    2017-12-01

    Surgical robots lack force feedback, which may lead to operation errors. In order to improve surgical outcomes, this research developed a new master-slave surgical robot, which was designed with an integrated force sensor. The new structure designed for the master-slave robot employs a force feedback mechanism. A six-dimensional force sensor was mounted on the tip of the slave robot's actuator. Sliding model control was adopted to control the slave robot. According to the movement of the master system manipulated by the surgeon, the slave's movement and the force feedback function were validated. The motion was completed, the standard deviation was calculated, and the force data were detected. Hence, force feedback was realized in the experiment. The surgical robot can help surgeons to complete trajectory motions with haptic sensation. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Influence of Force and Torque Feedback on Operator Performance in a VR-Based Suturing Task

    Directory of Open Access Journals (Sweden)

    L. Santos-Carreras

    2010-01-01

    Full Text Available The introduction of Minimally Invasive Surgery (MIS has revolutionised surgical care, considerably improving the quality of many surgical procedures. Technological advances, particularly in robotic surgery systems, have reduced the complexity of such an approach, paving the way for even less invasive surgical trends. However, the fact that haptic feedback has been progressively lost through this transition is an issue that to date has not been solved. Whereas traditional open surgery provides full haptic feedback, the introduction of MIS has eliminated the possibility of direct palpation and tactile exploration. Nevertheless, these procedures still provide a certain amount of force feedback through the rigid laparoscopic tool. Many of the current telemanipulated robotic surgical systems in return do not provide full haptic feedback, which to a certain extent can be explained by the requirement of force sensors integrated into the tools of the slave robot and actuators in the surgeon’s master console. In view of the increased complexity and cost, the benefit of haptic feedback is open to dispute. Nevertheless, studies have shown the importance of haptic feedback, especially when visual feedback is unreliable or absent. In order to explore the importance of haptic feedback for the surgeon’s master console of a novel teleoperated robotic surgical system, we have identified a typical surgical task where performance could potentially be improved by haptic feedback, and investigate performance with and without this feedback. Two rounds of experiments are performed with 10 subjects, six of them with a medical background. Results show that feedback conditions, including force feedback, significantly improve task performance independently of the operator’s suturing experience. There is, however, no further significant improvement when torque feedback is added. Consequently, it is deduced that force feedback in translations improves subject

  12. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the demands of future high-capacity free space optical communications links, a high bandwidth, near infrared (NIR), single photon sensitive optoelectronic...

  13. Effects of 3D virtual haptics force feedback on brand personality perception: the mediating role of physical presence in advergames.

    Science.gov (United States)

    Jin, Seung-A Annie

    2010-06-01

    This study gauged the effects of force feedback in the Novint Falcon haptics system on the sensory and cognitive dimensions of a virtual test-driving experience. First, in order to explore the effects of tactile stimuli with force feedback on users' sensory experience, feelings of physical presence (the extent to which virtual physical objects are experienced as actual physical objects) were measured after participants used the haptics interface. Second, to evaluate the effects of force feedback on the cognitive dimension of consumers' virtual experience, this study investigated brand personality perception. The experiment utilized the Novint Falcon haptics controller to induce immersive virtual test-driving through tactile stimuli. The author designed a two-group (haptics stimuli with force feedback versus no force feedback) comparison experiment (N = 238) by manipulating the level of force feedback. Users in the force feedback condition were exposed to tactile stimuli involving various force feedback effects (e.g., terrain effects, acceleration, and lateral forces) while test-driving a rally car. In contrast, users in the control condition test-drove the rally car using the Novint Falcon but were not given any force feedback. Results of ANOVAs indicated that (a) users exposed to force feedback felt stronger physical presence than those in the no force feedback condition, and (b) users exposed to haptics stimuli with force feedback perceived the brand personality of the car to be more rugged than those in the control condition. Managerial implications of the study for product trial in the business world are discussed.

  14. Isometric force exaggeration in simulated weightlessness by water immersion: role of visual feedback.

    Science.gov (United States)

    Dalecki, Marc; Bock, Otmar

    2014-06-01

    Previous studies reported that humans produce exaggerated isometric forces (20-50%) in microgravity, hypergravity, and under water. Subjects were not provided with visual feedback and exaggerations were attributed to proprioceptive deficits. The few studies that provided visual feedback in micro- and hypergravity found no deficits. The present work was undertaken to find out whether visual feedback can reduce or eliminate isometric force exaggerations during shallow water immersion, a working environment for astronauts and divers. There were 48 subjects who had to produce isometric forces of 15 N with a joystick; targets were presented via screen. Procedures were similar to earlier studies, but provided visual feedback. Subjects were tested 16.4 ft (5 m) under water (WET) and on dry land (DRY). Response accuracy was calculated with landmarks such as initial and peak force magnitude, and response timing. Initial force and response timing were equal in WET compared to DRY. A small but significant force exaggeration (+5%) remained for peak force in WET that was limited to directions toward the trunk. Force exaggeration under water is largely compensated, but not completely eliminated by visual feedback. As in earlier studies without visual feedback, force exaggeration manifested during later but not early response parts, speaking for impaired proprioceptive feedback rather than for erroneous central motor planning. Since in contrast to micro/hypergravity, visual feedback did not sufficiently abolish force deficits under water, proprioceptive information seems to be weighted differently in micro/hypergravity and shallow water immersion, probably because only the latter environment produces increased ambient pressure, which is known to induce neuronal changes.

  15. Interrater reliability of quantitative ultrasound using force feedback among examiners with varied levels of experience

    Directory of Open Access Journals (Sweden)

    Michael O. Harris-Love

    2016-06-01

    Full Text Available Background. Quantitative ultrasound measures are influenced by multiple external factors including examiner scanning force. Force feedback may foster the acquisition of reliable morphometry measures under a variety of scanning conditions. The purpose of this study was to determine the reliability of force-feedback image acquisition and morphometry over a range of examiner-generated forces using a muscle tissue-mimicking ultrasound phantom. Methods. Sixty material thickness measures were acquired from a muscle tissue mimicking phantom using B-mode ultrasound scanning by six examiners with varied experience levels (i.e., experienced, intermediate, and novice. Estimates of interrater reliability and measurement error with force feedback scanning were determined for the examiners. In addition, criterion-based reliability was determined using material deformation values across a range of examiner scanning forces (1–10 Newtons via automated and manually acquired image capture methods using force feedback. Results. All examiners demonstrated acceptable interrater reliability (intraclass correlation coefficient, ICC = .98, p .90, p < .001, independent of their level of experience. The measurement error among all examiners was 1.5%–2.9% across all applied stress conditions. Conclusion. Manual image capture with force feedback may aid the reliability of morphometry measures across a range of examiner scanning forces, and allow for consistent performance among examiners with differing levels of experience.

  16. Performance limitations of piezoelectric and force feedback electrostatic transducers in different applications

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Karatzas, L S

    2009-01-01

    Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.

  17. Effects of age and content of augmented feedback on learning an isometric force-production task

    NARCIS (Netherlands)

    van Dijk, Henk; Mulder, Theo; Hermens, Hermie J.

    2007-01-01

    This study addressed the interaction between age and the informational content of feedback on learning an isometric force-production task. Healthy men and women (30 young adults: 20 to 35 years; 30 older adults: 55 to 70 years) were randomly assigned to a certain type of feedback: knowledge of

  18. The effect of cognitive load on adaptation to differences in steering wheel force feedback level

    NARCIS (Netherlands)

    Anand, S.; Terken, J.; Hogema, J.

    2013-01-01

    In an earlier study it was found that drivers can adjust quickly to different force feedback levels on the steering wheel, even for such extreme levels as zero feedback. It was hypothesized that, due to lack of cognitive load, participants could easily and quickly learn how to deal with extreme

  19. Performance limitations of piezoelectric and force feedback electrostatic transducers in different applications

    Energy Technology Data Exchange (ETDEWEB)

    Hadjiloucas, S; Walker, G C; Bowen, J W [Cybernetics, School of Systems Engineering, University of Reading, RG6 6AY (United Kingdom); Karatzas, L S, E-mail: s.hadjiloucas@reading.ac.u [Temasek Polytechnic, School of Engineering, 21 Tampines Avenue 1, Singapore, 529757 (Singapore)

    2009-07-01

    Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.

  20. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    Science.gov (United States)

    Mugge, Winfred; van der Helm, Frans C T; Schouten, Alfred C

    2013-01-01

    Complex regional pain syndrome (CRPS) is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  1. Integration of sensory force feedback is disturbed in CRPS-related dystonia.

    Directory of Open Access Journals (Sweden)

    Winfred Mugge

    Full Text Available Complex regional pain syndrome (CRPS is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. The origin of this movement disorder is poorly understood, although recent insights suggest involvement of disturbed force feedback. Assessment of sensorimotor integration may provide insight into the pathophysiology of fixed dystonia. Sensory weighting is the process of integrating and weighting sensory feedback channels in the central nervous system to improve the state estimate. It was hypothesized that patients with CRPS-related dystonia bias sensory weighting of force and position toward position due to the unreliability of force feedback. The current study provides experimental evidence for dysfunctional sensory integration in fixed dystonia, showing that CRPS-patients with fixed dystonia weight force and position feedback differently than controls do. The study shows reduced force feedback weights in CRPS-patients with fixed dystonia, making it the first to demonstrate disturbed integration of force feedback in fixed dystonia, an important step towards understanding the pathophysiology of fixed dystonia.

  2. Force control in the absence of visual and tactile feedback

    NARCIS (Netherlands)

    Mugge, W.; Abbink, D.A.; Schouten, Alfred Christiaan; van der Helm, F.C.T.; Arendzen, J.H.; Meskers, C.G.M.

    2013-01-01

    Motor control tasks like stance or object handling require sensory feedback from proprioception, vision and touch. The distinction between tactile and proprioceptive sensors is not frequently made in dynamic motor control tasks, and if so, mostly based on signal latency. We previously found that

  3. Force Maintenance Accuracy Using a Tool: Effects of Magnitude and Feedback.

    Science.gov (United States)

    Wang, Dangxiao; Jiao, Jian; Yang, Gaofeng; Zhang, Yuru

    2016-01-01

    The ability to precisely produce a force via a hand-held tool is crucial in fine manipulations. In this paper, we study the error in maintaining a target force ranging from 0.5 to 5 N under two concurrent feedback conditions: pure haptic feedback (H), and visual plus haptic feedback (V + H). The results show that absolute error (AE) increases along with the increasing force magnitudes under both feedback conditions. For target forces ranging from 1.5 to 5 N, the relative error (RE) is approximately constant under both feedback conditions, while the RE significantly increases for the small target forces of 0.5 and 1 N. The effect of force magnitude on the coefficient of variation (CoV) is not significant for target forces ranging from 1.5 to 5 N. For both the RE and the CoV, the values under the H condition are significantly larger than those under the V + H condition. The effect of manipulation mode (i.e., a hand-held tool or a fingertip) on force maintenance accuracy is complex, i.e., its effect on RE is not significant while its effect on CoV is significant. Only for the magnitude of 0.5 N, the RE of using the tool was significantly greater than that of using the fingertip under both feedback conditions. For both the RE and the CoV, no interaction effect exists between manipulation mode, force magnitude and feedback condition.

  4. Research of a New 6-Dof Force Feedback Hand Controller System

    Directory of Open Access Journals (Sweden)

    Xin Gao

    2014-01-01

    Full Text Available The field of teleoperation with force telepresence has expanded its scope to include manipulation at different scales and in virtual worlds, and the key component of which is force feedback hand controller. This paper presents a novel force feedback hand controller system, including a 3-dof translational and 3-dof rotational hand controllers, respectively, to implement position and posture teleoperation of the robot end effector. The 3-dof translational hand controller adopts innovative three-axes decoupling structure based on the linear motor; the 3-dof rotational hand controller adopts serial mechanism based on three-axes intersecting at one point, improving its overall stiffness. Based on the kinematics, statics, and dynamics analyses for two platforms separately, the system applies big closed-loop force control method based on the zero force/torque, improving the feedback force/torque accuracy effectively. Experimental results show that self-developed 6-dof force feedback hand controller has good mechanical properties. The translational hand controller has the following advantages: simple kinematics solver, fast dynamic response, and better than 0.05 mm accuracy of three-axis end positioning, while the advantages of the rotational hand controller are wide turning space, larger than 1 Nm feedback, greater than 180 degrees of operating space of three axes, respectively, and high operation precision.

  5. Reducing Trunk Compensation in Stroke Survivors: A Randomized Crossover Trial Comparing Visual and Force Feedback Modalities.

    Science.gov (United States)

    Valdés, Bulmaro Adolfo; Schneider, Andrea Nicole; Van der Loos, H F Machiel

    2017-10-01

    To investigate whether the compensatory trunk movements of stroke survivors observed during reaching tasks can be decreased by force and visual feedback, and to examine whether one of these feedback modalities is more efficacious than the other in reducing this compensatory tendency. Randomized crossover trial. University research laboratory. Community-dwelling older adults (N=15; 5 women; mean age, 64±11y) with hemiplegia from nontraumatic hemorrhagic or ischemic stroke (>3mo poststroke), recruited from stroke recovery groups, the research group's website, and the community. In a single session, participants received augmented feedback about their trunk compensation during a bimanual reaching task. Visual feedback (60 trials) was delivered through a computer monitor, and force feedback (60 trials) was delivered through 2 robotic devices. Primary outcome measure included change in anterior trunk displacement measured by motion tracking camera. Secondary outcomes included trunk rotation, index of curvature (measure of straightness of hands' path toward target), root mean square error of hands' movement (differences between hand position on every iteration of the program), completion time for each trial, and posttest questionnaire to evaluate users' experience and system's usability. Both visual (-45.6% [45.8 SD] change from baseline, P=.004) and force (-41.1% [46.1 SD], P=.004) feedback were effective in reducing trunk compensation. Scores on secondary outcome measures did not improve with either feedback modality. Neither feedback condition was superior. Visual and force feedback show promise as 2 modalities that could be used to decrease trunk compensation in stroke survivors during reaching tasks. It remains to be established which one of these 2 feedback modalities is more efficacious than the other as a cue to reduce compensatory trunk movement. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Study on real-time force feedback for a master-slave interventional surgical robotic system.

    Science.gov (United States)

    Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua

    2018-04-13

    In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.

  7. Haptic force-feedback devices for the office computer: performance and musculoskeletal loading issues.

    Science.gov (United States)

    Dennerlein, J T; Yang, M C

    2001-01-01

    Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.

  8. The effect of force feedback delay on stiffness perception and grip force modulation during tool-mediated interaction with elastic force fields.

    Science.gov (United States)

    Leib, Raz; Karniel, Amir; Nisky, Ilana

    2015-05-01

    During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.

  9. High Bandwidth Communications Links Between Heterogeneous Autonomous Vehicles Using Sensor Network Modeling and Extremum Control Approaches

    Science.gov (United States)

    2008-12-01

    In future network-centric warfare environments, teams of autonomous vehicles will be deployed in a coorperative manner to conduct wide-area...of data back to the command station, autonomous vehicles configured with high bandwidth communication system are positioned between the command

  10. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  11. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery.

    Science.gov (United States)

    Paydar, Omeed H; Wottawa, Christopher R; Fan, Richard E; Dutson, Erik P; Grundfest, Warren S; Culjat, Martin O; Candler, Rob N

    2012-01-01

    Although surgical robotic systems provide several advantages over conventional minimally invasive techniques, they are limited by a lack of tactile feedback. Recent research efforts have successfully integrated tactile feedback components onto surgical robotic systems, and have shown significant improvement to surgical control during in vitro experiments. The primary barrier to the adoption of tactile feedback in clinical use is the unavailability of suitable force sensing technologies. This paper describes the design and fabrication of a thin-film capacitive force sensor array that is intended for integration with tactile feedback systems. This capacitive force sensing technology could provide precise, high-sensitivity, real-time responses to both static and dynamic loads. Capacitive force sensors were designed to operate with optimal sensitivity and dynamic range in the range of forces typical in minimally invasive surgery (0-40 N). Initial results validate the fabrication of these capacitive force-sensing arrays. We report 16.3 pF and 146 pF for 1-mm(2) and 9-mm(2) capacitive areas, respectively, whose values are within 3% of theoretical predictions.

  12. An implementation of sensor-based force feedback in a compact laparoscopic surgery robot.

    Science.gov (United States)

    Lee, Duk-Hee; Choi, Jaesoon; Park, Jun-Woo; Bach, Du-Jin; Song, Seung-Jun; Kim, Yoon-Ho; Jo, Yungho; Sun, Kyung

    2009-01-01

    Despite the rapid progress in the clinical application of laparoscopic surgery robots, many shortcomings have not yet been fully overcome, one of which is the lack of reliable haptic feedback. This study implemented a force-feedback structure in our compact laparoscopic surgery robot. The surgery robot is a master-slave configuration robot with 5 DOF (degree of freedom corresponding laparoscopic surgical motion. The force-feedback implementation was made in the robot with torque sensors and controllers installed in the pitch joint of the master and slave robots. A simple dynamic model of action-reaction force in the slave robot was used, through which the reflective force was estimated and fed back to the master robot. The results showed the system model could be identified with significant fidelity and the force feedback at the master robot was feasible. However, the qualitative human assessment of the fed-back force showed only limited level of object discrimination ability. Further developments are underway with this result as a framework.

  13. CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations

    Science.gov (United States)

    Andrews, Timothy; Forster, Piers M.

    2008-02-01

    Climate forcing and feedbacks are diagnosed from seven slab-ocean GCMs for 2 × CO2 using a regression method. Results are compared to those using conventional methodologies to derive a semi-direct forcing due to tropospheric adjustment, analogous to the semi-direct effect of absorbing aerosols. All models show a cloud semi-direct effect, indicating a rapid cloud response to CO2; cloud typically decreases, enhancing the warming. Similarly there is evidence of semi-direct effects from water-vapour, lapse-rate, ice and snow. Previous estimates of climate feedbacks are unlikely to have taken these semi-direct effects into account and so misinterpret processes as feedbacks that depend only on the forcing, but not the global surface temperature. We show that the actual cloud feedback is smaller than what previous methods suggest and that a significant part of the cloud response and the large spread between previous model estimates of cloud feedback is due to the semi-direct forcing.

  14. Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.

    Science.gov (United States)

    Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L; Cutkosky, Mark R

    2014-09-01

    This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).

  15. Humans can integrate force feedback to toes in their sensorimotor control of a robotic hand.

    Science.gov (United States)

    Panarese, Alessandro; Edin, Benoni B; Vecchi, Fabrizio; Carrozza, Maria C; Johansson, Roland S

    2009-12-01

    Tactile sensory feedback is essential for dexterous object manipulation. Users of hand myoelectric prostheses without tactile feedback must depend essentially on vision to control their device. Indeed, improved tactile feedback is one of their main priorities. Previous research has provided evidence that conveying tactile feedback can improve prostheses control, although additional effort is required to solve problems related to pattern recognition learning, unpleasant sensations, sensory adaptation, and low spatiotemporal resolution. Still, these studies have mainly focused on providing stimulation to hairy skin regions close to the amputation site, i.e., usually to the upper arm. Here, we explored the possibility to provide tactile feedback to the glabrous skin of toes, which have mechanical and neurophysiological properties similar to the fingertips. We explored this paradigm in a grasp-and-lift task, in which healthy participants controlled two opposing digits of a robotic hand by changing the spacing of their index finger and thumb. The normal forces applied by the robotic fingertips to a test object were fed back to the right big and second toe. We show that within a few lifting trials, all the participants incorporated the force feedback received by the foot in their sensorimotor control of the robotic hand.

  16. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    Science.gov (United States)

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  17. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses.

    Science.gov (United States)

    Bachschmidt, Theresa J; Sutter, Reto; Jakob, Peter M; Pfirrmann, Christian W A; Nittka, Mathias

    2015-06-01

    To investigate the impact of high-bandwidth radiofrequency (RF) pulses used in turbo spin echo (TSE) sequences or combined with slice encoding for metal artifact correction (SEMAC) on artifact reduction at 3 Tesla in the knee in the presence of metal. Local transmit/receive coils feature increased maximum B1 amplitude, reduced SAR exposition and thus enable the application of high-bandwidth RF pulses. Susceptibility-induced through-plane distortion scales inversely with the RF bandwidth and the view angle, hence blurring, increases for higher RF bandwidths, when SEMAC is used. These effects were assessed for a phantom containing a total knee arthroplasty. TSE and SEMAC sequences with conventional and high RF bandwidths and different contrasts were tested on eight patients with different types of implants. To realize scan times of 7 to 9 min, SEMAC was always applied with eight slice-encoding steps and distortion was rated by two radiologists. A local transmit/receive knee coil enables the use of an RF bandwidth of 4 kHz compared with 850 Hz in conventional sequences. Phantom scans confirm the relation of RF bandwidth and through-plane distortion, which can be reduced up to 79%, and demonstrate the increased blurring for high-bandwidth RF pulses. In average, artifacts in this RF mode are rated hardly visible for patients with joint arthroplasties, when eight SEMAC slice-encoding steps are applied, and for patients with titanium fixtures, when TSE is used. The application of high-bandwidth RF pulses by local transmit coils substantially reduces through-plane distortion artifacts at 3 Tesla. © 2014 Wiley Periodicals, Inc.

  18. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  19. Using mixed reality, force feedback and tactile augmentation to improve the realism of medical simulation.

    Science.gov (United States)

    Fisher, J Brian; Porter, Susan M

    2002-01-01

    This paper describes an application of a display approach which uses chromakey techniques to composite real and computer-generated images allowing a user to see his hands and medical instruments collocated with the display of virtual objects during a medical training simulation. Haptic feedback is provided through the use of a PHANTOM force feedback device in addition to tactile augmentation, which allows the user to touch virtual objects by introducing corresponding real objects in the workspace. A simplified catheter introducer insertion simulation was developed to demonstrate the capabilities of this approach.

  20. Template model inspired leg force feedback based control can assist human walking.

    Science.gov (United States)

    Zhao, Guoping; Sharbafi, Maziar; Vlutters, Mark; van Asseldonk, Edwin; Seyfarth, Andre

    2017-07-01

    We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template model is capable of stabilizing the trunk and reproduce a human-like hip torque during the stance phase of walking. With leg force and joint angle feedback inspired by the VPP template model, our controller provides hip and knee torque assistance during the stance phase. A pilot experiment was conducted with four healthy subjects. Joint kinematics, leg muscle electromyography (EMG), and metabolic cost were measured during walking with and without assistance. Results show that, for 0.6 m/s walking, our controller can reduce leg muscle activations, especially for the medial gastrocnemius (about 16.0%), while hip and knee joint kinematics remain similar to the condition without the controller. Besides, the controller also reduces 10% of the net metabolic cost during walking. This paper demonstrates walking assistance benefits of the VPP template model for the first time. The support of human walking is achieved by a force feedback of leg force applied to the control of hip and knee joints. It can help us to provide a framework for investigating walking assistance control in the future.

  1. Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback

    Science.gov (United States)

    Bicen, Baris

    Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress

  2. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    International Nuclear Information System (INIS)

    Ammendola, R; Salamon, A; Salina, G; Biagioni, A; Prezza, O; Cicero, F Lo; Lonardo, A; Paolucci, P S; Rossetti, D; Tosoratto, L; Vicini, P; Simula, F

    2011-01-01

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera ® FPGA, are provided.

  3. APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R; Salamon, A; Salina, G [INFN Tor Vergata, Roma (Italy); Biagioni, A; Prezza, O; Cicero, F Lo; Lonardo, A; Paolucci, P S; Rossetti, D; Tosoratto, L; Vicini, P [INFN Roma, Roma (Italy); Simula, F [Sapienza Universita di Roma, Roma (Italy)

    2011-12-23

    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera{sup Registered-Sign} FPGA, are provided.

  4. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, J.; Gunter, D.; Tierney, B.; Allcock, B.; Bester, J.; Bresnahan, J.; Tuecke, S.

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. From their work developing a scalable distributed network cache, the authors have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). The authors discuss several hardware and software design techniques, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. The authors describe results from the Supercomputing 2000 conference

  5. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  6. Representing delayed force feedback as a combination of current and delayed states.

    Science.gov (United States)

    Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana

    2017-10-01

    To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the

  7. Resonant passive–active vibration absorber with integrated force feedback control

    International Nuclear Information System (INIS)

    Høgsberg, Jan; Brodersen, Mark L; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction. (technical note)

  8. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  9. Stereo advantage for a peg-in-hole task using a force-feedback manipulator

    Science.gov (United States)

    Spain, Edward H.

    1990-01-01

    An improved assessment methodology has been implemented at NOSC and tested using an instrumented peg-in-hole (PiH) taskboard. Several aspects of the methodology are discussed in light of their implications for future studies of manipulator performance. Using a simple (but high-fidelity) force-feedback manipulator, a group of 9 trained operators showed a consistent advantage for stereoscopic TV viewing over monoscopic TV viewing when performing the PiH task. To introduce a controlled element of spatial uncertainty into the testing procedure, taskboard orientation relative to the manipulator and remote video camera head was changed in a randomized order on a trial-by-trial basis. The stereoscopic advantage demonstrated by this study can reasonably be expected to be even more pronounced as the quality of the stereo TV interface is improved and force-feedback provided through the manipulator system is diminished and/or distorted.

  10. End-Point Contact Force Control with Quantitative Feedback Theory for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2012-12-01

    Full Text Available Robot force control is an important issue for intelligent mobile robotics. The end-point stiffness of a robot is a key and open problem in the research community. The control strategies are mostly dependent on both the specifications of the task and the environment of the robot. Due to the limited stiffness of the end-effector, we may adopt inherent torque to feedback the oscillations of the controlled force. This paper proposes an effective control strategy which contains a controller using quantitative feedback theory. The nested loop controllers take into account the physical limitation of the system's inner variables and harmful interference. The biggest advantage of the method is its simplicity in both the design process and the implementation of the control algorithm in engineering practice. Taking the one-link manipulator as an example, numerical experiments are carried out to verify the proposed control method. The results show the satisfactory performance.

  11. Compliant actuation based on dielectric elastomers for a force-feedback device: modeling and experimental evaluation

    Directory of Open Access Journals (Sweden)

    R. Vertechy

    2013-01-01

    Full Text Available Thanks to their large power densities, low costs and shock-insensitivity, Dielectric Elastomers (DE seem to be a promising technology for the implementation of light and compact force-feedback devices such as, for instance, haptic interfaces. Nonetheless, the development of these kinds of DE-based systems is not trivial owing to the relevant dissipative phenomena that affect the DE when subjected to rapidly changing deformations. In this context, the present paper addresses the development of a force feedback controller for an agonist-antagonist linear actuator composed of a couple of conically-shaped DE films and a compliant mechanism behaving as a negative-rate bias spring. The actuator is firstly modeled accounting for the visco-hyperelastic nature of the DE material. The model is then linearized and employed for the design of a force controller. The controller employs a position sensor, which determines the actuator configuration, and a force sensor, which measures the interaction force that the actuator exchanges with the environment. In addition, an optimum full-state observer is also implemented, which enables both accurate estimation of the time-dependent behavior of the elastomeric material and adequate suppression of the sensor measurement noise. Preliminary experimental results are provided to validate the proposed actuator-controller architecture.

  12. High-bandwidth and flexible tracking control for precision motion with application to a piezo nanopositioner.

    Science.gov (United States)

    Feng, Zhao; Ling, Jie; Ming, Min; Xiao, Xiao-Hui

    2017-08-01

    For precision motion, high-bandwidth and flexible tracking are the two important issues for significant performance improvement. Iterative learning control (ILC) is an effective feedforward control method only for systems that operate strictly repetitively. Although projection ILC can track varying references, the performance is still limited by the fixed-bandwidth Q-filter, especially for triangular waves tracking commonly used in a piezo nanopositioner. In this paper, a wavelet transform-based linear time-varying (LTV) Q-filter design for projection ILC is proposed to compensate high-frequency errors and improve the ability to tracking varying references simultaneously. The LVT Q-filter is designed based on the modulus maximum of wavelet detail coefficients calculated by wavelet transform to determine the high-frequency locations of each iteration with the advantages of avoiding cross-terms and segmenting manually. The proposed approach was verified on a piezo nanopositioner. Experimental results indicate that the proposed approach can locate the high-frequency regions accurately and achieve the best performance under varying references compared with traditional frequency-domain and projection ILC with a fixed-bandwidth Q-filter, which validates that through implementing the LTV filter on projection ILC, high-bandwidth and flexible tracking can be achieved simultaneously by the proposed approach.

  13. Rehabilitation of activities of daily living in virtual environments with intuitive user interface and force feedback.

    Science.gov (United States)

    Chiang, Vico Chung-Lim; Lo, King-Hung; Choi, Kup-Sze

    2017-10-01

    To investigate the feasibility of using a virtual rehabilitation system with intuitive user interface and force feedback to improve the skills in activities of daily living (ADL). A virtual training system equipped with haptic devices was developed for the rehabilitation of three ADL tasks - door unlocking, water pouring and meat cutting. Twenty subjects with upper limb disabilities, supervised by two occupational therapists, received a four-session training using the system. The task completion time and the amount of water poured into a virtual glass were recorded. The performance of the three tasks in reality was assessed before and after the virtual training. Feedback of the participants was collected with questionnaires after the study. The completion time of the virtual tasks decreased during the training (p water successfully poured increased (p = 0.051). The score of the Borg scale of perceived exertion was 1.05 (SD = 1.85; 95% CI =  0.18-1.92) and that of the task specific feedback questionnaire was 31 (SD =  4.85; 95% CI =  28.66-33.34). The feedback of the therapists suggested a positive rehabilitation effect. The participants had positive perception towards the system. The system can potentially be used as a tool to complement conventional rehabilitation approaches of ADL. Implications for rehabilitation Rehabilitation of activities of daily living can be facilitated using computer-assisted approaches. The existing approaches focus on cognitive training rather than the manual skills. A virtual training system with intuitive user interface and force feedback was designed to improve the learning of the manual skills. The study shows that system could be used as a training tool to complement conventional rehabilitation approaches.

  14. Force control tasks with pure haptic feedback promote short-term focused attention.

    Science.gov (United States)

    Wang, Dangxiao; Zhang, Yuru; Yang, Xiaoxiao; Yang, Gaofeng; Yang, Yi

    2014-01-01

    Focused attention has great impact on our quality of life. Our learning, social skills and even happiness are closely intertwined with our capacity for focused attention. Attention promotion is replete with examples of training-induced increases in attention capability, most of which rely on visual and auditory stimulation. Pure haptic stimulation to increase attention capability is rarely found. We show that accurate force control tasks with pure haptic feedback enhance short-term focused attention. Participants were trained by a force control task in which information from visual and auditory channels was blocked, and only haptic feedback was provided. The trainees were asked to exert a target force within a pre-defined force tolerance for a specific duration. The tolerance was adaptively modified to different levels of difficulty to elicit full participant engagement. Three attention tests showed significant changes in different aspects of focused attention in participants who had been trained as compared with those who had not, thereby illustrating the role of haptic-based sensory-motor tasks in the promotion of short-term focused attention. The findings highlight the potential value of haptic stimuli in brain plasticity and serve as a new tool to extend existing computer games for cognitive enhancement.

  15. The vertical distribution of climate forcings and feedbacks from the surface to top of atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Previdi, Michael [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States); Liepert, Beate G. [NorthWest Research Associates, Redmond, WA (United States)

    2012-08-15

    The radiative forcings and feedbacks that determine Earth's climate sensitivity are typically defined at the top-of-atmosphere (TOA) or tropopause, yet climate sensitivity itself refers to a change in temperature at the surface. In this paper, we describe how TOA radiative perturbations translate into surface temperature changes. It is shown using first principles that radiation changes at the TOA can be equated with the change in energy stored by the oceans and land surface. This ocean and land heat uptake in turn involves an adjustment of the surface radiative and non-radiative energy fluxes, with the latter being comprised of the turbulent exchange of latent and sensible heat between the surface and atmosphere. We employ the radiative kernel technique to decompose TOA radiative feedbacks in the IPCC Fourth Assessment Report climate models into components associated with changes in radiative heating of the atmosphere and of the surface. (We consider the equilibrium response of atmosphere-mixed layer ocean models subjected to an instantaneous doubling of atmospheric CO{sub 2}). It is shown that most feedbacks, i.e., the temperature, water vapor and cloud feedbacks, (as well as CO{sub 2} forcing) affect primarily the turbulent energy exchange at the surface rather than the radiative energy exchange. Specifically, the temperature feedback increases the surface turbulent (radiative) energy loss by 2.87 W m{sup -2} K{sup -1} (0.60 W m{sup -2} K{sup -1}) in the multimodel mean; the water vapor feedback decreases the surface turbulent energy loss by 1.07 W m{sup -2} K{sup -1} and increases the surface radiative heating by 0.89 W m{sup -2} K{sup -1}; and the cloud feedback decreases both the turbulent energy loss and the radiative heating at the surface by 0.43 and 0.24 W m{sup -2} K{sup -1}, respectively. Since changes to the surface turbulent energy exchange are dominated in the global mean sense by changes in surface evaporation, these results serve to highlight

  16. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Science.gov (United States)

    Dykstra, D.; Bockelman, B.; Blomer, J.; Herner, K.; Levshina, T.; Slyz, M.

    2015-12-01

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called "alien cache" to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached locally on the

  17. Engineering the CernVM-Filesystem as a High Bandwidth Distributed Filesystem for Auxiliary Physics Data

    Energy Technology Data Exchange (ETDEWEB)

    Dykstra, D. [Fermilab; Bockelman, B. [Nebraska U.; Blomer, J. [CERN; Herner, K. [Fermilab; Levshina, T. [Fermilab; Slyz, M. [Fermilab

    2015-12-23

    A common use pattern in the computing models of particle physics experiments is running many distributed applications that read from a shared set of data files. We refer to this data is auxiliary data, to distinguish it from (a) event data from the detector (which tends to be different for every job), and (b) conditions data about the detector (which tends to be the same for each job in a batch of jobs). Relatively speaking, conditions data also tends to be relatively small per job where both event data and auxiliary data are larger per job. Unlike event data, auxiliary data comes from a limited working set of shared files. Since there is spatial locality of the auxiliary data access, the use case appears to be identical to that of the CernVM- Filesystem (CVMFS). However, we show that distributing auxiliary data through CVMFS causes the existing CVMFS infrastructure to perform poorly. We utilize a CVMFS client feature called 'alien cache' to cache data on existing local high-bandwidth data servers that were engineered for storing event data. This cache is shared between the worker nodes at a site and replaces caching CVMFS files on both the worker node local disks and on the site's local squids. We have tested this alien cache with the dCache NFSv4.1 interface, Lustre, and the Hadoop Distributed File System (HDFS) FUSE interface, and measured performance. In addition, we use high-bandwidth data servers at central sites to perform the CVMFS Stratum 1 function instead of the low-bandwidth web servers deployed for the CVMFS software distribution function. We have tested this using the dCache HTTP interface. As a result, we have a design for an end-to-end high-bandwidth distributed caching read-only filesystem, using existing client software already widely deployed to grid worker nodes and existing file servers already widely installed at grid sites. Files are published in a central place and are soon available on demand throughout the grid and cached

  18. Three-Axis Attitude Estimation With a High-Bandwidth Angular Rate Sensor

    Science.gov (United States)

    Bayard, David S.; Green, Joseph J.

