WorldWideScience

Sample records for high-amylose corn starch

  1. Comparative methodologies for measuring metabolizable energy of various types of resistant high amylose corn starch.

    Science.gov (United States)

    Tulley, Richard T; Appel, Marko J; Enos, Tanya G; Hegsted, Maren; McCutcheon, Kathleen L; Zhou, Jun; Raggio, Anne M; Jeffcoat, Roger; Birkett, Anne; Martin, Roy J; Keenan, Michael J

    2009-09-23

    Energy values of high amylose corn starches high in resistant starch (RS) were determined in vivo by two different methodologies. In one study, energy values were determined according to growth relative to glucose-based diets in rats fed diets containing RS(2), heat-treated RS(2) (RS(2)-HT), RS(3), and amylase predigested versions to isolate the RS component. Net metabolizable energy values ranged from 2.68 to 3.06 kcal/g for the RS starches, and 1.91-2.53 kcal/g for the amylase predigested versions. In a second study, rats were fed a diet containing RS(2)-HT and the metabolizable energy value was determined by bomb calorimetry. The metabolizable energy value was 2.80 kcal/g, consistent with Study 1. Thus, high amylose corn based RS ingredients and their amylase predigested equivalents have energy values approximately 65-78% and 47-62% of available starch (Atwater factor), respectively, according to the RS type (Garcia, T. A.; McCutcheon, K. L.; Francis, A. R.; Keenan, M. J.; O'Neil, C. E.; Martin, R. J.; Hegsted, M. The effects of resistant starch on gastrointestinal organs and fecal output in rats. FASEB J. 2003, 17, A335).

  2. Optimization of resistant starch formation from high amylose corn starch by microwave irradiation treatments and characterization of starch preparations.

    Science.gov (United States)

    Mutlu, Selime; Kahraman, Kevser; Öztürk, Serpil

    2017-02-01

    The effects of microwave irradiation on resistant starch (RS) formation and functional properties in high-amylose corn starch, Hylon VII, by applying microwave-storing cycles and drying processes were investigated. The Response Surface Methodology (RSM) was used to optimize the reaction conditions, microwave time (2-4min) and power (20-100%), for RS formation. The starch:water (1:10) mixtures were cooked and autoclaved and then different microwave-storing cycles and drying (oven or freeze drying) processes were applied. The RS contents of the samples increased with increasing microwave-storing cycle. The highest RS (43.4%) was obtained by oven drying after 3 cycles of microwave treatment at 20% power for 2min. The F, p (oven-dried samples applied by 1 and 3 cycles of microwave with regression coefficients of 0.65 and 0.62, respectively. Quadratic equation was obtained for freeze-dried samples applied by 3 cycles of microwave with a regression coefficient of 0.83. The solubility, water binding capacity (WBC) and RVA viscosity values of the microwave applied samples were higher than those of native Hylon VII. The WBC and viscosity values of the freeze-dried samples were higher than those of the oven-dried ones.

  3. Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes

    Science.gov (United States)

    Starch foams were prepared from high amylose corn starch in the presence and absence of sodium stearate and PVOH to determine how the formation of amylose-sodium stearate inclusion complexes and the addition of PVOH would affect foam properties. Low extrusion temperatures were used, and X-ray diffra...

  4. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification.

  5. 交联酶解高直链玉米淀粉的制备及糊化特性%Study on preparation and pasting properties of crosslinking hydrolysis high amylose corn starch

    Institute of Scientific and Technical Information of China (English)

    李德海; 马莺

    2011-01-01

    The crosslinking hydrolysis high amylose corn starch by the isoamylase was prepared with sodium hexametaphosphate as crosslinking agent By the response surface methodology, the optimal process parameters were obtained, sodium hexametaphosphate was 3.12%, pH was 11, temperature was 50℃, time was 2.2h, subsidence product was 2.34mL.The pasting temperature,the viscosity and stability of the crosslinking hydrolysis high amylose corn starch were improved by the analysis of RVA and DSC.%以异淀粉酶水解玉米淀粉制备的高直链玉米淀粉为原料,采用六偏磷酸钠为交联剂,制备交联酶解高直链玉米淀粉.采用响应面实验设计进行优化,结果表明,最佳工艺条件为:六偏磷酸钠的用量为3.12%、pH为11、温度为50℃、时间为2.2h,在此条件下制备的交联酶解高直链玉米淀粉沉降积为2.34mL.RVA和DSC分析表明,酶解高直链玉米淀粉经交联后淀粉的糊化温度、粘度和粘度稳定性较大程度上得到了提高.

  6. 高直链玉米淀粉的糊化特性研究%Study on gelatinization properties of high amylose corn starch

    Institute of Scientific and Technical Information of China (English)

    徐忠; 刘雪唯; 王志鹏; 徐巧娇; 赵丹

    2015-01-01

    Objective The effect of water bath heating, microwave heating and high pressure heating on the gelatinization properties of high amylase corn starch were studied,the theoretical basis for further study on development and application of high amylase corn starch were provided. Methods High amylase corn starch based starch paste was prepared under excessive water by water bath heating, microwave heating and high pressure heating method,the variation rules of the blue value and enzyme hydrolysability of high amylase corn starch as the increase of gelatinization time under different temperature and microwave power were studied. Results Blue value and enzyme hydrolysability of high amylase corn starch prepared by water bath heating, microwave heating and high pressure heating increased as the prolong of heating time during gelatinization. the blue value and enzyme hydrolysability of high amylase corn starch paste prepared by microwave were lower than those by high pressure heating, and higher than those by water bath heating, and the gelatinization rate of starch prepared by microwave was faster than that by water bath heating and that by high pressure heating. Conclusion The gelatinization effect and degree of starch prepared were better by high pressure heating, which was a good method to make high amylase corn starch gelatinized entirely.%目的:研究水浴加热、微波加热和高压加热方法对高直链玉米淀粉糊化性能的影响,为高直链淀粉的进一步开发和应用提供理论基础。方法以高直链玉米淀粉为原料,在过量水分存在条件下,分别采用水浴加热、微波加热和高压加热制备高直链玉米淀粉糊,分别研究不同温度和微波功率下,高直链玉米淀粉糊碘兰值和酶解力随糊化时间增加的变化规律。结果水浴加热、微波加热和高压加热糊化过程中高直链玉米淀粉的碘兰值和酶解力均随时间的延长呈上升趋势,微波加热高直链玉

  7. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    Science.gov (United States)

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Different structural properties of high-amylose maize starch fractions varying in granule size.

    Science.gov (United States)

    Cai, Canhui; Lin, Lingshang; Man, Jianmin; Zhao, Lingxiao; Wang, Zhifeng; Wei, Cunxu

    2014-12-03

    Large-, medium-, and small-sized granules were separated from normal and high-amylose maize starches using a glycerol centrifugation method. The different-sized fractions of normal maize starch showed similar molecular weight distribution, crystal structure, long- and short-range ordered structure, and lamellar structure of starch, but the different-sized fractions of high-amylose maize starch showed markedly different structural properties. The amylose content, iodine blue value, amylopectin long branch-chain, and IR ratio of 1045/1022 cm(-1) significantly increased with decrease of granule size, but the amylopectin short branch-chain and branching degree, relative crystallinity, IR ratio of 1022/995 cm(-1), and peak intensity of lamellar structure markedly decreased with decrease of granule size for high-amylose maize starch. The large-sized granules of high-amylose maize starch were A-type crystallinity, native and medium-sized granules of high-amylose maize starch were CA-type crystallinity, and small-sized granules of high-amylose maize starch were C-type crystallinity, indicating that C-type starch might contain A-type starch granules.

  9. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch

    CSIR Research Space (South Africa)

    Wokadala, OC

    2014-06-01

    Full Text Available Carbohydrate Polymers Vol. 112 Inducing PLA/starch compatibility through butyl-etherification ofwaxy and high amylose starch Obiro Cuthbert Wokadalaa,b, Naushad Mohammad Emmambuxc,Suprakas Sinha Raya,b,c,∗ aDST/CSIR National Centre for Nanostructured... Materials, Council for Scientific and Industrial Research, 1-Meiring Naude Road, Brummeria, Pretoria 0001,South Africa bDepartment of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa cDepartment of Food Science...

  10. Different structures of heterogeneous starch granules from high-amylose rice.

    Science.gov (United States)

    Man, Jianmin; Lin, Lingshang; Wang, Zhifeng; Wang, Youping; Liu, Qiaoquan; Wei, Cunxu

    2014-11-19

    High-amylose cereal starches usually have heterogeneous starch granules in morphological structure. In the present study, the polygonal, aggregate, elongated, and hollow starch granules were separated from different regions of the kernels of high-amylose rice, and their structures were investigated. The results showed that the polygonal starch granules had low amylose content and high short branch-chain and branching degree of amylopectin, and exhibited A-type crystallinity. The aggregate starch granules had high long branch-chain of amylopectin, relative crystallinity, and double helix content, and exhibited C-type crystallinity. The elongated starch granules had high amylose content and low branching degree of amylopectin and relative crystallinity, and exhibited C-type crystallinity. The hollow starch granules had very high amylose content, proportion of amorphous conformation, and amylose-lipid complex, and very low branch-chain of amylopectin, branching degree of amylopectin, and double helix content, and exhibited no crystallinity. The different structures of heterogeneous starch granules from high-amylose rice resulted in significantly different thermal properties.

  11. Morphologies and gelatinization behaviours of high-amylose maize starches during heat treatment.

    Science.gov (United States)

    Chen, Xu; Du, Xianfeng; Chen, Peirong; Guo, Li; Xu, Yang; Zhou, Xiuhong

    2017-02-10

    The granule morphologies and gelatinization behaviours of high-amylose maize starches during heating treatment were investigated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Maltese crosses demonstrated that the high-amylose maize starches maintained a granular structure even at 120°C. The granules of high-amylose maize starches swelled slightly at 100°C and swelled remarkably at approximately 120°C. The destruction of the starch structure began at the centre and expanded rapidly to the periphery. The intense fluorescence of high-amylose maize starch granules gradually became feeble, and the darker region spread outward during heating at 130°C for 30min, indicating that the amylose component may have been damaged and shifted. The starch granules treated at 140°C were substantially destroyed, and the CLSM, normal light microscopy (NL) and SEM images displayed no discernible granules, which indicated that the original starch granules formed a continuous integrated matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose Physicochemical, rheological, morphological, and thermal characterization of normal, waxy, and high amylose corn starches

    Directory of Open Access Journals (Sweden)

    Fernanda Hart Weber

    2009-12-01

    Full Text Available O objetivo do presente estudo foi avaliar os amidos de milho normal, ceroso e com alto teor de amilose, fabricados pela National Starch, por meio da determinação das suas características físico-químicas, morfológicas, térmicas e reológicas. O amido de milho com alto teor de amilose (AM apresentou teor de amilose igual a 71%, sendo que os valores obtidos para o amido de milho normal (M e o amido de milho ceroso (AP foram de 27,8 e 1,8%, respectivamente. Traços de proteína e lipídios foram encontrados nas amostras. O amido de milho ceroso apresentou maior viscosidade máxima e uma menor tendência à retrogradação, se comparado ao amido de milho normal. O amido AP apresentou menor entalpia de gelatinização, como pode ser observado nas análises de calorimetria exploratória diferencial (DSC, na qual a temperatura de gelatinização foi de 75 °C e o ΔH de 3,34 J.g-1, e também na análise de RVA (Rapid Visco Analyser, em que a temperatura de pasta foi de 71 °C. Apresentando, dessa forma, valores inferiores aos verificados para os outros amidos. O valor do ΔH de retrogradação do amido AP, mostrou-se 25,8% inferior ao ΔH do amido M. O amido AM apresentou o valor de 26,38 J.g-1, demonstrando o maior envolvimento da molécula de amilose no processo de retrogradação. Isso também foi evidenciado pela medida da força dos géis: o gel de AM apresentou força 99,18% superior, retrogradando mais que os outros amidos. As análises de difração de raio X mostraram que os amidos de milho normal e ceroso apresentaram um padrão de difração do tipo A e o amido de milho com alto teor de amilose apresentou padrão do tipo B.The objective of this work was to evaluate normal, waxy, and high amylose corn starches from National Starch, through the determination of the physicochemical, morphological, thermal, and rheological properties. The high amylose corn starch (AM presented amylose content of 71%, and the value of this component for the

  13. Resistant-starch formation in high-amylose maize starch during Kernel development.

    Science.gov (United States)

    Jiang, Hongxin; Lio, Junyi; Blanco, Mike; Campbell, Mark; Jane, Jay-Lin

    2010-07-14

    The objective of this study was to understand the resistant-starch (RS) formation during kernel development of a high-amylose maize, GEMS-0067 line. The RS content of the starch, determined using AOAC method 991.43 for total dietary fiber, increased with kernel maturation and increase in the amylose/intermediate component (IC) content of the starch. Gelatinization of the native starches showed a major thermal transition with peak temperature at 76.6-81.0 degrees C. An additional peak ( approximately 97.1 degrees C) first appeared 20 days after pollination and then developed into a significant peak on later dates. After removal of lipids from the starch, this peak disappeared, but the conclusion gelatinization temperature remained the same. The proportion of the enthalpy change of the thermal transition above 95 degrees C, calculated from the thermogram of the defatted starch, increased with kernel maturation and was significantly correlated with the RS content of the starch (r = 0.98). These results showed that the increase in crystallites of amylose/IC long-chain double helices in the starch resulted in the increase in the RS content of the starch during kernel development.

  14. Ordered structure and thermal property of acid-modified high-amylose rice starch.

    Science.gov (United States)

    Man, Jianmin; Qin, Fengling; Zhu, Lijia; Shi, Yong-Cheng; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2012-10-15

    High-amylose cereal starch has a great benefit on human health. Acid modification is very helpful for application of high-amylose starch in food and non-food industries. In this study, the ordered structure of acid-modified high-amylose rice starch was investigated by GPC, HPAEC, (13)C CP/MAS NMR and XRD. Acid preferentially degraded the amylose, then A chain and short B chain of amylopectin. Relative double helix content and crystallinity both initially increased sharply and then progressively with acid hydrolysis. The relative crystallinity of starches obtained from (13)C CP/MAS NMR was higher than that from XRD. The onset gelatinisation temperature decreased, while the peak and conclusion temperatures increased with increasing hydrolysis time. The endothermic value initially increased and then decreased with acid hydrolysis. The swelling power decreased while solubility increased after acid hydrolysis. These results add to our understanding of the effect of acid hydrolysis on the high-amylose rice starch. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize.

    Science.gov (United States)

    Cai, Canhui; Zhao, Lingxiao; Huang, Jun; Chen, Yifang; Wei, Cunxu

    2014-02-15

    High-amylose cereal endosperm is rich in heterogeneous starch granules. In this paper, we investigated the morphology, structure and gelatinization properties of high-amylose maize endosperm starch. Starch had individual, aggregate and elongated heterogeneous granules. Most of individual granules were round with small size and had one central hilum. Aggregate and elongated granules consisted of many subgranules with central hila, and had irregular and rod/filamentous shapes, respectively. Iodine stained starch granules showed five types of polarization colors: blue, purple, fuchsia, dark red, and interior dark blue and exterior brown. Most of individual and aggregate granules had the color of dark red, that of elongated granules the color of interior dark blue and exterior brown. Amylose was mainly distributed in the hilum region and the circumference of starch granules. Aggregate and elongated granules had higher amylose content than individual granules. Elongated and individual granules had the highest and the lowest gelatinization resistance among high-amylose maize heterogeneous starch granules, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion.

    Science.gov (United States)

    Man, Jianmin; Yang, Yang; Zhang, Changquan; Zhou, Xinghua; Dong, Ying; Zhang, Fengmin; Liu, Qiaoquan; Wei, Cunxu

    2012-09-12

    High-amylose cereal starch has a great benefit on human health through its resistant starch content. In this paper, starches were isolated from mature grains of high-amylose transgenic rice line (TRS) and its wild-type rice cultivar Te-qing (TQ) and digested in vitro and in vivo. The structural changes of digestive starch residues were characterized using DSC, XRD, (13)C CP/MAS NMR, and ATR-FTIR. TQ starch was very susceptible to digestion; its residues following in vitro and in vivo digestion showed similar structural characteristics with TQ control starch, which suggested that both amorphous and crystalline structures were simultaneously digested. Both amorphous and the long-range order structures were also simultaneously hydrolyzed in TRS starch, but the short-range order (double helix) structure in the external region of TRS starch granule increased with increasing digestion time. The A-type polymorph of TRS C-type starch was hydrolyzed more rapidly than the B-type polymorph. These results suggested that B-type crystallinity and short-range order structure in the external region of starch granule made TRS starch resistant to digestion.

  17. Structural properties of hydrolyzed high-amylose rice starch by α-amylase from Bacillus licheniformis.

    Science.gov (United States)

    Qin, Fengling; Man, Jianmin; Xu, Bin; Hu, Maozhi; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2011-12-14

    High-amylose cereal starch has a great benefit on human health through its resistant starch (RS) content. Enzyme hydrolysis of native starch is very helpful in understanding the structure of starch granules and utilizing them. In this paper, native starch granules were isolated from a transgenic rice line (TRS) enriched with amylose and RS and hydrolyzed by α-amylase. Structural properties of hydrolyzed TRS starches were studied by X-ray powder diffraction, Fourier transform infrared, and differential scanning calorimetry. The A-type polymorph of TRS C-type starch was hydrolyzed faster than the B-type polymorph, but the crystallinity did not significantly change during enzyme hydrolysis. The degree of order in the external region of starch granule increased with increasing enzyme hydrolysis time. The amylose content decreased at first and then went back up during enzyme hydrolysis. The hydrolyzed starches exhibited increased onset and peak gelatinization temperatures and decreased gelatinization enthalpy on hydrolysis. These results suggested that the B-type polymorph and high amylose that formed the double helices and amylose-lipid complex increased the resistance to BAA hydrolysis. Furthermore, the spectrum results of RS from TRS native starch digested by pancreatic α-amylase and amyloglucosidase also supported the above conclusion.

  18. Morphology and structural properties of high-amylose rice starch residues hydrolysed by amyloglucosidase.

    Science.gov (United States)

    Man, Jianmin; Yang, Yang; Huang, Jun; Zhang, Changquan; Zhang, Fengmin; Wang, Youping; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2013-06-15

    High-amylose starches are attracting considerable attention because of their potential health benefits and industrial uses. Enzyme hydrolysis of starch is involved in many biological and industrial processes. In this paper, starches were isolated from high-amylose transgenic rice (TRS) and its wild type rice, Te-qing (TQ). The morphological and structural changes of starch residues following Aspergillus niger amyloglucosidase (AAG) hydrolysis were investigated. AAG hydrolysed TQ starch from the granule surface, and TRS starch from the granule interior. During AAG hydrolysis, the content of amorphous structure increased, the contents of ordered structure and single helix decreased, and gelatinisation enthalpy decreased in TQ and TRS starch residues. The A-type polymorph of TRS C-type starch was hydrolysed faster than the B-type polymorph. The short-range ordered structure and B-type polymorph in the peripheral region of the subgranule and the surrounding band of TRS starch increased the resistance of TRS starch to AAG hydrolysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. High-amylose sodium carboxymethyl starch matrices: development and characterization of tramadol hydrochloride sustained-release tablets for oral administration.

    Science.gov (United States)

    Nabais, Teresa; Leclair, Grégoire

    2014-01-01

    Substituted amylose (SA) polymers were produced from high-amylose corn starch by etherification of its hydroxyl groups with chloroacetate. Amorphous high-amylose sodium carboxymethyl starch (HASCA), the resulting SA polymer, was spray-dried to obtain an excipient (SD HASCA) with optimal binding and sustained-release (SR) properties. Tablets containing different percentages of SD HASCA and tramadol hydrochloride were produced by direct compression and evaluated for dissolution. Once-daily and twice-daily SD HASCA tablets containing two common dosages of tramadol hydrochloride (100 mg and 200 mg), a freely water-soluble drug, were successfully developed. These SR formulations presented high crushing forces, which facilitate further tablet processing and handling. When exposed to both a pH gradient simulating the pH variations through the gastrointestinal tract and a 40% ethanol medium, a very rigid gel formed progressively at the surface of the tablets providing controlled drug-release properties. These properties indicated that SD HASCA was a promising and robust excipient for oral, sustained drug-release, which may possibly minimize the likelihood of dose dumping and consequent adverse effects, even in the case of coadministration with alcohol.

  20. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhu, Lijia; Zhou, Weidong; Chen, Yifang; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-01-27

    A high-amylose transgenic rice line (TRS) modified by antisense RNA inhibition of starch branching enzymes revealed a resistant starch-rich quality. Compound starch granules in whole grains of the regular rice cultivar Teqing (TQ) were readily split during fracturing, whereas the starch granules in TRS were structurally intact and showed large voluminous, non-angular rounded bodies and elongated, filamentous structures tolerant of fracturing. In isolated preparation, TQ starch granules broke up into separate polygonal granules, whereas TRS starch granules kept their intactness. TRS starch granules consisted of packed smaller subgranules, some of which located at the periphery of starch granules were fused to each other with adjacent ones forming a thick band or wall encircling the entire circumference of the granules. TQ starch granules had a high concentration of amylose in the concentric hilum, whereas TRS starch granules showed a relatively even distribution of amylose with intense amylose in both hilum and band.

  1. Gas Transmission and Water Vapor Transmission Properties of High-Amylose Corn Starch/Chitosan Edible Film%高直链玉米淀粉-壳聚糖复合膜透气透水性能研究

    Institute of Scientific and Technical Information of China (English)

    陈琼; 邱礼平; 马细兰

    2011-01-01

    In this experiment, edible films from high-amylose com starch (HACS) and chitosan (CS) were developed by casting film-solution on leveled trays. The effects of ratio of starch to chitosan, glycerol dosage and methylcellulose (MC) dosage on CO2 and O2 transmission, water vapor transmission (WVT) of edible films were investigated. The result showed that the edible composite fihns had the lowest CO2 and O2 transmission and lower WVT when the ratio of chitosan and content of glycerol reach 2:1. The value of CO2 and O2 transmission increase to the highest and then decrease, and WVT increased while the ratio of chitosan and content of glycerol continued decrease. The increase of content of glycerol improved the CO2, O2 transmission and WVT of edible films first, and then decreased gradually. The addition of 2% methylcellulose decreased the gas permeability properties of the edible film to the lowest When the content of methylcellulose was between 4% and 6%, WVT of the edible film reached the lowest.%本文以高直链玉米淀粉(HACS)和壳聚糖(CS)为基本材料,甘油为增塑剂,甲基纤维素(MC)为增强剂制备可食性复合膜,研究了高直链玉米淀粉与壳聚糖的配比、甘油的添加量以及甲基纤维素的添加量对复合膜的透气透水性能的影响.结果表明,HACS:CS为2:1时,膜的CO2透过量和O2透过量最低,水蒸气透过量(WVT)也处于较低水平.随着HACS:CS的降低,膜的CO2透过量和O2透过量增加到最大值再降低,而WVT值呈增大趋势.甘油量的增加使复合膜的CO2透过量和O2透过量先增加后降低,而WVT变化趋势与透气量一致.MC的添加量为2%时,HACS/CS复合膜的透气量最低,而在MC添加量4%~6%时,膜的WVT最低.

  2. Estabilidade de géis de amido de milho normal, ceroso e com alto teor de amilose adicionados de gomas guar e xantana durante os processos de congelamento e descongelamento Freeze-thaw stability of normal, waxy and high amylose corn starch gels with added guar and xanthan gums

    Directory of Open Access Journals (Sweden)

    Fernanda Hart Weber

    2008-06-01

    Full Text Available O objetivo do presente trabalho foi estudar os efeitos das gomas guar e xantana sobre a estabilidade dos géis de amido de milho normal, ceroso e com alto teor de amilose submetidos aos processos de congelamento e descongelamento. Os géis desses amidos, com concentração total de sólidos de 10% e adicionados das gomas (0,15; 0,50; 0,85 e 1%, foram submetidos a 5 ciclos de congelamento (20 horas a -18 °C e descongelamento (4 horas a 25 °C, com exceção dos géis com alto teor de amilose, que foram submetidos a apenas 1 ciclo, devido à perda da estrutura de gel. A determinação da sinérese (porcentagem de água liberada foi realizada pela diferença entre a massa inicial e a massa final das amostras. O gel de amido de milho normal liberou 74,45% de água, sendo que a adição de 1% da goma xantana reduziu significativamente a sinérese para 66,43%. A adição de 0,85 e 1% da goma xantana também reduziu a sinérese dos géis de amido ceroso. O menor teor de sinérese foi obtido com a utilização de 1% de goma xantana ao gel de amido de milho com alto teor de amilose, evidenciando a ação crioprotetora desta goma.The objective of the present work was to study the effects of guar and xanthan gums on the stability of normal, waxy and high amylose corn starch gels, submitted to freeze-thaw processes. The gels of these starches with a total solids content of 10% and added gums (0.15;0.50;0.85and1%, were submitted to 5 freezing (20 hours, -18 °C and thawing (4 hours, 25 °C cycles, with exception of the high amylose gels that were submitted to only 1 cycle. Syneresis (% water released was determined by the difference between the initial and final masses of the samples. The normal corn starch gel released 74.45% water and the addition of 1% xanthan gum significantly reduced syneresis to 66.43%. The incorporation of 0.85 and 1% xanthan gum also reduced syneresis of waxy starch gels. The lowest level of syneresis was reached with the use of 1

  3. In Vitro Utilization of Amylopectin and High-Amylose Maize (Amylomaize) Starch Granules by Human Colonic Bacteria

    OpenAIRE

    Wang, Xin; Conway, Patricia Lynne; Brown, Ian Lewis; Evans, Anthony John

    1999-01-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced ...

  4. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A comparative study of annealing of waxy, normal and high-amylose maize starches: the role of amylose molecules.

    Science.gov (United States)

    Wang, Shujun; Wang, Jinrong; Yu, Jinglin; Wang, Shuo

    2014-12-01

    The effect of annealing on starch structure and functionality of three maize starches (waxy, normal and high-amylose) was investigated, with the aim of understanding the role of amylose molecules during starch annealing. Amylose content, granular morphology and crystallinity of maize starches were little affected by annealing treatment. Annealing treatment did not alter the swelling power of waxy maize starch, but reduced the swelling power of normal and high-amylose maize starches. The thermal transition temperatures were increased, and the temperature range was decreased, but the enthalpy change was not affected greatly. The pasting viscosities of normal and waxy maize starches were decreased significantly, with the pasting temperature being little affected. The in vitro digestibility of three maize starches was not affected significantly by annealing treatment. Our results demonstrated that amylose molecules play an important role in the structural reorganization of starch granules during annealing treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties.

    Science.gov (United States)

    Luo, Zhi-Gang; Shi, Yong-Cheng

    2012-09-19

    Acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution (DS) were prepared in aqueous solution with 20% (w/w) sodium hydroxide as a catalyst. The level of DS was in the order high-amylose maize starch > waxy maize starch > normal maize starch. Settling volume indicated that during the early reaction, normal maize starch swelled to a lesser extent compared with waxy and high-amylose maize starches. The settling volume of all three starches increased initially but decreased after long reaction time. Aggregation of granules was observed as DS increased. The A-type X-ray diffraction pattern of acetylated normal and waxy maize starches weakened as DS increased, whereas the diffraction peaks disappeared in acetylated high-amylose starch when DS was 0.95. Low DS promoted the swelling of the starches in water, but at high DS, the starches became more hydrophobic and the peak viscosity of acetylated starches decreased.

  7. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.

    Science.gov (United States)

    Wang, X; Conway, P L; Brown, I L; Evans, A J

    1999-11-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (starch.

  8. Understanding the structural features of high-amylose maize starch through hydrothermal treatment.

    Science.gov (United States)

    Yang, Jianing; Xie, Fengwei; Wen, Wenqiang; Chen, Ling; Shang, Xiaoqin; Liu, Peng

    2016-03-01

    In this study, high-amylose starches were hydrothermally-treated and the structural changes were monitored with time (up to 12h) using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). When high-amylose starches were treated in boiling water, half-shell-like granules were observed by SEM, which could be due to the first hydrolysis of the granule inner region (CLSM). This initial hydrolysis could also immediately (0.5h) disrupt the semi-crystalline lamellar regularity (SAXS) and dramatically reduce the crystallinity (XRD); but with prolonged time of hydrothermal treatment (≥2 h), might allow the perfection or formation of amylose single helices, resulting in slightly increased crystallinity (XRD and DSC). These results show that the inner region of granules is composed of mainly loosely-packed amylopectin growth rings with semi-crystalline lamellae, which are vulnerable under gelatinization or hydrolysis. In contrast, the periphery is demonstrated to be more compact, possibly composed of amylose and amylopectin helices intertwined with amylose molecules, which require greater energy input (higher temperature) for disintegration.

  9. Highly branched dextrin prepared from high-amylose maize starch using waxy rice branching enzyme (WRBE).

    Science.gov (United States)

    Tian, Yaoqi; Chen, Huangli; Zhang, Xiwen; Zhan, Jinling; Jin, Zhengyu; Wang, Jinpeng

    2016-07-15

    Branching enzyme (BE, EC 2.4.1.18) was isolated from the developing waxy rice endosperm and used to prepare a highly branched dextrin based on high-amylose maize starch (HAMS) as a substrate. The molecular mass of the starch initially degraded quickly from 2.5 × 10(7) to 4.1 × 10(5)Da, and then stabilized, with a minimal increase during the BE treatment. The resultant branched dextrin had a narrow size distribution, with a mean molecular weight of 5.1 × 10(5)Da and a polydispersity index (PI) of 1.567. The results of high-performance anion exchange chromatography indicated that the degree of polymerization (DP) of the branched chains ranged from 3 to 27; approximately 75.26% of these chains were short (DPhighly branched dextrins with a narrow size distribution and short side chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biomolecular analyses of starch and starch granule proteins in the high-amylose rice mutant Goami 2.

    Science.gov (United States)

    Butardo, Vito M; Daygon, Venea Dara; Colgrave, Michelle L; Campbell, Peter M; Resurreccion, Adoracion; Cuevas, Rosa Paula; Jobling, Stephen A; Tetlow, Ian; Rahman, Sadequr; Morell, Matthew; Fitzgerald, Melissa

    2012-11-21

    Elevated proportions of amylose in cereals are commonly associated with either the loss of starch branching or starch synthase activity. Goami 2 is a high-amylose mutant of the temperate japonica rice variety Ilpumbyeo. Genotyping revealed that Goami 2 and Ilpumbyeo carry the same alleles for starch synthase IIa and granule-bound starch synthase I genes. Analyses of granule-bound proteins revealed that SSI and SSIIa accumulate inside the mature starch granules of Goami 2, which is similar to the amylose extender mutant IR36ae. However, unlike the amylose extender mutants, SBEIIb was still detectable inside the starch granules of Goami 2. Detection of SBEIIb after protein fractionation revealed that most of the SBEIIb in Goami 2 accumulates inside the starch granules, whereas most of it accumulates at the granule surface in Ilpumbyeo. Exhaustive mass spectrometric characterisations of granule-bound proteins failed to detect any peptide sequence mutation or major post-translational modifications in Goami 2. Moreover, the signal peptide was found to be cleaved normally from the precursor protein, and there is no apparent N-linked glycosylation. Finally, no difference was found in the SBEIIb structural gene sequence of Goami 2 compared with Ilpumbyeo. In contrast, a G-to-A mutation was detected in the SBEIIb gene of IR36ae located at the splice site between exon and intron 11, which could potentially introduce a premature stop codon and produce a truncated form of SBEIIb. It is suggested that the mutation responsible for producing high amylose in Goami 2 is not due to a defect in SBEIIb gene as was observed in IR36ae, even though it produces a phenotype analogous to the amylose extender mutation. Understanding the molecular genetic basis of this mutation will be important in identifying novel targets for increasing amylose and resistant starch contents in rice and other cereals.

  11. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Xu, Bin; Qin, Fengling; Yu, Huaguang; Chen, Chong; Meng, Xianglen; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-06-23

    High-amylose starch is a source of resistant starch (RS) which has a great benefit on human health. A transgenic rice line (TRS) enriched amylose and RS had been developed by antisense RNA inhibition of starch branching enzymes. In this study, the native starch granules were isolated from TRS grains as well as the wild type, and their crystalline type was carefully investigated before and after acid hydrolysis. In high-amylose TRS rice, the C-type starch, which might result from the combination of both A-type and B-type starch, was observed and subsequently confirmed by multiple physical techniques, including X-ray powder diffraction, solid-state nuclear magnetic resonance, and Fourier transform infrared. Moreover, the change of starch crystalline structure from C- to B-type during acid hydrolysis was also observed in this RS-rich rice. These data could add to our understanding of not only the polymorph structure of cereal starch but also why high-amylose starch is more resistant to digestion.

  12. Preparation and characterization of aqueous dispersions of high amylose starch and conjugated linoleic acid complex.

    Science.gov (United States)

    Seo, Tae-Rang; Kim, Hee-Young; Lim, Seung-Taik

    2016-11-15

    Crystalline starch-CLA complexes were prepared by blending an alcoholic solution of conjugated linoleic acid (CLA) in an aqueous high-amylose maize starch dispersion. Recovery yield of CLA in the precipitates obtained by centrifuging the dispersion was dependent on reaction conditions such as temperature, time and pH. The CLA recovery reached a maximum when the reaction was performed at 90°C for 6h at neutral pH, with 67.7% of the initial CLA being co-precipitated with starch. The precipitates contained amylose-CLA complex exhibiting a V6I-type crystalline structure under X-ray diffraction analysis and a type II polymorph under DSC analysis. Ultrasonic treatment for the re-dispersed starch-CLA complex in water resulted in the reduction of hydrodynamic diameter of the complex particles to 201.5nm. The dispersion exhibited a zeta potential of -27.0mV and remained stable in an ambient storage without forming precipitates for more than 4weeks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Heterogeneous structure and spatial distribution in endosperm of high-amylose rice starch granules with different morphologies.

    Science.gov (United States)

    Cai, Canhui; Huang, Jun; Zhao, Lingxiao; Liu, Qiaoquan; Zhang, Changquan; Wei, Cunxu

    2014-10-15

    Starch granules from high-amylose cereal mutants or transgenic lines usually have different morphologies. It is not clear whether the structure and spatial distribution of starch granules with different morphologies in endosperm is homogeneous or heterogeneous. In the present study, the structure and spatial distribution in endosperm of morphologically different starch granules from high-amylose transgenic rice line (TRS) were investigated. The TRS endosperm had individual, aggregate, elongated, and interior hollow starch granules. The individual and interior hollow granules had the lowest and the highest amylose content and gelatinization resistance, respectively, among the four types of granules. The individual granules were mainly distributed in the middle of the endosperm; the aggregate granules in the starchy endosperm cells between the subaleurone layer and the middle of the endosperm; the elongated granules in the peripheral starchy endosperm cells adjacent to the subaleurone layer; and the interior hollow granules in the subaleurone layer cells.

  14. Starch aerogel beads obtained from inclusion complexes prepared from high amylose starch and sodium palmitate

    Science.gov (United States)

    Starch aerogels are a class of low density highly porous renewable materials currently prepared from retrograded starch gels and are of interest for their good surface area, porosity, biocompatibility, and biodegradability. Recently, we have reported on starches containing amylose-fatty acid salt h...

  15. Sensory characteristics of high-amylose maize-resistant starch in three food products.

    Science.gov (United States)

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2013-03-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g, 13.10 g/100 g, and 8.94 g/100 g RS, respectively, based on lyophilized dry weight. The HAM-RS2-enriched muffin had higher moisture content and was perceived as being significantly moister than the control according to the sensory evaluation. The addition of HAM-RS2 to muffins significantly enhanced all sensory characteristics and resulted in a higher mean overall likeability score. The HAM-RS2-enriched focaccia bread appeared significantly darker in color, was more dense, and had the perception of a well-done crust versus the control. A grainer texture was observed with the chicken curry containing HAM-RS2 which did not significantly affect overall likeability. We concluded that the addition of HAM-RS2 may not significantly alter consumer's acceptability in most food products.

  16. Inclusion complexation of flavour compounds by dispersed high-amylose maize starch (HAMS) in an aqueous model system.

    Science.gov (United States)

    Yeo, Lihe; Thompson, Donald B; Peterson, Devin G

    2016-05-15

    This study investigated how hydrophobicity, solubility and the concentration of flavour compounds related to inclusion complexation by dispersed native high amylose maize starch (HAMS). The effect of native lipid on flavour retention and the effect of time (one day to one month) on flavour retention and precipitated starch yield was also examined. Flavour-starch complexation was dependent on the flavour compound hydrophobicity, the flavour concentration in a dose-dependent manner and also influenced by time (increased during storage). Flavour composition also influenced starch complexation; no flavour complexes were reported with limonene by itself but were observed when added in binary flavour mixtures with menthone or thymol. Furthermore, no difference in flavour retention was observed for native and lipid-free starch dispersions. In summary, flavour inclusion complexes with HAMS exhibited cooperativity-type binding behaviour; with a critical ligand concentration needed for a stable physical association between flavour compounds and HAMS.

  17. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch.

    Science.gov (United States)

    Zhu, Fan; Wang, Ya-Jane

    2013-05-01

    Amylose can form inclusion complexes with diverse small molecules. Modified starch has different and unique properties compared with its native counterpart. In this study, chemically/enzymatically modified high-amylose maize starches were used to make inclusion complexes with α-naphthol, and the physical properties of complexes and their influences on the rheology of wheat starch were characterized. The results showed that modification of starch had little influence on the wide angle X-ray diffraction pattern of complex (eightfold single helix), but did so on the complexation index and precipitation yield. Inclusion complexes with chemically modified starch showed a lower range of thermostability and recrystallization temperatures. Addition of complex considerably influenced the rheological properties of wheat starch, and the effect was dependent on the type of modified starch used. It may be concluded that starch inclusion complexes, with a range of properties and potential food applications, may be feasibly prepared by using diverse modified high-amylose maize starches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods.

    Science.gov (United States)

    Chen, Ming-Hsuan; Bergman, Christine J; McClung, Anna M; Everette, Jace D; Tabien, Rodante E

    2017-11-01

    Resistant starch (RS), which is not hydrolyzed in the small intestine, has proposed health benefits. We evaluated 40 high amylose rice varieties for RS content in cooked rice and a 1.9-fold difference was found. Some varieties had more than two-fold greater RS content than a US long-grain intermediate-amylose rice. The high amylose varieties were grouped into four classes according to paste viscosity and gelatinization temperature based on genetic variants of the Waxy and Starch Synthase IIa genes, respectively. RS content was not different between the four paste viscosity-gelatinization temperature classes. Multiple linear regression analysis showed that apparent amylose content and pasting temperature were strong predictors of RS within each class. Two cooking methods, fixed water-to-rice ratio/time and in excess-water/minimum-cook-time, were compared using six rice varieties that were extremes in RS in each of the genetic variant classes, no difference in RS content due to cooking method was observed. Published by Elsevier Ltd.

  19. Impact of micronization on rapidly digestible, slowly digestible, and resistant starch concentrations in normal, high-amylose, and waxy barley.

    Science.gov (United States)

    Emami, Shahram; Meda, Venkatesh; Pickard, Mark D; Tyler, Robert T

    2010-09-08

    This study determined the effect of micronization (high intensity infrared heating) on the concentrations of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) in normal barley (NB), high-amylose barley (HAB), and waxy barley (WB). The gelatinized starch contents and the thermal properties of the micronized samples also were determined. Samples of each barley type were tempered to each of three moisture contents (approximately 17, 31, or 41%), and then each tempered sample was micronized to each of three surface temperatures (100, 120, or 140 degrees C). Micronized barley samples were substantially lower in RS and in SDS and, therefore, higher in RDS than corresponding unprocessed samples. In general, higher concentrations of RDS and of gelatinized starch were associated with higher initial moisture contents and higher surface temperatures. The lowest concentrations of RS were observed in micronized WB samples. Similar concentrations of RS were observed in corresponding NB and HAB samples. Micronization resulted in slight increases in the onset (To), peak (Tp), and completion (Tc) gelatinization temperatures and in substantial reductions in the gelatinization enthalpy (DeltaH), the latter reflecting the levels of gelatinized starch in micronized samples, particularly in samples micronized at higher moisture contents and to higher surface temperatures. Endothermic transitions were evident only in samples tempered to 17% moisture or 31% moisture (surface temperature of 100 degrees C only).

  20. Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes

    Science.gov (United States)

    Sun, Yongwei; Jiao, Guiai; Liu, Zupei; Zhang, Xin; Li, Jingying; Guo, Xiuping; Du, Wenming; Du, Jinlu; Francis, Frédéric; Zhao, Yunde; Xia, Lanqin

    2017-01-01

    Cereals high in amylose content (AC) and resistant starch (RS) offer potential health benefits. Previous studies using chemical mutagenesis or RNA interference have demonstrated that starch branching enzyme (SBE) plays a major role in determining the fine structure and physical properties of starch. However, it remains a challenge to control starch branching in commercial lines. Here, we use CRISPR/Cas9 technology to generate targeted mutagenesis in SBEI and SBEIIb in rice. The frequencies of obtained homozygous or bi-allelic mutant lines with indels in SBEI and SBEIIb in T0 generation were from 26.7 to 40%. Mutations in the homozygous T0 lines stably transmitted to the T1 generation and those in the bi-allelic lines segregated in a Mendelian fashion. Transgene-free plants carrying only the frame-shifted mutagenesis were recovered in T1 generation following segregation. Whereas no obvious differences were observed between the sbeI mutants and wild type, sbeII mutants showed higher proportion of long chains presented in debranched amylopectin, significantly increased AC and RS content to as higher as 25.0 and 9.8%, respectively, and thus altered fine structure and nutritional properties of starch. Taken together, our results demonstrated for the first time the feasibility to create high-amylose rice through CRISPR/Cas9-mediated editing of SBEIIb. PMID:28326091

  1. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes bifidobacteria in pigs.

    Science.gov (United States)

    Regmi, Prajwal R; Metzler-Zebeli, Barbara U; Gänzle, Michael G; van Kempen, Theo A T G; Zijlstra, Ruurd T

    2011-07-01

    Diets containing different starch types can affect enzymatic digestion of starch and thereby starch availability for microbial fermentation in the gut. However, the role of starch chemistry in nutrient digestion and flow and microbial profile has been poorly explained. Eight ileal-cannulated pigs (29.4 ± 0.9 kg body weight) were fed 4 diets containing 70% purified starch (amylose content, starch output, postileal crude protein yield, fecal total SCFA and total butyrate content, and gene copies of Bifidobacterium spp. in feces were higher (P starch diet than the remaining 3 starch diets. The in vitro starch digestion rate had a negative, nonlinear relationship with ileal starch flow (R(2) = 0.98; P starch flow was positively related to Bifidobacterium spp. (R(2) = 0.27; P starch with high amylose content and low in vitro digestibility increased postileal nutrient flow and microbial fermentation and selectively promoted Bifidobacterium spp. in the distal gut.

  2. Effect of melt-processing and ultrasonic treatment on physical properties of high-amylose maize starch.

    Science.gov (United States)

    Lima, Felipe F; Andrade, Cristina T

    2010-04-01

    High-amylose maize starch (Hylon VII) was submitted to melt-processing in an internal mixer at 100 degrees C and 40 rpm for 8 min. Glycerol was used as a plasticiser at different polymer/glycerol ratios. Torque and temperature curves were obtained. After glycerol extraction with ethyl alcohol, the samples were dispersed at 5 g/L, and treated by ultrasound radiation at the same conditions for 30 min. Samples were characterised by (1)H NMR spectrometry, viscosity measurements, and X-ray diffractometry. The results revealed that both glycerol and water had an important role on the crystallinity properties of the resulting products. Melt-processed and sonicated samples showed similar (1)H NMR spectra. Ultrasound treatment caused a significant reduction in intrinsic viscosity for the sample previously processed with the highest glycerol content, probably because of its higher solubility in water.

  3. Formation of semi-compound C-type starch granule in high-amylose rice developed by antisense RNA inhibition of starch-branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhou, Weidong; Chen, Yifang; Xu, Bin; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-10-27

    Cereal starch granules with high-amylose and resistant starch (RS) always show irregular morphology and special crystalline structure, but their formation during grain development is not yet clear. In our previous studies, we had generated a transgenic rice line (TRS) enriched with amylose and RS, which contained semi-compound starch showing a C-type crystalline structure. In this study, the formation of semi-compound C-type starch granule during TRS endosperm development was carefully investigated with light, scanning electron, and transmission electron microscopes and X-ray powder diffraction. The results showed that the TRS starch subgranules, each with a central hilum, were individually initiated in amyloplast and showed an A-type crystal at the early stage of starch granule development, which was similar to that in its wild type. However, with the endosperm development, the amylose content in TRS endosperm starch increased and the B-type starch crystal was deposited in the periphery of subgranules; then, the adjacent subgranules fused together and finally formed a continuous outer layer band surrounding the entire circumference of the starch granule. Accordingly, a mechanistic model for the formation of semi-compound C-type starch granules is proposed.

  4. Is there variation in resistant starch among high amylose rice varieties?

    Science.gov (United States)

    Resistant starch (RS) is the fraction of the starch and the products of starch degradation that resist digestion in the small intestines of healthy humans and is partially or entirely fermented in the colon by the microbiota. RS in food lowers postprandial glucose concentration and has potential in ...

  5. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch.

    Science.gov (United States)

    Chai, Yanwei; Wang, Mingzhu; Zhang, Genyi

    2013-09-11

    High-amylose maize starch (HAM) is a common source material to make resistant starch with its high content of amylose (>70%). In the current investigation, the self-assembly of amylose in the presence of bioactive tea polyphenols (TPLs) and resulting slow digestion property of starch were explored. The experimental results using a mouse model showed a slow digestion property can be achieved with an extended and moderate glycemic response to HAM starch cocooked with TPLs. Further studies using a dilute aqueous amylose solution (0.1%, w/v) revealed an increased hydrodynamic radius of amylose molecules, indicating that TPLs could bridge them together, leading to increased molecular sizes. On the other hand, the bound TPLs interrupted the normal process of amylose recrystallizaiton evidenced by a decreased viscosity and storage modulus (G') of HAM (5%) gel, a rough surface of the cross-section of HAM film, and decreased short-range orders examined by Fourier transform infrared spectral analysis. Single-step degradation curves in the thermal gravimetric profile demonstrated the existence of a self-assembled amylose-TPL complex, which is mainly formed through hydrogen bonding interaction according to the results of iodine binding and X-ray powder diffraction analysis. Collectively, the amylose-TPL complexation influences the normal self-assembling process of amylose, leading to a low-ordered crystalline structure, which is the basis for TPLs' function in modulating the digestion property of HAM starch to produce a slowly digestible starch material that is beneficial to postprandial glycemic control and related health effects.

  6. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhou, Weidong; Yu, Huaguang; Xu, Bin; Chen, Chong; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-11-24

    C-type starch, which is a combination of both A-type and B-type crystal starch, is usually found in legumes and rhizomes. We have developed a high-amylose transgenic line of rice (TRS) by antisense RNA inhibition of starch branching enzymes. The starch in the endosperm of this TRS was identified as typical C-type crystalline starch, but its fine granular structure and allomorph distribution remained unclear. In this study, we conducted morphological and spectroscopic studies on this TRS starch during acid hydrolysis to determine the distribution of A- and B-type allomorphs. The morphology of starch granules after various durations of acid hydrolysis was compared by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results showed that amorphous regions were located at the center part of TRS starch subgranules. During acid hydrolysis, starch was degraded from the interior of the subgranule to the outer surface, while the peripheral part of the subgranules and the surrounding band of the starch granule were highly resistant to acid hydrolysis. The spectroscopic changes detected by X-ray powder diffraction, 13C cross-polarization magic-angle spinning NMR, and attenuated total reflectance Fourier transform infrared showed that the A-type allomorph was hydrolyzed more rapidly than the B-type, and that the X-ray diffraction profile gradually changed from a native C-type to a CB-type with increasing hydrolysis time. Our results showed that, in TRS starch, the A-type allomorph was located around the amorphous region, and was surrounded by the B-type allomorph located in the peripheral region of the subgranules and the surrounding band of the starch granule. Thus, the positions of A- and B-type allomorphs in the TRS C-type starch granule differ markedly from those in C-type legume and rhizome starch.

  7. Dosage effect of high-amylose modifier gene(s) on the starch structure of maize amylose-extender mutant.

    Science.gov (United States)

    Jiang, Hongxin; Campbell, Mark; Wu, Yusheng; Du, Shuangkui; Srichuwong, Sathaporn; Jane, Jay-Lin

    2015-01-21

    The objective of this study was to investigate how dosages of high-amylose modifier (HAM) gene(s) affected the structure of maize amylose extender (ae) mutant starch. GEMS-0067 (G), a homozygous mutant of ae and the HAM gene(s), and H99ae (H), an ae single mutant, were self-pollinated or inter-crossed to produce maize endosperms of G/G, G/H, H/G, and H/H with 3, 2, 1, and 0 doses of HAM gene(s), respectively. Endosperm starch was fractionated into amylopectin, amylose, and intermediate component (IC) of large and small molecular weights using 1-butanol precipitation of amylose followed by gel-permeation chromatography. Increases in the dosage of HAM gene(s) from 0 to 3 decreased the amylopectin content. The HAM-gene dosage significantly changed the branch chain-length of small-molecular-weight IC, but had little effect on the branch chain-length distributions of amylopectin and large-molecular-weight IC and the molecular structure of amylose.

  8. Breeding for improved potato nutrition: High amylose starch potatoes show promise as fiber source

    Science.gov (United States)

    Potato starch is composed of approximately 75% amylopectin and 25% amylose. We are interested in breeding for higher amylose content, which would increase the fiber content of potato and decrease glycemic index. In order to make progress in a breeding program, we have developed a high throughput ass...

  9. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  10. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology.

    Science.gov (United States)

    Zhang, Yanjun; Liu, Wei; Liu, Chengmei; Luo, Shunjing; Li, Ti; Liu, Yunfei; Wu, Di; Zuo, Yanna

    2014-09-01

    Native rice starch (NRS, amylose/28.9%) was gelatinized by improved extrusion cooking technology (IECT) and retrograded (RRS) after low temperature storage (4 °C). The retrogradation behaviour of RRS was changed to low retrogradation percentage and low retrogradation rate. The retrogradation resulted in a high compact morphology. The melt enthalpy change and percentage of retrogradation of RRS was 3.68 J/g and 37.7%, respectively, compared to those of NRS (9.75 J/g, 100%). The retrogradation percentage for RRS was low during storage as shown as a low retrogradation rate (0.21 d(-1)) and a high Avrami exponent (0.89). The pattern of rice starch changed from A-type to amorphous and B-type. Both the relative crystallinity of RRS (12.7%) by the X-ray diffractograms and the ratio of the band height (0.63) in the FTIR spectra were low. The analysis of retrogradation structure and short-range molecular order further confirmed the retrogradation behaviour of rice starch after IECT treatment.

  11. Starch with high amylose and low in vitro digestibility increases short-chain fatty acid absorption, reduces peak insulin secretion, and modulates incretin secretion in pigs.

    Science.gov (United States)

    Regmi, Prajwal R; van Kempen, Theo A T G; Matte, J Jacques; Zijlstra, Ruurd T

    2011-03-01

    Diets containing different starch types affect peripheral glucose and insulin responses. However, the role of starch chemistry in kinetics of nutrient absorption and insulin and incretin secretion is poorly understood. Four portal vein-catheterized pigs (35.0 ± 0.2 kg body weight) consumed 4 diets containing 70% purified starch [0-63.2% amylose content and 0.22 (slowly) to 1.06%/min (rapidly) maximum rate of in vitro digestion] for 7-d periods in a 4 × 4 Latin square. On d 7, blood was collected for 12 h postprandial with simultaneous blood flow measurement for determining the net portal appearance (NPA) of nutrients and hormones. The NPA of glucose, insulin, C-peptide, and glucose-dependent insulinotropic polypeptide (GIP) during 0-4 h postprandial were lower (P starch. The peak NPA of insulin occurred prior to that of glucose when pigs consumed diets containing rapidly digestible starch. The kinetics of insulin secretion had a linear positive relation with kinetics of NPA of glucose (R(2) = 0.50; P starch with high amylose and low in vitro digestibility decreases the kinetics of glucose absorption and insulin and GIP secretion and increases SCFA absorption and glucagon-like peptide-1 secretion. In conclusion, starch with high amylose content and a lower rate and extent of in vitro digestion decreased glucose absorption and insulin secretion and increased SCFA absorption.

  12. Spray-dried high-amylose sodium carboxymethyl starch: impact of α-amylase on drug-release profile.

    Science.gov (United States)

    Nabais, Teresa; Zaraa, Sarra; Leclair, Grégoire

    2016-11-01

    Spray-dried high-amylose sodium carboxymethyl starch (SD HASCA) is a promising pharmaceutical excipient for sustained-release (SR) matrix tablets produced by direct compression. The presence of α-amylase in the gastrointestinal tract and the variations of the gastric residence time of non-disintegrating dosage forms may affect the presystemic metabolism of this excipient and, consequently, the drug-release profile from formulations produced with SD HASCA. In this study, the influence of α-amylase and the residence time in acidic conditions on the drug-release profile was evaluated for a once-daily acetaminophen formulation (Acetaminophen SR) and a once-daily tramadol hydrochloride formulation (Tramadol SR). Both formulations were based on SD HASCA. α-Amylase concentrations ranging from 0 IU/L to 20000 IU/L did not significantly affect the drug-release profiles of acetaminophen and tramadol hydrochloride from SD HASCA tablets (f2 > 50) for all but only one of the studied conditions (f2 = 47). Moreover, the drug-release properties from both SD HASCA formulations were not significantly different when the residence time in acidic medium was 1 h or 3 h. An increase in α-amylase concentration led to an increase in the importance of polymer erosion as the main mechanism of drug-release instead of drug diffusion, for both formulations and both residence times, even if release profiles remained comparable. As such, it is expected that α-amylase concentration and residence time in the stomach will not clinically affect the performance of both SD HASCA SR formulations, even if the mechanism of release itself may be affected.

  13. Chemical profile, rumen degradation kinetics, and energy value of four hull-less barley cultivars: comparison of the zero-amylose waxy, waxy, high-amylose, and normal starch cultivars.

    Science.gov (United States)

    Damiran, Daalkhaijav; Yu, Peiqiang

    2010-10-13

    The objective of this study was to compare three new Canadian hull-less barley cultivars with altered starch characteristics (zero-amylose waxy, CDC Fibar; waxy, CDC Rattan; and high-amylose, HB08302) with conventional normal starch hull-less barley (HB) cultivar (CDC McGwire) in terms of ruminant feed value. The study revealed that altered starch HB cultivars possessed several desirable feed characteristics, distinct from conventional normal starch HB, although they were similar in some respects: (1) basic chemical and carbohydrate subfraction profiles varied; (2) starch degradation kinetics showed altered starch HB containing higher soluble starch, rumen undegraded starch, lower degradable starch, and slower degradation rate; (3) all altered starch HB cultivars had similar soluble and degradable starch, different from that of conventional normal starch HB; (4) two waxy HB cultivars were lower, whereas the high-amylose cultivar was similar in effective degradability of the starch as compared to conventional normal starch HB; (5) zero-amylose waxy HB had the greater effective degradability of protein among HB cultivars; and (6) amylopectin in HB had a positive relationship with protein supply (increasing amylopectin was correlated with increased effective degradability of protein). Overall, these results demonstrate that the alteration of starch structure in granule affects not only starch fermentation and utilization but also protein value in hull-less barley. In summary, the HB cultivars with modified starch might be a better feed grain for ruminants than the normal starch HB.

  14. Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices

    Directory of Open Access Journals (Sweden)

    Fernanda M. Carbinatto

    2014-02-01

    Full Text Available Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations, since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs. Objective: In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated. Methods: Cross-linked samples were characterized by their micromeritic properties (size and shape, density, angle of repose and flow rate and liquid uptake ability. Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated. Results: Cross-linked samples demonstrated size homogeneity and irregular shape, with liquid uptake ability insensible to pH. Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process. The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix. Conclusion: The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.

  15. Caracterização físico-química, reológica, morfológica e térmica dos amidos de milho normal, ceroso e com alto teor de amilose Physicochemical, rheological, morphological, and thermal characterization of normal, waxy, and high amylose corn starches

    OpenAIRE

    Fernanda Hart Weber; Fernanda Paula Collares-Queiroz; Yoon Kil Chang

    2009-01-01

    O objetivo do presente estudo foi avaliar os amidos de milho normal, ceroso e com alto teor de amilose, fabricados pela National Starch, por meio da determinação das suas características físico-químicas, morfológicas, térmicas e reológicas. O amido de milho com alto teor de amilose (AM) apresentou teor de amilose igual a 71%, sendo que os valores obtidos para o amido de milho normal (M) e o amido de milho ceroso (AP) foram de 27,8 e 1,8%, respectivamente. Traços de proteína e lipídios foram e...

  16. Cassava and corn starch in maltodextrin production

    OpenAIRE

    Geovana Rocha Plácido Moore; Luciana Rodrigues do Canto; Edna Regina Amante; Valdir Soldi

    2005-01-01

    Maltodextrin was produced from cassava and corn starch by enzymatic hydrolysis with alpha-amylase. The cassava starch hydrolysis rate was higher than that of corn starches in maltodextrin production with shorter dextrose equivalent (DE). DE values do not show directly the nature of the obtained oligosaccharides. Maltodextrin produced from cassava and corn starch was analysed by high performance liquid chromatography (HPLC), and the analysis showed that maltodextrin production differs accordin...

  17. Dietary butyrylated high-amylose starch reduces azoxymethane-induced colonic O(6)-methylguanine adducts in rats as measured by immunohistochemistry and high-pressure liquid chromatography.

    Science.gov (United States)

    Le Leu, Richard K; Scherer, Benjamin L; Mano, Mark T; Winter, Jean M; Lannagan, Tamsin; Head, Richard J; Lockett, Trevor; Clarke, Julie M

    2016-09-01

    O(6)-methyl guanine (O(6)MeG) adducts are major toxic, promutagenic, and procarcinogenic adducts involved in colorectal carcinogenesis. Resistant starch and its colonic metabolite butyrate are known to protect against oncogenesis in the colon. In this study, we hypothesized that a dietary intervention that specifically delivers butyrate to the large bowel (notably butyrylated high-amylose maize starch [HAMSB]) would reduce colonic levels of O(6)MeG in rats shortly after exposure to the deoxyribonucleic acid (DNA) alkylating agent azoxymethane (AOM) when compared with a low-amylose maize starch (LAMS). A further objective was to validate an immunohistochemistry (IHC) method for quantifying O(6)MeG against a high-performance liquid chromatography method using fluorescence and diode array detection. Rats were fed either LAMS or HAMSB diets for 4 weeks followed by a single injection of AOM or saline and killed 6 hours later. After AOM exposure, both IHC and high-performance liquid chromatography method using fluorescence and diode array detection measured a substantially increased quantity of DNA adducts in the colon (Preducing colonic adduct load compared with the LAMS diet (Pload was reduced in the lower third of the crypt compartment in HAMSB-fed rats (P=.036). The apoptotic response to AOM was higher in the HAMSB-fed rats (P=.002). In conclusion, the reduction in O(6)MeG levels and enhancement of the apoptotic response to DNA damage in the colonic epithelium through consumption of HAMSB provide mechanistic insights into how HAMSB protects against colorectal tumorigenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Cassava and corn starch in maltodextrin production

    Directory of Open Access Journals (Sweden)

    Geovana Rocha Plácido Moore

    2005-08-01

    Full Text Available Maltodextrin was produced from cassava and corn starch by enzymatic hydrolysis with alpha-amylase. The cassava starch hydrolysis rate was higher than that of corn starches in maltodextrin production with shorter dextrose equivalent (DE. DE values do not show directly the nature of the obtained oligosaccharides. Maltodextrin produced from cassava and corn starch was analysed by high performance liquid chromatography (HPLC, and the analysis showed that maltodextrin production differs according to the source of the starch. This is important in defining the application of the maltodextrin, according to its desired function.

  19. The effects of whole grain high-amylose maize flour as a source of resistant starch on blood glucose, satiety, and food intake in young men.

    Science.gov (United States)

    Luhovyy, Bohdan L; Mollard, Rebecca C; Yurchenko, Svitlana; Nunez, Maria Fernanda; Berengut, Shari; Liu, Ting Ting; Smith, Christopher E; Pelkman, Christine L; Anderson, G Harvey

    2014-12-01

    The objective of this study was to determine the dose response effect of whole grain high-amylose maize (HAM) flour as a source of resistant starch (RS) on blood glucose, appetite and short-term food intake. In a repeated-measures crossover trial, healthy men (n = 30, 22.9 ± 0.6 y, BMI of 22.6 ± 0.3 kg/m(2)) were randomly assigned to consume 1 of 3 cookies once a week for 3 wk. Cookies were control (100% wheat flour), low-dose (63% wheat flour,37% HAM flour), and high-dose (33% wheat flour, 67% HAM flour) providing 53.5, 43.5, and 36.3 g of available carbohydrate, respectively. Ad libitum food intake was measured 120 min at a pizza meal, blood glucose and subjective appetite were measured after consumption of the cookie (0 to 120 min) and after the pizza meal (140 to 200 min). Blood glucose concentrations were lower at 30 and 45 min after high-dose treatment, and at 120 min after both high- and low-dose treatments compared to control (P < 0.05). Blood glucose AUC before the pizza meal (0 to 120 min) was 44% and 14% lower, and higher by 43% and 41% after the pizza meal (140 to 200 min) compared with control. Yet despite the higher response following the meal, cumulative AUC (0 to 200 min) was still 22% lower after the high-dose treatment (P < 0.05). All treatments equally suppressed subjective appetite and there was no effect on food intake. In conclusion, HAM flour as a source of RS and incorporated into a cookie was associated with better glycemic control in young men.

