WorldWideScience

Sample records for high-altitude spruce forest

  1. Composition and Elevation of Spruce Forests Affect Susceptibility to Bark Beetle Attacks: Implications for Forest Management

    Directory of Open Access Journals (Sweden)

    Massimo Faccoli

    2014-01-01

    Full Text Available The spruce bark beetle, Ips typographus (L. (Coleoptera: Curculionidae, Scolytinae, is one of the most destructive insects infesting spruce forests in Europe. Data concerning infestations of I. typographus occurring over the last 19 years (1994–2012 on the Southern Alps were analyzed in seven spruce forest types: (1 pure spruce plantations; (2 pure spruce reforestations; (3 pure spruce mountain forests; (4 pure spruce alpine forests; (5 spruce-conifer mixed forests; (6 spruce-broadleaf mixed forests; and (7 spruce-conifer-broadleaf mixed forests. The collected data included the amount of I. typographus damage and the location and composition of the infested forests. The results indicate that different forest types are differently susceptible to I. typographus. Plantations, reforestations and mountain spruce forests show mean damage and mean number of infestations higher than other forest types. Within pure spruce forests, alpine forests growing at high elevations (>1300 m suffer low damage. Furthermore, the mean number of infestation spots recorded annually in the different spruce forest types is negatively correlated with a Naturality Index value. The results suggest that forest composition and elevation are the main factors driving the risk of I. typographus damage. A new management strategy for some spruce forest types is needed, with a progressive reduction of pure spruce forests at low altitude and an increase of broadleaf composition.

  2. Phytosociological studies of the forests with sessile oak and Norway spruce from South-Eastern Transylvania

    Directory of Open Access Journals (Sweden)

    Adrian Indreica

    2011-02-01

    Full Text Available The forests with sessile oak (Quercus petraea and Norway spruce (Picea abies from south-eastern Transylvania represent a peculiar type of phytocenoses, rather unusual for the present-day vegetation of Romania’s territory. Aim of the study is to provide a detailed description of the vegetation and to identify the phytosociological and typological units to which it could belong. Beside this, stand structure and regeneration status of the main tree species are illustrated. The studied area is located around Carpathian intermountain depressions Braşov and Ciuc, where vegetation had a peculiar history and today sessile oak forests on high altitude exists, interfering with spruce forests. The hypothesis of the process naturalness is supported by vegetation history in the area, climate, stand structure and peculiarities of herb layer composition (the mixture of relic of both mountain-boreal origin and south-European origin, like Vaccinium vitis-idaea, Pyrola rotundifolia and respectively Potentilla micrantha, Lathyrus venetus respectively. Sintaxonomically, studied phytocenoses with sessile oak and spruce belong mainly to acidophilus oak forests (Luzulo luzuloidis-Quercetum petraeae, but some of them resemble oak-hornbeam forests (Carici pilosae-Carpinetum, indicating a more recent change in stand structure and suggesting that not the soil, but the climate is the driving force of succession. Regeneration of sessile oak is at least satisfactory, but the expansion of spruce in such stands could seriously restrict the survival of sessile oak. A new typological unit will be appropriate,for a better management of sessile oak forests with spruce admixture.

  3. Phytosociological studies of the forests with sessile oak and Norway spruce from South-Eastern Transylvania

    Directory of Open Access Journals (Sweden)