    2013-01-01

    A continuing challenge for modern instrument pointing control systems is to meet the increasingly stringent pointing performance requirements imposed by emerging advanced scientific, defense, and civilian payloads. Instruments such as adaptive optics telescopes, space interferometers, and optical communications make unprecedented demands on precision pointing capabilities. A cost-effective method was developed for increasing the pointing performance for this class of NASA applications. The solution was to develop an attitude estimator that fuses star tracker and gyro measurements with a high-bandwidth angular rotation sensor (ARS). An ARS is a rate sensor whose bandwidth extends well beyond that of the gyro, typically up to 1,000 Hz or higher. The most promising ARS sensor technology is based on a magnetohydrodynamic concept, and has recently become available commercially. The key idea is that the sensor fusion of the star tracker, gyro, and ARS provides a high-bandwidth attitude estimate suitable for supporting pointing control with a fast-steering mirror or other type of tip/tilt correction for increased performance. The ARS is relatively inexpensive and can be bolted directly next to the gyro and star tracker on the spacecraft bus. The high-bandwidth attitude estimator fuses an ARS sensor with a standard three-axis suite comprised of a gyro and star tracker. The estimation architecture is based on a dual-complementary filter (DCF) structure. The DCF takes a frequency- weighted combination of the sensors such that each sensor is most heavily weighted in a frequency region where it has the lowest noise. An important property of the DCF is that it avoids the need to model disturbance torques in the filter mechanization. This is important because the disturbance torques are generally not known in applications. This property represents an advantage over the prior art because it overcomes a weakness of the Kalman filter that arises when fusing more than one rate

  19. Vibrotactile Compliance Feedback for Tangential Force Interaction.

    Science.gov (United States)

    Heo, Seongkook; Lee, Geehyuk

    2017-01-01

    This paper presents a method to generate a haptic illusion of compliance using a vibrotactile actuator when a tangential force is applied to a rigid surface. The novel method builds on a conceptual compliance model where a physical object moves on a textured surface in response to a tangential force. The method plays vibration patterns simulating friction-induced vibrations as an applied tangential force changes. We built a prototype consisting of a two-dimensional tangential force sensor and a surface transducer to test the effectiveness of the model. Participants in user experiments with the prototype perceived the rigid surface of the prototype as a moving, rubber-like plate. The main findings of the experiments are: 1) the perceived stiffness of a simulated material can be controlled by controlling the force-playback transfer function, 2) its perceptual properties such as softness and pleasantness can be controlled by changing friction grain parameters, and 3) the use of the vibrotactile compliance feedback reduces participants' workload including physical demand and frustration while performing a force repetition task.

  20. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?

    Science.gov (United States)

    Ninu, Andrei; Dosen, Strahinja; Muceli, Silvia; Rattay, Frank; Dietl, Hans; Farina, Dario

    2014-09-01

    In closed-loop control of grasping by hand prostheses, the feedback information sent to the user is usually the actual controlled variable, i.e., the grasp force. Although this choice is intuitive and logical, the force production is only the last step in the process of grasping. Therefore, this study evaluated the performance in controlling grasp strength using a hand prosthesis operated through a complete grasping sequence while varying the feedback variables (e.g., closing velocity, grasping force), which were provided to the user visually or through vibrotactile stimulation. The experiments were conducted on 13 volunteers who controlled the Otto Bock Sensor Hand Speed prosthesis. Results showed that vibrotactile patterns were able to replace the visual feedback. Interestingly, the experiments demonstrated that direct force feedback was not essential for the control of grasping force. The subjects were indeed able to control the grip strength, predictively, by estimating the grasping force from the prosthesis velocity of closing. Therefore, grasping without explicit force feedback is not completely blind, contrary to what is usually assumed. In our study we analyzed grasping with a specific prosthetic device, but the outcomes are also applicable for other devices, with one or more degrees-of-freedom. The necessary condition is that the electromyography (EMG) signal directly and proportionally controls the velocity/grasp force of the hand, which is a common approach among EMG controlled prosthetic devices. The results provide important indications on the design of closed-loop EMG controlled prosthetic systems.

  1. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference

  2. Pickup design for high bandwidth bunch arrival-time monitors in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Angelovski, Aleksandar; Penirschke, Andreas; Jakoby, Rolf [TU Darmstadt (Germany). Institut fuer Mikrowellentechnik und Photonik; Kuhl, Alexander; Schnepp, Sascha [TU Darmstadt (Germany). Graduate School of Computational Engineering; Bock, Marie Kristin; Bousonville, Michael; Schlarb, Holger [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Weiland, Thomas [TU Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2012-07-01

    The increased demands for low bunch charge operation mode in the free-electron lasers (FELs) require an upgrade of the existing synchronization equipment. As a part of the laser-based synchronization system, the bunch arrival-time monitors (BAMs) should have a sub-10 femtosecond precision for high and low bunch charge operation. In order to fulfill the resolution demands for both modes of operation, the bandwidth of such a BAM should be increased up to a cutoff frequency of 40 GHz. In this talk, we present the design and the realization of high bandwidth cone-shaped pickup electrodes as a part of the BAM for the FEL in Hamburg (FLASH) and the European X-ray free-electron laser (European XFEL). The proposed pickup was simulated with CST STUDIO SUITE, and a non-hermetic model was built up for radio frequency (rf) measurements.

  3. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs

    Science.gov (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  4. Integral force feedback control with input shaping: Application to piezo-based scanning systems in ECDLs.

    Science.gov (United States)

    Zhang, Meng; Liu, Zhigang; Zhu, Yu; Bu, Mingfan; Hong, Jun

    2017-07-01

    In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  5. Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO2

    Science.gov (United States)

    Huneeus, Nicolas; Boucher, Olivier; Alterskjær, Kari; Cole, Jason N. S.; Curry, Charles L.; Ji, Duoying; Jones, Andy; Kravitz, Ben; Kristjánsson, Jón Egill; Moore, John C.; Muri, Helene; Niemeier, Ulrike; Rasch, Phil; Robock, Alan; Singh, Balwinder; Schmidt, Hauke; Schulz, Michael; Tilmes, Simone; Watanabe, Shingo; Yoon, Jin-Ho

    2014-05-01

    The effective radiative forcings (including rapid adjustments) and feedbacks associated with an instantaneous quadrupling of the preindustrial CO2 concentration and a counterbalancing reduction of the solar constant are investigated in the context of the Geoengineering Model Intercomparison Project (GeoMIP). The forcing and feedback parameters of the net energy flux, as well as its different components at the top-of-atmosphere (TOA) and surface, were examined in 10 Earth System Models to better understand the impact of solar radiation management on the energy budget. In spite of their very different nature, the feedback parameter and its components at the TOA and surface are almost identical for the two forcing mechanisms, not only in the global mean but also in their geographical distributions. This conclusion holds for each of the individual models despite intermodel differences in how feedbacks affect the energy budget. This indicates that the climate sensitivity parameter is independent of the forcing (when measured as an effective radiative forcing). We also show the existence of a large contribution of the cloudy-sky component to the shortwave effective radiative forcing at the TOA suggesting rapid cloud adjustments to a change in solar irradiance. In addition, the models present significant diversity in the spatial distribution of the shortwave feedback parameter in cloudy regions, indicating persistent uncertainties in cloud feedback mechanisms.

  6. Bimanual elbow robotic orthoses: preliminary investigations on an impairment force feedback rehabilitation method

    Directory of Open Access Journals (Sweden)

    Gil eHerrnstadt

    2015-03-01

    Full Text Available Modern rehabilitation practices have begun integrating robots, recognizing their significant role in recovery. New and alternative stroke rehabilitation treatments are essential to enhance efficacy and mitigate associated health costs. Today’s robotic interventions can play a significant role in advancing rehabilitation. In addition, robots have an inherent ability to perform tasks accurately and reliably and are typically well suited to measure and quantify performance.Most rehabilitation strategies predominantly target activation of the paretic arm. However, bimanual upper limb rehabilitation research suggests potential in enhancing functional recovery. Moreover studies suggest limb coordination and synchronization can improve treatment efficacy.In this preliminary study, we aimed to investigate and validate our user-driven bimanual system in a reduced intensity rehab practice. A Bimanual Wearable Robotic Device (BWRD with a Master-Slave configuration for the elbow joint was developed to carry out the investigation. The BWRD incorporates position and force sensors for which respective control loops are implemented, and offers varying modes of operation ranging from passive to active training. The proposed system enables the perception of the movements, as well as the forces applied by the hemiparetic arm, with the non-hemiparetic arm. Eight participants with chronic unilateral stroke were recruited to participate in a total of three one-hour sessions per participant, delivered in a week. Participants underwent pre and post training functional assessments along with proprioceptive measures. The post assessment was performed at the end of the last training session.The protocol was designed to engage the user in an assortment of static and dynamic arm matching and opposing tasks. The training incorporates force feedback movements, force feedback positioning, and force matching tasks with same and opposite direction movements. We are able to

  7. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    Science.gov (United States)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This

  8. Visual feedback alters force control and functional activity in the visuomotor network after stroke

    Directory of Open Access Journals (Sweden)

    Derek B. Archer

    2018-01-01

    Full Text Available Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.

  9. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kontchou, E W Chimi; Fotsin, H B [Laboratoire d' Electronique, Departement de Physique, Faculte des Sciences, Universite de Dschang, B P 67 Dschang (Cameroon); Woafo, P [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaounde I, Box 812, Yaounde (Cameroon)], E-mail: hbfotsin@yahoo.fr

    2008-04-15

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented.

  10. Feedback control and adaptive synchronization of chaotic forced Bonhoeffer-van der Pol oscillators

    International Nuclear Information System (INIS)

    Kontchou, E W Chimi; Fotsin, H B; Woafo, P

    2008-01-01

    This paper deals with chaos control and synchronization in forced Bonhoeffer-van der Pol (FBVP) oscillators. The state equations of the model are first established and the stability is analysed. A feedback control strategy for stabilizing the chaotic dynamics on a periodic orbit of the phase space is investigated. Adaptive synchronization of two FBVP oscillators, based on parameter estimation and a nonlinear observer approach, is also investigated. It appears that a particular unknown parameter of the model can be estimated, which gives the possibility of recovering information through chaotic masking. An application in secure communications is presented

  11. Frequency modulation atomic force microscopy in ambient environments utilizing robust feedback tuning

    Science.gov (United States)

    Kilpatrick, J. I.; Gannepalli, A.; Cleveland, J. P.; Jarvis, S. P.

    2009-02-01

    Frequency modulation atomic force microscopy (FM-AFM) is rapidly evolving as the technique of choice in the pursuit of high resolution imaging of biological samples in ambient environments. The enhanced stability afforded by this dynamic AFM mode combined with quantitative analysis enables the study of complex biological systems, at the nanoscale, in their native physiological environment. The operational bandwidth and accuracy of constant amplitude FM-AFM in low Q environments is heavily dependent on the cantilever dynamics and the performance of the demodulation and feedback loops employed to oscillate the cantilever at its resonant frequency with a constant amplitude. Often researchers use ad hoc feedback gains or instrument default values that can result in an inability to quantify experimental data. Poor choice of gains or exceeding the operational bandwidth can result in imaging artifacts and damage to the tip and/or sample. To alleviate this situation we present here a methodology to determine feedback gains for the amplitude and frequency loops that are specific to the cantilever and its environment, which can serve as a reasonable "first guess," thus making quantitative FM-AFM in low Q environments more accessible to the nonexpert. This technique is successfully demonstrated for the low Q systems of air (Q ˜40) and water (Q ˜1). In addition, we present FM-AFM images of MC3T3-E1 preosteoblast cells acquired using the gains calculated by this methodology demonstrating the effectiveness of this technique.

  12. Preliminarily measurement and analysis of sawing forces in fresh cadaver mandible using reciprocating saw for reality-based haptic feedback.

    Science.gov (United States)

    Yua, Dedong; Zhengb, Xiaohu; Chenc, Ming; Shend, Steve G F

    2012-05-01

    The aim of the study was to preliminarily measure and analyze the cutting forces in fresh Chinese cadaver mandible using a clinically widely used reciprocating saw for reality-based haptic feedback. Eight mandibles were taken from fresh Chinese cadavers, 4 females and 4 males, aged between 59 and 95 years. A set of sawing experiments, using a surgery Stryker micro-reciprocating saw and Kistler piezoelectric dynamometer, was carried out by a CNC machining center. Under different vibration frequencies of saw and feeding rates measured from orthognathic surgery, sawing forces were recorded by a signal acquisition system. Remarkably different sawing forces were measured from different cadavers. Feed and vibration frequency of the reciprocating saw could determine the cutting forces only on 1 body. To reduce the impact of bone thickness changes on the cutting force measurements, all the cutting force data should be converted to the force of unit cutting length. The vibration frequency of haptic feedback system is determined by main cutting forces. Fast Fourier transform method can be used to calculate the frequency of this system. To simulate surgery in higher fidelity, all the sawing forces from the experiment should be amended by experienced surgeons before use in virtual reality surgery simulator. Sawing force signals of different ages for force feedback were measured successfully, and more factors related to the bone mechanical properties, such as bone density, should be concerned in the future.

  13. A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiangqing Huang

    2017-10-01

    Full Text Available A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI. Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method.

  14. A New Scale Factor Adjustment Method for Magnetic Force Feedback Accelerometer.

    Science.gov (United States)

    Huang, Xiangqing; Deng, Zhongguang; Xie, Yafei; Li, Zhu; Fan, Ji; Tu, Liangcheng

    2017-10-27

    A new and simple method to adjust the scale factor of a magnetic force feedback accelerometer is presented, which could be used in developing a rotating accelerometer gravity gradient instrument (GGI). Adjusting and matching the acceleration-to-current transfer function of the four accelerometers automatically is one of the basic and necessary technologies for rejecting the common mode accelerations in the development of GGI. In order to adjust the scale factor of the magnetic force rebalance accelerometer, an external current is injected and combined with the normal feedback current; they are then applied together to the torque coil of the magnetic actuator. The injected current could be varied proportionally according to the external adjustment needs, and the change in the acceleration-to-current transfer function then realized dynamically. The new adjustment method has the advantages of no extra assembly and ease of operation. Changes in the scale factors range from 33% smaller to 100% larger are verified experimentally by adjusting the different external coefficients. The static noise of the used accelerometer is compared under conditions with and without the injecting current, and the experimental results find no change at the current noise level, which further confirms the validity of the presented method.

  15. Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems

    Science.gov (United States)

    Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.

    2016-12-01

    Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size

  16. Dual-force ISOMAP: a new relevance feedback method for medical image retrieval.

    Science.gov (United States)

    Shen, Hualei; Tao, Dacheng; Ma, Dianfu

    2013-01-01

    With great potential for assisting radiological image interpretation and decision making, content-based image retrieval in the medical domain has become a hot topic in recent years. Many methods to enhance the performance of content-based medical image retrieval have been proposed, among which the relevance feedback (RF) scheme is one of the most promising. Given user feedback information, RF algorithms interactively learn a user's preferences to bridge the "semantic gap" between low-level computerized visual features and high-level human semantic perception and thus improve retrieval performance. However, most existing RF algorithms perform in the original high-dimensional feature space and ignore the manifold structure of the low-level visual features of images. In this paper, we propose a new method, termed dual-force ISOMAP (DFISOMAP), for content-based medical image retrieval. Under the assumption that medical images lie on a low-dimensional manifold embedded in a high-dimensional ambient space, DFISOMAP operates in the following three stages. First, the geometric structure of positive examples in the learned low-dimensional embedding is preserved according to the isometric feature mapping (ISOMAP) criterion. To precisely model the geometric structure, a reconstruction error constraint is also added. Second, the average distance between positive and negative examples is maximized to separate them; this margin maximization acts as a force that pushes negative examples far away from positive examples. Finally, the similarity propagation technique is utilized to provide negative examples with another force that will pull them back into the negative sample set. We evaluate the proposed method on a subset of the IRMA medical image dataset with a RF-based medical image retrieval framework. Experimental results show that DFISOMAP outperforms popular approaches for content-based medical image retrieval in terms of accuracy and stability.

  17. Mahanaxar: quality of service guarantees in high-bandwidth, real-time streaming data storage

    Energy Technology Data Exchange (ETDEWEB)

    Bigelow, David [Los Alamos National Laboratory; Bent, John [Los Alamos National Laboratory; Chen, Hsing-Bung [Los Alamos National Laboratory; Brandt, Scott [UCSC

    2010-04-05

    Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough to determine what is 'interesting,' retention of interesting data indefinitely, and concurrent read/write access to determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, and retains data as long as possible given the available storage. It has built in mechanisms for reliability and indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees and better performance than traditional file systems.

  18. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.

    Science.gov (United States)

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Shamdani, Amir Hossein; Smith, Julian; Zhong, Yongmin

    2014-03-01

    Robotic-assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic instruments but also have other important advantages, including restoring the surgeon's hand-eye coordination and improving the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Various solutions for restoring this feature have been proposed. An actuated modular force feedback-enabled laparoscopic instrument was proposed that is able to measure tip-tissue lateral interaction forces as well as normal grasping forces. The instrument has also the capability to adjust the grasping direction inside the patient body. In order to measure the interaction forces, strain gauges were employed. A series of finite element analyses were performed to gain an understanding of the actual magnitude of surface strains where gauges are applied. The strain gauge bridge configurations were calibrated. A series of experiments was conducted and the results were analysed. The modularity feature of the proposed instrument makes it interchangeable between various tip types of different functionalities (e.g. cutter, grasper, dissector). Calibration results of the strain gauges incorporated into the tube and at the base of the instrument presented the monotonic responses for these strain gauge configurations. Experimental results from tissue probing and tissue characterization experiments verified the capability of the proposed instrument in measuring lateral probing forces and characterizing artificial tissue samples of varying stiffness. The proposed instrument can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Kinesthetic Force Feedback and Belt Control for the Treadport Locomotion Interface.

    Science.gov (United States)

    Hejrati, Babak; Crandall, Kyle L; Hollerbach, John M; Abbott, Jake J

    2015-01-01

    This paper describes an improved control system for the Treadport immersive locomotion interface, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed. A new belt controller is implemented to regulate the user's position; when combined with the user's own volition, this controller also enables the user to naturally self-select their walking speed as they would when walking over ground. A new kinesthetic-force-feedback controller is designed for the tether that applies forces to the user's torso. This new controller is derived based on maintaining the user's sense of balance during belt acceleration, rather than by rendering an inertial force as was done in our prior work. Based on the results of a human-subjects study, the improvements in both controllers significantly contribute to an improved perception of realistic walking on the Treadport. The improved control system uses intuitive dynamic-system and anatomical parameters and requires no ad hoc gain tuning. The control system simply requires three measurements to be made for a given user: the user's mass, the user's height, and the height of the tether attachment point on the user's torso.

  20. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.

    Science.gov (United States)

    Brown, Jeremy D; Paek, Andrew; Syed, Mashaal; O'Malley, Marcia K; Shewokis, Patricia A; Contreras-Vidal, Jose L; Davis, Alicia J; Gillespie, R Brent

    2015-11-25

    Haptic display technologies are well suited to relay proprioceptive, force, and contact cues from a prosthetic terminal device back to the residual limb and thereby reduce reliance on visual feedback. The ease with which an amputee interprets these haptic cues, however, likely depends on whether their dynamic signal behavior corresponds to expected behaviors-behaviors consonant with a natural limb coupled to the environment. A highly geared motor in a terminal device along with the associated high back-drive impedance influences dynamic interactions with the environment, creating effects not encountered with a natural limb. Here we explore grasp and lift performance with a backdrivable (low backdrive impedance) terminal device placed under proportional myoelectric position control that features referred haptic feedback. We fabricated a back-drivable terminal device that could be used by amputees and non-amputees alike and drove aperture (or grip force, when a stiff object was in its grasp) in proportion to a myoelectric signal drawn from a single muscle site in the forearm. In randomly ordered trials, we assessed the performance of N=10 participants (7 non-amputee, 3 amputee) attempting to grasp and lift an object using the terminal device under three feedback conditions (no feedback, vibrotactile feedback, and joint torque feedback), and two object weights that were indiscernible by vision. Both non-amputee and amputee participants scaled their grip force according to the object weight. Our results showed only minor differences in grip force, grip/load force coordination, and slip as a function of sensory feedback condition, though the grip force at the point of lift-off for the heavier object was significantly greater for amputee participants in the presence of joint torque feedback. An examination of grip/load force phase plots revealed that our amputee participants used larger safety margins and demonstrated less coordination than our non-amputee participants

  1. A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality

    Directory of Open Access Journals (Sweden)

    Antonio Frisoli

    2009-01-01

    Full Text Available This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR. The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (paired t-test, p < 0.02

  2. High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force

    International Nuclear Information System (INIS)

    Cranch, G A; Flockhart, G M H; Kirkendall, C K

    2009-01-01

    A low-frequency magnetic field sensor, based on a current-carrying beam driven by the Lorentzian force, is described. The amplitude of the oscillation is measured by a distributed-feedback fiber laser strain sensor attached to the beam. The transduction mechanism of the sensor is derived analytically using conventional beam theory, which is shown to accurately predict the responsivity of a prototype sensor. Excellent linearity and negligible hysteresis are demonstrated. Noise sources in the fiber laser strain sensor are described and thermo-mechanical noise in the transducer is estimated. The prototype sensor achieves a magnetic field resolution of 5 nT Hz for 25 mA of current, which is shown to be close to the predicted thermo-mechanical noise limit of the sensor. The current is supplied optically through a separate optical fiber yielding an electrically passive sensor head

  3. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature

    Directory of Open Access Journals (Sweden)

    Chongjun Yang

    2018-02-01

    Full Text Available Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  4. Force Modeling, Identification, and Feedback Control of Robot-Assisted Needle Insertion: A Survey of the Literature.

    Science.gov (United States)

    Yang, Chongjun; Xie, Yu; Liu, Shuang; Sun, Dong

    2018-02-12

    Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.

  5. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  6. Muscle involvement during intermittent contraction patterns with different target force feedback modes

    DEFF Research Database (Denmark)

    Sjøgaard, G; Jørgensen, L V; Ekner, D

    2000-01-01

    and following 30 min of intermittent contractions showed larger fatigue development with proprioceptive feedback than visual feedback. Also rating of perceived exertion increased more during proprioceptive feedback than visual feedback. This may in part be explained by small differences in the mechanics during......: Feedback mode significantly effects the muscle involvement and fatigue during intermittent contractions. RelevanceIntermittent contractions are common in many work places and various feedback modes are being given regarding work requirements. The choice of feedback may significantly affect the muscle load...... and consequently the development muscle fatigue and disorders....

  7. VIRGY: a virtual reality and force feedback based endoscopic surgery simulator.

    Science.gov (United States)

    Baur, C; Guzzoni, D; Georg, O

    1998-01-01

    This paper describes the VIRGY project at the VRAI Group (Virtual Reality and Active Interface), Swiss Federal Institute of Technology (Lausanne, Switzerland). Since 1994, we have been investigating a variety of virtual-reality based methods for simulating laparoscopic surgery procedures. Our goal is to develop an endoscopic surgical training tool which realistically simulates the interactions between one or more surgical instruments and gastrointestinal organs. To support real-time interaction and manipulation between instruments and organs, we have developed several novel graphic simulation techniques. In particular, we are using live video texturing to achieve dynamic effects such as bleeding or vaporization of fatty tissues. Special texture manipulations allows us to generate pulsing objects while minimizing processor load. Additionally, we have created a new surface deformation algorithm which enables real-time deformations under external constraints. Lastly, we have developed a new 3D object definition which allows us to perform operations such as total or partial object cuttings, as well as to selectively render objects with different levels of detail. To provide realistic physical simulation of the forces and torques on surgical instruments encountered during an operation, we have also designed a new haptic device dedicated to endososcopic surgery constraints. We are using special interpolation and extrapolation techniques to integrate our 25 Hz visual simulation with the 300 Hz feedback required for realistic tactile interaction. The fully VIRGY simulator has been tested by surgeons and the quality of both our visual and haptic simulation has been judged sufficient for training basic surgery gestures.

  8. Relevance of land forcings and feedbacks in the attribution of climate extremes

    Science.gov (United States)

    Seneviratne, S. I.; Davin, E.; Greve, P.; Gudmundsson, L.; Hauser, M.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Orth, R.

    2014-12-01

    Land forcings and feedbacks play an important role in the climate system, in particular for the occurrence of climate extremes. Recent investigations have for instance highlighted the impacts of soil moisture-climate interactions for the development of droughts and heat waves (e.g. Seneviratne et al. 2012, Mueller and Seneviratne 2012, Seneviratne et al. 2013, Orlowsky and Seneviratne 2013). In addition, forcing from land use and land cover changes through modified albedo or turbulent fluxes can also affect the temperature variability in summer (Davin et al. 2014). These effects are important for better understanding the relationships between climate forcing and regional climate changes, and appear relevant for a recent discrepancy between trends in global mean temperature vs hot extremes over land (Seneviratne et al. 2014). This presentation will provide an overview on the underlying processes and on possible approaches for their consideration in attribution research. References:- Davin, E.L., S.I. Seneviratne, P. Ciais, A. Olioso, T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci., Published ahead of print June 23, 2014.- Mueller, B., and S.I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences, 109 (31), 12398-12403, doi: 10.1073/pnas.1204330109.- Orlowsky, B., and S.I. Seneviratne, 2013: Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydr. Earth Syst. Sci., 17, 1765-1781, doi:10.5194/hess-17-1765-2013- Seneviratne, S.I., N. Nicholls, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., et al. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, pp. 109-230.- Seneviratne, S.I., et al

  9. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators

    Science.gov (United States)

    Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon

    2017-10-01

    This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.

  10. Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    Science.gov (United States)

    Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will

    2018-05-01

    Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.

  11. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    Science.gov (United States)

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  12. Evaluating Carbon Sequestration and Solar Forcing Feedbacks Resulting from North American Afforestation

    Science.gov (United States)

    Mykleby, P.; Snyder, P. K.; Twine, T. E.

    2013-12-01

    The planting of trees and forests has long been accepted as a practical and efficient method to sequester carbon dioxide from the atmosphere. Assertive measures are now needed to ensure that atmospheric levels of carbon dioxide (CO2) do not continue to rise and cause additional planetary warming. However, recent studies have detected inadvertent biophysical feedbacks associated with land cover changes, especially in higher northern latitudes. The changes in surface reflectivity that occur when converting a lighter, more reflective surface, such as a grassland or bare soil, into a darker conifer forest, can result in surface warming due to the forest absorbing more shortwave radiation. This warming counteracts the cooling effect resulting from a reduction in atmospheric CO2 with increased vegetation productivity. This effect is further intensified in the higher northern latitudes where snow cover is prevalent during the long winter; the planting of trees can significantly decrease the reflectivity compared with white snow. The goal of this study is to determine whether the amount of carbon sequestered exceeds the carbon equivalent of the radiative forcing due to the change in surface reflectivity. This study uses the IBIS dynamic vegetation model with modified carbon dynamics for conifer forests validated with numerous Ameriflux and Fluxnet Canada field sites with varying stand ages and species compositions. We present results of model performance based on validation of net ecosystem exchange (NEE) and net radiation observations. Results from this study will be used to assess not only the net effect of conifer forest establishment on the long term carbon storage, but also the duration of time that a given location would remain a carbon sink during the lifetime of the forest. Only then, can policymakers begin to discuss the efficacy of afforestation as a sound climate mitigation strategy.

  13. Virtual Cerebral Aneurysm Clipping with Real-Time Haptic Force Feedback in Neurosurgical Education.

    Science.gov (United States)

    Gmeiner, Matthias; Dirnberger, Johannes; Fenz, Wolfgang; Gollwitzer, Maria; Wurm, Gabriele; Trenkler, Johannes; Gruber, Andreas

    2018-04-01

    Realistic, safe, and efficient modalities for simulation-based training are highly warranted to enhance the quality of surgical education, and they should be incorporated in resident training. The aim of this study was to develop a patient-specific virtual cerebral aneurysm-clipping simulator with haptic force feedback and real-time deformation of the aneurysm and vessels. A prototype simulator was developed from 2012 to 2016. Evaluation of virtual clipping by blood flow simulation was integrated in this software, and the prototype was evaluated by 18 neurosurgeons. In 4 patients with different medial cerebral artery aneurysms, virtual clipping was performed after real-life surgery, and surgical results were compared regarding clip application, surgical trajectory, and blood flow. After head positioning and craniotomy, bimanual virtual aneurysm clipping with an original forceps was performed. Blood flow simulation demonstrated residual aneurysm filling or branch stenosis. The simulator improved anatomic understanding for 89% of neurosurgeons. Simulation of head positioning and craniotomy was considered realistic by 89% and 94% of users, respectively. Most participants agreed that this simulator should be integrated into neurosurgical education (94%). Our illustrative cases demonstrated that virtual aneurysm surgery was possible using the same trajectory as in real-life cases. Both virtual clipping and blood flow simulation were realistic in broad-based but not calcified aneurysms. Virtual clipping of a calcified aneurysm could be performed using the same surgical trajectory, but not the same clip type. We have successfully developed a virtual aneurysm-clipping simulator. Next, we will prospectively evaluate this device for surgical procedure planning and education. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.

    Science.gov (United States)

    Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C

    2016-11-19

    When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.

    Science.gov (United States)

    Braconnot, Pascale; Kageyama, Masa

    2015-11-13

    Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results. © 2015 The Author(s).

  16. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  17. Ultra-short laser pulse ablation using shear-force feedback: Femtosecond laser induced breakdown spectroscopy feasibility study

    International Nuclear Information System (INIS)

    Samek, Ota; Kurowski, Andre; Kittel, Silke; Kukhlevsky, Sergei; Hergenroeder, Roland

    2005-01-01

    This work reports on a feasibility study of proximity ablation using femtosecond pulses. Ultra-short pulses were launched to a bare tapered optical fiber and delivered to the sample. The tip-sample distance was controlled by means of shear-force feedback. Consequently, ablation craters with submicrometer dimensions were obtained. Potential analytical applications for Laser Induced Breakdown Spectroscopy (LIBS) technique, such as e.g. inclusions in steel or bio cells, are suggested

  18. Volcanic spreading forcing and feedback in geothermal reservoir development, Amiata Volcano, Italia

    Science.gov (United States)

    Borgia, Andrea; Mazzoldi, Alberto; Brunori, Carlo Alberto; Allocca, Carmine; Delcroix, Carlo; Micheli, Luigi; Vercellino, Alberto; Grieco, Giovanni

    2014-09-01

    We made a stratigraphic, structural and morphologic study of the Amiata Volcano in Italy. We find that the edifice is dissected by intersecting grabens that accommodate the collapse of the higher sectors of the volcano. In turn, a number of compressive structures and diapirs exist around the margin of the volcano. These structures create an angular drainage pattern, with stream damming and captures, and a set of lakes within and around the volcano. We interpret these structures as the result of volcanic spreading of Amiata on its weak substratum, formed by the late Triassic evaporites (Burano Anhydrites) and the Middle-Jurassic to Early-Cretaceous clayey chaotic complexes (Ligurian Complex). Regional doming created a slope in the basement facilitating the outward flow and spreading of the ductile layers forced by the volcanic load. We model the dynamics of spreading with a scaled lubrication approximation of the Navier Stokes equations, and numerically study a set of solutions. In the model we include simple functions for volcanic deposition and surface erosion that change the topography over time. Scaling indicates that spreading at Amiata could still be active. The numerical solution shows that, as the central part of the edifice sinks into the weak basement, diapiric structures of the underlying formations form around the base of the volcano. Deposition of volcanic rocks within the volcano and surface erosion away from it both enhance spreading. In addition, a sloping basement may constitute a trigger for spreading and formation of trains of adjacent diapirs. As a feedback, the hot hydrothermal fluids decrease the shear strength of the anhydrites facilitating the spreading process. Finally, we observe that volcanic spreading has created ideal heat traps that constitute todays' exploited geothermal fields at Amiata. Normal faults generated by volcanic spreading, volcanic conduits, and direct contact between volcanic rocks (which host an extensive fresh

  19. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels.

    Science.gov (United States)

    De Nunzio, Alessandro Marco; Dosen, Strahinja; Lemling, Sabrina; Markovic, Marko; Schweisfurth, Meike Annika; Ge, Nan; Graimann, Bernhard; Falla, Deborah; Farina, Dario

    2017-08-01

    Grasping is a complex task routinely performed in an anticipatory (feedforward) manner, where sensory feedback is responsible for learning and updating the internal model of grasp dynamics. This study aims at evaluating whether providing a proportional tactile force feedback during the myoelectric control of a prosthesis facilitates learning a stable internal model of the prosthesis force control. Ten able-bodied subjects controlled a sensorized myoelectric prosthesis performing four blocks of consecutive grasps at three levels of target force (30, 50, and 70%), repeatedly closing the fully opened hand. In the first and third block, the subjects received tactile and visual feedback, respectively, while during the second and fourth block, the feedback was removed. The subjects also performed an additional block with no feedback 1 day after the training (Retest). The median and interquartile range of the generated forces was computed to assess the accuracy and precision of force control. The results demonstrated that the feedback was indeed an effective instrument for the training of prosthesis control. After the training, the subjects were still able to accurately generate the desired force for the low and medium target (30 and 50% of maximum force available in a prosthesis), despite the feedback being removed within the session and during the retest (low target force). However, the training was substantially less successful for high forces (70% of prosthesis maximum force), where subjects exhibited a substantial loss of accuracy as soon as the feedback was removed. The precision of control decreased with higher forces and it was consistent across conditions, determined by an intrinsic variability of repeated myoelectric grasping. This study demonstrated that the subject could rely on the tactile feedback to adjust the motor command to the prosthesis across trials. The subjects adjusted the mean level of muscle activation (accuracy), whereas the precision could not

  20. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    Science.gov (United States)

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. 360-Degree Feedback: Key to Translating Air Force Core Values into Behavioral Change

    National Research Council Canada - National Science Library

    Hancock, Thomas

    1999-01-01

    Integrity, service, and excellence. These are only three words, but as core values they serve as ideals that inspire Air Force people to make our institution what it is the best and most respected Air Force in the world...

  2. Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive large-scale ascent

    Science.gov (United States)

    Nie, Ji; Shaevitz, Daniel A.; Sobel, Adam H.

    2016-09-01

    Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. The causal relationships between these factors are often not obvious, however, the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here we examine the large-scale forcings and convective heating feedback in the precipitation events, which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation using input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic lifting is the most important dynamic forcing in both events, while differential potential vorticity advection also contributes to the triggering of the first event. Horizontal moisture advection modulates the extreme events mainly by setting the environmental humidity, which modulates the amplitude of the convection's response to the dynamic forcings. When the CRM is replaced by either a single-column model (SCM) with parameterized convection or a dry model with a reduced effective static stability, the model results show substantial discrepancies compared with reanalysis data. The reasons for these discrepancies are examined, and the implications for global models and theoretical models are discussed.

  3. A novel feedback control system – Controlling the material flow in deep drawing using distributed blank-holder force

    DEFF Research Database (Denmark)

    Endelt, Benny Ørtoft; Tommerup, Søren; Danckert, Joachim

    2013-01-01

    The performance of a feedback control system is often limited by the quality of the model on which it is based, and often the controller design is based on trial and error due to insufficient modeling capabilities. A framework is proposed where the controller design is based on classical state...... on a deep drawing operation where the objective was to control material flow throughout the part using only spatial information regarding flange draw-in. The control system controls both the magnitude and distribution of the blank-holder force. The methodology proved stable and flexible with respect...

  4. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    Science.gov (United States)

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  5. Note: Hybrid active/passive force feedback actuator using hydrostatic transmission

    Science.gov (United States)

    Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun

    2017-12-01

    A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.

  6. Note: Hybrid active/passive force feedback actuator using hydrostatic transmission.

    Science.gov (United States)

    Park, Yea-Seok; Lee, Juwon; Kim, Kyung-Soo; Kim, Soohyun

    2017-12-01

    A hybrid actuator for haptic devices is proposed in this paper. The actuator is composed of a DC motor and a magneto-rheological (MR) brake to realize transparency and stable force control. Two piston cylinders are connected with a flexible tube to lighten the weight of the structures on the endpoint that interacts with an operator. Also, the MR brake is designed to be suitable for hydraulic transmission. For the proposed hybrid actuator, a cooperative force control method using a pressure sensor instead of a force sensor is proposed. To verify the proposed control algorithm, a virtual wall collision experiment was conducted using a developed prototype of the hybrid actuator.

  7. On the Representation of Cloud Phase in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks

    Science.gov (United States)

    Storelvmo, Trude; Sagoo, Navjit; Tan, Ivy

    2016-04-01

    Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.

  8. Pushing the Envelope: Ship to Shore Events and High-Bandwidth Telepresence Engages Scientists and the Public

    Science.gov (United States)

    Cooper, S. K.; Coleman, D. F.; Fisher, A. T.; Livelybrooks, D.; Mulder, G.