  20. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating.

  1. Characterization of normal and waxy corn starch for bioethanol production.

    Science.gov (United States)

    Yangcheng, Hanyu; Jiang, Hongxin; Blanco, Michael; Jane, Jay-lin

    2013-01-16

    Objectives of this study were to compare ethanol production between normal and waxy corn using a cold fermentation process and to understand effects of starch structures and properties on ethanol production. Ethanol yields positively correlated (p starch contents of kernels of the normal and waxy corn. The average starch-ethanol conversion efficiency of waxy corn (93.0%) was substantially greater than that of normal corn (88.2%). Waxy corn starch consisted of very little amylose and mostly amylopectin that had a shorter average branch chain length than normal corn amylopectin. Regression analyses showed that average amylopectin branch chain lengths and percentage of long branch chains (DP > 37) of waxy corn starch negatively correlated with the starch hydrolysis rate and the ethanol yield. These results indicated that starch structures and properties of the normal and waxy corn had significant effects on the ethanol yield using a cold fermentation process.

  2. Properties of corn starch subjected hydrothermal modification

    Science.gov (United States)

    Gryszkin, Artur; Zięba, Tomasz; Kapelko-Żeberska, Małgorzata

    2017-01-01

    The objective of this study was to determine the effect of heating a water dispersion of corn starch to various temperatures, followed by its freezing and defrosting, on selected properties of re-formed starch pastes. A suspension of starch was heated to various temperatures ranging from 59 to 94°C, and afterwards frozen and defrosted. The differential scanning calorimetry (Mettler Toledo, 822E) thermal characteristics of starch pre-heated to temperatures not inducing complete pasting revealed transitions of: (I) retrograded amylopectin, (II) non-pasted starch, (III) amylose-lipid complexes, (IV) retrograded amylose, and (V) highly thermostable starch structures. The application of higher temperatures during heating caused disappearance of transitions II and V. The increase of pre-heating temperature induced firstly a decrease and then stabilization of the swelling power as well as a successive decrease in starch solubility. Pastes pre-heated to temperatures over 79°C contained large macroparticles that were increasing viscosity of the re-formed starch paste (their size was positively correlated with viscosity value).

  3. Effects of Sorghum [Sorghum bicolor (L.) Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) Contents of Porridges

    OpenAIRE

    2012-01-01

    Bran extracts (70% aqueous acetone) of specialty sorghum varieties (tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA). The cooking trials indicated that bran extracts ...

  4. Resistant Starch and Starch Thermal Characteristics in Exotic Corn Lines Grown in Temperate and Tropical Environments

    Science.gov (United States)

    Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introg...

  5. 玉米淀粉的热力学性质与消化性%Thermodynamic Property and Digestibility of Corn Starches

    Institute of Scientific and Technical Information of China (English)

    黄强; 王婵; 罗发兴; 扶雄; 张斌

    2011-01-01

    对4种不同直链/支链淀粉含量的玉米淀粉(蜡质玉米淀粉、普通玉米淀粉、Hylon Ⅴ和Hylon Ⅶ)的热力学性质及体外消化性进行测定,进一步分析了淀粉热力学性质与消化性的关系.结果表明:高支(蜡质和普通)玉米淀粉与高链玉米淀粉(Hylon Ⅴ和Hylon Ⅶ)的热力学性质存在显著差异;高支玉米淀粉的起糊温度在70℃左右,而高链玉米淀粉( Hylon Ⅶ)在煮沸的情况下也难以糊化;4种淀粉的峰值黏度随直链含量升高显著下降;具有适当直链含量的普通玉米淀粉具有较高的膨胀度,普通玉米淀粉、Hylon Ⅴ和Hylon Ⅶ在90℃的膨胀度分别为13.07、5.63和4.54 g/g.差示扫描量热(DSC)分析结果表明:蜡质玉米淀粉只有单一的吸热峰,而普通玉米淀粉和高链玉米淀粉还有直链淀粉与脂质复合物吸热峰,但吸热焓值较蜡质玉米淀粉低;淀粉经蒸煮处理后,糊化温度较低且具有较高膨胀度的普通玉米淀粉的慢消化淀粉含量较高;而糊化温度较高、膨胀度较低的高链玉米淀粉中的抗性淀粉含量较高.%Four kinds of corn starches with different amylose/amylopectin contents, namely, waxy corn starch, normal corn starch, Hylon Vand Hylon Ⅶ, were investigated in the aspects of thermodynamic property and in vitro digestibility , and the relationship between the two properties was further analyzed. It is found that the thermodynamic property difference between the native high-amylopectin ( waxy and normal) corn starches and the high-amylose ( Hylon Ⅴand Hylon Ⅶ) ones is great, that the pasting temperatures of the high-amylopectin corn starches are a-bout 70℃, while the high-amylose corn starch ( Hylon Ⅶ) is resistant to gelatinization even in the boiling water, that the peak viscosities of four kinds of corn starches varieties significantly decrease with the increase of amylose content, that the normal corn starch with proper amylose content is of

  6. Shear thickening of corn starch suspensions: does concentration matter?

    Science.gov (United States)

    Crawford, Nathan C; Popp, Lauren B; Johns, Kathryn E; Caire, Lindsey M; Peterson, Brittany N; Liberatore, Matthew W

    2013-04-15

    Suspensions of corn starch and water are the most common example of a shear thickening system. Investigations into the non-Newtonian flow behavior of corn starch slurries have ranged from simplistic elementary school demonstrations to in-depth rheological examinations that use corn starch to further elucidate the mechanisms that drive shear thickening. Here, we determine how much corn starch is required for the average person to ‘‘walk on water’’ (or in this case, run across a pool filled with corn starch and water). Steady shear rate rheological measurements were employed to monitor the thickening of corn starch slurries at concentrations ranging from 0 to 55 wt.% (0-44 vol.%). The steady state shear rate ramp experiments revealed a transition from continuous to discontinuous thickening behavior that exists at 52.5 wt.%. The rheological data was then compared to macro-scopic (~5 gallon) pool experiments, in which thickening behavior was tested by dropping a 2.1 kg rock onto the suspension surface. Impact-induced thickening in the ‘‘rock drop’’ study was not observed until the corn starch concentration reached at least 50 wt.%. At 52.5 wt.%, the corn starch slurry displayed true solid-like behavior and the falling rock ‘‘bounced’’ as it impacted the surface. The corn starch pool studies were fortified by steady state stress ramps which were extrapolated out to a critical stress value of 67,000 Pa (i.e., the force generated by an 80 kg adult while running). Only the suspensions containing at least 52.5 wt.% (42 vol.%) thickened to high enough viscosities (50-250 Pa s) that could reasonably be believed to support the impact of a man’s foot while running. Therefore, we conclude that at least 52.5 wt.% corn starch is required to induce strong enough thickening behavior to safely allow the average person to ‘‘walk on water’’.

  7. Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes

    Energy Technology Data Exchange (ETDEWEB)

    Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

    2007-09-01

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

  8. In vitro analyses of resistant starch in retrograded waxy and normal corn starches.

    Science.gov (United States)

    Zhou, Xing; Chung, Hyun-Jung; Kim, Jong-Yea; Lim, Seung-Taik

    2013-04-01

    Gelatinized waxy and normal corn starches (40% starch) were subjected to temperature cycling between 4 and 30°C (1 day at each temperature) or isothermal storage (4°C) to induce retrogradation. The in vitro analysis methods that are currently used for the measurement of resistant starch (RS), i.e. Englyst, AACC 32-40 and Goni methods, were compared with homogenized retrograded starch gels and freeze-dried powders of the gels. RS contents obtained by the three analysis methods were in the following order: Goni>Englyst>AACC. Although different RS values were obtained among the analysis methods, similar trends in regards to the starch type and storage conditions could be observed. Little or no RS was found in freeze-dried powders of the retrograded starch gels and storage conditions had no effect, indicating that the physical state for RS analysis is important. More RS was found in normal corn starch gels than in waxy corn starch gels under identical storage conditions and in the gels stored under temperature cycling than those under isothermal storage (4°C), indicating that the presence of amylose inhibits starch digestion and the level of crystalline structure of re-crystallized amylopectin also affects the RS formation during retrogradation.

  9. Mid-infrared spectroscopy and chemometrics in corn starch classification

    Science.gov (United States)

    Dupuy, N.; Wojciechowski, C.; Ta, C. D.; Huvenne, J. P.; Legrand, P.

    1997-06-01

    The authentication of food is a very important issue for both the consumer and the food industry at all levels of the food chain from raw materials to finished products. Corn starch can be used in a wide variety of food preparations such as bakery cream fillings, sauces, salad dressings, frozen foods etc. Many modifications are made to corn starch in connection with its use in agrofood. The value of the product increases with the degree of modification. Some chemical and physical tests have been devised to solve the problem of identifying these modifications but all the methods are time consuming and require skilled operators. We separate corn starches into groups related to their modification on the basis of the infrared spectra.

  10. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  11. Impact of dry heating on physicochemical properties of corn starch and lysine mixture.

    Science.gov (United States)

    Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui

    2016-10-01

    Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch.

  12. Characterization of normal and waxy corn starch for bioethanol production

    Science.gov (United States)

    The objectives of this study were to: 1) Compare the differences of ethanol production between normal and waxy corn representing a diverse set of racial germplasm using a cold-fermentation process; 2) Understand the effects of starch structure and properties on ethanol production. Ethanol yields po...

  13. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  14. Glycemic response to corn starch modified with cyclodextrin glycosyltransferase and its relationship to physical properties

    Science.gov (United States)

    Corn starch was modified with cyclodextrin glycosyltransferase (CGTase) below the gelatinization temperature. The porous, partially hydrolyzed, granules with or without CGTase hydrolysis products, cyclodextrins (CDs) and short chain maltodextrins, may be used as an alternative to modified corn starc...

  15. 高直链玉米淀粉全降解片材的制备%Preparation of Total Biodegradable Sheet with High Amylose Corn Starch

    Institute of Scientific and Technical Information of China (English)

    孙炳新; 谷宏; 韩春阳; 马涛

    2009-01-01

    以高直链玉米淀粉(HACS)为原料,通过与二氧化碳树脂共混塑炼制备全降解片材.探讨了淀粉与二氧化碳树脂不同配比和增塑剂邻苯二甲酸二辛酯(DOP)以及聚乙二醇(PEG)等添加剂的用量对材料性能的影响.结果表明,片材力学性能比普通淀粉效果要好,同时当DOP用量为1mL,PEG 6000用量为2g时,材料的性能指标最佳.

  16. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  17. Modified-starch Consolidation of Alumina Ceramics

    Institute of Scientific and Technical Information of China (English)

    JU Chenhui; WANG Yanmin; YE Jiandong; HUANG Yun

    2008-01-01

    The alumina ceramics with the homogeneous microstructure and the higher density were fabricated via the modified-starch consolidation process by 1.0 wt%of a modified starch as a consolidator/binder.The swelling behavior of the modified oxidized tapioca starch was analyzed by optical microscope,and two other corn starches(common corn starch and high amylose COrn starch)were also analyzed for comparison.The modified starch used as a binder for the consolidation swelled at about 55℃.began to gelatinize at 65℃ and then was completely gelatinized at 75℃.But the corn starches could not be completely gelatinized even at 80℃for 1 h.The high-strength green bodies(10.6 MPa)with the complex shapes were produced.The green bodies were sintered without any binder burnout procedure at 1700℃and a relative density of 95.3% was obtained for the sintered bodies,which is similar to that of the sintered sample formed by conventional slip casting.In addition,the effect of temperature on the apparent viscosity of the starch/alumina slurry in the process was investigated,and the corresponding mechanism for the starch consolidation was discussed.

  18. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch.

    Science.gov (United States)

    Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan

    2016-02-01

    High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules.

  19. Characterization of starch from two ecotypes of andean achira roots (Canna edulis).

    Science.gov (United States)

    Cisneros, Fausto H; Zevillanos, Roberto; Cisneros-Zevallos, Luis

    2009-08-26

    Starches from two ecotypes of achira roots (Canna edulis Ker-Gawler) were characterized and compared to commercial potato and corn starches. This included scanning electron microscopy (SEM) of starch granules and amylose content determination of starch. Starch solutions or gels were tested by rotational viscometry, Rapid Visco Analyzer (RVA), and texture analysis. Some starch samples were subjected to various treatments: pH reduction, autoclaving at high temperature, and high shear before testing by rotational viscometry. Achira starch showed some unusual properties, such as very large oblong granules (approximately 45-52 microm major axis and approximately 33-34 microm minor axis) and relatively high amylose content (approximately 33-39%). The San Gaban achira ecotype formed high-consistency gels upon cooling, both in RVA study (5% starch) and in texture analysis (8% starch), compared to other starch gels and also exhibited higher thermal resistance to viscosity breakdown.

  20. Internal structure and physicochemical properties of corn starches as revealed by chemical surface gelatinization.

    Science.gov (United States)

    Kuakpetoon, Daris; Wang, Ya-Jane

    2007-11-05

    The organization of amylose and amylopectin within starch granules is still not well elucidated. This study investigates the radial distribution of amylose and amylopectin in different corn starches varying in amylose content (waxy corn starch (WC), common corn starch (CC), and 50% and 70% amylose corn starches (AMC)). Corn starches were surface gelatinized by 13 M LiCl at room temperature to different extents (approximately 10%, 20%, 30%, and 40%). The gelatinized surface starch and remaining granules were characterized for amylose content, amylopectin chain-length distribution, thermal properties, swelling power (SP), and water solubility index (WSI). Except for the outmost 10% layer, the amylose content in CC increased slightly with increasing surface removal. In contrast, amylose was more concentrated at the periphery than at the core for 50% and 70% AMC. The proportion of amylopectin A chains generally decreased while that of B1 chains generally increased with increasing surface removal for all corn starches. The gelatinization enthalpy usually decreased, except for 70% AMC, whereas the retrogradation enthalpy relatively remained unchanged for CC but increased for WC, 50% and 70% AMC with increasing surface removal. The SP and WSI increased with increasing surface removal for all corn starches, with WC showing a significant increase in SP after the removal of the outmost 10% layer. The results of this study indicated that there were similarities and differences in the distribution of amylose and amylopectin chains along the radial location of corn starch granules with varying amylose contents. More amylose-lipid complex and amylopectin long chains were present at the periphery than at the core for amylose-containing corn starches.

  1. Effects of Different Comsteep Liquids on Structure of Starch and Protein Binding in Corn Endosperm

    OpenAIRE

    Rong Yan; Xinhua Li; Xiaojun Qi

    2015-01-01

    The changes in the structures of corn endosperms immersed in different reagents were studied, in order to preliminarily determine the mode of binding of starch and protein in the endosperm. The corn endosperm was immersed in Sulfurous acid, NaOH, ethanol, L-cysteine and morel berry, respectively. The dissociated starch content was analyzed using water as the reference. The results of the treatment were analyzed by the dissociated starch content, optical microscopy and scanning electron micros...

  2. Development of high amylose wheat through TILLING

    National Research Council Canada - National Science Library

    Slade, Ann J; McGuire, Cate; Loeffler, Dayna; Mullenberg, Jessica; Skinner, Wayne; Fazio, Gia; Holm, Aaron; Brandt, Kali M; Steine, Michael N; Goodstal, John F; Knauf, Vic C

    2012-01-01

    .... Starches with increased levels of amylose are of interest because of the correlation between higher amylose content and elevated levels of resistant starch, which has been shown to have beneficial...

  3. Effects of corn fiber gum with different molecular weights on the gelatinization behaviors of corn and wheat starch

    Science.gov (United States)

    Corn fiber gum (CFG) is a novel arabinoxylan hydrocolloid. Recent research has shown that it has a considerable potential in food processing. In our previous study, we reported that CFG could be used to modify the gelling and rheological properties of starch-based food. In this study, starch and CFG...

  4. Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth M. Lenihan

    2003-12-12

    The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique ({alpha} < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (T{sub oG}), narrower range of gelatinization (R{sub G}), and greater enthalpy of gelatinization ({Delta}H{sub G}). The coolest location, Illinois, generally resulted in starch with lower T{sub oG}, wider R{sub G}, and lower {Delta}H{sub G}. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were studied by using DSC

  5. Effects of plantain and corn starches on the mechanical and disintegration properties of paracetamol tablets

    OpenAIRE

    Akin-Ajani, Olufunke D.; Itiola, Oludele A.; ODEKU, OLUWATOYIN A.

    2005-01-01

    The effects of plantain starch obtained from the unripe fruit of the plantMusa paradisiaca L. (Musaceae) on the mechanical and disintegration properties of paracetamol tablets have been investigated in comparison with the effects of corn starch BP using a 23 factorial experimental design. The individual and combined effects of nature of starch binder (N), concentration of starch binder (C), and the relative density of tablet (RD) on the tensile strength (TS), brittle fracture index (BFI), and...

  6. Preparation and structural characterization of corn starch-aroma compound inclusion complexes.

    Science.gov (United States)

    Zhang, Shu; Zhou, Yibin; Jin, Shanshan; Meng, Xin; Yang, Liping; Wang, Haisong

    2017-01-01

    Six corn starch inclusion complexes were synthesized using small nonpolar or weak polar aroma compounds (heptanolide, carvone and menthone) and small polar aroma compounds (linalool, heptanol and menthol). The objectives of this study were to (a) investigate the ability of corn starch to form inclusion complexes with these aroma compounds and (b) characterize the structure of the corn starch inclusion complexes. The resulting inclusion ratios were 75.6, 36.9, 43.8, 91.9, 67.2 and 54.7% for heptanolide, carvone, menthone, linalool, heptanol and menthol respectively. The inclusion complexes had laminated structures with a certain amount of holes or blocky constructions. Compared with gelatinized corn starch, the transition temperatures, peak temperatures and enthalpies of the inclusion complexes were significantly different. The major peak of CO at 1771 cm(-1) and significant peak shifts revealed the formation of inclusion complexes. X-ray diffractometry (XRD) analyses revealed that the crystallinity of corn starch-polar aroma compound inclusion complexes increased. Based on cross-polarization magic angle spinning (13) C nuclear magnetic resonance (CP-MAS (13) C NMR) results, novel peaks and chemical shifts were attributed to the presence of small aroma compounds, thereby confirming the formation of corn starch inclusion complexes. Small nonpolar and polar aroma compounds can be complexed to corn starch. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Influência de hidrocolóides na textura de gel de amido de milho Influence of hydrocolloids in texture of corn starch gel

    Directory of Open Access Journals (Sweden)

    Maisa Peixoto Munhoz

    2004-09-01

    Full Text Available O presente trabalho tem como objetivo determinar a influência das interações das gomas xantana e guar com o amido de milho de alto teor de amilose na textura de gel durante o armazenamento. Foram utilizadas amostras de amido milho Hylon VII® (71% de amilose, National Starch, goma guar (Higum 55I®, Rhodia e goma xantana (Rhodigel 200®, Rhodia. Foram utilizadas diferentes concentrações das gomas guar e xantana, que variaram de 0 a 1%, de acordo com o delineamento experimental central composto rotacional. Em cada tratamento foram utilizadas 50g de amido com alto teor de amilose (Hylon VII, adicionadas das gomas. Estas amostras foram diluídas em água destilada e submetidas à agitação mecânica até completa dissolução. As soluções foram aquecidas até 95°C por 5 minutos para formação dos géis, os quais foram acondicionados em recipientes plásticos de 50mL e mantidos em temperatura de 5-10°C até 120h. Nos tempos T1 (24h, T2 (48h, T3 (72h, T4 (96h e T5 (120h de armazenamento foram feitas medidas da força máxima do gel de amilose em texturômetro (Stable Micro-System, Modelo TAX-T2. No período inicial, de 24 horas, a goma guar não apresentou influência positiva na redução da força do gel, sendo que a aplicação de goma xantana entre 0,7 e 1,0% apresentou os menores valores de força do gel de amilose. Após 120h de armazenamento, a força do gel de amilose diminuiu com a adição de 0,5-1,0% de goma xantana e 0-0,15% de goma guar.The main objective of this study was to determine the influence of the interactions between guar and xanthan gums with high amylose content corn starch on the texture of the gel during storage. The samples used were Hylon VII® corn starch (71% amylose (National Starch, Guar gum (Higum 551®, Rhodia and Xanthan gum (Rhodigel 200®, Rhodia. A central composite rotational design was used to formulate gels with different concentrations of the guar and xanthan gums, from 0 to 1%. For each treatment

  8. Effect of Different Modification Techniques on the Physicochemical and Thermoanalytical Properties of Wheat and Corn Starch

    Directory of Open Access Journals (Sweden)

    H. G. Kotancilar

    2006-05-01

    Full Text Available The starches of wheat and corn treated with four different modification methods (pregelatinized, thinnedwith acid, cross-linked and dextrinized were investigated in terms of changes in swelling, water-holdingcapacity, gelatinization and thermoanalytical properties. Modification processes caused significant changes inthe physicochemical properties of the starches. Also, having effect on the thermoanalytical properties ofstarch, of modification process pregelatinization, cross-linking and dextrinization increased the temperaturesof gelatinization initiation, peak, and final points. In addition, the modification process decreased the changein the value of entalphi. In general, peaks appeared in shorter time in corn starch amylograph than that inwheat starch for all the modified methods. The wheat starch had more swelling capacity than those of thecorn starch at 30 and 40 oC. The modifications applied, in this study, decreased water-holding capacity of thestarches of the wheat and corn at 70 oC.

  9. Physicochemical and morphological properties of starch from fresh waxy corn kernels

    OpenAIRE

    Ketthaisong, Danupol; Suriharn, Bhalang; Tangwongchai, Ratchada; Jane, Jay-lin; Lertrat, Kamol

    2015-01-01

    The characteristics on physicochemical and morphological properties of starches were investigated in fresh waxy corn kernels. Starches were isolated from eight waxy corn genotypes at the immature kernel stage growing in Thailand. The starch content showed variation with genotypes and ranged from 77.76 to 90.97 %. Granule size distribution showed a two population of starch granules with peak values ranged from 0.8 to 1.1 μm (small) and 9.0 to 12.2 μm (large). Genotypes were also significantly ...

  10. A three generation reproduction study with Sprague-Dawley rats consuming high-amylose transgenic rice.

    Science.gov (United States)

    Zhou, Xing Hua; Dong, Ying; Zhao, Yan Sheng; Xiao, Xiang; Wang, Yun; He, Yuan Qing; Liu, Qiao Quan

    2014-12-01

    The transgenic rice line (TRS) enriched with amylose and resistant starch (RS) was developed by antisense RNA inhibition of starch-branching enzymes. Cereal starch with high amylose has a great benefit on human health through its resistant starch. In order to evaluate the effect of transgenic rice on rats, the rats were fed diets containing 70% TRS rice flour, its near-isogenic rice flour or the standard diet as the control through three generations. In the present study, clinical performance, reproductive capacity and pathological responses including body weight, food consumption, reproductive data, hematological parameters, serum chemistry components, organ relative weights and histopathology were examined. Some statistically significant differences were observed in rats consuming the high amylose rice diet when compared to rats fed the near-isogenic control rice diet or the conventional (non-rice) standard diet. These differences were generally of small magnitude, appeared to be random in nature, and were within normal limits for the strain of rat used, and were therefore not considered to be biologically meaningful or treatment related.

  11. Hydrophobic corn starch thermoplastic films produced by plasma treatment.

    Science.gov (United States)

    Bastos, Daniele C; Santos, Anastácia E F; da Silva, Monica L V J; Simão, Renata A

    2009-07-01

    Polymer coating technology is currently an important field in science as it can lead to final products with enhanced characteristics characterized by desired bulk and surface properties. Low power plasmas can induce the polymerization of a precursor gas on the substrate surface as well as introduce functional groups under specific plasma conditions. In the present work, we studied the possibility of reducing water sensitivity of corn starch films by sulfur hexafluoride (SF(6)) plasma treatment. Confocal laser microscopy as well as atomic force microscopy was used to observe the main surface modifications and results indicated starch cross-linking. Fluoride was incorporated to the surface and the relationship between fluoride and sulfur incorporation to the surface was very much dependent on plasma power. Results indicate that fluoride could be preferentially incorporated on polymeric surfaces at -100V self-bias and the overall surface morphology determined the measured contact angle. The dynamic behavior of surface contact angle was observed to be very much dependent on the treatment time and force-distance curves were used to further characterize the chemical surface modifications locally. Optimized treatment conditions led to water contact angles up to 130 degrees . Even after being in contact with water for 10min, surfaces remained hydrophobic, presenting contact angles over 100 degrees .

  12. High Amylose White Rice Reduces Post-Prandial Glycemic Response but Not Appetite in Humans

    Directory of Open Access Journals (Sweden)

    Alison M. Zenel

    2015-07-01

    Full Text Available The present study compared the effects of three rice cultivars on postprandial glycemic control and appetite. A single-blind, randomized, crossover clinical trial was performed with 18 healthy subjects, nine males and nine females. Three treatments were administered at three separate study visits: commercially available conventional white rice (short grain, specialty high amylose white rice 1 (Dixiebelle, and specialty high amylose white rice 2 (Rondo. Postprandial capillary blood glucose, venous blood glucose and insulin measurements, and appetite visual analog scale (VAS surveys were done over the course of two hours. The capillary blood glucose concentrations were significantly lower for Rondo compared to short grain rice at 30 min, and for Dixiebelle and Rondo compared to short grain rice at 45, 60, and 120 min. Capillary blood glucose area under the curve (AUC was significantly lower for Dixiebelle and Rondo compared to short grain rice. Subjects were significantly more hungry at 30 min after Dixiebelle intake than Rondo intake, but there were no other significant effects in appetite ratings. The present study determined that intake of high amylose rice with resistant starch (RS can attenuate postprandial blood glucose and insulin response in comparison to short grain rice.

  13. The pasting and gel textural properties of corn starch in glucose, fructose and maltose syrup.

    Science.gov (United States)

    Sun, Qingjie; Xing, Yan; Qiu, Chao; Xiong, Liu

    2014-01-01

    The pasting and gel textural properties of corn starch in syrup at different concentrations were investigated by Rapid Visco Analyzer (RVA) and Texture profile analysis (TPA) tests. The results showed that the pasting temperatures of corn starch greatly increased, especially at higher sugar concentration. Increasing concentration of syrup caused an increase in peak, trough and final viscosity of corn starch. Peak viscosity and the disintegration rate of starch increased in the following order: fructose syrup> maltose syrup> glucose syrup. Increasing syrup concentration to 13%, 25% and 50% resulted in a lower retrogradation rate than the control. When the maltose syrup concentration increased to 50%, the retrogradation rate decreased to 14.30% from 33.38%. The highest hardness was observed when the syrup concentration was 25%. There was a particular low hardness when the concentration of syrup was 50%. The springiness of starch gels in syrup was similar at different concentrations.

  14. The pasting and gel textural properties of corn starch in glucose, fructose and maltose syrup.

    Directory of Open Access Journals (Sweden)

    Qingjie Sun

    Full Text Available The pasting and gel textural properties of corn starch in syrup at different concentrations were investigated by Rapid Visco Analyzer (RVA and Texture profile analysis (TPA tests. The results showed that the pasting temperatures of corn starch greatly increased, especially at higher sugar concentration. Increasing concentration of syrup caused an increase in peak, trough and final viscosity of corn starch. Peak viscosity and the disintegration rate of starch increased in the following order: fructose syrup> maltose syrup> glucose syrup. Increasing syrup concentration to 13%, 25% and 50% resulted in a lower retrogradation rate than the control. When the maltose syrup concentration increased to 50%, the retrogradation rate decreased to 14.30% from 33.38%. The highest hardness was observed when the syrup concentration was 25%. There was a particular low hardness when the concentration of syrup was 50%. The springiness of starch gels in syrup was similar at different concentrations.

  15. Microscopic analysis of corn fiber using starch- and cellulose-specific molecular probes.

    Science.gov (United States)

    Porter, Stephanie E; Donohoe, Bryon S; Beery, Kyle E; Xu, Qi; Ding, Shi-You; Vinzant, Todd B; Abbas, Charles A; Himmel, Michael E

    2007-09-01

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

  16. Gelatinization and solubility of corn starch during heating in excess water: new insights.

    Science.gov (United States)

    Ratnayake, Wajira S; Jackson, David S

    2006-05-17

    Starch gelatinization is associated with the disruption of granular structure causing starch molecules to disperse in water. This study was designed to examine starch granules as they were heated in water, and their resulting morphological, structural, and solubility traits. The results indicate that starch gelatinization is a more complex process than the previously suggested order-to-disorder transition. The energy absorbed by the granules facilitates the rearrangement or formation of new bonds among molecules prior to the temperatures normally associated with the melting of amylopectin crystallites during gelatinization. It is also evident that amylose plays an important role during the initial stages of corn starch gelatinization.

  17. Flocculation of Pyrite Fines in Aqueous Suspensions with Corn Starch to Eliminate Mechanical Entrainment in Flotation

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2015-10-01

    Full Text Available The hydrophilic flocculation of pyrite fines in aqueous suspensions with corn starch was studied by measuring particle size distribution, microscopy observation and micro-flotation. Furthermore, the interaction of corn starch with pyrite was investigated by determining the adsorption density and based on zeta potential measurements and X-ray photoelectron spectrometer (XPS analysis in this work. The results of the particle size distribution measurement show that corn starch can effectively aggregate pyrite fines, and the pyrite floccules (flocs are sensitive to mechanical stirring. The micro-flotation results suggest that the mechanical entrainment of pyrite fines in flotation can be effectively eliminated through the formation of large-size flocs. The zeta potential of pyrite particles decreases with the addition of corn starch. The XPS results prove that carboxyl groups are generated on the digested corn starch, and both iron hydroxyl compounds and ferrous disulfide on the pyrite surface can chemically interact with the corn starch digested by sodium hydroxide.

  18. Retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme.

    Science.gov (United States)

    Li, Wenwen; Li, Caiming; Gu, Zhengbiao; Qiu, Yijing; Cheng, Li; Hong, Yan; Li, Zhaofeng

    2016-07-15

    The retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme (GBE) was investigated using rheometry, pulsed nuclear magnetic resonance (PNMR), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Dynamic time sweep analysis confirmed that the storage modulus (G') of corn starch stored at 4 °C decreased with increasing GBE treatment time. PNMR analysis demonstrated that the transverse relaxation times (T2) of corn starches treated with GBE were higher than that of control during the storage at 4 °C. DSC results demonstrated that the retrogradation enthalpy (ΔHr) of corn starch was reduced by 22.3% after GBE treatment for 10h. Avrami equation analysis showed that GBE treatment reduced the rate of starch retrogradation. FTIR analysis revealed that GBE treatment led to a decrease in hydrogen bonds within the starch. Overall, these results demonstrate that both short- and long-term retrogradation of corn starch were retarded by GBE treatment.

  19. Investigation of glycerol concentration on corn starch morphologies and gelatinization behaviours during heat treatment.

    Science.gov (United States)

    Chen, Xu; Guo, Li; Du, Xianfeng; Chen, Peirong; Ji, Yishun; Hao, Huili; Xu, Xiaonan

    2017-11-15

    The effects of various glycerol concentrations (0%, 5%, 10%, 20%, and 50%, w/w) on the morphologies and gelatinization behaviours of corn starch were evaluated by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and rapid visco-analyzer (RVA). When corn starch granules with no added glycerol were treated at 65°C, the granules of corn starch were almost completely broken and tightly connected, and the characteristic birefringence of the starch granules disappeared. Various microscopic techniques revealed that starch gelatinization was delayed to higher temperatures as the glycerol concentration increased. In the presence of glycerol-water systems (5%, 10%, 20%, and 50%, w/w), the peak temperatures of corn starch increased by 1.6°C, 7.4°C, 10.7°C, and 19.7°C, respectively, compared to corn starch in water. The RVA pasting profiles showed that the gelatinization temperature increased as the glycerol concentration increased, which was consistent with polarized light microscope observations and DSC tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of Different Comsteep Liquids on Structure of Starch and Protein Binding in Corn Endosperm

    Directory of Open Access Journals (Sweden)

    Rong Yan

    2015-07-01

    Full Text Available The changes in the structures of corn endosperms immersed in different reagents were studied, in order to preliminarily determine the mode of binding of starch and protein in the endosperm. The corn endosperm was immersed in Sulfurous acid, NaOH, ethanol, L-cysteine and morel berry, respectively. The dissociated starch content was analyzed using water as the reference. The results of the treatment were analyzed by the dissociated starch content, optical microscopy and scanning electron microscopy. The test results showed that by immersing in NaOH solution, the protein matrix was effectively decomposed, the protein in the endosperm was dissolved and the highest amount of starch granules were released. Sulfurous acid and L-cysteine solution could make the protein matrix into pieces by destroying intermolecular disulfide bridge and the starch granules would be released. There were some holes on the surface of starch granules after L-cysteine steeping. Immersed in the morel berry, there were holes on the protein matrix surface and the water absorption of corn endosperm was improved. In case of the sample immersed in ethanol, the zein was dissolved, whereas the matrix protein was still intact with the starch grains that still bound to it. By analysis of the microscopic structure and morphological change of starch and protein in corn endospers in different comsteep liquor, it is demonstrated that the main reason which the starch grains were tightly wrapped by Glutenin is the intermolecular disulfide bonds in glutelin. In addition, a part of the protein combined with starch granules directly. The study provided a reference for exploring the structure of binding of starch and protein and their interaction in corn.

  1. Influence of hydroxypropylmethylcellulose addition and homogenization conditions on properties and ageing of corn starch based films.

    Science.gov (United States)

    Jiménez, Alberto; Fabra, María José; Talens, Pau; Chiralt, Amparo

    2012-06-20

    Edible films based on corn starch, hydroxypropyl methylcellulose (HPMC) and their mixtures were prepared by using two different procedures to homogenize the film forming dispersions (rotor-stator and rotor-stator plus microfluidizer). The influence of both HPMC-starch ratio and the homogenization method on the structural, optical, tensile and barrier properties of the films was analysed. The ageing of the films was also studied by characterizing them after 5 weeks' storage. Starch re-crystallization in newly prepared and stored films was analysed by means of X-ray diffraction. HPMC-corn starch films showed phase separation of polymers, which was enhanced when microfluidization was applied to the film forming dispersion. Nevertheless, HPMC addition inhibited starch re-crystallization during storage, giving rise to more flexible films at the end of the period. Water barrier properties of starch films were hardly affected by the addition of HPMC, although oxygen permeability increased due to its poorer oxygen barrier properties.

  2. SINTESIS PATI JAGUNG TERFOSFORILASI MELALUI TEKNIK GELOMBANG MIKRO [Microwave-Assisted Synthesis of Phosphorylated Corn Starch

    Directory of Open Access Journals (Sweden)

    Atep Dian Supardan*

    2014-06-01

    Full Text Available Phosphorylated starch is a type of modified starches which is mostly imported. Commonly, starch to be modified must contain more than 25% of amylose. This study aimed to synthesize phosphorylated starch and evaluate its potency as a heavy metal adsorbent. Corn starch was subjected to phosphorylation through microwave-assisted reaction with a mixture of sodium dihydrogen orthophosphate and disodium hydrogen phosphate. The experiment was designed to optimize the pH, microwave radiation power, and phosphorylation time. The results showed that the maximum phosphate subtitution degree was obtained at pH of 6, microwave radiation of 500 W, and a reaction time of 10 minutes. The degree of subtitution ranged from 0.567 to 0.787. The physicochemical properties of the product i.e. swelling capacity, solubility, water binding capacity, and paste clarity were significantly different than that of the unmodified corn starch. The infrared spectrum showed a high peak absorption at the wavelength of 1651 cm-1, indicating hydrogen bond formation of phosphoric group-water- phosphoric group. In the fingerprint area, there were two new absorption peaks at 1200 and 990 cm-1, which were assigned for the P=O and C-O-P vibrations, respectively. The phosphorylated corn starch adsorbed methylene blue up to 73.3% and mercury up to 73.6%, suggesting the prospect of the microwave-assisted synthetic phosphorylated corn starch as an effective adsorbent for heavy metals.

  3. Effect of Different Modification Techniques on the Physicochemical and Thermoanalytical Properties of Wheat and Corn Starch

    OpenAIRE

    2006-01-01

    The starches of wheat and corn treated with four different modification methods (pregelatinized, thinnedwith acid, cross-linked and dextrinized) were investigated in terms of changes in swelling, water-holdingcapacity, gelatinization and thermoanalytical properties. Modification processes caused significant changes inthe physicochemical properties of the starches. Also, having effect on the thermoanalytical properties ofstarch, of modification process pregelatinization, cross-linking and dext...

  4. FABRICATION OF POROUS ALUMINA CERAMICS WITH CORN STARCH IN AN EASY AND LOW-COST WAY

    OpenAIRE

    2015-01-01

    Porous alumina ceramics with different porosity were fabricated by combining the starch consolidation process with the gel-casting process using corn starch as a pore-forming agent and a binder. The bulk density, porosity, and microstructure of the obtained alumina ceramics were studied. It was found that the total porosity range of sintered samples with contents varying from 0 to 50 vol. % is 14.8 - 55.3 % and the total porosity increased with the increase of starch content. Moreove...

  5. Synthesis and characterization of maleic anhydride esterified corn starch by the dry method.

    Science.gov (United States)

    Zuo, Yingfeng; Gu, Jiyou; Yang, Long; Qiao, Zhibang; Tan, Haiyan; Zhang, Yanhua

    2013-11-01

    Maleic anhydride esterified starch was synthesized by a dry method using corn starch as the material and maleic anhydride as the esterifying agent. The esterified starch (ES) was analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), which confirmed that there was a successful esterification reaction between the maleic anhydride and corn starch. The effects of reaction temperature and time on the degree of substitution of esterified starch were studied, where the results showed that 80 °C of reaction temperature and 3h of reaction time were optimal conditions. The result of XPS testing demonstrated that the esterification reaction led to increase of ester bonds in starch. The scanning electron microscopy (SEM) and laser particle size analyzer results showed that esterification led to roughness on the surface of the starch particle, and the particle size and distribution rate of esterification starch became larger. X-ray diffraction (XRD) analysis demonstrated that esterification reaction did not change the crystalline type of native starch. The differential scanning calorimeter (DSC) and thermo gravimetric analysis (TGA) confirmed that destruction of the crystal structure resulted in improved thermoplasticity of the starch, decreased the gelatinization temperature and increased the thermogravimetric rate of esterification starch. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Characterisation of Physicochemical Properties of Propionylated Corn Starch and Its Application as Stabiliser

    Directory of Open Access Journals (Sweden)

    Lee-Fen Hong

    2015-01-01

    Full Text Available A series of propionylated starches with diff erent degrees of substitution (DS was synthesised and their physicochemical properties and application as a stabiliser were investigated. Starch propionates with moderate DS were prepared by esterifi cation of native corn starch with propionic anhydride. By varying the reaction times of the esterification process, twelve starch propionates with DS of 0.47 to 0.94 were prepared. FTIR and NMR confirmed the introduction of propionyl groups to the starch. X-ray diffraction pattern showed reduced crystallinity in the starch propionates. The contact angle was found to increase proportionately with the increase in DS. Swelling power results showed that starch propionates were able to swell more than native corn starch at low temperature (40°C. Oil-in-water (O/W emulsions prepared using starch propionates (DS of 0.64 to 0.86 showed exceptional stability when challenged by centrifugation stress test. These stable O/W emulsions had viscosities in the range of 1236.7–3330.0 mPa·s. In conclusion, moderately substituted short-chain (propionylated starches could be a promising cold swelling starch, thickener and O/W emulsion stabiliser in food, pharmaceutical and cosmetic industries.

  7. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality

    OpenAIRE

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2015-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P 

  8. Effects of sorghum [Sorghum bicolor (L.) Moench] crude extracts on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (Rs) contents of porridges.

    Science.gov (United States)

    Lemlioglu-Austin, Dilek; Turner, Nancy D; McDonough, Cassandra M; Rooney, Lloyd W

    2012-09-17

    Bran extracts (70% aqueous acetone) of specialty sorghum varieties (tannin, black, and black with tannin) were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI), and Resistant Starch (RS) of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA). The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content.

  9. Effects of Sorghum [Sorghum bicolor (L. Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS Contents of Porridges

    Directory of Open Access Journals (Sweden)

    Dilek Lemlioglu-Austin

    2012-09-01

    Full Text Available Bran extracts (70% aqueous acetone of specialty sorghum varieties (tannin, black, and black with tannin were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA. The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content.

  10. DEVELOPMENT OF ADHESIVE TO THE BASIS OF CORN AND CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Rosane Furtado Fabrício

    2014-05-01

    Full Text Available Corn and native cassava starch were modified by oxidation and acid hydrolysis, aiming to develop paper and paperboard stickers. The oxidation was made with Sodium hypochlorite (NaOCl in two distinct concentrations of active chloride which is present on oxidizing agent solution. The synthesis resulting products were used to make stickers and they were compared to corn and cassava starch based stickers without any modification, as well as commercial stickers based on polyvinyl acetate (PVA. Two different methodologies were tested using acid hydrolysis to modify corn and cassava starch, both using phosphoric acid (H3PO4 in order to obtain dextrin and subsequently use it in the production of stickers and also comparing them to petrochemical-based commercial stickers. Considering the different starch modifications methods (oxidation and acid hydrolysis, stickers based on renewable raw material were obtained, which combine biodegradability, low costs and availability.

  11. Thermal Characterization of the Gelatinization of Corn Starch Suspensions with Added Sodium Hydroxide or Urea as a Main Component of Corrugating Adhesives

    National Research Council Canada - National Science Library

    Koyakumaru, Takatoshi; Nakano, Hirofumi

    2016-01-01

    The effects of sodium hydroxide and urea on the gelatinization of corn starch suspensions, a main component of corrugating starch adhesives, were studied using differential scanning calorimetry (DSC...

  12. Effects of plantain and corn starches on the mechanical and disintegration properties of paracetamol tablets.

    Science.gov (United States)

    Akin-Ajani, Olufunke D; Itiola, Oludele A; Odeku, Oluwatoyin A

    2005-10-22

    The effects of plantain starch obtained from the unripe fruit of the plant Musa paradisiaca L. (Musaceae) on the mechanical and disintegration properties of paracetamol tablets have been investigated in comparison with the effects of corn starch BP using a 2(3) factorial experimental design. The individual and combined effects of nature of starch binder (N), concentration of starch binder (C), and the relative density of tablet (RD) on the tensile strength (TS), brittle fracture index (BFI), and disintegration time (DT) of the tablets were investigated. The ranking of the individual effects on TS was RD > C > N, on BFI was C > RD > N and on DT was N > C > RD. The ranking for the interaction effects on TS and DT was N-C > N-RD > C-RD, while that on BFI was N-C > C-RD > N-RD. Changing nature of starch from a "low" (plantain starch) to a "high" (corn starch) level, increasing the concentration of starch binding agent from 2.5% to 10.0% wt/wt, and increasing relative density of the tablet from 0.80 to 0.90, led to increase in the values of TS and DT, but a decrease in BFI. Thus, tablets containing plantain starch had lower tensile strength and disintegration time values than those containing corn starch, but showed better ability to reduce the lamination and capping tendency in paracetamol tablet formulation. The interaction between N and C was significantly (P starch used as binding agent in tablet formulations to obtain tablets of desired bond strength and disintegration properties. Furthermore, plantain starch could be useful as an alternative binding agent to cornstarch, especially where faster disintegration is required and the problems of lamination and capping are of particular concern.

  13. Synchrotron X-ray Scattering Analysis of the Interaction Between Corn Starch and an Exogenous Lipid During Hydrothermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    E Hernandez-Hernandez; C Avila-Orta; B Hsiao; j Castro-Rosas; J Gallegos-Infante; J Morales-Castro; L Ochoa-Martinez; C Gomez-Aldapa

    2011-12-31

    Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreased within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.

  14. IN VITRO UTILIZATION OF NPN SOURCES BY INCREASING LEVELS OF CORN STARCH IN STRAW BASED DIETS

    Directory of Open Access Journals (Sweden)

    C. S. ALI, T. KHALIQ1, A. JAVAID, M. SARWAR, M. A. KHAN2, M. A. SHAHZAD AND S. ZAKIR3

    2007-04-01

    Full Text Available This study was conducted to investigate the effect of replacement of 50% cottonseed meal (CSM nitrogen with various non protein nitrogen (NPN sources i.e. urea (CU, biuret (CB and diammonium phosphate (CD. The four energy sources were: wheat straw with no corn starch (WS, WS + 20% corn starch, WS + 30% corn starch and WS + 40% corn starch. These substrates were fermented with rumen liquor to measure in vitro dry matter digestibility (DMD, bacterial count and ammonia nitrogen (NH3-N concentrations. The protein sources provided 2% nitrogen (12.5% CP. The control substrate contained CSM as the sole source of nitrogen and ground wheat straw as the sole sources of energy. The in vitro DMD increased to 49.10, 40.06 and 31.52% in substrates containing CB, CU and CD compared to 23.10% for CSM (P<0.01. Similarly, supplementation of straw with 20, 30 and 40% corn starch gave 24.31, 38.03 and 45.48% DMD compared to 23.10% for control (P<0.01. Increase of corn starch from 20 to 30% resulted in 13.72 units higher DMD which increased to a mere 7.45 units when the corn starch was raised from 30 to 40%. The interactions between nitrogen sources and starch levels revealed that substrate CB x 40% corn starch yielded 70.73% DMD, followed by 49.66% DMD with CU x 40% starch (P<0.01. The NH3-N increased due to 50% replacement of CSM with NPN sources on isonitrogenous basis. It was maximum with CU as nitrogen source, followed by CD, CB and CSM. The differences among the four nitrogen sources were significant (P<0.01. The substrates containing CU resulted in highest bacterial counts of 33.78x108 compared to 20.41x108, 17.06x108 and 11.34x108 for CB, CSM and CD, respectively (P<0.01. Addition of corn starch up to 20 and 30% to straw based substrates increased the bacterial counts to 23.25x108 and 23.12x108 and 40% corn starch yielded 15.58x108 bacterial counts which was significantly (P<0.01 lesser than 17.06x108 for substrates containing 0% corn starch. Bacterial count

  15. Corn starch ferulates with antioxidant properties prepared by N,N'-carbonyldiimidazole-mediated grafting procedure.

    Science.gov (United States)

    Wen, Yu; Ye, Fayin; Zhu, Jianfei; Zhao, Guohua

    2016-10-01

    This work presents novel synthesis processes and properties of corn starch ferulates. First, N,N'-carbonyldiimidazole, a green activating reagent, was used to transform ferulic acid into ferulate-imidazolide. The ferulate-imidazolide was then further reacted with corn starch to produce corn starch ferulates. The grafting reaction of ferulic acid onto corn starch was confirmed by FT-IR and (1)H NMR. The degree of substitution (DS), relating products and reaction parameters, depended on the molar ratio of the anhydroglucose unit to ferulic acid (nAGU/FA), the temperature of the reaction, and the time that elapsed. The dependence of the degree of substitution was optimized by response surface methodology. Results implied the greatest DS (0.389) was obtained under the conditions of nAGU/FA 1:3.6, 90°C and 7.12h. The morphological, crystalline, and in vitro antioxidant properties were evaluated. The DPPH radical scavenging activity, reducing power, and ferric reducing power of the corn starch ferulates showed potential for antioxidant properties.

  16. Fermentation of corn starch to ethanol with genetically engineered yeast.

    Science.gov (United States)

    Inlow, D; McRae, J; Ben-Bassat, A

    1988-07-05

    Expression of the glucoamylase gene from Aspergillus awamori by laboratory and distiller's strains of Saccharomyces cerevisiae allowed them to ferment soluble starch. Approximately 95% of the carbohydrates in the starch were utilized. Glycerol production was significantly decreased when soluble starch was used instead of glucose. Ethanol yield on soluble starch was higher than that on glucose. The rate of starch fermentation was directly related to the level of glucoamylase activity. Strains with higher levels of glucoamylase expression fermented starch faster. The decline in starch fermentation rates toward the end of the fermentation was associated with accumulation of disaccharides and limit dextrins, poor substrates for glucoamylase. The buildup of these products in continuous fermentations inhibited glucoamylase activity and complete utilization of the starch. Under these conditions maltose-fermenting strains had a significant advantage over nonfermenting strains. The synthesis and secretion of glucoamylase showed no deleterious effects on cell growth rates, fermetation rates, and fermentation products.

  17. Acid hydrolysis of native and annealed starches and branch-structure of their Naegeli dextrins.

    Science.gov (United States)

    Nakazawa, Yuta; Wang, Ya-Jane

    2003-11-21

    Eight commercial starches, including common corn, waxy corn, wheat, tapioca, potato, Hylon V, Hylon VII, and mung bean starch, were annealed by a multiple-step process, and their gelatinization characteristics were determined. Annealed starches had higher gelatinization temperatures, reduced gelatinization ranges, and increased gelatinization enthalpies than their native starches. The annealed starches with the highest gelatinization enthalpies were subjected to acid hydrolysis with 15.3% H2SO4, and Naegeli dextrins were prepared after 10 days' hydrolysis. Annealing increased the acid susceptibility of native starches in the first (rapid) and the second (slow) phases with potato starch showing the greatest and high amylose starches showing the least changes. Starches with a larger shift in onset gelatinization temperature also displayed a greater percent hydrolysis. The increase in susceptibility to acid hydrolysis was proposed to result from defective and porous structures that resulted after annealing. Although annealing perfected the crystalline structure, it also produced void space, which led to porous structures and possible starch granule defects. The molecular size distribution and chain length distribution of Naegeli dextrins of annealed and native starches were analyzed. The reorganization of the starch molecule during annealing occurred mainly within the crystalline lamellae. Imperfect double helices in the crystalline lamellae improved after annealing, and the branch linkages at the imperfect double helices became protected by the improved crystalline structure. Therefore, more long chains were observed in the Naegeli dextrins of annealed starches than in native starches.

  18. Nutritional perfomance of Tupinambis merianae lizards fed with corn starch as source of energy

    Directory of Open Access Journals (Sweden)

    Harold Vega Parry

    2009-07-01

    Full Text Available Efficiency in processing complex carbohydrates as a source of energy was studied in Tupinambis merianae lizards. Four isoproteic and isoenergetic diets in which different percentages of corn starch substituted fat (0, 10, 20 and 30 dry matter in the diet were provided. Even though consumption was similar in all diets, growth and feeding conversion rates decreased significantly with corn starch supplies of 10% and more. At the end of the trial, pancreatic alpha-amylase activity showed correlated increases, yet these were insufficient to compensate corn starch supplies. Results suggest that Tupinambis merianae lizards have a restricted omnivorous capacity. Therefore, diet formulation for these lizards should exclude high molecular weight carbohydrates.

  19. Effect of nylon bag and protozoa on in vitro corn starch disappearance.

    Science.gov (United States)

    van Zwieten, J T; van Vuuren, A M; Dijkstra, J

    2008-03-01

    An in vitro experiment was carried out to study whether the presence of protozoa in nylon bags can explain the underestimation of the in situ degradation of slowly degradable starch. Corn of a high (flint) and a low (dent) vitreousness variety was ground over a 3-mm screen, weighed in nylon bags with a pore size of 37 microm, and washed in cold water. Samples of washed cornstarch were incubated in 40-mL tubes with faunated and defaunated ruminal fluid. An additional amount of washed corn, in nylon bags, was inserted in each incubation tube. Incubations were carried out for 0, 2, 4, 6, 12, and 24 h, and starch residue in tube and nylon bag was determined. In general, starch disappearance from the nylon bag was less than from the tube, and was less with faunated than defaunated rumen fluid, but corn variety did not affect starch disappearance. When no protozoa were present, the disappearance of starch from the bags was higher after 6 and 12 h incubation compared with presence of protozoa. However, in the tubes, there was no difference in starch disappearance due to presence or absence of protozoa. Estimated lag time was higher in presence (4.6 h) then absence (3.6 h) of protozoa. It was concluded that the effect of presence or absence of protozoa on starch disappearance differs within or outside nylon bags. The reduced disappearance rate of starch inside the nylon bags in the presence of protozoa helps to explain the underestimation of starch degradation based on the in sacco procedure when compared with in vivo data upon incubation of slowly degradable starch sources.

  20. Influence of drying temperature, water content, and heating rate on gelatinization of corn starches.

    Science.gov (United States)

    Altay, Filiz; Gunasekaran, Sundaram

    2006-06-14

    The gelatinization properties of starch extracted from corn and waxy corn dried at different temperatures were determined at various water contents and heating rates by differential scanning calorimetry. All gelatinization transition temperatures increased with drying temperature and heating rate. Onset and peak temperatures remained relatively constant, whereas end temperature decreased in the presence of excess water. The gelatinization enthalpy (deltaH(g)) of corn starch decreased with drying temperature at 50% water; however, it remained constant for waxy corn starch. The effects of water content and heating rate on deltaH(g) were dependent on each other. The minimum water levels required for gelatinization of starch extracted from corn dried at 20 and 100 degrees C are 21 and 29%, respectively. The activation energy (E(a)) was calculated using an Arrhenius-type equation and two first-order models; the degree of conversion (alpha) was predicted using a newly proposed model that produced good results for both E(a) and alpha.

  1. Gelatinization and freeze-concentration effects on recrystallization in corn and potato starch gels.

    Science.gov (United States)

    Ronda, Felicidad; Roos, Yrjö H

    2008-04-07

    Freeze-concentration of starch gels was controlled by temperature and gelatinization with glucose and lactose. The aim of the study was to evaluate the effects of freezing temperature and gel composition on starch recrystallization behaviour of corn and potato starch gels (water content 70%, w/w) in water or glucose or lactose (10%, w/w) solutions. Starch gels were obtained by heating in differential scanning calorimetry (DSC). Samples of starch gels were frozen at -10 degrees C, -20 degrees C and -30 degrees C for 24h and, after thawing, stored at +2 degrees C for 0, 1, 2, 4 and 8 days. The extent of starch recrystallization was taken from the enthalpy of melting of the recrystallized starch by DSC. Freezing temperatures, glucose, lactose and the origin of the starch affected the recrystallization behaviour greatly. The recrystallization of amorphous starch during storage was enhanced by freeze-concentration of gels at temperatures above T'(m). Molecular mobility was enhanced by unfrozen water and consequently molecular rearrangements for nucleation could take place. Further storage at a higher temperature enhanced the growth and the maturation of crystals. In particular, glucose decreased the T'(m) of the gels and consequently lower freezing temperatures were needed to reduce enhanced recrystallization during storage. Freeze-concentration temperatures also showed a significant effect on the size and the perfection of crystals formed in starch recrystallization.

  2. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    Science.gov (United States)

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  3. Optimization Study on Processing Conditions of Corn Resistant Starch by Autoclaving and Acid Hydrolysis Treatment%压热酸解法制备玉米抗性淀粉的工艺优化

    Institute of Scientific and Technical Information of China (English)

    冯铄涵; 阚建全

    2011-01-01

    The resistant starch was prepared with the High amylose corn starch by autoclaving-cooling cycles combined with acids hydrolysis treatment.The effects of concentration of starch solution,autoclaved temperature,autoclaved time and times of autoclaved-cooling cycles on the content of RS were studied in the autoclaved treatment.The type,concentration and treatment time of acids were also studied in the acid hydrolysis process.The results showed that the optimum conditions is: 30% starch solution was autoclaved at 125℃ for 45min,after repeated 2 times,0.15mol/L citric acid hydrolysised for 12h.The yield of resistant starch is up to 39.27%.%以高直链玉米淀粉为原料,研究压热-冷却循环结合酸解法制备抗性淀粉的最佳工艺条件。通过单因素实验和正交实验探讨了压热-冷却循环过程中淀粉溶液浓度、压热温度、压热时间、循环次数以及酸解处理过程中酸的种类、酸的浓度、酸解时间对抗性淀粉得率的影响。结果表明,在淀粉溶液浓度为30%、压热温度125℃、压热时间45min条件下,经过2次压热-冷却循环,然后0.15mol/L柠檬酸水解处理12h,在此条件下抗性淀粉得率可达39.27%。

  4. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    OpenAIRE

    Thelen Kurt D; Sousa Leonardo; Bals Bryan; Krishnan Chandraraj; Chundawat Shishir PS; Shao Qianjun; Dale Bruce E; Balan Venkatesh

    2010-01-01

    Abstract Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the fi...

  5. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    Science.gov (United States)

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS.

  6. Effect of Nylon Bag and Protozoa on In Vitro Corn Starch Disappearance

    NARCIS (Netherlands)

    Zwieten, van J.T.; Vuuren, van A.M.; Dijkstra, J.

    2008-01-01

    An in vitro experiment was carried out to study whether the presence of protozoa in nylon bags can explain the underestimation of the in situ degradation of slowly degradable starch. Corn of a high (flint) and a low (dent) vitreousness variety was ground over a 3-mm screen, weighed in nylon bags

  7. Gelatinisation kinetics of corn and chickpea starches using DSC, RVA, and dynamic rheometry

    Science.gov (United States)

    The gelatinisation kinetics (non-isothermal) of corn and chickpea starches at different heating rates were calculated using differential scanning calorimetry (DSC), rapid visco analyser (RVA), and oscillatory dynamic rheometry. The data obtained from the DSC thermogram and the RVA profiles were fitt...

  8. Effect of Nylon Bag and Protozoa on In Vitro Corn Starch Disappearance

    NARCIS (Netherlands)

    Zwieten, van J.T.; Vuuren, van A.M.; Dijkstra, J.

    2008-01-01

    An in vitro experiment was carried out to study whether the presence of protozoa in nylon bags can explain the underestimation of the in situ degradation of slowly degradable starch. Corn of a high (flint) and a low (dent) vitreousness variety was ground over a 3-mm screen, weighed in nylon bags wit

  9. A 90-day oral (dietary) toxicity and mass balance study of corn starch fiber in Sprague Dawley rats.

    Science.gov (United States)

    Crincoli, Christine M; Nikiforov, Andrey I; Rihner, Marisa O; Lambert, Elizabeth A; Greeley, Melanie A; Godsey, Justin; Eapen, Alex K; van de Ligt, Jennifer L G

    2016-11-01

    The potential toxicity of corn starch fiber was assessed and compared to polydextrose, a commonly used bulking agent with a long history of safe use in the food supply. Groups of male and female Crl:CD(SD) rats were fed 0 (control), 1,000, 3,000, or 10,000 mg/kg-bw/day corn starch fiber in the diet for 90 days. The polydextrose reference article was offered on a comparable regimen at 10,000 mg/kg-bw/day. Following a single gavage dose of [(14)C]-corn starch fiber on study day 13 or 90, the mass balance of the test article was assessed by analysis of excreta samples collected from 0 to 168 h post-dose. There were no toxicologically or biologically relevant findings in any of the test article-treated groups. The few minor differences observed between the corn starch fiber and polydextrose exposed groups were considered to be due to normal biological variation. Following [(14)C]-corn starch fiber dosing, nearly complete excretion of the administered dose occurred over 168 h post-dosing, with the majority excreted in the feces. The dietary no-observed-adverse-effect level of corn starch fiber after 90 days was 10,000 mg/kg-bw/day. Similar toxicity profiles for corn starch fiber and polydextrose were observed due to the structural and compositional similarities of these materials.

  10. Hydrolysis of Raw Corn Starch Granules by Glucoamylase and Product Inhibition During the Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    WANG Jinpeng; ZENG Aiwu; LIU Zhen; YUAN Xigang; WU Shaomin

    2005-01-01

    Raw corn starch granules were hydrolysized by glucoamylase in a chemostat. The hydro-lysis of three different-sized granules shows that smaller granules undergo more hydrolyzation than larger ones. After 78 h, 97% of the granules was hydrolysized with diameter between 0.15 mm and 0.3 mm at 50 ℃. When corn starch concentration increased from 100 g/L to 250 g/L, the amount of reducing sugar produced was proportional to the initial substrate concentration and no substrate inhibition phenomenon appeared. In order to study the product inhibition exactly, the product from hydrolysis reaction itself was added into the hydrolysis system at the beginning of starch hydrolysis. Product inhibition with different quantities of product added were studied in the initial several hours, during which period enzyme inactivation could be neglected and product inhibition could be studied separately. The experiments indicate that product inhibition happens when the additional quantity exceeds 9.56 g/L.

  11. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch.

    Science.gov (United States)

    Qiu, Shuang; Yadav, Madhav P; Chen, Hao; Liu, Yan; Tatsumi, Eizo; Yin, Lijun

    2015-01-22

    Corn fiber gum (CFG) was a novel arabinoxylan hydrocolloid and recent researches showed its considerable potential in food processing. In this study, the interactions of maize starch and CFG were studied. Maize starch/CFG blend gels were prepared from maize starch suspension mixing with 0.1%, 0.25%, 0.5%, 1.0% (w/w) CFG. The pasting and thermal properties, rheological properties, microstructure, leached amylose and swelling power characteristics were evaluated. Compared with the reference, CFG addition lowered peak viscosity and breakdown of the composite system, but increased final viscosity in RVA measurement. The swelling power and the amount of leached amylose of maize starch gels were reduced as the addition concentration of CFG increased. The thermal characteristics of maize starch/CFG mixtures varied insignificantly as determined in DSC heating process. Rheological parameters, such as storage modulus (G') and loss modulus (G"), of the maize starches were observed to increase when CFG was present, supporting the hypothesis that the interaction between CFG and amylose could happen in the composite system. Confocal laser scanning microscopy (CLSM) confirmed changes in gels microstructure as starch components tended to be inhibited from leaching out of the granules when CFG was added, and the morphology of starch granule was more compact when CFG was added.