    Adrian Indreica

    2011-06-01

    Full Text Available The forests with sessile oak (Quercus petraea and Norway spruce (Picea abies from south-eastern Transylvania represent a peculiar type of phytocenoses, rather unusual for the present-day vegetation of Romania’s territory. Aim of the study is to provide a detailed description of the vegetation and to identify the phytosociological and typological units to which it could belong. Beside this, stand structure and regeneration status of the main tree species are illustrated. The studied area is located around Carpathian intermountain depressions Brasov and Ciuc, where vegetation had a peculiar history and today sessile oak forests on high altitude exists, interfering with spruce forests. The hypothesis of the process naturalness is supported by vegetation history in the area, climate, stand structure and peculiarities of herb layer composition (the mixture of relic of both mountain-boreal origin and south-European origin, like Vaccinium vitis-idaea, Pyrola rotundifolia and respectively Potentilla micrantha, Lathyrus venetus respectively. Sintaxonomically, studied phytocenoses with sessile oak and spruce belong mainly to acidophilus oak forests (Luzulo luzuloidis-Quercetum petraeae, but some of them resemble oak-hornbeam forests (Carici pilosae-Carpinetum, indicating a more recent change in stand structure and suggesting that not the soil, but the climate is the driving force of succession. Regeneration of sessile oak is at least satisfactory, but the expansion of spruce in such stands could seriously restrict the survival of sessile oak. A new typological unit will be appropriate, for a better management of sessile oak forests with spruce admixture.

  4. Concentrations of dissolved organic carbon along an altitudinal gradient from Norway spruce forest to the mountain birch/alpine ecotone in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, N.; Roesberg, I.; Aamlid, D.

    2005-07-01

    Concentrations of dissolved organic carbon (DOC) in soil water from the base of the soil organic layer were determined at three forest plots along an altitudinal gradient in eastern Norway. The lowest plot, at 830 m above sea level (a.s.l.), was in Norway spruce forest and there were additional plots at the ecotone between Norway spruce and mountain birch at 925 m a.s.l. and at the forest line (1000 m a.s.l.). DOC concentrations in soil water did not decrease uniformly with altitude although tree biomass, above-ground litterfall and the soil C pool all did so. Significant correlations between DOC and (H{sup +}) or electrical conductivity may reflect the contribution of DOC to solution acidity and the anionic charge, respectively. If mean temperature during the growing season increases, tree growth at any given altitude will tend to increase and the spruce-birch ecotone may move to a higher altitude than at present. Increased C inputs as litter to the soil might then lead to increasing DOC concentrations and fluxes in surface waters. (orig.)

  5. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  6. The vegetation of spruce forests in the Pinega State Reserve

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Popov

    2016-08-01

    Full Text Available The Pinega Natural State Reserve is located in the Arkhangelsk Province in the northern taiga subzone. Spruce forests represent the dominant vegetation formation of its territory. The vegetation of this forest is classified, based on 192 phytosociological descriptions. It reveals 12 associations, which represent 7 groups of associations. Detailed characteristics of these syntaxa, including analysis of their biodiversity, are provided. The revealed syntaxa differ both in species composition and environmental conditions: moisture, nutrition, nitrogen availability and acidity. Most poor conditions in terms of mineral nutrition occupy sphagnous spruce forests and bilberry-dominated spruce forests, while under the richest conditions varioherbaceous, humidoherbaceous and nemoral-herbaceous spruce forests occur. The Pinega Reserve is the only locality, where the Piceetum rubo saxatilis-vacciniosum association occurs in the northern taiga subzone.

  7. PCDD/F and PCB in spruce forests of the Alps

    Energy Technology Data Exchange (ETDEWEB)

    Offenthaler, I., E-mail: ivo.offenthaler@umweltbundesamt.a [Austrian Environment Agency, Spittelauer Laende 5, 1090 Vienna (Austria); Bassan, R. [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Belis, C. [Regional Agency for Environmental Protection of Lombardia (Italy); Jakobi, G.; Kirchner, M. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Kraeuchi, N. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Moche, W. [Austrian Environment Agency, Spittelauer Laende 5, 1090 Vienna (Austria); Schramm, K.-W. [Helmholtz Zentrum Muenchen (German Research Centre for Environmental Health) (Germany); Sedivy, I. [WSL-Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Simoncic, P. [Slovenian Forestry Institute (Slovenia); Uhl, M.; Weiss, P. [Austrian Environment Agency, Spittelauer Laende 5, 1090 Vienna (Austria)