    2013-12-01

    Since 2009, the drillship JOIDES Resolution has engaged in an extensive program of live ship-to-shore events during its two-month scientific expeditions using a range of software applications and formats. The University of Rhode Island's Inner Space Center has utilized a high bandwidth 'telepresence' from ships such as the Ocean Exploration Trust's E/V Nautilus and the NOAA Ship Okeanos Explorer, to bring live feeds from underwater exploration vehicles directly into museums, aquaria, science centers, boys and girls clubs, and K-16 classrooms. Both of these strategies have employed close partnerships between scientists and educators to bring cutting edge research and the excitement of exploration and discovery directly to the public in close to real time, but telepresence provides unique opportunities. Participants have been able to experience, live, launches of remotely operated vehicle systems including Jason/Medea on R/V Atlantis and Hercules/Argus on Nautilus, see scientific samples come up on deck for the very first time, observe previously-undiscovered shipwrecks at the same time as those on ship, and watch amazing deep sea creatures swim past deep water cameras. There are many benefits from high-bandwidth telepresence, including improved quality of images, video, and sound; the ability to move large data sets and files between ship and shore, allowing collaboration among individuals who are not on the ship; the ability to stage spontaneous "web events" among scientific, educational, and technical personnel at essentially any time; and more intensive interactions through use of social media, such as blogging, posting of multimedia products, and frequent question/answer sessions. These telepresence-enhanced activities assist the public in understanding the significance and excitement of these discoveries, the challenges of working in the deep sea, and the true nature of scientific processes. These interactions have significant impacts on their audiences, and

  9. Economic Value of Narrowing the Uncertainty in Climate Sensitivity: Decadal Change in Shortwave Cloud Radiative Forcing and Low Cloud Feedback

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R. M.; Golub, A. A.; Mlynczak, M. G.; Young, D. F.; Baize, R. R.

    2016-12-01

    Several previous studies have been published on the economic value of narrowing the uncertainty in climate sensitivity (Cooke et al. 2015, Cooke et al. 2016, Hope, 2015). All three of these studies estimated roughly 10 Trillion U.S. dollars for the Net Present Value and Real Option Value at a discount rate of 3%. This discount rate is the nominal discount rate used in the U.S. Social Cost of Carbon Memo (2010). The Cooke et al studies approached this problem by examining advances in accuracy of global temperature measurements, while the Hope 2015 study did not address the type of observations required. While temperature change is related to climate sensitivity, large uncertainties of a factor of 3 in current anthropogenic radiative forcing (IPCC, 2013) would need to be solved for advanced decadal temperature change observations to assist the challenge of narrowing climate sensitivity. The present study takes a new approach by extending the Cooke et al. 2015,2016 papers to replace observations of temperature change to observations of decadal change in the effects of changing clouds on the Earths radiative energy balance, a measurement known as Cloud Radiative Forcing, or Cloud Radiative Effect. Decadal change in this observation is direclty related to the largest uncertainty in climate sensitivity which is cloud feedback from changing amount of low clouds, primarily low clouds over the world's oceans. As a result, decadal changes in shortwave cloud radiative forcing are more directly related to cloud feedback uncertainty which is the dominant uncertainty in climate sensitivity. This paper will show results for the new approach, and allow an examination of the sensitivity of economic value results to different observations used as a constraint on uncertainty in climate sensitivity. The analysis suggests roughly a doubling of economic value to 20 Trillion Net Present Value or Real Option Value at 3% discount rate. The higher economic value results from two changes: a

  10. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    Science.gov (United States)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  11. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Asahina, Yuta; Ohsuga, Ken [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Nomura, Mariko, E-mail: asahina@cfca.jp [Keio University, Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522 (Japan)

    2017-05-01

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tension force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.

  12. Enhancement of Feedback Efficiency by Active Galactic Nucleus Outflows via the Magnetic Tension Force in the Inhomogeneous Interstellar Medium

    International Nuclear Information System (INIS)

    Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko

    2017-01-01

    By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tension force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.

  13. Architectural study of the design and operation of advanced force feedback manual controllers

    Science.gov (United States)

    Tesar, Delbert; Kim, Whee-Kuk

    1990-01-01

    A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof

  14. Long-term climate monitoring by the global climate observing system: report of breakout group 1 - climate forcings and feedbacks

    International Nuclear Information System (INIS)

    Miller, C.; Bretherton, F.

    1995-01-01

    The assignment for Breakout Group A was to re-visit and expand upon the plenary session discussion on climate forcings and feedbacks and to develop a set of recommendations for each of the science disciplines or activities covered within this breakout category. Working guidelines for the group included identifying: (1) what has to be done; (2) why it has to be done, i.e. who is the customer? (3) the process for remedying deficiencies and, specifically, how to leverage the activities at operational centers; and (4) priorities (recognizing that it is premature to distinguish between major systems). The science ares addressed included: greenhouse gases (GHGs); radiation budget; water vapor; aerosols; clouds; precipitation; tropospheric ozone; and solar radiation. The role of climate satellites was also noted

  15. Design and implementation of remote robotic control system for nuclear power plant application achieved through kinesthetic force feedback model

    International Nuclear Information System (INIS)

    Roy, D.

    1995-01-01

    The technology of telerobotic control through a universal and transparent Man-Machine Interface is a growing field of robotics research in today's industrial scenario because of its promising application in hazardous and unstructured environments. The joystick, a sophisticated information receiver-translator-transmitter device, serves as a Man-Machine Interface for telerobots. The present paper describes the development paradigms of a remote control system for a planar four degrees-of-freedom joystick following position feed-forward force/torque feedback strategy in a bi-lateral mode. This joystick based control technology is designed to actuate an industrial robot working in nuclear power plant. The remote control system has been illustrated with model, algorithm, electronic hardware and software routines along with experimental results in order to have effective telemanipulation

  16. Force-feedback tele operation of industrial robots a cost effective solution for decontamination of nuclear plants

    International Nuclear Information System (INIS)

    Desbats, P.; Andriot, C.; Gicquel, P.; Viallesoubranne, J.P.; Souche, C.

    1998-01-01

    Decontamination and maintenance in hot cells are some new emerging applications of industrial robots in the nuclear fuel cycle plants. Industrial robots are low cost, accurate and reliable manipulator arms which are used in manufacturing industries usually. Thanks to the recent evolution of robotics technologies, some industrial robots may be adapted to nuclear environment. These robots are transportable, sealed and can be decontaminated, and they may be 'hardened' up to a level of irradiation dose sufficient for operation in low and medium irradiating/contaminating environments. Although industrial robots are usually programmed to perform specific and repetitive tasks, they may be remotely tele-operated by human operators as well. This allows industrial robots to perform usual tele-manipulation tasks encountered in the nuclear plants and more. The paper presents the computer based tele-operation control system TAO2000 TM , developed by the Tele-operation and Robotics Service of CEA, which has been applied to the RX90 TM industrial robot from ST-UBLI company. This robot has been selected in order to perform various maintenance and decontamination tasks in COGEMA plants. TAO2000 provides the overall tele-robotic and robotic functions necessary to perform any remote tele-operation application in hostile environment: force-feedback master-slave control; computer- assisted tele-operation of mechanical processes; trajectory programming as well as various robotics functions; graphical modelling of working environment and simulation; automatic path planning with obstacle avoidance; man-machine interface for tasks programming and mission execution. Experimental results reported in the paper demonstrate the feasibility of force-feedback master-slave control of standard industrial robots. Finally, the design of new, cost effective. tele-operation systems based on industrial robots may be intended for nuclear plants maintenance. (author)

  17. On the Representation of Ice Nucleation in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks

    Science.gov (United States)

    Storelvmo, T.

    2015-12-01

    Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.

  18. Amplification of obliquity forcing through mean annual and seasonal atmospheric feedbacks

    Directory of Open Access Journals (Sweden)

    S.-Y. Lee

    2008-10-01

    Full Text Available Pleistocene benthic δ18O records exhibit strong spectral power at ~41 kyr, indicating that global ice volume has been modulated by Earth's axial tilt. This feature, and weak spectral power in the precessional band, has been attributed to the influence of obliquity on mean annual and seasonal insolation gradients at high latitudes. In this study, we use a coupled ocean-atmosphere general circulation model to quantify changes in continental snowfall associated with mean annual and seasonal insolation forcing due to a change in obliquity. Our model results indicate that insolation changes associated with a decrease in obliquity amplify continental snowfall in three ways: (1 Local reductions in air temperature enhance precipitation as snowfall. (2 An intensification of the winter meridional insolation gradient strengthens zonal circulation (e.g. the Aleutian low, promoting greater vapor transport from ocean to land and snow precipitation. (3 An increase in the summer meridional insolation gradient enhances summer eddy activity, increasing vapor transport to high-latitude regions. In our experiments, a decrease in obliquity leads to an annual snowfall increase of 25.0 cm; just over one-half of this response (14.1 cm is attributed to seasonal changes in insolation. Our results indicate that the role of insolation gradients is important in amplifying the relatively weak insolation forcing due to a change in obliquity. Nonetheless, the total snowfall response to obliquity is similar to that due to a shift in Earth's precession, suggesting that obliquity forcing alone can not account for the spectral characteristics of the ice-volume record.

  19. Visualized Multiprobe Electrical Impedance Measurements with STM Tips Using Shear Force Feedback Control

    Directory of Open Access Journals (Sweden)

    Luis Botaya

    2016-05-01

    Full Text Available Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current–voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

  20. Force feedback delay affects perception of stiffness but not action, and the effect depends on the hand used but not on the handedness.

    Science.gov (United States)

    Leib, Raz; Rubin, Inbar; Nisky, Ilana

    2018-05-16

    Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.

  1. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method

    International Nuclear Information System (INIS)

    Wen, L; Wang, T M; Liang, J H; Wu, G H

    2012-01-01

    We implement a mackerel (Scomber scombrus) body-shaped robot, programmed to display the three most typical body/caudal fin undulatory kinematics (i.e. anguilliform, carangiform and thunniform), in order to biomimetically investigate hydrodynamic issues not easily tackled experimentally with live fish. The robotic mackerel, mounted on a servo towing system and initially at rest, can determine its self-propelled speed by measuring the external force acting upon it and allowing for the simultaneous measurement of power, flow field and self-propelled speed. Experimental results showed that the robotic swimmer with thunniform kinematics achieved a faster final swimming speed (St = 0.424) relative to those with carangiform (St = 0.43) and anguilliform kinematics (St = 0.55). The thrust efficiency, estimated from a digital particle image velocimetry (DPIV) flow field, showed that the robotic swimmer with thunniform kinematics is more efficient (47.3%) than those with carangiform (31.4%) and anguilliform kinematics (26.6%). Furthermore, the DPIV measurements illustrate that the large-scale characteristics of the flow pattern generated by the robotic swimmer with both anguilliform and carangiform kinematics were wedge-like, double-row wake structures. Additionally, a typical single-row reverse Karman vortex was produced by the robotic swimmer using thunniform kinematics. Finally, we discuss this novel force-feedback-controlled experimental method, and review the relative self-propelled hydrodynamic results of the robot when utilizing the three types of undulatory kinematics. (paper)

  2. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    International Nuclear Information System (INIS)

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  3. A Synthetical Estimation of Northern Hemisphere Sea-ice Albedo Radiative Forcing and Feedback between 1982 and 2009

    Science.gov (United States)

    Cao, Y.

    2014-12-01

    The decreasing surface albedo caused by continously vanishing sea ice over the Arctic plays a very important role in Arctic warming amplification. However, the quantification of the change of radiative forcing at top of atmosphere (TOA) introduced by the decreasing sea ice albedo and its generated feedback to the climate remain uncertain. Two recent representative studies showed a large difference with each other: Flanner et al. (2011) used a method of synthesis of surface albedo and radiative kernels and found that the change of sea ice radiative forcing (ΔSIRF) in Northern Hemisphere (NH) from 1979 to 2008 was 0.22 (0.15 - 0.32) W m-2, and the corresponding sea ice albedo feedback (SIAF) over NH was 0.28 (0.19 - 0.41) W m-2 K-1; while Pistone et al. (2014) directly used the observed planetary albedo to estimate the NH ΔSIRF and SIAF from 1979 to 2011 and draw a NH ΔSIRF of 0.43 ± 0.07 W m-2, which was nearly twice as larger as Flanner's result, and the estimated global SIAF was 0.31 ± 0.04 W m-2 K-1. Motivated by reconciling the difference between these two studies and obtaining a more accurate qualification of the NH ΔSIRF, we used a newly released satellite-retrieved surface albedo product CLARA-A1 and made an attempt in two steps: Firstly, based on synthesising the surface albedo and raditive kernels, we calcualted the ΔSIRF from 1982 to 2009 was 0.20 ± 0.05 W m-2, and the NH SIAF was 0.25 W m-2 K-1; After comparing with TOA observed radiative flux, we found it's quite likely the kernel methods yield an underestimation for the all-sky ΔSIRF. Then, we tried to use TOA observed broadband radiative flux to adjust the estimation with kernels. After an adjustment, the NH all-sky ΔSIRF was 0.34 ± 0.09 W m-2, and the corresponding SIAF was 0.43 W m-2 K-1 over NH and 0.31 W m-2 K-1 over the entire globe.

  4. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    International Nuclear Information System (INIS)

    Goldenstein, Christopher S; Almodóvar, Christopher A; Jeffries, Jay B; Hanson, Ronald K; Brophy, Christopher M

    2014-01-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H 2 O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H 2 O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H 2 O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H 2 O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H 2 O by mole. Four H 2 O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H 2 O sensing to within 1.5–3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H 2 -fueled RDE indicate that the temperature and H 2 O oscillate at the detonation frequency (≈3.25 kHz) and that production of H 2 O is a weak function of global equivalence ratio. (paper)

  5. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    Science.gov (United States)

    Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.

    2014-10-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.

  6. Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: effects of the feedback mode

    DEFF Research Database (Denmark)

    Madeleine, Pascal; Jørgensen, Lars Vincents; Søgaard, Karen

    2002-01-01

    ) and proprioceptive (displacement control) feedback was investigated during intermittent (6 s contraction, 4 s rest) and continuous static contractions at 10% and 30% of the maximum voluntary contraction (MVC). Mean force, force fluctuation, rating of perceived exertion and root mean square (RMS) and mean power...... with the EMG, while the decrease in MPF values was more consistent for the EMG compared with the MMG signal. During the intermittent contractions, the main effect was on MPF for both EMG and MMG. Lower force fluctuation and larger rating of perceived exertion ( P

  7. New tools for C.A.D. of input devices for tele-operation with force feedback

    International Nuclear Information System (INIS)

    Gosselin, F.

    2000-01-01

    The performances of a tele-operation system are related to the master arm's ability to emulate the behavior of the remote environment. Ideally, it allows the operator to control the slave arm in a natural way as if that were an extension of its own body. The criteria to be checked for that are known but contradictory. It is thus necessary to make trade-offs on which there is not consensus. Existing input devices are therefore very varied thus more or less adapted to the tasks considered, which is in general checked a posteriori. In this document, we propose an original approach allowing to dimension the master arm a priori according to the use which one wishes to make. For that, we developed two tools: - the first one makes it possible to establish his specifications by taking account of the transmission of information between the operator and the slave arm. By exploiting their respective limitations, one is assured that the master arm will not limit the performances of the system, - the second one allows to design it (kinematics, size, motorization... ) according to the preceding specifications. For that, we use well-known theoretical tools which however are approached here as design tools. This leads to the definition of new concepts which do not appear in the literature. This approach is used to establish the specifications of a master arm for nuclear and offshore tele-operation then to design two input devices answering these specifications. The first has 3 degrees of freedom with force feedback. Its performances are higher than those of the best existing input devices. The second is a mock-up of a 6 degrees of freedom master arm. It uses a new parallel structure that is redundant in actuation and whose performances are remarkable. (author) [fr

  8. Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C.

    Science.gov (United States)

    Seneviratne, Sonia I; Wartenburger, Richard; Guillod, Benoit P; Hirsch, Annette L; Vogel, Martha M; Brovkin, Victor; van Vuuren, Detlef P; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-05-13

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.

  9. Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C

    Science.gov (United States)

    Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-01-01

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610382

  10. Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C

    Science.gov (United States)

    Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-05-01

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  11. Feedback Systems for Linear Colliders

    International Nuclear Information System (INIS)

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an integral part of the design. Feedback requirements for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at high bandwidth and fast response. To correct for the motion of individual bunches within a train, both feedforward and feedback systems are planned. SLC experience has shown that feedback systems are an invaluable operational tool for decoupling systems, allowing precision tuning, and providing pulse-to-pulse diagnostics. Feedback systems for the NLC will incorporate the key SLC features and the benefits of advancing technologies

  12. Teleoperator comfort and psychometric stability: Criteria for limiting master-controller forces of operation and feedback during telemanipulation

    Science.gov (United States)

    Wiker, Steven F.; Hershkowitz, Elaine; Zik, John

    1989-01-01

    The following question is addressed: How much force should operators exert, or experience, when operating a telemanipulator master-controller for sustained periods without encountering significant fatigue and discomfort, and without loss of stability in psychometric perception of force. The need to minimize exertion demands to avoid fatigue is diametrically opposed by the need to present a wide range of force stimuli to enhance perception of applied or reflected forces. For 104 minutes subjects repetitiously performed a series of 15 s isometric pinch grasps; controlled at 5, 15, and 25 percent of their maximum voluntary strength. Cyclic pinch grasps were separated by rest intervals of 7.5 and 15 s. Upon completion of every 10 minute period, subjects interrupted grasping activities to gage the intensity of fatigue and discomfort in the hand and forearm using a cross-modal matching technique. A series of psychometric tests were then conducted to determine accuracy and stability in the subject's perception of force experienced. Results showed that onset of sensations of discomfort and fatigue were dependent upon the magnitude of grasp force, work/rest ratio, and progression of task. Declines in force magnitude estimation slopes, indicating a reduction in force perception sensitivity, occurred with increased grasp force when work/rest ratios were greater than 1.0. Specific recommendations for avoiding discomfort and shifts in force perception, by limiting pinch grasp force required for master-controller operation and range of force reflection or work/rest ratios, are provided.

  13. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  14. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    International Nuclear Information System (INIS)

    Beaulieu, L; Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D

    2014-01-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  15. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2018-01-01

    Full Text Available Background Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. Methods A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group (n = 60, one-leg standing balance exercise, 12 min/d or the intervention group (n = 60, force platform training with functional electric stimulation, 12 min/d. The training was provided 15 days a month for 3 months by physical therapists. Medial–lateral and anterior–posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. Results On comparing the two groups, the intervention group showed significantly decreased (p < 0.01 medial–lateral and anterior–posterior maximal range of sway with eyes open and closed. There was significantly higher improvement in the Berg Balance Scale (p < 0.05, the Barthel Index (p < 0.05 and the Falls Efficacy Scale-International (p < 0.05, along with significantly lesser number of injurious fallers (p < 0.05, number of fallers (p < 0.05, and fall rates (p < 0.05 during the 6-month follow-up in the intervention group. Conclusion This study showed that the visual feedback-based force platform training with functional electric stimulation improved balance and prevented falls in older adults.

  16. High-bandwidth prefetcher for high-bandwidth memory

    Science.gov (United States)

    Mehta, Sanyam; Kohn, James Robert; Ernst, Daniel Jonathan; Poxon, Heidi Lynn; DeRose, Luiz

    2018-04-17

    A method for prefetching data into a cache is provided. The method allocates an outstanding request buffer ("ORB"). The method stores in an address field of the ORB an address and a number of blocks. The method issues prefetch requests for a degree number of blocks starting at the address. When a prefetch response is received for all the prefetch requests, the method adjusts the address of the next block to prefetch and adjusts the number of blocks remaining to be retrieved and then issues prefetch requests for a degree number of blocks starting at the adjusted address. The prefetching pauses when a maximum distance between the reads of the prefetched blocks and the last prefetched block is reached. When a read request for a prefetched block is received, the method resumes prefetching when a resume criterion is satisfied.

  17. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  18. Effects of the visual-feedback-based force platform training with functional electric stimulation on the balance and prevention of falls in older adults: a randomized controlled trial.

    Science.gov (United States)

    Li, Zhen; Wang, Xiu-Xia; Liang, Yan-Yi; Chen, Shu-Yan; Sheng, Jing; Ma, Shao-Jun

    2018-01-01

    Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group ( n  = 60, one-leg standing balance exercise, 12 min/d) or the intervention group ( n  = 60, force platform training with functional electric stimulation, 12 min/d). The training was provided 15 days a month for 3 months by physical therapists. Medial-lateral and anterior-posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. On comparing the two groups, the intervention group showed significantly decreased ( p  Falls Efficacy Scale-International ( p  fall rates ( p  falls in older adults.

  19. Audio Feedback -- Better Feedback?

    Science.gov (United States)

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  20. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.

    Science.gov (United States)

    Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon

    2017-11-28

    A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  1. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Gunhee Koo

    2017-11-01

    Full Text Available A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  2. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  3. Effects of interactive technology, teacher scaffolding and feedback on university students' conceptual development in motion and force concepts

    Science.gov (United States)

    Stecklein, Jason Jeffrey

    The utilization of interactive technologies will affect learning in science classrooms of the future. And although these technologies have improved in form and function, their effective employment in university science classrooms has lagged behind the rapid development of new constructivist pedagogies and means of instruction. This dissertation examines the enlistment of instructional technologies, in particular tablet PCs and DyKnow Interactive Software, in a technologically enhanced, university-level, introductory physics course. Results of this qualitative case study of three university students indicate that (1) the use of interactive technology positively affects both student learning within force and motion and self-reported beliefs about physics, (2) ad hoc use of instructional technologies may not sufficient for effective learning in introductory physics, (3) student learners dictate the leveraging of technology in any classroom, and (4) that purposeful teacher structuring of classroom activities with technologies are essential for student construction of knowledge. This includes designing activities to elicit attention and make knowledge visible for low-level content, while augmenting student interactions and modelling procedural steps for higher-level content.

  4. TAO2000 V2 computer-assisted force feedback tele-manipulators used as maintenance and production tools at the AREVA NC-La Hague fuel recycling plant

    International Nuclear Information System (INIS)

    Geffard, Franck; Garrec, Philippe; Piolain, Gerard; Brudieu, Marie-Anne; Thro, Jean-Francois; Coudray, Alain; Lelann, Eric

    2012-01-01

    During a 15-year joint research program, French Atomic Energy Agency Interactive Robotics Laboratory (CEA LIST) and AREVA have developed several remote operation devices, also called tele-robots. Some of them are now commonly used for maintenance operations at the AREVA NC (Nuclear Cycle) La Hague reprocessing plant. Since the first maintenance operation in 2005, several other successful interventions have been realized using the industrial MA23/RX170 tele-manipulation system. Moreover, since 2010, the through-the-wall tele-robot named MT200 TAO based on the slave arm of the MSM MT200 (La Calhene TM ), has been evaluated in an active production cell at the AREVA NC La Hague fuel recycling plant. Although these evaluations are ongoing, the positive results obtained have led to an update and industrialization program. All these developments are based on the same generic control platform, called TAO2000 V2. TAO2000 V2 is the second release of the CEA LIST core software platform dedicated to computer aided force-feedback tele-operation (TAO is the French acronym for computer aided tele-operation). This paper presents all these developments resulting from the joint research program CEA LIST/AREVA. The TAO2000 V2 controller is first detailed, and then two maintenance operations using the industrial robot RX170 are presented: the removal of the nuclear fuel dissolver wheel rollers and the cleanup of the dissolver wheel inter-bucket spaces. Finally, the new MT200 TAO system and its evaluations at the AREVA NC La Hague facilities are discussed. (authors)

  5. Feedback System Theory

    Science.gov (United States)

    1978-11-01

    R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction

  6. Instabilities simulations with wideband feedback systems: CMAD, HEADTAIL, WARP

    CERN Document Server

    Li, Kevin; Fox, J D; Pivi, M; Rivetta, C; Rumolo, G

    2013-01-01

    Transverse mode coupling (TMCI) and electron cloud instabilities (ECI) pose fundamental limitations on the acceptable beam intensities in the SPS at CERN. This in turn limits the ultimate achievable luminosity in the LHC. Therefore, future luminosity upgrades foresee methods for evading TMCI as well as ECI. Proposed approaches within the LHC Injector Upgrade (LIU) project include new optics with reduced transition energy as well as vacuum chamber coating techniques. As a complementary option, high bandwidth feedback systems may provide instability mitigation by actively damping the intra-bunch motion of unstable modes. In an effort to evaluate the potentials and limitations of such feedback systems and to characterise some of the specifications, a numerical model of a realistic feedback system has been developed and integrated into available instabilities simulation codes. Together with the implementation of this new feedback system model, CMAD and HEADTAIL have been used to investigate the impact of differen...

  7. Formativ Feedback

    DEFF Research Database (Denmark)

    Hyldahl, Kirsten Kofod

    Denne bog undersøger, hvordan lærere kan anvende feedback til at forbedre undervisningen i klasselokalet. I denne sammenhæng har John Hattie, professor ved Melbourne Universitet, udviklet en model for feedback, hvilken er baseret på synteser af meta-analyser. I 2009 udgav han bogen "Visible...

  8. Feedback Networks

    OpenAIRE

    Zamir, Amir R.; Wu, Te-Lin; Sun, Lin; Shen, William; Malik, Jitendra; Savarese, Silvio

    2016-01-01

    Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. ConvNets, where each layer forms one of such successive representations. However, an alternative that can achieve the same goal is a feedback based approach in which the representation is formed in an iterative manner based on a feedback received from previous iteration's...

  9. Instabilities simulations with wideband feedback systems: CMAD, HEADTAIL, WARP

    International Nuclear Information System (INIS)

    Li, Kevin; Cesaratto, J; Fox, J D; Pivi, M; Rivetta, C; Rumolo, G

    2013-01-01

    Transverse mode coupling (TMCI) and electron cloud instabilities (ECI) pose fundamental limitations on the acceptable beam intensities in the SPS at CERN. This in turn limits the ultimate achievable luminosity in the LHC. Therefore, future luminosity upgrades foresee methods for evading TMCI as well as ECI. Proposed approaches within the LHC Injector Upgrade (LIU) project include new optics with reduced transition energy as well as vacuum chamber coating techniques. As a complementary option, high bandwidth feedback systems may provide instability mitigation by actively damping the intra-bunch motion of unstable modes. In an effort to evaluate the potentials and limitations of such feedback systems and to characterise some of the specifications, a numerical model of a realistic feedback system has been developed and integrated into available instabilities simulation codes. Together with the implementation of this new feedback system model, CMAD and HEADTAIL have been used to investigate the impact of different wideband feedback systems on ECI in the SPS. In this paper, we present some details on the numerical model of the realistic feedback system and its implementation as well as the results obtained from the simulation study using this model together with the instability codes. (author)

  10. Fidelity imaging for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sayan, E-mail: ghos0087@umn.edu; Salapaka, Murti, E-mail: murtis@umn.edu [Nanodynamics Systems Laboratory, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  11. High Bandwidth, Fine Resolution Deformable Mirror Design.

    Science.gov (United States)

    1980-03-01

    Low Temperature Solders 68 B.6 Influence Function Parameters 68 APPENDIX C 19 Capacitance Measurement 69 ACCESSION for NTIS white Sectloo ODC Buff...Multilayer actuator: Dilatation versus applied electric field 10 Figure 3 - Multilayer actuator: Influence function 11 Figure 4 - Honeycomb device...bimorph 20 Figure 8 - Bimorph device: Influence function of a bimorph device which has a glass plate 0.20 cm thick 24 Figure 9 - Bimorph device

  12. Fast Faraday Cup With High Bandwidth

    Science.gov (United States)

    Deibele, Craig E [Knoxville, TN

    2006-03-14

    A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.

  13. Beam bunch feedback

    International Nuclear Information System (INIS)

    Lambertson, G.

    1995-09-01

    When the electromagnetic fields that are excited by the passage of a bundle of charged particles persist to act upon bunches that follow, then the motions of the bunches are coupled. This action between bunches circulating on a closed orbit can generate growing patterns of bunch excursions. Such growth can often be suppressed by feedback systems that detect the excursion and apply corrective forces to the bunches. To be addressed herein is feedback that acts on motions of the bunch body centers. In addition to being useful for suppressing the spontaneous growth of coupled-bunch motions, such feedback can be used to damp transients in bunches injected into an accelerator or storage ring; for hadrons which lack strong radiation damping, feedback is needed to avoid emittance growth through decoherence. Motions excited by noise in magnetic fields or accelerating rf can also be reduced by using this feedback. Whether the action is on motions that are transverse to the closed orbit or longitudinal, the arrangement is the same. Bunch position is detected by a pickup and that signal is processed and directed to a kicker that may act upon the same bunch or some other portion of the collective beam pattern. Transverse motion is an oscillation with angular frequency ν perpendicular ω o where ω o is the orbital frequency 2π line-integral o. Longitudinal synchrotron oscillation occurs at frequency ω s = ν s ω o . The former is much more rapid, ν perpendicular being on the order of 10 while ν s is typically about 10 minus 1 to 10 minus 2

  14. Object discrimination using electrotactile feedback.

    Science.gov (United States)

    Arakeri, Tapas J; Hasse, Brady A; Fuglevand, Andrew J

    2018-04-09

    A variety of bioengineering systems are being developed to restore tactile sensations in individuals who have lost somatosensory feedback because of spinal cord injury, stroke, or amputation. These systems typically detect tactile force with sensors placed on an insensate hand (or prosthetic hand in the case of amputees) and deliver touch information by electrically or mechanically stimulating sensate skin above the site of injury. Successful object manipulation, however, also requires proprioceptive feedback representing the configuration and movements of the hand and digits. Therefore, we developed a simple system that simultaneously provides information about tactile grip force and hand aperture using current amplitude-modulated electrotactile feedback. We evaluated the utility of this system by testing the ability of eight healthy human subjects to distinguish among 27 objects of varying sizes, weights, and compliances based entirely on electrotactile feedback. The feedback was modulated by grip-force and hand-aperture sensors placed on the hand of an experimenter (not visible to the subject) grasping and lifting the test objects. We were also interested to determine the degree to which subjects could learn to use such feedback when tested over five consecutive sessions. The average percentage correct identifications on day 1 (28.5%  ±  8.2% correct) was well above chance (3.7%) and increased significantly with training to 49.2%  ±  10.6% on day 5. Furthermore, this training transferred reasonably well to a set of novel objects. These results suggest that simple, non-invasive methods can provide useful multisensory feedback that might prove beneficial in improving the control over prosthetic limbs.

  15. Structural learning in feedforward and feedback control.

    Science.gov (United States)

    Yousif, Nada; Diedrichsen, Jörn

    2012-11-01

    For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control.

  16. Feedback stabilization experiments using l = 2 equilibrium windings in Scyllac

    International Nuclear Information System (INIS)

    Bartsch, R.R.; Cantrell, E.L.; Gribble, R.F.; Freese, K.B.; Handy, L.E.; Kristal, R.; Miller, G.; Quinn, W.E.

    1977-01-01

    The confinement time in the Scyllac Sector Feedback Experiment has been extended with a pre-programmed equilibrium compensation force. This force was produced by driving a current with a flexible waveform in an additional set of l = 2 windings

  17. Feedback and Incentives

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    2009-01-01

    This paper experimentally investigates the impact of different pay schemes and relative performance feedback policies on employee effort. We explore three feedback rules: no feedback on relative performance, feedback given halfway through the production period, and continuously updated feedback. ...... behind, and front runners do not slack off. But in both pay schemes relative performance feedback reduces the quality of the low performers' work; we refer to this as a "negative quality peer effect"....

  18. Skriftlig feedback i engelskundervisningen

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher

    2017-01-01

    The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools.......The article describes useful feedback strategies in language teaching and describes the feedback practices of lower-seconday teachers in Denmark. The article is aimed at language teahcers in secondary schools....

  19. Student Engagement with Feedback

    Science.gov (United States)

    Scott, Jon; Shields, Cathy; Gardner, James; Hancock, Alysoun; Nutt, Alex

    2011-01-01

    This report considers Biological Sciences students' perceptions of feedback, compared with those of the University as a whole, this includes what forms of feedback were considered most useful and how feedback used. Compared with data from previous studies, Biological Sciences students gave much greater recognition to oral feedback, placing it on a…

  20. Anomalous feedback and negative domain wall resistance

    International Nuclear Information System (INIS)

    Cheng, Ran; Xiao, Di; Zhu, Jian-Gang

    2016-01-01

    Magnetic induction can be regarded as a negative feedback effect, where the motive-force opposes the change of magnetic flux that generates the motive-force. In artificial electromagnetics emerging from spintronics, however, this is not necessarily the case. By studying the current-induced domain wall dynamics in a cylindrical nanowire, we show that the spin motive-force exerting on electrons can either oppose or support the applied current that drives the domain wall. The switching into the anomalous feedback regime occurs when the strength of the dissipative torque β is about twice the value of the Gilbert damping constant α . The anomalous feedback manifests as a negative domain wall resistance, which has an analogy with the water turbine. (paper)

  1. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  2. Feedback on Feedback--Does It Work?

    Science.gov (United States)

    Speicher, Oranna; Stollhans, Sascha

    2015-01-01

    It is well documented that providing assessment feedback through the medium of screencasts is favourably received by students and encourages deeper engagement with the feedback given by the language teacher (inter alia Abdous & Yoshimura, 2010; Brick & Holmes, 2008; Cann, 2007; Stannard, 2007). In this short paper we will report the…

  3. Rateless feedback codes

    DEFF Research Database (Denmark)

    Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip

    2012-01-01

    This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....

  4. The Mythology of Feedback

    Science.gov (United States)

    Adcroft, Andy

    2011-01-01

    Much of the general education and discipline-specific literature on feedback suggests that it is a central and important element of student learning. This paper examines feedback from a social process perspective and suggests that feedback is best understood through an analysis of the interactions between academics and students. The paper argues…

  5. TFTR plasma feedback systems

    International Nuclear Information System (INIS)

    Efthimion, P.; Hawryluk, R.J.; Hojsak, W.; Marsala, R.J.; Mueller, D.; Rauch, W.; Tait, G.D.; Taylor, G.; Thompson, M.

    1985-01-01

    The Tokamak Fusion Test Reactor employs feedback control systems for four plasma parameters, i.e. for plasma current, for plasma major radius, for plasma vertical position, and for plasma density. The plasma current is controlled by adjusting the rate of change of current in the Ohmic Heating (OH) coil system. Plasma current is continuously sensed by a Rogowski coil and its associated electronics; the error between it and a preprogrammed reference plasma current history is operated upon by a ''proportional-plusintegral-plus-derivative'' (PID) control algorithm and combined with various feedforward terms, to generate compensating commands to the phase-controlled thyristor rectifiers which drive current through the OH coils. The plasma position is controlled by adjusting the currents in Equilibrium Field and Horizontal Field coil systems, which respectively determine the vertical and radial external magnetic fields producing J X B forces on the plasma current. The plasma major radius position and vertical position, sensed by ''B /sub theta/ '' and ''B /sub rho/ '' magnetic flux pickup coils with their associated electronics, are controlled toward preprogrammed reference histories by allowing PID and feedforward control algorithms to generate commands to the EF and HF coil power supplies. Plasma density is controlled by adjusting the amount of gas injected into the vacuum vessel. Time-varying gains are used to combine lineaveraged plasma density measurements from a microwave interferometer plasma diagnostic system with vacuum vessel pressure measurements from ion gauges, with various other measurements, and with preprogrammed reference histories, to determine commands to piezoelectric gas injection valves

  6. The Greenhouse Effect and Climate Feedbacks

    Science.gov (United States)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  7. Combined feedforward and feedback control of end milling system

    OpenAIRE

    Čuš, Franc; Župerl, Uroš; Balič, Jože

    2012-01-01

    Purpose: Purpose of this paper. An intelligent control system is presented that uses a combination of feedforward and feedback for cutting force control in end milling.Design/methodology/approach: The network is trained by the feedback output that is minimized during training and most control action for disturbance rejection is finally performed by the rapid feedforward action of the network.Findings: The feedback controller corrects for errors caused by external disturbances. The feedforward...

  8. Pseudo-Haptic Feedback in Teleoperation.

    Science.gov (United States)

    Neupert, Carsten; Matich, Sebastian; Scherping, Nick; Kupnik, Mario; Werthschutzky, Roland; Hatzfeld, Christian

    2016-01-01

    In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction. Pseudo-haptic interaction yields well above-chance performance, while direct interaction performs almost perfectly. In order to optimize pseudo-haptic feedback, in the second study we perform a full-factorial experimental design with 36 subjects performing 6,480 trials with 36 different treatments. Information transfer ranges from 0.68 bit to 1.72 bit in a task with a theoretical maximum of 2.6 bit, with a predominant effect of the calculation operator and a minor effect of the maximum displacement. In a third study, short- and long-term learning effects are analyzed. Learning effects regarding the performance of pseudo-haptic feedback cannot be observed for single-day experiments. Tests over 10 days show a maximum increase in information transfer of 0.8 bit. The results show the feasibility of pseudo-haptic feedback for teleoperation and can be used as design basis for task-specific systems.