  12. Effect of gamma irradiation on molecular structure and physicochemical properties of corn starch.

    Science.gov (United States)

    Chung, H-J; Liu, Q

    2009-06-01

    Carboxyl content and amylose leaching of gamma-irradiated corn starch increased and swelling factor decreased with increasing radiation dose. The apparent amylose content decreased gradually from 28.7% for native starch to 20.9% for 50 kGy irradiated starch. The proportion of short amylopectin branch chains (DP 6 to 12) increased, while the proportion of longer branch chains (DP > or = 37) decreased with increasing radiation dose. The relative crystallinity and the degree of granule surface order decreased from 28.5% and 0.631 in native starch to 26.9% and 0.605 in 50 kGy irradiated starch, respectively. Pasting viscosity and gelatinization temperatures decreased with an increase in radiation dose. At a high dose (50 kGy), melting of amylose-lipid complex in DSC thermogram was not observed. The rapidly digestible starch (RDS) content slightly decreased up to 10 kGy but increased at 50 kGy. The resistant starch (RS) content slightly decreased at 2 kGy and then increased up to 50 kGy. The slowly digestible starch (SDS) content showed the opposite trend to RS content. Slower irradiation dose rate reduced carboxyl content, swelling factor, and amylose leaching. The apparent amylose content and amylopectin chain length distribution were not significantly affected by dose rate of gamma irradiation. However, the relative crystallinity and gelatinization enthalpy increased with slower dose rate. Slower dose rate decreased RDS and SDS contents, and increased RS content.

  13. Compressional characteristics of native and pregelatinized forms of sorghum, plantain, and corn starches and the mechanical properties of their tablets.

    Science.gov (United States)

    Alebiowu, G; Itiola, O A

    2002-07-01

    A study was made of the compressional characteristics of native and pregelatinized forms of sorghum, plantain, and corn starches and the mechanical properties of their tablets. Compressional characteristics were analyzed using density measurements and the Heckel and Kawakita plots. Pregelatinized starches exhibited more densification than native starches during die filling and at low pressures. The ranking for the mean yield pressure (Py) values for the starches was plantain starches having lower values than the native starches. The ranking for the values of another pressure term, Pk--an inverse measure of plasticity, was corn plantain starches having the lower values. For the tablets, the ranking for values of tensile strength (T) was corn > plantain > sorghum, while the ranking for the brittle fracture index (BFI) was plantain > corn > sorghum. Tablets made from pregelatinized starches had lower T and BFI values than those made from native starches. The results suggest that pregelatinization of the starches facilitated faster onset of plastic deformation but reduced the amount of plastic deformation which occurred during the compression process.

  14. Preliminary Investigation to Determine the Suitable Mixture Composition for Corn Starch Matrix

    Science.gov (United States)

    Huzaimi Zakaria, Nazri; Ngali, Zamani; Zulkefli Selamat, Mohd

    2017-01-01

    The use of natural fiber as reinforcement in polymeric composites has been seen a dramatically increase over the last decades. The surge in the interest of natural fiber composite or biodegradable composite is mainly due to the attractive cost of production, improved of hardness, better fatigue endurance and good thermal and mechanical resistivity. In this work, corn starch in the form of powder is utilized as the matrix of the composite. However, starch is brittle and has low strength make it inappropriate candidate for matrix binder. The main objective of this study is to modify the mechanical properties of pure corn starch by mixing it with water, glycerol and vinegar. The composition ratio of water is 60~80%, corn starch 10~35%, glycerol is 5~15% and vinegar is 0~5%, ten samples (A-J) have been manufactured and the best mixture composition is selected based on few selection criteria. The selection criteria are visual impaction, hardness and density. From the results, the samples without vinegar are not suitable to be used because of the fungus availability on the surface. Meanwhile the results from the samples with 5 ml vinegar have no fungus on their surface even has been exposed to the ambient air. While the sample C has shown the best sample based on the visual, hardness and density test.

  15. Influence of Chemical Modification Level of Starch on Flow Properties of Gelatinized Phosphate Cross-linked and Acetylated Waxy Corn Starch Suspensions

    OpenAIRE

    朝田, 仁; 鈴木, 寛一

    2004-01-01

    Waxy corn starch was modified doubly by acetylation and cross-linking with acetic vinyl and phosphorus oxychloride (POCl3). Degree of cross-linking was varied using 0.008∼0.02% phosphorus oxychloride, and acetylated substitution was adjusted to the same degree on all starch samples. Flow properties of these starch suspensions were determined by using a capillary tube viscometer. Flow parameters of these starch suspensions were markedly changed over 1.21×10-4% (w/w) of the phosphorus content. ...

  16. Enzymatically hydrolysed, acetylated and dually modified corn starch: physico-chemical, rheological and nutritional properties and effects on cake quality.

    Science.gov (United States)

    Sahnoun, Mouna; Ismail, Nouha; Kammoun, Radhouane

    2016-01-01

    Corn starch was treated by enzymatic hydrolysis with Aspergillus oryzae S2 α-amylase, acetylation with vinyl acetate, and dual modification. The dual modified starch displayed a higher substitution degree than the acetylated starch and lower reducing sugar content than the hydrolysed starch. The results revealed that the cooling viscosity and amylose content of those products decrease (P cake formulations at 5 and 10 % concentrations on a wheat flour basis and compared to native starch. The results revealed that when applied at 5 % concentrations, the modified starches reduced the hardness, cohesion, adhesion and chewiness of baked cakes and enhanced their elasticity, volume, height, crust color, and appearance as compared to native starch. These effects were more pronounced for the cake incorporating the dually modified starch.

  17. Gelatinized and nongelatinized corn starch/ poly(epsilon-caprolactone blends: characterization by rheological, mechanical and morphological properties

    Directory of Open Access Journals (Sweden)

    Derval S. Rosa

    2004-09-01

    Full Text Available Poly(epsilon-caprolactone/corn starch blends containing 25, 50 and 75 wt.% starch were prepared by mechanical processing and characterized by the melt flow index (MFI, tensile test and scanning electron microscopy (SEM. For comparison, starch was used in gelatinized and nongelatinized forms and was also characterized by viscography. The addition of starch to poly(epsilon-caprolactone reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The reductions in the MFI and tensile properties were most evident when gelatinized starch was used. Viscography and SEM showed that starch was well gelatinized by the gelatinization process. Blends containing nongelatinized starch showed a good dispersion of starch but poor interfacial interactions.

  18. Fed-batch simultaneous saccharification and ethanol fermentation of native corn starch

    Directory of Open Access Journals (Sweden)

    Włodzimierz Grajek

    2009-12-01

    Full Text Available Background. The most important innovations in boethanol production in the last decade were: simultaneous saccharification and fermentation processes (SSF, high gravity fermentation, the use of new enzyme preparation able to hydrolyse native granular starch and construction of genetically modified strains of microorganisms able to carry out simultaneous production of hydrolytic enzymes and fermentation of C6 and C5 sugars. The aim of this study was to assess the efficiency of ethanol fermentation using new type of amylolytic enzymes able to hydrolyse native corn starch in a SSF process. Material and methods. The simultaneous saccharification and fermentation of raw corn flour by fed-batch processes using Saccharomyces cerevisiae strain Red Star Ethanol Red and Stargen 001 enzyme preparation was performed. As experimental variable were investigated: fermentation temperature (35-37-40°C, rate of mash stirring (100 and 200 rpm, fermentation time (0-92 h and dosage of corn flour (different portion and different time. Results. It was found that optimal temperature for fed-batch SSF process was 37°C at initial pH of 5.0. However, the yeast intensively fermented the saccharides also at 40°C. The fermentation stirring rate has significant effect on starch utilization and fermentation production. The prolongation of fermentation time over 72 h has no substantiation in additional ethanol production. In all experimental fermentations the level of produced organic acids was very low, significantly below toxic concentration for the yeast. Conclusions. It was stated that the use of new method of starch raw material preparation resulted in satisfied fermentation yield and allowed to reduce energy requirements for starch liquefaction.  

  19. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine faecal microbiota in vitro.

    Science.gov (United States)

    Harlow, B E; Donley, T M; Lawrence, L M; Flythe, M D

    2015-11-01

    The goal was to determine the effect of starch source (corn, oats and wheat) and concentration on: (i) total amylolytic bacteria, Group D Gram-positive cocci (GPC), lactobacilli and lactate-utilizing bacteria, and (ii) fermentation by equine microbiota. When faecal washed cell suspensions were incubated with any substrate amylolytics increased over time. However, at 24 h there were 10 and 1000-fold more amylolytics with corn than wheat or oats respectively. Predominant amylolytics isolated were Enterococcus faecalis (corn, wheat) and Streptococcus bovis (oats). GPC increased with any substrate, but decreased during stationary phase in oats only. Lactobacilli decreased during stationary phase with corn only. By 24 h, oats had more lactate-utilizers and lactobacilli and fewer GPC than corn and wheat. More gas was produced from oats or wheat than from corn. These results indicate that the growth of bacteria and fermentative capacity associated with starch metabolism is starch source dependent. This study demonstrates a relationship between starch source and microbial changes independent of host digestion. However, future research is needed to evaluate the effect of starch source on the hindgut microbial community in vivo. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  20. Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion.

    Science.gov (United States)

    Azevedo, Viviane Machado; Borges, Soraia Vilela; Marconcini, José Manoel; Yoshida, Maria Irene; Neto, Alfredo Rodrigues Sena; Pereira, Tamara Coelho; Pereira, Camila Ferreira Gonçalves

    2017-02-10

    The aim of this study was to evaluate the effect of replacing corn starch by whey protein isolated (WPI) in biodegradable polymer blends developed by extrusion. X-ray diffraction showed the presence of a Vh-type crystalline arrangement. The films were homogeneous, indicating strong interfacial adhesion between the protein and the thermoplastic starch matrix (TPS) as observed in scanning electron microscopy. The addition of WPI on TPS matrix promoted an increase in the thermal stability of the materials. It was observed 58.5% decrease in the water vapor permeability. The effect of corn starch substitution by WPI on mechanical properties resulted in a more resistant and less flexible film when compared the TPS film. The addition of WPI caused greenish yellow color and less transparent films. The substitution of corn starch by WPI made it possible to obtain polymer blends with improved properties and represents an innovation for application as a packaging material.

  1. Effect of lactic acid and UV irradiation on the cassava and corn starches

    Directory of Open Access Journals (Sweden)

    Célia Maria Landi Franco

    2010-04-01

    Full Text Available In this work, the effect of lactic acid and UV irradiation on the physicochemical and structural characteristics of cassava and corn starches was evaluated. Only the modified cassava starch presented baking expansion capacity. From RVA, reduction of viscosity values, greater internal stability and none set back for modified cassava starch were observed. Modified corn starch did not show any peak viscosity. There were no significant differences in DSC thermal properties of treated and native starches. Amylopectin and amylose molecules from both the modified starches displayed some degradation. Molecular weight of cassava amylopectin was mostly preserved, whereas corn amylopectin was evenly attacked through the granule. Nevertheless, the B long branched chains of cassava amylopectin, with DP~37, were degraded whereas they were unchanged for corn amylopectin.Amido de mandioca modificado com ácido lático e radiação ultravioleta antes da secagem artificial têm mostrado boa capacidade de expansão, a exemplo da encontrada para o polvilho azedo. Neste trabalho, os efeitos do ácido lático e radiação UV sobre as características físico-químicas e estruturais de amidos de mandioca e milho foram investigados. Apenas o amido de mandioca modificado apresentou capacidade de expansão durante o forneamento. Do RVA, redução dos valores de viscosidade, boa estabilidade interna e nenhuma tendência a retrogradação para este amido modificado foi observado. O amido de milho não apresentou qualquer pico de viscosidade após modificação. Não foram observadas diferenças significativas nas propriedades térmicas, determinadas em DSC, entre os amidos nativos e modificados de ambas as fontes. As moléculas de amilopectina e amilose de ambos os amidos modificados mostraram alguma degradação. O peso molecular da amilopectina do amido de mandioca foi mais preservado, enquanto a amilopectina do amido de milho foi mais atacada em todo o grânulo. As

  2. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  3. Gamma radiation influences pasting, thermal and structural properties of corn starch

    Science.gov (United States)

    Ben Bettaïeb, Nasreddine; Jerbi, Mohamed Taïeb; Ghorbel, Dorra

    2014-10-01

    Irradiation is one of the effective methods able to change starch structure and its functional properties. In this research, the effect of γ-radiation (3, 5, 10, 20 and 50 kGy) on the pasting, thermal, structural and morphological properties of corn starch was studied. Brabender viscoamylograph test showed that the maximal consistency of the starch paste and its corresponding temperature decreased significantly with increasing irradiation dose. Differential scanning calorimetry also showed a decrease in gelatinization temperatures (TOnset, Tp, TOffset) with increasing irradiation dose. Fourier transform infrared spectroscopy spectra showed that the irradiated starch displayed a significant decrease in the intensity of O-H stretch, C-H stretch, bending mode of water and bending mode of glycosidic linkage. No modification in the shape and intensity of X-ray diffraction peaks was observed after irradiation. These results suggested that until 50 kGy, γ- radiation would affect the starch granule membrane and the amorphous zone rather than the crystalline one.

  4. Development of Corn Starch-Neusilin UFL2 Conjugate as Tablet Superdisintegrant: Formulation and Evaluation of Fast Disintegrating Tablets

    Directory of Open Access Journals (Sweden)

    Prateek Juneja

    2014-01-01

    Full Text Available In the present study, corn Starch-Neusilin UFL2 conjugates were prepared by physical, chemical, and microwave methods with the aim of using the conjugates as tablet superdisintegrant. Various powder tests, namely, angle of repose, bulk density, tapped density, Hausner’s ratio, Carr’s index, swelling index, and powder porosity were conducted on the samples. The conjugates were characterized by ATR-FTIR, XRD, DSC, and SEM techniques. Heckel and Kawakita models were applied to carry out compression studies for the prepared conjugates. Fast disintegrating tablets of domperidone were prepared using corn starch and corn Starch-Neusilin UFL2 conjugates as tablet superdisintegrants in different concentrations. Conjugates were found to possess good powder flow and tabletting properties. Heckel analysis indicated that the conjugates prepared by microwave method showed the slowest onset of plastic deformation while Kawakita analysis indicated that the conjugates prepared by microwave method exhibited the highest amount of total plastic deformation. The study revealed that the corn Starch-Neusilin UFL2 conjugates possess improved powder flow properties and could be a promising superdisintegrant for preparing fast disintegrating tablet. Also, the results sugessted that the microwave method was found to be most effective for the preparation of corn Starch-Neusilin UFL2 conjugates.

  5. Effects of the Noncyclic Cyanamides on the Gelatinization of Waxy Corn Starch; Waxy Corn Starch no koka ni oyobosu hikanjo shianamido rui no tenka koka

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Kazuo.; Nishikawa, Saisei.; Yoshimura, Toshiaki.; Ono, Shin.; Rengakuji, Seichi.; Nakamura, Yuko.; Shimasaki, Choichiro. [Toyama University, Toyama (Japan). Department of System Engineering of Materials and Life Science; Yamazaki, Isao. [Yayoikagaku Kogyo Corp., Toyama (Japan)

    1999-01-10

    Effects of noncyclic cyanamides on the gelatinization of waxy corn starch (WCS) suspension, containing amylopectin as a major component, were examined by analyses of differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infrared spectroscopy by the attenuated total reflection method. The temperature for the gelatinization of WCS suspension decreased by addition of urea, tiourea, and biuret in comparison to that without additives. These results suggested that the amino, imino, carbamoyl, and thiocarbamoyl groups of additives might have affected the collapses of the intra-and intermolecular hydrogen bonds of the WCS by forming hydrogen bonds with hydroxy groups in the WCS. However, the temperature slightly increased with the increase of the concentraion of guanidinium salts except for guanidine gydrocholoride. The inhibition effect on the gelatinization might have been explained by the anion-constituting guanidinium salts. (author)

  6. 鹰嘴豆淀粉与玉米淀粉性质的比较%Comparative Study on Properties of Chickpea Starch and Corn Starch

    Institute of Scientific and Technical Information of China (English)

    顾楠; 刘美艳; 赵国华

    2011-01-01

    研究了新疆产鹰嘴豆淀粉的一些基本性质,并与玉米淀粉进行比较,发现鹰嘴豆淀粉中直链淀粉质量分数为31.8%,高于玉米淀粉的直链淀粉质量分数(26.6%);通过电镜扫描发现鹰嘴豆淀粉颗粒表面光滑,形状多数为椭圆形、鹅卵石状,少数为圆形,而玉米淀粉颗粒多为圆形,呈多角状;粒度分析表明鹰嘴豆淀粉的粒径范围是6.39 ~41.80 μm,体积平均粒径是16.77 μn,而玉米淀粉粒径范围是4.02~33.35 μm,体积平均粒径是14.60 μm;鹰嘴豆淀粉持水力、溶解度优于玉米淀粉,透光率低于玉米淀粉;差示扫描量热( DSC)分析发现鹰嘴豆淀粉糊化温度为60.6 ~71.8℃,相变热焓值为7.12 J/g;玉米淀粉糊化温度为65.4~75.1℃,相变热焓值为10.61 J/g.%In this paper, some basic properties of Xinjiang chickpea starch was researched, and then compared with those of corn starch. It has been found that the mass fraction of amylose starch in chickpea starch was 31. 8% , which was higher than that (26.6% ) of the corn starch; by scanning starch granules with an electron microscopy,it was found that chickpea starch grain was smooth in surface, mainly in the form of oval and cobblestone and rarely in round,while the corn starch grain was mainly round with multiple angles. The particle size analysis showed that the particle size of chickpeas starch ranged from 6.39 to 41.80μm,and the volume average particle size was 14.60μm, while those of the corn starch were from 4.02 ~ 33.35μm and 14.60μm respectively. Besides,the water holding capacity and solubility of chickpea starch were better than those of the corn starch, of which the light transmittance was lower than that of the corn starch. The differential scanning calorimetry ( DSC) analysis showed that the gelatinization temperature of the chickpea starch was between 60. 6℃ and 71. 8 ℃,and the phase transition enthalpy value was 7. 12 J/g, while those of the corn starch was

  7. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Directory of Open Access Journals (Sweden)

    Thelen Kurt D

    2010-06-01

    Full Text Available Abstract Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS and matured whole corn plants (WCP as feedstocks to produce ethanol using ammonia fiber expansion (AFEX pretreatment followed by enzymatic hydrolysis (at low enzyme loadings and cofermentation (for both glucose and xylose using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan. Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading CS hydrolyzate (resulting

  8. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Science.gov (United States)

    2010-01-01

    Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol

  9. Starch poisoning

    Science.gov (United States)

    Cooking starch poisoning; Laundry starch poisoning ... Cooking and laundry starch are both made from vegetable products, most commonly: Corn Potatoes Rice Wheat Both are usually considered nonpoisonous (nontoxic), but ...

  10. STUDIES ON GRAFT COPOLYMERIZATION OF DL—LACTIDE ON CORN STARCH AND BIODEGRADABILITY OF THE COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    YOUYingcai; ZHUChangying; 等

    2000-01-01

    The starch/D,L-lactide graft copolymers were synthesized by reacting D,L-lactide with corn starch in N,N-dimethylacetamide(DMAM)in the presence of triethylamine(NEt3)and anhydrous lithium chloride.The effect of reaction time and the molar ratio of D,L-lactide to glucose structural unit of starch on monomer conversion(C%),graft(G%)and graft efficiency(GE%)were studied,The C%,G%and GE% could approach 37.3% 179.7%and 68.0%,respectively when the molar ratio of D,L-lactide to glucose structuralunit of starch is 10:1 and the graft copolymerization was carried out at 80-85℃ for 4hr under nitrogen atmosphere.The Fourier transforms infra-red (FTIR) spectroscopy.differential scanning calorimetry(DSC)and X_ray diffraction (XRD) spectroscopy were used in order to characterize the graft copolymers.FTIR spectra show that absorption band at 1740cm-1 confirmed the formation of ester bond,indicating the starch /D,L-lactide graft copolymers were produced,the DSC characteristic results show the melting temperature of the graft copolymer were elevated slightly as the molar ratio of D,L-lactide to glucose structural units of starch increased and the X-ray diffraction spectra show the synthesized graft copolymers were amorphous.The degradability of graft copolymer was tested with the aid of acid,alkali and microbe such as bacillus subtilis and staphylococcus aureus.The results of water rsistance show the graft copolymer produced can be used as a component of impermeable coating for cardboard.

  11. Economic analysis of fuel ethanol production from corn starch using fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M.S.; Davison, B.H.; Nghiem, N.P. [Oak Ridge National Laboratory (United States). Chemical Technology Division; Taylor, F. [USDA, Wyndmoor, PA (United States). Eastern Regional Research

    2000-11-01

    The economics of fuel ethanol production from dry-milled corn starch were studied in fluidized-bed bioreactors (FBRs) using immobilized biocatalysts. Glucoamylase immobilized on porous diatomaceous earth was used for hydrolysis of the starch to glucose in a packed-bed reactor. The fermentation of glucose to ethanol was carried out in FBRs using Zymomonas mobilis immobilized in {kappa}-carrageenan beads. Volumetric ethanol productivities of up to 24 g/l h were achieved in non-optimized laboratory-scale systems. For a 15 million gal/yr ethanol plant, an economic analysis of this process was performed with Aspen Plus (Aspen Technology, Cambridge, MA) process simulation software. The analysis shows that an operating cost savings in the range of 1.1-3.1 cents/gal can be realized by using the FBR technology. (author)

  12. Possibilities of utilization of co-products from corn grain ethanol and starch production

    Directory of Open Access Journals (Sweden)

    Semenčenko Valentina V.

    2013-01-01

    Full Text Available In recent decades, the expansion of alternative fuels production from crops traditionally used for food and animal feed has led to significant changes in the field of energy production, agriculture and food industry. Starch and sugar feedstocks for ethanol production (corn, wheat, sugar beet, sugar cane, etc. require increasing arable land to meet market demands for the biofuel production. Although intensive studies are being carried out in order to identify improved and more cost-effective methods for the utilization of lignocellulosic and communal waste in the production of alcohol fuel, the possibility of using dry distillers’ grains with solubles (DDGS, by-product of bioethanol production from corn and wheat as well as alcoholic beverages industry, is now in focus. Application of DDGS in livestock and poultry diets in concentrations greater than traditional could positively affect the economic viability of this biofuel production, but also stabilize the current imbalance in the food and animal feed market. However, DDGS feedstuff should not be treated as a perfect substitute for corn because the complexity of ration formulation determined at the farm or feedlot level is driven by energy and protein and other nutrient requirements, as well as their relative costs in the ration. Nevertheless, processing of corn by wet milling provides a multitude of co-products suitable for feedstuffs, food industry, pharmaceuticals, chemistry etc. Some of the most important wet milling co-products that have their use in feedstuffs are corn gluten feed and corn gluten meal. The use of DDGS as a substitute for traditional feed could prevent indirect land-use changes associated with biofuel production, and therefore preserve the environmental destruction by saving the forests and permanent pastures. The use of distiller’s grains can be beneficial to biofuel growth as this is an additional, the second largest, source of income accounting of 10-20% total

  13. Effect of incorporation of nutraceutical capsule waste of safflower oil in the mechanical characteristics of corn starch films

    Directory of Open Access Journals (Sweden)

    Camila de CAMPO

    2016-01-01

    Full Text Available Abstract Biodegradable films blends made of safflower oil nutraceutical capsules waste corn starch (20:4, 30:4, 40:4 and 50:4 were prepared. The objective of this study was to evaluate the influence of addition of different concentrations of safflower oil nutraceutical capsule waste in the mechanical properties (tensile strength, elongation at break, Young’s modulus and thickness of corn starch films. A decrease in tensile strength and Young’s modulus and an increase in elongation at break were observed with the increase in the content of the nutraceutical capsule waste. The results showed that the blends of safflower oil capsules waste-corn starch films demonstrated promising characteristics to form biodegradable films with different mechanical characteristics.

  14. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils.

    Science.gov (United States)

    Ghasemlou, Mehran; Aliheidari, Nahal; Fahmi, Ronak; Shojaee-Aliabadi, Saeedeh; Keshavarz, Behnam; Cran, Marlene J; Khaksar, Ramin

    2013-10-15

    Corn starch-based films are inherently brittle and lack the necessary mechanical integrity for conventional packaging. However, the incorporation of additives can potentially improve the mechanical properties and processability of starch films. In this work two essential oils, Zataria multiflora Boiss (ZEO) or Mentha pulegium (MEO) at three levels (1%, 2% and 3% (v/v)), were incorporated into starch films using a solution casting method to improve the mechanical and water vapor permeability (WVP) properties and to impart antimicrobial activity. Increasing the content of ZEO or MEO from 2% to 3% (v/v) increased values for elongation at break from 94.38% to 162.45% and from 53.34% to 107.71% respectively, but did not significantly change tensile strength values of the films. The WVP properties of the films decreased from 7.79 to 3.37 or 3.19 g mm m(-2) d(-1) kPa(-1) after 3% (v/v) ZEO or MEO incorporation respectively. The oxygen barrier properties were unaffected at the 1% and 2% (v/v) oil concentration used but oxygen transmission increased with 3% (v/v) for both formulations. The films' color became slightly yellow as the levels of ZEO or MEO were increased although transparency was maintained. Both films demonstrated antimicrobial activity with films containing ZEO more effective against Escherichia coli and Staphylococcus aureus than those containing MEO. These results suggest that ZEO and MEO have the potential to be directly incorporated into corn starch to prepare antimicrobial biodegradable films for various food packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Regulatory effect of porcine plasma protein hydrolysates on pasting and gelatinization action of corn starch.

    Science.gov (United States)

    Kong, Baohua; Niu, Haili; Sun, Fangda; Han, Jianchun; Liu, Qian

    2016-01-01

    The objective of this study was to investigate the regulatory effect of porcine plasma protein hydrolysates (PPPH) on the physicochemical, pasting, and gelatinization properties of corn starch (CS). The results showed that the solubility of CS markedly increased, whereas swelling power and gel penetration force decreased with increased PPPH concentration (Pgelatinization temperature as determined in differential scanning calorimetry (DSC) (Pgelatinization. Atomic force microscopy (AFM) images indicated that the blocklet sizes of gelatinized CS-PPPH mixtures were smaller and more uniform than native CS. The results proved that pasting and gelatinization abilities of CS can be effectively influenced by adding PPPH. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Ames Laboratory; Ai, Yongfeng [Iowa State University; Jones, Roger W. [Ames Laboratory; Houk, Robert S. [Ames Laboratory; Jane, Jay-lin [Iowa State University; Zhao, Yinsheng [Iowa State University; Birt, Diane F. [Iowa State University; McClelland, John F. [Ames Laboratory

    2013-01-29

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.

  17. Studies on the starch-water interactions between partially gelatinized corn starch and water during gelatinization.

    Science.gov (United States)

    Fu, Zong-Qiang; Wang, Li-Jun; Zou, Hui; Li, Dong; Adhikari, Benu

    2014-01-30

    The effect of moisture content on the interactions between water and partially gelatinized starch during gelatinization process was investigated. The interactions were probed using differential scanning calorimetry (DSC). The starch samples were partially gelatinized at 25°C (S25), 64°C (S64), 68°C (S68) and 70°C (S70) and the moisture contents were varied from 25% to 78% (w/w). The G endotherm was not observed and only the M1 endotherm was observed in S64, S68 and S70 in the entire moisture content range. The G endotherm was not observed and only the M1 endotherm was observed at higher peak temperature in S25 when the moisture content was below 30% (w/w). The melting temperature of M2 endotherm in S70 was the highest among all the samples tested in the entire moisture content range. At water content>30% (w/w), S68 and S70 had lower amount of unfreezable water, while S64 had higher amount of unfreezable water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Quality Properties of Sausages Made with Replacement of Pork with Corn Starch, Chicken Breast and Surimi during Refrigerated Storage

    OpenAIRE

    Seo, Hyun-Woo; Kang, Geun-Ho; Cho, Soo-Hyun; Ba, Hoa Van; Seong, Pil-Nam

    2015-01-01

    This effect of replacing pork with corn starch, chicken breast and surimi on the chemical composition, physical, texture and sensory properties of sausage were investigated during storage. Five treatments of sausage such as; T1 (10:0:0, %), T2 (10:5:0, %), T3 (10:10:5, %), T4 (10:15:10, %) and T5 (10:20:15, %) were prepared with replacement of pork with corn starch, chicken breast and surimi. The sausage made with pork meat served as control (C). The sausage in the control had higher moisture...

  19. Studies of Amylose Content in Potato Starch

    Science.gov (United States)

    Potato starch is typically low in amylose (~20-25%), but high amylose starch has superior nutritional qualities. The ratio between amylose and amylopectin is the most important property influencing the physical properties of starch. There is a strong case to be made for the development of food crops...

  20. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Cozar, O. [Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania and National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch (Romania); Filip, C.; Tripon, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Cioica, N.; Coţa, C.; Nagy, E. M. [National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch, RO-400458 Cluj-Napoca (Romania)

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  1. 玉米淀粉和糯玉米淀粉的微波糊化特性研究%Effect of microwave on paste property of corn starch and waxy corn starch

    Institute of Scientific and Technical Information of China (English)

    徐忠; 刘雪唯; 王志鹏; 徐巧娇; 赵丹

    2015-01-01

    以玉米淀粉和糯玉米淀粉为原料,采用微波加热制备玉米淀粉糊,并与水浴加热制备的淀粉糊相比较,以碘兰值和酶解力为指标,研究了微波法对淀粉糊化特性的影响。研究结果表明,糊化过程中水浴法和微波法糊化淀粉的碘兰值和酶解力均随糊化时间的延长逐渐上升,其中微波糊化淀粉的速度比水浴快,但微波加热玉米淀粉糊的碘兰值和酶解力比水浴加热低。%With corn starch and waxy corn starch as raw material , the influence of microwave radation and water bath heating on blue value and enzyme hydrolysability of corn starch and waxy corn starch paste was studied .The results indicated that the blue value and enzyme hydrolysability of starch paste prepared by microwave and water bath heating increased as the prolonging of heating time during gelatinization .The gelatinization rate of starch paste pre-pared by microwave was faster .But the blue value and enzyme hydrolysability of starch paste prepared by microwave were lower than by water bath heating .

  2. Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts.

    Science.gov (United States)

    Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy

    2015-12-10

    Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations.

  3. Technology and economics of conversion of cellulose (wood) and corn starch to sugars, alcohol and yeast. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wolnak, B.

    1978-08-01

    The present status of the technology and economics for the production of glucose, alcohol, and yeast from cellulose (wood), corn starch, and molasses is analyzed. The basic processes for producing glucose and the factors affecting the economics of its production are reviewed. The costs of producing ethanol and yeast from the glucose are derived. Market availability of glucose, ethanol, and yeast is surveyed. (JSR)

  4. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine fecal microbiota in vitro

    Science.gov (United States)

    Aims: The goal was to determine the effect of starch source (corn, oats and wheat) and concentration on: 1) total amylolytic bacteria, Group D Gram-positive cocci (GPC), lactobacilli, and lactate-utilizing bacteria, and 2) fermentation by equine microflora. Methods and Results: When fecal washed cel...

  5. Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta.

    Science.gov (United States)

    Ferreira, Sila Mary Rodrigues; de Mello, Ana Paula; de Caldas Rosa dos Anjos, Mônica; Krüger, Cláudia Carneiro Hecke; Azoubel, Patrícia Moreira; de Oliveira Alves, Márcia Aurelina

    2016-01-15

    The aim of this study was to evaluate the use of mixture of sorghum-rice-corn flour and potato starch in the development of gluten-free pasta for celiac disease patients. The experiment was designed according to simplex-lattice method and different types of gluten-free flours were used, such as sorghum, rice, corn, and potato starch. The fifteen formulations were subjected to sensory analysis (Mixed Structured Scale - MSS) and seven formulations were selected in respect to taste and grittiness. These formulations were subjected to Quantitative Descriptive Analysis (QDA), which evaluated the attributes: appearance, color, odor, hardness, elasticity, stickiness, grittiness, taste, residual bitterness and overall quality. Results showed significant difference in appearance, color and hardness. The formulations that showed the best sensory results were submitted to chemical analysis and cooking quality of pasta. It was observed that the best results for mixing is sorghum flour, rice flour and potato starch.

  6. Formulation factors affecting the binding properties of Chi-nese yam (Dioscorea oppositifolia)and corn starches

    Institute of Scientific and Technical Information of China (English)

    Adenike Okunlola; Oluwatoyin A.Odeku

    2009-01-01

    Objective:The quantitative effects of formulation and processing variables affecting the binding properties of Chinese yam starch (Dioscorea oppositifolia)in chloroquine phosphate tablet formulations have been investiga-ted in comparison with corn starch using a 23 factorial experimental design.Methods:Chinese yam starch,re-presenting the "low"level,and corn starch,representing the "high"level were used as binders at concentra-tions of 2.5 %w/w and 10 % w/w in chloroquine phosphate tablet formulations.The mechanical properties of the tablets,measured by the tensile strength (T)and brittle fracture index (BFI)as well as the release prop-erties measured by the disintegration time (DT)and dissolution time (t8 0-time for 80 % drug release),were used as assessment parameters.Results:The ranking of the individual coefficient values for the formulations on T was D >N C,on BFI was N >D C,on DT was D >N >C and on t8 0 was C >N >D while the ranking of the interaction coefficient on T was N-D >C-D  N-C,on BFI was N-D >N-C =C-D,on DT and t8 0 was N-C >N-D >C-D.Changing the binding agent from Chinese to corn starch,led to a decrease in T,DT and t8 0 but increase in BFI of the tablets.There were significant (P <0.001)interactions between the nature of binder,N and the other two variables,C and D.Conclusion:The result showed that Chinese yam possessed stronger binding capacity than corn starch and could be useful as an alternative binder when tablets with high mechanical strength with minimal problems of lamination,and slow release are required.

  7. Pasting and thermal properties of waxy corn starch modified by 1,4-α-glucan branching enzyme.

    Science.gov (United States)

    Ren, Junyan; Li, Yang; Li, Caiming; Gu, Zhengbiao; Cheng, Li; Hong, Yan; Li, Zhaofeng

    2017-04-01

    Waxy corn starch was modified with the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. Incubating waxy corn starch with GBE increased the number of α-1,6 branch points and reduced the average chain length. Enzymatic modification also decreased the breakdown and setback values of Brabender viscosity curves, indicating that the modified starch had higher paste stability. Preheating the starch at 65°C for 30min before incubation with GBE could promote enzymatic modification of starch. Linear regression was used to describe the relationships between starch structure and its pasting and thermal properties. The setback value showed a negative linear correlation with the α-1,6 branch point content (R(2)=0.9824) and a positive linear correlation with the average chain length (R(2)=0.8954). Meanwhile, the gelatinization enthalpy was also linearly correlated to the α-1,6 branch point content (R(2)=0.9326) and the average chain length (R(2)=0.8567). These insights provide a useful reference for food processors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A GREEN CHEMICAL APPROACH OF CORN STARCH MODIFICATION FOR INNOVATIVE SOLUTIONS IN ADSORPTION OF POLYCYCLIC AROMATIC HYDROCARBONS

    Directory of Open Access Journals (Sweden)

    ANA MARIA ROŞU

    2017-03-01

    Full Text Available The aim of research is to achieve chemical modifications of corn starch. Therefore, the present study focuses on its chemical modifications, in order to increase its aqueous solubility and to ameliorate its adsorption properties for one hydrophobic pollutant, belonging to Polycyclic Aromatic Hydrocarbons (PAHs, benzo[a]pyrene (BaP, as a model. Starch chemical modifications are realized by alkylation reactions using ether (propylene oxide or ester (succinic anhydride alkyl agents. Starches obtained are characterized by 1H NMR technique in order to verify the alkylation procedure. Water solubility of the obtained product was determined and its capacity to adsorb the considered model pollutant was studied. According to the registered results, starch modification with succinic anhydride conducts to an aqueous solubility of 34.00 g·L-1, significantly increased in comparison with the solubility of native corn starch which is insoluble in water at room temperature. With this modified starch, promising results for BaP aqueous solubilisation were obtained.

  9. 新型氧化淀粉胶粘剂的制备%Preparation of newly oxidized corn starch adhesive

    Institute of Scientific and Technical Information of China (English)

    孟庆宇; 王永娟; 刘建国; 尹双良

    2013-01-01

    By using oxidation modification, pasting agent, cross linked gelatin and naki montmorillonite, the stability corn starch adhesive is developed. The effect of bond behavior for corn starch adhesive was investigated. Effect of the amount of oxidant, pasting agent, crosslinked gelatin and naki montmorillonite on the starch adhesive bonding performance were studied. The results showed that the optimal of directions for producing chemicals for corn starch adhesive was determined 0. 3% potassium permanganate,0. 9% NaOH,0. 3% borax and naki montmorillonite 4%.%以玉米淀粉为原料,采用氧化改性法,并配以糊化剂、胶联剂及适量钠基蒙脱土,研制出稳定氧化淀粉胶粘剂.研究了氧化剂、糊化剂、胶联剂及钠基蒙脱土用量对淀粉胶粘剂粘结性能的影响.结果表明,氧化淀粉胶粘剂的最佳配方为:高锰酸钾的用量为0.3%,氢氧化钠的用量为0.9%,硼砂的用量为0.3%,钠基蒙脱土的用量为4%.

  10. Improvement on the freeze-thaw stability of corn starch gel by the polysaccharide from leaves of Corchorus olitorius L.

    Science.gov (United States)

    Yamazaki, Eiji; Sago, Toru; Kasubuchi, Yoshiaki; Imamura, Kazuhito; Matsuoka, Toshio; Kurita, Osamu; Nambu, Hironobu; Matsumura, Yasuki

    2013-04-15

    Effect of the polysaccharide from leaves of Corchorus olitorius L. (PLC) on the freeze-thaw (FT) stability of corn starch gel was studied. PLC was incorporated into the starch gel at 0.7% and total solid was adjusted to 6.0%. The syneresis was measured by the centrifugal-filtration method and, as a result, addition of PLC reduced effectively the syneresis of the starch gel even after 5 FT cycles, which was less than one third that of the normal starch gel. The rheological changes of the starch/PLC gel during the FT treatments were evaluated while the gel remained on the rheometer plate. The starch/PLC gel had less significant changes in the rheological parameters during the FT cycles than starch/guar gum or xanthan gum gel systems. SEM images showed that PLC stabilized the gel matrix surrounding pores, which would contribute to both a lower syneresis production and a higher stability in the rheological behavior at FT.

  11. Amylose Content in Tuber Starch of Wild Potato Species

    Science.gov (United States)

    Approximately 20% of potato tuber fresh weight is starch, which is composed of amylose (straight chains of glucose) and amylopectin (branched chains). Potato starch is low in amylose (~25%), but high amylose starch has superior nutritional qualities. Amylose content has been determined in tuber samp...

  12. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.

    Science.gov (United States)

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-Ichi

    2016-02-10

    This study investigated the effects of ionic conduction of electrolytes under microwave field to facilitate hydrothermal hydrolysis of corn starch and crystalline cellulose (Avicel), typical model biomass substrates. Addition of 0.1M NaCl was effective to improve reducing sugar yield by 1.61-fold at unit energy (kJ) level. Although Avicel cellulose was highly recalcitrant to hydrothermal hydrolysis, addition of 0.1M MgCl2 improved reducing sugar yield by 6.94-fold at unit energy (kJ). Dielectric measurement of the mixture of corn starch/water/electrolyte revealed that ionic conduction of electrolytes were strongly involved in facilitating hydrothermal hydrolysis of polysaccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S., E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rezende, Maira L.; Rosa, Derval S. [Universidade Sao Francisco, Itatiba, SP (Brazil)

    2009-07-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used alpha-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras{sup R}) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex{sup R}) film in both methods studied. (author)

  14. Quality Properties of Sausages Made with Replacement of Pork with Corn Starch, Chicken Breast and Surimi during Refrigerated Storage.

    Science.gov (United States)

    Seo, Hyun-Woo; Kang, Geun-Ho; Cho, Soo-Hyun; Ba, Hoa Van; Seong, Pil-Nam

    2015-01-01

    This effect of replacing pork with corn starch, chicken breast and surimi on the chemical composition, physical, texture and sensory properties of sausage were investigated during storage. Five treatments of sausage such as; T1 (10:0:0, %), T2 (10:5:0, %), T3 (10:10:5, %), T4 (10:15:10, %) and T5 (10:20:15, %) were prepared with replacement of pork with corn starch, chicken breast and surimi. The sausage made with pork meat served as control (C). The sausage in the control had higher moisture and fat contents, but lower protein content than the treatments (psausages in the T2 and T5 had decreased pH values after 3 wk storage (psausage in the control had higher VBN (volatile basic nitrogen) value than the treatments during the 1 wk storage (preplacer, that it also improves the physicochemical and texture properties of pork sausages.

  15. Study on the characteristics of esterification-enzimatic corn starch%酯化-酶解玉米淀粉的特性分析研究

    Institute of Scientific and Technical Information of China (English)

    邹建; 刘亚伟

    2011-01-01

    Corn starch was esterified by octenyl succinic anhydride(OSA) and hydrolyzed with α-amylase to prepare esterifi-cation-enzyme complex modified corn starch. The results showed as that: the transparency and solubility of esterification-enzi-matic starch were greatly improved compared to the native starch. As DE≦8,the transparency and solubility increased with DE value. In the order of freeze-thaw stability,esterification-enzymatic starch>esterification starch>native starch. In the order of retrogradation,esterification starch>esterification-enzymatic starch>native starch. In the order of emulsification,esterification starch> esterification-enzymatic starch > native starch, but in the order of emulsification stability, esterification-enzymatic starch>esterification starch>native starch.%以玉米淀粉为原料,对其进行了辛烯基琥珀酸酐(OSA)酯化,并用α-淀粉酶水解,制备了酯化-酶解复合改性玉米淀粉.结果表明,酯化-酶解淀粉的透明度、溶解度较原淀粉有很大的提高,在葡萄糖当量浓度(DE)≤8的范围内,随DE值的增加,透明度和溶解度随之增大;冻融稳定性是酯化-酶解淀粉>酯化淀粉>原淀粉,凝沉性是酯化淀粉>酯化-酶解淀粉>原淀粉;乳化能力是酯化淀粉>酯化-酶解淀粉>原淀粉,但乳化稳定性是酯化-酶解淀粉>酯化淀粉>原淀粉.

  16. Hydrothermal treatment and iodine binding provide insights into the organization of glucan chains within the semi-crystalline lamellae of corn starch granules.

    Science.gov (United States)

    Vamadevan, Varatharajan; Hoover, Ratnajothi; Bertoft, Eric; Seetharaman, Koushik

    2014-08-01

    The importance of glucan chains that pass through both the amorphous and crystalline lamellae (tie chains) in the organization of corn starch granules was studied using heat-moisture treatment (HMT), annealing (ANN), and iodine binding. Molecular structural analysis showed that hylon starches (HV, HVII, and HVIII) contained higher proportion of intermediate glucan chains (HVIII > HVII > HV) than normal corn (CN) starch. Wide angle X-ray scattering revealed that on HMT, the extent of polymorphic transition in hylon starches decreased with increasing proportion of intermediate and long chains. Iodine treated hylon starches exhibited increased order in the V-type polymorphism as evidenced by the intense peak at 20° 2θ and the strong reflection intensity at 7.5° 2θ and the extent of the change depended on the type of hylon starch. DSC results showed that the gelatinization enthalpy of CN and waxy corn starch (CW) remained unchanged after ANN. However, hylon starches showed a significant increase in enthalpy with more distinct endotherms after ANN. It can be concluded that tie chains influence the organization of crystalline lamellae in amylose extender mutant starches.

  17. Increased Butyrate Production During Long-Term Fermentation of In Vitro-Digested High Amylose Cornstarch Residues with Human Feces.

    Science.gov (United States)

    Li, Li; Jiang, Hongxin; Kim, Hyun-Jung; Yum, Man-Yu; Campbell, Mark R; Jane, Jay-Lin; White, Pamela J; Hendrich, Suzanne

    2015-09-01

    An in vitro semi-continuous long-term (3 wk) anaerobic incubation system simulating lower gut fermentation was used to determine variability in gut microbial metabolism between 4 predigested high amylose-resistant starch residues (SR): SRV, SRVI, SRVII, and SRGEMS in human fecal samples. Subjects participated twice, 5 mo apart: 30 in Phase I (15 lean, 9 overweight and 6 obese), 29 in Phase II (15 lean, 9 overweight, 5 obese); 13 of 15 lean subjects participated in both phases. Of the 4 SRs, SRV displayed the highest gelatinization temperature, peak temperature, enthalpy changes, and the least digestibility compared with the other SRs. In both phases, compared with blank controls, all SRs increased butyrate ∼2-fold which stabilized at week 2 and only SRV caused greater propionate concentration (∼30%) after 3 wk which might have been partly mediated by its lesser digestibility. Fecal samples from lean and overweight/obese subjects incubated with SRs showed similar short-chain fatty acid production across both time points, which suggests that resistant starch may benefit individuals across BMIs.

  18. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    Science.gov (United States)

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis.

  19. Ethanol production from dry-mill corn starch in a fluidized-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M.S.; Nghiem, N.P.; Davison, B.H.

    1998-08-01

    The development of a high-rate process for the production of fuel ethanol from dry-mill corn starch using fluidized-bed bioreactor (FBR) technology is discussed. Experiments were conducted in a laboratory scale FBR using immobilized biocatalysts. Two ethanol production process designs were considered in this study. In the first design, simultaneous saccharification and fermentation was performed at 35 C using {kappa}-carageenan beads (1.5 mm to 1.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. For dextrin feed concentration of 100 g/L, the single-pass conversion ranged from 54% to 89%. Ethanol concentrations of 23 to 36 g/L were obtained at volumetric productivities of 9 to 15 g/L-h. No accumulation of glucose was observed, indicating that saccharification was the rate-limiting step. In the second design, saccharification and fermentation were carried out sequentially. In the first stage, solutions of 150 to 160 g/L dextrins were pumped through an immobilized glucoamylase packed column maintained at 55 C. Greater than 95% conversion was obtained at a residence time of 1 h, giving a product of 165 to 170 g glucose/L. In the second stage, these glucose solutions were fed to the FBR containing Z. mobilis immobilized in {kappa}-carageenan beads. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L was achieved, giving an overall productivity of 23 g/L-h.

  20. Influence of some formulation and process parameters on the stability of lysozyme incorporated in corn flour- or corn starch-based extruded materials prepared by melt blending processing.

    Science.gov (United States)

    Jbilou, Fouzia; Galland, Sophie; Telliez, Camille; Akkari, Zied; Roux, Roselyne; Oulahal, Nadia; Dole, Patrice; Joly, Catherine; Degraeve, Pascal

    2014-12-01

    In order to obtain an antimicrobial biodegradable material, corn flour was extruded with 1% of lysozyme. Since the limited stability of natural preservatives such as lysozyme is a common bottleneck to the elaboration of active biomaterials by melt blending processes, the influence of formulation and of extrusion processing temperature on its residual enzymatic activity was investigated. To assess the contribution of process parameters such as temperature, shear stress and of related formulation parameters such as glycerol and moisture contents, the stability of lysozyme following its extrusion or its thermoforming with plasticized corn starch or thermal treatments in aqueous glycerol solutions was also studied. Increasing glycerol content from 25% to 30% significantly limited inactivation of lysozyme during extrusion, while increasing initial moisture content of the mixture from 14.5% to 28.5% had the opposite effect. These observations open the possibility to prepare active materials retaining more than 60±7% of initial lysozyme activity.

  1. Starch digestibility, energy utilization, and growth performance of broilers fed corn-soybean basal diets supplemented with enzymes.

    Science.gov (United States)

    Stefanello, C; Vieira, S L; Santiago, G O; Kindlein, L; Sorbara, J O B; Cowieson, A J

    2015-10-01

    A study was conducted to evaluate the effects of dietary α-amylase and β-xylanase supplementation of corn-soy diets, formulated with or without supplemental phytase, on growth performance, energy utilization, and starch digestibility in broiler chickens. A total of 336 slow-feathering, Cobb × Cobb 500 male broilers were randomly distributed to 6 treatments having 8 replicates of 7 birds each. Birds were fed a common starter diet to d 14 post-hatch (3,050 kcal/kg AMEn, 21.7% CP, 1.05% Ca, and 0.53% nPP). The experimental diets were provided afterwards until d 25. A 2 × 3 factorial arrangement of 2 control diets (basal = corn-soy diet without added phytase or PHY = corn-soy diet formulated with 1,000 phytase units/kg) and 3 carbohydrase supplementations (0, 80 kilo-Novo α-amylase units/kg, or 80 kilo-Novo α-amylase units/kg + 100 fungal β-xylanase units/kg) was used from d 14 to 25. Excreta were collected from 21 to 24 d and all birds were euthanized at 25 d for jejunum and ileum content collection. Samples of feed, excreta, and jejunal and ileal digesta were analyzed for determination of total tract retention and ileal apparent digestibility. No interactions between diet and carbohydrase were observed. Broilers fed diets formulated with phytase or supplemented with amylase + xylanase had higher BW gain (BWG) and lower FCR (P amylase and amylase + xylanase, respectively. Starch digestibility in the jejunum and ileum was increased (P amylase + xylanase. Results from this experiment show that corn-soy diets having phytase and supplemented with amylase and xylanase led to increased growth performance, AMEn, and starch digestibility in broilers. Furthermore, the efficacy of exogenous amylase and xylanase was independent of the presence of microbial phytase.

  2. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch.

    Science.gov (United States)

    Chung, Hyun-Jung; Hoover, Ratnajothi; Liu, Qiang

    2009-03-01

    Effect of single and dual hydrothermal modifications with annealing (ANN) and heat-moisture treatment (HMT) on molecular structure and physicochemical properties of corn starch was investigated. Normal corn starch was modified by ANN at 70% moisture at 50 degrees C for 24h and HMT at 30% moisture at 120 degrees C for 24h as well as by the combination of ANN and HMT. The apparent amylose content and swelling factor (SF) decreased on ANN and HMT, but amylose leaching (AML) increased. These changes were more pronounced on dual modification. The crystallinity (determined by X-ray diffraction), the gelatinization enthalpy (determined by differential scanning calorimetry) and ratio of 1047 cm(-1)/1022 cm(-1) (determined by Fourier transform infrared spectroscopy) slightly increased on ANN and decreased on HMT. The ANN and subsequent HMT (ANN-HMT) resulted in the lowest crystallinity, gelatinization enthalpy and ratio of 1047 cm(-1)/1022 cm(-1). The gelatinization temperature range decreased on ANN but increased on HMT. However, the gelatinization range of dually modified starches (ANN-HMT and HMT-ANN) was between ANN starch and HMT starch. Birefringence remained unchanged on ANN but slightly decreased on HMT as well as dual modification. Average chain length and amount of longer branch chains (DP> or =37) remained almost unchanged on ANN but decreased on HMT and dual modifications (ANN-HMT and HMT-ANN). HMT and dual modifications resulted in highly reduced pasting viscosity. ANN and HMT as well as dual modifications increased RDS content and decreased SDS and RS content.

  3. Effect of a saponin-based surfactant and aging time on ruminal degradability of flaked corn grain dry matter and starch.

    Science.gov (United States)

    Hristov, A N; Zaman, S; VanderPol, M; Szasz, P; Huber, K; Greer, D

    2007-06-01

    The objectives of this study were to investigate the effect of a saponin-based surfactant, Grain Prep surfactant (GP), and hot flake aging time on starch characteristics and ruminal DM and starch degradability of steam-flaked corn grain. In 2 experiments, the moisture content of incoming corn was automatically adjusted using the Grain Prep Auto Delivery System to 19.8% (Exp. 1) and 18.5% (Exp. 2). The application rate of GP was 22 mg/kg (as-is basis). Control corn was treated with water alone. Processed corn in Exp. 2 was stored in insulated containers for 0, 4, 8, or 16 h. Flaked corn samples were incubated in the rumen of lactating dairy cows for 0, 2, 4, 6, 16, or 24 h. In Exp. 1, GP increased, compared with the control, the soluble fraction and effective degradability (ED) of DM by 17.2 and 8.6%, respectively. The ED of cornstarch was increased by 6.7%. In Exp. 2, the concentration of soluble DM and starch were increased by GP by 15 and 24% compared with the control. The ED of DM and starch were also increased by 3 and 4%, respectively. No differences in gelatinization temperatures were observed due to treatment, except that GP-treated grain had a slightly greater mean gelatinization enthalpy in Exp. 2. In a pilot study, DM degradability parameters were not affected by germination of the corn kernels. Aging of the hot flakes for up to 16 h resulted in a quadratic decrease in DM and starch ruminal degradability. The aging process affected starch gelatinization enthalpy values of flaked grain in a manner opposite to that observed for ruminal DM and starch degradation. This phenomenon was most likely explained by increased starch intramolecular associations or crystallinity associated with starch annealing, or both. This study confirmed our previous observations that Grain Prep surfactant increases flaked corn DM and starch degradability in the rumen. Because the rate of degradation was not affected by the surfactant, the increase in degradability was attributed

  4. Biodegradable aliphatic-aromatic copolyester/corn starch blend composite reinforced with coffee parchment husk

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Valquiria A.; Teixeira, Jaciele G.; Gomes, Michelle G.; Ortiz, Angel V.; Oliveira, Rene R.; Scapin, Marcos A.; Moura, Esperidiana A.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Colombo, Maria A., E-mail: valquiriaalves36@yahoo.com.br [Faculdade de Tecnologia da Zona Leste (FATEC), Sao Paulo, SP (Brazil)

    2013-07-01

    In recent years, studies have shown that the addition of natural fiber or proper filler is an effective strategy for achieving improved properties in biodegradable polymer materials. Moreover, is especially important if such fibers are residues of agro-industrial processes. In this work, a promising technique to develop biodegradable polymer matrix composite based on aliphatic-aromatic copolyester/corn starch blend (Evela®) and coffee parchment husk, which is residue from coffee processing is described. The biodegradable polymeric blend (Evela®) with 5 % (w/w) of ball-milled coffee parchment husk fiber powder, with size ≤250 μm, without any modification was prepared by melt-mixing processing, using a twin screw extruder machine and then pelletized. In a second step, the pelletized Evela®)/coffee parchment (Composite) was then dried at 70 ± 2 deg C for 24 h in a circulating air oven, fed into injection molding machine and test specimens were obtained. The Composite specimen samples were irradiated using an electron beam accelerator, at radiation dose of 20 and 40 kGy, at room temperature in presence of air. The irradiated and non-irradiated samples were characterized by means of scanning electron microscopy (SEM), X-Ray diffraction (XRD), tensile tests and sol-gel analysis and the correlation between their properties was discussed. In addition, coffee parchment husk fiber characterization by SEM, EDS, XRD and WDXRF have also been carried out with a view to evaluate its importance in determining the end-use properties of the composite. (author)

  5. Effect of thermal and chemical modifications on the mechanical and release properties of paracetamol tablet formulations containing corn, cassava and sweet potato starches as filler-binders

    Institute of Scientific and Technical Information of China (English)

    Mariam; Vbamiunomhene; Lawal; Michael; Ayodele; Odeniyi; Oludele; Adelanwa; Itiola

    2015-01-01

    Objective: To investigate the effects of acetylation and pregelatinization of cassava and sweet potato starches on the mechanical and release properties of directly compressed paracetamol tablet formulations in comparison with official corn starch.Methods: The native starches were modified by acetylation and pregelatinization. The tablets were assessed using friability(Fr), crushing strength(Cs), disintegration time(Dt) and dissolution parameters. Results: Starch acetylation produced paracetamol tablets that were stronger and had the best balance of mechanical and disintegration properties, while pregelatinization produced tablets that were more friable but had a better overall strength in relation to disintegration than formulations made from natural starches. Correlations mainly existed between Dt and the dissolution parameters t80, t2 and k1 in the formulations. Conclusions: Modification of the experimental starches improved the mechanical and release properties of directly compressed paracetamol tablet formulations. Thus, they can be developed for use as pharmaceutical excipients in specific formulations.

  6. Effect of thermal and chemical modiifcations on the mechanical and release properties of paracetamol tablet formulations containing corn, cassava and sweet potato starches as ifller-binders

    Institute of Scientific and Technical Information of China (English)

    Mariam Vbamiunomhene Lawal; Michael Ayodele Odeniyi; Oludele Adelanwa Itiola

    2015-01-01

    Objective:To investigate the effects of acetylation and pregelatinization of cassava and sweet potato starches on the mechanical and release properties of directly compressed paracetamol tablet formulations in comparison with official corn starch. Methods: The native starches were modified by acetylation and pregelatinization. The tablets were assessed using friability (Fr), crushing strength (Cs), disintegration time (Dt) and dissolution parameters. Results: Starch acetylation produced paracetamol tablets that were stronger and had the best balance of mechanical and disintegration properties, while pregelatinization produced tablets that were more friable but had a better overall strength in relation to disintegration than formulations made from natural starches. Correlations mainly existed between Dt and the dissolution parameters t80, t2 and k1 in the formulations. Conclusions:Modification of the experimental starches improved the mechanical and release properties of directly compressed paracetamol tablet formulations. Thus, they can be developed for use as pharmaceutical excipients in specific formulations.

  7. Effect of storage time on in vitro digestion rate and resistant starch content of tortillas elaborated from commercial corn masas.

    Science.gov (United States)

    Agama-Acevedo, Edith; Rendón-Villalobos, Rodolfo; Tovar, Juscelino; Trejo-Estrada, Sergio Rubén; Bello-Pérez, Luis Arturo

    2005-03-01

    Tortilla samples were elaborated by four small commercial factories in Mexico, employing masas prepared with the traditional nixtamalization process. Samples were stored at 4 degrees C for up to 72 hours and their chemical composition and in vitro starch digestibility features were evaluated. Chemical composition did not change with the storage time, but soluble carbohydrates decreased slightly during storage. A significant decrease in available starch content upon storage was observed, concomitant with increased resistant starch (RS) levels. These changes are possibly due to retrogradation. Retrograded resistant starch (RRS) values increased with storage time; in some samples, RRS represented more than 75% of total RS whereas in others it only accounted for 25%. The digestion rate (DR) in the freshly prepared tortillas was similar for the various samples, but after 72 h storage some differences among tortillas were found. Also, when a single tortilla sample was compared throughout the different storage times, lower DRs were determined in samples subjected to prolonged storage, which is related to the concomitant. increase in RRS. The differences found among the various tortilla samples may be due to minor variations in the commercial processing conditions and to the use of different corn varieties.

  8. 13CO2 breath test to measure the hydrolysis of various starch formulations in healthy subjects.

    OpenAIRE

    Hiele, M; Ghoos, Y; Rutgeerts, P; Vantrappen, G; de Buyser, K

    1990-01-01

    13CO2 starch breath test was used to study the effect of physicochemical characteristics of starch digestion. As starch is hydrolysed to glucose, which is subsequently oxidised to CO2, differences in 13CO2 excretion after ingestion of different starch products must be caused by differences in hydrolysis rate. To study the effect of the degree of chain branching, waxy starch, containing 98% amylopectin, was compared with high amylose starch, containing 30% amylopectin, and normal crystalline s...

  9. Supplemental cracked corn for steers fed fresh alfalfa: I. Effects on digestion of organic matter, fiber, and starch.

    Science.gov (United States)

    Elizalde, J C; Merchen, N R; Faulkner, D B

    1999-02-01

    The effect of supplementation with different levels of cracked corn on the sites of OM, total dietary fiber (TDF), ADF, and starch digestion in steers fed fresh alfalfa indoors was determined. Six Angus steers (338 +/- 19 kg) fitted with cannulas in the rumen, duodenum, and ileum consumed 1) alfalfa (20.4% CP, 41.6% NDF) ad libitum (AALF); 2), 3), and 4) AALF supplemented (S) with .4, .8, or 1.2%, respectively, of BW of corn; or 5) alfalfa restricted at the average level of forage intake of S steers (RALF), in a 5 x 5 Latin square design. Total OM intake was lower (P .05). Forage OM intake decreased (P fiber digestion was not affected.

  10. Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch

    OpenAIRE

    2011-01-01

    Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41) with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased....

  11. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking

    Science.gov (United States)

    Amylose can form inclusion complexes with guest molecules and represents an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose. To overcome this problem a ferulic acid ester, octadecyl ferulate, posses...

  12. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease (CKD)

    Science.gov (United States)

    Patients with advanced CKD exhibit profound changes in the composition and function of the gut microbiome. This is, in part, mediated by: I- heavy influx of urea in the intestinal tract leading to the dominance of urease-possessing bacteria and II- dietary restriction of potassium-rich fruits and ve...

  13. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease

    Science.gov (United States)

    Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammoni...

  14. Properties of High Amylose Starch-Beeswax Inclusion Complexes Prepared by Steam Jet Cooking

    Science.gov (United States)

    Amylose is known to form inclusion complexes with a large number of polar and non-polar organic compounds including fatty acids. Amylose inclusion complexes are proposed to be employed as carrier for delivering ligands with desired functional properties in food and nutritional supplement products. ...

  15. Physicochemical and Microstructural Characterization of Corn Starch Edible Films Obtained by a Combination of Extrusion Technology and Casting Technique.

    Science.gov (United States)

    Fitch-Vargas, Perla Rosa; Aguilar-Palazuelos, Ernesto; de Jesús Zazueta-Morales, José; Vega-García, Misael Odín; Valdez-Morales, Jesús Enrique; Martínez-Bustos, Fernando; Jacobo-Valenzuela, Noelia

    2016-09-01

    Starch edible films (EFs) have been widely studied due to their potential in food preservation; however, their application is limited because of their poor mechanical and barrier properties. Because of that, the aim of this work was to use the extrusion technology (Ex T) as a pretreatment of casting technique to change the starch structure in order to obtain EFs with improved physicochemical properties. To this, corn starch and a mixture of plasticizers (sorbitol and glycerol, in different ratios) were processed in a twin screw extruder to generate the starch modification and subsequently casting technique was used for EFs formation. The best conditions of the Ex T and plasticizers concentration were obtained using response surface methodology. All the response variables evaluated, were affected significatively by the Plasticizers Ratio (Sorbitol:Glycerol) (PR (S:G)) and Extrusion Temperature (ET), while the Screw Speed (SS) did not show significant effect on any of these variables. The optimization study showed that the appropriate conditions to obtain EFs with the best mechanical and barrier properties were ET = 89 °C, SS = 66 rpm and PR (S:G) = 79.7:20.3. Once the best conditions were obtained, the optimal treatment was characterized according to its microstructural properties (X-ray diffraction, Scanning Electron Microscopy and Atomic Force Microscopy) to determine the damage caused in the starch during Ex T and casting technique. In conclusion, with the combination of Ex T and casting technique were obtained EFs with greater breaking strength and deformation, as well as lower water vapor permeability than those reported in the literature. © 2016 Institute of Food Technologists®

  16. Potential application of corn starch edible films with spice essential oils for the shelf life extension of red meat.