    2009-12-15

    PCDD/F and PCB concentrations in remote mountainous spruce stands of the Central European Alps show strong geographic variation. Independent of the matrix (0.5 year old needles, humus or mineral soil), the highest pollutant levels were always found at the lateral zones of the mountain range. High levels coincided with strong precipitation, particularly along the northern margin of the study region. The most volatile PCB congener propagated farther into the colder, drier central Alps than the heavier species. Matrices with different accumulation history (needles and humus) repeatedly reflected different spatial immission patterns. Consistent with its much longer exposure, pollutant levels in humus exceeded those of needles by up to two orders of magnitude. Needle contamination varied with altitude but the vertical trends were highly variable between transsects and changed between years, too. - Dioxin-like pollution of forests in the Alps shows strong geographic variation.

  8. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and

  9. Densities of breeding birds and changes in vegetation in an alaskan boreal forest following a massive disturbance by spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.; Ruthrauff, D.R.

    2001-01-01

    We examined bird and plant communities among forest stands with different levels of spruce mortality following a large outbreak of spruce beetles (Dendroctonus rufipennis (Kirby)) in the Copper River Basin, Alaska. Spruce beetles avoided stands with black spruce (Picea mariana) and selectively killed larger diameter white spruce (Picea glauca), thereby altering forest structure and increasing the dominance of black spruce in the region. Alders (Alnus sp.) and crowberry (Empetrum nigrum) were more abundant in areas with heavy spruce mortality, possibly a response to the death of overstory spruce. Grasses and herbaceous plants did not proliferate as has been recorded following outbreaks in more coastal Alaskan forests. Two species closely tied to coniferous habitats, the tree-nesting Ruby-crowned Kinglet (Regulus calendula) and the red squirrel (Tamiasciurus hudsonicus), a major nest predator, were less abundant in forest stands with high spruce mortality than in low-mortality stands. Understory-nesting birds as a group were more abundant in forest stands with high levels of spruce mortality, although the response of individual bird species to tree mortality was variable. Birds breeding in stands with high spruce mortality likely benefited reproductively from lower squirrel densities and a greater abundance of shrubs to conceal nests from predators.

  10. Organic halogens in spruce forest throughfall

    DEFF Research Database (Denmark)

    Öberg, G.; Johansen, C.; Grøn, C.

    1998-01-01

    . No relationship between the position of the collectors and the forest edge or dominating wind-direction was found, suggesting that dry deposition was not a major source. The concentration of organic halogens was related to that of organic carbon and decreased from the tree-trunk and outwards. In addition......, the concentrations were higher during the growing season than during the dormant season. This indicates that the major part of the organic carbon and organic halogens in spruce forest throughfall originates from canopy leachates or other internal sources. (C) 1998 Elsevier Science Ltd.......Deposition of dissolved organic halogens by throughfall was determined in a small spruce forest site in Denmark (56 degrees 28'N, 8 degrees 24'E). The mean annual deposition of dissolved organic halogens was 377 g ha(-1)yr(-1), and larger than the general deposition by precipitation...

  11. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming.

    Science.gov (United States)

    Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume

    2016-02-01

    An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. © 2015 Her Majesty the Queen in Right of Canada. Reproduced with

  12. Using maximum entropy modeling to identify and prioritize red spruce forest habitat in West Virginia

    Science.gov (United States)

    Nathan R. Beane; James S. Rentch; Thomas M. Schuler

    2013-01-01

    Red spruce forests in West Virginia are found in island-like distributions at high elevations and provide essential habitat for the endangered Cheat Mountain salamander and the recently delisted Virginia northern flying squirrel. Therefore, it is important to identify restoration priorities of red spruce forests. Maximum entropy modeling was used to identify areas of...

  13. The complete nitrogen cycle of an N-saturated spruce forest ecosystem.

    Science.gov (United States)

    Kreutzer, K; Butterbach-Bahl, K; Rennenberg, H; Papen, H

    2009-09-01

    Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.