  9. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  10. Follower-Centered Perspective on Feedback: Effects of Feedback Seeking on Identification and Feedback Environment

    OpenAIRE

    Gong, Zhenxing; Li, Miaomiao; Qi, Yaoyuan; Zhang, Na

    2017-01-01

    In the formation mechanism of the feedback environment, the existing research pays attention to external feedback sources and regards individuals as objects passively accepting feedback. Thus, the external source fails to realize the individuals’ need for feedback, and the feedback environment cannot provide them with useful information, leading to a feedback vacuum. The aim of this study is to examine the effect of feedback-seeking by different strategies on the supervisor-feedback environme...

  11. RF feedback for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)

  12. Feedback and Incentives:

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie-Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback about relative performance, feedback given halfway through the production period, and continuously updated feedba...... of positive peer effects since the underdogs almost never quit the competition even when lagging significantly behind, and frontrunners do not slack off. Moreover, in both pay schemes information feedback reduces the quality of the low performers' work....

  13. Policy Feedback System (PFS)

    Data.gov (United States)

    Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...

  14. Feedback stabilization initiative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes.

  15. Feedback stabilization initiative

    International Nuclear Information System (INIS)

    1997-06-01

    Much progress has been made in attaining high confinement regimes in magnetic confinement devices. These operating modes tend to be transient, however, due to the onset of MHD instabilities, and their stabilization is critical for improved performance at steady state. This report describes the Feedback Stabilization Initiative (FSI), a broad-based, multi-institutional effort to develop and implement methods for raising the achievable plasma betas through active MHD feedback stabilization. A key element in this proposed effort is the Feedback Stabilization Experiment (FSX), a medium-sized, national facility that would be specifically dedicated to demonstrating beta improvement in reactor relevant plasmas by using a variety of MHD feedback stabilization schemes

  16. Feedback Loop Gains and Feedback Behavior (1996)

    DEFF Research Database (Denmark)

    Kampmann, Christian Erik

    2012-01-01

    Linking feedback loops and system behavior is part of the foundation of system dynamics, yet the lack of formal tools has so far prevented a systematic application of the concept, except for very simple systems. Having such tools at their disposal would be a great help to analysts in understanding...... large, complicated simulation models. The paper applies tools from graph theory formally linking individual feedback loop strengths to the system eigenvalues. The significance of a link or a loop gain and an eigenvalue can be expressed in the eigenvalue elasticity, i.e., the relative change...... of an eigenvalue resulting from a relative change in the gain. The elasticities of individual links and loops may be found through simple matrix operations on the linearized system. Even though the number of feedback loops can grow rapidly with system size, reaching astronomical proportions even for modest systems...

  17. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  18. Fast digital transverse feedback system for bunch train operation in CESR

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J T; Billing, M G; Dobbins, J A [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies; and others

    1996-08-01

    We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e{sup +}e{sup -} collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)

  19. Fast digital transverse feedback system for bunch train operation in CESR

    International Nuclear Information System (INIS)

    Rogers, J.T.; Billing, M.G.; Dobbins, J.A.

    1996-01-01

    We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e + e - collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)

  20. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    Science.gov (United States)

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  1. Effects of feedback reliability on feedback-related brain activity: A feedback valuation account.

    Science.gov (United States)

    Ernst, Benjamin; Steinhauser, Marco

    2018-04-06

    Adaptive decision making relies on learning from feedback. Because feedback sometimes can be misleading, optimal learning requires that knowledge about the feedback's reliability be utilized to adjust feedback processing. Although previous research has shown that feedback reliability indeed influences feedback processing, the underlying mechanisms through which this is accomplished remain unclear. Here we propose that feedback processing is adjusted by the adaptive, top-down valuation of feedback. We assume that unreliable feedback is devalued relative to reliable feedback, thus reducing the reward prediction errors that underlie feedback-related brain activity and learning. A crucial prediction of this account is that the effects of feedback reliability are susceptible to contrast effects. That is, the effects of feedback reliability should be enhanced when both reliable and unreliable feedback are experienced within the same context, as compared to when only one level of feedback reliability is experienced. To evaluate this prediction, we measured the event-related potentials elicited by feedback in two experiments in which feedback reliability was varied either within or between blocks. We found that the fronto-central valence effect, a correlate of reward prediction errors during reinforcement learning, was reduced for unreliable feedback. But this result was obtained only when feedback reliability was varied within blocks, thus indicating a contrast effect. This suggests that the adaptive valuation of feedback is one mechanism underlying the effects of feedback reliability on feedback processing.

  2. Effect of sensory substitution on suture-manipulation forces for robotic surgical systems.

    Science.gov (United States)

    Kitagawa, Masaya; Dokko, Daniell; Okamura, Allison M; Yuh, David D

    2005-01-01

    Direct haptic (force or tactile) feedback is not yet available in commercial robotic surgical systems. Previous work by our group and others suggests that haptic feedback might significantly enhance the execution of surgical tasks requiring fine suture manipulation, specifically those encountered in cardiothoracic surgery. We studied the effects of substituting direct haptic feedback with visual and auditory cues to provide the operating surgeon with a representation of the forces he or she is applying with robotic telemanipulators. Using the robotic da Vinci surgical system (Intuitive Surgical, Inc, Sunnyvale, Calif), we compared applied forces during a standardized surgical knot-tying task under 4 different sensory-substitution scenarios: no feedback, auditory feedback, visual feedback, and combined auditory-visual feedback. The forces applied with these sensory-substitution modes more closely approximate suture tensions achieved under ideal haptic conditions (ie, hand ties) than forces applied without such sensory feedback. The consistency of applied forces during robot-assisted suture tying aided by visual feedback or combined auditory-visual feedback sensory substitution is superior to that achieved with hand ties. Robot-assisted ties aided with auditory feedback revealed levels of consistency that were generally equivalent or superior to those attained with hand ties. Visual feedback and auditory feedback improve the consistency of robotically applied forces. Sensory substitution, in the form of visual feedback, auditory feedback, or both, confers quantifiable advantages in applied force accuracy and consistency during the performance of a simple surgical task.

  3. MEMS capacitive force sensors for cellular and flight biomechanics

    International Nuclear Information System (INIS)

    Sun Yu; Nelson, Bradley J

    2007-01-01

    Microelectromechanical systems (MEMS) are playing increasingly important roles in facilitating biological studies. They are capable of providing not only qualitative but also quantitative information on the cellular, sub-cellular and organism levels, which is instrumental to understanding the fundamental elements of biological systems. MEMS force sensors with their high bandwidth and high sensitivity combined with their small size, in particular, have found a role in this domain, because of the importance of quantifying forces and their effect on the function and morphology of many biological structures. This paper describes our research in the development of MEMS capacitive force sensors that have already demonstrated their effectiveness in the areas of cell mechanics and Drosophila flight dynamics studies. (review article)

  4. Feedback For Helpers

    Science.gov (United States)

    Stromer, Walter F.

    1975-01-01

    The author offers some feedback to those in the helping professions in three areas: (1) forms and letters; (2) jumping to conclusions; and (3) blaming and belittling, in hopes of stimulating more feedback as well as more positive ways of performing their services. (HMV)

  5. 'Peer feedback' voor huisartsopleiders

    NARCIS (Netherlands)

    Damoiseaux, R A M J; Truijens, L

    2016-01-01

    In medical specialist training programmes it is common practice for residents to provide feedback to their medical trainers. The problem is that due to its anonymous nature, the feedback often lacks the specificity necessary to improve the performance of trainers. If anonymity is to be abolished,

  6. Feedback og interpersonel kommunikation

    DEFF Research Database (Denmark)

    Dindler, Camilla

    2016-01-01

    Som interpersonel kommunikationsform handler feedback om at observere, mærke og italesætte det, som handler om relationen mellem samtaleparterne mere end om samtaleemnet. Her er fokus på, hvad der siges og hvordan der kommunikeres sammen. Feedback er her ikke en korrigerende tilbagemelding til...

  7. Velocity Feedback Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2017-02-01

    Full Text Available Transient response such as ringing in a control system can be reduced or removed by velocity feedback. It is a useful control technique that should be covered in the relevant engineering laboratory courses. We developed velocity feedback experiments using two different low cost technologies, viz., operational amplifiers and microcontrollers. These experiments can be easily integrated into laboratory courses on feedback control systems or microcontroller applications. The intent of developing these experiments was to illustrate the ringing problem and to offer effective, low cost solutions for removing such problem. In this paper the pedagogical approach for these velocity feedback experiments was described. The advantages and disadvantages of the two different implementation of velocity feedback were discussed also.

  8. Feedback i matematik

    DEFF Research Database (Denmark)

    Sortkær, Bent

    2017-01-01

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hartberg, Dobson, & Gran, 2012; Hattie & Timperley, 2007; Wiliam, 2015). Dette på trods af, at flere forskere påpeger, at feedback ikke altid er læringsfremmende...... (Hattie & Gan, 2011), og nogle endda viser, at feedback kan have en negativ virkning i forhold til præstationer (Kluger & DeNisi, 1996). Artiklen vil undersøge disse tilsyneladende modstridende resultater ved at stille spørgsmålet: Under hvilke forudsætninger virker feedback i matematik læringsfremmende......? Dette gøres ved at dykke ned i forskningslitteraturen omhandlende feedback ud fra en række temaer for på den måde at besvare ovenstående spørgsmål....

  9. Direct output feedback control of discrete-time systems

    International Nuclear Information System (INIS)

    Lin, C.C.; Chung, L.L.; Lu, K.H.

    1993-01-01

    An optimal direct output feedback control algorithm is developed for discrete-time systems with the consideration of time delay in control force action. Optimal constant output feedback gains are obtained through variational process such that certain prescribed quadratic performance index is minimized. Discrete-time control forces are then calculated from the multiplication of output measurements by these pre-calculated feedback gains. According to the proposed algorithm, structural system is assured to remain stable even in the presence of time delay. The number of sensors and controllers may be very small as compared with the dimension of states. Numerical results show that direct velocity feedback control is more sensitive to time delay than state feedback but, is still quite effective in reducing the dynamic responses under earthquake excitation. (author)

  10. Feedback and efficient behavior.

    Directory of Open Access Journals (Sweden)

    Sandro Casal

    Full Text Available Feedback is an effective tool for promoting efficient behavior: it enhances individuals' awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers' behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers.

  11. Feedback - fra et elevperspektiv

    DEFF Research Database (Denmark)

    Petersen, Benedikte Vilslev; Pedersen, Bent Sortkær

    Feedback bliver i litteraturen igen og igen fremhævet som et af de mest effektive midler til at fremme elevers præstationer i skolen (Hattie og Timperley, 2007). Andre studier er dog inde på at feedback ikke altid er læringsfremmende og nogle viser endda at feedback kan have en negativ virkning i...... forhold til præstationer (Kluger & DeNisi, 1996). I forsøget på at forklare hvordan og hvorfor feedback virker (forskelligt), er der undersøgt flere dimensioner og forhold omkring feedback (se bl.a. Black og Wiliam, 1998; Hattie og Timperley, 2007; Shute, 2008). Dog er der få studier der undersøger...... hvordan feedback opleves fra et elevperspektiv (Ruiz-Primo og Li, 2013). Samtidig er der i feedbacklitteraturen en mangel på kvalitative studier, der kommer tæt på fænomenet feedback, som det viser sig i klasserummet (Ruiz-Primo og Li, 2013) i naturlige omgivelser (Black og Wiliam, 1998), og hvordan...

  12. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Science.gov (United States)

    Li, Min; Konstantinova, Jelizaveta; Xu, Guanghua; He, Bo; Aminzadeh, Vahid; Xie, Jun; Wurdemann, Helge; Althoefer, Kaspar

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback) of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  13. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by sliding indentation palpation is proposed, validated, and compared with force feedback involving human subjects. In an experimental tele-manipulation environment, a dynamically updated color map depicting the stiffness of probed soft tissue is presented via a graphical interface. The force feedback is provided, aided by a master haptic device. The haptic device uses data acquired from an F/T sensor attached to the end-effector of a tele-manipulated robot. Hard nodule detection performance is evaluated for 2 modes (force feedback and visual stiffness feedback of stiffness feedback on an artificial organ containing buried stiff nodules. From this artificial organ, a virtual-environment tissue model is generated based on sliding indentation measurements. Employing this virtual-environment tissue model, we compare the performance of human participants in distinguishing differently sized hard nodules by force feedback and visual stiffness feedback. Results indicate that the proposed distributed visual representation of tissue stiffness can be used effectively for hard nodule identification. The representation can also be used as a sufficient substitute for force feedback in tissue palpation.

  14. Training effectiveness feedback

    International Nuclear Information System (INIS)

    Wiggin, N.A.

    1987-01-01

    A formal method of getting feedback about the job performance of employees is a necessary part of all the authors training programs. The formal process may prove to be inadequate if it is the only process in use. There are many ways and many opportunities to get good feedback about employee performance. It is important to document these methods and specific instances to supplement the more formalized process. The key is to identify them, encourage them, use them, and document the training actions that result from them. This paper describes one plant's method of getting feedback about performance of technicians in the field

  15. Brugbar peer feedback

    DEFF Research Database (Denmark)

    Hvass, Helle; Heger, Stine

    Studerende kan være medskabere af undervisning i akademisk skrivning, når de modtager og giver feedback til hinandens ufærdige akademiske tekster. Det ser vi i et udviklingsprojekt, hvor vi afprøver kollektive vejledningsformater. Vi har dog erfaret: 1. at studerende mangler træning i at give og ...... modtage feedback 2. at den manglende træning kan stå i vejen for realiseringen af læringspotentialet ved peer feedback....

  16. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  17. Regional feedbacks under changing climate and land-use conditions

    Science.gov (United States)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B. J.; van Minnen, J. G.

    2012-04-01

    Ecosystem responses to a changing climate and human-induced climate forcings (e.g. deforestation) might amplify (positive feedback) or dampen (negative feedback) the initial climate response. Feedbacks may include the biogeochemical (e.g. carbon cycle) and biogeophysical feedbacks (e.g. albedo and hydrological cycle). Here, we first review the most important feedbacks and put them into the context of a conceptual framework, including the major processes and interactions between terrestrial ecosystems and climate. We explore potential regional feedbacks in four hot spots with pronounced potential changes in land-use/management and local climate: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, the relevant human-induced climate forcings and feedbacks were identified based on published literature. When evapotranspiration is limited by a soil water deficit, heat waves in Europe are amplified (positive soil moisture-temperature feedback). Drought events in the Amazon lead to further rainfall reduction when water recycling processes are affected (positive soil moisture-precipitation feedback). In SSA, the adoption of irrigation in the commonly rainfed systems can modulate the negative soil moisture-temperature feedback. In contrast, future water shortage in South and Southeast Asia can turn the negative soil moisture-temperature feedback into a positive one. Further research including advanced modeling strategies is needed to isolate the dominant processes affecting the strength and sign of the feedbacks. In addition, the socio-economic dimension needs to be considered in the ecosystems-climate system to include the essential role of human decisions on land-use and land-cover change (LULCC). In this context, enhanced integration between Earth System (ES) and Integrated Assessment (IA) modeling communities is strongly recommended.

  18. Ambulatory Feedback System

    Science.gov (United States)

    Finger, Herbert; Weeks, Bill

    1985-01-01

    This presentation discusses instrumentation that will be used for a specific event, which we hope will carry on to future events within the Space Shuttle program. The experiment is the Autogenic Feedback Training Experiment (AFTE) scheduled for Spacelab 3, currently scheduled to be launched in November, 1984. The objectives of the AFTE are to determine the effectiveness of autogenic feedback in preventing or reducing space adaptation syndrome (SAS), to monitor and record in-flight data from the crew, to determine if prediction criteria for SAS can be established, and, finally, to develop an ambulatory instrument package to mount the crew throughout the mission. The purpose of the Ambulatory Feedback System (AFS) is to record the responses of the subject during a provocative event in space and provide a real-time feedback display to reinforce the training.

  19. NAIP 2015 Imagery Feedback

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback web application allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program...

  20. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  1. Communication analysis for feedback control of civil infrastructure using cochlea-inspired sensing nodes

    Science.gov (United States)

    Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.

    2016-04-01

    Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.

  2. Optimal centralized and decentralized velocity feedback control on a beam

    International Nuclear Information System (INIS)

    Engels, W P; Elliott, S J

    2008-01-01

    This paper considers the optimization of a velocity feedback controller with a collocated force actuator, to minimize the kinetic energy of a simply supported beam. If the beam is excited at a single location, the optimum feedback gain varies with the position of the control system. It is shown that this variation depends partly on the location of the control force relative to the exciting force. If a distributed excitation is assumed, that is random in both time and space, a unique optimum value of the feedback gain can be found for a given control location. The effect of the control location on performance and the optimal feedback gain can then be examined and is found to be limited provided the control locations are not close to the ends of the beam. The optimization can also be performed for a multichannel velocity feedback system. Both a centralized and a decentralized controller are considered. It is shown that the difference in performance between a centralized and a decentralized controller is small, unless the control locations are closely spaced. In this case the centralized controller effectively feeds back a moment proportional to angular velocity as well as a force proportional to a velocity. It is also shown that the optimal feedback gain can be approximated on the basis of a limited model and that similar results can be achieved

  3. The role of feedbacks in Antarctic sea ice change

    Science.gov (United States)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  4. Establishing a Communications Officer Force Development Program

    National Research Council Canada - National Science Library

    Jenrette, Brian J

    2006-01-01

    ...: experience, skills, training, education, and performance feedback. However, the Air Force has not instituted the structure, supplied the resources, or mandated the governance to make the program a success...

  5. Desarrollo de un modelo generalizado para realimentación de fuerza y torque en cirugía cardiotorácica robótica mínimamente invasiva: determinación de condiciones y restricciones Development of a generalized model for force and torque feedback in robotic minimally invasive cardiothoracic surgery: identification of conditions and restrictions

    Directory of Open Access Journals (Sweden)

    Vera Pérez

    2011-07-01

    : requerimientos de los sensores de fuerza y relación necesaria entre el número de sensores y actuadores para realimentar fuerza en MICS robótica. Posteriormente se implementaron dichas consideraciones en un simulador y se verificó el cumplimiento de las mismas. CONCLUSIONES: las condiciones relacionadas con la incorporación de un sensor de fuerza y la percepción del cirujano en cuanto al tacto y la fuerza aplicada, resultan ser importantes en procedimientos de MICS robótica y requiere la inclusión de un sistema de control que permita la optimización de procedimientos por telepresencia.INTRODUCTION: the procedures in minimally invasive cardiothoracic surgery (MICS aim to reduce the complications of major dissections. However, in the absence of direct contact of the surgeon with the tissue, he receives a partial sense of touch and strength, which can lead to procedural errors, inadequate force applied to the tissue and fatigue during surgery. The inclusion of robotic devices with the MICS technique has enhanced the technical skills of the surgeon to manipulate tissue, and although the market devices still do not have tactile feedback, research in robotic prototypes that incorporate feedback of force and torque is being done. OBJECTIVE: to propose the conditions and restrictions related to the integration of force and torque feedback in robotics MICS applicable to different configurations of manipulators and analyze the implementation of those conditions in a surgical simulator. MATERIAL AND METHODS: from the analysis of needs during cardiothoracic procedures and conditions of minimally invasive surgery, we identified the requirements to ensure reflection of force and performed a mathematical analysis of such considerations. Finally, mathematical analysis were verified by modeling and simulation techniques using the Matlab® computing platform. RESULTS: three types of considerations were argued: a Kinematic: the existence of a fixed point; the way to guarantee it for

  6. High current, high bandwidth laser diode current driver

    Science.gov (United States)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  7. Integrated Solar Array and Reflectarray Antenna for High Bandwidth Cubesats

    Science.gov (United States)

    Lewis, Dorothy; Agasid, Elwood Floyd; Ardila, David R.; Hunter, Roger C.; Baker, Christopher E.

    2017-01-01

    The Integrated Solar Array and Reflectarray Antenna (ISARA) mission will demonstrate a reflectarray antenna that increases downlink data rates for CubeSats from the existing baseline rate of 9.6 kilobits per second (kbps) to more than100 megabits per second (Mbps). A secondary payload called the CubeSat Multispectral Observation System (CUMULOS), is an experimental remote sensing payload also being demonstrated on this mission. A launch date for the ISARA spacecraft is currently pending.

  8. Extremelly High Bandwidth Rad Hard Data Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in sensors/detectors are needed to support future NASA mission concepts including polarimetry, large format imaging arrays, and high-sensitivity...

  9. Optical interconnect technologies for high-bandwidth ICT systems

    Science.gov (United States)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  10. High bandwidth synaptic communication and frequency tracking in human neocortex

    NARCIS (Netherlands)

    Testa-Silva, Guilherme; Verhoog, Matthijs B; Linaro, Daniele; de Kock, Christiaan P J; Baayen, Johannes C; Meredith, Rhiannon M; De Zeeuw, Chris I; Giugliano, Michele; Mansvelder, Huibert D

    2014-01-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from

  11. High bandwidth synaptic communication and frequency tracking in human neocortex.

    NARCIS (Netherlands)

    Testa-Silva, G.; Verhoog, M.B.; Linaro, D.; de Kock, C.P.J.; Baayen, J.C.; Meredith, R.M.; Zeeuw, C.I.; Giugliano, M.; Mansvelder, H.D.

    2014-01-01

    Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from

  12. High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex

    NARCIS (Netherlands)

    G. Testa-Silva (Guilherme); M.B. Verhoog (Matthijs); D. Linaro (Daniele); C.P.J. de Kock (Christiaan); J.C. Baayen; R.M. Meredith (Rhiannon); C.I. de Zeeuw (Chris); M. Giugliano (Michele); H.D. Mansvelder (Huibert)

    2014-01-01

    textabstractNeuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we

  13. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  14. Synthetic Pulse Dilation - PMT Model for high bandwidth gamma measurements

    Science.gov (United States)

    Geppert-Kleinrath, H.; Herrmann, H. W.; Kim, Y. H.; Zylstra, A. B.; Meaney, K. D.; Lopez, F. E.; Khater, H.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, T.; Milnes, J.

    2017-10-01

    The Cherenkov mechanism used in Gas Cherenkov Detectors (GCD) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic (GRH), is limited by the current state-of-the-art photomultiplier tube (PMT) to 100 ps. The new pulse dilation - PMT (PD-PMT) for NIF allows for a temporal resolution comparable to that of the gas cell, or of 10ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurement of reaction history and areal density (ρ R) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations and burn truncation due to dynamically evolving failure modes will become visible for the first time. PD-PMT will be deployed on GCD-3 at NIF in 2018. Our synthetic PD-PMT model evaluates the capabilities of these future measurements, as well as minimum yield requirements for measurements performed in a well at 3.9 m from target chamber center (TCC), and within a diagnostic inserter at 0.2m from TCC.

  15. Extremelly High Bandwidth Rad Hard Data Acquisition System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Analog-to-digital converters (ADCs) are the key components for digitizing high-speed analog data in modern data acquisition systems, which is a critical part of...

  16. Optimisation of Heterogeneous Migration Paths to High Bandwidth Home Connections

    NARCIS (Netherlands)

    Phillipson, F.

    2017-01-01

    Operators are building architectures and systems for delivering voice, audio, and data services at the required speed for now and in the future. For fixed access networks, this means in many countries a shift from copper based to fibre based access networks. This paper proposes a method to optimise

  17. Global climate feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  18. Feedback Conversations: Creating Feedback Dialogues with a New Textual Tool for Industrial Design Student Feedback

    Science.gov (United States)

    Funk, Mathias; van Diggelen, Migchiel

    2017-01-01

    In this paper, the authors describe how a study of a large database of written university teacher feedback in the department of Industrial Design led to the development of a new conceptual framework for feedback and the design of a new feedback tool. This paper focuses on the translation of related work in the area of feedback mechanisms for…

  19. Situated Formative Feedback

    DEFF Research Database (Denmark)

    Lukassen, Niels Bech; Wahl, Christian; Sorensen, Elsebeth Korsgaard

    refer to this type of feedback as, Situated Formative Feedback (SFF). As a basis for exploring, identifying and discussing relevant aspects of SFF the paper analyses qualitative data from a Moodle dialogue. Data are embedded in the qualitative analytic program Nvivo and are analysed with a system...... theoretical textual analysis method. Asynchronous written dialogue from an online master’s course at Aalborg University forms the empirical basis of the study. The findings suggests in general that students play an essential role in SFF and that students and educators are equal in the COP, but holds different...

  20. Subatomic forces

    International Nuclear Information System (INIS)

    Sutton, C.

    1989-01-01

    Inside the atom, particles interact through two forces which are never felt in the everyday world. But they may hold the key to the Universe. These ideas on subatomic forces are discussed with respect to the strong force, the electromagnetic force and the electroweak force. (author)

  1. Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?

    Science.gov (United States)

    Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael

    2017-10-01

    Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.

  2. Feedback control using only quantum back-action

    International Nuclear Information System (INIS)

    Jacobs, Kurt

    2010-01-01

    The traditional approach to feedback control is to apply deterministic forces to a system by modifying the Hamiltonian. Here we show that finite-dimensional quantum systems can be controlled purely by exploiting the random quantum back-action of a continuous weak measurement. We demonstrate that, quite remarkably, the quantum back-action of such an adaptive measurement is just as effective at controlling quantum systems as traditional feedback.

  3. Bilateral teleoperation for force sensorless 1-dof robots

    NARCIS (Netherlands)

    Lichiardopol, S.; Wouw, van de N.; Nijmeijer, H.; Filipe, J.; Cetto, J.A.; Ferrier, J.-L.

    2010-01-01

    It is well known that for bilateral teleoperation, force feedback information is needed. In this paper, we propose a control approach for bilateral teleoperation with uncertainties in the model of the slave robot and which does not use force sensors for haptic feedback. The controller design is

  4. Bilateral teleoperation for linear force sensorless 3D robots

    NARCIS (Netherlands)

    Lichiardopol, S.; Wouw, van de N.; Nijmeijer, H.; Andrade Cetto, J.; Ferrier, J.; Filipe, J.

    2011-01-01

    It is well known that for bilateral teleoperation, force feedback information is needed. In this paper, we propose a control approach for bilateral teleoperation with uncertainties in the model of the slave robot and which does not use force sensors for haptic feedback. The controller design is

  5. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.

    Science.gov (United States)

    Wottawa, Christopher R; Genovese, Bradley; Nowroozi, Bryan N; Hart, Steven D; Bisley, James W; Grundfest, Warren S; Dutson, Erik P

    2016-08-01

    The aims of this study were to evaluate (1) grasping forces with the application of a tactile feedback system in vivo and (2) the incidence of tissue damage incurred during robotic tissue manipulation. Robotic-assisted minimally invasive surgery has been shown to be beneficial in a variety of surgical specialties, particularly radical prostatectomy. This innovative surgical tool offers advantages over traditional laparoscopic techniques, such as improved wrist-like maneuverability, stereoscopic video displays, and scaling of surgical gestures to increase precision. A widely cited disadvantage associated with robotic systems is the absence of tactile feedback. Nineteen subjects were categorized into two groups: 5 experts (six or more robotic cases) and 14 novices (five cases or less). The subjects used the da Vinci with integrated tactile feedback to run porcine bowel in the following conditions: (T1: deactivated tactile feedback; T2: activated tactile feedback; and T3: deactivated tactile feedback). The grasping force, incidence of tissue damage, and the correlation of grasping force and tissue damage were analyzed. Tissue damage was evaluated both grossly and histologically by a pathologist blinded to the sample. Tactile feedback resulted in significantly decreased grasping forces for both experts and novices (P system was deactivated (P > 0.05 in all subjects). The in vivo application of integrated tactile feedback in the robotic system demonstrates significantly reduced grasping forces, resulting in significantly less tissue damage. This tactile feedback system may improve surgical outcomes and broaden the use of robotic-assisted minimally invasive surgery.

  6. Development of isometric force and force control in children

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.

    2004-01-01

    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  7. Development of isometric force and force control in children.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.

    2003-01-01

    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  8. Credit Market Information Feedback

    OpenAIRE

    Balasubramanyan, Lakshmi; Craig, Ben R.; Thomson, James B.; Zaman, Saeed

    2015-01-01

    We examine how a combination of credit market and asset quality information can jointly be used in assessing bank franchise value. We find that expectations of future credit demand and future asset quality explain contemporaneous bank franchise value, indicative of the feedback in credit market information and its consequent impact on bank franchise value.

  9. Continuous feedback fluid queues

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.; van Foreest, N.D.; Mandjes, M.R.H.

    2003-01-01

    We investigate a fluid buffer which is modulated by a stochastic background process, while the momentary behavior of the background process depends on the current buffer level in a continuous way. Loosely speaking the feedback is such that the background process behaves `as a Markov process' with

  10. Feedback i undervisningen

    DEFF Research Database (Denmark)

    Kirkegaard, Preben Olund

    2015-01-01

    undervisningsdifferentiering, feedback på læreprocesser, formativ og summativ evaluering, observationer og analyse af undervisning samt lærernes teamsamarbejde herom. Praktikken udgør et særligt læringsrum i læreruddannelsen. Samspillet mellem studerende, praktiklærere og undervisere giver den studerende en unik mulighed...

  11. Portfolio, refleksion og feedback

    DEFF Research Database (Denmark)

    Hansen, Jens Jørgen; Qvortrup, Ane; Christensen, Inger-Marie F.

    2017-01-01

    Denne leder definerer indledningsvist begrebet portfolio og gør rede for anvendelsesmuligheder i en uddannelseskontekst. Dernæst behandles portfoliometodens kvalitet og effekt for læring og undervisning og de centrale begreber refleksion, progression og feedback præsenteres og diskuteres. Herefter...

  12. Global monsoons in the mid-Holocene and oceanic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Kutzbach, J. [Center for Climatic Research, University of Wisconsin-Madison, 1225 W. Dayton Street, Madison, WI 53706 (United States); Harrison, S.P. [Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena (Germany); Otto-Bliesner, B. [National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307 (United States)

    2004-03-01

    The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean-atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations. (orig.)

  13. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian

    2013-01-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force...... of transient stimulation on force error were greater when compared to continuous stimulation and lidocaine injection. Position-matching performance was unaffected by peroneal nerve or plantar nerve stimulation. Our results show that cutaneous feedback plays a role in the control of force output at the ankle...... joint. Understanding how the nervous system normally uses cutaneous feedback in motor control will help us identify which functional aspects are impaired in aging and neurological diseases....

  14. High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses

    NARCIS (Netherlands)

    Hichert, M.; Abbink, D.A.; Kyberd, P.J.; Plettenburg, D.H.

    2017-01-01

    Background It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Bodypowered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available

  15. Interface Prostheses With Classifier-Feedback-Based User Training.

    Science.gov (United States)

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well

  16. Partially blind instantly decodable network codes for lossy feedback environment

    KAUST Repository

    Sorour, Sameh

    2014-09-01

    In this paper, we study the multicast completion and decoding delay minimization problems for instantly decodable network coding (IDNC) in the case of lossy feedback. When feedback loss events occur, the sender falls into uncertainties about packet reception at the different receivers, which forces it to perform partially blind selections of packet combinations in subsequent transmissions. To determine efficient selection policies that reduce the completion and decoding delays of IDNC in such an environment, we first extend the perfect feedback formulation in our previous works to the lossy feedback environment, by incorporating the uncertainties resulting from unheard feedback events in these formulations. For the completion delay problem, we use this formulation to identify the maximum likelihood state of the network in events of unheard feedback and employ it to design a partially blind graph update extension to the multicast IDNC algorithm in our earlier work. For the decoding delay problem, we derive an expression for the expected decoding delay increment for any arbitrary transmission. This expression is then used to find the optimal policy that reduces the decoding delay in such lossy feedback environment. Results show that our proposed solutions both outperform previously proposed approaches and achieve tolerable degradation even at relatively high feedback loss rates.

  17. Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback

    Science.gov (United States)

    Schwarz, Stefan; Heath, Robert W.; Rupp, Markus

    2013-12-01

    This article investigates the performance of cellular networks employing distributed antennas in addition to the central antennas of the base station. Distributed antennas are likely to be implemented using remote radio units, which is enabled by a low latency and high bandwidth dedicated link to the base station. This facilitates coherent transmission from potentially all available antennas at the same time. Such distributed antenna system (DAS) is an effective way to deal with path loss and large-scale fading in cellular systems. DAS can apply precoding across multiple transmission points to implement single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) transmission. The throughput performance of various SU-MIMO and MU-MIMO transmission strategies is investigated in this article, employing a Long-Term evolution (LTE) standard compliant simulation framework. The previously theoretically established cell-capacity improvement of MU-MIMO in comparison to SU-MIMO in DASs is confirmed under the practical constraints imposed by the LTE standard, even under the assumption of imperfect channel state information (CSI) at the base station. Because practical systems will use quantized feedback, the performance of different CSI feedback algorithms for DASs is investigated. It is shown that significant gains in the CSI quantization accuracy and in the throughput of especially MU-MIMO systems can be achieved with relatively simple quantization codebook constructions that exploit the available temporal correlation and channel gain differences.

  18. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  19. Classroom observation and feedback

    Directory of Open Access Journals (Sweden)

    Ana GOREA

    2016-12-01

    Full Text Available Classroom observation is a didactic activity from which both the observer and the observed teacher are to win. The present article comments on and discusses the aims of observation, the stages of observation, the methodological recommendations of offering feedback and the need to introduce a system of classroom observation at institutional or even national level, which would contribute to improving the teaching/learning process.

  20. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  1. Engaging Students with Audio Feedback

    Science.gov (United States)

    Cann, Alan

    2014-01-01

    Students express widespread dissatisfaction with academic feedback. Teaching staff perceive a frequent lack of student engagement with written feedback, much of which goes uncollected or unread. Published evidence shows that audio feedback is highly acceptable to students but is underused. This paper explores methods to produce and deliver audio…

  2. Feedback, Incentives and Peer Effects

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Poulsen, Anders; Villeval, Marie Claire

    This paper experimentally investigates the impact of different pay and relative performance information policies on employee effort. We explore three information policies: No feedback, feedback given halfway through the production period, and continuously updated feedback about relative performan...... behind, and frontrunners do not slack off....

  3. Bunch by bunch feedback systems

    International Nuclear Information System (INIS)

    Tobiyama, Makoto

    2006-01-01

    Outlines of bunch-by-bunch feedback systems for suppressing multibunch instabilities in electron/positron storage rings are presented. The design principles and functions of the feedback components are reviewed. Recent topics of applying very fast and dense FPGA as feedback signal processor are also shown. (author)

  4. Det ved vi om Feedback

    DEFF Research Database (Denmark)

    Christensen, Vibeke; Bærenholdt, Jørgen

    Præsentation af forskningsviden om feedback i forskellige personkonstellationer i undervisningen: Feedback fra lærer til elev, fra elever til lærer, fra elev til elev og elevens eget arbejde med feedback til sig selv. De præsenterede forskningsresultater er udvalgt dels inden for en kognitivistisk...

  5. A Journey towards Sustainable Feedback

    Science.gov (United States)

    Mutch, Allyson; Young, Charlotte; Davey, Tamzyn; Fitzgerald, Lisa

    2018-01-01

    Meeting students' expectations associated with the provision of feedback is a perennial challenge for tertiary education. Efforts to provide comprehensive, timely feedback within our own first year undergraduate public health courses have not always met students' expectations. In response, we sought to develop peer feedback activities to support…

  6. Climatic feedbacks between stationary and transient eddies

    International Nuclear Information System (INIS)

    Branscome, L.E.