    Science.gov (United States)

    Radha Krishnan, K; Babuskin, S; Rakhavan, K R; Tharavin, R; Azhagu Saravana Babu, P; Sivarajan, M; Sukumar, M

    2015-12-01

    To investigate the effect of corn starch (CS) edible films with spice oils on the stability of raw beef during refrigerated storage. The antimicrobial properties of corn starch films containing 0-4·0% (w/v) ratios of clove (CL) and cinnamon (CI) essential oils (EOs) were tested against seven meat spoilage organisms by zone inhibition test. Effects of CS films containing 3% CL or CI or a mixture of CL + CI were also tested in raw beef stored at 4°C. Meat samples were analysed for pH, microbial counts, colour values and Thiobarbituric acid reactive substances (TBARS) values for a period of 15 days. CS films with CL + CI resulted in a significant reduction in microbial populations in the meat samples and also improved meat colour stability at the end of storage period. The incorporation of spice EOs in CS films may provide antimicrobial and antioxidant activities that could improve the stability of raw meat. Results from this study may be applied in meat industries as an additional barrier to control microbial spoilage as well as lipid oxidation in meat products. © 2015 The Society for Applied Microbiology.

  17. Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles.

    Science.gov (United States)

    Yao, Ni; Paez, Alix V; White, Pamela J

    2009-03-11

    Four corn types with different doses of mutant amylose-extender (ae) and floury-1 (fl1) alleles, in the endosperm, including no. 1, aeaeae; no. 2, fl1fl1fl1; no. 3, aeaefl1; and no. 4, fl1fl1ae, were developed for use in making Hispanic food products with high resistant starch (RS) content. The RS percentages in the native starch (NS) of 1-4 were 55.2, 1.1, 5.7, and 1.1%, respectively. All NS were evaluated for pasting properties with a rapid viscoanalyzer (RVA) and for thermal properties with a differential scanning calorimeter (DSC). NS 1 had a low peak viscosity (PV) caused by incomplete gelatinization, whereas NS 3 had the greatest PV and breakdown of all four starch types. On the DSC, NS 2 had the lowest onset temperature and greatest enthalpy. NS 1 and 3 had similar onset and peak temperatures, both higher than those of NS 2 and 4. The gel strength of NS heated with a RVA was evaluated by using a texture analyzer immediately after RVA heating (fresh, RVA-F) and after the gel had been stored at 4 degrees C for 10 days (retrograded, RVA-R). NS 1 gel was watery and had the lowest strength (30 g) among starch gel types. NS 3 gel, although exhibiting syneresis, had greater gel strength than NS 2 and 4. The structures of the NS, the RS isolated from the NS (RS-NS), the RS isolated from RVA-F (RS-RVA-F), and the RS isolated from RVA-R (RS-RVA-R) were evaluated by using size exclusion chromatography. NS 1 had a greater percentage of amylose (AM) (58.3%) than the other NS (20.4-26.8%). The RS from all NS types (RS-NS) had a lower percentage of amylopectin (AP) and a greater percentage of low molecular weight (MW) AM than was present in the original NS materials. The RS-RVA-R from all starches had no AP or high MW AM. The percentages of longer chain lengths (DP 35-60) of NS were greater in 1 and 3 than in 2 and 4, and the percentages of smaller chain lengths (DP 10-20) were greater in 2 and 4 than in 1 and 3. In general, NS 3 seemed to have inherited some pasting

  18. Influence of glucan structure on the swelling and leaching properties of starch microparticles.

    Science.gov (United States)

    Bordenave, Nicolas; Janaswamy, Srinivas; Yao, Yuan

    2014-03-15

    Microparticles were made by a water-in-oil emulsion technique from acid-hydrolyzed and debranched normal, waxy and high-amylose corn starches. The starches prepared had a weight-average molecular weight (Mw) ranging 3.6 × 10(7)-2.5 × 10(4), a polydispersity ranging 1.16-9.16, an apparent amylose content ranging 2.84-100%. These microparticles exhibited crystallinity ranging 4.41-22.84%, swelling power ranging 2.45-7.84 and percentage of leaching ranging 1.72-74.91%. Swelling power in water (R(2)=0.86) and percentage of leaching in water (R(2)=0.89) were modeled by a response surface method, using the following parameters: Mw, polydispersity, apparent amylose content and crystallinity of starch in microparticles. Overall, this study showed the key parameters for controlling the behavior of starch microparticles were related to the cohesiveness of the three-dimensional network, particularly through the retrogradation of starch polymers, the formation of crystallites and junctions zones. Such microparticles could be used for designing economical and biocompatible delivery systems of compounds for food, drug, or other applications.

  19. Hydrocolloids Decrease the Digestibility of Corn Starch, Soy Protein, and Skim Milk and the Antioxidant Capacity of Grape Juice.

    Science.gov (United States)

    Yi, Yue; Jeon, Hyeong-Ju; Yoon, Sun; Lee, Seung-Min

    2015-12-01

    Hydrocolloids have many applications in foods including their use in dysphagia diets. We aimed to evaluate whether hydrocolloids in foods affect the digestibility of starch and protein, and their effects on antioxidant capacity. The thickening hydrocolloids: locust bean gum and carboxymethyl cellulose, and the gel-forming agents: agar agar, konjac-glucomannan, and Hot & Soft Plus were blended with corn starch and soy protein, skim milk, or grape juice and were examined for their in vitro-digestability by comparing the reducing sugar and trichloroacetic acid (TCA)-soluble peptide, for antioxidant capacity by total polyphenol contents and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. The hydrocolloids resulted in a decrease in starch digestibility with the gel-forming agents. Hydrocolloids diminished TCA-soluble peptides in skim milk compared to soy protein with the exception of locust bean gum and decreased free radical scavenging capacities and total phenolic contents in grape juice. Our findings may provide evidence for the use of hydro-colloids for people at risk of nutritional deficiencies such as dysphagia patients.

  20. FOAMED ARTICLES BASED ON POTATO STARCH, CORN AND WHEAT FIBRE, AND POLY(VINYL ALCOHOL)

    Science.gov (United States)

    Continued research cooperation between USDA Laboratories (USA) and the University of Pisa, Italy, has yielded several composites based on blends of poly(vinyl alcohol) (PVA) and either corn or wheat fibres, co-product of the corn-wheat wet-milling process. Foam trays were prepared by baking the blen...

  1. Effect of antimicrobial on mechanical, barrier and optical properties of corn starch based self-supporting edible film

    Directory of Open Access Journals (Sweden)

    Tanima Chowdhury

    2013-10-01

    Full Text Available Antimicrobials like potassium sorbate, sodium propionate, and benzoic acid were incorporated in corn starch based formulation to investigate their effect on mechanical, water vapour barrier and optical properties of the developed self supporting edible film. The film was prepared by casting technique. When incorporated at 1.40% and above, potassium sorbate decreased the tensile strength (about 22% and increased the elongation (about 55% of control film; whereas, it increased the water vapour permeability by 15% only when added at 2.66%. At 2.66%, benzoic acid reduced the tensile strength by 24% and sodium propionate increased elongation by 17%. These two antimicrobials did not change the water vapour permeability. However, all the three antimicrobials adversely affected the optical properties by decreasing the whiteness index, increasing yellowness index, and reducing the surface gloss, with potassium sorbate showing the maximum effect. Among the three antimicrobials, sodium propionate appeared to be the best with minimum deterioration of film properties.

  2. Effect of antimicrobial on mechanical, barrier and optical properties of corn starch based self-supporting edible film

    Directory of Open Access Journals (Sweden)

    Tanima Chowdhury

    2013-10-01

    Full Text Available Antimicrobials like potassium sorbate, sodium propionate, and benzoic acid were incorporated in corn starch based formulation to investigate their effect on mechanical, water vapour barrier and optical properties of the developed self supporting edible film. The film was prepared by casting technique. When incorporated at 1.40% and above, potassium sorbate decreased the tensile strength (about 22% and increased the elongation (about 55% of control film; whereas, it increased the water vapour permeability by 15% only when added at 2.66%. At 2.66%, benzoic acid reduced the tensile strength by 24% and sodium propionate increased elongation by 17%. These two antimicrobials did not change the water vapour permeability. However, all the three antimicrobials adversely affected the optical properties by decreasing the whiteness index, increasing yellowness index, and reducing the surface gloss, with potassium sorbate showing the maximum effect. Among the three antimicrobials, sodium propionate appeared to be the best with minimum deterioration of film properties.

  3. In vitro starch digestibility and predicted glycemic index of corn tortilla, black beans, and tortilla-bean mixture: effect of cold storage.

    Science.gov (United States)

    Sáyago-Ayerdi, S G; Tovar, Juscelino; Osorio-Díaz, P; Paredes-López, Octavio; Bello-Pérez, Luis A

    2005-02-23

    People in the rural areas of Mexico consume corn tortillas and beans as basic components of their diet. However, little is known about the nutritionally relevant features of starch present in such combined meals. The objective of the present study was to evaluate the in vitro bioavailability of starch in tortilla-bean mixtures stored at 4 degrees C for different times, as compared to that of corn tortilla and boiled black beans kept separately under the same conditions. Available starch (AS), resistant starch (RS), and retrograded resistant starch (RRS) contents were measured. The in vitro starch hydrolysis indices (HI) of freshly cooked and cold-stored samples were evaluated using a chewing/dialysis digestion protocol. HIs were used to predict glycemic indices (pGI) of the samples. AS in tortilla and beans decreased between 3 and 6% after 48-72 h, whereas values in the mixture fell by 3% after 48 h, with no further change by 72 h. Only minor rises in RS contents (1.5-1.6%) were recorded for tortilla and beans after 72 h of storage, and a lower increase (0.4%) was recorded in the mixture. Judging from RRS values, an important proportion of RS is due to starch retrogradation. The HI and pGI were higher in tortilla than in bean and the mixture. Hydrolysis rate values decreased in the stored samples, a pattern that corresponded with RS and RRS changes. The slow digestion features of common beans are largely retained by the legume-tortilla combination. Data support the perceived health beneficial properties of starch in this traditional cereal-legume food.

  4. Preparation of superabsorbent by graft copolymerization of acrylic acid onto corn starch using K2S2O8 and rare earths as initiators

    Institute of Scientific and Technical Information of China (English)

    BAI Yong-ping; LI Wei-dong; FENG Li-qun; ZHAO chao

    2008-01-01

    K2S2O8 and rare earths (RE) were used as initiators to prepare superabsorbents by graft copolymeri-zation of acrylic acid (AA) onto corn starch. The effects of monomer concentration, initiator K2S2O8 concentra-tion, cross-linker concentration, reaction temperature and the concentration ratio of RE and K2S2O8 on the graft copolymerization were studied in terms of the water absorption capacity of superabsorbents. Results indicate that the optimum conditions obtained for the grafting of AA onto 5g starch are as follows: AA of 75. 773 g/L, K2S2O8 of 0.437 g/L, RE of 0.874 g/L, cross-linker of 0.381 g/L and temperature of 70℃. The maximum water absorption capacity obtained is 740 g/g. The new method of graft polymerization is easily proceeded and controlled. The graft copolymers were characterized by infra-red spectroscopy, scanning electron microscopy and TG. Results characterized by IR and SEM give strong evidence for grafting of AA onto corn starch, and those characterized by TG reveal that the grafting of AA improves the thermostability of corn starch.

  5. Understanding the structure and digestibility of heat-moisture treated starch.

    Science.gov (United States)

    Wang, Hongwei; Zhang, Binjia; Chen, Ling; Li, Xiaoxi

    2016-07-01

    To rationalize the effects of heat-moisture treatment (HMT) on starch digestibility, the HMT-induced alterations in the mesoscopic and molecular scale structures of regular and high-amylose maize starches, as well as in their digestibility, were evaluated. Accompanying the supramolecular structural disorganizations and certain molecular degradation induced by HMT, somewhat molecular rearrangements occurred to probably form densely packed starch fractions, which eventually weakened starch digestion and thus transformed RDS into SDS and RS for regular and high-amylose starches. Interestingly, due to its larger amount of inter-helical water molecules that could be induced by HMT, B-polymorphic high-amylose starch was more susceptible to HMT (relative A-polymorphic regular starch), causing more prominent structural evolutions including molecular re-assembly and thus increasingly slowed digestion. In particular, the treated high-amylose starch with 30% moisture content showed a high SDS+RS content (48.3%). The results indicate that HMT-treated starch may serve as a functional ingredient with adjustable enzymatic digestibility for various food products.

  6. [Use of domestically produced corn starch in the manufacture of calcium carbonate tablets].

    Science.gov (United States)

    Gazikalović, E; Obrenović, D; Nidzović, Z; Toskić-Radojicić, M

    1998-01-01

    The results of the testing of calcium carbonate tablets, compounded with starch as the binding and decay substance are presented. The content of calcium carbonate in the tablets, as well as the mass varying, solidity, prodigality and aptness to decay were determined. The best properties were observed in the tablets with 15% starch mucilage, added suddenly, in the whole amount, to the prepared mixture of calcium carbonate and lactose. This procedure is fast and simple, and compound tablets of calcium carbonate are of regulated quality.

  7. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion.

    Science.gov (United States)

    Mendes, J F; Paschoalin, R T; Carmona, V B; Sena Neto, Alfredo R; Marques, A C P; Marconcini, J M; Mattoso, L H C; Medeiros, E S; Oliveira, J E

    2016-02-10

    Blends of thermoplastic cornstarch (TPS) and chitosan (TPC) were obtained by melt extrusion. The effect of TPC incorporation in TPS matrix and polymer interaction on morphology and thermal and mechanical properties were investigated. Possible interactions between the starch molecules and thermoplastic chitosan were assessed by XRD and FTIR techniques. Scanning Electron Microscopy (SEM) analyses showed a homogeneous fracture surface without the presence of starch granules or chitosan aggregates. Although the incorporation of thermoplastic chitosan caused a decrease in both tensile strength and stiffness, films with better extensibility and thermal stability were produced.

  8. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill

    Science.gov (United States)

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was 510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875

  9. Analysis of hydroxypropyl starch hydrolysates by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, M.; Kesavamoorthy, S.; Azemi, B.M.N.M.

    1985-08-01

    Acid hydrolysates of hydroxypropyl derivatives of wheat, maize, waxy maize and high amylose maize starches were separated using four HPLC procedures. An amine treated silica column gave best resolution of glucose and six nonglucose components. The proportions of these varied depending on the native starch and the acid used for hydrolysis. There was a linear relationship between molar substitution and ratio of nonglucose peak areas which varied between the native starches.

  10. The effect of partial gelatinization of corn starch on its retrogradation.

    Science.gov (United States)

    Fu, Zong-qiang; Wang, Li-jun; Li, Dong; Zhou, Yu-guang; Adhikari, Benu

    2013-09-12

    The objective of this work was to investigate the effect of partial gelatinization of starch on its retrogradation using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. The Avrami equation was used to predict the evolution of starch retrogradation kinetics. The degree of retrogradation in starch samples partially gelatinized 64°C (S64), 68°C (S68) and 70°C (S70) and control (S25) increased with storage time. The retrogradation enthalpies of S68 and S70 were almost four times as high as that of S64. The S25 and S64 had dominant A-type crystalline pattern while S68 and S70 showed dominant B-type crystalline pattern. The growth of remainder crystals was faster in S25 and S64, while both the nucleation and growth rates of new crystals were faster in S68 and S70. The Avrami model was found to represent the retrogradation kinetics data of these partially gelatinized starch samples quite satisfactorily (R(2)>0.95).

  11. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, L.K.

    1981-01-01

    The morphology, physiology and fermentation characteristics of this hitherto unrecognized species are described. The new Lactobacillus species can be differentiated from L. acidophilus, L. jensenii, and L. leichmannii on the basis of starch fermentation, G + C content, vitamin requirements and stereoisomerism of lactic acid produced. The type strain of L. amylovorus is NRRL B-4540. (Refs. 39).

  12. 银杏果淀粉与玉米、马铃薯淀粉理化性质的比较研究%Comparison of physical and chemical properties of ginkgo starchand corn,potato starch

    Institute of Scientific and Technical Information of China (English)

    李新华; 杨强; 王琳; 刘爽

    2012-01-01

    The physical and chemical properties of the ginkgo fruit starch extracted in the laboratory were studied,and compared with the corn starch and potato starch.The results showed that the transparency,solubility,turgidity of ginkgo starch were higher than corn starch,lower than potato starch;the retrogradation,freeze-thaw stability were superior to corn starch,worse than potato starch;starch milk concentration,shear force,medium had effect on the viscosity of ginkgo starch.%以实验室提取的银杏果淀粉为原料,对其性质进行研究,并与玉米淀粉和马铃薯淀粉的性质进行了比较。结果表明,银杏果淀粉的透明度、溶解度、膨胀度比玉米淀粉高,比马铃薯淀粉低;凝沉性、冻融稳定性比玉米淀粉强,比马铃薯淀粉差;淀粉乳浓度、剪切力、介质对银杏果淀粉的黏度都有影响。

  13. Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties

    NARCIS (Netherlands)

    Gomand, S.V.; Lamberts, L.; Visser, R.G.F.; Delcour, J.A.

    2010-01-01

    Physicochemical properties [swelling power (SP), pasting behaviour and retrogradation] of five wild type (wt), five amylose free (amf), four high-amylose (ha) potato starches (ps) and one wt and amf cassava starch (cs) were investigated. While swelling of wtps occurred in two phases, amfps showed a

  14. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films.

    Science.gov (United States)

    Alves, J S; dos Reis, K C; Menezes, E G T; Pereira, F V; Pereira, J

    2015-01-22

    Cellulose at the nanoparticle scale has been studied as a reinforcement for biodegradable matrices to improve film properties. The goal has been to investigate the properties of starch/gelatin/cellulose nanocrystals (CNC) films. Eleven treatments were considered using RCCD (rotatable central composite design), in addition to four control treatments. For each assay, the following dependent variables were measured: water vapor permeability (WVP), thickness, opacity and mechanical properties. The microstructure and thermal properties of the films were also assessed. Increases in gelatin and CNC concentrations lead to increases in film thickness, strength and elongation at break. The films containing only gelatin in their matrix displayed better results than the starch films, and the addition of CNC had a positive effect on the assessed response variables. The films exhibited homogeneous and cohesive structures, indicating strong interactions between the filler and matrix. Films with low levels of gelatin and CNC presented the maximum degradation temperature.

  15. Effect of glycerol monostearate on the gelatinization behavior of maize starches with different amylose contents

    OpenAIRE

    2015-01-01

    The effect of different concentrations (1, 2, and 3%w/w) of glycerol monostearate (GMS) on gelatinization behavior of normal maize starch (NMS), waxy maize starch (WMS), and high amylose maize starch (HAMS) was evaluated. Leaching of amylose and solubility decreased in all starches with added GMS. Gelatinization temperatures increased in NMS but there was no change in WMS. During first heating in DSC, only NMS with added GMS displayed the dissociation peak of amylose-lipid complex. In cooling...

  16. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Granulomatous peritonitis caused by glove starch.

    OpenAIRE

    Michowitz, M.; Stavorovsky, M.; Ilie, B.

    1983-01-01

    Corn starch particles are used as a surgical glove lubricant. At present there is no better alternative for this lubricant. Implantation of corn starch particles into the peritoneal cavity can induce foreign body reactions, starch peritonitis and starch granulomata, and may cause adhesions and intestinal obstruction. Starch peritonitis should be treated conservatively.

  18. Permeability of starch gel matrices and select films to solvent vapors.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur P; Ludvik, Charles; Shey, Justin; Imam, Syed H; Chiou, Bor-Sen; McHugh, Tara; DeGrandi-Hoffman, Gloria; Orts, William; Wood, Delilah; Offeman, Rick

    2006-05-03

    Volatile agrochemicals such as 2-heptanone have potential in safely and effectively controlling important agricultural pests provided that they are properly delivered. The present study reports the permeability of starch gel matrices and various coatings, some of which are agricultural-based, that could be used in controlled release devices. Low-density, microcellular starch foam was made from wheat, Dent corn, and high amylose corn starches. The foam density ranged from 0.14 to 0.34 g/cm3, the pore volume ranged from 74 to 89%, and the loading capacity ranged from 2.3 to 7.2 times the foam weight. The compressive properties of the foam were not markedly affected by saturating the pore volume with silicone oil. The vapor transmission rate (VTR) and vapor permeability (VP) were measured in dry, porous starch foam and silicone-saturated starch gels. VTR values were highest in foam samples containing solvents with high vapor pressures. Silicone oil-saturated gels had lower VTR and VP values as compared to the dry foam. However, the silicone oil gel did not markedly reduce the VP for 2-heptanone and an additional vapor barrier or coating was needed to adequately reduce the evaporation rate. The VP of films of beeswax, paraffin, ethylene vinyl alcohol, a fruit film, and a laminate comprised of beeswax and fruit film was measured. The fruit film had a relatively high VP for polar solvents and a very low VP for nonpolar solvents. The laminate film provided a low VP for polar and nonpolar solvents. Perforating the fruit film portion of the laminate provided a method of attaining the target flux rate of 2-heptanone. The results demonstrate that the vapor flux rate of biologically active solvents can be controlled using agricultural materials.

  19. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.

    Science.gov (United States)

    Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing

    2017-04-01

    Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains.

  20. Effect of corn preparation methods on dry-grind ethanol production by granular starch hydrolysis and partitioning of spent beer solids.

    Science.gov (United States)

    Lamsal, B P; Wang, H; Johnson, L A

    2011-06-01

    Two corn preparation methods, rollermill flaking and hammermill grinding, were compared for efficient processing of corn into ethanol by granular starch hydrolysis and simultaneous fermentation by yeast Saccharomyces cerevisiae. Corn was either ground in a hammermill with different size screens or crushed in a smooth-surfaced rollermill at different roller gap settings. The partitioning of beer solids and size distribution of solids in the thin stillage were compared. The mean particle diameter d(50) for preparations varied with set-ups and ranged between 210 and 340 μm for ground corn, and 1180-1267 μm for flaked corn. The ethanol concentrations in beer were similar (18-19% v/v) for ground and flaked preparations, however, ethanol productivity increased with reduced particle size. Roller versus hammermilling of corn reduced solids in thin stillage by 28%, and doubled the volume percent of fines (d(50) ∼ 7 μm)in thin stillage and decreased coarse (d(50) ∼ 122 μm) by half compared to hammermilling.

  1. Molecular rearrangement of waxy and normal maize starch granules during in vitro digestion.

    Science.gov (United States)

    Teng, Anju; Witt, Torsten; Wang, Kai; Li, Ming; Hasjim, Jovin

    2016-03-30

    The objective of the present study is to understand the changes in starch structures during digestion and the structures contributing to slow digestion properties. The molecular, crystalline, and granular structures of native waxy maize, normal maize, high-amylose maize, and normal potato starch granules were monitored using SEC, XRD, DSC, and SEM. The amylose and amylopectin molecules of all four starches were hydrolyzed to smaller dextrins, with some having linear molecular structure. Neither the A- nor B-type crystallinity was resistant to enzyme hydrolysis. Starch crystallites with melting temperature above 120°C appeared in waxy and normal maize starches after digestion, suggesting that the linear dextrins retrograded into thermally stable crystalline structure. These crystallites were also observed for high-amylose maize starch before and after digestion, contributing to its low enzyme digestibility. On the contrary, the enzyme-resistant granular structure of native normal potato starch was responsible for its low susceptibility to enzyme hydrolysis.

  2. 黄原胶对玉米淀粉糊化性能的影响%Effects of xanthan gum on pasting properties of corn starch

    Institute of Scientific and Technical Information of China (English)

    石点; 吴孟茹; 朱谱新

    2011-01-01

    Xanthan gum was introduced into a corn starch size, and Rapid Viscosity Analyzer (RVA)was applied to investigate the effect of the addition of xanthan gum on pasting properties of the corn starch and the apparent viscosity of the sizing liquor. The interactions between xanthan gum and corn starch were discussed. The results revealed that the xanthan gum could facilitate the pasting of corn starch,lower pasting temperature, and shorten pasting time. The peak viscosity increased with the increase of xanthan gum content, which indicated some interactions between xanthan gum and corn starch. The compatibility of the two components decreased with the increase of xanthan gum content, which was reflected by the increased decay viscosity of the blended paste. An uncommon decrease in the viscosity,as the temperature of the sizing liquor cooled down to 50 ℃ and the content of xanthan gum was 5.5%,suggested that a phase separation of the system occurred.%将黄原胶引入到淀粉浆料中,采用快速黏度分析法(RVA)研究了黄原胶的加入对玉米淀粉糊化性能和浆液表观黏度的影响,讨论了黄原胶与玉米淀粉分子之间的相互作用.结果表明:黄原胶可促进淀粉糊化,降低淀粉的糊化温度,缩短糊化时间;随着黄原胶质量分数的增加,淀粉的糊化峰值黏度增加,表现了2种高分子的相互作用;黏度衰减值随黄原胶增加而增大,表现了其相容性随之减小;浆液冷却至50℃的黏度变化表明,黄原胶质量分数≥5.5%以后体系出现相分离.

  3. Effects of ruminal doses of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells.

    Science.gov (United States)

    Oba, M; Mewis, J L; Zhining, Z

    2015-01-01

    The objective was to evaluate effects of a ruminal dose of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells. Six ruminally cannulated nonlactating nonpregnant Holstein cows (body weight=725±69.6kg) were assigned to treatments in a 3×3 Latin square design with 7-d periods; 1d for data and sample collection followed by a 6-d washout period. Cows were fed a diet containing whole-crop barley silage and dry ground corn, and dietary neutral detergent fiber and crude protein contents were 41.8 and 13.2% [dry matter (DM) basis], respectively. Treatment was a pulse-dose of sucrose, lactose, and corn starch (3.0, 3.0, and 2.85kg of DM, respectively; providing similar amounts of hexose across the treatments) through the ruminal cannulas. All treatments were given with alfalfa silage (1.75kg DM) to prevent acute rumen acidosis. Rumen pH was continuously monitored, and rumen fluid was sampled at 0, 30, 60, 90, 120, 150, and 180min after the dose. In addition, ruminal papillae were sampled from the ventral sac at 180min after the dose. Ruminal dosing with sucrose and lactose, compared with corn starch, increased ruminal total volatile fatty acid concentration and molar proportion of butyrate from 60 to 180min after the dose, and expression of genes for sodium hydrogen exchanger isoforms 1 and 2, and ATPase isoform 1 in ruminal epithelial cells. Ruminal dosing with sucrose, compared with lactose and corn starch, decreased rumen pH from 120 to 180min after the dose and molar proportion of acetate in ruminal fluid from 60 to 150min after the dose, and increased molar proportion of propionate in ruminal fluid from 60 to 150min, and expression of genes involved in butyrate metabolism (3-hydroxy-3-methylglutaryl-coenzyme A synthase isoform 1) and anion exchange across ruminal apical cell membrane (putative anion transporter isoform 1). These results suggest that replacing dietary starch with sugars may affect ruminal

  4. High-resolution time-of-flight mass spectrometry fingerprinting of metabolites from cecum and distal colon contents of rats fed resistant starch

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Timothy J. [Ames Laboratory; Jones, Roger W. [Ames Laboratory; Ai, Yongfeng [Iowa State University; Houk, Robert S. [Ames Laboratory; Jane, Jay-lin [Iowa State University; Zhao, Yinsheng [Iowa State University; Birt, Diane F. [Iowa State University; McClelland, John F. [Ames Laboratory

    2013-12-04

    Time-of-flight mass spectrometry along with statistical analysis was utilized to study metabolic profiles among rats fed resistant starch (RS) diets. Fischer 344 rats were fed four starch diets consisting of 55 % (w/w, dbs) starch. A control starch diet consisting of corn starch was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. A subgroup received antibiotic treatment to determine if perturbations in the gut microbiome were long lasting. A second subgroup was treated with azoxymethane (AOM), a carcinogen. At the end of the 8-week study, cecal and distal colon content samples were collected from the sacrificed rats. Metabolites were extracted from cecal and distal colon samples into acetonitrile. The extracts were then analyzed on an accurate-mass time-of-flight mass spectrometer to obtain their metabolic profile. The data were analyzed using partial least-squares discriminant analysis (PLS-DA). The PLS-DA analysis utilized a training set and verification set to classify samples within diet and treatment groups. PLS-DA could reliably differentiate the diet treatments for both cecal and distal colon samples. The PLS-DA analyses of the antibiotic and no antibiotic-treated subgroups were well classified for cecal samples and modestly separated for distal colon samples. PLS-DA analysis had limited success separating distal colon samples for rats given AOM from those not treated; the cecal samples from AOM had very poor classification. Mass spectrometry profiling coupled with PLS-DA can readily classify metabolite differences among rats given RS diets.

  5. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  6. Effects of some extrusion variables on physicochemical characteristics of extruded corn starch-passion fruit pulp (Passiflora edulis) snacks.

    Science.gov (United States)

    Cortés, R Nallely Falfán; Guzmán, Iñigo Verdalet; Martínez-Bustos, Fernando

    2014-12-01

    The aim of this work was to study the effect of the addition of passion fruit pulp (PFP: 0-7%), the variation of barrel temperature in the third zone extruder (BT: 80-140 °C) and feed moisture (FM:16-30%) in a blend of corn starch and passion fruit pulp on different physicochemical characteristics of directly expanded snacks by extrusion technology. Single-screw laboratory extruder and a central, composite, rotatable experimental design were used. Expansion index of extrudates ranged between 1.0 and 1.8. Decreasing of feed moisture (18%), passion fruit pulp concentration (1.42%) and the increasing of barrel temperature (127 °C) resulted in higher expansion index. The increasing of feed moisture and passion fruit pulp concentration resulted in higher penetration force values of extrudates. The passion fruit pulp concentration showed a highly significant effect (p ≤ 0.01) on the L *, a * and b * parameters. Passion fruit pulp has a reasonable source of β-carotene, proteins and dietary fibers that can be added to expanded snacks.

  7. Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch

    Directory of Open Access Journals (Sweden)

    Fernando Martínez-Bustos

    2011-12-01

    Full Text Available Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41 with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased. An increase in the contents of fiber and in the barrel temperature resulted in a decrease in the expansion index values and an increase in the water absorption index values; whereas in blends with intermediate fiber contents the effects in these parameters were found to be the opposite. High fiber contents increased penetration force but decreased luminosity, water solubility index values and the adhesive force in gels. The extrusion process improved the functional properties of sugarcane fiber bagasse enabling its addition to diverse alimentary systems.

  8. Particle size fractionation of high-amylose rice (Goami 2) flour as an oil barrier in a batter-coated fried system

    Science.gov (United States)

    The particle size effects of high-amylose rice (Goami 2) flour on quality attributes of frying batters were characterized in terms of physicochemical, rheological, and oil-resisting properties. High-amylose rice flours were fractionated into four fractions (70, 198, 256, and 415 µm) of which morpho...

  9. 复合酶酶解制备微孔糯玉米淀粉%Micro-porous Waxy Corn Starch Prepared by Compound Enzyme Enzymolysis

    Institute of Scientific and Technical Information of China (English)

    唐洪波; 王晓宇; 李艳平

    2011-01-01

    以糯玉米淀粉为原料,以α-淀粉酶和葡萄糖淀粉酶复合酶解制备了多孔淀粉,考察了复合酶用量、酶配比、酶解pH、酶解温度和酶解时间对微孔糯玉米淀粉成孔的影响.试验结果表明,上述5个因素对微孔糯玉米淀粉的成孔均有影响.制备微孔糯玉米淀粉的较佳工艺条件为:α-淀粉酶和葡萄糖淀粉酶的比例1∶3,酶解温度55℃,酶解时间12h,pH 5.0,复合酶用量1.5%.比较了容积率法与吸油率法测定微孔糯玉米淀粉成孔的一致性,通过扫描电子显微镜分析微孔糯玉米淀粉的孔结构.%Micro - porous starch was prepared by using waxy com starch as raw material, through the enzymolys-is of compound enzyme composed of a - amylase and glucoamylase in this paper. The effects of factors such as amount of compound enzyme, ratio of α - amylase to glucoamylase, enzymolysis pH, enzymolysis temperature, and enzymolysis time on the pore - forming of waxy corn starch, were discussed. The results showed that the pore - forming of waxy corn starch was influenced by amount of compound enzyme, ratio of a - amylase to glucoamylase, enzymolysis pH value , enzymolysis temperature and enzymolysis time. The better technology conditions of preparing micro - porous waxy com starch were mass ratio of α - amylase to glucoamylase 1: 3, enzymolysis temperature 55 °C, enzymolysis time 12 h, enzymolysis pH 5.0, and amount of compound enzyme 1.5% respectively. The pore - forming consistency of micro - porous waxy corn starch was compared by the volume rate method and oil absorption rate method. The pore structure of micro - porous waxy com starch was observed by SEM.

  10. Processamento de amido de milho em câmara de mistura Peocessing of corn starch in an internal mixer

    Directory of Open Access Journals (Sweden)

    Marcia C. Silva

    2004-06-01

    Full Text Available Misturas de amido de milho e água nas proporções 70:30, 80:20 e 90:10% (p/p foram submetidas a processamento a 90°C, sob diferentes velocidades de rotação (20, 40, 80 e 100rpm, em câmara de mistura Rheomix 600 equipada com rotores do tipo "roller". A influência do teor de água e da velocidade de rotação dos rotores no processamento do amido de milho foi investigada por meio de curvas de torque e de temperatura fornecidas pelo reômetro de torque Rheocord 9000. Análises em Analisador Rápido de Viscosidade e por microscopia óptica de luz polarizada foram realizadas, a fim de complementar as informações registradas pelas curvas de torque e de temperatura. Os resultados mostraram que o teor de água e a rotação empregada no processamento exercem influência significativa nas características do amido processado. Os menores teores de água (10 e 20% p/p e as velocidades de rotação mais elevadas (80 e 100rpm contribuíram para a maior degradação do amido. Nas misturas com teor de água de 30% (p/p, sob as velocidades de rotação empregadas, a função plastificante da água contribuiu para minimizar o efeito do cisalhamento, já que a degradação do amido não foi observada. Nesses casos, a estrutura granular do amido foi preservada em grande parte durante o processamento.Corn starch/water mixtures at compositions of 70:30, 80:20 and 90:10 (w/w % were submitted to processing at 90ºC and different rates (20, 40, 80 and 100rpm in an internal mixer (Rheomix 600, equipped with counter-rotating roller type rotors. The effect of the water content and of the rotation rate on the starch processing was investigated by torque and temperature curves given by the in-line Rheocord 9000 torque rheometer. Viscosity measurements, carried out in a Rapid Visco Analyser (RVA, and optical microscopy analysis were performed on the processed samples to complement the rheometry data. The results indicated that the water content and the rotation rate

  11. Progress of the effect factors of freeze-thawing behavior and modification mechanisms of corn starch%玉米淀粉颗粒冻融特性影响因素及机制研究进展

    Institute of Scientific and Technical Information of China (English)

    余世锋; 郑喜群

    2012-01-01

    玉米淀粉是一种供应稳定、价格低廉,广泛应用于焙烤食品、医药及食品工业等领域的重要原材料。综述了玉米淀粉变性方法现状,详细分析了玉米淀粉颗粒冻融特性的影响因素,探讨了玉米淀粉颗粒冻融变性机制,玉米淀粉颗粒冻融变性机制可能是冰晶微机械破坏力和水分迁移渗透压力共同作用的结果。%Corn starch was one of the most important industry materials, which is widely used in baking foods, pharmacology and food manufacturing. In the paper, the modification methods of corn starch were reviewed, and the effect factors of freeze-thawing behavior of corn starch granule were analyzed. The corn starch modification mechanism of freeze-thawing was discussed, and the corn starch granule modification mechanisms maybe were the destruction of ice-matrix expansion pressure and water penetration pressure together.

  12. Screening of different wheat protease hydrolysates inhibiting retrogradation of corn starch%抑制玉米淀粉回生的面粉蛋白酶解液筛选

    Institute of Scientific and Technical Information of China (English)

    郭俊杰; 康海岐; 孙海波; 连喜军; 李琳

    2014-01-01

    为防止玉米淀粉食品会因回生而降低品质,该文利用酸性、中性和碱性3种蛋白酶水解小麦面粉中的球蛋白、谷蛋白和醇溶蛋白,研究酶解物中混合多肽对玉米淀粉回生的影响。研究结果表明,酸性蛋白酶水解谷蛋白所得多肽混合液能强烈抑制玉米淀粉回生,使玉米淀粉回生率由14.0%降低到8.0%。其他2种水解物促进玉米淀粉回生,促进最多的是碱性蛋白酶水解醇溶蛋白,使玉米淀粉回生率由14.0%升高到19.5%。通过红外和核磁分析了混合多肽抑制或促进玉米淀粉回生的可能机理。研究成果为控制淀粉回生提供一条全新的途径。%Retrogradation is the molecular interaction that occurs between glucan molecules in gelatinized starch during cooling. It profoundly affects quality, acceptability, and shelf-life of starch-containing foods. Corn starch is cheap and is widely used in foods such as instant noodles, sausages, pastries, etc. But the quality of these foods in hardness, digestion, compatibility, etc, becomes deteriorated during storage due to starch retrogradation. Wheat gluten is a kind of nutritious, high quality, and inexpensive plant-based protein. It is often suggested that gluten has an anti-firming effect in bread, but the reason for this is not clear. There are four kinds of proteins in wheat flour:albumin, globulin, glutenin, and gliadin. In order to find the peptides with the ability of hindering corn starch retrogradation, these proteins were hydrolyzed by acid, neutral, and alkali proteases. The effects of these peptides in hydrolysate of globulin, glutenin, and gliadin on the retrogradation of corn starch were carried out in this paper. The results showed that the peptides from hydrolysis of glutenin by acid protease strongly inhibited retrogradation of corn starch, lowering the retrogradation rate of corn starch from 14.0%to 8.0%. Other hydrolysis promoted the retrogradation of corn starch

  13. One step preparation of spherical drug particles by contamination-free dry milling technique with corn starch beads.

    Science.gov (United States)

    Niwa, Toshiyuki; Yoshida, Maria; Hayashi, Naoko; Kondo, Keita

    2017-08-07

    The novel dry milling technique has been developed by using a mechanical powder processor for improving the dissolution properties of poorly water-soluble drugs. It was found that the drug crystals were well pulverized by co-processing with fine particles of corn starch (CS). The morphological observation and particle size evaluation revealed that the processed products formed the composite particles with ordered-mixed structure, having double-layered particles with a core of CS and a coating layer of phenytoin (Phe), as a model drug. This result suggested that the drug crystals were selectively micronized and the resultant miniaturized Phe particles were adhered/fixed on the surface of un-milled CS particles. The mechanical characteristics detected by the indentation test assumed that the brittle Phe crystals sandwiched between elastic CS particles would be successfully crushed down by high shearing stress in the processor. The newly-established dispersion-sedimentation test indicated that the fine Phe particles were immediately detached from the composite particles in aqueous phase, constructing the suspension. The dissolution behavior from the processed particles was found to be improved and strongly dependent on the size and amount of detached Phe particles. Such milling and ordered-mixturization have been also successfully done by using recrystallized larger Phe particles than 100μm. These results would propose the contamination-free dry milling technique without using hard milling balls or beads. The mechanism of the current milling and ordered-mixing phenomena is also provided in this report. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. 羧甲基玉米淀粉合成过程的优化%The optimization of carboxymethyl corn starch synthesis process

    Institute of Scientific and Technical Information of China (English)

    王华; 谭艳君; 李超; 马佳利

    2014-01-01

    以乙醇溶液为介质,分析乙醇浓度、乙醇用量、反应温度、反应时间、nNaOH/nAGU 、nMCA/nAGU等因素对羧甲基玉米淀粉取代度的影响.通过Box-Behnken实验设计和SAS确定羧甲基玉米淀粉合成的最佳反应条件:乙醇浓度93.5%、反应温度60℃、反应时间265min、nNaOH/nAGU =2.6、nMCA/nAGU =1.25,在此条件下合成的羧甲基玉米淀粉的取代度为0.914、原糊质量分数为4%时的黏度为6590mPa · s .%Using ethanal as medium ,the effects of ethanol concentration ,ethanol dosage ,reaction tem-perature ,reaction time ,nNaOH/nAGU ,nMCA/nAGU and other factors on the substitution degree of carboxym-ethyl corn starch was studied .And according to Box-Behnken experimental design and SAS ,the optimal reaction conditions on carboxymethyl corn starch synthesis was determined :ethanol concentration of 93.5% ,reaction temperature of 60℃ ,reaction time of 265 min ,nNaOH/nAGU of=2.6 ,nMCA/nAGU =1.25 . And under this condition ,carboxymethyl corn starch with the substitution degree of 0 .914 can be made , and w hile the mass fraction of original paste is 4% ,the viscosity of original paste is 6 590mPa · s .

  15. In situ identification and quantification of starch-hydrolyzing bacteria attached to barley and corn grain in the rumen of cows fed barley-based diets.

    Science.gov (United States)

    Xia, Yun; Kong, Yunhong; Seviour, Robert; Yang, Hee-Eun; Forster, Robert; Vasanthan, Thavaratnam; McAllister, Tim

    2015-08-01

    Cereal grains rich in starch are widely used to meet the energy demands of high-producing beef and dairy cattle. Bacteria are important players in starch digestion in the rumen, and thus play an important role in the hydrolysis and fermentation of cereal grains. However, our understanding of the composition of the rumen starch-hydrolyzing bacteria (SHB) is limited. In this study, BODIPY FL DQ starch staining combined with fluorescence in situ hybridization (FISH) and quantitative FISH were applied to label, identify and quantify SHB possessing active cell-surface-associated (CSA) α-amylase activity in the rumen of heifers fed barley-based diets. When individual cells of SHB with active CSA α-amylase activity were enumerated, they constituted 19-23% of the total bacterial cells attached to particles of four different cultivars of barley grain and corn. Quantitative FISH revealed that up to 70-80% of these SHB were members of Ruminococcaceae in the phylum Firmicutes but were not Streptococcus bovis, Ruminobacter amylophilus, Succinomonas amylolytica, Bifidobacterium spp. or Butyrivibrio fibrisolvens, all of whose amylolytic activities have been demonstrated previously in vitro. The proportion of barley grain in the diet had a large impact on the percentage abundance of total SHB and Ruminococcaceae SHB in these animals.

  16. Influence of ensiling, exogenous protease addition, and bacterial inoculation on fermentation profile, nitrogen fractions, and ruminal in vitro starch digestibility in rehydrated and high-moisture corn.

    Science.gov (United States)

    Ferraretto, L F; Fredin, S M; Shaver, R D

    2015-10-01

    Exogenous protease addition may be an option to increase proteolysis of zein proteins and thus starch digestibility in rehydrated and high-moisture corn (HMC) ensiled for short periods. In addition, microbial inoculation may accelerate fermentation and increase acid production and thus increase solubilization of zein proteins. Four experiments were performed to evaluate the effect on fermentation profile, N fractions, and ruminal in vitro starch digestibility (ivSD) of the following: (1) rehydration and ensiling of dry ground corn; (2) exogenous protease addition to rehydrated un-ensiled and ensiled corn; (3) exogenous protease addition or inoculation in rehydrated ensiled corn; and (4) exogenous protease addition or inoculation in HMC. Experiments 1, 2, and 3 were performed with 7 treatments: dry ground corn (DGC); DGC rehydrated to a targeted dry matter content of 70% (REH); REH treated with exogenous protease (REH+); REH ensiled for 30 d (ENS); ENS treated with exogenous protease (ENS+); ENS treated with a microbial inoculant containing Lactobacillus plantarum, Lactobacillus casei, Enterococcus faecium, and Pediococcus sp. (ENSI); and ENS treated with exogenous protease and microbial inoculant (ENSI+). Experiment 1 compared DGC, REH, and ENS with ivSD being greater for ENS (64.9%) than DGC and REH (51.7% on average). Experiment 2 compared REH and ENS without or with exogenous protease addition (REH+ and ENS+, respectively). Ensiling and exogenous protease addition increased ivSD, but exogenous protease addition was more effective in ENS than REH (6.4 vs. 2.6 percentage unit increase). Experiment 3 compared the effects of exogenous protease addition and inoculation in ENS corn (ENS, ENS+, ENSI, and ENSI+). The addition of protease, but not inoculant, increased ivSD. Inoculation reduced pH and acetate, propionate, and ethanol concentrations, and increased lactate and total acid concentrations. In experiment 4, 8 treatments were a combination of HMC noninoculated

  17. Experimental study on the rheological properties of starch gels of buckwheat, corn and potato%荞麦、玉米、马铃薯淀粉凝胶特性的试验研究

    Institute of Scientific and Technical Information of China (English)

    汪小芳; 李小昱; 王为

    2006-01-01

    利用电子万能材料试验机对荞麦、玉米、马铃薯淀粉的力学特性进行了研究.结果表明:在一定范围内,随着淀粉乳浓度的增加,荞麦、玉米、马铃薯的凝胶强度、弹性模量和凝胶弹性呈线性增加,但凝胶弹性变化较小;同一淀粉乳浓度下凝胶强度由高到低顺序为马铃薯淀粉>玉米淀粉>荞麦淀粉,弹性模量为马铃薯淀粉>玉米淀粉>荞麦淀粉,凝胶弹性为荞麦淀粉>玉米淀粉>马铃薯淀粉.在淀粉乳浓度为20%时,随着NaCl浓度增加,3种淀粉的凝胶强度均有一定程度增强.在同一NaCl浓度下,其凝胶强度为马铃薯淀粉>玉米淀粉>荞麦淀粉,弹性模量为马铃薯淀粉>玉米淀粉>荞麦淀粉,对凝胶弹性的影响不大.%The mechanical properties of starch gels of buckwheat, corn and potato were tested with All-purpose Electronic Tester. The test results show that the gel strength, elastic modulus and gel elasticity of buckwheat starch, corn starch and potato starch increase linearly with the increase of starch concentration, while the increase trend of gel elasticity changes little. Under the condition of the same starch concentration, the gel strength, elastic modulus and gel elasticity of three different starches behave in different orders: the gel strength and elastic modulus of starch follows the same trend, the first is potato starch and the last is buckwheat starch; while the gel elasticity of starch order is reverse, the first is buckwheat starch and the last is potato starch. When the starch concentration is 20%, the gel strengths of three starches increase with the increase of NaCl concentration. Under the condition of same NaCl concentration, the gel strength and elastic modulus of starch follow the same trend, the first is potato starch and the last is buckwheat starch; but it has little effect on gel elasticity.

  18. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  19. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria

    Science.gov (United States)

    High-amylose maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Our working hypothesis is that HAMRS2-induced...

  20. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    Science.gov (United States)

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing.

  1. Preparation and Characterization of Release Film from Corn Starch%玉米淀粉基缓释膜的制备及表征

    Institute of Scientific and Technical Information of China (English)

    杨铁金; 王琦; 厉悦; 刘敏; 刘亚红

    2011-01-01

    [ Objective ] The research aimed to study the preparation and characterization of release film from corn starch. [ Method ] The coated fertilizer was prepared by coating material,which was synthesized by corn starch,polyvinyl alcohol (PVA) and additives. Effects of additives included in coating materials on the slow-release fertilizer were studied in detail. The construction of the membrane was analyzed and characterized by IR spectrum and TG. The effectible factors and optimum conditions of the membranes prepared were investigated. [ Result ] The best reaction condition of the preparation of release film from corn starch was as following:starch:PVA = 1∶1 ,PVA content of 15% ,tween of 0.2 ml,urea of 0.5 g, glycerin of 1.5 g, formaldehyde of 2 ml, borax of 0.2 g, evocator of 0.5 %, reaction for 30 min, reaction temperature of 80 ℃.[ Conclusion ] The release film has characteristics of low cost, biodegradation, no pollution.%[目的]研究玉米淀粉基缓释膜的制备条件及特征.[方法]以玉米淀粉与聚乙烯醇为原料,在交联剂的作用下,制得包膜料液,用此料液给尿素涂膜,制得包膜尿素.通过红外光谱时膜的结构进行表征和分析,研究改性淀粉膜的形成条件和影响因素.[结果]制备玉米淀粉基缓释膜的最佳反应条件是淀粉和PVA的质量比为1:1,PVA的含量为15%,吐温0.2 ml,尿素0.5 g,丙三醇1.5 g,甲醛2ml,硼砂0.2 g,引发剂用量0.5%,反应30 min,反应温度控制在80℃.[结论]制备得到的包膜材料具有成本低、可生物降解、无环境污染等特点.

  2. 月桂酸玉米淀粉酯的合成工艺研究%Study on Synthesis of Corn Laurate Starch

    Institute of Scientific and Technical Information of China (English)

    高艳; 蒋利丽; 杨文静; 汪兰

    2012-01-01

    以玉米淀粉与月桂酸为原料,脂肪酶为催化剂,干法制备了低取代度的月桂酸玉米淀粉酯.以取代度和特性黏度为评价标准,对影响月桂酸玉米淀粉酯合成的因素:反应时间、反应温度、水分添加量、脂肪酶添加量和月桂酸添加量进行研究.并在此基础上,进行了4因素3水平的正交试验.用DPS软件对正交试验结果进行方差分析,得出了月桂酸玉米淀粉酯合成的最佳工艺条件:以20 g淀粉干基计,月桂酸添加量5%,酶添加量2.5%,水分添加量25%,反应时间3h,温度60 ℃.%Corn laurate starch was prepared by esterification of corn starch with lauric acid, and lipase was added as catalyzer. The effects of the varieties of factors on the degree of substitute ( DS) and intrinsic viscosity are studied , including reactive temperature and time,the quantity of water,lipase and lauric acid. Based on those,the four -factor three - level orthogonal experiments are designed to optimize the technology, and the experimental data was processed by the DPS for variance analysis. The most optimal process condition is as follows: starch amount of 20 g( absolutely dry),lauric acid of 5% ,lipase of 2.5% ,initial water content of 25% ,reaction time of 3 h,temperature of 60 ℃.

  3. End-product quality characteristics and consumer response of chickpea flour-based gluten-free muffins containing corn starch and egg white.

    Science.gov (United States)

    Alvarez, María Dolores; Herranz, Beatriz; Jiménez, María José; Canet, Wenceslao

    2017-03-15

    The objective of this work was to study changes in technological characteristics and sensory properties of gluten-free muffins when using chickpea flour (CF) alone and/or with partial CF replacement by corn starch (CS). The effect of partial whole egg replacement by egg white (EW) was also investigated. Four different CF:CS ratios (100:0, 75:25, 50:50, and 25:75) were used in formulations with and without incorporated EW, and compared with wheat flour (WF) muffins (0:0). Muffins prepared from CF alone had lower hardness, springiness, cohesiveness, chewiness, and resilience than control ones. However, reducing protein content by CS addition significantly increased texture profile analysis parameters of muffin crumb. Muffins prepared with 25:75 ratio had a structure with springiness similar to muffins made with WF but were too hard. Reducing whole egg content by partial replacement with EW also significantly increased muffin hardness. Flash profile performed by consumers showed a clear discrimination of muffins according to CF:CS ratio. Muffins containing both CF and CS at 50:50 ratio had the same high overall acceptability and purchase intention as gluten ones. Gluten-free CF-based muffins of satisfactory quality can be manufactured by CS incorporation, either with or without EW. By decreasing and increasing protein and starch contents of chickpea flour (CF) by incorporation of corn starch (CS), muffins formulated from a combination of CF and CS at different CF:CS ratios, either with or without partial replacement of whole egg with egg white, result in high-quality muffins with similar technological and sensory characteristics to those of their gluten counterparts. Sensory overall acceptability and purchase intention of muffins made with a 50:50 ratio did not differ significantly from those of the controls. These findings will benefit celiac population, while promoting the value and utilization of pulses through muffins. © 2017 Wiley Periodicals, Inc.

  4. Effect of fiaxseed gum on retrogradation of corn starch%亚麻籽胶对玉米淀粉老化特性的影响

    Institute of Scientific and Technical Information of China (English)

    王宏霞; 徐幸莲; 周光宏

    2011-01-01

    In the present study,the effect of flaxseed gum on retrogradation of corn starch was analyzed by measuring the changes of blue value,rheological properties,and thermal properties during storage of 60 g·L-1 com starch gel with and without flaxseed gum.The results showed that blue value( BV )decreased while storage modulus increased at a slower speed when adding flaxseed gum, and the enthalpy of transition( ΔH)was significantly less than control( without flaxseed gum)( P<0.05 ). All these results indicated that flaxseed gum could retard the speed of the retrogradation of corn starch with the optional addition of 1 g·L-1 flaxseed gum.%通过测定添加和不添加亚麻籽胶的60 g·L-1玉米淀粉胶在贮存过程中碘蓝值(BV)、流变特性、热特性的变化,分析了亚麻籽胶对玉米淀粉老化特性的影响.结果表明:加入亚麻籽胶后,BV下降速度减缓,贮能模量(G')上升缓慢,热焓值(△H)明显低于不添加组(P<0.05),说明亚麻籽胶可以减缓玉米淀粉老化的速度,且添加量为1 g·L-1时效果最好.

  5. Role of molecular entanglements in starch fiber formation by electrospinning.

    Science.gov (United States)

    Kong, Lingyan; Ziegler, Gregory R

    2012-08-13

    We have demonstrated a method of fabricating pure starch fibers with an average diameter in the order of micrometers. In the present study, correlation between the rheological properties of starch dispersions and the electrospinnability was attempted via the extrapolation of the critical entanglement concentration, which is the boundary between the semidilute unentangled regime and the semidilute entangled regime. Dispersions of high amylose starch containing nominally 80% amylose (Gelose 80) required 1.2-2.7 times the entanglement concentration for effective electrospinning. Besides starch concentration, molecular conformation, and shear viscosity were also of importance in determining the electrospinnability. The rheological properties and electrospinnability of different starches were studied. Hylon VII and Hylon V starches, containing nominally 70 and 50% amylose, respectively, required concentrations of 1.9 and 3.7 times their entanglement concentrations for electrospinning. Only poor fibers were obtained from mung bean starch, which contains about 35% amylose, while starches with even lower amylose contents could not be electrospun.

  6. Resistant starch does not affect zinc homeostasis in rural Malawian children

    Science.gov (United States)

    This study tested the hypothesis that Malawian children at risk for zinc deficiency will have reduced endogenous fecal zinc (EFZ) and increased net absorbed zinc (NAZ) following the addition of high amylose maize resistant starch (RS) to their diet. This was a small controlled clinical trial to dete...

  7. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch.

    Science.gov (United States)

    Guo, Hui; Tang, Yi; Yu, Yang; Xue, Lu; Qian, Jun-Qing

    2016-06-01

    Enzyme immobilized on magnetic particles can be used as efficient recoverable biocatalysts under strong magnetic response. To enable re-use of enzyme, modified Fe3O4 particles were used as carrier to immobilize α-amylase in this paper. Firstly, the surface of Fe3O4 particles were coated with amino groups by direct using TEOS (tetraethoxysilane) followed by treatment with APTES (3-aminopropyltriethoxysilane) and then carboxylated by reacting it with succinic anhydride. In addition, the effect of the immobilization condition on enzyme activity recovery and immobilization efficiency were investigated. The results showed that the optimal immobilization occurred under following conditions: pH 5.5, 40°C, enzyme concentration of 20mgmL(-1), reaction time for 36h. Using immobilized α-amylase as biocatalyst, the optimum pH and temperature for hydrolysis were observed to be 6.5 and 60°C. The kinetics of hydrolysis reaction were studied using Michaelis-Menten equation. The affinity constant (Km) and maximum reaction rate (vmax) of magnetic particles immobilization α-amylase (MPIA) was 0.543mgmL(-1) and 1.321mgmin(-1) compared to those of 0.377mgmL(-1) and 6.859mgmin(-1) of free enzyme. After immobilization, enzymatic activity, storage stability, thermo-stability, and reusability of MPIA were found superior to those of the free one. MPIA maintained 86% enzyme activity after 30 days and maintained 78% enzyme activity after recycling six times.

  8. Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films.

    Science.gov (United States)

    Luo, Xuegang; Li, Jiwei; Lin, Xiaoyan

    2012-11-06

    The blend films of ungelatinized and gelatinized starch/polyvinyl alcohol (PVA) were prepared with a solution casting method by the introduction of additives (glycerol/urea) or not. The phase morphologies and thermal behaviors of the blends were carefully analyzed. A droplet phase was observed in the blends containing ungelatinized starch and a laminated phase was observed in the blends containing gelatinized starch. For both ungelatinized and gelatinized starch/PVA blends, the melting temperature (T(m)) (210-230 °C) of PVA was detected, and the T(m) of gelatinized starch/PVA blends was higher than that of the ungelatinized starch/PVA blends. Blend films containing 16.8 wt% of glycerol or urea exhibited a decreased T(m). The introduction of additives (glycerol or urea) reduced the decomposition onset temperature of the blend films. These various morphologies and thermal behaviors could be attributed to the different hydrogen bonding interaction characteristics between starch and polyvinyl alcohol at different conditions. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  9. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.

    Science.gov (United States)

    Šokarda Slavić, Marinela; Pešić, Milja; Vujčić, Zoran; Božić, Nataša

    2016-03-01

    α-Amylase from Bacillus licheniformis ATCC 9945a (BliAmy) was proven to be very efficient in hydrolysis of granular starch below the temperature of gelatinization. By applying two-stage feeding strategy to achieve high-cell-density cultivation of Escherichia coli and extracellular production of BliAmy, total of 250.5 U/mL (i.e. 0.7 g/L) of enzyme was obtained. Thermostability of amylase was exploited to simplify purification. The hydrolysis of concentrated raw starch was optimized using response surface methodology. Regardless of raw starch concentration tested (20, 25, 30 %), BliAmy was very effective, achieving the final hydrolysis degree of 91 % for the hydrolysis of 30 % starch suspension after 24 h. The major A-type crystalline structure and amorphous domains of the starch granule were degraded at the same rates, while amylose-lipid complexes were not degraded. BliAmy presents interesting performances on highly concentrated solid starch and could be of value for starch-consuming industries while response surface methodology (RSM) could be efficiently applied for the optimization of the hydrolysis.

  10. PENGARUH UKURAN PARTIKEL, KADAR PADATAN, NaCl dan Na2CO3 TERHADAP SIFAT AMILOGRAFI TEPUNG DAN PATI JAGUNG [The Effect of Particle Size, Solid Content, NaCl and Na2CO3 on The Amilographic Characteristics of Corn Flour and Corn Starch

    Directory of Open Access Journals (Sweden)

    Tjahja Muhandri

    2007-12-01

    Full Text Available The ojective of this research was to investigate the effect of corn flour particle sizes (60, 80 and 100 mesh, solid content (40, 45, 50 and 55 gr sample, NaCl (1, 2, 3, and 4% w/w and Na2CO3 (0.1, 0.3, 0.6, 0.9 and 1.2%, w/w on the amilography properties of the corn flour and corn starch revealed. Which were characterised by using Brabender Amilograph. The study that initial temperature of gelatization, maximum temperature of gelatinization and maximum viscosity increased with the increased of particle sizess. In most cases, each increment of 1 gram solid content could increase maximum viscosity about 57 BU and 49 BU for corn flour and corn starch, respectivevely . More over, addition of Na2CO3 and NaCl upon corn flour could increase the initial temperature of geletinization, maximum temperature of geletinization, maximum viscosity and cold viscosity. In the case of corn starch, addition of Na2CO3 had no significant effect on initial temperature of gelatinization. Whereas this treatment could decrease the maximum temperature of gelatinization and increase maximum viscosity at low concentrations ( <0.3%. As far as the cold viscosity is corceerned, it was decreased from 800 BU to 400 BU by the addition of Na2CO3 at least 0.1% (w/w. Furthermore, the addition of NaCl had no significant effect on amylography properties of corn starch at the experimental a mount added.

  11. Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function, short-chain fatty acid absorption, nitrogen utilization, and production performance of dairy cows.