  14. Structure and productivity of mixed spruce and fir forests on Mt. Kopaonik

    Directory of Open Access Journals (Sweden)

    Šljukić Biljana

    2017-01-01

    Full Text Available The subject of this research are mixed forests of spruce and fir in the area of NP Kopaonik, which belong to the community of spruce and fir - Abieti-Piceetum abietis Mišić et Popović, 1978. The basis for the study of the structural development and production potential of these forests are data from 12 sample plots, with the average size of 0.18 ha. In terms of coenoecological affiliation all the sample plots belong to the group of ecological units - forests of spruce and fir (Abieti-Piceetum abietis, Mišić et Popović, 1978 on acid brown and brown podzolic soils, which are differentiated into 5 ecological units: Abieti-Piceetum abietis oxalidetosum on brown podzolic soil, Abieti-Piceetum abietis oxalidetosum on acid brown soil, Abieti-Piceetum abietis vaccinietosum on brown podzolic soil, Abieti-Piceetum abietis typicum on brown podzolic soil and Abieti-Piceetum abietis Dr.ymetosum on brown pozolic soil. In structural terms, these forests are characterized by very diverse structural forms, ranging from the structure of even-aged stands to typical multi-storey, unevenaged-aged stands. The form of cumulative curves of tree distribution is in most cases determined by spruce as the dominant species. At the same time, thin and medium-thick trees dominate, while the presence of stems with large dimensions is minimal. The average volume of these forestse is 777 m3•ha-1, with a mixture ratio of 0.7: 0.3 in favor of spruce. The average value of the current volume increment is 14 m3•ha-1, with a 68% share of spruce and 32% of fir. The percentage of increment ranges from 1.6% to 2.5% in all sample plots and is somewhat higher for fir. The site potential, stand characteristics and relations among the tree species have resulted in structural complexity, high productivity and ecological stability of these forests. Therefore, future forest management should avoid radical measures and procedures that would violate the established relationships and

  15. Biological and Energy Productivity of Natural Spruce Forests in the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    R. D. Vasilishyn

    2014-10-01

    Full Text Available The modern practice of forestry production in Ukraine, which is in the process of implementing the conceptual changes in forest management and harmonization of its basic approaches to the basics of sustainable development, requires a significant expansion of the current regulatory and informational tools used to assess the ecological functions of forests. For this purpose, during the 2012–2014, as part of an international project GESAPU, models and tables of bioproductivity for forest tree species in Ukraine were completed. The article presents the results of modeling the dynamics of the conversion coefficients for the main components of phytomass of modal natural spruce forests of the Carpathian region of Ukraine based on information from 32 plots in the database of «Forest Phytomass of Ukraine». According to the state forest accounting of Ukraine as of January 1, 2011, the spruce forests in the Ukrainian Carpathians cover an area of 426.2 thousand ha, 45 % of which are spruce of natural origin. To evaluate the productivity of modal dynamics of pure and mixed spruce stands, the study developed models of the stock and overall productivity, derived by Bertalanffy growth function. On the basis of these models, normative reference tables of biological productivity of natural modal spruce forests of the Ukrainian Carpathians were developed. To successfully meet the challenges of evaluating the energy possibilities of forestry of Ukraine, the study used tables of energetic productivity of investigated stands. Built on the basis of the tables of bioproductivity, they reflect the dynamic processes of energy storage in the phytomass components and can be used in forest management to predict volumes of energetic woods.

  16. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva

    2015-10-01

    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  17. Lessons from native spruce forests in Alaska: managing Sitka spruce plantations worldwide to benefit biodiversity and ecosystem services

    Science.gov (United States)

    Robert L. Deal; Paul Hennon; Richard O' Hanlon; David D' Amore

    2014-01-01

    There is increasing interest worldwide in managing forests to maintain or improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An important goal of forest management is to increase stand diversity, provide wildlife habitat and improve forest species diversity. We synthesize results from natural spruce forests in...

  18. Cytophotometric differentiation of high elevation spruces: physiological and ecological implications

    International Nuclear Information System (INIS)

    Berlyn, G.P.; Royte, J.L.; Anoruo, A.O.