    1994-01-01

    Stationary eddies make a significant contribution to poleward heat transport during Northern Hemisphere winter, equaling the transport by transient eddies. On the other hand, stationary eddy transport during the summer is negligible. The effect of topography on time-mean stationary waves and low-frequency variability has been widely studied. In contrast, little attention has been given to the climatic feedbacks associated with stationary eddies. Furthermore, the relationship between stationary and transient eddies in the context of global and regional climate is not well understood. The response of the climate system to anthropogenic forcing is likely to have some dependence on stationary wave transport and its interaction with transient eddies. Some early GCM simulations and observational analyses indicate a strong feedback between the meridional heat fluxes of stationary and transient eddies

  7. Role of combined tactile and kinesthetic feedback in minimally invasive surgery.

    Science.gov (United States)

    Lim, Soo-Chul; Lee, Hyung-Kew; Park, Joonah

    2014-10-18

    Haptic feedback is of critical importance in surgical tasks. However, conventional surgical robots do not provide haptic feedback to surgeons during surgery. Thus, in this study, a combined tactile and kinesthetic feedback system was developed to provide haptic feedback to surgeons during robotic surgery. To assess haptic feasibility, the effects of two types of haptic feedback were examined empirically - kinesthetic and tactile feedback - to measure object-pulling force with a telesurgery robotics system at two desired pulling forces (1 N and 2 N). Participants answered a set of questionnaires after experiments. The experimental results reveal reductions in force error (39.1% and 40.9%) when using haptic feedback during 1 N and 2 N pulling tasks. Moreover, survey analyses show the effectiveness of the haptic feedback during teleoperation. The combined tactile and kinesthetic feedback of the master device in robotic surgery improves the surgeon's ability to control the interaction force applied to the tissue. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Feedback on Feedback: Eliciting Learners' Responses to Written Feedback through Student-Generated Screencasts

    Science.gov (United States)

    Fernández-Toro, María; Furnborough, Concha

    2014-01-01

    Despite the potential benefits of assignment feedback, learners often fail to use it effectively. This study examines the ways in which adult distance learners engage with written feedback on one of their assignments. Participants were 10 undergraduates studying Spanish at the Open University, UK. Their responses to feedback were elicited by means…

  9. Feedback på arbejdspladser

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    Feedback på arbejdspladser er vigtig. Men feedback er også et populært begreb mange taler med om uden dog at vide sig helt sikker på hvad det er. Formålet med denne bog er at bidrage til en bedre forståelse af hvad feedback er, hvordan det fungerer og dermed hvordan arbejdspladser bedst muligt bør...... understøtte feedback. Med udgangspunkt i forskningen identificeres centrale udfordringer ved feedback, bl.a. hvorfor det kan være svært at give præcis feedback, hvordan forholdet mellem lederen og den ansatte påvirker den feedback der gives, og hvad der kendetegner en feedback kultur. Bogen er skrevet til...... undervisere og studerende på videregående uddannelser samt praktikere der ønsker en systematisk og forskningsbaseret forståelse af feedback på arbejdspladser. Bogen er således ikke en kogebog til bedre feedback, men en analyse og diskussion af hvad forskningen ved om feedback, og bidrager med inspiration og...

  10. Overview Electrotactile Feedback for Enhancing Human Computer Interface

    Science.gov (United States)

    Pamungkas, Daniel S.; Caesarendra, Wahyu

    2018-04-01

    To achieve effective interaction between a human and a computing device or machine, adequate feedback from the computing device or machine is required. Recently, haptic feedback is increasingly being utilised to improve the interactivity of the Human Computer Interface (HCI). Most existing haptic feedback enhancements aim at producing forces or vibrations to enrich the user’s interactive experience. However, these force and/or vibration actuated haptic feedback systems can be bulky and uncomfortable to wear and only capable of delivering a limited amount of information to the user which can limit both their effectiveness and the applications they can be applied to. To address this deficiency, electrotactile feedback is used. This involves delivering haptic sensations to the user by electrically stimulating nerves in the skin via electrodes placed on the surface of the skin. This paper presents a review and explores the capability of electrotactile feedback for HCI applications. In addition, a description of the sensory receptors within the skin for sensing tactile stimulus and electric currents alsoseveral factors which influenced electric signal to transmit to the brain via human skinare explained.

  11. FY1995 study of feedback type gait training system; 1995 nendo feedback gata hoko kuren sochi ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this project is to develop and demonstrate the utility of feedback type gait training equipment designed for the measurement and evaluation by a walking training of the aged or patient. As similar concepts of walking training, a locomotion in the water for the aged is applied in rehabilitation. Our development of this study established the system of a suspending mechanism which revolves around the prop, and a walking on the circular type force plate by the aged or patient. It is possible to detect a walking reaction force of several patients from force plate simultaneously. And then, the data from force plate makes feedback signal to put up the patient like a buoyancy in the water. Concerning the evaluations of walking pattern a step range, a hanging ratio and a walking speed, etc. are acquired for each patient by the acknowledgment base. This system is actively able to perform a walking training continuously compared with conventional passive gait equipment. (NEDO)

  12. Driver feedback mobile APP

    Energy Technology Data Exchange (ETDEWEB)

    Soriguera Marti, F.; Miralles Miquel, E.

    2016-07-01

    This paper faces the human factor in driving and its consequences for road safety. It presents the concepts behind the development of a smartphone app capable of evaluating drivers’ performance. The app provides feedback to the driver in terms of a grade (between 0 and 10) depending on the aggressiveness and risks taken while driving. These are computed from the cumulative probability distribution function of the jerks (i.e. the time derivative of acceleration), which are measured using the smartphones’ accelerometer. Different driving contexts (e.g. urban, freeway, congestion, etc.) are identified applying cluster analysis to the measurements, and treated independently. Using regression analysis, the aggressiveness indicator is related to the drivers' safety records and to the probability of having an accident, through the standard DBQ - Driving Behavior Questionnaire. Results from a very limited pilot test show a strong correlation between the 99th percentile of the jerk measurements and the DBQ results. A linear model is fitted. This allows quantifying the safe driving behavior only from smartphone measurements. Finally, this indicator is translated into a normalized grade and feedback to the driver. This feedback will challenge the driver to train and to improve his performance. The phone will be blocked while driving and will incorporate mechanisms to prevent bad practices, like competition in aggressive driving. The app is intended to contribute to the improvement of road safety, one of the major public health problems, by tackling the human factor which is the trigger of the vast majority of traffic accidents. Making explicit and quantifying risky behaviors is the first step towards a safer driving. (Author)

  13. Feedback-enhanced sensitivity in optomechanics

    DEFF Research Database (Denmark)

    Harris, Glen I.; Andersen, Ulrik L.; Knittel, Joachim

    2012-01-01

    The intracavity power, and hence sensitivity, of optomechanical sensors is commonly limited by parametric instability. Here we characterize the degradation of sensitivity induced by parametric instability in a micron-scale cavity optomechanical system. Feedback via optomechanical transduction...... and electrical gradient force actuation is applied to suppress the parametric instability. As a result a 5.4-fold increase in mechanical motion transduction sensitivity is achieved to a final value of 1.9×10-18 mHz-1/2....

  14. The Endogenous Feedback Network

    DEFF Research Database (Denmark)

    Augustenborg, Claudia Carrara

    2010-01-01

    proposals, it will first be considered the extents of their reciprocal compatibility, tentatively shaping an integrated, theoretical profile of consciousness. A new theory, the Endogenous Feedback Network (EFN) will consequently be introduced which, beside being able to accommodate the main tenets...... of the reviewed theories, appears able to compensate for the explanatory gaps they leave behind. The EFN proposes consciousness as the phenomenon emerging from a distinct network of neural paths broadcasting the neural changes associated to any mental process. It additionally argues for the need to include a 5th...

  15. A conceptual framework for regional feedbacks in a changing climate

    Science.gov (United States)

    Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B.

    2012-04-01

    Terrestrial ecosystems and climate influence each other through biogeochemical (e.g. carbon cycle) and biogeophysical (e.g. albedo, water fluxes) processes. These interactions might be disturbed when a climate human-induced forcing takes place (e.g. deforestation); and the ecosystem responses to the climate system might amplify (positive feedback) or dampen (negative feedback) the initial forcing. Research on feedbacks has been mainly based on the carbon cycle at the global scale. However, biogeophysical feedbacks might have a great impact at the local or regional scale, which is the main focus of this article. A conceptual framework, with the major interactions and processes between terrestrial ecosystems and climate, is presented to further explore feedbacks at the regional level. Four hot spots with potential changes in land use/management and climate are selected: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, diverse climate human-induced forcings and feedbacks were identified based on relevant published literature. For Europe, the positive soil moisture-evapotranspiration (ET) is important for natural vegetation during a heat wave event, while the positive soil moisture-precipitation feedback plays a more important role for droughts in the Amazon region. Agricultural expansion in SSA will depend on the impacts of the changing climate on crop yields and the adopted agro-technologies. The adoption of irrigation in the commonly rainfed systems might turn the positive soil moisture- ET feedback into a negative one. In contrast, South and Southeast Asia might face water shortage in the future, and thus turning the soil moisture-ET feedback into a positive one. Further research is needed for the major processes that affect the ultimate sign of the feedbacks, as well as for the interactions, which effect remains uncertain, such as ET-precipitation interaction. In addition, socio-economic feedbacks need to be added

  16. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    Science.gov (United States)

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  17. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2012

    2012-01-01

    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  18. Feedback reliability calculation for an iterative block decision feedback equalizer

    OpenAIRE

    Huang, G; Nix, AR; Armour, SMD

    2009-01-01

    A new class of iterative block decision feedback equalizer (IB-DFE) was pioneered by Chan and Benvenuto. Unlike the conventional DFE, the IB-DFE is optimized according to the reliability of the feedback (FB) symbols. Since the use of the training sequence (TS) for feedback reliability (FBR) estimation lowers the bandwidth efficiency, FBR estimation without the need for additional TS is of considerable interest. However, prior FBR estimation is limited in the literature to uncoded M-ary phases...

  19. Design of a Haptic Feedback System for Flight Envelope Protection

    NARCIS (Netherlands)

    Van Baelen, D.; Ellerbroek, J.; van Paassen, M.M.; Mulder, M.

    2018-01-01

    Current Airbus aircraft use a fly-by-wire control device: a passive spring-damper system which generates, without any force feedback, an electrical signal to the flight control computer. Additionally, a hard flight envelope protection system is used which can limit the inputs of the pilot when

  20. Local orbit feedback

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Critically aligned experiments are sensitive to small changes in the electron beam orbit. At the NSLS storage rings, the electron beam and photon beam motions have been monitored over the past several years. In the survey conducted in 1986 by the NSLS Users Executive Committee, experimenters requested the vertical beam position variation and the vertical angle variation, within a given fill, remain within 10 μm and 10 μr, respectively. This requires improvement in the beam stability by about one order of magnitude. At the NSLS and SSRL storage rings, the beam that is originally centered on the position monitor by a dc orbit correction is observed to have two kinds of motion: a dc drift over a storage period of several hours and a beam bounce about its nominal position. These motions are a result of the equilibrium orbit not being held perfectly stable due to time-varying errors introduced into the magnetic guide field by power supplies, mechanical vibration of the magnets, cooling water temperature variations, etc. The approach to orbit stabilization includes (1) identifying and suppressing as many noise sources on the machine as possible, (2) correcting the beam position globally (see Section 6) by controlling a number of correctors around the circumference of the machine, and (3) correcting the beam position and angle at a given source location by position feedback using local detectors and local orbit bumps. The third approach, called Local Orbit Feedback will be discussed in this section

  1. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  2. Training Analysis and Feedback Aids (TAAF Aids) Study for Live Training Support

    National Research Council Canada - National Science Library

    Brown, Bill

    1998-01-01

    ... they would otherwise spend observing, coaching, and facilitating the learning of exercise players. This study: (1) Identifies the impact of force modernization on future exercise control and training feedback functions...

  3. Behavior Tracking Software Enhancement and Integration of a Feedback Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Company is proposing to adapt a behavioral tracking program and feedback module specifically developed for the U.S. Army Special Forces for NASA human space...

  4. GIVING AND RECEIVING CONSTRUCTIVE FEEDBACK

    Directory of Open Access Journals (Sweden)

    Ірина Олійник

    2015-05-01

    Full Text Available The article scrutinizes the notion of feedback applicable in classrooms where team teaching is provided. The experience of giving and receiving feedback has been a good practice in cooperation between a U.S. Peace Corps volunteer and a Ukrainian counterpart. Giving and receiving feedback is an effective means of classroom observation that provides better insight into the process of teaching a foreign language. The article discusses the stages of feedback and explicates the notion of sharing experience between two teachers working simultaneously in the same classroom. The guidelines for giving and receiving feedback have been provided as well as the most commonly used vocabulary items have been listed. It has been proved that mutual feedback leads to improving teaching methods and using various teaching styles and techniques.

  5. Emotional feedback for mobile devices

    CERN Document Server

    Seebode, Julia

    2015-01-01

    This book investigates the functional adequacy as well as the affective impression made by feedback messages on mobile devices. It presents an easily adoptable experimental setup to examine context effects on various feedback messages, and applies it to auditory, tactile and auditory-tactile feedback messages. This approach provides insights into the relationship between the affective impression and functional applicability of these messages as well as an understanding of the influence of unimodal components on the perception of multimodal feedback messages. The developed paradigm can also be extended to investigate other aspects of context and used to investigate feedback messages in modalities other than those presented. The book uses questionnaires implemented on a Smartphone, which can easily be adopted for field studies to broaden the scope even wider. Finally, the book offers guidelines for the design of system feedback.

  6. Hvad siger forskningen om feedback?

    DEFF Research Database (Denmark)

    Holdt Christensen, Peter

    2016-01-01

    Feedback skal serveres ligesom en gammeldags sandwich. Først lidt brød, så det lidt sejere kød og til sidst igen til lidt brød”. Sådan nogenlunde lyder en pragmatisk løsning på udfordringerne ved at give feedback. Når medarbejdere skal have negativ feedback, skal denne altså pakkes ind, så...... feedbacken indledes med let fordøjeligt positiv feedback, derefter kommer den negative – og noget sværere fordøjelige – feedback, og til sidst afrundes feedbacken med en god udgangsreplik, nemlig den positive feedback....

  7. Steering of flexible needles combining kinesthetic and vibratory force feedback

    NARCIS (Netherlands)

    Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico

    2014-01-01

    Needle insertion in soft-tissue is a minimally invasive surgical procedure which demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and acceptance by

  8. The impact of electrosurgical heat on optical force feedback sensors

    NARCIS (Netherlands)

    Heijmans, J.A.C.; Vleugels, M.P.H.; Tabak, E.; Dool, T.C. van den; Oderwald, M.P.

    2008-01-01

    Electrosurgery enables cutting and coagulation (desiccation) of tissue for Minimally Invasive Surgery. Measurements performed by TNO with an infrared camera showed that the forceps of an endoscopic instrument can be over 300°C in temperature. During electro-surgery the surgeon relies on the power

  9. Dynamics of nonlinear feedback control

    OpenAIRE

    Snippe, H.P.; Hateren, J.H. van

    2007-01-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...

  10. Multi-bunch Feedback Systems

    OpenAIRE

    Lonza, M.; Schmickler, H.

    2016-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides importa...

  11. Fast feedback for linear colliders

    International Nuclear Information System (INIS)

    Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.

    1995-01-01

    A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies

  12. Feedback and starbursts

    International Nuclear Information System (INIS)

    Wiklind, T.

    1987-01-01

    A simple phenomenological model of the regulatory coupling between the star formation rate and the molecular gas fraction is presented. The model can in a qualitative way explain both the constant star formation rate observed in most galaxies and the starbursting behaviour seen in some systems. Formation of massive stars are thought to have both a positive and a negative feedback on further stellar formation. A sudden increase in the gas available for star formation will cause a strong increase in the star formation rate lasting for ∼ 3.10 7 yrs. Both the star formation rate and the molecular gas friction will then perform damped oscillations over a period of a few x 10 8 yrs. This general behaviour is valid for a large range of parameter values

  13. KEKB bunch feedback systems

    Energy Technology Data Exchange (ETDEWEB)

    Tobiyama, M; Kikutani, E [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    Design and the present status of the bunch by bunch feedback systems for KEKB rings are shown. The detection of the bunch oscillation are made with the phase detection for longitudinal plane, the AM/PM method for transverse plane. Two GHz component of the bunch signal which is extracted with an analog FIR filter is used for the detection. Hardware two-tap FIR filter systems to shift the phase of the oscillation by 90deg will be used for the longitudinal signal processing. The same system will be used with no filtering but with only digital delay for transverse system. The candidate for the kicker and the required maximum power are also estimated. (author)

  14. Reviewing operational experience feedback

    International Nuclear Information System (INIS)

    1991-04-01

    The purpose of this document is to provide detailed supplementary guidance to OSART experts to aid in the evaluation of operational experience feedback (OEF) programmes at nuclear power plants. The document begins by describing the objectives of an OEF programme. It goes on to indicate preparatory work and investigatory guidance for the expert. Section 5 describes attributes of an excellent OEF programme. Appended to these guidelines are examples of OEF documents from various plants. These are intended to help the expert by demonstrating the actual implementation of OEF in practice. These guidelines are in no way intended to conflict with existing national regulations and rules. A comprehensive OEF programme, as described in Section 2, would be impossible to evaluated in detail in the amount of time typically allocated for assessing OEF in an OSART review. The expert must use his or her time wisely by concentrating on those areas that appear to be the weakest

  15. FEEDBACK AND LOGISTICS CONTROLLING

    Directory of Open Access Journals (Sweden)

    Mehesne Berek Szilvia

    2015-07-01

    Full Text Available The following things led to that the feedback, the supervision and improvement of the processes have become more pronounced: continuous rise in the importance of logistics; increase in complexity of its content; its activity becoming more complex. These activities are necessary for the optimum information supply. The intensification of market competition requires the corporations to possess exact and up-to-date information about their activities. Complexity of the logistics system presumes a parallel application of an effective feedback, supervision and management system simultaneously with the given logistics system. The indispensability of logistics is also proved by the fact that it can be found sporadically (in the form of logistics departments or in a complex way in case of each organization. The logistical approach means a huge support in the management since it contains the complexity, the handling as a unit in order to ensure a harmony of the different corporate departments and part activities. In addition to the professional application of a logistics system, there is an opportunity to coordinate the relations inside an organization as well as between the organizations and to handle them as a unit. The sine qua non of the success of logistical processes is a harmony of the devices applied. The controlling system is a device for feeding back the processes of a corporate system. By means of the checkpoints intercalated into the processes, the logistics controlling provides information for the leadership which contributes even more to the complex approach of logistics system. By dint of the logistics controlling, the monitoring and coordination of every logistical part activity become possible with the help of information supply ensured by the logistics controlling. The logistics controlling reviews, assesses and coordinates; these activities have an effect on the cost and income management. Its reason is to be searched in the built

  16. Feedback matters current feedback practices in the EFL classroom

    CERN Document Server

    Reitbauer, Margit; Mercer, Sarah; Schumm-Fauster, Jennifer

    2013-01-01

    This varied collection of papers is concerned with feedback in the language learning context. With its blend of theoretical overviews, action research-based empirical studies and practical implications, this will be a valuable resource for all academics and practitioners concerned with generating feedback that matters.

  17. What higher education students do with teacher feedback: Feedback ...

    African Journals Online (AJOL)

    Writing pedagogy research has constantly maintained that feedback is 'an essential component of virtually every model of the writing process' (Hall, 1990: 43) as it motivates writers to improve their next draft. Feedback during the writing process improves not only student attitude to writing but writing performance if students ...

  18. Differences in context and feedback result in different trajectories and adaptation strategies in reaching.

    Directory of Open Access Journals (Sweden)

    Fritzie Arce

    Full Text Available Computational models of motor control have often explained the straightness of horizontal planar reaching movements as a consequence of optimal control. Departure from rectilinearity is thus regarded as sub-optimal. Here we examine if subjects may instead select to make curved trajectories following adaptation to force fields and visuomotor rotations. Separate subjects adapted to force fields with or without visual feedback of their hand trajectory and were retested after 24 hours. Following adaptation, comparable accuracies were achieved in two ways: with visual feedback, adapted trajectories in force fields were straight whereas without it, they remained curved. The results suggest that trajectory shape is not always straight, but is also influenced by the calibration of available feedback signals for the state estimation required by the task. In a follow-up experiment, where additional subjects learned a visuomotor rotation immediately after force field, the trajectories learned in force fields (straight or curved were transferred when directions of the perturbations were similar but not when directions were opposing. This demonstrates a strong bias by prior experience to keep using a recently acquired control policy that continues to produce successful performance inspite of differences in tasks and feedback conditions. On relearning of force fields on the second day, facilitation by intervening visuomotor rotations occurred only when required motor adjustments and calibration of feedback signals were similar in both tasks. These results suggest that both the available feedback signals and prior history of learning influence the choice and maintenance of control policy during adaptations.

  19. Multi-bunch Feedback Systems

    International Nuclear Information System (INIS)

    Lonza, M; Schmickler, H

    2014-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main components of a feedback system and the related issues will also be analysed. Finally, we shall focus on digital feedback systems, their characteristics, and features, as well as on how they can be concretely exploited for both the optimization of feedback performance and for beam dynamics studies

  20. Fast feedback in classroom practice

    NARCIS (Netherlands)

    Emmett, K.M.; Klaassen, K.; Eijkelhof, H.

    2009-01-01

    In this article we describe one application of the fast feedback method (see Berg 2003 Aust. Sci. Teach. J. 28–34) in secondary mechanics education. Two teachers tried out a particular sequence twice, in consecutive years, once with and once without the use of fast feedback. We found the method to

  1. Dynamics of nonlinear feedback control

    NARCIS (Netherlands)

    Snippe, H.P.; Hateren, J.H. van

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain

  2. Student Interpretations of Diagnostic Feedback

    Science.gov (United States)

    Doe, Christine

    2015-01-01

    Diagnostic assessment is increasingly being recognized as a potentially beneficial tool for teaching and learning (Jang, 2012). There have been calls in the research literature for students to receive diagnostic feedback and for researchers to investigate how such feedback is used by students. Therefore, this study examined how students…

  3. Videoer om feedback i undervisningen

    DEFF Research Database (Denmark)

    Jensen, Hanne Nexø

    2017-01-01

    I denne video bliver du introduceret til en måde at praktisere og rammesætte klyngevejledning på i bachelorundervisning. Klyngefeedbackformen til de studerende er valgt, da de studerende lærer meget af både at give og om modtage feedback fra medstuderende. Fokus på feedback ligger derfor primært i...

  4. Designing feedback: multimodality and specificity

    NARCIS (Netherlands)

    Ludden, Geke Dina Simone; Sugiyama, Kazuo

    2013-01-01

    Now that many of us carry around devices that are equipped with sensors (e.g., smartphones with accelerometers) we can use these sensors to measure behavior. The data thus captured can be used to give someone feedback about this behavior. These feedback mechanisms are often used in so called smart

  5. Multi-bunch feedback systems

    CERN Document Server

    Lonza, M

    2008-01-01

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. The advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. The lecture will first introduce coupled-bunch instabilities analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedbacks systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback sy...

  6. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  7. Multi-bunch Feedback Systems

    CERN Document Server

    Lonza, M.

    2014-12-19

    Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main co...

  8. Different forces

    CERN Multimedia

    1982-01-01

    The different forces, together with a pictorial analogy of how the exchange of particles works. The table lists the relative strength of the couplings, the quanta associated with the force fields and the bodies or phenomena in which they have a dominant role.

  9. Labor Force

    Science.gov (United States)

    Occupational Outlook Quarterly, 2010

    2010-01-01

    The labor force is the number of people aged 16 or older who are either working or looking for work. It does not include active-duty military personnel or institutionalized people, such as prison inmates. Quantifying this total supply of labor is a way of determining how big the economy can get. Labor force participation rates vary significantly…

  10. Moving Feedback Forward: Theory to Practice

    Science.gov (United States)

    Orsmond, Paul; Maw, Stephen J.; Park, Julian R.; Gomez, Stephen; Crook, Anne C.

    2013-01-01

    There is substantial research interest in tutor feedback and students' perception and use of such feedback. This paper considers some of the major issues raised in relation to tutor feedback and student learning. We explore some of the current feedback drivers, most notably the need for feedback to move away from simply a monologue from a tutor to…

  11. Understanding feedback: A learning theory perspective

    NARCIS (Netherlands)

    Thurlings, Marieke; Vermeulen, Marjan; Bastiaens, Theo; Stijnen, Sjef

    2018-01-01

    This article aims to review literature on feedback to teachers. Because research has hardly focused on feedback among teachers, the review’s scope also includes feedback in class- rooms. The review proposes that the effectiveness of feedback and feedback processes depend on the learning theory

  12. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    Science.gov (United States)

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  13. Giving Feedback: Development of Scales for the Mum Effect, Discomfort Giving Feedback, and Feedback Medium Preference

    Science.gov (United States)

    Cox, Susie S.; Marler, Laura E.; Simmering, Marcia J.; Totten, Jeff W.

    2011-01-01

    Research in organizational behavior and human resources promotes the view that it is critical for managers to provide accurate feedback to employees, yet little research addresses rater tendencies (i.e., the "mum effect") and attitudes that influence how performance feedback is given. Because technology has changed the nature of…

  14. How Attributes of the Feedback Message affect Subsequent Feedback Seeking: The interactive effects of feedback sign and type

    OpenAIRE

    Medvedeff, Megan; Gregory, Jane Brodie; Levy, Paul E

    2008-01-01

    In the current study, we examined the interactive effects of feedback type and sign on feedback-seeking behaviour, as well as the moderating role of regulatory focus. Using a behavioural measure of feedback seeking, we demonstrated a strong interaction between feedback type and sign, such that individuals subsequently sought the most feedback after they were provided with negative process feedback. Additionally, results suggested that an individual's chronic regulatory focus has implications ...

  15. Feedback systems in the SLC

    International Nuclear Information System (INIS)

    Thompson, K.A.; Jobe, R.K.; Johnson, R.; Phinney, N.

    1987-02-01

    Two classes of computer-controlled feedback have been implemented to stabilize parameters in subsystems of the SLC: (1) ''slow'' (time scales ∼ minutes) feedback, and (2) ''fast'', i.e., pulse-to-pulse, feedback. The slow loops run in a single FEEDBACK process in the SLC host VAX, which acquires signals and sets control parameters via communication with the database and the network of normal SLC microprocessors. Slow loops exist to stabilize beam energy and energy spread, beam position and angle, and timing of kicker magnets, and to compensate for changes in the phase length of the rf drive line. The fast loops run in dedicated microprocessors, and may sample and/or feedback on particular parameters as often as every pulse of the SLC beam. The first implementations of fast feedback are to control transverse beam blow-up and to stabilize the energy and energy spread of bunches going into the SLC arcs. The overall architecture of the feedback software and the operator interface for controlling loops are discussed

  16. Styrket feedback gennem studerendes selvevaluering

    DEFF Research Database (Denmark)

    Andersen, Lars Bo

    2016-01-01

    Studerende er ofte utilfredse med såvel kvaliteten som kvantiteten af feedback på skriftligt arbejde. Ligeledes kan det som underviser være svært at afgive feedback, der tager udgangspunkt i de studerendes respektive læringssituationer, hvis man ikke har andet afsæt end opgavetekster. Denne artikel...... beskriver derfor to eksperimenter med brug af selvevaluering som kvalificerende mellemled i ekstern feedback på skriveøvelser. Eksperimenternes formål er at styrke den formative læring ved skriftligt arbejde. I det første eksperiment bestod feedbacken af underviser-feedback, mens det andet eksperiment...... indebar peer-feedback og fælles feedback. I begge tilfælde blev selvevalueringen foretaget med udgangspunkt i en kriteriebaseret retteguide. Eksperimenterne medførte, at den eksterne feedback blev målrettet og kvalificeret i forhold til den enkelte studerende, mens selve skriveprocessen mod forventning...

  17. Portable haptic interface with omni-directional movement and force capability.

    Science.gov (United States)

    Avizzano, Carlo Alberto; Satler, Massimo; Ruffaldi, Emanuele

    2014-01-01

    We describe the design of a new mobile haptic interface that employs wheels for force rendering. The interface, consisting of an omni-directional Killough type platform, provides 2DOF force feedback with different control modalities. The system autonomously performs sensor fusion for localization and force rendering. This paper explains the relevant choices concerning the functional aspects, the control design, the mechanical and electronic solution. Experimental results for force feedback characterization are reported.

  18. Optimal allocation of reviewers for peer feedback

    DEFF Research Database (Denmark)

    Wind, David Kofoed; Jensen, Ulf Aslak; Jørgensen, Rasmus Malthe

    2017-01-01

    feedback to be effective students should give and receive useful feedback. A key challenge in peer feedback is allocating the feedback givers in a good way. It is important that reviewers are allocated to submissions such that the feedback distribution is fair - meaning that all students receive good......Peer feedback is the act of letting students give feedback to each other on submitted work. There are multiple reasons to use peer feedback, including students getting more feedback, time saving for teachers and increased learning by letting students reflect on work by others. In order for peer...... indicated the quality of the feedback. Using this model together with historical data we calculate the feedback-giving skill of each student and uses that as input to an allocation algorithm that assigns submissions to reviewers, in order to optimize the feedback quality for all students. We test...

  19. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback.

    Directory of Open Access Journals (Sweden)

    Ing-Shiou Hwang

    Full Text Available Discharge patterns from a population of motor units (MUs were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF. In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13-35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band.

  20. Design, construction, and first operational results of a 5 megawatt feedback controlled amplifier system for disruption control on the Columbia University HBT-EP tokamak

    International Nuclear Information System (INIS)

    Reass, W.A.; Alvestad, H.A.; Bartsch, R.R.; Wurden, G.A.; Ivers, T.H.; Nadle, D.L.

    1995-01-01

    This paper presents the electrical design and first operational results of a 5 Megawatt feedback controlled amplifier system designed to drive a 300 uH saddle coil set on the ''HBT-EP'' tokamak. It will be used to develop various plasma feedback techniques to control and inhibit the onset of plasma disruptions that are observed in high ''B'' plasmas. To provide a well characterized system, a high fidelity, high power closed loop amplifier system has been refurbished from the Los Alamos ''ZT-P'' equilibrium feedback system. In it's configuration developed for the Columbia HBT-EP tokamak, any desired waveform may be generated within a I 100 ampere and 16 kV peak to peak dynamic range. An energy storage capacitor bank presently limits the effective full power pulse width to 10 mS. The full power bandwidth driving the saddle coil set is ∼12 kHz, with bandwidth at reduced powers exceeding 30 kHz. The system is designed similar to a grounded cathode, push-pull, transformer coupled, tube type amplifier system. 'Me push pull amplifier consists of 6 each Machlett ML8618 magnetically beamed triodes, 3 on each end of the (center tapped) coupling transformer. The transformer has .I volt-seconds of core and a 1:1 turns ratio. The transformer is specially designed for high power, low leakage inductance, and high bandwidth. Each array of ML8618's is (grid) driven with a fiber optic controlled hotdeck with a 3CXI0,000A7 (triode) output. To linearize the ML8618 grid drive, a minor feedback loop in the hotdeck is utilized. Overall system response is controlled by active feedback of the saddle coil current, derived from a coaxial current viewing resistor. The detailed electrical design of the power amplifier, transformer, and feedback system will be provided in addition to recent HBT-EP operational results

  1. Task-space sensory feedback control of robot manipulators

    CERN Document Server

    Cheah, Chien Chern

    2015-01-01

    This book presents recent advances in robot control theory on task space sensory feedback control of robot manipulators. By using sensory feedback information, the robot control systems are robust to various uncertainties in modelling and calibration errors of the sensors. Several sensory task space control methods that do not require exact knowledge of either kinematics or dynamics of robots, are presented. Some useful methods such as approximate Jacobian control, adaptive Jacobian control, region control and multiple task space regional feedback are included. These formulations and methods give robots a high degree of flexibility in dealing with unforeseen changes and uncertainties in its kinematics and dynamics, which is similar to human reaching movements and tool manipulation. It also leads to the solution of several long-standing problems and open issues in robot control, such as force control with constraint uncertainty, control of multi-fingered robot hand with uncertain contact points, singularity i...

  2. NAIP 2015 Imagery Feedback Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2015 Imagery Feedback map allows users to make comments and observations about the quality of the 2015 National Agriculture Imagery Program (NAIP)...

  3. NAIP 2017 Imagery Feedback Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — The NAIP 2017 Imagery Feedback map allows users to make comments and observations about the quality of the 2017 National Agriculture Imagery Program (NAIP)...

  4. Feedback and household energy use

    Energy Technology Data Exchange (ETDEWEB)

    Mauser, G A; Kendall, K W; Filiatrault, P

    1979-06-01

    The literature is reviewed relevant to the use of (a) information campaigns through the mass media; and (b) immediate feedback about the results of consumer behavior, to influence consumer energy use. The study focuses on residential energy use. (MHR)

  5. Feedback stabilization of plasma instabilities

    International Nuclear Information System (INIS)

    Cap, F.F.

    1977-01-01

    This paper reviews the theoretical and experimental aspects of feedback stabilization. After giving an outline of a general theoretical model for electrostatic instabilities the author provides a theoretical analysis of the suppression of various types of instability. Experiments which have been carried out on the feedback stabilization of various types of plasma instability are reported. An extensive list of references is given. (B.R.H.)

  6. Operating experience feedback in TVO

    Energy Technology Data Exchange (ETDEWEB)

    Piirto, A [Teollisuuden Voima Oy (Finland)

    1997-12-31

    TVO is a power company operating with two 710 MW BWR units at Olkiluoto. For operating experience feedback TVO has not established a separate organizational unit but rather relies on a group of persons representing various technical disciplines. The ``Operating Experience Group`` meets at about three-week intervals to handle the reports of events (in plant and external) which have been selected for handling by an engineer responsible for experience feedback. 7 charts.

  7. Real-time feedback enhances forward propulsion during walking in old adults.

    Science.gov (United States)

    Franz, Jason R; Maletis, Michela; Kram, Rodger

    2014-01-01

    Reduced propulsive function during the push-off phase of walking plays a central role in the deterioration of walking ability with age. We used real-time propulsive feedback to test the hypothesis that old adults have an underutilized propulsive reserve available during walking. 8 old adults (mean [SD], age: 72.1 [3.9] years) and 11 young adults (age: 21.0 [1.5] years) participated. For our primary aim, old subjects walked: 1) normally, 2) with visual feedback of their peak propulsive ground reaction forces, and 3) with visual feedback of their medial gastrocnemius electromyographic activity during push-off. We asked those subjects to match a target set to 20% and 40% greater propulsive force or push-off muscle activity than normal walking. We tested young subjects walking normally only to provide reference ground reaction force values. Walking normally, old adults exerted 12.5% smaller peak propulsive forces than young adults (Ppush-off muscle activities when we provided propulsive feedback. Most notably, force feedback elicited propulsive forces that were equal to or 10.5% greater than those of young adults (+20% target, P=0.87; +40% target, P=0.02). With electromyographic feedback, old adults significantly increased their push-off muscle activities but without increasing their propulsive forces. Old adults with propulsive deficits have a considerable and underutilized propulsive reserve available during level walking. Further, real-time propulsive feedback represents a promising therapeutic strategy to improve the forward propulsion of old adults and thus maintain their walking ability and independence. © 2013.

  8. Collective irrationality and positive feedback.

    Science.gov (United States)

    Nicolis, Stamatios C; Zabzina, Natalia; Latty, Tanya; Sumpter, David J T

    2011-04-26

    Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.

  9. Collective irrationality and positive feedback.

    Directory of Open Access Journals (Sweden)

    Stamatios C Nicolis

    Full Text Available Recent experiments on ants and slime moulds have assessed the degree to which they make rational decisions when presented with a number of alternative food sources or shelter. Ants and slime moulds are just two examples of a wide range of species and biological processes that use positive feedback mechanisms to reach decisions. Here we use a generic, experimentally validated model of positive feedback between group members to show that the probability of taking the best of options depends crucially on the strength of feedback. We show how the probability of choosing the best option can be maximized by applying an optimal feedback strength. Importantly, this optimal value depends on the number of options, so that when we change the number of options the preference of the group changes, producing apparent "irrationalities". We thus reinterpret the idea that collectives show "rational" or "irrational" preferences as being a necessary consequence of the use of positive feedback. We argue that positive feedback is a heuristic which often produces fast and accurate group decision-making, but is always susceptible to apparent irrationality when studied under particular experimental conditions.

  10. High Cable Forces Deteriorate Pinch Force Control in Voluntary-Closing Body-Powered Prostheses.

    Directory of Open Access Journals (Sweden)

    Mona Hichert

    Full Text Available It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device. The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses.Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting.Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33% more and high (50% object's breaking force. The time to complete the task was not different between settings during successful manipulation trials.High cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs.