    Science.gov (United States)

    Chibisa, G E; Gorka, P; Penner, G B; Berthiaume, R; Mutsvangwa, T

    2015-04-01

    In cows fed diets based on corn-alfalfa silage, replacing starch with sugar improves milk production. Although the rate of ruminal fermentation of sugar is more rapid than that of starch, evidence has been found that feeding sugar as a partial replacement for starch does not negatively affect ruminal pH despite increasing diet fermentability. The mechanism(s) for this desirable response are unknown. Our objective was to determine the effects of replacing barley or corn starch with lactose (as dried whey permeate; DWP) on ruminal function, short-chain fatty acid (SCFA) absorption, and nitrogen (N) utilization in dairy cows. Eight lactating cows were used in a replicated 4 × 4 Latin square design with 28-d periods and source of starch (barley vs. corn) and level of DWP (0 vs. 6%, DM basis) as treatment factors. Four cows in 1 Latin square were ruminally cannulated for the measurement of ruminal function, SCFA absorption, and N utilization. Dry matter intake and milk and milk component yields did not differ with diet. The dietary addition of DWP tended to increase ruminal butyrate concentration (13.6 vs. 12.2 mmol/L), and increased the Cl(-)-competitive absorption rates for acetate and propionate. There was no sugar effect on minimum ruminal pH, and the duration and area when ruminal pH was below 5.8. Minimum ruminal pH tended to be lower in cows fed barley compared with those fed corn (5.47 vs. 5.61). The duration when ruminal pH was below pH 5.8 tended to be shorter (186 vs. 235 min/d), whereas the area (pH × min/d) that pH was below 5.8 was smaller (47 vs. 111) on the corn than barley diets. Cows fed the high- compared with the low-sugar diet had lower ruminal NH3-N concentration. Feeding the high-sugar diet tended to increase apparent total-tract digestibility of dry matter and organic matters and increased apparent total-tract digestibility of fat. Apparent total-tract digestibility of N tended to be greater in cows fed barley compared with those fed corn

  12. Effects of annealing on the pasting properties of potato and corn starches%韧化处理对马铃薯淀粉及玉米淀粉糊化性质的影响

    Institute of Scientific and Technical Information of China (English)

    蒲华寅; 王乐; 黄峻榕; 杨婷

    2016-01-01

    The effects of annealing on the pasting and viscosity properties of potato and corn starches were studied by differential scanning calorimeter (DSC) and rapid viscosity analyzer (RVA) .The results showed that the onset temperature (To) of potato and corn starches in‐creased and the gelatinization peak narrowed with increasing annealing time ,especially for starch annealed for 3 h .The gelatinization enthalpy (ΔH) increased and then decreased with the increase in annealing time for the annealed starch .In addition ,potato starch annealed for 24 h showed a higher gelatinization enthalpy compared with its raw starch ,while the gelatini‐zation enthalpy of annealed corn starch was not higher than that of raw starch .After annea‐ling ,the pasting temperature increased and the peak viscosity decreased ,w hereas potato starch and corn starch showed an inverse varying pattern in trough viscosity and final viscosi‐ty .The onset temperature measured by DSC was lower than the pasting temperature meas‐ured by RVA ,which indicated that the crystalline structure was destroyed before the rising in viscosity during gelatinization .%利用差示扫描量热及快速黏度分析技术研究了韧化对马铃薯淀粉及玉米淀粉糊化热性质及黏度性质的影响。结果显示:随着韧化时间的增加,淀粉糊化起始温度(T o )增加,糊化峰变窄,且韧化前3 h变化较明显,韧化淀粉糊化焓先增大后减小,但马铃薯淀粉韧化24 h后焓值高于原淀粉,而玉米淀粉韧化后焓值均不高于原淀粉。韧化淀粉起糊温度增加,峰值黏度减小,但两种淀粉谷值黏度和最终黏度变化趋势相反。起始糊化温度低于起糊温度,证明淀粉糊化过程中黏度快速上升前结晶结构已遭到破坏。

  13. 机械力与柠檬酸双改性热塑性玉米淀粉的制备研究%Preparation of mechanical force and citric acid thermoplastic modified corn starch

    Institute of Scientific and Technical Information of China (English)

    马莉莎; 高翠平; 吴悦; 张晓琳; 袁怀波

    2011-01-01

    Corn starch used as raw material to synthesis double-modified thermoplastic starch through the ultra-fine powder and citric acid and glycerol as modifiers. The optimum conditions of double-modified thermoplastic corn starch were researched. Under the reaction time is 60 min, the reaction temperature is 120 ℃, mass ratio of micronization corn starch:citric acid:glycerol was 1:0.4:0.3, obtained that double-modified thermoplastic starch are 0.259 degree of substitution and 0.346 degree of etherification, which are all higher than single-modified starch. Infrared spectroscopy confirmed that the lemon anhydride groups were introduced in starch. The X- diffraction showed the crystalline of double modified starch were dropped.%以玉米淀粉为原料,经过超微粉碎,用柠檬酸与甘油作改性剂,合成双改性热塑性玉米淀粉,确定了双改性热塑性玉米淀粉合成工艺的最佳条件——原淀粉经超微粉碎,在反应温度120℃,反应时间60min,配料比m(含水20%的玉米淀粉):m(柠檬酸):m(甘油)=1:0.4:0.3下,双改性热塑性玉米淀粉的取代度是0.259,酯化度是0.346,均比单改性的大。红外光谱分析证实在淀粉中引入了柠檬酸酐,X-衍射揭示双改性淀粉的结晶度下降。

  14. Dietary acylated starch improves performance and gut health in necrotic enteritis challenged broilers.

    Science.gov (United States)

    M'Sadeq, Shawkat A; Wu, Shu-Biao; Swick, Robert A; Choct, Mingan

    2015-10-01

    Resistant starch has been reported to act as a protective agent against pathogenic organisms in the gut and to encourage the proliferation of beneficial organisms. This study examined the efficacy of acetylated high amylose maize starch (SA) and butyralated high-amylose maize starch (SB) in reducing the severity of necrotic enteritis (NE) in broilers under experimental challenge. A total of 720 one-day-old male Ross 308 chicks were assigned to 48 floor pens with a 2 × 4 factorial arrangement of treatments. Factors were a) challenge: no or yes; and b) feed additive: control, antibiotics (AB), SA, or SB. Birds were challenged with Eimeria and C. perfringens according to a previously reported protocol. On d 24 and 35, challenged birds had lower (P enteritis. Depending on the acid used, starch acylation also offers a degree of specificity in short chain fatty acid (SCFA) delivery to the lower intestinal tract which improves gut health.

  15. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); McAloon, Andrew [U.S. Department of Agriculture, Washington, D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington, D.C. (United States)

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation.

  16. Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio.

    Science.gov (United States)

    Zhu, Jie; Zhang, Shuyan; Zhang, Binjia; Qiao, Dongling; Pu, Huayin; Liu, Siyuan; Li, Lin

    2017-04-01

    This work concerned the effects of amylose/amylopectin ratio on the structure and thermal stability of propionylated starches with high degree of substitution (DS). Four starches with different amylose content were used to obtain propionylated starches. Acylation partly disrupted granule morphology of native starches, and the imperfection and porous structures of starch granule were intensified along with the increased amylose content. It was noted that the crystalline structure of starch was destroyed and thus intense acylation occurred in both amorphous and crystalline regions. The acylated starch with high-amylose content displayed more ordered region compared to low-amylose starch. Acylation enhanced the thermal stability of starch, and this effect became more evident as the amylose content increased. Thus, the amylose/amylopectin ratio has been confirmed capable of affecting the structure and thermal behaviors of hydrophobic propionylated starch, which is of value for the design of starchy materials with tailored thermal stability.

  17. Thermodynamic study of binary system Propafenone Hydrocloride with Metoprolol Tartrate: solid-liquid equilibrium and compatibility with α-lactose monohydrate and corn starch.

    Science.gov (United States)

    Marinescu, Daniela-Crina; Pincu, Elena; Meltzer, Viorica

    2013-05-20

    Solid-liquid equilibrium (SLE) for binary mixture of Propafenone Hydrocloride (PP) with Metoprolol Tartrate (MT) was investigated using differential scanning calorimetry (DSC) and corresponding activity coefficients were calculated. Simple eutectic behavior for this system was observed. The excess thermodynamic functions: G(E) and S(E) for the pre-, post-, and eutectic composition have been obtained using the computed activity coefficients data of the eutectic phase with their excess chemical potentials μi(E) (i=1, 2). The experimental solid-liquid phase temperatures were compared with predictions obtained from available eutectic equilibrium models. The results indicate non-ideality in this mixture. Also, the compatibility of each component and their eutectic mixture with usual excipients was investigated, and the DSC experiments indicate possible weak interactions with α-lactose monohydrate and compatibility with corn starch. The results obtained were confirmed by FT-IR measurements.

  18. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi

    2016-05-24

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  19. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Science.gov (United States)

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  20. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    Full Text Available High hydrostatic pressure (HHP has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*. The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution measured by FTIR and G* is proposed.

  1. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    Science.gov (United States)

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.

  2. Study on performance increasing of corn starch composite film by pullulanase%用普鲁兰酶改进玉米淀粉基复合膜性能的研究

    Institute of Scientific and Technical Information of China (English)

    陈光; 王香琪; 孙旸; 刘洁心; 徐杨

    2011-01-01

    以玉米淀粉为原料,选用甘油为增塑剂,羧甲基纤维素钠与海藻酸钠复合为增强剂,采用延流法制备玉米淀粉基复合膜.研究增塑剂的种类、用量,增强剂的种类、用量,烘干温度,延流体积等对复合膜性能的影响.普鲁兰酶可使淀粉中的支链淀粉脱支而形成直链淀粉,从而提高淀粉膜的性能.利用正交实验法,以玉米淀粉基复合膜的抗拉强度为指标,研究得出普鲁兰酶对复合玉米淀粉脱支作用时的最佳工艺条件为:酶用量0.8ASPU/g,pH4.5,时间4h,温度60℃.%With corn starch as experimental material,glycerol as plasticizer,sodium carboxy methyl cellulose and sodium alginate composite for strengthening agent,using delay flow for corn starch composite membrane. Both plasticizer and reinforcing agent's types, usages, drying temperature, flow volume etc to the effectiveness of composite membrane's capability were studied.Pullulanase was used to cleave the branching point of amylopectin for preparing starch film.Using the orthogonal trials and measuring tensile strength with corn starch composite film, it was found that the best condition for pullulanase to degrease corn starch was that pullulanase 0.8ASPU/g, pH4.5 ,time 4h,temperature 60℃.

  3. The effect of branched limit dextrin on corn and waxy corn gelatinization and retrogradation.

    Science.gov (United States)

    Wang, Lili; Xu, Jin; Fan, Xuerong; Wang, Qiang; Wang, Ping; Yuan, Jiugang; Yu, Yuanyuan; Zhang, Ying; Cui, Li

    2017-08-02

    The effect of branched limit dextrins (BLDs) on the gelatinization and retrogradation properties of corn and waxy corn starch was investigated using differential scanning calorimetry (DSC), wide X-ray diffraction (WXRD). The DSC data showed that the presence of BLDs increased the gelatinization and decreased the gelatinization enthalpy (ΔHgel). The retrogradation of corn and waxy corn starch were retarded by BLDs. The BLD with the lowest molecular weight had the best influence on corn and waxy corn starch retrogradation. The result of WXRD confirmed it. Avrami equation was used to analyze the enthalpies of retrograded corn and waxy corn starch. Starch recrystallization rate (k) reduced with the addition of BLDs, indicating that BLDs reduced the kinetics of starch retrogradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Extraction and chemical characterization of starch from S. lycocarpum fruits.

    Science.gov (United States)

    Pascoal, Aline M; Di-Medeiros, Maria Carolina B; Batista, Karla A; Leles, Maria Inês Gonçalves; Lião, Luciano Moraes; Fernandes, Kátia F

    2013-11-06

    In this study the pulp from Solanum lycocarpum fruits was used as raw material for extraction of starch, resulting in a yield of 51%. The starch granules were heterogeneous in size, presenting a conical appearance, very similar to a high-amylose cassava starch. The elemental analysis (CHNS) revealed 64.33% carbon, 7.16% hydrogen and 0.80% nitrogen. FT-IR spectroscopy showed characteristic peaks of polysaccharides and NMR analysis confirmed the presence of the α-anomer of d-glucose. The S. lycocarpum starch was characterized by high value of intrinsic viscosity (3515 mPa s) and estimated molecular weight around 645.69 kDa. Furthermore, this starch was classified as a B-type and high amylose content starch, presenting 34.66% of amylose and 38% crystallinity. Endothermic transition temperatures (To=61.25 °C, Tp=64.5 °C, Tc=67.5 °C), gelatinization temperature (ΔT=6.3 °C) ranges and enthalpy changes (ΔH=13.21 J g(-1)) were accessed by DCS analysis. These results make the S. lycocarpum fruit a very promising source of starch for biotechnological applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction.

    Science.gov (United States)

    Yang, Zhi; Gu, Qinfen; Hemar, Yacine

    2013-08-14

    The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Degradation of Raw Corn Starch by an α-Amylase (AmyP) from Marine Environment%海洋环境来源的淀粉酶AmyP对生玉米淀粉的降解特性

    Institute of Scientific and Technical Information of China (English)

    彭惠; 雷寅; 刘源涛; 汪颖

    2012-01-01

    来自海洋宏基因组文库的α-淀粉酶(AmyP)属于最新建立的糖苷水解酶亚家族GH13_37.AmyP是一个生淀粉降解酶,能有效降解玉米生淀粉.在最适反应条件pH7.5和40℃下,生玉米淀粉的比活达到(39.6±1.4) U/mg.酶解反应动力学显示AmyP可以非常快速的降解生玉米淀粉.对1%的生玉米淀粉降解仅需要30min;4%和8%的生玉米淀粉只需3h.DTT可以显著提高AmyP对生玉米淀粉的降解活性,1% DTT促使活性增加1倍.根据电镜观察和产物分析,认为AmyP是以内腐蚀的模式降解生玉米淀粉颗粒,释放出葡萄糖、麦芽糖和麦芽三糖作为终产物.%The α-amylase ( AmyP) from a marine metagenomic library belongs to the recently classified glycoside hydrolase subfamily GH13_37. AmyP is raw starch degrading enzyme, exhibiting a remarkable ability to digest raw corn starch. The specific activity of raw corn starch was reached (39. 6 ± 1.4) U/mg under the optimum pH 7. 5 and temperature 40 ℃. The hydrolysis curve showed that AmyP could hydrolyze raw corn starch at a very high speed. The final hydrolysis degrees were obtained in 30min for 1% raw corn starch and 3h for 4% and 8% concentration. The enzyme's activity was greatly increased in the presence of DTT. 1% DTT led to a twofold-enhanced activity. The results of scanning electron microscopy and thin-layer chromatography show that AmyP attacks sites on raw corn starch granules with a mode of endo-corrosion, and releases glucose, maltose and maltotriose as end products.

  7. 海洋耐高温酸性α-淀粉酶水解玉米淀粉的研究%Marine Thermo-Resistant Acidic α-Amylase to Hydrolyze Corn Starch

    Institute of Scientific and Technical Information of China (English)

    李瑛; 吕明生; 王淑军; 李华钟; 房耀雏; 焦豫良; 刘姝

    2012-01-01

    为开发适用于工业生产的新型酶制剂,以实验室自主构建的基因工程菌所产的新型海洋耐高温酸性α-淀粉酶为液化酶,以玉米淀粉液化后的DE值为指标,研究影响玉米淀粉的液化的因素,确定该酶水解玉米淀粉的最佳工艺条件.新型海洋耐高温酸性α-淀粉酶最佳的工艺条件为温度85℃、时间90 min、粉浆浓度250 g/L、酶用量32 U/g淀粉.%The purpose of this study was to develop a new enzyme preparation suitable for industrial production. A new marine thermo-resistanl acidic ot-amylase produced by independently constructed strain by genetic engineering in the laboratory was a liquefied enzyme, and took DE value of corn starch after liquefied as an index to study the influencing factors to liquefy corn starch, and confirmed the optimum technological conditions for corn starch enzymolysis. The optimum technological conditions for the new marine thermo-resistant acidic a-amylase were as follows; temperature at 85℃, hydrolyze for 90 rain, concentration of liquid starch at 250 g/L, quantity of enzyme at 32 U/g starch.

  8. Rheological and gel properties of corn starch-xanthan mixed systems%玉米淀粉与黄原胶复配体系流变和凝胶特性分析

    Institute of Scientific and Technical Information of China (English)

    张雅媛; 洪雁; 顾正彪; 朱玲

    2011-01-01

    In order to investigate the effects of hydrocolloid on the rheological and gel properties of starch paste, rheolgical and gel behaviors of corn starch and corn starch/xanthan gum mixed systems were studied. The mechanism of interaction between corn starch and xanthan gum was also analyzed. The results showed that corn starch and corn starch/xanthan gum mixed pastes were the typic yield-pseudoplasticity. A significant synergistic effect on consistency index was evident. The flow behavior index of mixed pastes was increased as the ratio of xanthan gum in the mixtures was raised. The mixture pastes exhibited more pseudoplasticity., but the effect was no pronounced as the proportion of xanthan gum was greater than 10%.The dynamic oscillatory test showed that the mixture pastes had a more superior viscoelastic property. The xanthan gum molecules exerted intermolecular interactions with the amylose molecules by hydrogen bond. The short-term retrogradation of amylose was prolonged and restricted by the present of xanthan gum. The mixed gels were more softer. Based on an overall consideration, a 9.0:1.0 (g/g) mixture of corn starch and xanthan gum proved to be the optimal additive. The research results will provide a theoretical basis for application and quality control of corn starch/xanthan gum mixed system in food industry.%为考察胶体对淀粉流变及凝胶特性的影响,该文以玉米淀粉为原料,加入不同比例黄原胶,研究两者复配后流变及凝胶特性的变化,对其相互作用机理进行了初步探讨.结果表明,玉米淀粉及两者复配体系属于屈服-假塑性流体,随着黄原胶比例的提高,复配体系的稠度系数显著增加,流体指数降低,假塑性增强,但黄原胶比例大于10%时,增加不再显著.动态流变学试验显示,复配体系具有更为优越的黏弹性,黄原胶可与淀粉分子间相互作用形成氢键,使得分子链段间的缠结点增加,同时,可延缓及阻止部分直链淀粉分

  9. Imidazole-based deep eutectic solvents for starch dissolution and plasticization.

    Science.gov (United States)

    Zdanowicz, Magdalena; Spychaj, Tadeusz; Mąka, Honorata

    2016-04-20

    Potato starch and high-amylose starch were treated with imidazole-based deep eutectic solvents (DESs) as dissolution and plasticization media. Beside imidazole (IM) for two-component DESs preparation choline chloride (CC), glycerol (G) or carboxylic acids (citric or malic) were used. An influence of water content in starch (as well as an extra water in the starch/DES system) on polymer dissolution and plasticization processes was investigated. Dissolution and gelatinization of starch in DESs were followed via DSC and laser scanning microscopy. A rheometric characteristics revealed an influence of starch/DES system storage time on the plasticization process. The tendency to recrystallization of compression-molded-starch films was evaluated using XRD technique. High dissolution and plasticization effectiveness of CC/IM and G/IM and a low tendency to film retrogradation of thermoplasticized starch were noted.

  10. Digestion Profiles and Some Physicochemical Properties of Native and Modified Waxy Corn Starch%糯玉米化学变性淀粉的消化性比较

    Institute of Scientific and Technical Information of China (English)

    胡丹; 邬应龙

    2013-01-01

    Waxy corn starch was chemically modified by esterification (OSA), acetylation (AC), hydroxypropylation(HP), and crosslinking(CL).The effects of these modifications on the nutritionally important starch fractions, namely rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS), were studied in both uncooked and cooked starches. Light transmissivity, resistant sink stability and gelatinization parameters of the native and modified starches were also studied. OSA, HP, and AC increased the light transmissivity, where CL decreased the light transmissivity. The amount of resistant starch (RS) in prime starches were 28.4% ,14%,57.8%and 39.6%in the acetylated, esterified, hydroxypropylated, and cross-linked starches, respectively, whereas the unmodified starch contained 5.7%. By gelatinization, compared with native starches, all the modifications applied tended to decrease the RDS. The highest decrease in RDS was determined after HP treatment. Like the prime starches, the modified starches contained higher contents of undigested starches after gelatinization. The total SDS+RS, the two starch fractions that have nutritional benefits, content of HP and AC starches were notably higher than the OSA and CL starches.%  糯玉米淀粉经过酯化,乙酰化,羟丙基化和交联化学变性后,分别测定生淀粉和糊化淀粉的快速消化淀粉,慢速消化淀粉和抗性淀粉含量以评价其消化性,同时测定其部分理化性质。研究结果表明,除交联淀粉外,其他变性淀粉都具有较高的透明度和抗凝层性。在未糊化的状态下,乙酰化淀粉,辛烯基琥珀酸淀粉,羟丙基淀粉和交联淀粉的抗性淀粉含量分别是28.4%,14%,57.8%和39.6%,而原淀粉仅为5.7%。糊化之后,与原淀粉相比,所有的化学变性淀粉都能减少快速消化淀粉的含量,其中羟丙基淀粉含有最低的快速消化淀粉含量。与生淀粉一样,

  11. Digestion and Interaction of Starches with α-Amylases: I. Mutational analysis of Carbohydrate Binding Sites in barley. II. In Vitro Starch Digestion of Legumes

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch

    2006-01-01

    the hydrolysis of internal 1,4-α-D-glucosidic bonds in starch and related polysaccharides. The present thesis concerns studies of two α-amylases: 1) secondary substrate binding sites in barley α-amylase 1 (AMY1), and 2) the involvement of anti-nutrients in in vitro digestion of starch in legumes by porcine...... of pea starch with different pea protein isolates and fiber has been investigated to learn about the involvement of anti-nutrients for the digestibility of legume starches. All tested samples gave high HI-values, indicating a rapid digestion. In conclusion, the effect of anti-nutrients in legumes...... in morphology between high amylose starch granules and normal starch granules. Legumes (beans, peas, and lentils) are characterised by low blood glucose raising potential, which is proportional to the in vitro starch digestion rates. The high amount of anti-nutritional factors (phytate, proteinaceous inhibitors...

  12. Hydrolysate of corn starch saccharified with a dual-enzyme system and the effect on the crystallization of itaconic acid when used in fermentation

    Institute of Scientific and Technical Information of China (English)

    Li Piwu; Chen Xiguang; Liu Jianjun; Wang Lingchong

    2008-01-01

    An improved process of hydrolysis of corn starch was adopted in the production of itaconic acid (IA), the aim was to decrease the unfermentable reducing sugar (RS) in the medium from the beginning of the fermentation and to increase the crystallization efficiency of IA from the fermentation broth.The glucose (GS) syrups saccharified by several combinations of glucoamylase and pullulanase were investigated and used as the carbohydrate source of the fermentation medium for the spore-initiated submerged fermentations experiments.Compared with the conventional process (with pullulanase controlled), the improved process decreased the RS residue in the fermentation broth from 3.01g/L to 1.35g/L and from 4.25g/L to 3.25g/L when the original RS of the medium were 100 and 120g/L, respectively.The crystallization efficiency of IA increased from 65% to 78.8% and from 69.58% to 82.81% with the original RS being 100 and 120g/L, respectively.

  13. Preparation and characterization of poly(acrylic acid)—corn starch blend for use as chemical sand-fixing materials

    Science.gov (United States)

    Dang, Xugang; Chen, Hui; Shan, Zhihua

    2017-07-01

    One chemical sand-fixing materials based on poly(acrylic acid)-corn starch (PACS) blend was studied in this work. The PACS blend was prepared by solution mixing method between PA and CS. In order to prepare sand-fixing materials for environmental applications using the well-established method of spraying evenly PACS blend solution on the surfaces of fine sand. Fourier transform infrared spectroscopy (FT-IR) revealed the existence of the intermolecular interactions between the blend components. Scanning electron microscope (SEM) analysis showed a continuous phase of blend, and it also showed the good sand-fixing capacity. The test results of hygroscopicity and water retention experiments indicated that the blends had excellent water-absorbing and water-retention capacity. The results of contact angle measurements between the PACS solutions and fine sand showed that the PACS blend has a satisfactory effect on fine sand wetting. And the PACS, as a sand-fixation material, has excellent sand-fixation rate up to 99.5%.

  14. Effect of the Starch Source on the Performance of Cationic Starches having Similar Degree of Substitution for Papermaking using Deinked Pulp

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2014-12-01

    Full Text Available Cationic waxy corn starch was prepared from waxy corn starch with 2,3-epoxypropyl trimethyl ammonium chloride (ETMAC as a cationic etherifying reagent. Its structure was identified by Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, and X-ray powder diffraction (XRD. The results showed that quaternary ammonium groups were introduced successfully into the waxy corn starch, and the cationic reaction occurred on the surface of the starch granules. Cationic waxy corn starch was then applied into deinked pulp as a paper reinforcer, and the result was compared with that of cationic tapioca starch and cationic maize starch. In general, the physical strengths of the paper were improved significantly with an increasing dosage of cationic starches. Cationic waxy corn starch was superior in terms of enhancing the physical properties of paper. In addition, with the use of cationic waxy corn starch, anionic trash in the slurry could be better removed.

  15. 交联羧甲基玉米淀粉和交联酯化木薯淀粉的制备与性质研究%Study on preparation and properties of cross-linked carboxymethyl corn starch and cross-linked esterified cassava starch

    Institute of Scientific and Technical Information of China (English)

    史娟; 杨海涛

    2011-01-01

    The optimum synthesis conditions of the cross-linked carboxymethyl corn starch and cross-linked esterified cassava starch and the key factors affecting the degree of substitution were studied. The physical properties of the two kinds of composite-modified starch, such as freeze-melt stability, light transmissivity, expansibility, were determined. The results showed that the freeze-melt stability, light transmissivity, expansibility of composite-modified starch all improved compared to the n-ative starch,and the cross-linked esterified cassava starch could be used in polluted water with better flocculation effect.%研究了制备交联羧甲基玉米淀粉和交联酯化木薯淀粉的最佳工艺条件及影响取代度的关键因素,并测定了两种复合变性淀粉的冻融稳定性、透光率、膨胀度等特性.结果表明:两种复合变性淀粉的冻融稳定性、膨胀度、透光率等性能均优于原淀粉;交联酯化木薯淀粉具有良好的絮凝效果可用于污水处理.

  16. Contribution of protein, starch, and fat to the apparent ileal digestible energy of corn- and wheat-based broiler diets in response to exogenous xylanase and amylase without or with protease.

    Science.gov (United States)

    Romero, L F; Sands, J S; Indrakumar, S E; Plumstead, P W; Dalsgaard, S; Ravindran, V

    2014-10-01

    The ileal energy contribution of protein, starch, and fat in response to 2 exogenous enzyme combinations was studied in 2 digestibility assays with 21- (experiment 1; 432 birds) and 42-d-old (experiment 2; 288 birds) Ross 308 broiler chickens. A 2 × 2 × 3 factorial arrangement of treatments with 2 base grains (corn or wheat), without or with high fiber ingredients (corn distillers dried grains with solubles and canola meal), and 3 enzyme treatments was implemented. Enzyme treatments, fed from 12 to 21 d or 32 to 42 d, were 1) without enzymes, 2) with xylanase from Trichoderma ressei (2,000 U/kg) and amylase from Bacillus licheniformis (200 U/kg; XA), or 3) with XA plus protease from Bacillus subtilis (4,000 U/kg; XAP). All diets contained Escherichia coli phytase (500 FTU/kg). Apparent ileal digestibility (AID) of protein, starch, and fat, as well as the apparent ileal digestible energy, were determined using titanium dioxide as inert marker. A generalized mixed model was used to test main effects and 2-way interactions at P starch at 21 and 42 d, and AID of fat at 21 d, with greater effects of enzymes in wheat-based compared with corn-based diets, but significant increments due to enzymes compared with controls in both diet types. Apparent ileal digestibility of fat at 42 d increased with enzyme supplementation compared with the control treatments. The XA and XAP treatments gradually (P starch, fat, and protein were affected differentially by base grain and the presence of fibrous ingredients at 21 and 42 d of age.

  17. Carbohydrate composition and in vitro digestibility of dry matter and non-starch polysaccharides in corn, sorghum, and wheat, and co-products from these grains

    DEFF Research Database (Denmark)

    Jaworski, N. A.; Lærke, Helle Nygaard; Knudsen, Knud Erik Bach

    2015-01-01

    was determined. The 12 ingredients included 3 grains (corn, sorghum, and wheat), 3 coproducts from the dry grind industry (corn distillers dried grains with solubles [DDGS] and 2 sources of sorghum DDGS), 4 coproducts from the wet milling industry (corn gluten meal, corn gluten feed, corn germ meal, and corn.......3% in corn gluten meal. In conclusion, grains and grain coproducts contain mostly insoluble NSP and arabinoxylans make up the majority of the total NSP fraction. The in vitro digestibility of NSP depends on the amount and type of NSP and degree of lignification in the feed ingredient. The NSP composition...

  18. Study on modified corn starch adhesive in reinforcing and water-resistance%玉米淀粉胶粘剂的增强及耐水改性研究

    Institute of Scientific and Technical Information of China (English)

    聂亚楠; 田孝才; 吴凯; 汪济奎

    2012-01-01

    With starch-g-PV Ac (starch grafted by polyvinyl acetate) as reinforcing component ,epoxy resin(EP) as water-resistance modified component,a new corn starch adhesive with higher bonding strength and better water-resistance was prepared. The results showed that the modified starch adhesive had the reversely best combination property and good application prospect in the field of plywood production because its dry shear strength and wet shear strength were 4.50,2.51 Mpa respectively,the viscosity was 0.875 Pa·s when mass ratio of m(starch-g-PVAc):m(EP) was 2*1 ,mass fraction of starch-g-PVAc/EP was 70% in oxidized starch emulsion.%以淀粉接枝聚醋酸乙烯酯(淀粉-g-PVAc)作为增强组分,环氧树脂(EP)作为耐水改性组分,制备了一种新型的粘接强度较高、耐水性较好的玉米淀粉胶粘剂.结果表明:当m(淀粉-g-PVAc):m(EP)=2:1、w(淀粉-g-PVAc/EP)=70%(相对于氧化淀粉乳质量而言)时,改性淀粉胶粘剂的综合性能相对最好,其干态剪切强度和湿态剪切强度分别为4.50、2.51 MPa,黏度为0.875 Pa·s;该改性淀粉胶粘剂在胶合板生产领域中具有良好的应用前景.

  19. Effect of Acid Hydrolysis Temperature and Time on Properties of Corn Starch%酸解温度和时间对玉米淀粉性能的影响

    Institute of Scientific and Technical Information of China (English)

    左迎峰; 顾继友; 张彦华; 谭海彦

    2012-01-01

    Acid hydrolytic com starch was prepared with hydrochloric acid hydrolysis method by taking corn starch as raw material. The influences of acid hydrolysis temperature and time duration on structure and properties of the acid hydrolytic corn starch were studied. The crystallinity, gelatinization viscosity, gelatinization temperature and the thermal performance of the acid hydrolysis starch were analyzed by X ray diffraction (XRD) , rotational viscometer, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA) respectively. The results showed that the crystallinity and gelatinization temperature were increased first and then decreased along with the increase of acid hydrolysis temperature and time duration. Gelatinization viscosity was rapidly decreased with the increase of acid hydrolysis temperature and time duration. The thermal stability of com starch was slightly influenced by acid modification.%以玉米淀粉为原料,研究盐酸制备酸解玉米淀粉,考察酸解温度和酸解时间对酸解玉米淀粉结构和性能的影响.通过X射线衍射(XRD)、旋转黏度计、差示扫描量热法(DSC)和热重分析(TGA)对酸解淀粉的结晶度、糊化黏度、糊化温度和热性能进行分析,结果表明:结晶度和糊化温度随酸解温度的升高和酸解时间的延长表现为先增大后减小;糊化黏度随酸解温度的升高和酸解时间的延长而迅速降低;酸解改性对玉米淀粉的热稳定性影响较小.

  20. The Study on Physicochemical Properties and Digestibility of Waxy Corn Starch Crystallite%蜡质玉米淀粉微晶的理化性质及其消化性研究

    Institute of Scientific and Technical Information of China (English)

    李云云; 卢未琴; 高群玉

    2011-01-01

    Waxy corn starch crystallite was prepared with acid-alcohol hydrolysis. For different hydrolysis rate of starch crystallites, the properties such as granule morphology, X-ray diffraction pattern , DSC thermostability, solubility and digestibility were studied. As the degree of acid-alcohol hydrolysis increased, starch granules gradually became lamellae and finally debris ; the amorphous areas of the starch were first hydrolyzed, then defective crystal areas was hydrolyzed, and breakdown; They were A-typed starch. Compared with native starch, Tp and Tc value of starch crystallites were all raised, the range of gelatinization temperature of treated starch crystallines became larger, and gel enthalpy with different hydrolysis rate were decreased and then increased. The solubility gradually increased with increasing hydrolysis rate of starch crystallites. In vitro, the digestion products and rates increased with increasing hydrolysis rate. The digestion rates were increased first and then decreased for the same hydrolysis rate of starch crystallit.%以蜡质玉米淀粉为原料,在酸醇介质中制备淀粉微晶。对制得的不同水解率的蜡质玉米淀粉微晶进行了颗粒形貌、x射线衍射、DSC热稳定性分析,溶解度和消化性能的测定。结果表明:随着酸醇水解程度的增加,淀粉颗粒形貌逐渐呈片晶状,最终为碎片;淀粉颗粒的无定形区先被水解,结晶区后被水解,进而导致颗粒破裂;晶体形态仍为A型。与原淀粉相比,淀粉微晶的Tp和Tc均增大,糊化温度范围也有很大提高;不同水解率的淀粉微晶的热焓(△H)先减小后增大。淀粉微晶的溶解度随水解率的增加不断增大。酸醇水解蜡质玉米淀粉的水解率越高,其在invitro模型中的消化产物也就越多,消化速度也越快。对于同一水解率的淀粉微晶,其消化速度随时间的延长先上升后下降。

  1. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato

    Directory of Open Access Journals (Sweden)

    Yafeng Zheng

    2016-07-01

    Full Text Available Purple sweet potato starch is a potential resource for resistant starch production. The effects of heat-moisture treatment (HMT and enzyme debranching combined heat-moisture treatment (EHMT on the morphological, crystallinity and thermal properties of PSP starches were investigated. The results indicated that, after HMT or EHMT treatments, native starch granules with smooth surface was destroyed to form a more compact, irregular and sheet-like structure. The crystalline pattern was transformed from C-type to B-type with decreasing relative crystallinity. Due to stronger crystallites formed in modified starches, the swelling power and solubility of HMT and EHMT starch were decreased, while the transition temperatures and gelatinization enthalpy were significantly increased. In addition, HMT and EHMT exhibited greater effects on the proliferation of bifidobacteria compared with either glucose or high amylose maize starch.

  2. Characterization and Prebiotic Effect of the Resistant Starch from Purple Sweet Potato.

    Science.gov (United States)

    Zheng, Yafeng; Wang, Qi; Li, Baoyu; Lin, Liangmei; Tundis, Rosa; Loizzo, Monica R; Zheng, Baodong; Xiao, Jianbo

    2016-07-19

    Purple sweet potato starch is a potential resource for resistant starch production. The effects of heat-moisture treatment (HMT) and enzyme debranching combined heat-moisture treatment (EHMT) on the morphological, crystallinity and thermal properties of PSP starches were investigated. The results indicated that, after HMT or EHMT treatments, native starch granules with smooth surface was destroyed to form a more compact, irregular and sheet-like structure. The crystalline pattern was transformed from C-type to B-type with decreasing relative crystallinity. Due to stronger crystallites formed in modified starches, the swelling power and solubility of HMT and EHMT starch were decreased, while the transition temperatures and gelatinization enthalpy were significantly increased. In addition, HMT and EHMT exhibited greater effects on the proliferation of bifidobacteria compared with either glucose or high amylose maize starch.

  3. Preparation of Fat Mimetic From Corn Starch Hydrolysates Via Medium Temperature of α-amylase%中温ɑ-淀粉酶水解玉米淀粉制备脂肪模拟物的研究

    Institute of Scientific and Technical Information of China (English)

    李卡; 刘骞; 孔保华; 韩建春

    2014-01-01

    采用中温α-淀粉酶水解玉米淀粉,制备低 DE 值玉米淀粉基质的脂肪模拟物。通过单因素试验,对底物浓度、酶添加量、反应温度及酶解时间等对玉米淀粉水解程度的影响进行研究。通过正交试验确定玉米淀粉脂肪模拟物制备工艺的最佳条件为:酶添加量5U/g,底物浓度8%,酶解时间15min,反应温度70℃,此条件下制备的产品的DE 值为3.18。在此条件下制备的脂肪模拟物可以形成类似脂肪的弱凝胶,而且具有20%浓度的凝胶最佳的感官指标。本研究为玉米淀粉类脂肪模拟物在低脂食品中的应用提供了理论依据。%Hydrolyzed corn starch with α-amylase to obtain fat replacer .The degree of hydrolization were studied in sin-gle factor experiments , including starch slurry concentration , quantity of amylase , temperature and hydrolyze time .Based on those , the perpendicular experiments were used to optimize the technology .The most optimal corn starch based fat re-placers ’ process condition was as follows:quantity of amylase was 5 U/g dry starch , starch slurry concentration was 8%, hydrolyze time was 15 min and reactive temperature was 70℃.DE value of the products was 3.18.Under this condi-tion , the gel properties of corn starch based fat replacer was similar to fat and the best ratio of gel is 20%.The result was provided a theoretical basis for its application in low fat food .

  4. Effect of Curing on the Tensile and Flexural Performance of Fully Biodegradable Corn Starch/Areca Frond Composites

    Directory of Open Access Journals (Sweden)

    Srinivas Shenoy Heckadka

    2015-01-01

    Full Text Available Composites have monopolized the automotive, construction, and packaging industry. Their high strength to weight ratio has made them an integral part of numerous engineering applications. In this study biodegradable matrix is combined with areca frond fibres for developing composites for low strength structural applications. Areca frond fibres were extracted and treated with sodium bicarbonate to improve the surface characteristics. Hand lay-up and compression moulding techniques were used to fabricate composites having unidirectional fibre orientation. The specimens prepared were exposed to varied environments, namely, sunlight, OTG oven, steam oven, and hot air oven, for curing and the results were analyzed to best suit the implicated requirements. Scanning electron microscopy was used to observe the changes in surface characteristics of the frond fibres after treatment. Tensile and flexural strength of starch based/areca frond reinforced composites were evaluated according to ASTM standards. Test results revealed that composites cured in a steam oven resulted in improved tensile and flexural strength compared to other curing environments.

  5. Physical Characterization Of High Amylose/Pectin Mixtures Cross-Linked With Sodium Trimetaphosphate; Caracterizacao fisica de misturas alta amilose/pectina reticuladas com trimetafosfato de sodio

    Energy Technology Data Exchange (ETDEWEB)

    Carbinatto, F.M.; Cury, B.S.F.; Evangelista, R.C., E-mail: curybsf@fcfar.unesp.b [UNESP, Araraquara, SP (Brazil). Fac. de Ciencias Farmaceuticas

    2010-07-01

    Some researches have reported that pectin and high amylose mixtures presented superior mechanical properties in relation to those of the isolated polymers. In this work, mixtures at different ratios (1:4; 1:1) of pectin and high amylose were crosslinked with sodium trimetaphosphate at different degrees by varying reaction conditions. All samples were characterized by rheological and X-ray diffraction analyses. Samples without cross-linker were prepared as control. The oscillatory dynamic tests showed that all samples exhibited predominant elastic behavior, although cross-linked samples presented higher G' values, suggesting that crosslinking by phosphorylation resulted in more strength structures. The diffractograms showed that cross-linked samples underwent structural modifications that resulted in increase of crystallinity due to cross-linking process. (author)

  6. Formation conditions and pore forming process of porous corn starch%玉米多孔淀粉生成条件及其成孔过程的研究

    Institute of Scientific and Technical Information of China (English)

    朱培蕾; 赵贵云; 汪名春; 刘才宇

    2011-01-01

    以玉米淀粉为原料,考察了糖化酶酶解条件对原淀粉水解规律的影响;同时采用扫描电子显微镜、X射线衍射仪等手段对淀粉成孔过程中颗粒形貌、结晶结构、直链淀粉含量变化进行了研究.结果表明:酶解条件对多孔淀粉的生成有较显著影响,可通过改变酶添加量、反应时问、温度等因素控制淀粉水解率大小;在多孔淀粉生成过程中,随着酶解时间的延长,淀粉颗粒的完整性遭到破坏,淀粉结晶度大小和直链淀粉含量都呈现了先上升后下降的趋势,但多孔淀粉衍射曲线仍维持A型图谱特征,说明淀粉颗粒结晶结构的有序化程度变化有限.%Corn starch was used as raw materials to investigate the effect of enzymatic hydrolysis conditions on the law of native corn starch hydrolysis. Changes of granule morphology, crystal structure and amylose content were also studied by scanning electron microscope and x-ray diffractometer during the pore forming process. The results indicated that the enzymatic hydrolysis conditions had relatively significant effects on the production of porous starch, and the hydrolysis rate could be controlled by changing the reaction factors such as enzyme concentration, reaction time and temperature. During the production process of porous starch, starch granule integrity was destroyed. The degree of crystallinity of the processed com starch and the amylose content increased at first,and then decreased. In the meantime, the diffraction curve of com starch still kept a A-type diffraction pattern,which meant that the crystal structure ordering had a limited change.

  7. Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents.

    Science.gov (United States)

    Qiao, Dongling; Yu, Long; Liu, Hongsheng; Zou, Wei; Xie, Fengwei; Simon, George; Petinakis, Eustathios; Shen, Zhiqi; Chen, Ling

    2016-06-25

    Combined analytical techniques were used to explore the effects of alkali treatment on the multi-scale structure and digestion behavior of starches with different amylose/amylopectin ratios. Alkali treatment disrupted the amorphous matrix, and partial lamellae and crystallites, which weakened starch molecular packing and eventually enhanced the susceptibility of starch to alkali. Stronger alkali treatment (0.5% w/w) made this effect more prominent and even transformed the dual-phase digestion of starch into a triple-phase pattern. Compared with high-amylose starch, regular maize starch, which possesses some unique structure characteristics typically as pores and crystallite weak points, showed evident changes of hierarchical structure and in digestion rate. Thus, alkali treatment has been demonstrated as a simple method to modulate starch hierarchical structure and thus to realize the rational development of starch-based food products with desired digestibility.

  8. Effects of acid hydrolysis and annealing treatment on the properties of corn starch%酸解结合热处理对玉米淀粉性质影响

    Institute of Scientific and Technical Information of China (English)

    姬娜; 熊柳; 孙庆杰

    2013-01-01

    利用酸水解结合热处理对玉米淀粉进行复合改性。研究不同pH、温度对玉米淀粉性质影响。实验结果表明,酸解结合热处理会使部分改性淀粉溶胀度降低、可溶指数升高,糊化温度升高。大多酸解结合热处理玉米淀粉样品峰值粘度、谷值粘度、最终粘度、衰减值和回生值低于其原淀粉。当pH=1时,酸解结合热处理玉米淀粉没有糊化曲线。改性玉米淀粉最大凝胶硬度为76.55 g,高于原淀粉,但是其凝胶弹性和内聚性变化不大。酸解结合热处理玉米淀粉Tc-To下降了,ΔH从11.41 J/g降到9.65 J/g。改性后玉米淀粉结晶峰型仍为A型,且相对结晶度降低。%In this article,corn starch(CS)samples modified by acid hydrolysis(AH)combined with annealing treatment(ANN)were made by changing pH and treated temperature. Swelling power of most modified starches decreased,while solubility increased. Peak viscosity(PKV),trough viscosity(TV), final viscosity(FNV),breakdown(BD)and setback(SB)of most modified starches were lower than that of native starch. When pH was 1,starches modified by AH-ANN had no gelatinization curves. The biggest hardness of modified starch gel was 76.55 g,improving 21.61 g compared with native starch gel. While gel springiness and cohesiveness of all treated starch samples had no significantly change. Compared to the native starch,Tc-To decreased andΔH decreased from 11.41 J/g to 9.65 J/g. Modified CS exhibited“A”type X-ray pattern. Relative crystallinity decreased after AH-ANN.

  9. 玉米淀粉基脂肪替代物低脂再制干酪的研究%Research of low-fat processed cheeses made from corn starch based fat substitute

    Institute of Scientific and Technical Information of China (English)

    闫波

    2012-01-01

    研究了玉米淀粉基脂肪替代物在低脂再制干酪中应用的关键影响因素,并对低脂再制干酪的融化性、硬度和感官指标进行了评定.在单因素试验的基础上,运用响应面分析法,建立了玉米淀粉基脂肪替代物低脂再制干酪的因素影响模型,确定了最佳工艺条件为:玉米淀粉基脂肪替代物添加量4.1%,水分质量分数51%,pH值5.9,在此条件下产品感官可接受性较高.%The objective of present study was to investigate the key influence factors in the application of corn starch based fat substitute in low -fat processed cheeses, and melting property, hardness and sensory acceptability were evaluated. On the basis of single -factor test, the mathematical model of the factors on the low-fat processed cheeses made from Corn starch based fat substitute was established. The optimum process conditions were as follows: die addition amount of corn starch based fat substitute 4.1 %, moisture content 51 % and pH value 5.9. The sensory acceptability of the product was higher under this condition.

  10. 酶水解法测定玉米中淀粉含量方法的探讨%The Measurement of Starch Content in Corn by Enzyme Hydrolysis Method

    Institute of Scientific and Technical Information of China (English)

    黄景禄; 刘海明; 王旭艳; 高凤宇

    2015-01-01

    玉米中淀粉含量的测定方法有很多,GB/T 5514—2008标准中规定采用酶水解法对玉米中的淀粉含量进行测定,但该方法存在结果偏低、偏差较大的缺点。本实验对标准中的实验方法及相关条件,如玉米称样量、加水量、液化酶用量、液化温度、液化时间、水浴条件、过滤方式、加酸量等,进行了优化并对实验中存在的问题进行了分析和探讨,优化后的方法适合玉米中淀粉含量的测定,具有实用、准确、稳定性好的特点。%There are many methods for the measurement of starch content in corn. GB/T 5514-2008 provides that enzyme hydrolysis method is adopted for the measurement of starch content in corn. However, such method has the disadvantages such as comparatively low measuring re-sults and comparatively high deviations. In this study, the related technical parameters in enzyme hydrolysis method (sample weight, water add-ing level, the use level of liquefied enzyme, liquefying temperature, liquefying time, water bathing conditions, filtration modes, acid adding lev-el etc.) were explored and further optimized. After technical optimization, enzyme hydrolysis method was suitable for the measurement of starch content in corn and it had the features such as practical, high-accuracy, and good stability.

  11. Effects of Polyacrylamide on the Properties of Corn Starch Adhesive%聚丙烯酰胺掺杂对玉米淀粉胶黏剂性能的影响

    Institute of Scientific and Technical Information of China (English)

    司红岩; 王娅楠

    2015-01-01

    Corn starch adhesives have some shortcomings need to be improved , such as instability , poor moisture resistance , etc.The corn starch adhesive was doped by polyacrylamide to improve its performance.The influence of polyacrylamide e on the properties of adhesive have been investigated by analyzing the initial adhesion , viscosity , the influence of the drying rate , get damp rate of starch adhesive and so on.The results showed that the add fertilizer could improve the viscosity , drying rate , and reduce its damp rate of adhesive.The experiment showed that the optimum condition was 0.5%of starch quality.%玉米淀粉胶黏剂存在着稳定性差、防潮性不好等缺点需要改进。利用聚丙烯酰胺对玉米淀粉胶进行掺杂改性,研究了在不同配比胶黏剂中加入聚丙烯酰胺对初粘性、黏度、干燥速率、返潮速率等性能的影响。结果表明:加入助剂,在一定配比时可以提高玉米淀粉胶的黏度、干燥速率,并降低其返潮速率。实验结果显示在氧化淀粉胶黏剂中聚丙烯酰胺的最佳加入量为淀粉质量的0.5%。

  12. 氯化钠和氯化钙对玉米淀粉-瓜尔胶复配体系的影响%Effects of Sodium Chloride and Calcium Chloride on Corn Starch and Guar Gum Mixed System

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      通过测定分析玉米淀粉-瓜尔胶复配体系在有无氯化钠和氯化钙存在条件下的糊化特性、动态与静态流变学特性,研究氯化钠和氯化钙对玉米淀粉-瓜尔胶复配体系的影响。结果表明,氯化钠和氯化钙的加入,提高了玉米淀粉-瓜尔胶复配体系的成糊温度,降低了崩解值和回升值,峰值黏度也略微下降;玉米淀粉-瓜尔胶复配体系的弹性模量G′值显著减小,黏性模量G″值的频率依赖性较大;氯化钠和氯化钙使玉米淀粉-瓜尔胶复配体系的假塑性增强,且氯化钙的作用大于氯化钠。%Through the analysis and determination of pasting property, dynamic and static rheological properties of corn starch and guar gum mixed system with or without sodium chloride and calcium chloride, the effects of sodium chloride and calcium chloride on corn starch and guar gum mixed system were studied. The results showed, the addition of sodium chloride and calcium chloride increased the pasting temperature of corn starch and guar gum mixed system, decreased the breakdown value and consistence value, and the peak viscosity also dropped slightly. The G′ value of elastic modulus decreased significantly, the frequency dependence of G" value of viscous modulus was larger. The addition of sodium chloride and calcium chloride enhanced pseudo-plasticity of corn starch and guar gum mixed system, and calcium chloride was more effective.

  13. Enzyme Mechanism of Starch Granule Size Distribution Formation in Waxy Corn Endosperm%糯玉米胚乳淀粉粒粒度分布形成的酶学机理

    Institute of Scientific and Technical Information of China (English)

    伊祖涛; 张海艳

    2015-01-01

    以7个糯玉米品种为材料,测定其籽粒发育过程中淀粉粒粒度分布及淀粉合成相关酶活性的变化,分析两者之间的关系。结果表明,随着籽粒发育,糯玉米淀粉粒平均粒径逐渐增大,可溶性淀粉合成酶(SSS)和淀粉分支酶(SBE)活性呈单峰曲线变化。籽粒发育前期,小淀粉粒(≤7.4µm)所占体积较大;随着籽粒发育,小淀粉粒所占体积减少,大淀粉粒(>7.4µm)所占体积增多;籽粒发育后期,大淀粉粒所占体积较大。相关分析表明, SSS和SBE活性与大淀粉粒体积增大速率和平均粒径增大速率均呈显著或极显著正相关。因此, SSS和SBE是影响糯玉米胚乳淀粉粒粒度分布形成的主要酶, SSS和SBE活性越高,淀粉粒平均粒径越大,大淀粉粒所占体积越多。%In this study, seven varieties of waxy corn (Zea mays var. sinensis) were used to determine starch granule size distribution and starch synthetic enzyme activity and analyze their correlation. The results indicat-ed that with kernel development, mean diameter of starch granule increased, and soluble starch synthase (SSS) and starch-branching enzyme (SBE) activities showed single peak curve. During early period of kernel devel-opment, the volume percentage of small starch granule (≤7.4 µm) was large. Then, the volume percentages of small and large starch granules decreased and increased, respectively. During late period, the volume percent-age of large starch granule (>7.4 µm) was large. Correlation analysis indicated that SSS and SBE activities were positively (highly) signiifcantly correlated with the increasing percentages of large starch granule volume and mean diameter. Therefore, SSS and SBE are the key enzymes to affect starch granule size distribution formation of waxy corn. The higher SSS and SBE activities are, the larger mean diameter and volume percentage of large starch granule are.

  14. Oxidação dos amidos de mandioca e de milho comum fermentados: desenvolvimento da propriedade de expansão Oxidation of fermented cassava and corn starches: development of the expansion property

    Directory of Open Access Journals (Sweden)

    Alvaro Renato Guerra Dias

    2007-12-01

    Full Text Available Amidos de mandioca e de milho comum foram fermentados em laboratório a 20 °C, sendo uma fração seca ao sol e outra oxidada com peróxido de hidrogênio e secada artificialmente, visando o desenvolvimento da propriedade de expansão. Estudou-se a fermentação em 0, 10, 30 e 50 dias, sendo a propriedade de expansão no forneamento avaliada pelo teste do biscoito e o comportamento viscoamilográfico pelo RVA. Verificou-se que a fermentação promove modificação que auxilia na oxidação dos amidos de mandioca e de milho elevando a acidez titulável do produto. O amido de mandioca fermentado oxidado com exposição solar ou com peróxido de hidrogênio pode desenvolver a propriedade de expansão, já o amido de milho comum nessas condições não tem essa capacidade. Os melhores resultados para a propriedade de expansão foram no amido de mandioca oxidado com peróxido de hidrogênio aos 50 dias de fermentação.Cassava and corn starches were fermented in the laboratory at 20 °C, and a fraction was in the sun while another fraction was oxidized with hydrogen peroxide and dried artificially to develop the expansion property. Fermentation in 0, 10, 30 and 50 days was checked and the expansion property was evaluated by the baking test and viscoamilograph behavior (RVA. Fermentation was found to cause changes that help the oxidation of cassava and corn starches, increasing the product's titrable acidity. The fermented cassava starch, oxidized by exposure to sunlight or hydrogen peroxide, may develop the expansion property, but the corn starch did not display that ability under these conditions. The best results for the expansion property were obtained with cassava starch oxidized with hydrogen peroxide after 50 days of fermentation.

  15. Influence of botanic origin and amylose content on the morphology of starch nanocrystals

    Science.gov (United States)

    LeCorre, Déborah; Bras, Julien; Dufresne, Alain

    2011-12-01

    Starch nanocrystals (SNC) are crystalline platelets resulting from the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis of amorphous parts. The aim of this study was to assess the influence of botanic origin and amylose content of native starches on the morphology and properties of resulting nanoparticles. SNC were prepared from five different starches normal maize, high amylose maize, waxy maize, potato, and wheat; covering three botanic origins, two crystalline types, and three range of amylose content (0, 25, and 70%) for maize starch. Different types of nanocrystals were obtained with a thickness ranging between 4 and 8 nm and diameter from about 50 to 120 nm depending on the source. The comparison of their morphology, crystallinity, and rheological properties is proposed for the first time. For the same amylose content, maize, potato, and wheat resulted in rather similar size and crystallinity of SNC proving the limited influence of the botanic origin. For the same botanic origin (maize), differences in size were more important indicating the influence of the amylopectin content. Also, particles tended to show square shapes with increasing native starch's amylopectin content and A-type crystalinity. Thus, only high amylose content starches should be avoided to prepare SNC.

  16. Cultivar difference in physicochemical properties of starches and flours from temperate rice of Indian Himalayas.

    Science.gov (United States)

    Mir, Shabir Ahmad; Bosco, Sowriappan John Don

    2014-08-15

    Starch and flour of seven temperate rice cultivars grown in Himalayan region were evaluated for composition, granule structure, crystallinity, Raman spectrometry, turbidity, swelling power, solubility, pasting properties and textural properties. The rice cultivars showed medium to high amylose content for starch (24.69-32.76%) and flour (17.78-24.86%). SKAU-382 showed the highest amount of amylose (32.76%). Rice starch showed polyhedral granule shapes and differences in their mean granule size (2.3-6.5 μm) were noted among the samples. The starch and flour samples showed type A-pattern with strong reflection at 15, 18, and 23. Pasting profile and textural analysis of rice starch and flour showed that all the cultivars differences, probably due to variation in amylose content. The present study can be used for identifying differences between rice genotypes for starch and flour quality and could provide guidance to possible industries for their end use.

  17. 臭氧氧化法处理玉米淀粉的干法工艺研究%Study on dry process of corn starch oxidized by ozone

    Institute of Scientific and Technical Information of China (English)

    李海霞; 傅宏俊; 刘学敏; 张昊

    2016-01-01

    Ozone was used as oxidizing agent to treat corn starch. Choosing reaction temperature, reaction time and ozone concentration gear as influential factors,orthogonal experiments were carried out and then the gelatinization properties and carboxyl content of starch samples were tested and analyzed. The results showed that oxidation time was the most significant factors affecting oxidation degree of starch. In a reasonable range,the longer reaction time was,the higher reaction temperature was,the greater the ozone concentration was,the oxidized starch carboxyl content increased,while the stable viscosity,breakdown value and setback decreased. Ozone oxidation starch by dry process could shorten the time required by traditional preparation technology greatly,and have no produce chemical residues.%以臭氧为氧化剂,采用干法工艺对玉米淀粉进行氧化处理,选择反应温度、反应时间、臭氧溶度3个影响因子进行正交试验,对氧化处理前后玉米淀粉的糊化性能、羧基含量进行了测试与分析。试验结果表明,氧化时间是影响淀粉氧化程度的最主要因素,反应时间越长,反应温度越高,臭氧浓度越大,氧化淀粉羧基含量增加,稳定黏度、崩解值、回升值降低。臭氧干法工艺氧化淀粉所需氧化时间较传统制备工艺极大缩短,且无化学残留。

  18. 非淀粉多糖酶对玉米加工副产品能量利用的影响%Effects of Non-Starch Polysaccharide Enzymes on Energy Utilization of Corn By-Products

    Institute of Scientific and Technical Information of China (English)

    林谦; 王照群; 戴求仲; 蒋桂韬; 张旭; 王向荣; 张建华

    2013-01-01

    为了使玉米加工副产品和复合非淀粉多糖酶制剂在畜禽饲料配方中得到精准应用,试验选用56只体重为(2.5±0.2) kg的健康成年黄羽肉公鸡,采用完全随机试验设计,随机分为7组,每组8个重复,每个重复1只鸡,采用绝食强饲法进行3期代谢试验,以单一原料以及其添加复合非淀粉多糖酶为饲粮,测定玉米及其加工副产品添加复合非淀粉多糖酶前后的代谢能及能量代谢率.结果表明:玉米加工副产品的表观代谢能(AME)和真代谢能(TME)除3种玉米蛋白粉和2种玉米糖渣高于玉米外,其他均低于玉米.玉米及其加工副产品的AME和TME预测方程分别为:AME =3.322 1+0.704 2GE-0.521 3CF(R2=0.893 9),TME=25.697 6+0.742 5GE-0.426 2CF-0.252 2DM(R2 =0.919 4);加酶后玉米及其加工副产品能量表观代谢率及真代谢率以不喷浆玉米皮最低,玉米蛋白粉[粗蛋白质(CP)55%]最高.添加非淀粉多糖复合酶后,玉米及其加工副产品能量表观代谢率提高了0.82%~3.32%,能量真代谢率提高了0.78% ~3.00%,AME提高了0.82% ~3.32%,TME提高了0.98% ~2.94%;玉米及其加工副产品AME与TME的有效营养改进值范围均为0.19~0.25 MJ/kg,其中以玉米麸质饲料最高,玉米最低.由此可见,添加复合非淀粉多糖酶能提高玉米及其加工副产品的能量利用率,改善玉米加工副产品的能量效价.%To make the precise application of corn by-products and non-starch polysaccharide (NSP) enzymes in animal feed formulation, 56 healthy adult yellow-feathered roosters with body weight of(2.5±0.2) kg were randomly divided into 7 groups and 8 replicates in each group and 1 rooster in each replicate. Three metabolic test periods were carried out by super-alimentation, the roosters were fed diets with a single raw material and the material with non-starch polysaccharide enzymes to determine the metabolizable energy and energy me-tabolizability of corn and corn by

  19. Structural and Digestion Properties of Soluble-, Slowly Digestible and Resistant Maltodextrin from Cassava Starch by Enzymatic Modification

    DEFF Research Database (Denmark)

    Sorndech, Waraporn

    to produce slowly digestible and resistant maltodextrin structures. Well-defined ratios of amylose only-barley starch (AO) and waxy maize starch (WX) with non-granular AO content varied from 0 to 100% were used as a substrate. For only BE catalysis, an increase rate of α-1,6 linkage formation for the 0% AO....... The combination of BEAMBE produced more resistant α-glucan products as compared to BE alone. The high amylose starch showed potential to apply as a raw material for enzymatic modification to produce slowly- and indigested dextrin. Slowly and resistant maltodextrin conferring isomaltooligosaccharides (IMO...

  20. Effects of dietary resistant starch content on metabolic status, milk composition, and microbial profiling in lactating sows and on offspring performance.

    Science.gov (United States)

    Yan, H; Lu, H; Almeida, V V; Ward, M G; Adeola, O; Nakatsu, C H; Ajuwon, K M

    2017-02-01

    In the present study, the effects of dietary resistant starch (RS) content on serum metabolite and hormone concentrations, milk composition, and faecal microbial profiling in lactating sows, as well as on offspring performance was investigated. Sixteen sows were randomly allotted at breeding to two treatments containing low- and high-RS contents from normal and high-amylose corn varieties, respectively, and each treatment had eight replicates (sows). Individual piglet body weight (BW) and litter size were recorded at birth and weaning. Milk samples were obtained on day 10 after farrowing for composition analysis. On day 2 before weaning, blood and faecal samples were collected to determine serum metabolite and hormone concentrations and faecal microbial populations, respectively. Litter size at birth and weaning were not influenced (p > 0.05) by the sow dietary treatments. Although feeding the RS-rich diet to sows reduced (p = 0.004) offspring birth BW, there was no difference in piglet BW at weaning (p > 0.05). High-RS diet increased (p sows. Feeding the RS-rich diet to sows increased (p sows, as well as a greater nutrient density in maternal milk, without affecting offspring performance at weaning. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  1. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules.

  2. Characteristics of taro (Colocasia esculenta) starches planted in different seasons and their relations to the molecular structure of starch.

    Science.gov (United States)

    Lu, Ting-Jang; Lin, Jheng-Hua; Chen, Jia-Ci; Chang, Yung-Ho

    2008-03-26

    Physico-chemical properties and molecular structure of starches from three cultivars (Dog hoof, Mein, and KS01) of taro tubers planted in summer, winter, and spring were investigated. The effects of the planting season on the physico-chemical properties and the molecular structure of starch were determined, and the relations between the physico-chemical properties and the molecular structure of starch are discussed. Results indicate that taro starches from tubers planted in summer had the largest granule size, a low uniformity of gelatinization, and a high tendency to swell and collapse when heated in water. Taro starch planted in summer also showed an elasticity during gelatinization that was higher than that of starches planted in the other seasons. In addition to the planting season and the variety, rheological and pasting properties of taro starches studied are influenced not only by the amylose content but also by the chain-length distribution of amylopectin, whereas swelling power and solubility only depend on the amylose content of starch. Taro starch with relatively high amylose content, high short-to-long-chain ratio, and long average chain length of long-chain fraction of amylopectin displayed high elasticity and strong gel during heating.

  3. Effect of thermal and chemical modifications on the mechanical and release properties of paracetamol tablet formulations containing corn, cassava and sweet potato starches as filler-binders

    Directory of Open Access Journals (Sweden)

    Mariam Vbamiunomhene Lawal

    2015-07-01

    Conclusions: Modification of the experimental starches improved the mechanical and release properties of directly compressed paracetamol tablet formulations. Thus, they can be developed for use as pharmaceutical excipients in specific formulations.