  11. Design of active feedback for rehabilitation device

    Directory of Open Access Journals (Sweden)

    Liska Ondrej

    2016-01-01

    Full Text Available Sensor systems are an essential part of automated equipment. They are even more important in machines that come in contact with people, because they have a significant impact on safety. This paper describes the design of active feedback for rehabilitation device driven by pneumatic artificial muscles. Here are presented three methods for measuring the load of the robot. The first is a system composed of Force Sensitive Resistors (FSR placed in the handle of the device. Two other methods are intended to measure the load of the actuator composed of artificial muscles. The principle of one method is to measure the difference in filling pressures of the muscles, second is based on strain measurement in the drive cables. The paper describes advantages and disadvantages of using each of these methods in a rehabilitation device

  12. Cooling optically levitated dielectric nanoparticles via parametric feedback

    Science.gov (United States)

    Neukirch, Levi; Rodenburg, Brandon; Bhattacharya, Mishkatul; Vamivakas, Nick

    2015-05-01

    The inability to leverage resonant scattering processes involving internal degrees of freedom differentiates optical cooling experiments performed with levitated dielectric nanoparticles, from similar atomic and molecular traps. Trapping in optical cavities or the application of active feedback techniques have proven to be effective ways to circumvent this limitation. We present our nanoparticle optical cooling apparatus, which is based on parametric feedback modulation of a single-beam gradient force optical trap. This scheme allows us to achieve effective center-of-mass temperatures well below 1 kelvin for our ~ 1 ×10-18 kg particles, at modest vacuum pressures. The method provides a versatile platform, with parameter tunability not found in conventional tethered nanomechanical systems. Potential applications include investigations of nonequilibrium nanoscale thermodynamics, ultra-sensitive force metrology, and mesoscale quantum mechanics and hybrid systems. Supported by the office of Naval Research award number N000141410442.

  13. Nuclear forces

    International Nuclear Information System (INIS)

    Holinde, K.

    1990-01-01

    In this paper the present status of the meson theory of nuclear forces is reviewed. After some introductory remarks about the relevance of the meson exchange concept in the era of QCD and the empirical features of the NN interaction, the exciting history of nuclear forces is briefly outlined. In the main part, the author gives the basic physical ideas and sketch the derivation of the one-boson-exchange model of the nuclear force, in the Feynman approach. Secondly we describe, in a qualitative way, various necessary extensions, leading to the Bonn model of the N interaction. Finally, points to some interesting pen questions connected with the extended quark structure of the hadrons, which are topics of current research activity

  14. Reorganised force control in elbow pain patients during isometric wrist extension

    DEFF Research Database (Denmark)

    Mista, Christian Ariel; Monterde, Sonia; Inglés, Montserrat

    2018-01-01

    INTRODUCTION: Reorganised force control may be an important adaptation following painful traumas. In this study, force control adaptations were assessed in elbow pain patients. Increasing the contraction demand may overcome pain interference on the motor control and as such act as an internal...... voluntary contraction. Pressure pain thresholds were recorded at the lateral epicondyle and tibialis anterior muscle. Contraction force was recorded using a three-directional force transducer. Participants performed contractions according with visual feedback of the task-related force intensity (main...... direction of wrist extension) and another set of contractions with feedback of the three force directions. Going from the simple to the detailed force feedback will increase the demand of the motor task. Force steadiness in all 3 dimensions and force direction was extracted. RESULTS: Compared with controls...

  15. Heteroclinic Bifurcation Behaviors of a Duffing Oscillator with Delayed Feedback

    Directory of Open Access Journals (Sweden)

    Shao-Fang Wen

    2018-01-01

    Full Text Available The heteroclinic bifurcation and chaos of a Duffing oscillator with forcing excitation under both delayed displacement feedback and delayed velocity feedback are studied by Melnikov method. The Melnikov function is analytically established to detect the necessary conditions for generating chaos. Through the analysis of the analytical necessary conditions, we find that the influences of the delayed displacement feedback and delayed velocity feedback are separable. Then the influences of the displacement and velocity feedback parameters on heteroclinic bifurcation and threshold value of chaotic motion are investigated individually. In order to verify the correctness of the analytical conditions, the Duffing oscillator is also investigated by numerical iterative method. The bifurcation curves and the largest Lyapunov exponents are provided and compared. From the analysis of the numerical simulation results, it could be found that two types of period-doubling bifurcations occur in the Duffing oscillator, so that there are two paths leading to the chaos in this oscillator. The typical dynamical responses, including time histories, phase portraits, and Poincare maps, are all carried out to verify the conclusions. The results reveal some new phenomena, which is useful to design or control this kind of system.

  16. Distributed User Selection in Network MIMO Systems with Limited Feedback

    KAUST Repository

    Elkhalil, Khalil; Eltayeb, Mohammed E.; Dahrouj, Hayssam; Al-Naffouri, Tareq Y.

    2015-01-01

    We propose a distributed user selection strategy in a network MIMO setting with M base stations serving K users. Each base station is equipped with L antennas, where LM ≪ K. The conventional selection strategy is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Such technique, however, requires perfect channel state information at the transmitter (CSIT), which might not be available or need large feedback overhead. This paper proposes an alternative distributed user selection technique where each user sets a timer that is inversely proportional to his channel quality indicator (CQI), as a means to reduce the feedback overhead. The proposed strategy allows only the user with the highest CQI to respond with a feedback. Such technique, however, remains collision free only if the transmission time is shorter than the difference between the strongest user timer and the second strongest user timer. To overcome the situation of longer transmission times, the paper proposes another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and all users encode their feedback information and send it back to the base-stations simultaneously. The paper shows that the problem can be formulated as a block sparse recovery problem which is agnostic on the transmission time, which makes it a good alternative to the timer approach when collision is dominant.

  17. Distributed User Selection in Network MIMO Systems with Limited Feedback

    KAUST Repository

    Elkhalil, Khalil

    2015-09-06

    We propose a distributed user selection strategy in a network MIMO setting with M base stations serving K users. Each base station is equipped with L antennas, where LM ≪ K. The conventional selection strategy is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Such technique, however, requires perfect channel state information at the transmitter (CSIT), which might not be available or need large feedback overhead. This paper proposes an alternative distributed user selection technique where each user sets a timer that is inversely proportional to his channel quality indicator (CQI), as a means to reduce the feedback overhead. The proposed strategy allows only the user with the highest CQI to respond with a feedback. Such technique, however, remains collision free only if the transmission time is shorter than the difference between the strongest user timer and the second strongest user timer. To overcome the situation of longer transmission times, the paper proposes another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and all users encode their feedback information and send it back to the base-stations simultaneously. The paper shows that the problem can be formulated as a block sparse recovery problem which is agnostic on the transmission time, which makes it a good alternative to the timer approach when collision is dominant.

  18. Prevailing Trends in Haptic Feedback Simulation for Minimally Invasive Surgery.

    Science.gov (United States)

    Pinzon, David; Byrns, Simon; Zheng, Bin

    2016-08-01

    Background The amount of direct hand-tool-tissue interaction and feedback in minimally invasive surgery varies from being attenuated in laparoscopy to being completely absent in robotic minimally invasive surgery. The role of haptic feedback during surgical skill acquisition and its emphasis in training have been a constant source of controversy. This review discusses the major developments in haptic simulation as they relate to surgical performance and the current research questions that remain unanswered. Search Strategy An in-depth review of the literature was performed using PubMed. Results A total of 198 abstracts were returned based on our search criteria. Three major areas of research were identified, including advancements in 1 of the 4 components of haptic systems, evaluating the effectiveness of haptic integration in simulators, and improvements to haptic feedback in robotic surgery. Conclusions Force feedback is the best method for tissue identification in minimally invasive surgery and haptic feedback provides the greatest benefit to surgical novices in the early stages of their training. New technology has improved our ability to capture, playback and enhance to utility of haptic cues in simulated surgery. Future research should focus on deciphering how haptic training in surgical education can increase performance, safety, and improve training efficiency. © The Author(s) 2016.

  19. Biodiversity maintenance in food webs with regulatory environmental feedbacks.

    Science.gov (United States)

    Bagdassarian, Carey K; Dunham, Amy E; Brown, Christopher G; Rauscher, Daniel

    2007-04-21

    Although the food web is one of the most fundamental and oldest concepts in ecology, elucidating the strategies and structures by which natural communities of species persist remains a challenge to empirical and theoretical ecologists. We show that simple regulatory feedbacks between autotrophs and their environment when embedded within complex and realistic food-web models enhance biodiversity. The food webs are generated through the niche-model algorithm and coupled with predator-prey dynamics, with and without environmental feedbacks at the autotroph level. With high probability and especially at lower, more realistic connectance levels, regulatory environmental feedbacks result in fewer species extinctions, that is, in increased species persistence. These same feedback couplings, however, also sensitize food webs to environmental stresses leading to abrupt collapses in biodiversity with increased forcing. Feedback interactions between species and their material environments anchor food-web persistence, adding another dimension to biodiversity conservation. We suggest that the regulatory features of two natural systems, deep-sea tubeworms with their microbial consortia and a soil ecosystem manifesting adaptive homeostatic changes, can be embedded within niche-model food-web dynamics.

  20. Real-time calibration of a feedback trap

    OpenAIRE

    Gavrilov, Momčilo; Jun, Yonggun; Bechhoefer, John

    2014-01-01

    Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time sca...

  1. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  2. Dynamics of nonlinear feedback control.

    Science.gov (United States)

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  3. Feedback as Real-Time Constructions

    Science.gov (United States)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…

  4. Leadership in Libraries--Feedback as Communication.

    Science.gov (United States)

    Wright, Dianne H.

    This paper focuses on the role of feedback in effective communication and ways in which feedback can assist library managers at all levels in performing their role as leaders. The various kinds and sources of feedback are discussed, and the relationship between feedback and goal setting are considered, as well as the effects of goal setting and…

  5. Sustainable feedback: students’ and tutors’ perceptions

    NARCIS (Netherlands)

    Geitz, Gerry; Joosten-ten Brinke, Desirée; Kirschner, Paul A.

    2018-01-01

    Feedback has been shown to substantially influence students’ learning. However, not everything characterized as feedback is effective. Sustainable feedback places students in an active role in which they generate and use feedback from peers, self or others and aims at developing lifelong learning

  6. Deterministic and stochastic control of chimera states in delayed feedback oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Maistrenko, Y. [Institute of Mathematics and Center for Medical and Biotechnical Research, NAS of Ukraine, Tereschenkivska Str. 3, 01601 Kyiv (Ukraine)

    2016-06-08

    Chimera states, characterized by the coexistence of regular and chaotic dynamics, are found in a nonlinear oscillator model with negative time-delayed feedback. The control of these chimera states by external periodic forcing is demonstrated by numerical simulations. Both deterministic and stochastic external periodic forcing are considered. It is shown that multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. The constructive role of noise in the formation of a chimera states is shown.

  7. About Politeness, Face, and Feedback: Exploring Resident and Faculty Perceptions of How Institutional Feedback Culture Influences Feedback Practices.

    Science.gov (United States)

    Ramani, Subha; Könings, Karen D; Mann, Karen V; Pisarski, Emily E; van der Vleuten, Cees P M

    2018-03-06

    To explore resident and faculty perspectives on what constitutes feedback culture, their perceptions of how institutional feedback culture (including politeness concepts) might influence the quality and impact of feedback, feedback seeking, receptivity, and readiness to engage in bidirectional feedback. Using a constructivist grounded theory approach, five focus group discussions with internal medicine residents, three focus group discussions with general medicine faculty, and eight individual interviews with subspecialist faculty were conducted at Brigham and Women's Hospital between April and December 2016. Discussions and interviews were audiotaped and transcribed verbatim; concurrent data collection and analysis were performed using the constant comparative approach. Analysis was considered through the lens of politeness theory and organizational culture. Twenty-nine residents and twenty-two general medicine faculty participated in focus group discussions, and eight subspecialty faculty participated in interviews. The institutional feedback culture was described by participants as: (1) a culture of politeness, in which language potentially damaging to residents' self-esteem was discouraged, and (2) a culture of excellence, in which the institution's outstanding reputation and pedigree of trainees inhibited constructive feedback. Three key themes situated within this broader cultural context were discovered: normalizing constructive feedback to promote a culture of growth, overcoming the mental block to feedback seeking, and hierarchical culture impeding bidirectional feedback. An institutional feedback culture of excellence and politeness may impede honest, meaningful feedback and may impact feedback seeking, receptivity, and bidirectional feedback exchanges. It is essential to understand the institutional feedback culture before it can be successfully changed.

  8. Feedback på tekst i grupper

    DEFF Research Database (Denmark)

    Hvass, Helle; Heger, Stine

    2017-01-01

    med temaet Feedback på tekst i grupper er via aktiviteter at gøre de studerende bevidste om, at feedback er noget, de skal lære, og noget, de skal øve sig på. De forskellige aktiviteter sætter de studerende i gang med at skabe rammer for feedback, at træne feedback og at give og modtage feedback på...... hinandens tekster. Temaet er bygget op omkring 2 forskellige elementer: 1) forberedelse af feedback og 2) udførelse af feedback....

  9. Pilot acute study of feedback-controlled retrograde peristalsis invoked by neural gastric electrical stimulation

    International Nuclear Information System (INIS)

    Aelen, P; Jurkov, A; Aulanier, A; Mintchev, M P

    2009-01-01

    Neural gastric electrical stimulation (NGES) is a new method for invoking gastric contractions under microprocessor control. However, optimization of this technique using feedback mechanisms to minimize power consumption and maximize effectiveness has been lacking. The present pilot study proposes a prototype feedback-controlled neural gastric electric stimulator for the treatment of obesity. Both force-based and inter-electrode impedance-based feedback neurostimulators were implemented and tested. Four mongrel dogs (2 M, 2 F, weight 14.9 ± 2.3 kg) underwent subserosal implantation of two-channel, 1 cm, bipolar electrode leads and two force transducers in the distal antrum. Two of the dogs were stimulated with a force feedback system utilizing the force transducers, and the other two animals were stimulated utilizing an inter-electrode impedance-based feedback system utilizing the proximal electrode leads. Both feedback systems were able to recognize erythromycin-driven contractions of the stomach and were capable of overriding them with NGES-invoked retrograde contractions which exceeded the magnitudes of the erythromycin-driven contractions by an average of 100.6 ± 33.5% in all animals. The NGES-invoked contractions blocked the erythromycin-driven contractions past the proximal electrode pair and induced temporary gastroparesis in the vicinity of the distal force transducer despite the continuing erythromycin infusion. The amplitudes of the erythromycin-invoked contractions in the vicinity of the proximal force transducer decreased abruptly by an average of 47.9 ± 6.3% in all four dogs after triggering-invoked retrograde contractions, regardless of the specific feedback-controlled mechanism. The proposed technique could be helpful for retaining food longer in the stomach, thus inducing early satiety and diminishing food intake

  10. ABCDEFG IS - the principle of constructive feedback.

    Science.gov (United States)

    Bhattarai, M

    2007-01-01

    Feedback is an integral part of any learning experience. Constructive feedback is a powerful instrument and facilitates the learner's professional and personal development. "ABCDEFG IS", a mnemonic for the principles of constructive feedback, stands for Amount of the information, Benefit of the trainees, Change behaviour, Descriptive language, Environment, Focused, Group check, Interpretation check, and Sharing information. The eight important steps of feedback are: Ensure prior information, Collect data, Make appropriate meeting arrangement, Begin by encouraging self assessment by the trainee, Highlight areas where the trainee is doing well, Give feedback, Handle reaction maintaining the dignity and Plan actions. Communication and reflection also share many of the principles and steps of constructive feedback and giving regular feedback, thus, helps to improve communication and reflection. The feedback provider would be able to provide genuine feedback by following the appropriate steps and principles of constructive feedback and realize how important and rewarding its role is in teaching learning activities.

  11. Peer Feedback in Learning a Foreign Language in Facebook

    NARCIS (Netherlands)

    Akbari, E.; Simons, P.R.J.; Pilot, A.; Naderi, Ahmad

    2017-01-01

    Feedback can have different forms and functions depending on its objectives as well as its provider: teacher feedback, student feedback, peer feedback, written feedback, oral feedback, etc. One of the most constructive forms of feedback may be peer feedback, since it involves group learning (Van

  12. Compressive Sensing for Feedback Reduction in Wireless Multiuser Networks

    KAUST Repository

    Elkhalil, Khalil

    2015-05-01

    error covariance matrix of the post-detection noise to be used in the back-off strategy. In addition to this, we provide exact closed form expressions for the average maximum equivalent SNR at the destination user. The last part of the thesis treats the problem of user selection in a network MIMO setting. We propose a distributed user selection strategy that is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Usually this technique requires perfect channel state information at the transmitter (CSIT) which might not be available or need large feedback overhead. Instead, we propose a distributed user selection technique where no communication between base stations is needed. In order to reduce the feedback overhead, each user set a timer that is inversely proportional to his channel quality indicator (CQI). This technique will allow only the user with the highest CQI to feedback provided that the transmission time is shorter than the difference between his timer and the second strongest user timer, otherwise a collision will occur. In the case of collision, we propose another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and each user encode its feedback using Gaussian codewords and feedback the combination at the same time with other users. We prove that the problem can be formulated as a block sparse recovery problem and that this approach is agnostic on the transmission time, thus it could be a good alternative to the timer approach when collision is dominant. Simulation results show that the proposed CS-based selection algorithms yield a rate performance that is close to the ones achieved when perfect CSI is available while consuming a small amount of feedback.

  13. Analysis of Feedback in after Action Reviews

    Science.gov (United States)

    1987-06-01

    CONNTSM Page INTRODUCTIUN . . . . . . . . . . . . . . . . . . . A Perspective on Feedback. . ....... • • ..... • 1 Overviev of %,•urrent Research...part of their training program . The AAR is in marked contrast to the critique method of feedback which is often used in military training. The AAR...feedback is task-inherent feedback. Task-inherent feedback refers to human-machine interacting systems, e.g., computers , where in a visual tracking task

  14. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  15. Recognition of boundary feedback systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1989-01-01

    A system that has been the object of intense research is outlined. In view of that and recent progress of the theory of pseudodifferential boundary operator calculus, the author describes some features that could prove to be interesting in connection with the problems of boundary feedback stabili...... stabilizability. It is shown that it is possible to use the calculus to consider more general feedback systems in a variational setup.......A system that has been the object of intense research is outlined. In view of that and recent progress of the theory of pseudodifferential boundary operator calculus, the author describes some features that could prove to be interesting in connection with the problems of boundary feedback...

  16. Klystron equalization for RF feedback

    International Nuclear Information System (INIS)

    Corredoura, P.

    1993-01-01

    The next generation of colliding beam storage rings support higher luminosities by significantly increasing the number of bunches and decreasing the spacing between respective bunches. The heavy beam loading requires large RF cavity detuning which drives several lower coupled bunch modes very strongly. One technique which has proven to be very successful in reducing the coupled bunch mode driving impedance is RF feedback around the klystron-cavity combination. The gain and bandwidth of the feedback loop is limited by the group delay around the feedback loop. Existing klystrons on the world market have not been optimized for this application and contribute a large portion of the total loop group delay. This paper describes a technique to reduce klystron group delay by adding an equalizing filter to the klystron RF drive. Such a filter was built and tested on a 500 kill klystron as part of the on going PEP-II R ampersand D effort here at SLAC

  17. Integrated dynamic and static tactile sensor: focus on static force sensing

    Science.gov (United States)

    Wettels, Nicholas; Pletner, Baruch

    2012-04-01

    Object grasping by robotic hands in unstructured environments demands a sensor that is durable, compliant, and responsive to static and dynamic force conditions. In order for a tactile sensor to be useful for grasp control in these, it should have the following properties: tri-axial force sensing (two shear plus normal component), dynamic event sensing across slip frequencies, compliant surface for grip, wide dynamic range (depending on application), insensitivity to environmental conditions, ability to withstand abuse and good sensing behavior (e.g. low hysteresis, high repeatability). These features can be combined in a novel multimodal tactile sensor. This sensor combines commercial-off-the-shelf MEMS technology with two proprietary force sensors: a high bandwidth device based on PZT technology and low bandwidth device based on elastomers and optics. In this study, we focus on the latter transduction mechanism and the proposed architecture of the completed device. In this study, an embedded LED was utilized to produce a constant light source throughout a layer of silicon rubber which covered a plastic mandrel containing a set of sensitive phototransistors. Features about the contacted object such as center of pressure and force vectors can be extracted from the information in the changing patterns of light. The voltage versus force relationship obtained with this molded humanlike finger had a wide dynamic range that coincided with forces relevant for most human grip tasks.

  18. Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution

    Directory of Open Access Journals (Sweden)

    Weijiong Wu

    2017-05-01

    Full Text Available Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS, as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.

  19. Biodynamic feedback training to assure learning partial load bearing on forearm crutches.

    Science.gov (United States)

    Krause, Daniel; Wünnemann, Martin; Erlmann, Andre; Hölzchen, Timo; Mull, Melanie; Olivier, Norbert; Jöllenbeck, Thomas

    2007-07-01

    To examine how biodynamic feedback training affects the learning of prescribed partial load bearing (200N). Three pre-post experiments. Biomechanics laboratory in a German university. A volunteer sample of 98 uninjured subjects who had not used crutches recently. There were 24 subjects in experiment 1 (mean age, 23.2y); 64 in experiment 2 (mean age, 43.6y); and 10 in experiment 3 (mean age, 40.3y), parallelized by arm force. Video instruction and feedback training: In experiment 1, 2 varied instruction videos and reduced feedback frequency; in experiment 2, varied frequencies of changing tasks (contextual interference); and in experiment 3, feedback training (walking) and transfer (stair tasks). Vertical ground reaction force. Absolute error of practiced tasks was significantly reduced for all samples (Pstairs might be beneficial.

  20. Driving feedback : psychological factors influencing the effectiveness of feedback

    NARCIS (Netherlands)

    Dogan, Ebru

    2013-01-01

    Automobilisten rijden niet altijd veilig en duurzaam. Het geven van feedback wordt over het algemeen beschouwd als een kansrijke strategie om automobilisten bewust te maken van de gevolgen van hun gedrag, en om hun gedrag te veranderen. Er is tot nu toe echter weinig bekend over welke factoren de

  1. Linear feedback controls the essentials

    CERN Document Server

    Haidekker, Mark A

    2013-01-01

    The design of control systems is at the very core of engineering. Feedback controls are ubiquitous, ranging from simple room thermostats to airplane engine control. Helping to make sense of this wide-ranging field, this book provides a new approach by keeping a tight focus on the essentials with a limited, yet consistent set of examples. Analysis and design methods are explained in terms of theory and practice. The book covers classical, linear feedback controls, and linear approximations are used when needed. In parallel, the book covers time-discrete (digital) control systems and juxtapos

  2. Longitudinal feedback system for PEP

    International Nuclear Information System (INIS)

    Allen, M.A.; Cornacchia, M.; Millich, A.

    1979-02-01

    Whether the wide bandwidth longitudinal feedback system described in this paper is made to act on the individual modes in frequency domain or on the individual bunches in time domain, it represents a clean and efficient way of damping the longitudinal oscillations without influencing other beam parameters such as bunch shape or synchrotron frequency distribution. The frequency domain feedback presents the advantage of providing information on which modes are unstable and on their risetimes, which may be helpful in locating dangerous resonators in the ring

  3. Unsteady steady-states: central causes of unintentional force drift.

    Science.gov (United States)

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-12-01

    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT ) and its apparent stiffness (C FT ). The system's state is defined by a point in the {R FT ; C FT } space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT ; C FT } relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.

  4. Large Scale Scanning Probe Microscope "Making Shear Force Scanning visible."

    NARCIS (Netherlands)

    Bosma, E.; Offerhaus, Herman L.; van der Veen, Jan T.; van der Veen, J.T.; Segerink, Franciscus B.; Wessel, I.M.

    2010-01-01

    We describe a demonstration of a scanning probe microscope with shear-force tuning fork feedback. The tuning fork is several centimeters long, and the rigid fiber is replaced by a toothpick. By scaling this demonstration to visible dimensions the accessibility of shear-force scanning and tuning fork

  5. Sensing And Force-Reflecting Exoskeleton

    Science.gov (United States)

    Eberman, Brian; Fontana, Richard; Marcus, Beth

    1993-01-01

    Sensing and force-reflecting exoskeleton (SAFiRE) provides control signals to robot hand and force feedback from robot hand to human operator. Operator makes robot hand touch objects gently and manipulates them finely without exerting excessive forces. Device attaches to operator's hand; comfortable and lightweight. Includes finger exoskeleton, cable mechanical transmission, two dc servomotors, partial thumb exoskeleton, harness, amplifier box, two computer circuit boards, and software. Transduces motion of index finger and thumb. Video monitor of associated computer displays image corresponding to motion.

  6. Sensory-Feedback Exoskeletal Arm Controller

    Science.gov (United States)

    An, Bin; Massie, Thomas H.; Vayner, Vladimir

    2004-01-01

    An electromechanical exoskeletal arm apparatus has been designed for use in controlling a remote robotic manipulator arm. The apparatus, called a force-feedback exoskeleton arm master (F-EAM) is comfortable to wear and easy to don and doff. It provides control signals from the wearer s arm to a robot arm or a computer simulator (e.g., a virtual-reality system); it also provides force and torque feedback from sensors on the robot arm or from the computer simulator to the wearer s arm. The F-EAM enables the wearer to make the robot arm gently touch objects and finely manipulate them without exerting excessive forces. The F-EAM features a lightweight design in which the motors and gear heads that generate force and torque feedback are made smaller than they ordinarily would be: this is achieved by driving the motors to power levels greater than would ordinarily be used in order to obtain higher torques, and by providing active liquid cooling of the motors to prevent overheating at the high drive levels. The F-EAM (see figure) includes an assembly that resembles a backpack and is worn like a backpack, plus an exoskeletal arm mechanism. The FEAM has five degrees of freedom (DOFs) that correspond to those of the human arm: 1. The first DOF is that of the side-to-side rotation of the upper arm about the shoulder (rotation about axis 1). The reflected torque for this DOF is provided by motor 1 via drum 1 and a planar four-bar linkage. 2. The second DOF is that of the up-and-down rotation of the arm about the shoulder. The reflected torque for this DOF is provided by motor 2 via drum 2. 3. The third DOF is that of twisting of the upper arm about its longitudinal axis. This DOF is implemented in a cable remote-center mechanism (CRCM). The reflected torque for this DOF is provided by motor 3, which drives the upper-arm cuff and the mechanism below it. A bladder inflatable by gas or liquid is placed between the cuff and the wearer s upper arm to compensate for misalignment

  7. Reaction Force/Torque Sensing in a Master-Slave Robot System without Mechanical Sensors

    Directory of Open Access Journals (Sweden)

    Kyoko Shibata

    2010-07-01

    Full Text Available In human-robot cooperative control systems, force feedback is often necessary in order to achieve high precision and high stability. Usually, traditional robot assistant systems implement force feedback using force/torque sensors. However, it is difficult to directly mount a mechanical force sensor on some working terminals, such as in applications of minimally invasive robotic surgery, micromanipulation, or in working environments exposed to radiation or high temperature. We propose a novel force sensing mechanism for implementing force feedback in a master-slave robot system with no mechanical sensors. The system consists of two identical electro-motors with the master motor powering the slave motor to interact with the environment. A bimanual coordinated training platform using the new force sensing mechanism was developed and the system was verified in experiments. Results confirm that the proposed mechanism is capable of achieving bilateral force sensing and mirror-image movements of two terminals in two reverse control directions.

  8. Evaluation of stiffness feedback for hard nodule identification on a phantom silicone model

    OpenAIRE

    Li, M.; Konstantinova, J.; Xu, G.; He, B.; Aminzadeh, V.; Xie, J.; Wurdemann, H.; Althoefer, K.

    2017-01-01

    Haptic information in robotic surgery can significantly improve clinical outcomes and help detect hard soft-tissue inclusions that indicate potential abnormalities. Visual representation of tissue stiffness information is a cost-effective technique. Meanwhile, direct force feedback, although considerably more expensive than visual representation, is an intuitive method of conveying information regarding tissue stiffness to surgeons. In this study, real-time visual stiffness feedback by slidin...

  9. An Extended Validity Argument for Assessing Feedback Culture.

    Science.gov (United States)

    Rougas, Steven; Clyne, Brian; Cianciolo, Anna T; Chan, Teresa M; Sherbino, Jonathan; Yarris, Lalena M

    2015-01-01

    NEGEA 2015 CONFERENCE ABSTRACT (EDITED): Measuring an Organization's Culture of Feedback: Can It Be Done? Steven Rougas and Brian Clyne. CONSTRUCT: This study sought to develop a construct for measuring formative feedback culture in an academic emergency medicine department. Four archetypes (Market, Adhocracy, Clan, Hierarchy) reflecting an organization's values with respect to focus (internal vs. external) and process (flexibility vs. stability and control) were used to characterize one department's receptiveness to formative feedback. The prevalence of residents' identification with certain archetypes served as an indicator of the department's organizational feedback culture. New regulations have forced academic institutions to implement wide-ranging changes to accommodate competency-based milestones and their assessment. These changes challenge residencies that use formative feedback from faculty as a major source of data for determining training advancement. Though various approaches have been taken to improve formative feedback to residents, there currently exists no tool to objectively measure the organizational culture that surrounds this process. Assessing organizational culture, commonly used in the business sector to represent organizational health, may help residency directors gauge their program's success in fostering formative feedback. The Organizational Culture Assessment Instrument (OCAI) is widely used, extensively validated, applicable to survey research, and theoretically based and may be modifiable to assess formative feedback culture in the emergency department. Using a modified Delphi technique and several iterations of focus groups amongst educators at one institution, four of the original six OCAI domains (which each contain 4 possible responses) were modified to create a 16-item Formative Feedback Culture Tool (FFCT) that was administered to 26 residents (response rate = 55%) at a single academic emergency medicine department. The mean

  10. Feedback - closing the loop digitally

    International Nuclear Information System (INIS)

    Zagel, J.; Chase, B.

    1992-01-01

    Many feedback and feedforward systems are now using microprocessors within the loop. We describe the wide range of possibilities and problems that arise. We also propose some ideas for analysis and testing, including examples of motion control in the Flying Wire systems in Main Ring and Tevatron and Low Level RF control now being built for the Fermilab Linac upgrade. (author)

  11. LFSC - Linac Feedback Simulation Code

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (Feedback Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  12. Delayed Auditory Feedback and Movement

    Science.gov (United States)

    Pfordresher, Peter Q.; Dalla Bella, Simone

    2011-01-01

    It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…

  13. Feedback on household electricity consumption

    DEFF Research Database (Denmark)

    Grønhøj, Alice; Thøgersen, John

    2011-01-01

    In this paper, we present results from a project aiming to develop a new feedback technology to support sustainable living in private households. Against the backdrop of a review of the relevant literature and based on qualitative family interviews and registration of the households' electricity ...

  14. Feedback coupling in dynamical systems

    Science.gov (United States)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  15. Lykkes peer-feedback altid?

    DEFF Research Database (Denmark)

    Jørgensen, Bente Mosgaard

    Agenda. International Journal of English Studies, 10(2), 171-184. doi:10.6018/ijes.10.2.119251 Lee, I. (2013). Research into Practice: Written Corrective Feedback. Language Teaching, 46(2), 108-119. doi:10.1017/S0261444812000390 Nicol, D. (2014). Guiding Principles for Peer Reveiw: Unlocking Learner...... Aarhus Universitet tilbydes derfor en række større og mindre opgaver, der skal give dem mulighed for at træne denne evne (se paper I, Jensen, in press, 2018). Nogle af de mindre opgaver inkluderer brugen af peer-feedback. Opgaverne afvikles via systemet Peergrade, hvor de studerende online bedømmer...... til at være, (3) pege på hvilke fordele og udfordringer der er med at anvende peer-feedback i det anvendte set-up på den pågældende uddannelse og (4) foreslå hvilke krav der må stilles til et system, der skal understøtte en korrektiv peer feedback proces ? Bredt teoretisk er jura-casen et eksempel på...

  16. The Secret of Effective Feedback

    Science.gov (United States)

    Wiliam, Dylan

    2016-01-01

    "The only important thing about feedback is what students do with it," declares Dylan Wiliam in this article. The standard school procedure (in which a teacher looks at a piece of student work and writes something on it, and the student later looks at what the teacher has written) does not necessarily increase student learning. Teachers…

  17. Environmental Feedback and Spatial Conditioning

    DEFF Research Database (Denmark)

    Foged, Isak Worre; Poulsen, Esben Skouboe

    2010-01-01

    with structural integrity, where thermal energy flow through the prototype, to be understood as a membrane, can be controlled and the visual transparancy altered. The work shows performance based feedback systems and physical prototype models driven by information streaming, screening and application....

  18. Atmospheric radiative feedbacks associated with transient climate change and climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Colman, Robert A.; Power, Scott B. [Bureau of Meteorology, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne, VIC (Australia)

    2010-06-15

    This study examines in detail the 'atmospheric' radiative feedbacks operating in a coupled General Circulation Model (GCM). These feedbacks (defined as the change in top of atmosphere radiation per degree of global surface temperature change) are due to responses in water vapour, lapse rate, clouds and surface albedo. Two types of radiative feedback in particular are considered: those arising from century scale 'transient' warming (from a 1% per annum compounded CO{sub 2} increase), and those operating under the model's own unforced 'natural' variability. The time evolution of the transient (or 'secular') feedbacks is first examined. It is found that both the global strength and the latitudinal distributions of these feedbacks are established within the first two or three decades of warming, and thereafter change relatively little out to 100 years. They also closely approximate those found under equilibrium warming from a 'mixed layer' ocean version of the same model forced by a doubling of CO{sub 2}. These secular feedbacks are then compared with those operating under unforced (interannual) variability. For water vapour, the interannual feedback is only around two-thirds the strength of the secular feedback. The pattern reveals widespread regions of negative feedback in the interannual case, in turn resulting from patterns of circulation change and regions of decreasing as well as increasing surface temperature. Considering the vertical structure of the two, it is found that although positive net mid to upper tropospheric contributions dominate both, they are weaker (and occur lower) under interannual variability than under secular change and are more narrowly confined to the tropics. Lapse rate feedback from variability shows weak negative feedback over low latitudes combined with strong positive feedback in mid-to-high latitudes resulting in no net global feedback - in contrast to the dominant negative low

  19. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O' Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  20. Electrotactile feedback improves performance and facilitates learning in the routine grasping task

    Directory of Open Access Journals (Sweden)

    Milica Isaković

    2016-06-01

    Full Text Available Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels. First (baseline and the last (validation session were performed in open loop, while the second and the third session (training included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  1. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.

    Science.gov (United States)

    Isaković, Milica; Belić, Minja; Štrbac, Matija; Popović, Igor; Došen, Strahinja; Farina, Dario; Keller, Thierry

    2016-06-13

    Aim of this study was to investigate the feasibility of electrotactile feedback in closed loop training of force control during the routine grasping task. The feedback was provided using an array electrode and a simple six-level spatial coding, and the experiment was conducted in three amputee subjects. The psychometric tests confirmed that the subjects could perceive and interpret the electrotactile feedback with a high success rate. The subjects performed the routine grasping task comprising 4 blocks of 60 grasping trials. In each trial, the subjects employed feedforward control to close the hand and produce the desired grasping force (four levels). First (baseline) and the last (validation) session were performed in open loop, while the second and the third session (training) included electrotactile feedback. The obtained results confirmed that using the feedback improved the accuracy and precision of the force control. In addition, the subjects performed significantly better in the validation vs. baseline session, therefore suggesting that electrotactile feedback can be used for learning and training of myoelectric control.

  2. Task-dependent vestibular feedback responses in reaching.

    Science.gov (United States)

    Keyser, Johannes; Medendorp, W Pieter; Selen, Luc P J

    2017-07-01

    When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory. Copyright © 2017 the American Physiological Society.