  4. 盐酸浓度对酸解玉米淀粉结晶结构和性能的影响%Effects of hydrochloric acid concentration on crystalline structure and properties of corn starch

    Institute of Scientific and Technical Information of China (English)

    左迎峰; 张彦华; 杨龙; 谭海彦; 顾继友

    2013-01-01

    以玉米淀粉为原料,用盐酸对其酸解制备酸解玉米淀粉.考虑盐酸浓度对酸解玉米淀粉结构和性能的影响.通过抽滤洗涤法、X射线衍射(XRD)、旋转粘度计、差示扫描量热法(DSC)和热重分析(TGA)对酸解淀粉的回收率、结晶度、糊化粘度、糊化温度和热性能进行分析.结果表明,酸解玉米淀粉的回收率、结晶度和糊化温度随盐酸浓度的增大,先增大后减小,盐酸浓度为0.5 mol/L时,回收率、结晶度和糊化温度都达到最大值;糊化粘度随盐酸浓度的增大而迅速减小;酸解改性对玉米淀粉的热稳定性影响较小.%Acid hydrolysis corn starch was prepared by hydrochloric acid method to study the effects of hydrochloric acid concentrations on the structure and properties of acid hydrolysis com starch.. The crystallinity, gelatinization viscosity, gelatinization temperature and thermal performance of acid hydrolysis starch were analyzed by using filtration washing method, X-ray diffraction, rotational viscometer, differential scanning calorimetry and thermo gravimetric analysis, respectively. The results show that the recovery yield, crystallinity and gelatinization temperature increased first and then decreased with the increase of hydrochloric acid concentration, and reached the maximum values when hydrochloric acid concentration was 0.5 mol/L; the gelatinization viscosity rapidly decreased with increase of hydrochloric acid concentration. So the acid modification had small effect on thermal stability of corn starch.

  5. Microstructure changes of on the extruded high-amylose bionanocomposites as affected by moisture content via synchrotron radiation studies

    Science.gov (United States)

    Liu, Huihua; Chaudhary, Deeptangshu

    2014-08-01

    The crystalline domain changes and lamellar structure observations of sorbitol-plasticized starch nanocomposite had been investigated via synchrotron. Strong interactions were found between amylose-sorbitol, resulting in reduced inter-helix spacing of the starch polymer. Achievable dspacing of nanoclay was confirmed to be correlated to the moisture content (mc) within the nanocomposites. SAXS diffraction patterns changed from circular (high mc samples) to elliptical (low mc samples), indicating the formation of long periodic structure and increased heterogeneities of the electron density within the samples. Two different domains sized at around 90 Å and 350 Å were found for the low mc samples. However, only the ~90 Å domain was observed in high mc samples. Formation of the 380 Å domain is attributed to the retrogradation behaviour in the absence of water molecules. Meanwhile, the nucleation effect of nanoclay is another factor leading to the emergence of the larger crystalline domain.

  6. The Comparison of Sugar Components in the Developing Grains of Sweet Corn and Normal Corn

    Institute of Scientific and Technical Information of China (English)

    LIU Peng; HU Chang-hao; DONG Shu-ting; WANG Kong-jun; ZHANG Ji-wang

    2003-01-01

    The sugar components and their dynamic variation in the developing grains of sweet corn(Zeamays L. seccharata Sturt)and normal corn (Zea mays L. indentata Sturt) were compared. There are WSP(water-soluble polysaccharides), sucrose, fructose, glucose, mannitol and sorbitol in both sweet corn and nor-mal corn, but no maltose. Two components with different degrees of polymerization (D. P. N) were detected inthe sweet corn; only one of them was detected in the normal corn 20 days after pollination. With the develop-ment of grains, the total soluble sugar content(TSS)in sweet corn increased, but in normal corn it decreased.The dynamic variation of WSP, sucrose, glucose, fructose, mannitol and sorbitol in sweet and normal corngrains are different. The contents of sugar components in the sweet corn grains are higher than that in the nor-mal corn. Sweet corn accumulates less starch than normal corn.

  7. The effects of feeding rice in substitution of corn and the degree of starch gelatinization of rice on the digestibility of dietary components and productive performance of young pigs.

    Science.gov (United States)

    Vicente, B; Valencia, D G; Pérez-Serrano, M; Lázaro, R; Mateos, G G

    2008-01-01

    A 28-d trial was conducted to evaluate the effect of the main cereal of the diet (corn or rice), heat processing (HP) of rice, and the degree of starch gelatinization (SG) of rice on apparent total tract digestibility (ATTD) of dietary components and productive performance of pigs weaned at 25 d of age. The experimental design was a completely randomized, with 4 treatments and 8 replicates per treatment (5 pigs penned together). Control pigs were fed a complex diet without growth promoters and based on milk products, fish meal, and 50% cooked and flaked corn, with a degree of SG of 84%. Experimental groups received the same complex diet as the control group, but the corn was substituted by rice with 3 different degrees of SG; 11% that corresponded to raw rice and 52 or 76% that corresponded to cooked rice processed under 2 different conditions. Pig growth was measured at 25, 39, and 53 d of age, and ATTD was determined at 29, 39, and 53 d of age. The ATTD of all dietary components except for N increased with age (P <0.01) and were greater for the rice than for the corn diet. Heat processing of rice improved ATTD of all dietary components at 29 d of age, but no beneficial effects were observed at 39 or 53 d of age. Modifying the conditions of HP to increase the degree of SG of rice from 52 to 76% and to reduce mean particle size from 480 to 405 mum did not result in further improvement of nutrient digestibility. From 25 to 53 d of age, pigs fed rice consumed more feed (678 vs. 618 g/d; P <0.05), grew faster (466 vs. 407 g/d; P <0.01), and tended to have greater G:F (0.685 vs. 0.662; P <0.10) than pigs fed corn. In fact, from 25 to 39 d of age, pigs fed rice consumed 23% more feed (P <0.01), grew 29% faster (P <0.01), and had 5% greater G:F (P <0.05) than pigs fed corn. Feeding rice improved performance of weanling pigs, and HP of rice under mild conditions enhanced diet digestibility and productive performance of pigs. Severe processing of rice increased the degree

  8. Deciphering Starch Quality of Rice Kernels Using Metabolite Profiling and Pedigree Network Analysis

    Institute of Scientific and Technical Information of China (English)

    Miyako Kusano; Atsushi Fukushima; Naoko Fujita; Yozo Okazaki; Makoto Kobayashi; Naoko Fujita Oitome; Kaworu Ebana; Kazuki Saito

    2012-01-01

    The physiological properties of rice grains are immediately obvious to consumers.High-coverage metabolomic characterization of the rice diversity research set predicted a negative correlation between fatty acid and lipid levels and amylose/total starch ratio (amylose ratio),but the reason for this is unclear.To obtain new insight into the relationships among the visual phenotypes of rice kernels,starch granule structures,amylose ratios,and metabolite changes,we investigated the metabolite changes of five Japonica cultivars with various amylose ratios and two knockout mutants (e1,a Starch synthase Ⅲa (SSⅢa)-deficient mutant and the SSⅢa/starch branching enzyme (BE) double-knockout mutant 4019) by using mass spectrometry-based metabolomics techniques.Scanning electron microscopy clearly showed that the two mutants had unusual starch granule structures.The metabolomic compositions of two cultivars with high amylose ratios (Hoshiyutaka and Yumetoiro) exhibited similar patterns,while that of the double-knockout mutant,which has an extremely high amylose ratio,differed.Rice pedigree network analysis of the cultivars and the mutants provided insight into the association between metabolic-trait properties and their underlying genetic basis in rice breeding in Japan.Multidimensional scaling analysis revealed that the Hoshiyutaka and Yumetoiro cultivars were Indica-like,yet they are classified as Japonica subpopulations.Exploring metabolomic traits is a powerful way to follow rice genetic traces and breeding history.

  9. The effects of starches on mechanical properties of paracetamol tablet formulations. I. Pregelatinization of starch binders.

    Science.gov (United States)

    Alebiowu, Gbenga; Itiola, Oludele Adelanwa

    2003-09-01

    A study has been made of the effects of pregelatinization of native sorghum and plantain starches on the mechanical properties of a paracetamol tablet formulation in comparison with corn starch BP. The mechanical properties tested, viz. tensile strength (T) and brittle fracture index (BFI) of the paracetamol tablets were affected by pregelatinization of the starch. The results suggest that pregelatinized starches may be useful as binders when a particular degree of bond strength and brittleness is desired.

  10. Reuse technology of reclaimed water in corn starch plant%反渗透膜用于玉米淀粉厂的中水回用的研究

    Institute of Scientific and Technical Information of China (English)

    郜培; 赵琳琳; 程兆鹏; 魏翠兰

    2012-01-01

    The reverse osmosis membrane was used to treat reclaimed water in corn starch plant. The results indicated that: by reverse osmosis membrane treatment , COD value of the reclaimed water was reduced to below 15 mg/L, the ammonia nitrogen was reduced to below 15 mg/L and the total salt content was reduced to below 130 mg/L, AII of the properties of the reclaimed water were accord with the quality of the reused water.%研究了反渗透膜在玉米淀粉厂中水处理中的效果.试验表明,采用反渗透膜处理后的中水COD降低到15 mg/L以下,氨氮含量降低到15 mg/L以下,全盐量降低到130 mg/L以下,各项指标均符合回用水的水质指标.

  11. Granules morphology and rheological behavior of green banana (Musa cavendishii and corn (Zea mays starch gels Morfologia dos grânulos e comportamento reológico dos géis de amido de banana verde (Musa cavendishii e milho (Zea mays

    Directory of Open Access Journals (Sweden)

    Dayane Rosalyn Izidoro

    2007-10-01

    Full Text Available In this work, it was used starch obtained from green banana (Musa cavendishii and commercial corn (Zea mays starch in order to compare the granule morphology and the rheological behavior of these gel-starches. Images of starch granules morphology were obtained from scanning electron microscope (SEM. The banana starch granules presented an oval and ellipsoidal shape with irregular diameters. Neverthless, the granules of corn starch showed a poliedric shape, with different sizes. The rheological behavior of gel starch solutions showed a non-newtonian character with a pseudoplastic behavior. Herschel-Bulkley model gave a good description on the rheological behavior of the gel starch. Banana gel-starch solutions showed higher values of shear stress and apparent viscosity when compared with corn gel-starch solutions. A progressive decrease in shear stress and viscosity occurred with the addition of sodium chloride and sucrose.No presente trabalho foi utilizado amido obtido de banana verde (Musa cavendishii e amido de milho (Zea mays comercial, com o objetivo de comparar a morfologia dos grânulos e o comportamento reológico dos géis. As imagens da morfologia dos grânulos foram obtidas por microscopia eletrônica de varredura. Os grânulos de amido da banana apresentaram forma oval e elipsoidal com diâmetros irregulares, todavia, os grânulos do amido de milho mostraram forma poliédrica e diferentes tamanhos. As análises reológicas dos géis das soluções de amido mostraram caráter não-newtoniano, pseudoplástico. O modelo de Herschel-Bulkley foi o que melhor representou comportamento reológico dos géis. O gel de amido de banana verde obteve maiores valores de tensão de cisalhamento e viscosidade aparente quando comparada ao gel de amido de milho. Ocorreu um decréscimo progressivo na tensão de cisalhamento e na viscosidade com a adição de cloreto de sódio e sacarose aos géis.

  12. Effects of starches on the textural, rheological, and color properties of surimi-beef gels with microbial tranglutaminase.

    Science.gov (United States)

    Zhang, Fenghui; Fang, Ling; Wang, Chenjie; Shi, Liu; Chang, Tong; Yang, Hong; Cui, Min

    2013-03-01

    In order to evaluate effects of starches (corn starch, potato starch, and tapioca starch) on the characteristics of surimi-beef gels with microbial transglutaminase, the cooking loss, gel strength, color and rheological properties of samples were investigated. Results demonstrated that starches gave negative effects on the cooking loss of surimi-beef gels. The gel with corn starch had the highest cooking loss while that with tapioca starch showed the lowest value. The gel with potato starch obtained the highest gel strength. During the sol-gel transitions, surimi-beef complexes with 3% corn starch exhibited the highest storage modulus value, while that with 3% tapioca starch had the lowest one. The addition of starch caused the increase of L* values of surimi-beef gels. Results showed that the excessive amount of starch resulted in the decrease in gel strength of surimi-beef gels.

  13. 21 CFR 184.1865 - Corn syrup.

    Science.gov (United States)

    2010-04-01

    ... “glucose syrup,” is obtained by partial hydrolysis of corn starch with safe and suitable acids or enzymes. It may also occur in the dehydrated form (dried glucose sirup). Depending on the degree of...

  14. Caracterização físico-química e estrutural de complexos amido-monoestearato de glicerol em amidos de cereais e a influência da β-ciclodextrina

    OpenAIRE

    2013-01-01

    Effect of β-cyclodextrin (βCD) in the formation of amylose-lipid and / or amylopectin-lipids complexes using glycerol monostearate (GMS) (1, 2, 3% w/w), and wheat, normal corn, waxy corn and high amylose starches were physicochemically and structurally evaluated in the presence or absence of β-cyclodextrin (βCD) (3% w/w). Normal corn and wheat starches were characterized by similar amylose content (~ 25%) and A-type X-ray pattern. High amylose corn starch (49.8%) presented the B-type crystall...

  15. 糊化和凝沉玉米淀粉的消化性能%Digestibility of Gelatinized and Retrogradated Corn Starch

    Institute of Scientific and Technical Information of China (English)

    高群玉; 李佳佳; 李云云

    2012-01-01

    In this paper, the pasting and thermodynamic properties of four kinds of com starch with different amy-lose contents were investigated by using a Brabender viscometer and a differential scanning calorimeter. Then, after being gelatinized only or with an additional storage at 4℃ for 24h, the starch was tested to reveal the effects of different treatment modes on the digestibility. Moreover, the correlation between the amylose content and the digestibility was analyzed. The results show that the amylose content greatly influences the peak viscosity, setback viscosity, DSC gelatinization temperature of the starch, that both the digestion products and the digestion rate of the starch with different treatments in the in-vitro digestion model decrease with the increase of amylose content, and that, as compared with the gelatinized starch, the retrogradated starch stored at 4℃ for 24h is of less digestion products and lower digestion rate, with the decrement being related to the amylose content.%以4种不同直链淀粉含量的玉米淀粉为研究对象,利用Brabender黏度仪与差示扫描量热仪(DsC)对淀粉糊性质与热力学性质进行了表征;考察了糊化及糊化后4℃条件下保藏24h两种处理方式对玉米淀粉消化性能的影响,分析了直链淀粉含量与玉米淀粉消化性能的关系.结果表明:直链淀粉含量对淀粉的峰值黏度、消减值、DSC糊化温度影响显著;在in-vitro消化模型中,4种玉米淀粉经两种方式处理后产生的消化产物总量以及消化速度均随着直链淀粉含量的升高而降低;4℃条件下保藏24h处理后,凝沉淀粉消化产物总量与消化速度均低于糊化淀粉,且降低程度与直链淀粉含量有关.

  16. Quantifying Resistant Starch Using Novel, In Vivo Methodology and the Energetic Utilization of Fermented Starch in Pigs

    NARCIS (Netherlands)

    Gerrits, W.J.J.; Bosch, M.W.; Borne, van den J.J.G.C.

    2012-01-01

    To quantify the energy value of fermentable starch, 10 groups of 14 pigs were assigned to one of two dietary treatments comprising diets containing 45% of either pregelatinized (P) or retrograded (R) corn starch. In both diets, a contrast in natural 13C enrichment between the starch and nonstarch

  17. Quantifying Resistant Starch Using Novel, In Vivo Methodology and the Energetic Utilization of Fermented Starch in Pigs

    NARCIS (Netherlands)

    Gerrits, W.J.J.; Bosch, M.W.; Borne, van den J.J.G.C.

    2012-01-01

    To quantify the energy value of fermentable starch, 10 groups of 14 pigs were assigned to one of two dietary treatments comprising diets containing 45% of either pregelatinized (P) or retrograded (R) corn starch. In both diets, a contrast in natural 13C enrichment between the starch and nonstarch co

  18. 湿热处理多孔玉米淀粉对大鼠脂质代谢的影响%Effect of Heat-Moisture Treated Corn Porous Starch on Lipid Metabolism in Rats

    Institute of Scientific and Technical Information of China (English)

    刘庆庆; 游玉明; 陆红佳; 田宝明; 陈朝军; 刘雄

    2016-01-01

    Objective: To investigate the effect of heat-moisture treated corn porous starch on lipid metabolism in rats. Methods:Totally 32 female Sprague-Dawley rats were randomly divided into 4 groups including control group and three other groups as high-fat blank group, high-fat porous starch (PS) group and high-fat heat-moisture treated corn porous starch (HTMPS) group. After adaptive feeding with a basal diet for a week, the rats from the control group were still fed with the basal diet and those from high-fat groups were given a high fat diet. After 4 weeks, all rats were sacrificed for the analysis of triglyceride (TG), cholesterol (TC) in serum and liver, and bile acid in small intestine and feces. Results:By feeding corn porous starch and heat-moisture treated corn porous starch, the contents of TC, TG and non-HDL-C in serum, atherosclerosis index (AI) and TG/HDL-C ratio in serum as well as TC content in liver and abdominal fat content decreased significantly (P<0.05);the fecal excretion of neutral steroid and bile acid increased significantly (P<0.05). Compared with HTMPS group, the rats from PS group revealed a reduction in serum TC level, AI, TG/HDL-C ratio and abdominal fat, and an increase in fecal bile acid excretion and bile acid in small intestinal contents. Conclusion:PS is more successful in reducing cholesterol than HTMPS. Therefore, porous starch can reduce the risk of hyperlipidemia caused by high-fat diet, and has a significant role in preventing cardiovascular diseases.%目的:探讨湿热处理多孔玉米淀粉对大鼠脂质代谢的影响。方法:32只雌性Sprague-Dawley(SD)大鼠随机分为4组,其中1组为对照组饲喂基础饲料,另外3组为高脂组,分别为高脂空白组、多孔淀粉组(porous starch,PS)和湿热处理多孔淀粉组(heat moisture treatment starch,HTMPS),饲喂基础饲料,适应1周后,对照组饲喂基础饲料,高脂组分别饲喂相应高脂饲料。饲喂4

  19. Influence of starch origin on rheological properties of concentrated aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Željko P.

    2011-01-01

    Full Text Available The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starch solutions increased with the storage time. This phenomenon was not observed for the potato starch solutions. It was assumed that the increase of h, G′ and G″ is the result of starch solutions retrogradation. The potato starch solutions retrogradation did not occur probably because of the phosphates presence. The viscosity of 2 mass % corn starch solution is less than the viscosity of 2 mass % potato starch solution. By increasing the concentration of corn starch solution the gel with elastic behavior was formed. The corn starch solutions formed gel as early as at 4 mass % concentration, while potato starch solutions achieved the gel state at the concentration of 5 mass %. The value of exponent m (G′ and G″ µ wm during the transition of potato starch solutions to gel is 0.414, which gives the fractal dimensions for corn starch of 2.10. The obtained value of fractal dimension corresponds to slow aggregation. The corn starch solutions with the starch concentrations higher than 4 mass % form weak gels. For these solutions the values of modulus in rubber plateau were determined. It was found that the modulus in rubber plateau increased with the concentration by the exponent of 4.36. Such high exponent value was obtained in the case when the tridimensional network is formed, i.e. when supermolecular structures like associates or crystal domains are formed.

  20. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes.

    Science.gov (United States)

    Lai, Yung C; Wang, Shu Y; Gao, Huan Y; Nguyen, Khiem M; Nguyen, Chinh H; Shih, Ming C; Lin, Kuan H

    2016-05-15

    The functional properties of starches from six sweet potato varieties containing various starch components and structures were studied in an attempt to identify starch sources for industrial uses. Tainan 18 (TNN18) with high-amylose (AM) starch exhibited high setback and breakdown viscosities, high water solubility at 85°C but low swelling volume at 65°C, and high hardness and adhesiveness; in contrast, the low-AM starch of Tainung 31 (TNG31) had opposite characteristics. Seven genes related to starch biosynthesis were tested, and GBSS, SS, SBEII, ISA, and AGPase were highly expressed in TNN18 and TNG31; however, transcript levels in DBE and SBE were extremely low. GBSS and SS activity reflected the abundance of GBSS and SS mRNA in TNG31 and TNN18, and expression of AGPase, GBSS, SS, and SBE in TNN18 substantially increased content of AM. The expression and activity of DBE had a significant effect on TNG31 with increased AP content.

  1. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation.

    Science.gov (United States)

    Mishra, Ankita; Singh, Anuradha; Sharma, Monica; Kumar, Pankaj; Roy, Joy

    2016-10-06

    Starch is a major part of cereal grain. It comprises two glucose polymer fractions, amylose (AM) and amylopectin (AP), that make up about 25 and 75 % of total starch, respectively. The ratio of the two affects processing quality and digestibility of starch-based food products. Digestibility determines nutritional quality, as high amylose starch is considered a resistant or healthy starch (RS type 2) and is highly preferred for preventive measures against obesity and related health conditions. The topic of nutrition security is currently receiving much attention and consumer demand for food products with improved nutritional qualities has increased. In bread wheat (Triticum aestivum L.), variation in amylose content is narrow, hence its limited improvement. Therefore, it is necessary to produce wheat lines or populations showing wide variation in amylose/resistant starch content. In this study, a set of EMS-induced M4 mutant lines showing dynamic variation in amylose/resistant starch content were produced. Furthermore, two diverse mutant lines for amylose content were used to study quantitative expression patterns of 20 starch metabolic pathway genes and to identify candidate genes for amylose biosynthesis. A population comprising 101 EMS-induced mutation lines (M4 generation) was produced in a bread wheat (Triticum aestivum) variety. Two methods of amylose measurement in grain starch showed variation in amylose content ranging from ~3 to 76 % in the population. The method of in vitro digestion showed variation in resistant starch content from 1 to 41 %. One-way ANOVA analysis showed significant variation (p wheat. It is also useful for the study of the genetic and molecular basis of amylose/resistant starch variation in wheat. Furthermore, gene expression analysis of 20 starch metabolic genes in the two diverse mutant lines (low and high amylose mutants) indicates that in addition to key genes, several other genes (such as phosphorylases, isoamylases, and

  2. Effect of dietary starch source and concentration on equine fecal microbiota

    Science.gov (United States)

    Starch from corn is less susceptible to equine small intestinal digestion than starch from oats, and starch that reaches the hindgut can be utilized by the microbiota. The objective of the current study was to examine the effects of starch source on equine fecal microbiota. Thirty horses were assig...

  3. Synthesis of Higher Fatty Acid Starch Esters using Vinyl Laurate and Stearate as Reactants

    NARCIS (Netherlands)

    Junistia, Laura; Sugih, Asaf K.; Manurung, Robert; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2008-01-01

    This paper describes the synthesis of long-chain fatty esters of corn starch (starch laurate and starch stearate) with a broad range in degree of substitution (DS = 0.24-2.96). The fatty esters were prepared by reacting the starch with vinyl laurate or vinyl stearate in the presence of basic catalys

  4. NILAI BIOLOGIS MI KERING JAGUNG YANG DISUBSTITUSI TEPUNG JAGUNG TERMODIFIKASI MELALUI HEAT MOISTURE TREATMENT [Biological Values of Dried Corn Noodles Substituted with Heat Moisture Treated (HMT-Corn Flour

    Directory of Open Access Journals (Sweden)

    Nurheni Sri Palupi

    2015-06-01

    Full Text Available The objective of this research was to determine the effects of physical modification of corn flour by heat moisture treatment (110°C, 6 hours on the biological values of Heat Moisture Treated (HMT-corn flour obtained as well as corn noodles substituted with the HMT-corn flour. The parameters tested which were directly associated were starch and protein digestibility in vitro while indirect parameters included the resistant starch and insoluble fiber contents. The chemical composition (protein, fat, carbohydrates, starch, amylose and amylopectin of the substituted corn noodles were analyzed by chemical methods. In vitro dietary fiber of the noodles were determined gravimetrically whereas the resistant starch, starch and protein digestibility for both the HMT-corn flour and corn noodles substituted with 10% HMT-corn flour were determined using spectrophotometry. The HMT-corn flour had higher resistant starch and soluble fiber contents, but lower starch and protein digestibilities. Meanwhile, the substituted corn noodle had higher resistant starch and soluble fiber yet had significantly lower starch digestibility than those of corn noodle without HMT-corn flour.

  5. The in vitro effects of retrograded starch (resistant starch type 3) from lotus seed starch on the proliferation of Bifidobacterium adolescentis.

    Science.gov (United States)

    Zhang, Yi; Wang, Ying; Zheng, Baodong; Lu, Xu; Zhuang, Weijing

    2013-11-01

    Prebiotics such as oligosaccharides, fructans, and resistant starch (RS) stimulate the growth of beneficial bacteria in large bowel and modify the human gastrointestinal environment. In this study, compared with glucose (GLU) and high amylose maize starch (HAMS), the in vitro effects of LRS3 and P-LRS3 (RS3 and purified RS3 prepared from lotus seed starch) on the proliferation of bifidobacteria were assessed by assessing the changes in optical density (OD), pH values, short chain fatty acid (SCFA) production, and tolerance ability to gastrointestinal conditions. Significantly higher OD values were obtained from media containing LRS3 and P-LRS3, and especially in the medium containing P-LRS3, the OD value of which reached 1.36 when the concentration of the carbon source was 20 g L(-1). Additionally, the lag phase of bifidobacteria was 8 h in the medium with LRS3 or P-LRS3, whereas it was 16 h in the medium with GLU or HAMS. What is more, a higher content of butyric acid was obtained in the P-LRS3 medium. Compared with GLU and HAMS media, bifidobacteria had a higher tolerance to gastrointestinal conditions in LRS3 and P-LRS3 media. It shows that lotus seed resistant starch, especially P-LRS3, could stimulate the growth of bifidobacteria. The rough surface of resistant starch and the SCFAs produced during fermentation might influence the proliferation of bifidobacteria.

  6. 大米抗性淀粉制备工艺优化及特性分析%Preparation technology optimization and characteristic analysis of rice resistance starch

    Institute of Scientific and Technical Information of China (English)

    赵力超; 于荣; 刘欣; 周爱梅; 曹庸

    2013-01-01

      宜糖米是新型高直链淀粉的大米品种,具有开发高抗性淀粉(resistant starch,RS)产品的潜力。该文采用响应面分析优化压热法制备宜糖米 RS 条件,通过碘吸收曲线、红外光谱、平均聚合度、扫描电镜、性质检测分析形成机理。结果表明:最佳制备条件为淀粉质量分数31%、pH值5.8、压热时间50 min(压强0.1 MPa)、冷藏时间15 h,此时RS得率达到20.1%。特性分析表明,宜糖米RS主要是以短直链淀粉为主体,分子量分布比较集中,淀粉颗粒表面为多孔状的结构,使得持水力高于其他常见RS和膳食纤维。研究结果为RS的研究提供技术方法的参考,同时促进宜糖米资源的深度开发利用。%  Yitang is a new type rice with high amylose content, which was bred by spaceflight mutation and physical mutation. It has great potential for developing high resistant starch (RS) products. Until recently, most of the studies on the RS preparation have focused on high-amylose corn starch or root vegetables starch. In addition, there is a greater difference between rice starch and other kinds of starch in particle characteristics, composition, etc. The production processes of RS cannot simply be deduced from previous reports. In order to make use of Yitang rice rationally, this article focuses on the production processes of RS as a functional food ingredient. The production processes of Yitang Rice RS were optimized through a Box-Benhnken center-united experiment design and Response Surface Methodology (RSM), based on single-factor experiments of moisture content (starch concentration), pH value, autoclaving treatment temperature, cooling method, cold storage time, drying temperature, and the number of autoclaving treatments. RS characteristics analysis was discussed by assistant analyses of absorption curves of starch and I2-KI compound, infrared spectroscopy, average polymerization degree, scanning electron

  7. Effect of adsorption of an inhibitory factor on raw starch hydrolysis by glucoamylase.

    Science.gov (United States)

    Towprayoon, S; Fujio, Y; Ueda, S

    1990-12-01

    An inhibitory factor (IF) produced byAspergillus niger strain 19, and which inhibits the action of glucoamylase on starch, has the ability to be tightly adsorbed on to various raw starches, though the amount differs from starch to starch. Based on the hydrolysis of the IF-starch complex by glucoamylase, the inhibitions per unit IF adsorbed are similar for some varieties of starch. The effectiveness ratio of IF (% hydrolysis inhibition per % IF adsorbed on raw starch) for corn, sweet potato, waxy rice and waxy corn starches are 1.1, 1.0, 0.85 and 0.96, respectively. These results support the hypothesis that both glucoamylase and IF are adsorbed on to a common binding site on raw starch. However, the effectiveness ratio of IF for cassava and wheat starches are 0.71 and 1.65, respectively, which differ significantly from other varieties of starch.

  8. Production of ethyl alcohol from corn silage

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, H.J.; Ponitz, H.

    1973-01-01

    Corn silage may be employed as a raw material for the production of ethyl alcohol when starch is first cracked by pressure cooking and subsequently saccharified by microbial amalyses. Cracking conditions are: pressure increase 1.6 atmosphere within 60 minutes; maximum maintained for 35 minutes. The fermentation is complete after 72 hours. Extract decreases of fermented mashes made from corn silage are less than when dried corn is used. In the most advantageous case the degree of fermentation was -0.2 weight % of the extract. The maximum yields of alcohol were 26.0.1. pure alcohol/100 kg corn silage and 61.2.1. pure alcohol/100 kg starch. The latter is 3.9.1. pure alcohol lower than when dried corn was used. Despite the high bacterial infection of corn silage practically infection-free processing is assured.

  9. MISTURAS DE FARINHA DE AVEIA E AMIDO DE MILHO COM ALTO TEOR DE AMILOPECTINA PARA PRODUÇÃO DE "SNACKS" OAT FLOUR/WAXY CORN STARCH BLENDS FOR SNACKS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Laura Beatriz KARAM

    2001-08-01

    Full Text Available O potencial de uso do amido modificado com alto teor de amilopectina combinado à farinha de aveia para produção de "snacks" extrusados foi investigado. O processamento foi executado em extrusor mono-rosca, de acordo com um delienamento fatorial (2(5 incompleto, com 3 repetições no ponto central. As variáveis independentes controladas foram: umidade da matéria-prima, temperatura de extrusão, rotação do parafuso, diâmetro da matriz e teor de amido modificado. Como respostas, avaliou-se o volume específico, a dureza e a fraturabilidade. A partir da modelagem exploratória foram definidas as variáveis significativas e novos deslocamentos na área experimental, até se atingir o ponto ótimo para produção de "snacks". A melhor combinação de variáveis encontrada, para obter um produto com boas propriedades de expansão e de textura, foi: 17% de umidade de matéria-prima, 183°C de temperatura de extrusão, 100rpm de rotação do parafuso, 4mm de diâmetro da matriz e 30% de amido modificado. O produto obtido nessas condições apresentou 7,2mL/g de volume específico, 5,41N de dureza e 2,02N de fraturabilidade, assemelhando-se, por essas características, aos produtos comerciais de milho.The potential application of modified starch to enhance properties of oat flour extruded products was investigated. The process was performed using a single screw extruder, applying a 2(5 factorial design with 3 repetitions on the central point. The independent variables were: feed moisture, extrusion temperature, screw speed, die diameter and modified starch level and depended studied variables were: specific volume, hardness and fracturability. Based on results of the experiments a new experimental design was proposed to optimize product characteristics. The best combination of variables to obtain snacks with good expansion and texture was: 17% feed moisture, 183°C temperature, 100rpm screw speed, 4mm die diameter and 30% waxy starch. The product

  10. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  11. Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity.

    Science.gov (United States)

    Tai, N L; Adhikari, Raju; Shanks, Robert; Adhikari, Benu

    2017-05-01

    Starch-polyurethane (PU) composite films with improved mechanical and hydrophobic properties were developed in this work. A simple and effective microwave-aided starch gelatinisation instrument was used to prepare glycerol plasticized high amylose starch (HAGS) material. Polyethylene glycol-isocyanate (PEG-iso) linker was prepared by reacting PEG 1000 with hexamethylene diisocyanate (HMDI). PEG-iso linker was then grafted into HAGS forming three dimensional urethane networks (PEG-PU). HAGS-PEG-PU composite blends were prepared and dried at ambient temperature to obtain HAGS-PEG-PU films. The mechanical properties and hydrophobicity (as contact angle, CA) of the HAGS-PEG-PU films were measured and analysed. Fourier transform infrared spectroscopy showed good grafting of PEG-iso into starch structure. Increase of PEG-iso concentration up to 20% (w/w) improved the molecular mixing and interpenetration between the starch and PEG-PU. The HAGS-PEG-PU films had improved hydrophobicity as indicated by CA values ranging from 51 to 110°and very high flexibility as evidenced from elongation at break (εB) values from 17 to 1000%. The HAGS-PEG-PU film formulation containing 20% (w/w) PEG-iso provided the best flexibility (εB>1000%) and hydrophobicity (CA>110°). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chemical and rheological properties of a starch-rich fraction from the pulp of the fruit cupuassu (Theobroma grandiflorum)

    Energy Technology Data Exchange (ETDEWEB)

    Vriesmann, Lucia C.; Silveira, Joana L.M. [Universidade Federal do Parana, Departamento de Bioquimica e Biologia Molecular, CP 19046, CEP 81531-990, Curitiba-PR (Brazil); Petkowicz, Carmen L. de O [Universidade Federal do Parana, Departamento de Bioquimica e Biologia Molecular, CP 19046, CEP 81531-990, Curitiba-PR (Brazil)], E-mail: clop@ufpr.br

    2009-03-01

    The pulp obtained from the fruit of cupuassu (Theobroma grandiflorum) was extracted with hot aqueous 0.1% citric acid to give fraction 0.1CA-2 in 15% yield. This was the predominant component polysaccharide, 91% of which was composed of starch, by an iodine test and monosaccharide composition, and its {sup 13}C NMR spectrum was consistent with that of a high amylose starch. The content of amylose found in fraction 0.1CA-2 was 71%. This value is higher than those of common starches of cereal grains, tubers, roots, and other fruits. The fraction was submitted to rheological examination, gels being prepared on heating with concentrations of 4 to 7% (w/w). A non-Newtonian behavior was observed, and gel viscosity and strength depended on the concentration. The presence of starch, as well as the presence of previously investigated pectin, conferred the high viscosity and gelling capability of the pulp.

  13. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on alpha-amylase activity and in vitro digestibility of starch in raw and processed flours

    Science.gov (United States)

    The effect of condensed tannins (CT) on in vitro starch digestibility in cooked, wholegrain sorghum flours and on corn starch was investigated. CT extracts were also tested for their inhibitory effect on alpha-amylases. Rapidly digestible starch, slowly digestible starch, and resistant starch were n...

  14. Starch gelatinization.

    Science.gov (United States)

    Ratnayake, Wajira S; Jackson, David S

    2009-01-01

    Starch occurs as highly organized structures, known as starch granules. Starch has unique thermal properties and functionality that have permitted its wide use in food products and industrial applications. When heated in water, starch undergoes a transition process, during which the granules break down into a mixture of polymers-in-solution, known as gelatinization. The sequence of structural transformations that the starch granule undergoes during this order-to-disorder transition has been extensively researched. None of the published starch gelatinization theories can fully and adequately explain the exact mechanism of sequential structural changes that starch granules undergo during gelatinization. This chapter analyzes several published theories and summarizes our current understanding of the starch gelatinization process.

  15. Effects of starches on the mechanical properties of paracetamol tablet formulations. II. Sorghum and plantain starches as disintegrants.

    Science.gov (United States)

    Alebiowu, Gbenga; Itiola, Oludele Adelanwa

    2003-12-01

    This study evaluates the disintegrant properties--tablet disintegration time (DT) and crushing strength--friability/disintegration time (CSFR/DT) ratio of a paracetamol tablet formulation prepared with sorghum and plantain starches in comparison with corn starch BP. The effects of disintegrant concentration, relative density of tablets and the mode of disintegrants addition were studied. The study revealed that the rank order of effectiveness of the starches as disintegrants was corn > plantain > sorghum. The mode of addition of disintegrants, disintegrant concentration and relative density had a significant impact on the disintegrant properties. The tested starches, namely, sorghum and plantain, showed promising results.

  16. [Evaluation of culture media for detecting the starch hydrolysis reaction in pathovars of Xanthomonas campestris].

    Science.gov (United States)

    Alippi, A M

    1991-01-01

    Sixty strains of different pathovars of Xanthomonas campestris have been tested for the evaluation of various starch agars and compounds of starch degradation on six media: soluble starch, potato insoluble starch, corn insoluble starch, potato amylopectin, corn amylopectin and potato amylose. The purpose of the present investigation was the selection of the most suitable medium for the visualization of the starch hydrolysis test, presenting this reaction as a distinct character between pathovars of the Xanthomonas campestris group. From 60 strains tested, 74% gave positive reactions. Pathovars holcicola, pelargonii, pruni and vitians were negative. Regarding X. campestris pv. vesicatoria cultures, results were variable. Potato and corn insoluble starch agars were the most suitable media for the visualization of the starch hydrolysis reaction and at the same time the most appropriate for direct isolation. Differentiation at species level could be practicable, but within the Xanthomonas campestris group, variation amongst pathovars suggest the unsuitability of the test in spite of the high percentage of positive reactions.

  17. Retrogradation of starches and maltodextrins of various origin

    Directory of Open Access Journals (Sweden)

    Joanna Sobolewska-Zielińska

    2010-03-01

    Full Text Available Background. The retrogradation which occurs during the processes food storage is an essential problem in food industry. In this study, the ability to retrogradate of native starches and maltodextrins of different botanical origin was analysed. Material and methods. The materials were starches of various botanical origin, including commercial samples: potato, tapioca, wheat, corn, waxy corn starches, and laboratory isolated samples: triticale and rice starches. The above starches were used as material for laboratory production of maltodextrins of medium dextrose equivalents (DE in the range from 8.27 to 12.75. Starches were analysed for amylose content, while the ratio of non-branched/long-chain-branched to short-chain-branched fractions of maltodextrins was calculated from gel permeation chromatography data. The susceptibility to retrogradation of 2% starch pastes and 2% maltodextrin solutions was evaluated according to turbidimetric method of Jacobson. Results. The greatest starch in turbidance of starch gels was observed within initial of the test. days. Initial retrogradation degree of cereal starches was higher than that of tuber and root starches. The waxy corn starch was the least prone to retrogradate. The increase in turbidance of maltodextrin solutions were minimal. Waxy corn maltodextrin was not susceptible to retrogradation. Among other samples, the lowest susceptibility to retrogradation after 14 days was found for rice maltodextrin, while the highest for wheat and triticale maltodextrin. Conclusions. On the basis of this study, the retrogradation dependence on the kind of starches and the maltodextrins was established and the author stated that all the maltodextrins have a much less ability to retrogradation than the native starches.

  18. Waxy corn starch hydrolysis by β-amylase and properties of the dextrin%β-淀粉酶对蜡质玉米淀粉的酶解规律及其产物性质研究

    Institute of Scientific and Technical Information of China (English)

    陈旭; 陈磊; 黄强; 姜锐; 何小维

    2013-01-01

    以蜡质玉米淀粉为原料,制备了β-极限糊精,研究了加酶量及酶解时间与产物流度关系的变化规律,以膜分离手段分离部分小分子麦芽糖,研究了产物溶解性、冻融稳定性、持水性及表观黏度等理化性质.结果表明,淀粉糊的流度在酶解前5h迅速降低,24h后产物流度趋于稳定.随着酶解程度的提高,β-极限糊精的溶解度提高,冻融稳定性和持水性降低,表观黏度下降,酶解物为假塑性流体.与未经膜分离的样品相比,膜分离后产物的持水性、冻融稳定性、表观黏度提高.%Using waxy corn starch as material,β-limit dextrin was prepared,and the effect of dosage and hydrolysis time of β-amylase on the fluidity of the product was studied.Part of maltose was separated by membrance.The solubility,freeze-thaw stability,water holding capacity and apparent viscosity of the separated products was investigated.Results showed that the fluidity of the starch paste decreased rapidly within 5 hours hydrolysis,and became stable after 24h of hydolysis.As the degree of hydrolysis increasing,the solubility of dextrin increased,and freeze-thaw stability,water holding capacity and apparent viscosity decreased.The product showed pseudoplastic fluid.After membrane separation,the water holding capacity,freeze-thaw stability and apparent viscosity of the dextrin increased.

  19. Enzymatic hydrolysis of corn bran arabinoxylan

    DEFF Research Database (Denmark)

    Agger, Jane

    This thesis concerns enzymatic hydrolysis of corn bran arabinoxylan. The work has focused on understanding the composition and structure of corn bran with specific interest in arabinoxylan with the main purpose of targeting enzymatic hydrolysis for increased yields. Corn bran has been used...... as a model substrate because it represents a readily available agroindustrial side product with upgrading potentials. Corn bran originates from the wet-milling process in corn starch processing, is the outmost layers of the corn kernel and is particularly rich in pentose monosaccharides comprising the major...... components of arabinoxylan. Corn bran is one of the most recalcitrant cereal byproducts with arabinoxylans of particular heterogeneous nature. It is also rich in feruloyl derived substitutions, which are responsible for extensive cross-linking between arabinoxylan molecules and thereby participate...

  20. The effects of forage proportion and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed neutral detergent fiber and starch contents.

    Science.gov (United States)

    Lechartier, C; Peyraud, J-L

    2010-02-01

    This study investigated the effects of the forage-to-concentrate (F:C) ratio and the rate of ruminal degradation of carbohydrates from the concentrate on digestion in dairy cows fed corn silage-based diets. Six cows with ruminal cannulas were assigned to 6 treatments in a 6x6 Latin square. Treatments were arranged in a 3x2 factorial design. Three proportions of neutral detergent fiber from forage [FNDF; 7.6, 13.2, and 18.9% of dry matter (DM)] were obtained by modifying F:C (20:80, 35:65, and 50:50). These F:C were combined with concentrates with either high or low content of rapidly degradable carbohydrates. The dietary content of rapidly degradable carbohydrates from the concentrate was estimated from the DM disappearance of concentrate after 4h of in sacco incubation (CRDM). Thus, 2 proportions of CRDM were tested (20 and 30% of DM). Wheat and corn grain were used as rapidly and slowly degradable starch sources, respectively. Soybean hulls and citrus pulp were used as slowly and rapidly degradable fiber sources, respectively. Concentrate composition was adjusted to maintain dietary starch and neutral detergent fiber contents at 35.9 and 28.9% of DM, respectively. There was no effect of the interaction between F:C and CRDM on DM intake (DMI), ruminal fermentation, chewing activity, and fibrolytic activity. When F:C decreased, DMI increased, the mean ruminal pH linearly decreased, and the pH range linearly increased from 0.95 to 1.27 pH unit. At the same time, the acetate-to-propionate ratio decreased linearly. Decreasing F:C linearly decreased the average time spent chewing per kilogram of DMI from 35.2 to 19.5min/kg of DMI and decreased ruminal liquid outflow from 11.6 to 9.2L/kg of DMI, suggesting a decrease in the salivary flow. Increasing CRDM decreased DMI and increased the time during which pH was below 6.0 (3.1 vs. 4.8h), the pH range (0.90 vs. 1.33), and the initial rate of pH drop. It also increased the volatile fatty acid range (35 vs. 59mM), thus

  1. Recrystallization of starches by hydrothermal treatment: digestibility, structural, and physicochemical properties.

    Science.gov (United States)

    Trinh, Khanh Son

    2015-12-01

    Gelatinized starches were recrystallized under hydrothermal treatment and their properties were characterized by X-ray diffractometry, solid-state (13)C cross-polarization and magic-angle spinning nuclear magnetic resonance, differential scanning calorimetry, gel-permeation chromatography, high-performance anion-exchange chromatography using pulsed amperomeric detection, high-performance size-exclusion chromatography with attached multiangle laser light scattering and refractive index detectors, and digestibility analysis. Amylopectin molecules of hylon (V, VII) and water yam starch contained long side-chains with high proportion of fb1 and fb2. Under hydrothermal treatment, the double helix proportion and relative crystallinity significantly increased and reached maxima of water yam (48.7 and 28.2 %, respectively). Except water yam starch, X-ray diffraction pattern of all starches exhibited the evidence of type 2 amylose-lipid complex. Besides, under DSC measurement, potato and hylon starches showed the endotherm of amylose-amylose interaction. The hydrothermal treatment caused the recrystallization resulting in the decrease of RDS, especially in case of hylon and water yam starch. HTT water yam contained highest SDS (48.3 %) and HTT hylon VII contained highest RS (44.5 %). The relationship between structure and digestibility was observed, in which, high amylose content and specific structures of amylopectin molecule were necessary for the production of RS and/or SDS of hydrothermally treated starches.

  2. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.

    Science.gov (United States)

    Wei, Benxi; Hu, Xiuting; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-11-01

    The effect of defatting on the physiochemical properties and the acid hydrolysis rate of maize starch with different amylose contents was evaluated in this study. The increase in the number of pores and the stripping of starch surface layers were observed after defatting by scanning electron microscopy. X-ray diffraction spectrum showed that the peaks attributing to the amylose-lipid complex disappeared. The relative crystallinity increased by 19% for high-amylose maize starch (HMS) on defatting, while the other tested starches virtually unchanged. Differential scanning calorimetry study indicated an increase in the thermal stability for the defatted starches. Compared with native waxy maize starch, the acid hydrolysis rate of the defatted one increased by 6% after 10 days. For normal maize starch (NMS) and HMS, the higher rate of hydrolysis was observed during the first 5 days. Thereafter, the hydrolysis rate was lower than that of their native counterpart. The increase in susceptibility to acid hydrolysis (in the first 5 days) was mainly attributed to the defective and porous structures formed during defatting process, while the decrease of hydrolysis rate for NMS and HMS samples (after the first 5 days) probably resulted from the increase in the relative crystallinity.

  3. Study on the gelatinization of corn starch by enzyme-added extrusion at low temperature%低温加酶挤压玉米淀粉糊化度的研究

    Institute of Scientific and Technical Information of China (English)

    冯秋娟; 肖志刚; 郑广钊; 魏旭; 叶鸿剑

    2011-01-01

    In order to study the behaviors of extrusion conversion of amylase,a in-temperature resistant α-amylase as catalyzer and a twin-screw extruder were used for testing the gelatinization and liquefaction of corn starch,and extrudates with different gelatinization were obtained.On the basis of single factor,the response surface methodology was used to study the barrel temperature,influences of screw speed,moisture of material and enzyme concentration on gelatinization values.The results showed that when barrel temperature of extruded was 71.35℃,moisture of material was 31.81%,rotation speed of extruder was 133.96r/min,enzyme concentration was 3.15u/g,the optimal value of gelatinization was 55.31%.%为了探讨淀粉加酶挤压转化规律,以中温α-淀粉酶为外加酶,利用双螺杆挤压机对玉米淀粉进行了糊化实验研究,获得了不同糊化程度的挤出物;在单因素研究基础上,采用响应面分析方法研究了机筒温度、螺杆转速、物料水分和酶浓度对挤出物糊化度的影响规律。结果表明:在机筒温度为71.35℃、物料水分31.81%、转速133.96r/min、酶浓度3.15u/g条件下,挤压玉米淀粉糊化度的最优值为55.31%。

  4. 原花青素抑制玉米淀粉回生作用的研究%Study on preventing the retrogradation of maize starch using proanthocyanidins

    Institute of Scientific and Technical Information of China (English)

    许晨; 刘锐; 孙婵婵; 史春悦; 丛旭; 侯滕; 张民

    2015-01-01

    目的:研究原花青素(OPCs)对高直链玉米淀粉、普通玉米淀粉和高支链玉米淀粉回生的影响。方法采用差示扫描量热仪(DSC)、傅立叶红外光谱仪(FTIR)、核磁共振光谱仪(NMR)测定与分析原花青素与淀粉间的相互作用;同时测定原花青素对淀粉体外消化性的影响。结果结果表明,随着OPCs含量的增加,高直链玉米淀粉回生程度降低;当OPCs 添加量为5%时,原花青素对普通玉米淀粉和高支链玉米淀粉回生抑制效果较好。高直链玉米淀粉中慢消化淀粉(SDS)含量随OPCs增加而增加,普通淀粉中SDS含量在添加5% OPCs 时较高,而高支链玉米淀粉的快消化淀粉(RDS)含量在5%时较高; NMR 结果表明OPCs 分子与直链和支链淀粉之间均存在分子间相互作用。结论添加5%原花青素对三种玉米淀粉回生抑制效果较好;原花青素对直链和支链淀粉的结合方式和结合能力不同。%Objective To investigate the effect of proanthocyanidins (OPCs) on the retrogradation of high amylose maize starch, normal maize starch and high amylopectin maize starch. Methods The differential scanning calorimetry (DSC), Fourier transform infrared spectrom (FTIR) and nuclear magnetic resonance (NMR) were employed to investigate the interactions between OPCs and starch. In addition, the effect of OPCs on in vitro digestibility of maize starch was detected. Results DSC and FTIR results indicated that the retrogradation degree of high amylose maize starch decreased with OPCs concentration increasing, whereas the retrogradation inhibition effect of 5% OPCs on normal maize starch and high amylopectin maize starch was relatively better than those with other OPCs concentrations. NMR results suggested that there were intermolecular interactions between OPCs molecules and maize starch. In addition, in vitro digestibility experiments indicated that the content of slowly digested starch (SDS) in high amylose

  5. Corn silage management I: effects of hybrid, maturity, and mechanical processing on chemical and physical characteristics.

    Science.gov (United States)

    Johnson, L M; Harrison, J H; Davidson, D; Robutti, J L; Swift, M; Mahanna, W C; Shinners, K

    2002-04-01

    Two experiments were conducted to evaluate the effects of hybrid, maturity, and mechanical processing of whole plant corn on chemical and physical characteristics, particle size, pack density, and dry matter recovery. In the first experiment, hybrid 3845 whole plant corn was harvested at hard dough, one-third milkline, and two-thirds milkline with a theoretical length-of-cut of 6.4 mm. In the second experiment, hybrids 3845 and Quanta were harvested at one-third milkline, two-thirds milkline, and blackline stages of maturity with a theoretical length-of-cut of 12.7 mm. At each stage of maturity, corn was harvested with and without mechanical processing by using a John Deere 5830 harvester with an onboard kernel processor. The percentage of intact corn kernels present in unprocessed corn silage explained 62% of variation in total tract starch digestibility. As the amount of intact kernels increased, total tract starch digestibility decreased. Post-ensiled vitreousness of corn kernels within the corn silage explained 31 and 48% of the variation of total tract starch digestibility for processed and unprocessed treatments, respectively. For a given amount of vitreous starch in corn kernels, total tract starch digestibility was lower for cows fed unprocessed corn silage compared with processed corn silage. This suggests that processing corn silage disrupts the dense protein matrix within the corn kernel where starch is embedded, therefore making the starch more available for digestion. Particle size of corn silage and orts that contained corn silage was reduced when it was processed. Wet pack density was greater for processed compared with unprocessed corn silage.

  6. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  7. Paraformaldehyde-resistant starch-fermenting bacteria in "starch-base" drilling mud.

    Science.gov (United States)

    MYERS, G E

    1962-09-01

    Starch-fermenting bacteria were found in each of 12 samples of nonfermenting starch-base drilling mud examined. Of the 12 samples, 3 contained very active starch-fermenting gram-positive spore-bearing bacilli closely resembling Bacillus subtilis. Similar active starch-fermenting bacteria were found in fermenting starch-base drilling mud and in corn starch and slough water used to prepare such mud. The active starch-fermenting microorganisms completely hydrolyzed 1% (w/v) corn starch within 24 hr at 37.5 C. The active starch-fermenting bacteria isolated from fermenting drilling mud were capable of surviving 12 hr of continuous exposure to 0.1% (w/w) paraformaldehyde or 1 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, with no diminution in starch-fermenting ability. The same organisms fermented starch after 3 hr of continuous exposure to 0.5% (w/w) paraformaldehyde, but not after 4 hr of exposure. The phenomenon of rapid disappearance of paraformaldehyde from fermenting drilling mud was observed in the laboratory using a modified sodium sulfite test. Paraformaldehyde, initially present in a concentration of 0.192 lb per barrel of mud, completely disappeared in 9 hr at 22 to 23 C. A significant decrease in paraformaldehyde concentration was detected 0.5 hr after preparation of the mud. It is suggested that the presence of relatively high concentrations of ammonia and chloride in the mud may facilitate the disappearance of paraformaldehyde. The failure of 0.1% (w/w) paraformaldehyde to inhibit the strong starch-fermenting microorganisms isolated from fermenting drilling mud, and the rapid disappearance of paraformaldehyde from the mud, explains the fermentation of starch which occurred in this mud, despite the addition of paraformaldehyde.

  8. Functionality of porous starch obtained by amylase or amyloglucosidase treatments.

    Science.gov (United States)

    Dura, A; Błaszczak, W; Rosell, C M

    2014-01-30

    Porous starch is attracting very much attention for its absorption and shielding ability in many food applications. The effect of two different enzymes, fungal α-amylase (AM) or amyloglucosidase (AMG), on corn starch at sub-gelatinization temperature was studied as an alternative to obtain porous starch. Biochemical features, thermal and structural analyses of treated starches were studied. Microscopic analysis of the granules confirmed the enzymatic modification of the starches obtaining porous structures with more agglomerates in the case of AMG treated starches. Several changes in thermal properties and hydrolysis kinetics were observed in enzymatically modified starches. Hydration properties were significantly affected by enzymatic modification being greater influenced by AMG activity, and the opposite trend was observed in the pasting properties. Overall, results showed that enzymatic modification at sub-gelatinization temperatures really offer an attractive alternative for obtaining porous starch granules to be used in a variety of foods applications.

  9. Starch modification with microbial alpha-glucanotransferase enzymes

    NARCIS (Netherlands)

    van der Maarel, Marc J. E. C.; Leemhuis, Hans

    2013-01-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucos

  10. Alteration of biomass composition in response to changing substrate particle size and the consequences for enzymatic hydrolysis of corn bran

    DEFF Research Database (Denmark)

    Agger, Jane; Meyer, Anne S.

    2012-01-01

    Corn bran is a by-product from corn starch processing. This work examined the effects of changing substrate particle size on enzymatic hydrolysis of both raw and pretreated destarched corn bran. The biomass composition of the corn bran varied between particle size fractions: The largest particles...

  11. The structure and properties of different types of starch exposed to UV radiation: a comparative study.

    Science.gov (United States)

    Bajer, Dagmara; Kaczmarek, Halina; Bajer, Krzysztof

    2013-10-15

    The effect of UV-irradiation on four different types of native starch (corn, waxy corn, wheat and potato) have been investigated. Although the changes in the chemical structure of starch specimens were small, indicating good photostability, the samples lost adsorbed water and their crystallinity degree decreased after irradiation. Moreover, a drop in average molecular weight occurred in samples (with the exception of potato starch) as a result of main chain scission. The variations in the properties of investigated specimens of various origin were related to the differences in their structure and macromolecular arrangement. The lowest photostability among the four starches was exhibited by potato starch.

  12. Unique features of several microbial α-amylases active on soluble and native starch

    NARCIS (Netherlands)

    Sarian, Fean Davisunjaya

    2016-01-01

    Starch is the main energy store of major agricultural crops such as corn, potato, rice and wheat. Various amylase type enzymes are used to convert cooked starch to glucose that goes into bioethanol fermentation. Only a few amylase type enzymes have been described that can act on the starch granule i

  13. Production of a raw starch saccharifying amylase byBacillus alvei grown on different agricultural substrates.

    Science.gov (United States)

    Achi, O K; Nijoku-Obi, A N

    1992-03-01

    Maximum activity of the amylase ofBacillus alvei was attained after growth of the organism on sorghum starch. Rice, corn, yam, cassava and potato starch gave high enzyme activities as did soluble starch. Glucose, maltose and glycerol were less effective. Optimum conditions for both growth and enzyme production were pH 6.8 at 40°C.

  14. Effects of oligomeric procyanidins on the retrogradation properties of maize starch with different amylose/amylopectin ratios.

    Science.gov (United States)

    Liu, Rui; Xu, Chen; Cong, Xu; Wu, Tao; Song, Yingshi; Zhang, Min

    2017-04-15

    The effect of oligomeric procyanidins (OPCs) on the retrogradation of maize starch with different amylose/amylopectin ratios was investigated. The apparent amylose contents in high-amylose maize (HAM), normal maize (NM), and amylopectin maize (APM) starches are 79.05%, 25.43% and 0%. Structural characterizations of retrograded maize starches in the presence of OPCs were conducted by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR). The results suggest that OPCs inhibit the retrogradation of maize starches in low concentrations (1.5-2.5%) with different inhibitory effects for HAM, NM and APM starches. It may be attributed to the variations on interaction ways and binding capabilities between different types of starches and OPCs. The in vitro enzymatic digestion result indicates HAM starch and OPCs have stronger interactions with the formation of resistant structures. These findings provide a further evidence for exploring the interactions between starches and phenolic compounds. Copyright © 2016. Published by Elsevier Ltd.

  15. Influence of ginger and banana starches on the mechanical and disintegration properties of chloroquine phosphate tab-lets

    Institute of Scientific and Technical Information of China (English)

    O.A.Odeku; M.A.Odeniyi; G.O.Ogunlowo

    2009-01-01

    Objective:The influence of two experimental starches -ginger starch obtained from Zingiber officinale and ba-nana starch from Musa sapientum -on the mechanical and disintegration properties of chloroquine tablets have been studied in comparison with the influence of official corn starch.Methods:Chloroquine tablets were for-mulated using various concentarions of the starches as binding agent.The mechanical properties of the tablets were assessed in terms of crushing strength and friability and the crushing strength-friability ratio (CSFR) while drug release properties were evaluated based on disintegration and the time of tablets.Results:The ranking for crushing strength and CSFR was corn >banana >ginger starch while the ranking was reverse for friability.The disintegration time increased with packing fraction and starch concentration in the rank order of formulations containing corn >banana >ginger starch.The CSFR/DT values increased with concentration of starch binder indicating an improved balance between binding and disintegrant properties of the starches.Sta-tistical analysis showed that there were significant (P <0.001)difference in the CSFR/DT for tablets contai-ning the various starch binders.Conclusion:The mechanical and disintegration properties of the experimental starches compared favorably with those of corn starch and ginger starch could be more useful when faster tablet disintegration is desired.

  16. CORN FLAVOR

    Science.gov (United States)

    Corn is a large part of the modern diet through sweeteners, oil, processed foods, and animal-derived foods. In addition, corn is eaten directly in bread and cereal-type foods, snack foods, and foods made from masa flour. Corn gluten meal is a byproduct of grain processed by wet milling. Although pri...

  17. Structural characteristics and crystalline properties of lotus seed resistant starch and its prebiotic effects.

    Science.gov (United States)

    Zhang, Yi; Zeng, Hongliang; Wang, Ying; Zeng, Shaoxiao; Zheng, Baodong

    2014-07-15

    Lotus seed resistant starch (LRS) is a type of retrograded starch that is commonly known as resistant starch type 3 (RS3). The structural and crystalline properties of unpurified LRS (NP-LRS3), enzyme purified LRS after drying (GP-LRS3), and enzyme purified LRS (ZP-LRS3) were characterized. The result showed that the molecular weights of NP-LRS3, GP-LRS3, and ZP-LRS3 were 0.102 × 10(6), 0.014 × 10(6), and 0.025 × 10(6)Da, respectively. Compared with native starch and high amylose maize starch (HAMS), LRS lacked the polarization cross and the irregularly shaped LRS granules had a rougher surface, B-type crystal structure, and greater level of molecular order. The FT-IR measurements indicated no differences in the chemical groups. Analysis by (13)C NMR indicated an increased propensity for double helix formation and higher crystallinity in LRS than in the two other types of starch. Moreover, LRS was more effective than either glucose or HAMS in promoting the proliferation of bifidobacteria.

  18. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  19. Enzymatic corn wet milling: engineering process and cost model

    Science.gov (United States)

    Enzymatic Corn Wet Milling (E-Milling) is a proposed alternative process to conventional wet milling for the recovery and purification of starch and coproducts using proteases to eliminate the need for sulfites and to decrease the steeping time. In 2005, the total starch production in USA by conven...

  20. Changes in the Functional Properties of Three Starches by Interaction with Lima Bean Proteins

    Directory of Open Access Journals (Sweden)

    Alejandra Huerta-Abrego

    2010-01-01

    Full Text Available The functional properties of starches determine their potential applications in food systems. These properties depend largely on granular and molecular structure and can be physically, chemically or enzymatically modified. One way of modifying starch functional properties is by interaction with other food components, such as proteins. Starch-protein interactions are frequent in plant foods, particularly cereals and legumes, which are formed mainly of starches and proteins. An evaluation has been done of changes in the functional properties of three native starches (corn, Zea mays L.; cassava, Manihot esculenta; and lima bean, Phaseolus lunatus L. when blended with lima bean protein concentrate. The gelatinization temperature of each blend increased compared to its corresponding native starch. The cassava starch/lima bean protein blend had the highest overall swelling power and water absorption capacity values at all temperatures. Maximum viscosity for each blend was higher than for the corresponding native starches. The blends of lima bean protein with cassava and corn starches did not exhibit syneresis. The lima bean starch/lima bean protein blend had the highest gel firmness values, followed by the blends with corn and cassava starches. The protein-starch mixtures are an alternative in the improvement of the starch functional properties which are useful in the development of nutritional products.

  1. In vitro Starch Hydrolysis Rate, Physico-chemical Properties and Sensory Evaluation of Butter Cake Prepared Using Resistant Starch Type III Substituted for Wheat Flour.

    Science.gov (United States)

    Pongjanta, J; Utaipattanaceep, A; Naivikul, O; Piyachomkwan, K

    2008-09-01

    Resistant starch type III (RS III) derived from enzymatically debranched high amylose rice starch was prepared and used to make butter cake at different levels (0, 5, 10, 15 and 20%) in place of wheat flour. Physico-chemical properties, sensory evaluation, and in vitro starch hydrolysis rate of the developed butter cake were investigated. This study showed that the content of resistant starch in butter cake increased significantly (Pstarch hydrolysis rate compared to the control cake (0% RS III). The rates of starch hydrolysis from 0 to 180 min digestion time for 0, 5, 10 15, and 20% RS III in place of wheat flour in butter cakes were 3.70 to 67.65%, 2.97 to 64.86%, 2.86 to 59.99%, 2.79 to 55.96 and 2.78 to 53.04% respectively. The physico-chemical properties of 5 to 10% RS III substituted with wheat flour in the butter cake were not significantly different from the control cake and were moderately accepted by panellists in the sensory evaluation test.

  2. Influence of Suspension Parameters on Water Absorbency of Starch-g-poly(sodium acrylate) Synthesized by Inverse Suspension Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI Ming-da; ZHOU Young-yuan

    2002-01-01

    Superabsorbents starch grafted sodium polyacrylate was prepared by inverse suspension polymerization, using toluene as the continuous phase, potassiun persulfate as the initiator. The effect of suspension parameters, such as volume ratio of continuous phase and dispersed phase,type and dosage of suspending agents, on water absorbency of the starch grafted polymer was studied.Different starch derivatives were also investigated.Superabsorbents made of cationic starch has higher water absorbency than that made of native corn starch.

  3. Effect of Starch Sources on the Release Rates of Herbicides Encapsulated

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effects of starch sources on the behaviors of starch matrices and on the rates of herbicides released from the matrices were studied for slow release. The starches considered include native corn starch, wheat starch, potato starch and cassava starch. The matrices were prepared through encapsulating 2,4-dichlorophenoxyacetic or 2,4,5-trichlorophenoxyacetic acids as model herbicides with hot-gelatinized starch pastes. The encapsulation was evaluated in terms of herbicide content, swellability, encapsulation efficiency, and release rate. The results show that starch sources play an important role on the matrix behaviors and on release rates. The rate of 2,4-D released follows the order: wheat starch < potato starch < corn starch < cassava starch. And for the rate of 2,4,5-T, this order is nearly the same only with an exception that the late two kinds of starch are similar. It is also demonstrated that herbicides with different water solubility show different release rates, no matter what type of starch is used as the matrices.

  4. Fact sheet: Ethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    This fact sheet is intended to provide an overview of the advantages of ethanol from corn, emphasizing ethanol`s contribution to environmental protection and sustainable agriculture. Ethanol, an alternative fuel used as an octane enhancer is produced through the conversion of starch to sugars by enzymes, and fermentation of these sugars to ethanol by yeast. The production process may involve wet milling or dry milling. Both these processes produce valuable by-products, in addition to ethanol and carbon dioxide. Ethanol contains about 32,000 BTU per litre. It is commonly believed that using state-of-the-art corn farming and corn processing processes, the amount of energy contained in ethanol and its by-products would be more than twice the energy required to grow and process corn into ethanol. Ethanol represents the third largest market for Ontario corn, after direct use as animal feed and wet milling for starch, corn sweetener and corn oil. The environmental consequences of using ethanol are very significant. It is estimated that a 10 per cent ethanol blend in gasoline would result in a 25 to 30 per cent decrease in carbon monoxide emissions, a 6 to 10 per cent decrease in net carbon dioxide, a slight increase in nitrous oxide emissions which, however, would still result in an overall decrease in ozone formation, since the significant reduction in carbon monoxide emissions would compensate for any slight increase in nitrous oxide. Volatile organic compounds emission would also decrease by about 7 per cent with a 10 per cent ethanol blend. High level blends could reduce VOCs production by as much as 30 per cent. 7 refs.

  5. Characterization of new sources of derivative starches as wall materials of essential oil by spray drying

    Directory of Open Access Journals (Sweden)

    Iñigo Verdalet-Guzmán

    2013-12-01

    Full Text Available Starch derivatives of taro (Colocasia esculenta L. Schott and rice were characterized as wall materials of orange oil (d-limonene by spray drying. Native starches were initially hydrolyzed with HCl and then esterified. Succinylated starches were modified using a conventional method in a slurry and were extruded; whereas, the phosphorylated starches were modified using the extrusion process. Viscosity and solubility of starches reduced after acid hydrolysis, derivatization, and extrusion. The particle size of the wall materials ranged between 20.05 and 31.81 µm. The encapsulation efficiency of the phosphorylated taro, rice, and waxy corn starches was 96.9, 96.8 and 97.1% respectively, and 98.6, 98.1, and 98.8% for succynilated taro, rice, and waxy corn starches, respectively. Starch derivatives of taro and rice could potentially be used as wall materials of orange oil d-limonene.

  6. Starch Accumulation and Enzyme Activities Associated with Starch Synthesis in Maize Kernels

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-yan; DONG Shu-ting; GAO Rong-qi; SUN Qing-quan

    2007-01-01

    The filling rate and the starch accumulation in developing maize kernel were analyzed. The changes of enzyme activities associated with sucrose metabolism and starch biosynthesis were investigated. The purpose is to discuss the enzymatic mechanisms responsible for starch synthesis. Two types of maize cultivars (Zea mays), high starch maize (Feiyu 3) and normal maize (Yuyu 22), were grown in a corn field. The factors involved in starch synthesis were performed during the growth period. The kernel filling rate, the sucrose content, the starch accumulating rates and the activities of SS (sucrose synthase), GBSS (granule-bound starch synthase), SBE (starch branching enzyme) of Feiyu 3, which has high starch content, were significantly higher than those of Yuyu 22, which has low starch content, after 10 DAP (days after pollination).Correlation analysis indicated that ADPGPPase (ADP-glucose pyrophosphorylase) and DBE (starch debranching enzyme)were not correlated with the starch accumulating rates and the kernel filling rate, but the SS activity at the middle and late period were highly significantly correlated with the starch accumulating rates and the kernel filling rate. The GBSS activity was highly significantly correlated with the amylose accumulating rate, but not correlated with the kernel filling rate. The SBE activity was highly significantly correlated with the amylopectin accumulating rate and the kernel filling rate. It was not ADPGPPase and DBE, but SS was the rate-limiting factor of starch biosynthesis in developing maize kernels. GBSS had an important effect on amylose accumulation, and SBE had a significant effect on amylopectin accumulation.

  7. Structure stabilization in starch-quinoa bran doughs: The role of water availability and gelatinization.

    Science.gov (United States)

    Föste, Maike; Jekle, Mario; Becker, Thomas

    2017-10-15

    Bran is a promising ingredient for nutritional fortification in starch-based dough systems. However its incorporation is a technological challenge favoring a shift in dough functionality. The objective of this study was to elucidate the impact of bran on baking performance independent of dough firmness and start of gelatinization. Therefore, corn starch was replaced by quinoa bran (10% to 50%) and water addition (80-110g/100g flour) was standardized on a fixed complex shear modulus (G*) and start of gelatinization (TOnset) based on a corn starch reference dough. A destabilizing effect by bran particles was counteracted in corn starch dough by adjusting the water content up to 110 g/100g flour. Moreover, a negative correlation between TOnset and loaf volume was determined (r=- 0.9042), thus an early TOnset should be aspired in order to prevent gas release and to stabilize corn starch- quinoa bran dough. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sensory properties determined by starch type in white sauces: effects of freeze/thaw and hydrocolloid addition.

    Science.gov (United States)

    Arocas, A; Sanz, T; Salvador, A; Varela, P; Fiszman, S M

    2010-03-01

    The effect of 5 types of starch (rice, potato, waxy corn, corn, and modified waxy corn) on the sensory properties of white sauces was studied. A comparative study was also made of variations resulting from freezing/thawing and effect of replacing 0.15% starch with 2 nonstarchy hydrocolloids, xanthan gum (XG), or locust bean gum (LBG) in samples to be frozen. The sensory properties were studied through descriptive analysis by a panel of 10 trained judges. Principal components analysis and cluster analysis were used to group each of the samples according to the scores for consistency, resilience, graininess, thickness, heterogeneity, creaminess, and mouth coating, the sensory attributes which were chosen to define the sauces under study. Significant differences were found between the different starches employed: the rice and modified starches presented similar behavior to each other, as did the potato starch and corn starch, while the waxy starch sauce stood apart from the rest because of its resilience. The freeze/thaw cycle had the greatest effect on the corn-starch sauce, increasing its graininess and heterogeneity values owing to retrogradation. Adding XG or LBG to the sauces subjected to a period of freezing/thawing did not have a significant effect on the sensory attributes of the reheated sauces made with rice, potato, or waxy or modified starch, but lower graininess and heterogeneity values were observed in the sauce made with corn starch.

  9. Comparative study on properties of oat starch and commonly used starches%燕麦淀粉与常见淀粉的性质对比研究

    Institute of Scientific and Technical Information of China (English)

    张杰; 何义萍; 韩小贤; 赵亚娟; 郑学玲

    2012-01-01

    以常见市售淀粉(小麦淀粉、玉米淀粉、土豆淀粉)为参比,研究了燕麦淀粉的透明度、凝沉性、冻融稳定性、溶解度、膨润力和糊化特性.结果表明:燕麦淀粉的透明度、凝沉性、冻融稳定性比小麦淀粉、玉米淀粉和土豆淀粉都要差.燕麦淀粉的溶解度在4种淀粉中是最高的,而膨润力是最低的.燕麦淀粉的糊化特性与小麦淀粉较接近.%The commonly used starches (wheat starch, corn starch and potato starch ) were used as compare objects to study the properties of oat starch such as light transmittance, retrogradation, freezing-thawing stability, solubility, swelling power and pasting property. The results indicated that oat starch had poorer light transmittance, retrogradation and freezing-thawing stability than that of wheat starch, corn starch and potato starch. Oat starch had the highest solubility and lowest swelling power in the four starches. The pasting property of oat starch was closer to wheat starch.

  10. 非淀粉多糖酶对玉米加工副产品氨基酸及养分真代谢率的影响%Non-Starch Polysaccharide-Degrading Enzymes: Effects on True Amino Acid and Nutrient Metabolic Rates of Corn By-Products

    Institute of Scientific and Technical Information of China (English)

    林谦; 王照群; 蒋桂韬; 王向荣; 张旭; 张建华; 戴求仲

    2013-01-01

    To study the effects of non-starch polysaccharide-degrading enzymes on true amino acid and nutrient metabolic rates of corn by-products,a complete randomized design and three metabolic test periods had been taken,and 56 healthy adult yellow-feathered roosters with an average body weight of (2.5 ± 0.2) kg were randomly divided into 7 groups with 8 replicates in each group and 1 rooster in each replicate.The roosters were force-fed with a single raw material and the material with non-starch polysaccharide-degrading enzymes to determine the true amino acid metabolic rates of corn and its by-products before and after the enzyme addition.Results showed that before the enzyme addition,the average true amino acid metabolic rate of corn was the highest,and the lowest one was germ (no spray,from Jining).After the enzyme was added,the true amino acid metabolic rates of corn by-products were between 70.77% to 99.29%,and the enzyme increased the true amino acid metabolic rates of corn by-products by 0.96% to 3.52%.The true metabolic rates of many amino acids in corn and corn gluten meal [crude protein (CP) 50% and CP 55%] were significantly increased by the supplementation of the enzyme (P < 0.05).And the effective nutrient improvement values (ENIV) of true available amino acid contents of corn by-products were in the range of 0.03 to 1.87 g/kg,the highest was corn gluten meal (CP 55%),and the lowest one was corn fiber feed.The supplementation of the enzyme can improve the metabolic rates of true CP,dry matter (DM) and ether extract (EE) of varieties of corn by-products (P > 0.05),and for some by-products it could significantly increase the true metabolic rates of DM and CP (P < 0.05).The enzyme could also significantly enhance the true crude fiber (CF) metabolic rate of all corn by-products (P < 0.05).Generally speaking,complex non-starch polysaccharide-degrading enzymes can improve the true amino acid and nutrient metabolic rates of corn and its by

  11. Liquefaction, saccharification, and fermentation of ammoniated corn to ethanol.

    Science.gov (United States)

    Taylor, Frank; Kim, Tae Hyun; Abbas, Charles A; Hicks, Kevin B

    2008-01-01

    Treatment of whole corn kernels with anhydrous ammonia gas has been proposed as a way to facilitate the separation of nonfermentable coproducts before fermentation of the starch to ethanol, but the fermentability of ammoniated corn has not been thoroughly investigated. Also, it is intended that the added ammonia nitrogen in ammonia treated corn (approximately 1 g per kg corn) may satisfy the yeast nutritional requirement for free amino nitrogen (FAN). In this study, procedures for ammoniation, liquefaction, saccharification, and fermentation at two scales (12-L and 50-mL) were used to determine the fermentation rate, final ethanol concentration, and ethanol yield from starch in ammoniated or nonammoniated corn. The maximum achievable ethanol concentration at 50 h fermentation time was lower with ammoniated corn than with nonammoniated corn. The extra nitrogen in ammoniated corn satisfied some of the yeast requirements for FAN, thereby reducing the requirement for corn steep liquor. Based upon these results, ammoniation of corn does not appear to have a positive impact on the fermentability of corn to ethanol. Ammoniation may still be cost effective, if the advantages in terms of improved separations outweigh the disadvantages in terms of decreased fermentability.

  12. Physicochemical and Gelatinization Properties of Starches Separated from Various Rice Cultivars.

    Science.gov (United States)

    Woo, Hee-Dong; We, Gyoung Jin; Kang, Tae-Young; Shon, Kee Hyuk; Chung, Hyung-Wook; Yoon, Mi-Ra; Lee, Jeom-Sig; Ko, Sanghoon

    2015-10-01

    Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G' values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G' and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γ(c)), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γ(c). The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications. Rice flour has potential applications in various food products. The physicochemical properties of rice flour are dependent on its variety, which affects the quality of the final products. In this study, the combined analysis including hydration, pasting, viscoelastic, and thermal properties of rice flour could afford information for preparing a particular product such as bread and noodle. © 2015 Institute of Food Technologists®

  13. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    Science.gov (United States)

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM.

  14. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents.

    Science.gov (United States)

    Srichuwong, Sathaporn; Curti, Delphine; Austin, Sean; King, Roberto; Lamothe, Lisa; Gloria-Hernandez, Hugo

    2017-10-15

    Minor grains such as sorghum, millet, quinoa and amaranth can be alternatives to wheat and corn as ingredients for whole grain and gluten-free products. In this study, influences of starch structures and other grain constituents on physicochemical properties and starch digestibility of whole flours made from these grains were investigated. Starches were classified into two groups according to their amylopectin branch chain-length: (i) quinoa, amaranth, wheat (shorter chains); and (ii) sorghum, millet, corn (longer chains). Such amylopectin features and amylose content contributed to the differences in thermal and pasting properties as well as starch digestibility of the flours. Non-starch constituents had additional impacts; proteins delayed starch gelatinization and pasting, especially in sorghum flours, and high levels of soluble fibre retarded starch retrogradation in wheat, quinoa and amaranth flours. Enzymatic hydrolysis of starch was restricted by the presence of associated protein matrix and enzyme inhibitors, but accelerated by endogenous amylolytic enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Levels of replacing corn by cassava starch on performance and carcass characteristics of bulls finished in feedlot / Substituição do milho pelo resíduo da fecularia de mandioca no desempenho e nas características de carcaça de bovinos terminados em confinamento

    Directory of Open Access Journals (Sweden)

    Liandra Maria Abaker Bertipaglia

    2010-07-01

    Full Text Available This work was carried out to study the effects of replacing corn by different levels of cassava starch (0; 12.5; 22.8 and 32.7% on performance and carcass characteristics of bulls finished in feedlot. Thirtytwo crossbred bulls (½ Aberdeen Angus vs. ½ Nellore with 18 months old and 380 + 24 kg live weight were used in a completely randomized experimental design with four treatments and eight replications. The experiment was realized during 56 days with 14 days for adaptation. The complete diets [roughage (cottonseed hulls + concentrate (corn, soybean meal and cassava starch] were given at 8 am and at 4 pm to bulls. It was analyzed the initial weight (IW, final weight (FW, average daily gain (ADG, dry matter intake (DMI, feed conversion (FC, hot carcass dressing (HCD, fat thickness (FAT, Longissimus muscle area (LMA, leg length (LL and cushion thickness (CT. The IW, FW, ADG, FC, HCW, HCD, FT, LMA, LL and CT did not present difference (P > 0.05 among levels of replacing corn by cassava starch. The results obtained on performance and carcass traits using cassava starch by-products as a replacement for corn can be considered satisfactory.Objetivou-se com este trabalho avaliar o efeito do nível de substituição (0; 12,5; 22,8 e 32,7% do milho pelo resíduo de fecularia de mandioca sobre o desempenho e características de carcaça de bovinos em confinamento. Trinta e dois machos inteiros mestiços (½ Aberdeen Angus vs. ½ Nelore com 18 meses de idade e 380 + 24 kg de peso vivo foram utilizados em delineamento experimental inteiramente casualizado, com quatro tratamentos e oito repetições. O experimento foi desenvolvido durante 56 dias com 14 dias de adaptação. As rações completas [volumoso (casca de algodão + concentrado (milho, farelo de soja e resíduo desidratado de fecularia de mandioca] foram fornecidas às 8 h e 16 h aos animais. Foi analisado o peso inicial (PI, peso final (PF ganho médio diário (GMD, ingestão de matéria seca

  16. Quantificação de açúcares solúveis totais, açúcares redutores e amido nos grãos verdes de cultivares de milho na colheita Quantification of total soluble sugars, reducing sugars and starch in immature kernels of corn cultivars

    Directory of Open Access Journals (Sweden)

    Fernanda Fátima Caniato

    2007-12-01

    Full Text Available O objetivo deste trabalho foi quantificar os teores de açúcares solúveis totais (AST, açúcares redutores (AR e amido em nove cultivares de milho colhidos no estádio verde, uma vez que estes influenciam diretamente o sabor, o aroma e a aceitação do consumidor. O experimento foi conduzido em Ponte Nova, MG, no ano agrícola 2002/2003. Para a determinação das características, foi retirada uma amostra de três espigas de cada unidade experimental. O ponto de colheita foi identificado por método empírico, quando o estilo-estigma se desprendia da espiga com facilidade. As cultivares apresentaram umidades diferentes no momento da colheita, variando de 56 a 64%. Não foi detectada diferença entre as cultivares quanto aos teores de AR, porém, P3232 e AG4051 apresentaram boa relação entre AR e AST, destacando-se para esta finalidade.Total soluble sugars (TSS, reducing sugars (RS, moisture and starch directly influence flavor and consumption. In this work, TSS, RS and starch were determined at harvest in young kernels of nine corn cultivars. The experiment was carried out in Ponte Nova, MG, Brazil. To determine chemical characters of young kernels a sample was obtained of three cobs from each experimental plot. Corn ears were harvested using an empirical method, when the silk was loose from the ear. Moisture varied among samples of different cultivars at harvest. Moisture content ranged from 56 to 64%. There were no differences among cultivars regarding RS. However, cultivars P3232 and AG4051 showed good RS to TSS ratio, being adequate for fresh consumption.

  17. Resistant starches.

    Science.gov (United States)

    Jenkins, D J; Kendall, C W

    2000-03-01

    Initially, it was hoped that resistant starches (ie, starches that enter the colon) would have clear advantages in the reduction of colon cancer risk and possibly the treatment of ulcerative colitis. Recent studies have confirmed the ability of resistant starch to increase fecal bulk, to increase the molar ratio of butyrate in relation to other short-chain fatty acids, and to dilute fecal bile acids. However, reduction in fecal ammonia, phenols, and N-nitroso compounds have not been achieved. At this point the picture from the standpoint of colon cancer risk reduction is not clear. Nevertheless, there is a fraction of what has been termed resistant starch (RS1), which enters the colon and acts as slowly digested, or lente, carbohydrate. Foods in this class are low glycemic index and have been shown to reduce the risk of chronic disease. They have been associated with systemic physiologic effects such as reduced postprandial insulin levels and higher high-density lipoprotein cholesterol levels. Consumption of low glycemic index foods has been shown to be related to a reduced risk of type 2 diabetes. Type 2 diabetes has in turn been related to a higher risk of colon cancer, especially colon cancer deaths. If carbohydrate has a protective role in colon cancer prevention, it may lie in the systemic effects of low glycemic index foods. The colonic advantages of different carbohydrates, therefore, remain to be documented. However, there is reason for optimism about the possible health advantages of so-called resistant starches that are slowly digested in the small intestine.

  18. Corn fiber hulls as a food additive or animal feed

    Science.gov (United States)

    Abbas, Charles; Beery, Kyle E.; Cecava, Michael J.; Doane, Perry H.

    2010-12-21

    The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

  19. Effects of Plastizers on the Structure and Properties of Starch-Clay Nanocomposites

    Science.gov (United States)

    Biodegradable nanocomposites were successfully fabricated from corn starch and montmorillonite (MMT) nanoclays by melt extrusion processing. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and film propertie...

  20. Size separations of starch of different botanical origin studied by asymmetrical-flow field-flow fractionation and multiangle light scattering.

    Science.gov (United States)

    Wahlund, Karl-Gustav; Leeman, Mats; Santacruz, Stalin

    2011-02-01

    Asymmetrical-flow field-flow fractionation combined with multiangle light scattering and refractive index detection has been revealed to be a powerful tool for starch characterization. It is based on size separation according to the hydrodynamic diameter of the starch components. Starch from a wide range of different botanical sources were studied, including normal starch and high-amylose and high-amylopectin starch. The starch was dissolved by heat treatment at elevated pressure in a laboratory autoclave. This gave clear solutions with no granular residues. Amylose retrogradation was prevented by using freshly dissolved samples. Programmed cross flow starting at 1.0 mL min(-1) and decreasing exponentially with a half-life of 4 min was utilised. The starches showed two size populations representing mainly amylose and mainly amylopectin with an overlapping region where amylose and amylopectin were possibly co-eluted. Most of the first population had molar masses below 10(6) g mol(-1), and most of the second size population had molar masses above 10(7) g mol(-1). Large differences were found in the relative amounts of the two populations, the molar mass, and hydrodynamic diameters, depending on the plant source and its varieties.

  1. Characterisation, in vitro digestibility and expected glycemic index of commercial starches as uncooked ingredients.

    Science.gov (United States)

    Romano, Annalisa; Mackie, Alan; Farina, Federica; Aponte, Maria; Sarghini, Fabrizio; Masi, Paolo

    2016-12-01

    In this study native starches as ingredients (corn, rice, wheat, tapioca and potato) were characterized for microstructure, physicochemical, functional and thermal properties, in vitro digestibility and glycemic index. There was a significant variation in the granule shape and size distribution of the starches. Particle size monomodal (corn, tapioca, potato) and bimodal (rice, wheat) distribution was observed amongst the starches. The potato starch showed the biggest size granules while the rice showed the smallest. The examined properties and nutritional characteristics of starches were significantly different. Thermal properties were studied using Differential Scanning Calorimeter (DSC). DSC results showed that the transition temperatures (58.8-78.7 °C) and enthalpies of gelatinization (2.3-8.2 J/g) of the starches appeared to be greatly influenced by microstructure and chemical composition (e.g. resistant starch). Nutritional properties such as slowly digestible starch and expected glycemic index values followed the order: rice > wheat > tapioca > corn > potato. In particular, the highest resistant starch was recorded for potato starch.

  2. Unique features of several microbial α-amylases active on soluble and native starch

    OpenAIRE

    Sarian, Fean Davisunjaya

    2016-01-01

    Starch is the main energy store of major agricultural crops such as corn, potato, rice and wheat. Various amylase type enzymes are used to convert cooked starch to glucose that goes into bioethanol fermentation. Only a few amylase type enzymes have been described that can act on the starch granule itself. Granular starch has a complex crystalline structure that prevents most amylases to directly act on it. In this PhD thesis the action of several amylases on native granular starch was studied...

  3. 酶水解法制备玉米抗性淀粉的工艺设计研究%New Technology of Preparing Corn Resistant Starch by Enzymatic Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    于长伟

    2013-01-01

    Resistant starch is a very important function factor with good food-processing performance and also an important physiological functional food , which was perfect for people with Diabetes or Hyperglycemia. The functions of resistant starch is quickly realized and researched by academicians of medicine and food , while there is a promising market prospect. However , compared with the understanding of the physiological functions of resistant starch, there was no deep research in the mechanism of resistant starch formation, as well as preparation and quantitative analysis. In this article , the preparation of resistant starch with α-amylase and glucoamylase was mainly studied.%抗性淀粉是一种非常重要的功能因子,具有优良的食品加工性能和重要的生理功可成为糖尿病、高血糖等特殊人群的一种优良食品。抗性淀粉的功能很快得到医食学界的认识和重视,有非常良好的市场前景。但是相对于对抗性淀粉生理功能的了解,目前对抗性淀粉的形成机理、加工制备、定量分析等还缺乏深入的研究和了解。主要探讨α-淀粉酶和糖化酶酶解法制备抗性淀粉。

  4. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption.

    Science.gov (United States)

    Mehta, Deepika; Satyanarayana, T

    2014-05-01

    The gene (1,542 bp) encoding thermostable Ca(2+)-independent and raw starch hydrolyzing α-amylase of the extremely thermophilic bacterium Geobacillus thermoleovorans encodes for a protein of 50 kDa (Gt-amyII) with 488 amino acids. The enzyme is optimally active at pH 7.0 and 60 °C with a t 1/2 of 19.4 h at 60 and 4 h at 70 °C. Gt-amyII hydrolyses corn and tapioca raw starches efficiently and therefore finds application in starch saccharification at industrial sub-gelatinisation temperatures. The starch hydrolysis is facilitated following adsorption of the enzyme to starch at the C-terminal domain, as confirmed by the truncation analysis. The adsorption rate constant of Gt-amyII to raw corn starch is 37.6-fold greater than that for the C-terminus truncated enzyme (Gt-amyII-T). Langmuir-Hinshelwood kinetic analysis in terms of equilibrium parameter (K R) suggested that the adsorption of Gt-amyII to corn starch is more favourable than that of Gt-amyII-T. Thermodynamics of temperature inactivation indicated a decrease in thermostabilisation of Gt-amyII upon truncation of its C-terminus. The addition of raw corn starch increased t 1/2 of Gt-amyII, but it has no such effect on Gt-amyII-T. It can, therefore, be stated that Gt-amyII binds to raw corn starch via C-terminal region that contributes to its thermostability. Phylogenetic analysis confirmed that starch binding region of Gt-amyII is, in fact, the non-catalytic domain C, and not the typical SBD of CBM families. The role of domain C in raw starch binding throws light on the evolutionary path of the known SBDs.

  5. Effect of Starch Sources and Protein Content on Extruded Aquaculture Feed Containing DDGS

    Science.gov (United States)

    A 3x3 completely randomized design was used to investigate the extrusion cooking and product characteristics of DDGS, protein levels, and various starch sources in a laboratory scale single screw extruder. Cassava, corn, and potato starches with varying levels of DDGS (20, 30, and 40% wb) were extru...

  6. The effect of thermomechanical treatment on starch breakdown and the consequences for process design

    NARCIS (Netherlands)

    Einde, van den R.M.; Bolsius, A.; Soest, van J.J.G.; Janssen, L.P.B.M.; Goot, van der A.J.; Boom, R.M.

    2004-01-01

    Macromolecular degradation of starch by heating and shear forces was investigated using a newly developed shear cell. With this equipment, waxy corn starch was subjected to a variety of heat and shear treatments in order to find the key parameter determining the degree of macromolecular degradation.

  7. 糯玉米辛烯基琥珀酸淀粉酯糊性质的研究%Paste Properties of Octenyl Succinic Anhydride Modified Waxy Corn Starch

    Institute of Scientific and Technical Information of China (English)

    宋晓燕; 李真; 谢慧玲

    2009-01-01

    The paste properties (e.g. , viscosity, paste clarity, retrogradation, freeze-thaw stability and digestibility) of waxy maize starch before and after oetenyl succinic anhydride (OSA) modification were investigated. The results showed that the starch derivatives had higher viscosities and paste clarity, lower retrogradation and digestibility, better freeze-thaw stability. The viscosities of the starches increased from 91.7 mPa·s to 2 013.3 mPa·s with the increase of DS from 0 to 0. 0185. The light transparency increased from 37.0 % to 90.4 % ; the water precipitation decreased from 4.0 mL to 0 mL at room temperature (25℃) for 720 h; during the fourth freeze-thaw cycle, no water discharged from the gels of OSA modified starch. The paste of OSA modified starch is shear-shinning, which should belong to pseudoplastic liquid. The experiment provided the reference of the application of OSA modified starches in food industry .%为了探讨辛烯基琥珀酸淀粉酯的应用特性,对糯玉米淀粉辛烯基琥珀酸酐(OSA)改性前后淀粉糊的黏度、透明度、凝沉性和消化特性进行了研究.结果表明:经过OSA改性之后,糯玉米淀粉糊的黏度、透明度、凝沉性和冻融稳定性得到显著改善,离体消化速度下降.当取代度由0增加至0.018 5时,淀粉糊的表观黏度由91.7 mPa·s增至2 013.3 mPa·s,透光率由37.0%提高到90.4%;25℃下静置720 h时析出水的体积由4.0 mL降低为0 mL;经过4次冻融循环后无水析出.糯玉米辛烯基琥珀酸淀粉酯具有剪切变稀现象,属于假塑性流体.

  8. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Olivia V., E-mail: ovlopez75@yahoo.com.ar; Garcia, Maria A.

    2012-10-01

    Biodegradable films from ahipa, cassava and corn native starches were developed by casting method and their physicochemical, mechanical and barrier properties were analyzed taking into account the different starch botanical sources. Filmogenic suspensions were prepared; their rheological behaviors were studied and all of them exhibited film-forming ability. However, mechanical assays demonstrated that unplasticized films were too rigid, limiting their technological applications. Thus, 1.5% w/w of glycerol as plasticizer was added to filmogenic suspensions and film flexibility and extensibility were improved, this effect was more significant for ahipa and cassava starch films. Furthermore, thickness, moisture content and water solubility of the developed films were increased when plasticizer was incorporated. Glycerol addition reduced film water vapor permeability and the lowest reduction corresponded to cassava starch films due to the high viscosity of its filmogenic suspensions. Plasticized starch films resulted to be UV radiation barriers; ahipa starch films had the lowest light absorption capacity and higher transparency than cassava and corn starch films. Dynamic-mechanical analysis indicated that plasticized films were partially miscible systems exhibiting two relaxations, one attributed to the starch-rich phase and the other to the glycerol-rich one. Likewise, it could be demonstrated that glycerol exerted a major plasticizing effect on ahipa starch matrixes. Highlights: Black-Right-Pointing-Pointer Ahipa, cassava and corn starch films were developed by casting method. Black-Right-Pointing-Pointer Glycerol effect on film mechanical behavior was major for tuberous starch films. Black-Right-Pointing-Pointer Ahipa starch films resulted to be more transparent with lower UV absorption capacity. Black-Right-Pointing-Pointer Plasticized films were partially miscible systems: with a glycerol-rich and a starch-rich phase. Black-Right-Pointing-Pointer Glycerol exerted

  9. Heat expanded starch-based compositions.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur K; Holtman, Kevin M; Shey, Justin; Chiou, Bor-Sen; Berrios, Jose; Wood, Delilah; Orts, William J; Imam, Syed H

    2007-05-16

    A heat expansion process similar to that used for expanded bead polystyrene was used to expand starch-based compositions. Foam beads made by solvent extraction had the appearance of polystyrene beads but did not expand when heated due to an open-cell structure. Nonporous beads, pellets, or particles were made by extrusion or by drying and milling cooked starch slurries. The samples expanded into a low-density foam by heating 190-210 degrees C for more than 20 s at ambient pressures. Formulations containing starch (50-85%), sorbitol (5-15%), glycerol (4-12%), ethylene vinyl alcohol (EVAL, 5-15%), and water (10-20%) were studied. The bulk density was negatively correlated to sorbitol, glycerol, and water content. Increasing the EVAL content increased the bulk density, especially at concentrations higher than 15%. Poly(vinyl alcohol) (PVAL) increased the bulk density more than EVAL. The bulk density was lowest in samples made of wheat and potato starch as compared to corn starch. The expansion temperature for the starch pellets decreased more than 20 degrees C as the moisture content was increased from 10 to 25%. The addition of EVAL in the formulations decreased the equilibrium moisture content of the foam and reduced the water absorption during a 1 h soaking period.

  10. Características físicas y químicas de dos razas de maíz azul: morfología del almidón Physical and chemical characteristics of blue corn from two races: starch morphology

    Directory of Open Access Journals (Sweden)

    Edith Agama-Acevedo

    2011-06-01

    , density and grain hardness as well as chemical composition. Although these variables are defined by genetic factors, they also depend on farming practices, climatic conditions and soil type. The physical characteristics of corn grain are related to production and yield aspects, while its chemical composition and starch granules morphology, help to define the nutritional quality and its use in food processing. The objective of this study was to determine the physical and chemical properties of blue corn grain from two races and morphologically characterize the starch granules of the endosperm. The study was conducted at the Centre for Development of Biotic Products of the National Polytechnic Institute and the Valley of Mexico Experimental Station of the National Forestry, Agriculture and Livestock Research Institute. The samples were collected in the field with the producers, six Tabloncillo race materials at locations in Sinaloa and nine from Chalqueño race at Tlaxcala and Mexico State locations. Tabloncillo corn has small grains, higher hardness and damaged starch, and lowest levels of anthocyanins than Chalqueño corn has. The starch amount in both races was from 0.78 to 0.89 g g-1 of dry sample, and they are classified as normal because of their amylose content. The starch granules were spherical with smooth surface and a bimodal distribution (small granules were 2-8 µm and large granules were 16-18 µm. The main differences between the two races were their grain size, floating rate and anthocyanin content.

  11. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  12. Effects of pigeon pea and plantain starches on the compressional, mechanical, and disintegration properties of paracetamol tablets.

    Science.gov (United States)

    Dare, Kunle; Akin-Ajani, Dorothy O; Odeku, Oluwatoyin A; Itiola, Oludele A; Odusote, Omotunde M

    2006-03-01

    A study has been made of the effects of pigeon pea starch obtained from the plant Cajanus cajan (L) Millisp. (family Fabaceae) and plantain starch obtained from the unripe fruit of Musa paradisiaca L. (family Musaceae) on the compressional, mechanical, and disintegration properties of paracetamol tablets in comparison with official corn starch BP. Analysis of compressional properties was done by using density measurements, and the Heckel and Kawakita equations, whereas the mechanical properties of the tablets were evaluated by using tensile strength (T--a measure of bond strength) and brittle fracture index (BFI--a measure of lamination tendency). The ranking for the mean yield pressure, P(y), for the formulations containing the different starches was generally corn plantain starch while the ranking for P(k), an inverse measure of the amount of plasticity, was pigeon pea plantain starch, which indicated that formulations containing corn starch generally exhibited the fastest onset of plastic deformation, whereas those formulations containing pigeon pea starch exhibited the highest amount of plastic deformation during tableting. The tensile strength of the tablets increased with increase in concentration of the starches while the Brittle Fracture Index decreased. The ranking for T was pigeon pea > plantain > corn starch while the ranking for BFI was corn > plantain > pigeon pea starch. The bonding capacity of the formulations was in general agreement with the tensile strength results. The disintegration time (DT) of the formulation increased with concentration of plantain and corn starches but decreased with concentration of pigeon pea starch. The general ranking of DT values was plantain starch. Notably, formulations containing pigeon pea starch exhibited the highest bond strength and lowest brittleness, suggesting the usefulness of pigeon pea starch in producing strong tablets with minimal lamination tendency. Plantain starch, on the other hand, would be more

  13. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers.

    Science.gov (United States)

    Han, Fei; Gao, Chunmei; Liu, Mingzhu

    2013-10-01

    Acetylated corn starch was successfully synthesized and optimized by the reaction of native corn starch with acetic anhydride and acetic acid in the presence of sulfuric acid as a catalyst. The optimal degree of substitution of 2.85 was obtained. Starch-based nanoparticles were fabricated by a simple and novel nanoprecipitation procedure, by the dropwise addition of water to acetone solution of acetylated starch under stirring. Fourier transform infrared spectrometry showed that acetylated starch had some new bands at 1750, 1375 and 1240 cm(-1) while acetylated starch nanoparticles presented the identical peaks as the drug-loaded acetylated starch nanoparticles and the acetylated starch. Wide angle X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of Acetylated starch and starch-based nanoparticles show the similar type pattern with the acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. The encapsulation efficiency and diameter of nanoparticle can be adjusted by the degree of substitution, the volume ratio of nonsolvent to solvent and the weight ratio of acetylated starch to drug. It was also depicted that the release behaviors of drug-loaded nanoparticles depend on the size of nanoparticles and the degree of substitution of the acetylated starch. Release studies prove that the starch-based nanoparticles with uniform size can be used for the encapsulation of hydrophobic drug and attained the sustained and controllable drug release carriers.

  14. Effect of cattle age, forage level, and corn processing on diet digestibility and feedlot performance.

    Science.gov (United States)

    Gorocica-Buenfil, M A; Loerch, S C

    2005-03-01

    Three experiments were conducted to determine the effects of cattle age and dietary forage level on the utilization of corn fed whole or ground to feedlot cattle. In Exp. 1, 16 steers were used to investigate the effects of cattle age and corn processing on diet digestibility. Two cattle age categories were evaluated (weanling [254 +/- 20 kg BW] and yearling [477 +/- 29 kg BW]; eight steers per group), and corn was fed either ground or whole to each cattle age category. Cattle age and corn processing did not affect (P > 0.10) diet digestibility of DM, OM, starch, CP, NDF or ADF, and no interactions (P > 0.10) between these two factors were detected. In Exp. 2, the effects of forage level and corn processing on feedlot performance and carcass characteristics were evaluated. One hundred eighty steers (310 +/- 40 kg BW) were allotted to 24 pens, and were fed one of the following diets: high-forage (18.2% corn silage) cracked corn (HFCC); high-forage shifting corn (whole corn for the first half of the trial, then cracked corn until harvest; HFSC); high-forage whole corn (HFWC); low-forage (5.2% corn silage) cracked corn (LFCC); low-forage shifting corn (LFSC); and low-forage whole corn (LFWC). For the high-forage diets, steers fed cracked corn had 7% greater DMI than those fed whole corn, whereas for the low-forage diets, grain processing did not affect DMI (interaction; P = 0.02). No interactions (P > 0.10) between forage level and corn processing were found for ADG and G:F. Total trial ADG and G:F, and percentage of carcasses grading USDA Choice, and carcass yield grade were not affected (P > 0.10) by corn processing. Cattle with fewer days on feed grew faster and more efficiently when cracked corn was fed, whereas cattle with longer days on feed had greater ADG and G:F when corn was fed whole (interaction; P 0.10) between forage level and corn processing were detected for starch digestibility. Forage level and corn processing (grinding) did not affect (P > 0

  15. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs.

    Science.gov (United States)

    Zijlstra, R T; Jha, R; Woodward, A D; Fouhse, J; van Kempen, T A T G

    2012-12-01

    Traditionally in swine nutrition, analyses of starch and fiber have focused on assessing quantity; however, both have a wide range of functional properties making them underappreciated nutrients. Starch ranging from low to high amylose changes from rapidly digestible in the upper gut to poorly digestible but fermentable in the lower gut thereby changing from a source of glucose to VFA source. Likewise, fibers ranging from low to high viscosity affect digesta flow and from slowly to rapidly fermentable alter production of VFA serving as energy for the gut or whole body. Our hypothesis is that total extent, kinetics, and site of digestion or fermentation of starch and fiber are important for whole body nutrient use and intestinal health. To elucidate their effects, we developed in vitro, lab-based methodologies to describe kinetics of digestion and fermentation and linked these with in vivo models including i) ileum cannulation to collect digesta, ii) portal-vein catheterization to sequentially sample blood, iii) slaughter method to collect site-specific intestinal tissue and digesta, and iv) indirect calorimetry. Using these methods, kinetics of nutrient absorption was associated with pancreatic and intestinal hormones released into the portal vein, intestinal microbiota, and gene expression in intestinal tissue and microbiota. These studies confirmed that slowly digestible starch is partially degraded in the distal small and large intestine and fermented into VFA including butyrate (10-fold increase in net portal appearance), which reduces insulin responses by 60% and whole body energy use. Starch entering the distal intestine altered mRNA abundance of nutrient transporters and was bifidogenic. Extremely viscous purified fiber dampened glycemic responses and reduced digesta passage rate by 50% thereby increasing ileal digestion of dietary nutrients whereas increased fiber in feed grains reduced nutrient digestibility. Fermentable fiber increased butyrate and

  16. Responses of non-starch polysaccharide-degrading enzymes on digestibility and performance of growing pigs fed a diet based on corn, soya bean meal and Chinese double-low rapeseed meal.

    Science.gov (United States)

    Fang, Z F; Peng, J; Liu, Z L; Liu, Y G

    2007-08-01

    This study was conducted to investigate the effect of two distinct enzyme preparations on nutrients' digestibility and growth performance of growing pigs fed diets based on corn, soya bean meal and Chinese double-low rapeseed meal (DLRM). The two enzyme preparations were Enzyme R, a preparation extracted from fermentation of a non-GMO fungus Penicillum funiculosum, developed for multi-grain and multi-animal species; and Enzyme P, a xylanase preparation from Trichoderma longibrachiatum, for pigs fed corn-based diets only. Both enzymes were tested at 0, 0.25 and 0.50 g/kg feed using 70 crossbred male pigs (Large Yorkshire x Landrace) in five dietary treatments and seven replicates in each treatment, for growth period from 27 to 68 kg live weight in 49 days. Results showed that the supplementation of both enzymes (1) increased total-tract digestibility of dietary energy from 77.5% (control) to 81.4% (Enzyme R, p Enzyme P, p Enzyme R, p Enzyme P, p Enzyme R, p Enzyme P, p Enzyme R) and 2.00 (p > 0.05) and feed conversion ratio from 2.50 (control) to 2.42 (Enzyme R) and 2.36 (Enzyme P, p enzyme efficacy between the two enzyme preparations. The present study demonstrated beneficial effects of applying xylanase-based enzymes to improve feeding values of pig diets based on corn, soya bean meal and DLRM.

  17. Thermal and rheological properties of nixtamalized maize starch.

    Science.gov (United States)

    Mendez-Montealvo, G; Sánchez-Rivera, M M; Paredes-López, O; Bello-Pérez, L A

    2006-12-15

    The effect of nixtamalization process on thermal and rheological characteristics of corn starch was studied. Starch of raw sample had higher gelatinization temperature than its raw counterpart, because, the Ca(2+) ions stabilize starch structure of nixtamalized sample; however, the enthalpy values were not different in both samples. The temperature of the phase transition of the retrograded starches (raw and nixtamalized) were not different at the storage times assessed, but the enthalpy values of the above mentioned transition was different, indicating a lower reorganization of the starch structure in the nixtamalized sample. The viscoamylographic profile showed differences between both starches, since raw starch had higher peak viscosity than the nixtamalized sample due to partial gelatinization of some granules during this heat treatment. Rheological test showed that at low temperature (25 degrees C) the raw and nixtamalized starches presented different behaviour; however, the elastic characteristic was more important in the starch gel structure. The nixtamalization process produced changes in thermal and rheological characteristics becoming important in those products elaborated from nixtamalized maize.

  18. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...... biosynthesis and demonstrates the possibility for in planta production of highly phosphorylated cereal starch....

  19. Increased water resistance of paper treated with amylose-fatty ammonium salt inclusion complexes

    Science.gov (United States)

    Amylose inclusion complexes were prepared from high amylose corn starch and the HCl salts of hexadecylamine and octadecylamine. Solutions of the complexes were applied to paper at concentrations of 2-4%. After the treated papers were dried, sodium hydroxide solution was applied to convert the adsorb...

  20. Corn stover harvest strategy effects on grain yield and soil quality indicators

    Science.gov (United States)

    The development of technologies to use cellulosic biomass as a feedstock for biofuel production was recognized as an important research focus because cellulose is a more widely-available feedstock than corn starch. Our objective was to compare various corn (Zea mays L.) stover harvest strategies to ...

  1. Influence of pullulan on gelatinization and retrogradation of rice starch%普鲁兰多糖对大米淀粉糊化和老化特性的影响

    Institute of Scientific and Technical Information of China (English)

    熊晓辉; 宋小琳; 姚丽丽; 陆利霞

    2013-01-01

    High amylose rice starch was made by ourself as raw materials,with 10% of trehalose for reference, differential scanning calorimetry (DSC) and Rapid Visco Analyzer (RVA) were used to analyse the thermodynamic properties and viscosity properties of rice starch with different ratios of pullulan. The granule morphology of gelatinized rice starch stored at 4℃ for 14d were observed using scanning electron microscope microscope (SEM). The results showed that the pullulan reduced the retrogradation enthalpy of high amylose rice starch , peak viscosity, minimum viscosity , final viscosity and setback values were also decreased , increased gelatinization temperatures of high amylose rice starch, adding 15% pullulan could significantly reduce retrogradation value of rice starch,the value from 2463.67cP to 471.33cP,when adding 25% pullulan, the effect was the best.%以实验室自提高直链大米淀粉为原料,以10%的海藻糖为参照,采用差示扫描量热仪(DSC)和快速黏度分析仪(RVA)分别分析了不同添加量的普鲁兰多糖对大米淀粉的热力学性质和黏度特性的影响,并用扫描电子显微镜(SEM)对在4℃条件下贮存14d的大米糊化淀粉的颗粒形貌进行观察.结果表明,普鲁兰多糖的添加会不同程度降低高直链大米淀粉的老化焓值、峰黏度、谷黏度、终黏度、回生值,提高大米淀粉的糊化温度,当添加15%普鲁兰多糖时能较好的延缓大米淀粉的老化,RVA所测得的回生值从2463.67cP降低到471.33cP;当添加25%普鲁兰多糖时,对淀粉的老化抑制效果最好.

  2. The effect of acid hydrolysis on the technological functional properties of pinhão (Araucaria brasiliensis starch

    Directory of Open Access Journals (Sweden)

    Roberta Cruz Silveira Thys

    2013-02-01

    Full Text Available Technological functional properties of native and acid-thinned pinhão (seeds of Araucária angustifolia, Brazilian pine starches were evaluated and compared to those of native and acid-thinned corn starches. The starches were hydrolyzed (3.2 mol.L-1 HCl, 44 ºC, 6 hours and evaluated before and after the hydrolysis reaction in terms of formation, melting point and thermo-reversibility of gel starches, retrogradation (in a 30-day period and measurements every three days, paste freezing and thawing stability (after six freezing and thawing cycles, swelling power, and solubility. The results of light transmittance (% of pastes of native and acid-thinned pinhão starches was higher (lower tendency to retrogradation than that obtained for corn starches after similar storage period. Native pinhão starch (NPS presented lower syneresis than native corn starch (NCS when submitted to freeze-thaw cycles. The acid hydrolysis increased the syneresis of the two native varieties under storage at 5 ºC and after freezing and thawing cycles. The solubility of NPS was lower than that of native corn starch at 25, 50, and 70 ºC. However, for the acid-thinned pinhão starch (APS, this property was significantly higher (p < 0.05 when compared to that of acid-thinned corn starch (ACS. From the results obtained, it can be said that the acid treatment was efficient in producing a potential fat substitute from pinhão starch variety, but this ability must be further investigated.

  3. Relationships among dietary fiber components and the digestibility of energy, dietary fiber, and amino acids, and energy content of 9 corn co-products fed to growing pigs

    Science.gov (United States)

    An experiment was conducted to determine the best fitting dietary fiber (DF) assay to predict digestibility of energy, DF, and amnio acids, and energy value of 9 corn co-products: conventional corn bran (CB-NS; 37.0% total non-starch polysaccharides (NSP)), corn bran with solubles (CBS; 17.1% NSP), ...

  4. Mechanically processed corn silage digestibility and intake

    Directory of Open Access Journals (Sweden)

    João Paulo Franco da Silveira

    2013-01-01

    Full Text Available The dry matter content increase due to the extension of the harversted period beginning and the kind of hybrid used can affect the starch digestibility and voluntary intake of ruminants. Therefore, this study aimed to determine the best corn hybrid and processing type of silage corn, and evaluate the possible effects on starch digestibility and voluntary intake of lambs. It was used 24 Santa Inês lambs with average age of three months and average initial weight of 25.0 kg. The experimental design was completely randomized in a 2x2 factorial design (dent and flint hybrids; crushed and not crushed. The processing of the dent hybrid resulted in less dry matter intake (0.583 kg/day associated to higher total digestibility of dry matter and starch, 68.21 and 95.33% respectively. Thus, the processing of corn plants used for silage should be performed on hybrids with the dent grain texture to provide the best digestibility of silage to lambs.

  5. Dietary starch type affects body weight and glycemic control in freely fed but not energy-restricted obese rats.

    Science.gov (United States)

    Aziz, Alfred A; Kenney, Laura S; Goulet, Benoit; Abdel-Aal, El-Sayed

    2009-10-01

    This study comprised 2 experiments that tested the hypothesis that a high-amylose starch diet (AMO) would improve body weight and glycemic control relative to a high-amylopectin starch diet (AMN) in rats with diet-induced obesity. After inducing obesity with a high-fat and -energy diet (Expt. 1), male Sprague-Dawley rats (n = 46) were divided into 4 groups and given free or restricted access to either an AMN or an AMO diet for 4 wk (Expt. 2). After 3 wk, rats from each group underwent an oral glucose tolerance test. At the end of the experiment, food-deprived rats were killed by decapitation and blood and tissues were collected for analyses. AMO led to lower total energy intake, weight gain, fat pad mass, and glycemic response but higher insulin sensitivity index than AMN, only when consumed ad libitum (AL) (P resistant starch content rather than its glycemic index. We conclude that starches high in AMO can be effective in weight and glycemic control in obesity.

  6. A structured approach to target starch solubilisation and hydrolysis for the sugarcane industry.

    Science.gov (United States)

    Cole, Marsha R; Rose, Ingrid; Chung, Yoo Jin; Eggleston, Gillian

    2015-01-01

    In sugarcane processing, starch is considered an impurity that negatively affects processing and reduces the quality of the sugar end-product. In the last decade, there has been a general world-wide increase in starch concentrations in sugarcane. Industrial α-amylases have been used for many years to mitigate issues arising from starch in the sugarcane industry. Mixed results have prompted further studies of the behaviour of different physical forms of starch and their interactions with α-amylases during processing. By using corn starch as a reference in model juices and syrups, processing parameters, activities, and hydrolysis of insoluble, swollen, and soluble starch forms were evaluated for two commercial α-amylases with high (HT) and intermediate (IT) temperature stability, respectively. The ability of starch to solubilise across a sugarcane factory is largely limited by increased Brix values. Optimum target locations and conditions for the application of α-amylases in sugarcane processing are discussed in detail.

  7. Effect of Dietary Starch Source and Concentration on Equine Fecal Microbiota.

    Directory of Open Access Journals (Sweden)

    Brittany E Harlow

    Full Text Available Starch from corn is less susceptible to equine small intestinal digestion than starch from oats, and starch that reaches the hindgut can be utilized by the microbiota. The objective of the current study was to examine the effects of starch source on equine fecal microbiota. Thirty horses were assigned to treatments: control (hay only, HC (high corn, HO (high oats, LC (low corn, LO (low oats, and LW (low pelleted wheat middlings. Horses received an all-forage diet (2 wk; d -14 to d -1 before the treatment diets (2 wk; d 1 to 14. Starch was introduced gradually so that horses received 50% of the assigned starch amount (high = 2 g starch/kg BW; low = 1 g starch/kg BW by d 4 and 100% by d 11. Fecal samples were obtained at the end of the forage-only period (S0; d -2, and on d 6 (S1 and d 13 (S2 of the treatment period. Cellulolytics, lactobacilli, Group D Gram-positive cocci (GPC, lactate-utilizers and amylolytics were enumerated. Enumeration data were log transformed and analyzed by repeated measures ANOVA. There were sample day × treatment interactions (P 0.05. All treatments except LO resulted in increased amylolytics and decreased cellulolytics, but the changes were larger in horses fed corn and wheat middlings (P < 0.05. Feeding oats resulted in increased lactobacilli and decreased GPC (P < 0.05, while corn had the opposite effects. LW had increased lactobacilli and GPC (P < 0.05. The predominant amylolytic isolates from HC, LC and LW on S2 were identified by 16S RNA gene sequencing as Enterococcus faecalis, but other species were found in oat fed horses. These results demonstrate that starch source can have a differential effect on the equine fecal microbiota.

  8. Thermal characterization of starch-water system by photopyroelectric technique and adiabatic scanning calorimetry

    Science.gov (United States)

    Cruz-Orea, A.; Bentefour, E. H.; Jamée, P.; Chirtoc, M.; Glorieux, C.; Pitsi, G.; Thoen, J.

    2003-01-01

    Starch is one of the most important carbohydrate sources in human nutrition. For the thermal analysis of starch, techniques such as differential scanning calorimetry have been extensively used. As an alternative, we have applied a photopyroelectric (PPE) configuration and adiabatic scanning calorimetry (ASC) to study the thermal properties of starch-water systems. For this study we used nixtamalized corn flour and potato starch with different quantities of distilled water, in order to obtain samples with different moisture content. By using PPE and ASC methods we have measured, for each technique separately, the heat capacity by unit volume (ρcp) at room temperature for a corn flour sample at 90% moisture. The obtained values agree within experimental uncertainty. By using these techniques we also studied the thermal behavior of potato starch, at 80% moisture, in the temperature range where phase transitions occur. In this case the PPE signal phase could be used as a sensitive and versatile monitor for phase transitions.

  9. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi

    2015-12-13

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio (by weight), were pressurized and measured at room temperature. During HHP, both SAXS peak areas (corresponding to the lamellar phase) of waxy corn and potato starches decreased suggesting the starch gelatinization increases with increasing pressure. As pressure increased, lamellar peak broadened and the power law exponent increased in low q region. 1D linear correlation function was further employed to analyse SAXS data. For both waxy potato and waxy corn starches, the long period length and the average thickness of amorphous layers decreased when the pressure increased. While for both of waxy starches, the thickness of the crystalline layer first increased, then decreased when the pressure increased. The former is probably due to the out-phasing of starch molecules, and the latter is due to the water penetrating into the crystalline region during gelatinization and to pressure induced compression.

  10. Application of Hydrothermally Modified Sweet Potato Starch as a Substitute Additive for Soup Mixture

    Directory of Open Access Journals (Sweden)

    S. A. Senanayake

    2014-01-01

    Full Text Available Potential application of modified sweet potato starch as a substitute thickener for corn starch was studied, by using native starches extracted from five different cultivars of sweet potatoes commonly available in Sri Lanka. Physicochemical properties (swelling power, water solubility index, pasting, and gelatinization and digestibility of native and modified (heat-moisture treated, 20% moisture, 85°C for 6 hrs starches were analysed. Modified Swp3 (Wariyapola white, Swp4 (Pallepola, and Swp5 (Malaysian starches were selected based on the favourable conditions shown in the required physical and chemical properties and applied in a vegetable soup formula as a thickening aid. Corn starch added samples were kept as controls and the viscosity difference and sensory attributes were tested. Viscosity of the reconstituted soup powder and sensory analysis showed that Swp4 and Swp5 had significantly high level (P<0.05 of sensory quality and the average rank for mouth feel (taste, texture and overall acceptability was significantly high (P<0.05 in Swp5 added samples. Shelf life studies ensured 6 months of stability with negligible level of moisture increase and total plate count in air tight polypropylene packages at ambient temperatures (28–31°C. Results of this study revealed a possibility of applying physically modified Swp4 and Swp5 starches as a substituent food ingredient for commercially available corn starch to improve the thickness of food products.

  11. Effect of starch type on the physico-chemical properties of edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-05-01

    Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner.

  12. Starch addition in renneted milk gels: partitioning between curd and whey and effect on curd syneresis and gel microstructure.

    Science.gov (United States)

    Brown, K M; McManus, W R; McMahon, D J

    2012-12-01

    Milk gels were made by renneting and acidifying skim milk containing 5 different starches, and then compressed by centrifugation to express whey and simulate curd syneresis during the manufacture of low-fat cheese. A series of 17 starches were examined, with 5 starches being selected for in-depth analysis: a modified waxy corn starch (WC), a waxy rice starch (WR), an instant tapioca starch (IT), a modified tapioca starch (MT), and dextrin (DX). Milks containing WC, WR, and DX were given a 72°C heat treatment, whereas those containing IT and MT had a 30-min treatment at 66°C that matched their optimum gelatinization treatments. Curd yields were calculated by weight, estimated starch content in whey was measured gravimetrically by alcohol precipitation, and starch retention in curd was calculated. Curd yields were 13.1% for the control milk (no added starch) and 18.4, 20.7, 21.5, 23.5, and 13.2% for the gels containing starches WC, WR, IT, MT, and DX, respectively. Estimated starch retentions in the curd were, respectively, 71, 90, 90, 21, and 1%. Laser scanning confocal microscopy was used to determine the location of the starches in the curd and their interaction with the protein matrix. Waxy corn, WR, and IT starches have potential to improve texture of low-fat cheese because they had high retention in the curd and they generated interruptions in the protein matrix network that may have helped limit extensive protein-protein interactions. Modified tapioca starch interfered with formation of the protein structure of the curd and produced a soft noncohesive gel, even though most (79%) of the MT starch was lost in the whey. Few distinct starch particles were present in the MT curd network. Dextrin was not retained in the curd and did not disrupt the protein network, making it unsuitable for use in low-fat cheese.

  13. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    substrate, and granular products were only obtained at low hydration of the starch. Hence, limiting hydration and gelatinization by using low-phosphate starch and high substrate oncentration was required for obtaining these products. Also high BE activity was a requirement and could partly compensate...... exclusively been conducted on gelatinized starch. This study provides a new concept for transferase-based modification of starches in granular state.......In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...

  14. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... branching connecting larger chain segments. In case of high BE activity this transfer happened prior to hydration and phase separation. The starch substrates thereby became locked in their granular structure and blocked furher access of BE. Transferase-based modification of starch has today almost...... exclusively been conducted on gelatinized starch. This study provides a new concept for transferase-based modification of starches in granular state....

  15. 实验室模拟越夏贮藏条件对玉米籽粒中淀粉及淀粉酶活性的影响%Effect of high temperature and humidity storage on starch and amylase activity of corn grain

    Institute of Scientific and Technical Information of China (English)

    修琳; 畅鹏飞; 郑明珠; 蔡丹; 张大力; 刘景圣

    2016-01-01

    选用2013年收获的“农大709”玉米籽粒,将其分别贮藏于室温和恒温恒湿培养箱(35℃,RH75%)中,并测定玉米籽粒淀粉酶活性、淀粉和可溶性糖含量的变化,分析了高温高湿(35℃,RH75%)条件下淀粉酶与可溶性糖代谢之间的关系。试验结果表明:常温条件下总淀粉酶和α-淀粉酶活性在贮藏初期仍继续上升,而后不再发生显著变化;除蔗糖含量降低外,总淀粉和直链淀粉以及果糖、葡萄糖、麦芽糖均无显著变化。高温高湿贮藏条件下,总淀粉酶和α-淀粉酶活性均显著下降;玉米总淀粉含量无明显变化而直链淀粉含量上升;葡萄糖和果糖变化一致,均先上升后下降;而麦芽糖和蔗糖含量均为先下降后上升。%ABSTRACT:We collected samples of corn grain"Nongda 709"harvested in 2013 and stored them under the conditions of room temperature and constant temperature and humidity(35℃,75%),respectively,and measured the change of amylase activity, starch content and soluble sugar content of corn grains,and analyzed the relationship between amylase and soluble sugar metabolism in maize.The results showed that:under normal temperature,the activity of total amylase andα-amylase were detected significantly increased at the beginning of the storage and then no significant changes.The sucrose content of samples was decreased significantly.However,the content of fructose,glucose,maltose,total starch and amylose had no significant changes.Under high temperature and humidity storage conditions,the activity of total amylase andα-amylase were detected significantly decreased.The amylose content decreased but the total starch content did not change significantly.The glucose sucrose and fructose content of samples were both increased at the early storage,and then decreased later.However,the content of sucrose and maltose tended to fall,and then rise.

  16. Starch hydrolysis and its effect on product yield and microbial contamination in yeast ethanol fermentation.

    Science.gov (United States)

    Czarnecki, Z; Grajek, W

    1991-05-01

    The influence of temperature and incubation time on starch gelatinization in wheat, rye and corn grain were studied. Rye starch was the most susceptlble to enzyme hydrolysls. Heat treatment of ground grain during starch gelatinlzation significantly reduced microblal contamination. In the batch fermentation of wheat, a high sugar utillization ranged from 92 to 94%. The highest alcohol yield was 65% from rye starch. The results obtained show that the high pressure cooking used for mash preparation can be replaced successfully by low temperature treatment.

  17. Starch levels on performance, milk composition and energy balance of lactating dairy cows.

    Science.gov (United States)

    Carmo, Carolina Almeida; Batistel, Fernanda; de Souza, Jonas; Martinez, Junio Cesar; Correa, Paulo; Pedroso, Alexandre Mendonça; Santos, Flávio Augusto Portela

    2015-01-01

    The objective of this experiment was to evaluate the effects of starch levels in diets with the replacement of citrus pulp for corn on milk yield, milk composition, and energy balance of lactating dairy cows. Twenty-eight multiparous Holstein cows were used in seven 4 × 4 Latin squares conducted concurrently, and each experimental period consisted of 20 days (16 days for adaptation and 4 days for sampling). The experimental treatments comprised four starch levels: 15, 20, 25, and 30% in the diet. The dry matter intake increased linearly with increasing starch levels. The milk yield and 3.5% fat-corrected milk yield showed quadratic response to increasing starch levels. The milk protein content and milk total solids content responded linearly to increasing starch levels. The feed efficiency, milk lactose content, milk urea nitrogen, plasma urea nitrogen, and plasma glucose concentration were not affected by starch levels. The estimated net energy for lactation (NEL) intake increased linearly as the starch level was raised. Although the milk NEL output per kilogram of milk was not affected by starch, the milk NEL output daily responded quadratically to starch levels. In addition, the NEL in body weight gain also responded quadratically to increasing starch levels. The efficiency of energy use for milk yield and the NEL efficiency for production also responded quadratically to increasing starch levels. Diets for mid-lactating dairy cows producing around 30 kg/day of milk should be formulated to provide around 25% starch to optimize performance.