  3. Preface: Multiscale feedbacks in ecogeomorphology

    Science.gov (United States)

    Wheaton, Joseph M.; Gibbins, Chris; Wainwright, John; Larsen, Laurel G.; McElroy, Brandon

    2011-01-01

    Geomorphic systems are known to exhibit nonlinear responses to physical–biological feedbacks (Thornes, 1985; Baas, 2002; Reinhardt et al., 2010). These responses make understanding and/or predicting system response to change highly challenging. With growing concerns over ecosystem health, a pressing need exists for research that tries to elucidate these feedbacks (Jerolmack, 2008; Darby, 2010; National Research Council, 2010). A session was convened at the Fall 2008 meeting of the American Geophysical Union (AGU) to provide an outlet for some of this truly interdisciplinary and original research, which is central to understanding geomorphic and ecological dynamics. The session attracted over 39 contributions, which were divided into two well-attended oral sessions and a very busy poster session. This special issue presents new research from the AGU session, which highlights clear physical–biological feedbacks. The aim is to bring together contrasting perspectives on biological and geomorphic feedbacks in a diversity of physiographic settings, ranging from wetlands and estuaries, through rivers, to uplands. These papers highlight biological and physical feedbacks which involve the modulation or amplification of geomorphic processes. These papers will be of interest to a core geomorphology audience, and should also draw attention from the fields of ecohydraulics, hydroecology, ecohydrology, ecomorphology, biogeochemistry and biogeography, and biogeomorphology as well as the more traditional fields of hydrology, ecology and biology. In this preface to the special issue, we a) review past contributions to the emerging field of ecogeomorphology and related disciplines, b) provide some context for how this topical special issue came to fruition, and c) summarize the contributions to this special issue.

  4. Global desertification: Drivers and feedbacks

    Science.gov (United States)

    D'Odorico, Paolo; Bhattachan, Abinash; Davis, Kyle F.; Ravi, Sujith; Runyan, Christiane W.

    2013-01-01

    Desertification is a change in soil properties, vegetation or climate, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Desertification affects large dryland areas around the world and is a major cause of stress in human societies. Here we review recent research on the drivers, feedbacks, and impacts of desertification. A multidisciplinary approach to understanding the drivers and feedbacks of global desertification is motivated by our increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Classic desertification theories look at this process as a transition between stable states in bistable ecosystem dynamics. Climate change (i.e., aridification) and land use dynamics are the major drivers of an ecosystem shift to a “desertified” (or “degraded”) state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. Desertification feedbacks may involve land degradation processes (e.g., nutrient loss or salinization), changes in rainfall regime resulting from land-atmosphere interactions (e.g., precipitation recycling, dust emissions), or changes in plant community composition (e.g., shrub encroachment, decrease in vegetation cover). We analyze each of these feedback mechanisms and discuss their possible enhancement by interactions with socio-economic drivers. Large scale effects of desertification include the emigration of “environmental refugees” displaced from degraded areas, climatic changes, and the alteration of global biogeochemical cycles resulting from the emission and long-range transport of fine mineral dust. Recent research has identified some possible early warning signs of desertification, which can be used as indicators of resilience loss and imminent shift to desert-like conditions. We conclude with a brief discussion on some desertification control strategies implemented in different

  5. Providing Feedback: Practical Skills and Strategies.

    Science.gov (United States)

    Sarkany, David; Deitte, Lori

    2017-06-01

    Feedback is an essential component of education. It is designed to influence, reinforce, and change behaviors, concepts, and attitudes in learners. Although providing constructive feedback can be challenging, it is a learnable skill. The negative consequences of destructive feedback or lack of feedback all together are far-reaching. This article summarizes the components of constructive feedback and provides readers with tangible skills to enhance their ability to give effective feedback to learners and peers. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Climate hypersensitivity to solar forcing?

    Directory of Open Access Journals (Sweden)

    W. Soon

    2000-05-01

    Full Text Available We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot and solar UV (SUV. The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models that may better capture radiative and dynamical couplings of the troposphere and stratosphere.Key words: Meteorology and atmospheric dynamics (climatology · general or miscellaneous · Solar physics · astrophysics · and astronomy (ultraviolet emissions

  7. The implications of force reflection for teleoperation in space

    International Nuclear Information System (INIS)

    Draper, J.V.; Herndon, J.N.; Moore, W.E.

    1987-01-01

    This paper reviews previous research on teleoperator force feedback and reports results of a testing program which assessed the impact of force reflection on teleoperator task performance. Force reflection is a type of force feedback in which the forces acting on the remote portion of the teleoperator are displayed to the operator by back-driving the master controller. The testing program compared three force reflection levels: 4 to 1 (four units of force on the slave produce one unit of force at the master controller), 1 to 1, and infinity to 1 (no force reflection). Time required to complete tasks, rate of occurrence of errors, the maximum force applied to tasks components, and variability in forces applied to components during completion of representative remote handling tasks were used as dependent variables. Operators exhibited lower error rates, lower peak forces, and more consistent application of forces using force reflection than they did without it. These data support the hypothesis that force reflection provides useful information for teleoperator users. The earlier literature and the results of the experiment are discussed in terms of their implications for space-based teleoperator systems. The discussion describes the impact of force reflection on task completion performance and task strategies, as suggested by the literature. It is important to understand the trade-offs involved in using telerobotic systems with and without force reflection. Force-reflecting systems are typically more expensive (in mass, volume, and price per unit), but they reduce mean time to repair and may be safer to use, compared to systems without force reflection

  8. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke.

    Science.gov (United States)

    Chow, John W; Stokic, Dobrivoje S

    2018-03-01

    We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling

  9. Investigation of internal feedback in hearing aids

    DEFF Research Database (Denmark)

    Friis, Lars

    2009-01-01

    with vibroacoustic transmission from the receiver to the microphones often occur during the use of hearing aids. This transmission causes feedback at certain critical gain levels where it produces a loud uncomfortable squealing. Consequently feedback often constitutes the limiting factor for the maximum obtainable...... gain in the hearing aid and it therefore represents a critical design problem. Feedback in hearing aids is usually divided into external and internal feedback. External feedback is caused by the leakage of sound from the ear canal whereas internal feedback is due to transmission of sound and vibrations...... internally in the hearing aid. As a result of reducing the size of hearing aids, manufacturers have experienced an increase in internal feedback problems. The main objective of the present thesis is therefore to examine the vibroacoustic mechanisms responsible for internal feedback in hearing aids...

  10. Neural correlates of feedback processing in toddlers

    NARCIS (Netherlands)

    Meyer, M.; Bekkering, H.; Janssen, D.J.C.; Bruijn, E.R.A. de; Hunnius, S.

    2014-01-01

    External feedback provides essential information for successful learning. Feedback is especially important for learning in early childhood, as toddlers strongly rely on external signals to determine the consequences of their actions. In adults, many electrophysiological studies have elucidated

  11. Buckling feedback of the spectral calculations

    International Nuclear Information System (INIS)

    Jing Xingqing; Shan Wenzhi; Luo Jingyu

    1992-01-01

    This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module

  12. Electroencephalogy (EEG) Feedback in Decision-Making

    Science.gov (United States)

    2015-08-26

    Electroencephalogy ( EEG ) Feedback In Decision- Making The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful...feedback when training rapid decision-making. More specifically, EEG will allow us to provide online feedback about the neural decision processes...Electroencephalogy ( EEG ) Feedback In Decision-Making Report Title The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful

  13. Finding Positive Feedback Loops in Environmental Models: A Mathematical Investigation

    Science.gov (United States)

    Sheikholeslami, R.; Razavi, S.

    2016-12-01

    Dynamics of most earth and environmental systems are generally governed by interactions between several hydrological (e.g., soil moisture and precipitation), geological (e.g., and erosion), geochemical (e.g., nutrient loading), and atmospheric (e.g., temperature) processes which operate on a range of spatio-temporal scales. These interactions create numerous feedback mechanisms with complex behaviours, and their understanding and representation can vary depending on the scale in space and/or time at which the system is analyzed. One of the most crucial characteristics of such complex systems is the existence of positive feedback loops. The presence of positive feedbacks may increase complexity, accelerate change, or trigger multiple stable states in the underlying dynamical system. Furthermore, because of the inherent non-linearity, it is often very difficult to obtain a general idea of their complex dynamics. Feedback loops in environmental systems have been well recognized and qualitatively discussed. With a quantitative/mathematical view, in this presentation, we address the question of how the positive feedback loops can be identified/implemented in environmental models. We investigate the nature of different feedback mechanisms and dynamics of simple example case studies that underlie fundamental processes such as vegetation, precipitation and soil moisture. To do this, we apply the concept of "interaction graph" from mathematics which is built from the Jacobian matrix of the dynamical system. The Jacobian matrix contains information on how variations of one state variable depends on variations of other variables, and thus can be used to understand the dynamical possibilities of feedback mechanisms in the underlying system. Moreover, this study highlights that there are some situations where the existence of positive feedback loops can cause multiple stable states, and thereby regime shifts in environmental systems. Systems with multiple stable states are

  14. Feedback control of resistive instabilities

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Liu Chen

    1986-01-01

    Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of Tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m ≥ 2 is fairly straighforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles

  15. Random distributed feedback fibre lasers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, Sergei K., E-mail: s.k.turitsyn@aston.ac.uk [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Babin, Sergey A. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Churkin, Dmitry V. [Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET (United Kingdom); Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Vatnik, Ilya D.; Nikulin, Maxim [Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation); Podivilov, Evgenii V. [Novosibirsk State University, 2 Pirogova str., 630090, Novosibirsk (Russian Federation); Institute of Automation and Electrometry SB RAS, 1 Ac. Koptug. ave., 630090, Novosibirsk (Russian Federation)

    2014-09-10

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  16. Skill learning from kinesthetic feedback.

    Science.gov (United States)

    Pinzon, David; Vega, Roberto; Sanchez, Yerly Paola; Zheng, Bin

    2017-10-01

    It is important for a surgeon to perform surgical tasks under appropriate guidance from visual and kinesthetic feedback. However, our knowledge on kinesthetic (muscle) memory and its role in learning motor skills remains elementary. To discover the effect of exclusive kinesthetic training on kinesthetic memory in both performance and learning. In Phase 1, a total of twenty participants duplicated five 2 dimensional movements of increasing complexity via passive kinesthetic guidance, without visual or auditory stimuli. Five participants were asked to repeat the task in the Phase 2 over a period of three weeks, for a total of nine sessions. Subjects accurately recalled movement direction using kinesthetic memory, but recalling movement length was less precise. Over the nine training sessions, error occurrence dropped after the sixth session. Muscle memory constructs the foundation for kinesthetic training. Knowledge gained helps surgeons learn skills from kinesthetic information in the condition where visual feedback is limited. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Random distributed feedback fibre lasers

    International Nuclear Information System (INIS)

    Turitsyn, Sergei K.; Babin, Sergey A.; Churkin, Dmitry V.; Vatnik, Ilya D.; Nikulin, Maxim; Podivilov, Evgenii V.

    2014-01-01

    The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with “negative absorption” of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors–random distributed feedback fibre laser–was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100 km. Although an effective reflection due to the Rayleigh scattering is extremely small (∼0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the

  18. Feedback control of resistive instabilities

    International Nuclear Information System (INIS)

    White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Chen, L.

    1985-12-01

    Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m greater than or equal to 2 is fairly straightforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles. 20 refs., 3 figs

  19. Daresbury SRS Positional Feedback Systems

    CERN Document Server

    Smith, S L

    2000-01-01

    The Daresbury SRS is a second generation synchrotron radiation source which ramps from its injection energy of 600 MeV to 2.0 GeV. Beam orbit feedback systems have been in routine operation on the SRS since 1994 and are now an essential element in delivering stable photon beams to experimental stations. The most recent enhancements to these systems have included the introduction of a ramp servo system to provide the orbit control demanded by the installation of two new narrow gap insertion device and development of the vertical orbit feedback system to cope with an increasing number of photon beamlines. This paper summaries the current status of these systems and briefly discusses proposed developments.

  20. Estimating radiative feedbacks from stochastic fluctuations in surface temperature and energy imbalance

    Science.gov (United States)

    Proistosescu, C.; Donohoe, A.; Armour, K.; Roe, G.; Stuecker, M. F.; Bitz, C. M.

    2017-12-01

    Joint observations of global surface temperature and energy imbalance provide for a unique opportunity to empirically constrain radiative feedbacks. However, the satellite record of Earth's radiative imbalance is relatively short and dominated by stochastic fluctuations. Estimates of radiative feedbacks obtained by regressing energy imbalance against surface temperature depend strongly on sampling choices and on assumptions about whether the stochastic fluctuations are primarily forced by atmospheric or oceanic variability (e.g. Murphy and Forster 2010, Dessler 2011, Spencer and Braswell 2011, Forster 2016). We develop a framework around a stochastic energy balance model that allows us to parse the different contributions of atmospheric and oceanic forcing based on their differing impacts on the covariance structure - or lagged regression - of temperature and radiative imbalance. We validate the framework in a hierarchy of general circulation models: the impact of atmospheric forcing is examined in unforced control simulations of fixed sea-surface temperature and slab ocean model versions; the impact of oceanic forcing is examined in coupled simulations with prescribed ENSO variability. With the impact of atmospheric and oceanic forcing constrained, we are able to predict the relationship between temperature and radiative imbalance in a fully coupled control simulation, finding that both forcing sources are needed to explain the structure of the lagged-regression. We further model the dependence of feedback estimates on sampling interval by considering the effects of a finite equilibration time for the atmosphere, and issues of smoothing and aliasing. Finally, we develop a method to fit the stochastic model to the short timeseries of temperature and radiative imbalance by performing a Bayesian inference based on a modified version of the spectral Whittle likelihood. We are thus able to place realistic joint uncertainty estimates on both stochastic forcing and

  1. Written feedback to mathematics homework

    OpenAIRE

    Žitko, Urša

    2017-01-01

    This diploma thesis is about teachers’ feedback to students’ mathematics homework. In the theoretical part I present the purpose and history of homework assignments as well as various classifications of types of homework. In general, homework assignments are intended for students to learn and refresh the subject matter they have learnt in class, to gain further understanding, to practice various mathematical processes, and to prepare the student for a forthcoming subject matter. By doing home...

  2. Coriolis Force

    Science.gov (United States)

    Marciuc, Daly; Solschi, Viorel

    2017-04-01

    Understanding the Coriolis effect is essential for explaining the movement of air masses and ocean currents. The lesson we propose aims to familiarize students with the manifestation of the Coriolis effect. Students are guided to build, using the GeoGebra software, a simulation of the motion of a body, related to a rotating reference system. The mathematical expression of the Coriolis force is deduced, for particular cases, and the Foucault's pendulum is presented and explained. Students have the opportunity to deepen the subject, by developing materials related to topics such as: • Global Wind Pattern • Ocean Currents • Coriolis Effect in Long Range Shooting • Finding the latitude with a Foucault Pendulum

  3. Invisible force

    International Nuclear Information System (INIS)

    Panek, Richard

    2010-01-01

    Astronomers have compiled evidence that what we always thought of as the actual universe- all the planets, stars, galaxies and matter in space -represents a mere 4% of what's out there. The rest is dark: 23% is called dark matter, 73% dark energy. Scientists have ideas about what dark matter is, but hardly any understanding about dark energy. This has led to rethinking traditional physics and cosmology. Assuming the existence of dark matter and that the law of gravitation is universal, two teams of astrophysicists, from Lawrence Berkeley National Laboratory and the Australian National University, analysed the universe's growth and to their surprise both concluded that the universe expansion is not slowing but speeding up. If the dominant force of evolution isn't gravity what is it?

  4. Eco-feedback for non-consumption

    NARCIS (Netherlands)

    Lim, V.; Jense, A.; Janmaat, J.; Funk, M.

    2014-01-01

    Eco-feedback is a strategy to increase awareness of resource use and to encourage conservation. We applied eco-feedback on household food waste with the prospective to increase awareness and explore its impact on food related decision-making. In this paper we present a prototype of an eco-feedback

  5. Effectiveness of Feedback in First Year Physics

    DEFF Research Database (Denmark)

    Bearden, Ian; Voigt, Karen A; Mathiasen, Helle

    How can we provide better and more effective feedback to our students? How can we encourage students to use feedback effectively? We will present results of a study of first year physics students addressing these questions and comparing the effectiveness of written and screencast feedback....

  6. The Effects of Feedback on Online Quizzes

    Science.gov (United States)

    Butler, Melanie; Pyzdrowski, Laura; Goodykoontz, Adam; Walker, Vennessa

    2008-01-01

    Online homework is unable to provide the detailed feedback of paper and pencil assignments. However, immediate feedback is an advantage that online assessments provide. A research study was conducted that focused on the effects of immediate feedback; students in 5 sections of a Pre-calculus course were participants. Three sections were randomly…

  7. Feedback loop compensates for rectifier nonlinearity

    Science.gov (United States)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  8. Theory of multi-bunch feedback systems

    International Nuclear Information System (INIS)

    Kohaupt, R.D.

    1991-06-01

    In this article the theory of multibunch feedback systems is developed in a rigorous way including the fact that the elements of feedback systems are localized in the ring. The results of the theory which can be used for any strength of the systems are the base for the multibunch feedback systems for PETRA and HERA, already tested successfully in PETRA. (orig.)

  9. Feedback as real-time constructions

    DEFF Research Database (Denmark)

    Keiding, Tina Bering; Qvortrup, Ane

    2014-01-01

    instant it takes place. This article argues for a clear distinction between the timing of communicative events, such as responses that are provided as help for feedback constructions, and the feedback construction itself as an event in a psychic system. Although feedback is described as an internal...

  10. The Art of Giving Online Feedback

    Science.gov (United States)

    Leibold, Nancyruth; Schwarz, Laura Marie

    2015-01-01

    The cultivation of providing online feedback that is positive, effective, and enhances the learning experience is a valuable educator skill. Acquisition of the art of providing feedback is through education, practice, and faculty development. This article provides information about the best practices for delivering online feedback to learners. An…

  11. A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery

    Science.gov (United States)

    Choi, Seung-Hyun; Kim, Soomin; Kim, Pyunghwa; Park, Jinhyuk; Choi, Seung-Bok

    2015-06-01

    In this study, we developed a novel four-degrees-of-freedom haptic master using controllable magnetorheological (MR) fluid. We also integrated the haptic master with a vision device with image processing for robot-assisted minimally invasive surgery (RMIS). The proposed master can be used in RMIS as a haptic interface to provide the surgeon with a sense of touch by using both kinetic and kinesthetic information. The slave robot, which is manipulated with a proportional-integrative-derivative controller, uses a force sensor to obtain the desired forces from tissue contact, and these desired repulsive forces are then embodied through the MR haptic master. To verify the effectiveness of the haptic master, the desired force and actual force are compared in the time domain. In addition, a visual feedback system is implemented in the RMIS experiment to distinguish between the tumor and organ more clearly and provide better visibility to the operator. The hue-saturation-value color space is adopted for the image processing since it is often more intuitive than other color spaces. The image processing and haptic feedback are realized on surgery performance. In this work, tumor-cutting experiments are conducted under four different operating conditions: haptic feedback on, haptic feedback off, image processing on, and image processing off. The experimental realization shows that the performance index, which is a function of pixels, is different in the four operating conditions.

  12. A new visual feedback-based magnetorheological haptic master for robot-assisted minimally invasive surgery

    International Nuclear Information System (INIS)

    Choi, Seung-Hyun; Kim, Soomin; Kim, Pyunghwa; Park, Jinhyuk; Choi, Seung-Bok

    2015-01-01

    In this study, we developed a novel four-degrees-of-freedom haptic master using controllable magnetorheological (MR) fluid. We also integrated the haptic master with a vision device with image processing for robot-assisted minimally invasive surgery (RMIS). The proposed master can be used in RMIS as a haptic interface to provide the surgeon with a sense of touch by using both kinetic and kinesthetic information. The slave robot, which is manipulated with a proportional-integrative-derivative controller, uses a force sensor to obtain the desired forces from tissue contact, and these desired repulsive forces are then embodied through the MR haptic master. To verify the effectiveness of the haptic master, the desired force and actual force are compared in the time domain. In addition, a visual feedback system is implemented in the RMIS experiment to distinguish between the tumor and organ more clearly and provide better visibility to the operator. The hue-saturation-value color space is adopted for the image processing since it is often more intuitive than other color spaces. The image processing and haptic feedback are realized on surgery performance. In this work, tumor-cutting experiments are conducted under four different operating conditions: haptic feedback on, haptic feedback off, image processing on, and image processing off. The experimental realization shows that the performance index, which is a function of pixels, is different in the four operating conditions. (paper)

  13. LFSC - Linac Feedback Simulation Code

    International Nuclear Information System (INIS)

    Ivanov, Valentin; Fermilab

    2008-01-01

    The computer program LFSC ( ) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output

  14. Augmented feedback in autistic disorder

    Directory of Open Access Journals (Sweden)

    Salome Geertsema

    2017-10-01

    Full Text Available Children with autistic disorder (AD display atypical eye contact and struggle with the social imitation of eye contact. Impaired social imitation may be indicative of disruptions in motor learning processes. The application of specific motor learning principles, such as external feedback, may suggest which variables will result in positive change in eye contact. The study aimed to determine the effects of knowledge of performance (KP and knowledge of results (KR as types of feedback on the frequency and duration of elicited and spontaneous eye contact in children with AD. A two-phase multiple-probe, multi-treatment (cross-over, singleparticipant design with a withdrawal component was used. Mixed treatment effects were obtained. Overall effects suggest that KR results in the greatest positive change over a short period of time regarding frequency and duration for both elicited and spontaneous eye contact. This type of feedback seems to be the most effective for spontaneous eye contact. The provision of KP, after elicited and spontaneous eye contact, produced positive effects for duration only. The current Phase 1 evidence suggests that KR (which is goal-directed with fewer additional instructions may be more beneficial to children with AD. These findings are in accordance with the limb motor learning literature and may therefore support preliminary evidence for disrupted motor learning during eye contact imitation in children with AD.

  15. Interpreting Feedback: A Discourse Analysis of Teacher Feedback and Student Identity

    Science.gov (United States)

    Torres, J. T.; Anguiano, Carlos J.

    2016-01-01

    Feedback has typically been studied as a means of improving academic performance. Few studies inquire into the processes by which feedback shapes student identity. The authors carry out a discourse analysis of written comments to explore how feedback is discursively constructed by both teachers and students. Analysis of written feedback,…

  16. Development of the Teacher Feedback Observation Scheme: evaluating the quality of feedback in peer groups

    NARCIS (Netherlands)

    Thurlings, Marieke; Vermeulen, Marjan; Kreijns, Karel; Bastiaens, Theo; Stijnen, Sjef

    2018-01-01

    Research suggests that feedback is an essential element in learning. This study focuses on feedback that teachers provide in reciprocal peer groups to improve their performance in the classroom. The Teacher Feedback Observation Scheme (TFOS) was developed to identify feedback patterns, which

  17. Adaptive feedback synchronization of Lue system

    International Nuclear Information System (INIS)

    Han, X.; Lu, J.-A.; Wu, X.

    2004-01-01

    This letter further improves and extends the works of Chen and Lue [Chaos, Solitons and Fractals 14 (2002) 643] and Wang et al. [Phys. Lett. A 312 (2003) 34]. In detail, the linear feedback synchronization and adaptive feedback synchronization for Lue system are discussed. And the lower bound of the feedback gain in linear feedback synchronization is presented. The adaptive feedback synchronization with only one controller is designed, which improves the proof in the work by Wang et al. The adaptive synchronization with two controllers for completely uncertain Lue system is also discussed, which extends the work of Chen and Lue. Also, numerical simulations show the effectiveness of these methods

  18. Transient eddy feedback and low-frequency variability

    International Nuclear Information System (INIS)

    Robinson, W.A.

    1994-01-01

    Superposed on any externally driven secular climatic change are fluctuations that arise from the internal nonlinear dynamics of the climate system. These internally generated variations may involve interactions between the atmosphere and the ocean, as in the case of El Nino, or they may arise from the dynamics of the atmosphere alone. Here we discuss the dynamics of interactions between transient eddies and lower-frequency motions in the atmosphere. The interactions between more transient and more persistent motions can be divided into two types. Nonlinear interactions among the transient motions can act as an essentially random source of low-frequency motion. The idea that the low-frequencies respond in a linear way to stochastic forcing from higher frequencies has been applied to the generation of planetary waves and to the forcing of changes in global angular momentum. In addition to stochastic coupling, there are systematic interactions, denoted feedbacks, through which the persistent motions modulate their own forcing by the transient eddies. This paper discusses the dynamics of these feedbacks

  19. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  20. Technologies for learner-centered feedback

    Directory of Open Access Journals (Sweden)

    Jane Costello

    2013-09-01

    Full Text Available As the number, type, and use of technologies to support learning increases, so do the opportunities for using these technologies for feedback. Learner-centered feedback is a core to the teaching-learning process. It is related to assessment in describing how learners perform in their learning, their gain in knowledge, skills, and attitudes. Feedback, types of feedback, guidelines for effective learner-centered feedback, and feedback’s relationship to assessment are presented. Methods of providing feedback, for example, automated, audio scribe pens, digital audio, etc., and the related technologies are described. Technologies that allow instructors to make informed decisions about the use of various methods for feedback are discussed.

  1. Engaging medical students in the feedback process.

    Science.gov (United States)

    Rogers, David A; Boehler, Margaret L; Schwind, Cathy J; Meier, Andreas H; Wall, Jarrod C H; Brenner, Michael J

    2012-01-01

    There are potential advantages to engaging medical students in the feedback process, but efforts to do so have yielded mixed results. The purpose of this study was to evaluate a student-focused feedback instructional session in an experimental setting. Medical students were assigned randomly to either the intervention or control groups and then assigned randomly to receive either feedback or compliments. Tests of knowledge, skills, and attitudes were given before and after the intervention. There was a significant gain of knowledge and skill in the group that received instruction. Satisfaction was higher after compliments in the control group but higher after feedback in the instructional group. There was no change in the subject's willingness to seek feedback. A student-focused component should be carefully included as part of an overall effort to improve feedback in surgical education. The role of medical student attitudes about feedback requires further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Nonlinear force propagation, anisotropic stiffening and non-affine relaxation in a model cytoskeleton

    Science.gov (United States)

    Mizuno, Daisuke; Head, David; Ikebe, Emi; Nakamasu, Akiko; Kinoshita, Suguru; Peijuan, Zhang; Ando, Shoji

    2013-03-01

    Forces are generated heterogeneously in living cells and transmitted through cytoskeletal networks that respond highly non-linearly. Here, we carry out high-bandwidth passive microrheology on vimentin networks reconstituted in vitro, and observe the nonlinear mechanical response due to forces propagating from a local source applied by an optical tweezer. Since the applied force is constant, the gel becomes equilibrated and the fluctuation-dissipation theorem can be employed to deduce the viscoelasticity of the local environment from the thermal fluctuations of colloidal probes. Our experiments unequivocally demonstrate the anisotropic stiffening of the cytoskeletal network behind the applied force, with greater stiffening in the parallel direction. Quantitative agreement with an affine continuum model is obtained, but only for the response at certain frequency ~ 10-1000 Hz which separates the high-frequency power law and low-frequency elastic behavior of the network. We argue that the failure of the model at lower frequencies is due to the presence of non-affinity, and observe that zero-frequency changes in particle separation can be fitted when an independently-measured, empirical nonaffinity factor is applied.

  3. Force-deflection behavior of piezoelectric actuators

    Science.gov (United States)

    Singh, Ashok K.; Nagpal, Pawan

    2001-11-01

    In the present endeavour, force - deflection behavior of various piezoelectric actuator configurations has been analyzed for performance comparison. The response of stack actuator has been simulated using MATLAB Simulink, in a stack actuator-pendulum configuration. During simulation, stack actuator has been used in charge control feedback mode, because of the advantage of low hysteresis, and high linearity. The model incorporates three compensation blocks, viz 1) a PID position controller, 2) a PI piezoelectric current controller, and 3) a dynamic force feedback. A typical stack actuator, having 130 layers, 1.20x10-4 m thickness, 3.46x10-5m2 cross sectional area, of PZT-5H type, has been utilized for simulation. The response of the system has been tested by applying a sinusoidal input of frequency 500 Hz, and waveform amplitude of 1x10-3V.

  4. The impact of positive, negative and topical relevance feedback

    NARCIS (Netherlands)

    Kaptein, Rianne; Kamps, Jaap; Hiemstra, Djoerd

    2008-01-01

    This document contains a description of experiments for the 2008 Relevance Feedback track. We experiment with different amounts of feedback, including negative relevance feedback. Feedback is implemented using massive weighted query expansion. Parsimonious query expansion using only relevant

  5. Experiments with positive, negative and topical relevance feedback

    NARCIS (Netherlands)

    Kaptein, R.; Kamps, J.; Li, R.; Hiemstra, D.

    2008-01-01

    This document contains a description of experiments for the 2008 Relevance Feedback track. We experiment with different amounts of feedback, including negative relevance feedback. Feedback is implemented using massive weighted query expansion. Parsimonious query expansion using Dirichlet smoothing

  6. A force-sensing surgical tool with a proximally located force/torque sensor.

    Science.gov (United States)

    Schwalb, W; Shirinzadeh, B; Smith, J

    2017-03-01

    Robotic surgery has seen a rapid increase in popularity in the last few decades because advantages such as increased accuracy and dexterity can be realized. These systems still lack force-feedback, where such a capability is believed to be beneficial to the surgeon and can improve safety. In this paper a force-feedback enabled surgical robotic system is described in which the developed force-sensing surgical tool is discussed in detail. The developed surgical tool makes use of a proximally located force/torque sensor, which, in contrast to a distally located sensor, requires no miniaturization or sterilizability. Experimental results are presented, and indicate high force sensing accuracies with errors <0.09 N. It is shown that developing a force-sensing surgical tool utilizing a proximally located force/torque sensor is feasible, where a tool outer diameter of 12 mm can be achieved. For future work it is desired to decrease the current tool outer diameter to 10 mm. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. The Effect on Teenage Risky Driving of Feedback From a Safety Monitoring System: A Randomized Controlled Trial

    Science.gov (United States)

    Bingham, C. Raymond; Ouimet, Marie Claude; Pradhan, Anuj; Chen, Rusan; Barretto, Andrea; Shope, Jean

    2012-01-01

    Purpose Teenage risky driving may be due to teenagers not knowing what is risky, preferring risk, or the lack of consequences. Elevated gravitational-force (g-force) events, caused mainly by hard braking and sharp turns, provide a valid measure of risky driving and are the target of interventions using in-vehicle data recording and feedback devices. The effect of two forms of feedback about risky driving events to teenagers only or to teenagers and their parents was tested in a randomized controlled trial. Methods Ninety parent-teen dyads were randomized to one of two groups: (1) immediate feedback to teens (Lights Only); or (2) immediate feedback to teens plus family access to event videos and ranking of the teen relative to other teenage drivers (Lights Plus). Participants’ vehicles were instrumented with data recording devices and events exceeding 0.5 g were assessed for two weeks of baseline and 13 weeks of feedback. Results Growth analysis with random slopes yielded a significant decrease in event rates for the Lights Plus group (slope = −.11, p teenagers did not. Implications and Contribution Reducing elevated g-force events due to hard stops and sharp turns could reduce crash rates among novice teenage drivers. Using materials from the DriveCam For Families Program we found that feedback to both teens and parents significantly reduced rates, while feedback only to teens did not. PMID:23375825

  8. Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5*

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Mark D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Klein, Stephen A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Taylor, Karl E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Andrews, Timothy [Met Office Hadley Center, Exeter (United Kingdom); Webb, Mark J. [Met Office Hadley Center, Exeter (United Kingdom); Gregory, Jonathan M. [Univ. of Reading, Exeter (United Kingdom). National Center for Atmospheric Science; Forster, Piers M. [Univ. of Leeds (United Kingdom)

    2013-07-01

    When using five climate model simulations of the response to an abrupt quadrupling of CO2, the authors perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. After CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud-top pressure, and optical depth, with each contributing equally to a 1.1 W m-2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in midlevel clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to intermodel spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models. Furthermore, the authors show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W m-2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W m-2 K-1, whereas accounting for rapid adjustments reduces by 0.14 W m-2 K-1 the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.

  9. The role of haptic feedback in laparoscopic simulation training.

    Science.gov (United States)

    Panait, Lucian; Akkary, Ehab; Bell, Robert L; Roberts, Kurt E; Dudrick, Stanley J; Duffy, Andrew J

    2009-10-01

    Laparoscopic virtual reality simulators are becoming a ubiquitous tool in resident training and assessment. These devices provide the operator with various levels of realism, including haptic (or force) feedback. However, this feature adds significantly to the cost of the devices, and limited data exist assessing the value of haptics in skill acquisition and development. Utilizing the Laparoscopy VR (Immersion Medical, Gaithersburg, MD), we hypothesized that the incorporation of force feedback in the simulated operative environment would allow superior trainee performance compared with performance of the same basic skills tasks in a non-haptic model. Ten medical students with minimal laparoscopic experience and similar baseline skill levels as proven by performance of two fundamentals of laparoscopic surgery (FLS) tasks (peg transfer and cutting drills) voluntarily participated in the study. Each performed two tasks, analogous to the FLS drills, on the Laparoscopy VR at 3 levels of difficulty, based on the established settings of the manufacturer. After achieving familiarity with the device and tasks, the students completed the drills both with and without force feedback. Data on completion time, instrument path length, right and left hand errors, and grasping tension were analyzed. The scores in the haptic-enhanced simulation environment were compared with the scores in the non-haptic model and analyzed utilizing Student's t-test. The peg transfer drill showed no difference in performance between the haptic and non-haptic simulations for all metrics at all three levels of difficulty. For the more complex cutting exercise, the time to complete the tasks was significantly shorter when force feedback was provided, at all levels of difficulty (158+/-56 versus 187+/-51 s, 176+/-49 versus 222+/-68 s, and 275+/-76 versus 422+/-220 s, at levels 1, 2, and 3, respectively, Psimulation did not demonstrate an appreciable performance improvement among our trainees. These data

  10. Wideband feedback system prototype validation

    CERN Document Server

    Li, K; Bjorsvik, E; Fox, J; Hofle, W; Kotzian, G; Rivetta, C; Salvant, B; Turgut, O

    2017-01-01

    A wideband feedback demonstrator system has been de-veloped in collaboration with US-LARP under the joint lead-ership of CERN and SLAC. The system includes widebandkicker structures and amplifiers along with a fast digital re-configurable system up to 4 GS/s for single bunch and multibunch control. Most of the components have been installedin recent years and have been put into operation to test bothintra-bunch damping and individual bunch control in a multibunch train. In this note we report on the MD program,procedure and key findings that were made with this systemin the past year.

  11. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  12. Functional observer and state feedback

    International Nuclear Information System (INIS)

    Zhang, S.Y.

    1986-01-01

    In this paper, we show the relation between state space approach and transfer function approach for functional observer and state feedback design. Two approaches can be transformed into each other, based on this result. More importantly, we find that the state space approach introduces some severe, unnecessary restrictions in solving the problem. The restrictions are, however, reduced to be a trivial condition in transfer function approach. It is believed that the result presented in this paper will be useful in developing both approaches, and motivate some new results for solving the problem

  13. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.

    Science.gov (United States)

    Strbac, Matija; Isakovic, Milica; Belic, Minja; Popovic, Igor; Simanic, Igor; Farina, Dario; Keller, Thierry; Dosen, Strahinja

    2017-11-01

    Human motor control relies on a combination of feedback and feedforward strategies. The aim of this study was to longitudinally investigate artificial somatosensory feedback and feedforward control in the context of grasping with myoelectric prosthesis. Nine amputee subjects performed routine grasping trials, with the aim to produce four levels of force during four blocks of 60 trials across five days. The electrotactile force feedback was provided in the second and third block using multipad electrode and spatial coding. The first baseline and last validation block (open-loop control) evaluated the effects of long- (across sessions) and short-term (within session) learning, respectively. The outcome measures were the absolute error between the generated and target force, and the number of force saturations. The results demonstrated that the electrotactile feedback improved the performance both within and across sessions. In the validation block, the performance did not significantly decrease and the quality of open-loop control (baseline) improved across days, converging to the performance characterizing closed-loop control. This paper provides important insights into the feedback and feedforward processes in prosthesis control, contributing to the better understanding of the role and design of feedback in prosthetic systems.

  14. Perceiving haptic feedback in virtual reality simulators.

    Science.gov (United States)

    Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Langø, Thomas; Mårvik, Ronald; Chmarra, Magdalena Karolina

    2013-07-01

    To improve patient safety, training of psychomotor laparoscopic skills is often done on virtual reality (VR) simulators outside the operating room. Haptic sensations have been found to influence psychomotor performance in laparoscopy. The emulation of haptic feedback is thus an important aspect of VR simulation. Some VR simulators try to simulate these sensations with handles equipped with haptic feedback. We conducted a survey on how laparoscopic surgeons perceive handles with and without haptic feedback. Surgeons with different levels of experience in laparoscopy were asked to test two handles: Xitact IHP with haptic feedback and Xitact ITP without haptic feedback (Mentice AB, Gothenburg, Sweden), connected to the LapSim (Surgical Science AB, Sweden) VR simulator. They performed two tasks on the simulator before answering 12 questions regarding the two handles. The surgeons were not informed about the differences in the handles. A total of 85 % of the 20 surgeons who participated in the survey claimed that it is important that handles with haptic feedback feel realistic. Ninety percent of the surgeons preferred the handles without haptic feedback. The friction in the handles with haptic feedback was perceived to be as in reality (5 %) or too high (95 %). Regarding the handles without haptic feedback, the friction was perceived as in reality (45 %), too low (50 %), or too high (5 %). A total of 85 % of the surgeons thought that the handle with haptic feedback attempts to simulate the resistance offered by tissue to deformation. Ten percent thought that the handle succeeds in doing so. The surveyed surgeons believe that haptic feedback is an important feature on VR simulators; however, they preferred the handles without haptic feedback because they perceived the handles with haptic feedback to add additional friction, making them unrealistic and not mechanically transparent.

  15. Age differences in feedback reactions: The roles of employee feedback orientation on social awareness and utility.

    Science.gov (United States)

    Wang, Mo; Burlacu, Gabriela; Truxillo, Donald; James, Keith; Yao, Xiang

    2015-07-01

    Organizations worldwide are currently experiencing shifts in the age composition of their workforces. The workforce is aging and becoming increasingly age-diverse, suggesting that organizational researchers and practitioners need to better understand how age differences may manifest in the workplace and the implications for human resource practice. Integrating socioemotional selectivity theory with the performance feedback literature and using a time-lagged design, the current study examined age differences in moderating the relationships between the characteristics of performance feedback and employee reactions to the feedback event. The results suggest that older workers had higher levels of feedback orientation on social awareness, but lower levels of feedback orientation on utility than younger workers. Furthermore, the positive associations between favorability of feedback and feedback delivery and feedback reactions were stronger for older workers than for younger workers, whereas the positive association between feedback quality and feedback reactions was stronger for younger workers than for older workers. Finally, the current study revealed that age-related differences in employee feedback orientation could explain the different patterns of relationships between feedback characteristics and feedback reactions across older and younger workers. These findings have both theoretical and practical implications for building theory about workplace aging and improving ways that performance feedback is managed across employees from diverse age groups. (c) 2015 APA, all rights reserved).

  16. Error-enhanced augmented proprioceptive feedback in stroke rehabilitation training : a pilot study

    NARCIS (Netherlands)

    Molier, Birgit I.; de Boer, Jacintha; Prange, Gerdienke B.; Jannink, Michiel J.A.

    2009-01-01

    Augmented feedback plays an essential role in stroke rehabilitation therapy. When a force is applied to the arm, an augmented sensory (proprioceptive) cue is provided. The question was to find out if stroke patients can learn reach-and retrieval movements with error-enhanced augmented sensory

  17. Why do quality and reliability feedback loops not always work in practice: a case study

    NARCIS (Netherlands)

    Molenaar, P.A.; Huijben, A.J.M.; Bouwhuis, D.G.; Brombacher, A.C.

    2002-01-01

    The increasing competition in the market of consumer electronics forces industry to simultaneously improve the functionability, reliability and costs of their products. Due to the strong dynamics of this field an important measure in improving product quality is the feedback of information on actual

  18. Accuracy Feedback Improves Word Learning from Context: Evidence from a Meaning-Generation Task

    Science.gov (United States)

    Frishkoff, Gwen A.; Collins-Thompson, Kevyn; Hodges, Leslie; Crossley, Scott

    2016-01-01

    The present study asked whether accuracy feedback on a meaning generation task would lead to improved contextual word learning (CWL). Active generation can facilitate learning by increasing task engagement and memory retrieval, which strengthens new word representations. However, forced generation results in increased errors, which can be…

  19. Unpredictability in seagrass restoration: analysing the role of positive feedback and environmental stress on

    NARCIS (Netherlands)

    Suykerbuyk, W.; Govers, L.L.; Bouma, T.J.; Giesen, W.B.J.T.; de Jong, D.J.; van de Voort, R.; Giesen, K.; Giesen, P.T.; van Katwijk, M.M.

    2016-01-01

    1. Restoration of key species in dynamic coastal ecosystems benefits from reduction in environmentalstress. This can be realized by promoting positive feedback (intrinsic processes) orby reducing extrinsic negative forcing.2. In a seagrass (Zostera noltii) restoration project in the south-western

  20. Comprehensive joint feedback control for standing by functional neuromuscular stimulation-a simulation study.

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J

    2010-12-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.

  1. Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741

  2. Production of isometric forces during sustained acceleration.

    Science.gov (United States)

    Sand, D P; Girgenrath, M; Bock, O; Pongratz, H

    2003-06-01

    The operation of high-performance aircraft requires pilots to apply finely graded forces on controls. Since they are often exposed to high levels of acceleration in flight, we investigated to what extent this ability is degraded in such an environment. Twelve healthy non-pilot volunteers were seated in the gondola of a centrifuge and their performance was tested at normal gravity (1 G) and while exposed to sustained forces of 1.5 G and 3 G oriented from head to foot (+Gz). Using an isometric joystick, they attempted to produce force vectors with specific lengths and directions commanded in random order by a visual display. Acceleration had substantial effects on the magnitude of produced force. Compared with 1 G, maximum produced force was about 2 N higher at 1.5 G and about 10 N higher at 3 G. The size of this effect was constant across the different magnitudes, but varied with the direction of the prescribed force. Acceleration degrades control of force production. This finding may indicate that the motor system misinterprets the unusual gravitoinertial environment and/or that proprioceptive feedback is degraded due to increased muscle tone. The production of excessive isometric force could affect the safe operation of high-performance aircraft.

  3. Probing forces of menisci : What levels are safe for arthroscopic surgery

    NARCIS (Netherlands)

    Tuijthof, G.J.M.; Horeman, T.; Schafroth, M.U.; Blankevoort, L.; Kerkhoffs, G.M.M.J.

    2010-01-01

    Purpose To facilitate effective learning, feedback on performance during arthroscopic training is essential. Less attention has been paid to feedback on monitoring safe handling of delicate tissues such as meniscus. The goal is to measure in vitro probing forces of menisci and compare them with a

  4. Probing forces of menisci: what levels are safe for arthroscopic surgery

    NARCIS (Netherlands)

    Tuijthof, Gabriëlle J. M.; Horeman, Tim; Schafroth, Matthias U.; Blankevoort, Leendert; Kerkhoffs, Gino M. M. J.

    2011-01-01

    To facilitate effective learning, feedback on performance during arthroscopic training is essential. Less attention has been paid to feedback on monitoring safe handling of delicate tissues such as meniscus. The goal is to measure in vitro probing forces of menisci and compare them with a

  5. Tap Arduino: An Arduino microcontroller for low-latency auditory feedback in sensorimotor synchronization experiments.

    Science.gov (United States)

    Schultz, Benjamin G; van Vugt, Floris T

    2016-12-01

    Timing abilities are often measured by having participants tap their finger along with a metronome and presenting tap-triggered auditory feedback. These experiments predominantly use electronic percussion pads combined with software (e.g., FTAP or Max/MSP) that records responses and delivers auditory feedback. However, these setups involve unknown latencies between tap onset and auditory feedback and can sometimes miss responses or record multiple, superfluous responses for a single tap. These issues may distort measurements of tapping performance or affect the performance of the individual. We present an alternative setup using an Arduino microcontroller that addresses these issues and delivers low-latency auditory feedback. We validated our setup by having participants (N = 6) tap on a force-sensitive resistor pad connected to the Arduino and on an electronic percussion pad with various levels of force and tempi. The Arduino delivered auditory feedback through a pulse-width modulation (PWM) pin connected to a headphone jack or a wave shield component. The Arduino's PWM (M = 0.6 ms, SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demonstrated significantly lower auditory feedback latencies than the percussion pad (M = 9.1 ms, SD = 2.0), FTAP (M = 14.6 ms, SD = 2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM and wave shield latencies were also significantly less variable than those from FTAP and Max/MSP. The Arduino missed significantly fewer taps, and recorded fewer superfluous responses, than the percussion pad. The Arduino captured all responses, whereas at lower tapping forces, the percussion pad missed more taps. Regardless of tapping force, the Arduino outperformed the percussion pad. Overall, the Arduino is a high-precision, low-latency, portable, and affordable tool for auditory experiments.

  6. The Effects of Source, Revision Possibility, and Amount of Feedback on Marketing Students' Impressions of Feedback on an Assignment

    Science.gov (United States)

    Ackerman, David S.; Dommeyer, Curt J.; Gross, Barbara L.

    2017-01-01

    This study examines how three factors affect students' reactions to critical feedback on an assignment--amount of feedback (none vs. low amount vs. high amount), source of feedback (instructor-provided feedback vs. peer-provided feedback), and the situational context of the feedback (revision of paper is or is not possible). An incomplete 3 × 2 ×…

  7. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    To decide whether tubuloglomerular feedback (TGF) can account for renal autoregulation, we tested predictions of a TGF simulation. Broad-band and single-frequency perturbations were applied to arterial pressure; arterial blood pressure, renal blood flow and proximal tubule pressure were measured....... Data were analyzed by linear systems analysis. Broad-band forcings of arterial pressure were also applied to the model to compare experimental results with simulations. With arterial pressure as the input and tubular pressure, renal blood flow, or renal vascular resistance as outputs, the model...... correctly predicted gain and phase only in the low-frequency range. Experimental results revealed a second component of vascular control active at 100-150 mHz that was not predicted by the simulation. Forcings at single frequencies showed that the system behaves linearly except in the band of 33-50 m...

  8. Feedback control in deep drawing based on experimental datasets

    Science.gov (United States)

    Fischer, P.; Heingärtner, J.; Aichholzer, W.; Hortig, D.; Hora, P.

    2017-09-01

    In large-scale production of deep drawing parts, like in automotive industry, the effects of scattering material properties as well as warming of the tools have a significant impact on the drawing result. In the scope of the work, an approach is presented to minimize the influence of these effects on part quality by optically measuring the draw-in of each part and adjusting the settings of the press to keep the strain distribution, which is represented by the draw-in, inside a certain limit. For the design of the control algorithm, a design of experiments for in-line tests is used to quantify the influence of the blank holder force as well as the force distribution on the draw-in. The results of this experimental dataset are used to model the process behavior. Based on this model, a feedback control loop is designed. Finally, the performance of the control algorithm is validated in the production line.

  9. Exploring the value of usability feedback formats

    DEFF Research Database (Denmark)

    Nørgaard, Mie; Hornbæk, Kasper Anders Søren

    2009-01-01

    The format used to present feedback from usability evaluations to developers affects whether problems are understood, accepted, and fixed. Yet, little research has investigated which formats are the most effective. We describe an explorative study where three developers assess 40 usability findings...... presented using five feedback formats. Our usability findings comprise 35 problems and 5 positive comments. Data suggest that feedback serves multiple purposes. Initially, feedback must convince developers about the relevance of a problem and convey an understanding of this. Feedback must next be easy...... working with the feedback to address the usability problems, there were no significant differences among the developers' ratings of the value of the different formats. This suggests that all of the formats may serve equally well as reminders in later stages of working with usability problems...

  10. Feedback control of coupled-bunch instabilities

    International Nuclear Information System (INIS)

    Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.

    1993-05-01

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques

  11. Assessing Feedback in a Mobile Videogame.

    Science.gov (United States)

    Brand, Leah; Beltran, Alicia; Hughes, Sheryl; O'Connor, Teresia; Baranowski, Janice; Nicklas, Theresa; Chen, Tzu-An; Dadabhoy, Hafza R; Diep, Cassandra S; Buday, Richard; Baranowski, Tom

    2016-06-01

    Player feedback is an important part of serious games, although there is no consensus regarding its delivery or optimal content. "Mommio" is a serious game designed to help mothers motivate their preschoolers to eat vegetables. The purpose of this study was to assess optimal format and content of player feedback for use in "Mommio." The current study posed 36 potential "Mommio" gameplay feedback statements to 20 mothers using a Web survey and interview. Mothers were asked about the meaning and helpfulness of each feedback statement. Several themes emerged upon thematic analysis, including identifying an effective alternative in the case of corrective feedback, avoiding vague wording, using succinct and correct grammar, avoiding provocation of guilt, and clearly identifying why players' game choice was correct or incorrect. Guidelines are proposed for future feedback statements.

  12. Nanomechanical characterization by double-pass force-distance mapping

    Energy Technology Data Exchange (ETDEWEB)

    Dagdas, Yavuz S; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Necip Aslan, M, E-mail: aykutlu@unam.bilkent.edu.tr [Department of Physics, Istanbul Technical University, Istanbul (Turkey)

    2011-07-22

    We demonstrate high speed force-distance mapping using a double-pass scheme. The topography is measured in tapping mode in the first pass and this information is used in the second pass to move the tip over the sample. In the second pass, the cantilever dither signal is turned off and the sample is vibrated. Rapid (few kHz frequency) force-distance curves can be recorded with small peak interaction force, and can be processed into an image. Such a double-pass measurement eliminates the need for feedback during force-distance measurements. The method is demonstrated on self-assembled peptidic nanofibers.

  13. Nanomechanical characterization by double-pass force-distance mapping

    International Nuclear Information System (INIS)

    Dagdas, Yavuz S; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu; Necip Aslan, M

    2011-01-01

    We demonstrate high speed force-distance mapping using a double-pass scheme. The topography is measured in tapping mode in the first pass and this information is used in the second pass to move the tip over the sample. In the second pass, the cantilever dither signal is turned off and the sample is vibrated. Rapid (few kHz frequency) force-distance curves can be recorded with small peak interaction force, and can be processed into an image. Such a double-pass measurement eliminates the need for feedback during force-distance measurements. The method is demonstrated on self-assembled peptidic nanofibers.

  14. 12th Air Force > Home

    Science.gov (United States)

    Force AOR Travel Info News prevnext Slide show 76,410 pounds of food delivered to Haiti 12th Air Force the French Air Force, Colombian Air Force, Pakistan Air Force, Belgian Air Force, Brazilian Air Force

  15. Motor sequence learning occurs despite disrupted visual and proprioceptive feedback

    Directory of Open Access Journals (Sweden)

    Boyd Lara A

    2008-07-01

    Full Text Available Abstract Background Recent work has demonstrated the importance of proprioception for the development of internal representations of the forces encountered during a task. Evidence also exists for a significant role for proprioception in the execution of sequential movements. However, little work has explored the role of proprioceptive sensation during the learning of continuous movement sequences. Here, we report that the repeated segment of a continuous tracking task can be learned despite peripherally altered arm proprioception and severely restricted visual feedback regarding motor output. Methods Healthy adults practiced a continuous tracking task over 2 days. Half of the participants experienced vibration that altered proprioception of shoulder flexion/extension of the active tracking arm (experimental condition and half experienced vibration of the passive resting arm (control condition. Visual feedback was restricted for all participants. Retention testing was conducted on a separate day to assess motor learning. Results Regardless of vibration condition, participants learned the repeated segment demonstrated by significant improvements in accuracy for tracking repeated as compared to random continuous movement sequences. Conclusion These results suggest that with practice, participants were able to use residual afferent information to overcome initial interference of tracking ability related to altered proprioception and restricted visual feedback to learn a continuous motor sequence. Motor learning occurred despite an initial interference of tracking noted during acquisition practice.

  16. Velocity feedback control with a flywheel proof mass actuator

    Science.gov (United States)

    Kras, Aleksander; Gardonio, Paolo

    2017-08-01

    This paper presents four new proof mass actuators to be used in velocity feedback control systems for the control of vibrations of machines and flexible structures. A classical proof mass actuator is formed by a coil-magnet linear motor, with either the magnet or the armature-coil proof mass suspended on soft springs. This arrangement produces a net force effect at frequencies above the fundamental resonance frequency of the springs-proof mass system. Thus, it can be used to implement point velocity feedback loops, although the dynamic response and static deflection of the springs-proof mass system poses some stability and control performance limitations. The four proof mass actuators presented in this study include a flywheel element, which is used to augment the inertia effect of the suspended proof mass. The paper shows that the flywheel element modifies both the dynamic response and static deflection of the springs-proof mass system in such a way as the stability and control performance of velocity feedback loops using these actuators are significantly improved.

  17. Tactile feedback improves auditory spatial localization

    Directory of Open Access Journals (Sweden)

    Monica eGori

    2014-10-01

    Full Text Available Our recent studies suggest that congenitally blind adults have severely impaired thresholds in an auditory spatial-bisection task, pointing to the importance of vision in constructing complex auditory spatial maps (Gori et al., 2014. To explore strategies that may improve the auditory spatial sense in visually impaired people, we investigated the impact of tactile feedback on spatial auditory localization in 48 blindfolded sighted subjects. We measured auditory spatial bisection thresholds before and after training, either with tactile feedback, verbal feedback or no feedback. Audio thresholds were first measured with a spatial bisection task: subjects judged whether the second sound of a three sound sequence was spatially closer to the first or the third sound. The tactile-feedback group underwent two audio-tactile feedback sessions of 100 trials, where each auditory trial was followed by the same spatial sequence played on the subject’s forearm; auditory spatial bisection thresholds were evaluated after each session. In the verbal-feedback condition, the positions of the sounds were verbally reported to the subject after each feedback trial. The no-feedback group did the same sequence of trials, with no feedback. Performance improved significantly only after audio-tactile feedback. The results suggest that direct tactile feedback interacts with the auditory spatial localization system, possibly by a process of cross-sensory recalibration. Control tests with the subject rotated suggested that this effect occurs only when the tactile and acoustic sequences are spatially coherent. Our results suggest that the tactile system can be used to recalibrate the auditory sense of space. These results encourage the possibility of designing rehabilitation programs to help blind persons establish a robust auditory sense of space, through training with the tactile modality.

  18. Feedback Limiting the Coastal Response to Irregularities in Shelf Bathymetry

    Science.gov (United States)

    List, J. H.; Benedet, L.

    2007-12-01

    Observations and engineering studies have shown that non-uniform inner shelf bathymetry can influence longshore sediment transport gradients and create patterns of shoreline change. One classic example is from Grand Isle, Louisiana, where two offshore borrow pits caused two zones of shoreline accretion landward of the pits. In addition to anthropogenic cases, many natural situations exist in which irregularities in coastal planform are thought to result from offshore shoals or depressions. Recent studies using the hydrodynamic model Delft3D have successfully simulated the observed nearshore erosion and accretion patterns landward of an inner shelf borrow pit. An analysis of the momentum balance in a steady-state simulation has demonstrated that both alongshore pressure gradients (due to alongshore variations in wave setup) and radiation stress gradients (terms relevant to alongshore forcing) are important for forcing the initial pattern of nearshore sedimentation in response to the borrow pit. The response of the coast to non-uniform inner shelf bathymetry appears to be limited, however, because observed shoreline undulations are often rather subtle. (An exception may exist in the case of a very high angle wave climate.) Therefore, feedbacks in processes must exist such that growth of the shoreline salient itself modifies the transport processes in a way that limits further growth (assuming the perturbation in inner shelf bathymetry itself remains unchanged). Examination of the Delft3D momentum balance for an inner shelf pit test case demonstrates that after a certain degree of morphologic development the forcing associated with the well-known shoreline smoothing process (a.k.a., diffusion) counteracts the forcing associated with the inner shelf pit, producing a negative feedback which arrests further growth of the shoreline salient. These results provide insights into the physical processes that control shoreline changes behind inner shelf bathymetric anomalies (i

  19. Corrective feedback, learner uptake, and feedback perception in a Chinese as a foreign language classroom

    Directory of Open Access Journals (Sweden)

    Tingfeng Fu

    2016-03-01

    Full Text Available The role of corrective feedback in second language classrooms has received considerable research attention in the past few decades. However, most of this research has been conducted in English-teaching settings, either ESL or EFL. This study examined teacher feedback, learner uptake as well as learner and teacher perception of feedback in an adult Chinese as a foreign language classroom. Ten hours of classroom interactions were videotaped, transcribed and coded for analysis. Lyster and Ranta’s (1997 coding system involving six types of feedback was initially used to identify feedback frequency and learner uptake. However, the teacher was found to use a number of additional feedback types. Altogether, 12 types of feedback were identified: recasts, delayed recasts, clarification requests, translation, metalinguistic feedback, elicitation, explicit correction, asking a direct question, repetition, directing question to other students, re-asks, and using L1-English. Differences were noted in the frequency of some of the feedback types as well as learner uptake compared to what had been reported in some previous ESL and EFL studies. With respect to the new feedback types, some led to noticeable uptake. As for the students’ and teacher’s perceptions, they did not match and both the teacher and the students were generally not accurate in perceiving the frequency of each feedback type. The findings are discussed in terms of the role of context in affecting the provision and effectiveness of feedback and its relationship to student and teacher perception of feedback.

  20. Two sensory channels mediate perception of fingertip force.

    Science.gov (United States)

    Brothers, Trevor; Hollins, Mark

    2014-01-01

    In two experiments we examined the ability of humans to exert forces accurately with the fingertips, and to perceive those forces. In experiment 1 participants used visual feedback to apply a range of fingertip forces with the distal pad of the thumb. Participants made magnitude discriminations regarding these forces, and their just noticeable differences were calculated at a series of standards by means of a two-interval, forced-choice tracking paradigm. As the standard increased, participants demonstrated a relative improvement in force discrimination; and the presence of a possible inflection point, at approximately 400 g, suggested that two sensory channels may contribute to performance. If this is the case, the operative channel at low forces is almost certainly the slowly adapting type I (SA-I) channel, while another mechanoreceptor class, the SA-II nail unit, is a plausible mediator of the more accurate performance seen at high force levels. To test this two-channel hypothesis in experiment 2, we hydrated participants' thumbnails in order to reduce nail rigidity and thus prevent stimulation of underlying SA-II mechanoreceptors. This technique was found to reduce sensory accuracy in a force-matching task at high forces (1000 g) while leaving low force matching (100 g) unimpaired. Taken together, these results suggest that two sensory channels mediate the perception of fingertip forces in humans: one channel predominating at low forces (below approximately 400 g) and another responsible for perceiving high forces which is likely mediated by the SA-II nail unit.

  1. Finger Forces in Clarinet Playing

    Directory of Open Access Journals (Sweden)

    Alex Hofmann

    2016-08-01

    Full Text Available Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17 and professional clarinettists (N = 6 were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 x 2 x 2 design (register: low--high; tempo: slow--fast, dynamics: soft--loud. There was an additional condition controlled by the experimenter, which determined the expression levels (low--high of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions. The melody was performed in three tempo conditions (slow, medium, fast in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean and peak force (Fmax were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N compared to those on other musical instruments (e.g. guitar. Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N.For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N. Such sensor instruments provide useful insights into player

  2. Can corrective feedback improve recognition memory?

    Science.gov (United States)

    Kantner, Justin; Lindsay, D Stephen

    2010-06-01

    An understanding of the effects of corrective feedback on recognition memory can inform both recognition theory and memory training programs, but few published studies have investigated the issue. Although the evidence to date suggests that feedback does not improve recognition accuracy, few studies have directly examined its effect on sensitivity, and fewer have created conditions that facilitate a feedback advantage by encouraging controlled processing at test. In Experiment 1, null effects of feedback were observed following both deep and shallow encoding of categorized study lists. In Experiment 2, feedback robustly influenced response bias by allowing participants to discern highly uneven base rates of old and new items, but sensitivity remained unaffected. In Experiment 3, a false-memory procedure, feedback failed to attenuate false recognition of critical lures. In Experiment 4, participants were unable to use feedback to learn a simple category rule separating old items from new items, despite the fact that feedback was of substantial benefit in a nearly identical categorization task. The recognition system, despite a documented ability to utilize controlled strategic or inferential decision-making processes, appears largely impenetrable to a benefit of corrective feedback.

  3. Opportunistic Relay Selection With Limited Feedback

    KAUST Repository

    Eltayeb, Mohammed E.

    2015-08-01

    Relay selection is a simple technique that achieves spatial diversity in cooperative relay networks. Generally, relay selection algorithms require channel state information (CSI) feedback from all cooperating relays to make a selection decision. This requirement poses two important challenges, which are often neglected in the literature. Firstly, the fed back channel information is usually corrupted by additive noise. Secondly, CSI feedback generates a great deal of feedback overhead (air-time) that could result in significant performance hits. In this paper, we propose a compressive sensing (CS) based relay selection algorithm that reduces the feedback overhead of relay networks under the assumption of noisy feedback channels. The proposed algorithm exploits CS to first obtain the identity of a set of relays with favorable channel conditions. Following that, the CSI of the identified relays is estimated using least squares estimation without any additional feedback. Both single and multiple relay selection cases are considered. After deriving closed-form expressions for the asymptotic end-to-end SNR at the destination and the feedback load for different relaying protocols, we show that CS-based selection drastically reduces the feedback load and achieves a rate close to that obtained by selection algorithms with dedicated error-free feedback. © 1972-2012 IEEE.

  4. Feedback to Suppress Phase Noise at Aladdin

    CERN Document Server

    Bosch, Robert A; Kleman, Kevin J

    2005-01-01

    The performance of the Aladdin infrared beamline is adversely affected by a Robinson mode in which all bunches move in unison with a frequency of 3 kHz. To decrease these oscillations, feedback has been installed in the radiofrequency system to damp longitudinal motion of the bunch centroids. Simulations indicate that at frequencies around 3 kHz, the phase noise generated by Robinson modes may be reduced 20 dB by feedback with a damping time of 0.3 ms. This agrees with the measured performance of feedback circuitry. Since the feedback greatly improves operation of the infrared beamline, it is now incorporated into the standard operation of Aladdin.

  5. Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets

    Directory of Open Access Journals (Sweden)

    Zachary C. Thumser

    2018-04-01

    Full Text Available Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task. Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task. Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback. This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback. Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets to the more naturalistic and intuitive target forces implied by images of objects (implicit targets. With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82. Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces

  6. Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.

    Science.gov (United States)

    Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D

    2018-01-01

    Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized

  7. Raman fiber distributed feedback lasers.

    Science.gov (United States)

    Westbrook, Paul S; Abedin, Kazi S; Nicholson, Jeffrey W; Kremp, Tristan; Porque, Jerome

    2011-08-01

    We demonstrate fiber distributed feedback (DFB) lasers using Raman gain in two germanosilicate fibers. Our DFB cavities were 124 mm uniform fiber Bragg gratings with a π phase shift offset from the grating center. Our pump was at 1480 nm and the DFB lasers operated on a single longitudinal mode near 1584 nm. In a commercial Raman gain fiber, the maximum output power, linewidth, and threshold were 150 mW, 7.5 MHz, and 39 W, respectively. In a commercial highly nonlinear fiber, these figures improved to 350 mW, 4 MHz, and 4.3 W, respectively. In both lasers, more than 75% of pump power was transmitted, allowing for the possibility of substantial amplification in subsequent Raman gain fiber. © 2011 Optical Society of America

  8. Three-axis force sensor with fiber Bragg grating.

    Science.gov (United States)

    Hyundo Choi; Yoan Lim; Junhyung Kim

    2017-07-01

    Haptic feedback is critical for many surgical tasks, and it replicates force reflections at the surgical site. To meet the force reflection requirements, we propose a force sensor with an optical fiber Bragg grating (FBG) for robotic surgery. The force sensor can calculate three directional forces of an instrument from the strain of three FBGs, even under electromagnetic interference. A flexible ring-shape structure connects an instrument tip and fiber strain gages to sense three directional force. And a stopper mechanism is added in the structure to avoid plastic deformation under unexpected large force on the instrument tip. The proposed sensor is experimentally verified to have a sensing range from -12 N to 12 N, and its sensitivity was less than 0.06 N.

  9. How does feedback and peer feedback affect collaborative writing in a virtual learning environment?

    NARCIS (Netherlands)

    Guasch, Teresa; Espasa, Anna; Alvarez, Ibis; Kirschner, Paul A.

    2011-01-01

    Guasch, T., Espasa, A., Alvarez, I., & Kirschner, P. A. (2011, 31 May). How does feedback and peer feedback affect collaborative writing in a virtual learning environment? Presentation at a Learning & Cognition meeting, Open Universiteit in the Netherlands, Heerlen, The Netherlands.

  10. Force Control Strategies in Hydraulically Actuated Legged Robots

    Directory of Open Access Journals (Sweden)

    Hector Montes

    2016-03-01

    Full Text Available In this contribution, several strategies of force control have been proposed to be implemented and evaluated in ROBOCLIMBER, a quadruped robot of large dimensions. A first group of strategies proposed in this paper is based on impedance control, which is intended to adapt the foot-ground contact forces according to the experimentally specified damping ratio and the undamped natural frequency. A second control strategy of interest for many practical cases is called the parallel force/position control, which has one inner loop position control and two external control loops, one of force and another of position. A third group of control strategies is the posture stabilization for ROBOCLIMBER using the feedback of the ZMP calculation and the position of its legs. Finally, a control strategy for the control of a quasi-static gait using ZMP feedback is proposed and tested by simulation.

  11. Shared internal models for feedforward and feedback control.

    Science.gov (United States)

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  12. Salt-Marsh Landscapes and the Signatures of Biogeomorphic Feedbacks

    Science.gov (United States)

    D'Alpaos, A.; Marani, M.

    2014-12-01

    Salt marshes are coastal ecosystems which play a large role in the bio-geomorphological evolution of intertidal areas. The dense stands of halophytic plants which populate salt-marsh systems largely contribute to govern their dynamics, influencing marsh hydrodynamics and sediment transport through enhanced flow resistance and settling, and direct particle capture by plant stems. In addition, plants are known to increase vertical accretion through direct organic accretion. Looking across the salt-marsh landscape can one see the signatures of feedbacks between landscape and biota? Field evidence and the results of biomorphodynamic models indeed show that the interplay between physical and biological processes generates some striking biological and morphological patterns at different scales. One such pattern, vegetation zonation, consists in a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. Here we extend the model proposed by Marani et al. (2013) to a two-dimensional framework, furthermore including the effect of direct capture of sediment particles by plant stems. This allows us to account for the effect of the drainage density of tidal networks on the observed biogeomorphic patterns and to model the coupled evolution of marsh platforms and channel networks cutting through them. A number of different scenarios have been modelled to analyze the changes induced in bio-geomorphic patterns by plants with different characteristics, within marshes characterized by different drainage densities, or subjected to changing environmental forcing such as rates of relative sea level rise and sediment supply. Model results emphasize that zonation patterns are a signature of bio-geomorphic feedbacks with vegetation acting as a landscape constructor which feeds back on, directly alters, and contributes to shape tidal environments. In addition, model results show that

  13. Control and diagnostic uses of feedback

    International Nuclear Information System (INIS)

    Sen, A. K.

    2000-01-01

    Recent results on multimode feedback control of magnetohydrodynamic (MHD) modes and a variety of diagnostic uses of feedback are summarized. First, is the report on reduction and scaling of transport under feedback. By controlling the fluctuation amplitudes and consequently the transport via feedback, it is found that the scaling of the diffusion coefficient is linear with root-mean-square rms fluctuation level. The scaling appears not to agree with any generic theory. A variety of other diagnostic uses of feedback have been developed. The primary goal is an experimental methodology for the determination of dynamic models of plasma turbulence, both for better transport understanding and more credible feedback controller designs. A specific motivation is to search for a low-order dynamic model, suitable for the convenient study of both transport and feedback. First, the time series analysis method is used for the determination of chaotic attractor dimension of plasma fluctuations. For ExB rotational flute modes it is found to be close to three, indicating that a low-order dynamic model may be adequate for transport prediction and feedback controller design. Second, a new method for direct experimental determination of nonlinear dynamical models of plasma turbulence using feedback has been developed. Specifically, the process begins with a standard three-wave coupling model and introduces a variable feedback gain. The power spectrum, delayed power spectrum, and bispectrum of fluctuations are then experimentally obtained. By varying the feedback gain continuously, an arbitrary number of numerical equations for a fixed number of unknowns can be generated. Their numerical solution yields the linear dispersion, as well as nonlinear coupling coefficients. This method has been successfully applied for ExB rotationally driven flute modes. (c) 2000 American Institute of Physics

  14. Piezoresistive cantilever force-clamp system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  15. Control of thumb force using surface functional electrical stimulation and muscle load sharing

    Science.gov (United States)

    2013-01-01

    Background Stroke survivors often have difficulties in manipulating objects with their affected hand. Thumb control plays an important role in object manipulation. Surface functional electrical stimulation (FES) can assist movement. We aim to control the 2D thumb force by predicting the sum of individual muscle forces, described by a sigmoidal muscle recruitment curve and a single force direction. Methods Five able bodied subjects and five stroke subjects were strapped in a custom built setup. The forces perpendicular to the thumb in response to FES applied to three thumb muscles were measured. We evaluated the feasibility of using recruitment curve based force vector maps in predicting output forces. In addition, we developed a closed loop force controller. Load sharing between the three muscles was used to solve the redundancy problem having three actuators to control forces in two dimensions. The thumb force was controlled towards target forces of 0.5 N and 1.0 N in multiple directions within the individual’s thumb work space. Hereby, the possibilities to use these force vector maps and the load sharing approach in feed forward and feedback force control were explored. Results The force vector prediction of the obtained model had small RMS errors with respect to the actual measured force vectors (0.22±0.17 N for the healthy subjects; 0.17±0.13 N for the stroke subjects). The stroke subjects showed a limited work range due to limited force production of the individual muscles. Performance of feed forward control without feedback, was better in healthy subjects than in stroke subjects. However, when feedback control was added performances were similar between the two groups. Feedback force control lead, especially for the stroke subjects, to a reduction in stationary errors, which improved performance. Conclusions Thumb muscle responses to FES can be described by a single force direction and a sigmoidal recruitment curve. Force in desired direction can be

  16. Relative Effects of Daily Feedback and Weekly Feedback on Customer Service Behavior at a Gas Station

    Science.gov (United States)

    So, Yongjoon; Lee, Kyehoon; Oah, Shezeen

    2013-01-01

    The relative effects of daily and weekly feedback on customer service behavior at a gas station were assessed using an ABC within-subjects design. Four critical service behaviors were identified and measured daily. After baseline (A), weekly feedback (B) was introduced, and daily feedback (C) was introduced in the next phase. The results indicated…

  17. Teacher feedback in the classroom. Analyzing and developing teachers' feedback behavior in secondary education

    NARCIS (Netherlands)

    Voerman, A.

    2014-01-01

    Providing feedback is one of the most influential means of teachers to enhance student learning. In this dissertation, we first focused on what is known from research about effective (i.e. learning-enhancing) feedback. Effective feedback, mostly studied from a cognitive psychologist point of view,

  18. "Are You Listening Please?" The Advantages of Electronic Audio Feedback Compared to Written Feedback

    Science.gov (United States)

    Lunt, Tom; Curran, John

    2010-01-01

    Feedback on students' work is, probably, one of the most important aspects of learning, yet students' report, according to the National Union of Students (NUS) Survey of 2008, unhappiness with the feedback process. Students were unhappy with the quality, detail and timing of feedback. This paper examines the benefits of using audio, as opposed to…

  19. Influence of feedback characteristics on perceived learning value of feedback in clerkships : does culture matter?

    NARCIS (Netherlands)

    Suhoyo, Yoyo; Van Hell, Elisabeth A.; Kerdijk, Wouter; Emilia, Ova; Schonrock-Adema, Johanna; Kuks, Jan B. M.; Cohen-Schotanus, Janke

    2017-01-01

    Background: Various feedback characteristics have been suggested to positively influence student learning. It is not clear how these feedback characteristics contribute to students' perceived learning value of feedback in cultures classified low on the cultural dimension of individualism and high on

  20. Influence of feedback characteristics on perceived learning value of feedback in clerkships : does culture matter?

    NARCIS (Netherlands)

    Suhoyo, Yoyo; Van Hell, Elisabeth A; Kerdijk, Wouter; Emilia, Ova; Schönrock-Adema, Johanna; Kuks, Jan B M; Cohen-Schotanus, Janke

    2017-01-01

    BACKGROUND: Various feedback characteristics have been suggested to positively influence student learning. It is not clear how these feedback characteristics contribute to students' perceived learning value of feedback in cultures classified low on the cultural dimension of individualism and high on