  18. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols

  19. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical treat

  20. Influence of Pretreatment on Cold Water Solubility and Esterification Activity of Starch

    Directory of Open Access Journals (Sweden)

    Jiaying Xin

    2012-10-01

    Full Text Available The aim of this study is to improve the Cold Water Solubility (CWS and esterification activity of Native corn Starch (NS by pretreatment NS using NaOH/urea aqueous solution. The influence of pretreatment on granule shape and crystal structure of corn starch was investigated by Scanning Electron Microscopy (SEM and X-Ray Diffraction (XRD. It has been found that the average particle size of Pretreatment corn Starch (PS decreased to nanometer level, smaller than those of NS (4-15 μm. XRD revealed that crystalline pattern of PS was VH-type, which was different from that of NS (A-type. The maximum CWS of PS was 96.77%, while the NS was only 0.3%. NS and PS were esterified with oleic acid catalyzed by lipase under the same conditions respectively. The effects of the pretreatment on esterification activity of the corn starches were investigated by analyzing the Degrees of Substitutions (DS of the esterification products. The maximum DS of pretreatment starch oleate was 0.229, while the DS of native starch oleate was very low and even could not be detected.

  1. Enzymatic method for measuring starch gelatinization in dry products in situ.

    Science.gov (United States)

    Liu, KeShun; Han, Jianchun

    2012-05-02

    An enzymatic method based on hydrolysis of starch by amyloglucosidase and measurement of d-glucose released by glucose oxidase-peroxidase was developed to measure both gelatinized starch and hydrolyzable starch in situ of dried starchy products. Efforts focused on the development of sample handling steps (particle size reduction of dry samples followed by a unique mechanical resolubilization step) prior to the enzymatic hydrolysis using native and fully gelatinized flours of corn and rice. The new steps, when optimized, were able to maximize resolubilization of gelatinized/retrograded starch while minimizing solubilization of native starch in dried samples, thus effectively addressing issues of insusceptibility of retrograded starch and susceptibility of native starch to enzymatic attacks and eliminating the need to isolate starch from dry samples before using an enzymatic method. Various factors affecting these and other steps were also investigated, with the objectives to simplify the procedures and reduce errors. Results are expressed as the percentage of the total starch content. The proposed method, verified by measuring mixed samples of native and fully gelatinized flours of five grain species (corn, rice, barley, oat, and wheat) at different ratios, is simple, accurate, and reliable, with a relative standard deviation of less than 5%.

  2. Starch modification with microbial alpha-glucanotransferase enzymes.

    Science.gov (United States)

    van der Maarel, Marc J E C; Leemhuis, Hans

    2013-03-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated glucose syrups as substrate for the fermentative production of bioethanol and basic chemicals. Over the last two decades α-glucanotransferases (EC 2.4.1.xx), such as branching enzyme (EC 2.4.1.18) and 4-α-glucanotransferase (EC 2.4.1.25), have received considerable attention. These enzymes do not hydrolyze the starch as amylases do. Instead, α-glucanotransferases remodel parts of the amylose and amylopectin molecules by cleaving and reforming α-1,4- and α-1,6-glycosidic bond. Here we review the properties of α-glucanotransferases and discuss the emerging use of these enzymes in the generation of novel starch derivatives.

  3. Effect of high temperature on the expressions of genes encoding starch synthesis enzymes in developing rice endosperms

    Institute of Scientific and Technical Information of China (English)

    CAO Zhen-zhen; PAN Gang; WANG Fu-biao; WEI Ke-su; LI Zhao-wei; SHI Chun-hai; GENG Wei; CHENG Fang-min

    2015-01-01

    High temperature is the major environmental factor affecting grain starch properties of cooking rice cultivars. In this study, two non-waxy indica rice genotypes, cv. 9311 and its mutant with extremely high amylose phenotype (9311eha) were used to study the differential expressions of genes in starch synthesis and their responses to high temperature (HT). Signiifcant increase in apparent amylose content and hot-water-soluble starch content in mutant 9311eha were genetical y caused by a substitution from AGTTATA to AGGTATA at the leader intron 5´ splice site in Wx gene. This mutation resulted in different mRNA transcript levels, mRNA splicing efifciencies and protein levels of Wx between the two rice genotypes, which also lead to the genotype-dependent alteration in the temporal pattern of Wx transcription and granule-bound starch synthase (GBSS) activity in response to HT. However, changes in the activities of other starch synthesizing enzymes and their expressions of distinct isoform genes were not signiifcant with the Wx gene mutation, thus only minor difference in the particle size of starch granule, chain-length distribution and gelatinization enthalpy were found between the two genotypes. The tempo-ral-speciifc expression of multiple isoform genes responsive to different temperature regiments indicated that the reduction of GBSS transcript expression under HT was general y accompanied by the decreased expressions of SSSIIa, SSSIIIa and SBEIIb. Consequently, high temperature-ripened grains in 9311eha showed high proportion of intermediate and long B chains and somewhat lower level of short A chain compared to the wildtype. The temperature-dependent alteration of amylose content was not only attributed to the reduced expression of GBSS, but also associated with the complimentary effect of SSSIIa and SBEIIb.

  4. Application of Starch Foams Containing Plant Essential Oils to Prevent Mold Growth and Improve Shelf Life of Packaged Bread

    Directory of Open Access Journals (Sweden)

    S. Lotfinia

    2013-04-01

    Full Text Available In the recent years, considerable attention has been allocated in the area of using natural preservatives in foods, especially vegetable oils. Starch foams prepared from high amylose starch are useful for encapsulation of substances such as chemicals, liquids or solids, including flavor compounds, pharmaceuticals and essential oils. The foams have the ability to trap the active material and subsequently release the activity. Cinnamon oil is absorbed to foam starch microparticles and acts as an antimicrobial agent. This study was designed and implemented to evaluate the use of starch foam containing vegetable oil to prevent mold growth and improve packaged bread shelf life. For this purpose, first cinnamon essential oil was extracted with water by distillation method then, 250 groups of bread were prepared within polypropylene plastic bags. Various amounts of cinnamon essential oil (500, 750, 1000and1500ppm with 1 g of starch foam powder inside sterilized filter paper were added to these packages.The obtained results of multi-way and intergroup repeated tests indicated that there was a significant difference (P <0/05 between the control groups and various groups containing cinnamon essential oil in terms of microbial load. In the groups containing essential oils, less increase was showed in microbial load and with increasing concentrations of cinnamon essential oil, mold and yeast growth rate decreased. It concluded that by using starch foam containing cinnamon essential oil in bulky bread packing at ambient temperature (25°C, the spoilage process of bulky bread can be postponed 3 to 6 days, and it can be used as an appropriate natural and antifungal preservative in packaging of bread.

  5. Application of Starch Foams Containing Plant Essential Oils to Prevent Mold Growth and Improve Shelf Life of Packaged Bread

    Directory of Open Access Journals (Sweden)

    S. Lotfinia

    2014-02-01

    Full Text Available In the recent years, considerable attention has been allocated in the area of using natural preservatives in foods, especially vegetable oils.  Starch foams prepared from high amylose starch are useful for encapsulation of substances such as chemicals, liquids or solids, including flavor compounds, pharmaceuticals and essential oils. The foams have the ability to trap the active material and subsequently release the activity. Cinnamon oil is absorbed to foam starch microparticles and acts as an antimicrobial agent. This study was designed and implemented to evaluate the use of starch foam containing vegetable oil to prevent mold growth and improve packaged bread shelf life. For this purpose, first cinnamon essential oil was extracted with water by distillation method then, 250 groups of bread were prepared within polypropylene plastic bags. Various amounts of cinnamon essential oil (500, 750, 1000and1500ppm with 1 g of starch foam powder inside sterilized filter paper were added to these packages.The obtained results of multi-way and intergroup repeated tests indicated that there was a significant difference (P <0/05 between the control groups and various groups containing cinnamon essential oil in terms of microbial load. In the groups containing essential oils, less increase was showed in microbial load and with increasing concentrations of cinnamon essential oil, mold and yeast growth rate decreased. It concluded that by using starch foam containing cinnamon essential oil in bulky bread packing at ambient temperature (25°C, the spoilage process of bulky bread can be postponed 3 to 6 days, and it can be used as an appropriate natural and antifungal preservative in packaging of bread.

  6. Suitability of sago starch as a base for dual-modification

    Directory of Open Access Journals (Sweden)

    Saowakon Wattanachant

    2002-07-01

    Full Text Available The quality and physicochemical properties of native sago starch were studied in order to evaluate the suitability of sago starch as a base for dual-modification, hydroxypropylation and crosslinking. The properties of starch derivatives obtained from dual-modification are different depending upon the kind of starch bases used and their basic properties. Therefore, the properties of several starches including waxy maize, waxy barley, tapioca, wheat, corn and rice and properties of their derivatives were investigated comparatively. The data obtained elucidates that the swelling power of a starch base is the most important factor which influences the dual-modification. The native sago starch had higher swelling power and bigger average granule size when compared to that of other starch bases. Its gelatinization temperature was in the same range as that of waxy maize while its pasting characteristic was similar to that of tapioca starch. It can be inferred that sago starch is suitable as a starch base for hydroxypropylation and crosslinking.

  7. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites.

    Science.gov (United States)

    Zuo, Ying Feng; Gu, Jiyou; Qiao, Zhibang; Tan, Haiyan; Cao, Jun; Zhang, Yanhua

    2015-01-01

    Maleic anhydride esterified corn starch was prepared by dry method. Esterified starch/polylactic acid (PLA) biodegradable composite was produced via melt extrusion method with blending maleic anhydride esterified corn starch and PLA. The influence of the dry method esterification of starch on the degradation characteristics of starch/PLA composites was investigated by the natural aging degradation which was soil burial method. Test results of mass loss rate showed that the first 30 days of degradation was mainly starch degradation, and the degradation rate of esterified starch/PLA (ES/PLA) was slower than that of native starch/PLA (NS/PLA). Therefore, the damage degree of ES/PLA on the surface and inside was smaller than that of NS/PLA, and the infrared absorption peak intensities of C-O, C=O and C-H were stronger than that of NS/PLA. With the increasing time of soil burial degradation, the damage degree of NS/PLA and ES/PLA on the exterior and interior were gradually increased, whereas the infrared absorption peak intensities of C-O, C=O and C-H were gradually decreased. The XRD diffraction peak intensity of PLA in composites showed an increased trend at first which was then followed by a decreased one along with the increasing time of soil burial degradation, indicating that the degradation of amorphous regions of PLA was earlier than its crystalline regions. When the soil burial time was the same, the diffraction peak intensity of PLA in ES/PLA was stronger than that of NS/PLA. If the degradation time was the same, T0, Ti and residual rate of thermal decomposition of NS/PLA were larger than those of ES/PLA. The tensile strength and bending strength of composites were decreased gradually with soil burial time increasing. Both the tensile strength and bending strength of ES/PLA were stronger than those of NS/PLA.

  8. Effect of corn silage harvest maturity and concentrate type on milk fatty acid composition of dairy cows

    NARCIS (Netherlands)

    Khan, N.A.; Tewoldebrhan, T.A.; Zom, R.L.G.; Cone, J.W.; Hendriks, W.H.

    2012-01-01

    The variation in maturity at harvest during grain filling has a major effect on the carbohydrate composition (starch:NDF ratio) and fatty acid (FA) content of corn silages, and can alter the FA composition of milk fat in dairy cows. This study evaluated the effect of silage corn (cv. Atrium) harvest

  9. Effects of electron beam irradiation on physicochemical properties of corn flour and improvement of the gelatinization inhibition.

    Science.gov (United States)

    Xue, Peiyu; Zhao, Yue; Wen, Chengrong; Cheng, Sheng; Lin, Songyi

    2017-10-15

    The properties and viscosity-reduction mechanism of corn flour irradiated by electron beam have not been understood properly. Here, we investigate the effects of electron beam irradiation (EBI) on the gelatinization and physicochemical properties of corn flour irradiated by 0-5.40kGy of electron beam. The total starch and crude fiber contents of corn flour decreased significantly (Pgelatinization of corn flour was completely inhibited. Thus, EBI can be used to inhibit the gelatinization of corn flour, which may be beneficial for industrial and food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development of self-assembled bacterial cellulose-starch nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Grande, Cristian J. [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Torres, Fernando G., E-mail: fgtorres@pucp.edu.pe [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Gomez, Clara M., E-mail: Clara.Gomez@uv.es [Departament de Quimica Fisica and Institut de Ciencia dels Materials, Dr Moliner 50, Universitat de Valencia, E-46100 Burjassot, Valencia (Spain); Troncoso, Omar P. [Faculty of Mechanical Engineering, Catholic University of Peru (PUCP), Lima 32 (Peru); Canet-Ferrer, Josep; Martinez-Pastor, Juan [Unit of Optoelectronic Materials and Devices of the University of Valencia, P.O. Box 22085, 46071 Valencia (Spain)

    2009-05-05

    A bioinspired bottom-up process was developed to produce self-assembled nanocomposites of cellulose synthesized by Acetobacter bacteria and native starch. This process takes advantage of the way some bacteria extrude cellulose nanofibres and of the transport process that occurs during the gelatinization of starch. Potato and corn starch were added into the culture medium and partially gelatinized in order to allow the cellulose nanofibrils to grow in the presence of a starch phase. The bacterial cellulose (BC)-starch gels were hot pressed into sheets that had a BC volume fraction higher than 90%. During this step starch was forced to further penetrate the BC network. The self-assembled BC-starch nanocomposites showed a coherent morphology that was assessed by Atomic Force Microscopy (AFM) and Environmental Scanning Electron Microscopy (ESEM). The nanocomposites structure was studied using X-ray diffraction and ATR-FTIR spectroscopy. The degree of crystallinity of the final nanocomposites was used to estimate the volume fraction of BC. The aim of this paper is to explore a new methodology that could be used to produce nanomaterials by introducing a different phase into a cellulose nanofibre network during its assembly.

  11. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media

    Directory of Open Access Journals (Sweden)

    Cristhian Carrasco

    2011-07-01

    Full Text Available Abstract Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF of lignocellulosic residues from commercial furfural production (furfural residue, FR and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch

  12. Chemical and physical characteristics of corn silages and their effects on in vitro disappearance.

    Science.gov (United States)

    Ferreira, G; Mertens, D R

    2005-12-01

    Estimating the available energy in corn silage provides a unique challenge because the silage contains variable proportions of grain and stover, each of which can differ in availability due to chemical composition and physical form. The objectives of this study were to investigate relationships among chemical components and their relationships with in vitro disappearance of ground and unground dried silages, and to quantify minimally fragmented starch in corn silage and investigate its impact and that of mean particle size (MPS) on in vitro disappearance of unground silages. Thirty-two corn silages were selected to provide diversity in dry matter, protein, fiber, and MPS. Detergent fibers were highly correlated with each other and with nonfiber carbohydrates, and were used to develop prediction equations between these constituents. Sieves with apertures > or =4.75 mm were used to isolate intact kernels and large kernel fragments, which were collected and analyzed to measure minimally fragmented starch (Starch>4.75). Dividing Starch>4.75 by total starch defined the proportion of minimally fragmented starch (Starch>4.75/Total), which ranged from 9 to 100% with a mean of 52%. Starch>4.75/Total was positively correlated with MPS (r = 0.46). The inverse of Starch>4.75/Total is an index of kernel fragmentation. Silages were prepared as whole material or ground to pass through a 4- or 1-mm screen of a cutter mill. In vitro dry matter disappearance (IVDMD) was greater for ground than for whole samples (71.7 and 61.2%, respectively). Increased IVDMD for ground samples was attributed to greater in vitro neutral detergent fiber (NDF) and neutral detergent solubles (NDS) disappearances. The IVDMD of ground samples was related to NDF and acid detergent lignin (R2 = 0.80). The IVDMD of whole corn silage was related to acid detergent lignin, Starch>4.75, MPS, and dry matter. When IVDMD was partitioned into in vitro digestible NDS (IVdNDS) and in vitro digestible NDF, the IVd

  13. Substituição do milho pelo resíduo de fecularia de mandioca sobre o desempenho, digestibilidade e características de carcaça de novilhos confinados = Replacing corn with cassava starch by-products on the performance, digestibility and carcass characteristics of bulls in confinement

    Directory of Open Access Journals (Sweden)

    Maribel Velandia Valero

    2009-10-01

    Full Text Available O efeito de substituição do milho pelo resíduo desidratado de fecularia de mandioca (0; 12,5; 22,8 e 32,7% foi avaliado sobre o desempenho, a digestibilidade e características de carcaça e 32 bovinos mestiços (½ Nelore x ½ Angus de aproximadamente 18 meses de idade e 380 kg de peso vivo. O delineamento experimental foi o inteiramente casualizado, com quatro tratamentos e oito repetições. Foram analisados o ganho médio diário (GMD, rendimento de carcaça (RC, espessura de gordura de cobertura (EGC, área de olho de lombo (AOL, comprimento de perna (CP, espessura de coxão (EC, ingestãode matéria seca (IMS, conversão alimentar (CA, digestibilidade total aparente da matéria seca (DAMS, matéria orgânica (DAMO, proteína bruta (DAPB, energia bruta (DAEB, fibra em detergente ácido (DAFDA e fibra em detergente neutro (DAFDN. O experimento foidesenvolvido durante um período de 56 dias, após 14 dias de adaptação. Os resultados de GMD, RC, CA, EGC, AOL, CP e EC não apresentaram diferenças (p > 0,05 entre os tratamentos. A IMS apresentou redução linear quando o milho foi substituído pelo resíduodesidratado de fecularia de mandioca. Os coeficientes de digestibilidade da MS, MO, PB, EB, FDN e FDA não variaram entre as rações experimentais.The effects of replacing corn with different levels of cassava starch by-products (0; 12.5; 22.8; and 32.7% were evaluated on performance, digestibility and carcass traits of feedlot bulls. Thirty-twocrossbred bulls (½ Nelore x ½ Angus around 18 months of age and 380 kg of body weight were used. A completely randomized design was used, with 4 treatments and 8 replicates. Evaluated traits were: average daily gain (ADG, carcass dressing (CD, backfat thickness (BT, Longissimus area (LDA, leg length (LL and cushion thickness (CT, dry matter intake (DMI, feed conversion ratio (FCR, total apparent digestibility of dry matter (DMDC, organic matter (OMDC, crude protein (CPDC, crude energy (CEDC

  14. 纳米SiO2改性玉米淀粉/聚乙烯醇复合薄膜研究%The Study on Corn Starch / Polyvinyl Alcohol Composite Films Modified by Nano-SiO2

    Institute of Scientific and Technical Information of China (English)

    贾云芝; 陈志周; 迟建

    2012-01-01

    以薄膜拉伸强度、断裂伸长率、透光率和吸水率为主要指标,通过单因素试验和正交试验研究纳米SiO2改性玉米淀粉/聚乙烯醇复合薄膜的工艺条件,以改善玉米淀粉/聚乙烯醇复合薄膜的物理性能.试验结果表明:纳米SiO2含量,分散剂种类及含量,膜液pH对膜的性能均有影响.适宜的工艺参数为:纳米SiO2最佳含量2.0%,最佳分散剂聚丙烯酰胺含量1.5%,膜液最佳pH 5.0.%To improve the physical properties, the technological conditions of com starch and polyvinyl alcohol composite film modified by nano-SidO2 are studied through single-factor experiments and orthogonal test, using tensile strength, break age elongation, transmittance and water absorption rate as indexes. The experimental results showed that the concentration of nano-SiO2, variety and concentration of dispersant and pH of film liquid all can affect the properties of the films. The suitable process parameters: the optimum concentration of nano-SiO2 was 2.0%; the best dispersant was polyacrylamide, and its optimal concentration was 1.5%; the best pH of film liquid was 5.0.

  15. Effect of the mode of incorporation on the disintegrant properties of acid modified water and white yam starches.

    Science.gov (United States)

    Odeku, Oluwatoyin A; Akinwande, Babatunde L

    2012-04-01

    Acid modified starches obtained from two species of yam tubers namely white yam - Dioscorea rotundata L. and water yam - D. alata L. DIAL2 have been investigated as intra- and extra-granular disintegrants in paracetamol tablet formulations. The native starches were modified by acid hydrolysis and employed as disintegrant at concentrations of 5 and 10% w/w and their disintegrant properties compared with those of corn starch BP. The tensile strength and drug release properties of the tablets, assessed using the disintegration and dissolution (t 50 and t 80 - time required for 50% and 80% of paracetamol to be released) times, were evaluated. The results showed that the tensile strength and the disintegration and dissolution times of the tablets decreased with increase in the concentration of the starch disintegrants. The acid modified yam starches showed better disintegrant efficiency than corn starch in the tablet formulations. Acid modification appeared to improve the disintegrant efficiency of the yam starches. Furthermore, tablets containing starches incorporated extragranularly showed faster disintegration but lower tensile strength than those containing starches incorporated intragranularly. This emphasizes the importance of the mode of incorporation of starch disintegrant.

  16. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer.

    Science.gov (United States)

    You, Lijun; Lu, Feifei; Li, Dan; Qiao, Zhongming; Yin, Yeping

    2009-12-15

    A novel flocculant (CATCS) based on corn starch and chitosan was prepared and its flocculation behaviors were studied. The synthesis conditions of CATCS were discussed and the production obtained was characterized using Fourier infrared spectra and scanning electron microscopy. Flocculation properties of the products were evaluated in terms of transmittance, removal of organic contaminant and solid suspending substances. Influences of temperature, pH and flocculant dosage on flocculation efficiency of CATCS were examined. CATCS had better flocculation performance at lower temperature for the wastewater investigated. CATCS showed better flocculation performance than cationic starch and chitosan in 5 g/L kaolin suspension trended to performance well in acidic and alkaline solution. The comparison of the flocculation performance between CATCS, Fe2(SO4)3 and polyacrylamide showed CATCS had much efficient flocculation performance. In addition, cationic starch was prepared from corn starch using microwave-assisted method.

  17. Preparation and flocculation properties of cationic starch/chitosan crosslinking-copolymer

    Energy Technology Data Exchange (ETDEWEB)

    You Lijun; Lu Feifei; Li Dan; Qiao Zhongming [Department of chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070 (China); Yin Yeping, E-mail: yljyoyo@yahoo.cn [Department of chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070 (China)

    2009-12-15

    A novel flocculant (CATCS) based on corn starch and chitosan was prepared and its flocculation behaviors were studied. The synthesis conditions of CATCS were discussed and the production obtained was characterized using Fourier infrared spectra and scanning electron microscopy. Flocculation properties of the products were evaluated in terms of transmittance, removal of organic contaminant and solid suspending substances. Influences of temperature, pH and flocculant dosage on flocculation efficiency of CATCS were examined. CATCS had better flocculation performance at lower temperature for the wastewater investigated. CATCS showed better flocculation performance than cationic starch and chitosan in 5 g/L kaolin suspension trended to performance well in acidic and alkaline solution. The comparison of the flocculation performance between CATCS, Fe{sub 2} (SO{sub 4}){sub 3} and polyacrylamide showed CATCS had much efficient flocculation performance. In addition, cationic starch was prepared from corn starch using microwave-assisted method.

  18. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts seeds.

    Science.gov (United States)

    Pérez-Pacheco, E; Moo-Huchin, V M; Estrada-León, R J; Ortiz-Fernández, A; May-Hernández, L H; Ríos-Soberanis, C R; Betancur-Ancona, D

    2014-01-30

    In this paper, the Ramon starch was isolated and its chemical composition and physical and microscopic characteristics were determined. Corn starch was used as reference. In general, the proximal composition was similar between starches studied. Ramon starch granules were oval-spherical and rounded with sizes between 6.5 and 15 μm. Starch purity was high (92.57%) with amylose content of 25.36%. The gelatinization temperature was 83.05°C and transition enthalpy was 21.423 J/g. At 90°C, solubility was 20.42%, swelling power 17.64 g water/gstarch and water absorption capacity was 13 gwater/gstarch. The pH, clarity and color (Hue angle) of Ramon starch were higher to those reported for corn starch. The results achieved suggest that Ramon starch has potential for application in food systems requiring high processing temperatures and it is also a promising option for use in the manufacture of biodegradable materials.

  19. Starch Digestion and Phosphorus Excretion in Lactating Dairy Cows

    OpenAIRE

    Guyton, Autumn Deanne

    2002-01-01

    The effects of starch and phosphorus (P) source on P partitioning and ruminal phytase activity were evaluated in eight lactating cows (113 DIM). Four cows were ruminaly cannulated. Cows were randomly assigned to treatments in a duplicated 4x4 Latin square with four, 18-d periods. Diets included dry ground corn (DG) or steam flaked corn (SF), with a no supplemental P (low P diet; 0.34% P) or supplemental purified phytic acid (PA; 0.45% P) to provide additional P from an organic source. Total c...

  20. Starch Digestion and Phosphorus Excretion in Lactating Dairy Cows

    OpenAIRE

    Guyton, Autumn Deanne

    2002-01-01

    The effects of starch and phosphorus (P) source on P partitioning and ruminal phytase activity were evaluated in eight lactating cows (113 DIM). Four cows were ruminaly cannulated. Cows were randomly assigned to treatments in a duplicated 4x4 Latin square with four, 18-d periods. Diets included dry ground corn (DG) or steam flaked corn (SF), with a no supplemental P (low P diet; 0.34% P) or supplemental purified phytic acid (PA; 0.45% P) to provide additional P from an organic source. Total c...

  1. STARCH RETROGRADATION AND PRODUCTION OF RESISTANT STARCH IN COOKED RICE

    OpenAIRE

    2008-01-01

    After rice cooking, retrogradation of starch in a cooked rice progresses quickly at under gelatinization temperature. Cold rice (aging rice) is tasteless, firm and digested slowly. My aim in this report is explained the relationship between cold rice tasteless and indexes of starch retrogradation. Starch gelatinization degree, starch whiteness index and resistant starch content that were indexes of starch retrogradation did not change remarkably of cold and aging rice that were very firm and ...

  2. The Effect of Carboxymethyl Cellulose Addition on the Properties of Starch-based Wood Adhesive

    OpenAIRE

    Zhibang Qiao; Jiyou Gu; Yingfeng Zuo; Haiyan Tan; Yanhua Zhang

    2014-01-01

    Starch adhesive was prepared utilizing corn starch, polyvinyl alcohol, and borax as raw materials. A certain amount of water-soluble carboxymethyl cellulose (CMC) was added in the preparation process, and a certain percentage of polymethylene polyphenylene isocyanate pre-polymer as cross-linking agent was used to improve its water resistance. To evaluate the water resistance, three-layer plywood was fabricated by hot pressing, and bonding strength was measured using a mechanical testing machi...

  3. Effect of modification temperature on starch oxidation and its physico-chemical properties

    OpenAIRE

    Sławomir Pietrzyk; Teresa Fortuna; Elżbieta Pabiś

    2012-01-01

    Corn starch was oxidised by hydrogen peroxide at temperatures 20, 30, 40 and 50°C. The oxidised starches were examined for the content of carboxyl groups, carbonyl groups, amylose and for water binding capacity and water solubility. Susceptibility to retrogradation and pasting characteristics were also determined. The results indicate that the effectiveness of oxidation process increased with increased temperature of modification. Temperature of modification influenced content of amylose ...

  4. Sterilization in a liquid of a specific starch makes it slowly digestible in vitro and low glycemic in rats.

    Science.gov (United States)

    Severijnen, Chantal; Abrahamse, Evan; van der Beek, Eline M; Buco, Amra; van de Heijning, Bert J M; van Laere, Katrien; Bouritius, Hetty

    2007-10-01

    Diabetics are recommended to eat a balanced diet containing normal amounts of carbohydrates, preferably those with a low glycemic index. For solid foods, this can be achieved by choosing whole-grain, fiber-rich products. For (sterilized) liquid products, such as meal replacers, the choices for carbohydrate sources are restricted due to technological limitations. Starches usually have a high glycemic index after sterilization in liquids, whereas low glycemic sugars and sugar replacers can only be used in limited amounts. Using an in vitro digestion assay, we identified a resistant starch (RS) source [modified high amylose starch (mHAS)] that might enable the production of a sterilized liquid product with a low glycemic index. Heating mHAS for 4-5 min in liquid increased the slowly digestible starch (SDS) fraction at the expense of the RS portion. The effect was temperature dependent and reached its maximum above 120 degrees C. Heating at 130 degrees C significantly reduced the RS fraction from 49 to 22%. The product remained stable for at least several months when stored at 4 degrees C. To investigate whether a higher SDS fraction would result in a lower postprandial glycemic response, the sterilized mHAS solution was compared with rapidly digestible maltodextrin. Male Wistar rats received an i.g. bolus of 2.0 g available carbohydrate/kg body weight. Ingestion of heat-treated mHAS resulted in a significant attenuation of the postprandial plasma glucose and insulin responses compared with maltodextrin. mHAS appears to be a starch source which, after sterilization in a liquid product, acquires slow-release properties. The long-term stability of mHAS solutions indicates that this may provide a suitable carbohydrate source for low glycemic index liquid products for inclusion in a diabetes-specific diet.

  5. Preparation and characterization of dry method esterified starch/polylactic acid composite materials.

    Science.gov (United States)

    Zuo, Yingfeng; Gu, Jiyou; Yang, Long; Qiao, Zhibang; Tan, Haiyan; Zhang, Yanhua

    2014-03-01

    Corn starch and maleic anhydride were synthesized from a maleic anhydride esterified starch by dry method. Fourier transform infrared spectroscopy (FTIR) was used for the qualitative analysis of the esterified starches. The reaction efficiency of dry method esterified starch reached 92.34%. The dry method esterified starch was blended with polylactic acid (PLA), and the mixture was melted and extruded to produce the esterified starch/polylactic acid (ES/PLA) composites. The degree of crystallinity of the ES/PLA was lower than that of the NS/PLA, indicating that the relative dependence between these two components of starch and polylactic acid was enhanced. Scanning electron microscopy (SEM) indicated that the dry method esterified starch increased the two-phase interface compatibility of the composites, thereby improving the tensile strength, bending strength, and elongation at break of the ES/PLA composite. The introduction of a hydrophobic ester bond and increase in interface compatibility led to an increase in ES/PLA water resistance. Melt index determination results showed that starch esterification modification had improved the melt flow properties of starch/PLA composite material. Strain scanning also showed that the compatibility of ES/PLA was increased. While frequency scanning showed that the storage modulus and complex viscosity of ES/PLA was less than that of NS/PLA.

  6. Physical and mechanical properties of LDPE incorporated with different starch sources

    Science.gov (United States)

    Kormin, Shaharuddin; Kormin, Faridah; Dalour Hossen Beg, Mohammad; Bijarimi Mat Piah, Mohd

    2017-08-01

    In this study it was investigated the incorporation of different starches, such as sago starch, corn starch, potato starch, tapioca starch and wheat starch, in low-density polyethylene matrix (LDPE) to enhanced mechanical properties and to obtain partially biodegradable product with the aim to reduce the plastics wastes in the environment. For comparison, virgin LDPE, LDPE with different sources of starch blends were prepared and characterized under the same conditions. The starches were mixed to the LDPE using a twin screw extruder to guarantee the homogeneity of the formulations. The compound were shaping processed by injection moulding. The characterization of those compounds was done by physical (density, MFI), mechanical (Universal tensile machine). The addition of starch to LDPE reduced the MFI values, the tensile strength, elongation at break and impact strength, whereas the elastic modulus, flexural modulus and flexural strength increased. LDPE/SS show the good mechanical behavior compared to other formulation. The physical and mechanical properties were evident when 5 and 30 wt% were added. Water uptake increased with increased starch content and immersion time. The time taken for the composites to equilibrate was about one month even when they were immersed completely in water.

  7. Gluten-free dough-making of specialty breads: Significance of blended starches, flours and additives on dough behaviour.

    Science.gov (United States)

    Collar, Concha; Conte, Paola; Fadda, Costantino; Piga, Antonio

    2015-10-01

    The capability of different gluten-free (GF) basic formulations made of flour (rice, amaranth and chickpea) and starch (corn and cassava) blends, to make machinable and viscoelastic GF-doughs in absence/presence of single hydrocolloids (guar gum, locust bean and psyllium fibre), proteins (milk and egg white) and surfactants (neutral, anionic and vegetable oil) have been investigated. Macroscopic (high deformation) and macromolecular (small deformation) mechanical, viscometric (gelatinization, pasting, gelling) and thermal (gelatinization, melting, retrogradation) approaches were performed on the different matrices in order to (a) identify similarities and differences in GF-doughs in terms of a small number of rheological and thermal analytical parameters according to the formulations and (b) to assess single and interactive effects of basic ingredients and additives on GF-dough performance to achieve GF-flat breads. Larger values for the static and dynamic mechanical characteristics and higher viscometric profiles during both cooking and cooling corresponded to doughs formulated with guar gum and Psyllium fibre added to rice flour/starch and rice flour/corn starch/chickpea flour, while surfactant- and protein-formulated GF-doughs added to rice flour/starch/amaranth flour based GF-doughs exhibited intermediate and lower values for the mechanical parameters and poorer viscometric profiles. In addition, additive-free formulations exhibited higher values for the temperature of both gelatinization and retrogradation and lower enthalpies for the thermal transitions. Single addition of 10% of either chickpea flour or amaranth flour to rice flour/starch blends provided a large GF-dough hardening effect in presence of corn starch and an intermediate effect in presence of cassava starch (chickpea), and an intermediate reinforcement of GF-dough regardless the source of starch (amaranth). At macromolecular level, both chickpea and amaranth flours, singly added, determined

  8. Delaying corn rootworm resistance to Bt corn.

    Science.gov (United States)

    Tabashnik, Bruce E; Gould, Fred

    2012-06-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.

  9. Production of bioethanol from corn meal hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ljiljana Mojovic; Svetlana Nikolic; Marica Rakin; Maja Vukasinovic [University of Belgrade, Belgrade (Serbia and Montenegro). Faculty of Technology and Metallurgy, Department of Biochemical Engineering and Biotechnology

    2006-09-15

    The two-step enzymatic hydrolysis of corn meal by commercially available {alpha}-amylase and glucoamylase and further ethanol fermentation of the obtained hydrolyzates by Saccharomyces cerevisiae yeast was studied. The conditions of starch hydrolysis such as substrate and enzyme concentration and the time required for enzymatic action were optimized taking into account both the effects of hydrolysis and ethanol fermentation. The corn meal hydrolyzates obtained were good substrates for ethanol fermentation by S. cerevisiae. The yield of ethanol of more than 80% (w/w) of the theoretical was achieved with a satisfactory volumetric productivity P (g/l h). No shortage of fermentable sugars was observed during simultaneous hydrolysis and fermentation. In this process, the savings in energy by carrying out the saccharification step at lower temperature (32{sup o}C) could be realized, as well as a reduction of the process time for 4 h. 31 refs., 5 figs., 2 tabs.

  10. Correlation of pasting behaviors with total phenolic compounds and starch digestibility of indigenous pigmented rice grown in upper Northern Thailand

    Directory of Open Access Journals (Sweden)

    Jirapa Ponjanta

    2016-03-01

    Full Text Available Background: Thailand has one of the most important rice genetic resources with white, light brown, brown, red, and purple rice bran colors. The latter believed to have potential for health benefits due to their phenolic content. Recently researchers have indicated that starch digestive enzymes, including salivary and pancreatic α-amylases and α-glucosidases, can be inhibited by phenolic compounds. Although pasting properties of rice flour are key determinants of quality significantly impacting the final product texture, there is no in-depth study on their correlation with phenolic compound and starch digestibility. Methods: Rice flour from twelve varieties, three from each of five bran colors (white, brown, red, and purple, were evaluated for pasting properties (RVA-3D, total phenolic compounds, amylose content, resistant starch and estimated glycemic index. Simple correlation coefficients were calculated for the relationships between pasting properties (final viscosity, breakdown, setback and pasting temperature and total phenolic compounds, resistant starch and estimated glycemic index. Results: Within each rice variety, red and purple pigmented flours had higher total phenolic compounds (TPC and more resistant starch than that of white flours. The TPC and resistant starch content of the flours ranged between 7.83- 47.3 mg/L and 2.44–10.50% respectively, and producing 60-80 of estimated glycemic index. Viscosity behavior showed that pigmented with low amylose rice had lower viscosity temperature than that of pigmented with high amylose rice flour, but higher in peak viscosity. Correlation coefficients of pasting temperature, final viscosity, break down and setback with TCP was observed to be inversely related to glycemic index. However, it was positively correlated to the resistant starch and amylose content. Conclusions: Pigmented rice flour is a better source of TPC and resistant starch which in turn provides low glycemic index. This

  11. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  12. pH catalyzed pretreatment of corn bran for enhanced enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Agger, Jane; Johansen, Katja Salomon; Meyer, Anne S.

    2011-01-01

    Corn bran is mainly made up of the pericarp of corn kernels and is a byproduct stream resulting from the wet milling step in corn starch processing. Through statistic modeling this study examined the optimization of pretreatment of corn bran for enzymatic hydrolysis. A low pH pretreatment (pH 2......, 150°C, 65min) boosted the enzymatic release of xylose and glucose and maximized biomass solubilization. With more acidic pretreatment followed by enzymatic hydrolysis the total xylose release was maximized (at pH 1.3) reaching ∼50% by weight of the original amount present in destarched corn bran......, but the enzyme catalyzed xylose release was maximal after pretreatment at approx. pH 2. The total glucose release peaked after pretreatment of approx. pH 1.5 with an enzymatic release of approx. 68% by weight of the original amounts present in destarched corn bran. For arabinose the enzymatic release...

  13. In vitro ruminal fermentation kinetic of diets containing forage cactus with urea and different starch sources

    Directory of Open Access Journals (Sweden)

    Yann dos Santos Luz

    2014-06-01

    Full Text Available The study was conducted to evaluate fermentation kinetic of diets based on cactus forage enriched with urea and Tifton 85 hay, containing different starch sources, using semi-automated in vitro gas production technique. Treatments were disposed in a randomized block design, with four replications, where concentrates were formulated as follows: cassava roots (FSMa, semi flint corn grains (FSMiSD, dent corn grains (FSMiD and wheat bran (FTMa. All diets were formulated to obtain 15% of crude protein. Gas pressure were measured 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 30, 36, 48, 72 and 96 h after inoculation. For fast phase maximum gas volume (Vf1, both treatments containing corn did not differ (P>0.05. FTMa differed (P<0.05 from diets composed with corn, as main starch source. Specific degradation rate of fast fraction (Kd1 was higher (P<0.05 on FSMa and FTMa diets, compared with corn diets. Colonization time (L showed lower values (P<0.05 for FTMa diet. The lowest total gas production was observed on FTMa and the highest for FSMiD, varying from 225.49 to 268.31 mL/g, respectively. Cassava roots as starch source contributes to a faster fermentation, compared to both corns, allowing a better synchronization with faster degradation nitrogen sources.

  14. Gluten-free bread formulated with Prosopis ruscifolia (vinal) seed and corn flours.

    Science.gov (United States)

    Bernardi, C; Sánchez, H; Freyre, M; Osella, C

    2010-05-01

    Vinal (Prosopis ruscifolia) is a wild leguminous tree found widely in the north of Argentina. Like other Prosopis, vinal can grow under extreme temperatures, in poor soils and can tolerate high saline conditions. Taking into account the high protein and gums contents of vinal seeds, a gluten-free bread was developed including them and corn flour. A central composite design involving vinal seed flour/corn starch ratio (X1) and corn flour/corn starch ratio (X2) was used, and second-order models for specific volume (Y1) and bread score (Y2), evaluated by an expert panel, were employed to generate response surfaces. In the optimum zone of response surfaces, a product with higher protein content (5.2 g/100 g) than gluten-free breads found in local commercial markets was obtained. Also, an interesting antioxidant activity (115 mg ascorbic acid equivalent/100 g) was found in optimized gluten-free bread.

  15. Effect of enzyme activity on the starch structure and processing quality of selected rice varieties

    Science.gov (United States)

    Although most commercialized long grain rice varieties have intermediate amylose content (~22%), high amylose (>25%) varieties are important for the canning and parboiling industry. Research has shown that high amylose rice varieties that have the best processing quality have high setback and low br...

  16. Toughening polylactide with polyether-block-amide and thermoplastic starch acetate: Influence of starch esterification degree.

    Science.gov (United States)

    Zhou, Linyao; Zhao, Guiyan; Feng, Yulin; Yin, Jinghua; Jiang, Wei

    2015-01-01

    Native corn starch was esterified with acetic anhydride and plasticized with glycerol to give the thermoplastic starch acetate (TPSA). TPSA was blended with polylactide (PLA) and polyether-block-amide-graft-glycidyl methacrylate (PEBA-g-GMA) to obtain biodegradable PLA/PEBA-g-GMA/TPSA blends with high notched impact resistance and low cost. Compared with PLA/PEBA-g-GMA blends, as much as 9 wt% expensive PEBA-g-GMA elastomer could be substituted by the slightly acetylated thermoplastic starch while retaining high impact strength. The mechanical properties depended on the esterification degree of starch acetate. The impact strength, tensile strength and elongation at break increased to the peak value with increasing the esterification degree from 0 to 0.04, thereafter they decreased on further increasing the esterification degree. The morphological results showed that the TPSA particles were smaller and more uniform at the optimum esterification degree of 0.04, leading to the peak value of the mechanical properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still

  18. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still insuffic

  19. Characteristics of raw starch degrading alpha-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp.

    NARCIS (Netherlands)

    Puspasari, Fernita; Nurachman, Zeily; Noer, Achmad Saefuddin; Radjasa, Ocky Karna; van der Maarel, Marc J. E. C.; Natalia, Dessy

    Partially purified alpha-amylase from Bacillus aquimaris MKSC 6.2, a bacterium isolated from a soft coral Sinularia sp., Merak Kecil Island, West Java, Indonesia, showed an ability to degrade raw corn, rice, sago, cassava, and potato starches with adsorption percentage in the range of 65-93%. Corn

  20. Characteristics of raw starch degrading alpha-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp.

    NARCIS (Netherlands)

    Puspasari, Fernita; Nurachman, Zeily; Noer, Achmad Saefuddin; Radjasa, Ocky Karna; van der Maarel, Marc J. E. C.; Natalia, Dessy

    2011-01-01

    Partially purified alpha-amylase from Bacillus aquimaris MKSC 6.2, a bacterium isolated from a soft coral Sinularia sp., Merak Kecil Island, West Java, Indonesia, showed an ability to degrade raw corn, rice, sago, cassava, and potato starches with adsorption percentage in the range of 65-93%. Corn h

  1. Use of biomass energy. Saccharification of raw starch and ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S.

    1982-01-01

    Raw starch was saccharified under acidic condition of pH 3.5 using black-koji amylase, and the resultant saccharidies were fermented to give ethanol in succession. White polished rice flour was fermented at 30 degrees C during the period of 7 to 10 days to give ethanol. Semi-continuous ethanol fermentation was carried out using corn starch and cassava starch. Batch ethanol fermentation was also carried out using cassava or sweet potato. Sweet potato was fermented using Rhizopus gluco-amylase. 11 references.

  2. Gelatinization kinetic of waxy starches under pressure according to ionic strength

    Science.gov (United States)

    Simonin, Hélène; Guyon, Claire; de Lamballerie, Marie; Lebail, Alain

    2010-12-01

    High pressure is a potential technology for the texturization of food products at ambient temperature. In this area, waxy starches are particularly interesting because they gelatinize quickly under sufficient pressure. However, gelatinization may be influenced by other components in the food matrix. Here, we investigate the influence of increasing ionic strength on gelatinization rate and kinetics at 500 MPa for waxy corn and waxy rice starches. We show that increasing ionic strength strongly retards and inhibits starch gelatinization under pressure and leads to heterogeneous gels with remnant granules.

  3. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    the wild-type cultivar. These exciting results may provide a potential clean technological approach to starch modification by in-planta bioengineering and avoid environmental hazards resulting from post-harvest treatments by chemical modifications. The third study was to investigate the effects...... involved in this process, has enabled the genetic modification f crops in a rational manner to produce novel designer starches with improved functionality. The hypothesis of the present study is that the hyper-phosphorylation of cereal endosperm starch makes it easily accessible and degradable...... by the amylolytic enzymes while the amylose-only endosperm starch exhibits high resistance to degradation and hence less available for degradation. With the aim to investigate the hypothesis, starch molecular structures were modulated with the above mentioned modifications and were studied for the effects...

  4. A comparison between corn and grain sorghum fermentation rates, Distillers Dried Grains with Solubles composition, and lipid profiles.

    Science.gov (United States)

    Johnston, David J; Moreau, Robert A

    2017-02-01

    The aim of this study was to determine if the compositional difference between grain sorghum and corn impact ethanol yields and coproduct value when grain sorghum is incorporated into existing corn ethanol facilities. Fermentation properties of corn and grain sorghum were compared utilizing two fermentation systems (conventional thermal starch liquefaction and native starch hydrolysis). Fermentation results indicated that protease addition influenced the fermentation rate and yield for grain sorghum, improving yields by 1-2% over non-protease treated fermentations. Distillers Dried Grains with Solubles produced from sorghum had a statistically significant higher yields and significantly higher protein content relative to corn. Lipid analysis of the Distillers Dried Grains with Solubles showed statistically significant differences between corn and sorghum in triacylglycerol, diacylglycerol and free fatty acid levels.

  5. Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows.

    Science.gov (United States)

    Peyrat, J; Baumont, R; Le Morvan, A; Nozière, P

    2016-01-01

    The aim of this study was to evaluate the effect of stage of maturity at harvest on extent of starch, neutral detergent fiber (NDF), and protein digestion, and rumen fermentation in dry cows fed whole-plant corn silage from different hybrids. Four nonlactating Holstein cows cannulated at the rumen and proximal duodenum were fed 4 corn silages differing in hybrid (flint vs. flint-dent) and maturity stage (early vs. late) in a 4 × 4 Latin square design. From early to late maturity, starch content increased (from 234.5 to 348.5 g/kg), whereas total-tract (99.7 to 94.5%) and ruminal starch digestibility (91.3 to 86.5%) decreased significantly. The decrease in ruminal starch digestibility with increasing maturity was similar between hybrids. No effects were found of maturity, hybrid, or maturity × hybrid interaction on total-tract NDF digestibility, ruminal NDF digestibility, true digestibility of N and organic matter in the rumen, or microbial synthesis. Harvesting at later maturity led to increased ruminal ammonia, total volatile fatty acid concentrations, and acetate/propionate ratio but not pH. This study concludes that delaying date of harvest modifies the proportions of digestible starch and NDF supplied to cattle. Adjusting date of corn harvest to modulate amount of rumen-digested starch could be used as a strategy to control nutrient delivery to ruminants.

  6. Studies on the Property of Starch Sodium Dodecenylsuccinate%十二烯基琥珀酸淀粉酯性质的研究

    Institute of Scientific and Technical Information of China (English)

    陈煦; 张燕萍; 吴嘉根

    2001-01-01

    The paste property of starch sodium dodecenylsuccinate and cornstarch was studied with Haake rotoviscometer and Brabender viscometer. The result showed that the thickening ability of starch sodium dodecenylsuccinate was better than that of corn starch. The emulsion stability of starch sodium dodecenylsuccinate was invcstigatcd by the mcthod of wcighting, comparcd with that of gum arabic and corn starch. The result indicated that the emulsion stability of starch sodium dodecenylsuccinate was better than that of corn starch and equal to that of gum arabic. The starch sodium dodecenylsuccinate and dextrin adding gum arabic was sued as the wall material in microencapsulation examination by the method of spray-drying. The result showed that the microencapsulation efficiency using starch sodium dodecenylsuccinate was better than that using dextrin adding gum arabic.%十二烯基酯化淀粉是一种优良的增稠和乳化剂.作者研究了其力学性质和乳化稳定性,并进行了微胶囊包埋实验,实验证明其包埋效果比传统的壁材更好.

  7. Production of Cyclodextrins by CGTase from Bacillus clausii Using Different Starches as Substrates

    Science.gov (United States)

    Alves-Prado, H. F.; Carneiro, A. A. J.; Pavezzi, F. C.; Gomes, E.; Boscolo, M.; Franco, C. M. L.; da Silva, R.

    Cyclodextrins (CDs) are cyclic oligasaccharides composed by d-glucose monomers joined by α-1,4-d glicosidic linkages. The main types of CDs are α-, β- and γ-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches (commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a β-CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0:0.89:0.11 for α/β/γ. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.

  8. Intestinal transport and fermentation of resistant starch evaluated by the hydrogen breath test

    DEFF Research Database (Denmark)

    Olesen, M; Rumessen, J J; Gudmand-Høyer, E

    1994-01-01

    To study fermentability of different samples of resistant starch (RS), compared to one another and to lactulose, and to study the effect on gastric emptying of addition of RS to test meal. Finally to study if adaptation to RS results in a measurable change in fermentation pattern, (H2/CH4 product...... production). Sources of RS: Raw potato starch (RPS), 58% RS; corn flakes (CF), 5% RS; hylon VII high amylomaize starch, extrusion cooked and cooled (HAS) 30% RS; highly retrograded hylon VII high amylomaize starch (HRA) 89% RS.......To study fermentability of different samples of resistant starch (RS), compared to one another and to lactulose, and to study the effect on gastric emptying of addition of RS to test meal. Finally to study if adaptation to RS results in a measurable change in fermentation pattern, (H2/CH4...

  9. Vacuum stripping of ethanol during high solids fermentation of corn.

    Science.gov (United States)

    Shihadeh, Jameel K; Huang, Haibo; Rausch, Kent D; Tumbleson, Mike E; Singh, Vijay

    2014-05-01

    In corn-ethanol industry, yeast stress inducing glucose concentrations produced during liquefaction and subsequent high ethanol concentrations produced during fermentation restrict slurry solids to 32 % w/w. These limits were circumvented by combining two novel technologies: (1) granular starch hydrolyzing enzyme (GSHE) to break down starch simultaneously with fermentation and (2) vacuum stripping to remove ethanol. A vacuum stripping system was constructed and applied to fermentations at 30, 40, and 45 % solids. As solids increased from 30 to 40 %, ethanol yield decreased from 0.35 to 0.29 L/kg. Ethanol yield from 45 % solids was only 0.18 L/kg. An improvement was conducted by increasing enzyme dose from 0.25 to 0.75 g/g corn and reducing yeast inoculum by half. After improvement, ethanol yield from 40 % solids vacuum treatment increased to 0.36 L/kg, comparable to ethanol yield from 30 % solids (control).

  10. Enzymatic corn wet milling: engineering process and cost model

    Directory of Open Access Journals (Sweden)

    McAloon Andrew J

    2009-01-01

    Full Text Available Abstract Background Enzymatic corn wet milling (E-milling is a process derived from conventional wet milling for the recovery and purification of starch and co-products using proteases to eliminate the need for sulfites and decrease the steeping time. In 2006, the total starch production in USA by conventional wet milling equaled 23 billion kilograms, including modified starches and starches used for sweeteners and ethanol production 1. Process engineering and cost models for an E-milling process have been developed for a processing plant with a capacity of 2.54 million kg of corn per day (100,000 bu/day. These models are based on the previously published models for a traditional wet milling plant with the same capacity. The E-milling process includes grain cleaning, pretreatment, enzymatic treatment, germ separation and recovery, fiber separation and recovery, gluten separation and recovery and starch separation. Information for the development of the conventional models was obtained from a variety of technical sources including commercial wet milling companies, industry experts and equipment suppliers. Additional information for the present models was obtained from our own experience with the development of the E-milling process and trials in the laboratory and at the pilot plant scale. The models were developed using process and cost simulation software (SuperPro Designer® and include processing information such as composition and flow rates of the various process streams, descriptions of the various unit operations and detailed breakdowns of the operating and capital cost of the facility. Results Based on the information from the model, we can estimate the cost of production per kilogram of starch using the input prices for corn, enzyme and other wet milling co-products. The work presented here describes the E-milling process and compares the process, the operation and costs with the conventional process. Conclusion The E-milling process

  11. A novel process for direct production of acetone-butanol-ethanol from native starches using granular starch hydrolyzing enzyme by Clostridium saccharoperbutylacetonicum N1-4.

    Science.gov (United States)

    Thang, Vu Hong; Kobayashi, Genta

    2014-02-01

    In this work, a new approach for acetone-butanol-ethanol (ABE) production has been proposed. Direct fermentation of native starches (uncooked process) was investigated by using granular starch hydrolyzing enzyme (GSHE) and Clostridium saccharoperbutylacetonicum N1-4. Even the process was carried out under suboptimal condition for activity of GSHE, the production of ABE was similar with that observed in conventional process or cooked process in terms of final solvent concentration (21.3 ± 0.4 to 22.4 ± 0.4 g/L), butanol concentration (17.5 ± 0.4 to 17.8 ± 0.3 g/L) and butanol yield (0.33 to 0.37 g/g). The production of solvents was significantly dependent on the source of starches. Among investigated starches, corn starch was more susceptible to GSHE while cassava starch was the most resistant to this enzyme. Fermentation using native corn starch resulted in the solvent productivity of 0.47 g/L h, which was about 15 % higher than that achieved in cooked process. On the contrary, uncooked process using cassava and wheat starch resulted in the solvent productivity of 0.30 and 0.37 g/L h, which were respectively about 30 % lower than those obtained in cooked process. No contamination was observed during all trials even fermentation media were prepared without sterilization. During the fermentation using native starches, no formation of foam is observed. This uncooked process does not require cooking starchy material; therefore, the thermal energy consumption for solvent production would remarkably be reduced in comparison with cooked process.

  12. Effect of the corn grain storage method on saccharification and ethanol fermentation field

    Directory of Open Access Journals (Sweden)

    Jacek Nowak

    2008-03-01

    Full Text Available The chemical conservation was chosen in the study as the method for preserving fresh corn grain for distilleries. Five types of preserved corn samples were prepared. The control (with no additives and four preserved with the preparation, based on formic and propionic acids (KemiSile 2000 Plus, at different levels. All the samples were stored for two months. Ethanol fermentations of low-temperature-cooked and pressure-cooked corn starch were carried out using commercial distillery yeast. The yeast strain, after starch hydrolysis with two enzymes, was able to produce 86-93% of theoretical ethanol yield from low-temperature-cooked corn. The ethanol production was almost equal to that produced from pressure-cooked corn starch (121°C, which was 87-94% of theoretical ethanol yield. The quality of distillates was also investigated. The most common by-products found were: acetaldehyde, ethyl acetate, propanol, isobutanol and 3-metylo-1-butanol. There were no important differences of spirits chemical composition between low-temperature- -cooking and pressure-cooking method as well as between the kind of corn sample.

  13. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    Science.gov (United States)

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  14. Energy and greenhouse gas assessment of European glucose production from corn – a multiple allocation approach for a key ingredient of the bio-based economy

    NARCIS (Netherlands)

    Tsiropoulos, I.; Cok, B.; Patel, M.K.

    2013-01-01

    Bio-based products are considered to be a sustainable alternative to conventional fossil fuel-based materials. This paper studies the production of glucose from corn starch, an important feedstock for a wide range of bio-based products (e.g. ethanol, bio-based monomers), in a European corn wet mill

  15. Fundamental Study on the Impact of Gluten-Free Starches on the Quality of Gluten-Free Model Breads

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2016-04-01

    Full Text Available Starch is widely used as an ingredient and significantly contributes to texture, appearance, and overall acceptability of cereal based foods, playing an important role due to its ability to form a matrix, entrapping air bubbles. A detailed characterisation of five gluten-free starches (corn, wheat, rice, tapioca, potato was performed in this study. In addition, the influence of these starches, with different compositional and morphological properties, was evaluated on a simple gluten-free model bread system. The morphological characterisation, evaluated using scanning electron microscopy, revealed some similarities among the starches, which could be linked to the baking performance of the breads. Moreover, the lipid content, though representing one of the minor components in starch, was found to have an influence on pasting, bread making, and staling. Quality differences in cereal root and tuber starch based breads were observed. However, under the baking conditions used, gluten-free rendered wheat starch performed best, followed by potato starch, in terms of loaf volume and cell structure. Tapioca starch and rice starch based breads were not further analysed, due to an inferior baking performance. This is the first study to evaluate gluten-free starch on a simple model bread system.

  16. Fundamental Study on the Impact of Gluten-Free Starches on the Quality of Gluten-Free Model Breads.

    Science.gov (United States)

    Horstmann, Stefan W; Belz, Markus C E; Heitmann, Mareile; Zannini, Emanuele; Arendt, Elke K

    2016-04-21

    Starch is widely used as an ingredient and significantly contributes to texture, appearance, and overall acceptability of cereal based foods, playing an important role due to its ability to form a matrix, entrapping air bubbles. A detailed characterisation of five gluten-free starches (corn, wheat, rice, tapioca, potato) was performed in this study. In addition, the influence of these starches, with different compositional and morphological properties, was evaluated on a simple gluten-free model bread system. The morphological characterisation, evaluated using scanning electron microscopy, revealed some similarities among the starches, which could be linked to the baking performance of the breads. Moreover, the lipid content, though representing one of the minor components in starch, was found to have an influence on pasting, bread making, and staling. Quality differences in cereal root and tuber starch based breads were observed. However, under the baking conditions used, gluten-free rendered wheat starch performed best, followed by potato starch, in terms of loaf volume and cell structure. Tapioca starch and rice starch based breads were not further analysed, due to an inferior baking performance. This is the first study to evaluate gluten-free starch on a simple model bread system.

  17. Phenolic acids in some cereal grains and their inhibitory effect on starch liquefaction and saccharification.

    Science.gov (United States)

    Kandil, Amin; Li, Jihong; Vasanthan, Thava; Bressler, David C

    2012-08-29

    The presence of phenolic acids in cereal grain is thought to influence starch hydrolysis during liquefaction and saccharification of grain flours in the bioethanol industry. As a basis for remodeling starch hydrolysis systems and understanding inhibition mechanisms, the composition and concentration of phenolic acids in whole grain flours of triticale, wheat, barley, and corn were analyzed by high-performance liquid chromatography. The total phenolic acid contents (sum of nine phenolic acids) in the four grains were 1.14, 1.70, 0.90, and 1.25 mg/g, respectively, with more than 90% found in the bound form. Ferulic, coumaric, and protocatechuic acids were the major phenolic acids in triticale and wheat. Gallic acid was also rich in triticale. Ferulic, coumaric, hydroxybenzoic, and gallic acids were predominant in barley. In corn, ferulic, coumaric, gallic, and syringic acids were abundant. On the basis of these profiles, pure phenolic acids were added individually and collectively to isolated starches at amounts either equivalent to or 3 times those in the whole grains for hydrolysis. The degree of starch hydrolysis with α-amylase and amyloglucosidase decreased up to 8% when individual phenolic acids were present in cooked starch slurry. The decreases were more pronounced when phenolic acids were added collectively (4-5% with α-amylase and 9-13% with sequential α-amylase and amyloglucosidase). The study of a phenolic acid-starch-enzyme model system indicated that the interactions of phenolic acid-enzyme and phenolic acid-starch significantly contributed to the inhibitory effect of starch hydrolysis. Heating facilitated the interactions. Phenolic acids thus play a significant role in the resistance of starch to enzyme and/or the loss of enzyme activity during starch hydrolysis.

  18. INCREASING OF FALL RYE CORN FEEDING VALUE BY HYDROBARATHERNAL TREATMENT

    OpenAIRE

    2015-01-01

    The results of production experience on hydrobarathernal treatment fall rye grain feeding are presented in the article. It is determined that ater high temperature and pressure impact on fall rye grain in aqueous media dextrinization of starch specifically amylopectin occurs to monosugar in the form of glucose, therewith, sugar content increases more than in twice in comparison with parent grain. It is revealed that replacement of milled corn grain mixture to fall rye grain hydrolyzate in rat...

  19. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  20. Changes in Activities of Key Enzymes for Starch Synthesis and Glutamine Synthetase in Grains of Progenies from a Rice Cross During Grain Filling

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-guang; LIU Hai-ying; JIN Zheng-xun; LIU Hong-liang; HUANG Xing; XU Mei-lan; ZHANG Feng-zhuan

    2010-01-01

    The progenies differed in amylose and protein contents in grains, which derived from a rice cross, Dongnong 423×Toukei 180, were used to study changes in the activities of ADP-glucose pyrophosphorylase (AGPP), soluble starch synthetase (SSS), starch branching enzyme (SBE) and glutamine synthetase (GS) in rice grains during grain filling. The activities of AGPP, SSS and SBE gradually increased and then declined as a single-peak curve with the process of grain filling in the progenies with high and low amylose contents in grains. The progenies with high amylose content peaked earlier in the AGPP, SSS and SBE activities and had higher AGPP, SSS and SBE activities at the early grain filling stage than those with low amylose content. The GS activity peaked earlier and was higher at the late stage of grain filling in the progenies with high protein content than in those with low protein content. It is suggested that the activities of key enzymes for starch synthesis and glutamine synthetase could be changed in oriented breeding for amylose and protein contents in grains.

  1. Physico-Chemical Characterization of Brew during the Brewing Corn Malt in the Production of Maize Beer in Congo

    OpenAIRE

    P. Diakabana; M. Mvoula-Tsiéri; J. Dhellot; S.C. Kobawila; D. Louembé

    2013-01-01

    The study consists in the production of a traditional beer from maize in the Congo. The traditional method of brewing corn malt has three main stages: malting corn, brewing corn malt and fermentation. During the brewing corn malt, endogenous amylase activity is destroyed during the stiffening of the starch to about 80°C. A pre-cooking of the mash is necessitated to promote amylolyse at 50°C with an exogenous enzyme. The use of a preparation of α-amylase can liquefy the mash and produce a swee...<