    1990-01-01

    Red and black spruce and their hybrids can be determined by morphological indices; however, the criteria are somewhat subjective and increasingly difficult to use at higher elevations. Although the chromosome number is identical (2n = 24), red spruce has twice as much nuclear DNA (48 pg) than black spruce (24 pg) and thus the species and their hybrids can also be separated by cytophotometry. This is relevant to spruce decline studies because black spruce is much more resistant to high elevation environmental stresses, both natural and anthropogenic. It also has implications for the effect of climatic changes on the composition of high elevation spruce-fir forests because red spruce can outcompete black spruce under more mesic conditions. Four elevation transects sampling spruce on the east and west sides of Mount Washington (New Hampshire) and Camels Hump (Vermont) and a single transect on the southwest side of Whiteface Mountain (New York) were made to investigate the degree of hybridization and introgression between these two species. A positive correlation was found between increased elevation and increased black spruce genes on Mount Washington and Camels Hump. Pure black spruce was found on Mount Washington from 1356 m to 1582 m. No pure black or red spruce was found on Camels Hump although the proportion of red spruce alleles was significantly greater on Camels Hump. All trees sampled at all elevations on Whiteface Mountain were pure red spruce. Thus the proportion of black spruce alleles in high elevation spruce populations decreases from east to west. This closely parallels the increase in spruce decline which increases from east to west. (author)

  19. Controls on moss evaporation in a boreal black spruce forest

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    [1] Mosses are an important component of the boreal forest, but little is known about their contribution to ecosystem carbon, water, and energy exchange. We studied the role of mosses in boreal forest evapotranspiration by conducting two experiments in a black spruce forest in Fairbanks, Alaska.

  20. Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?

    Science.gov (United States)

    Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz

    2013-01-01

    Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

  1. Ozone flux over a Norway spruce forest and correlation with net ecosystem production

    International Nuclear Information System (INIS)

    Zapletal, Milos; Cudlin, Pavel; Chroust, Petr; Urban, Otmar; Pokorny, Radek; Edwards-Jonasova, Magda; Czerny, Radek; Janous, Dalibor; Taufarova, Klara; Vecera, Zbynek; Mikuska, Pavel; Paoletti, Elena

    2011-01-01

    Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s -1 and 0.36 cm s -1 by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s -1 . In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O 3 concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation. - Highlights: → We estimate ozone deposition flux to a Norway spruce forest using the gradient method and model. → The mean stomatal uptake of ozone is approximately 47% of the total deposition. → We measure net ecosystem production (NEP) using Eddy Covariance. → We test whether elevated total deposition and stomatal uptake of O 3 imply a reduction of NEP. → Deposition and stomatal uptake of O 3 decrease NEP, especially by high intensities of solar radiation. - Net ecosystem production of a Norway spruce forest decreases with increasing deposition and stomatal uptake of ozone.

  2. Formation of chloroform in spruce forest soil - results from laboratory incubation studies

    DEFF Research Database (Denmark)

    Haselmann, K.F.; Laturnus, F.; Svensmark, B.

    2000-01-01

    The release of chloroform, 1,1,1-trichloroethane, tetrachloromethane, trichloroethene and tetrachloroethene from an organic rich spruce forest soil was studied in laboratory incubation experiments by dynamic headspace analysis, thermodesorption and gas chromatography. Performance parameters...... are presented for the dynamic headspace system. For spruce forest soil, the results showed a significant increase in chloroform concentration in the headspace under aerobic conditions over a period of seven days, whereas the concentration of the other compounds remained fairly constant. A biogenic formation...

  3. TALL HERB SPRUCE FORESTS AS CLIMAX COMMUNITIES ON LOWLAND SWAMPS OF BRYANSK POLESIE

    Directory of Open Access Journals (Sweden)

    O. I. Evstigneev

    2017-09-01

    Full Text Available Nettle grey alder forests are a dominant forest type on lowland swamps in the Bryansk Polesie. They are formed as a result of repeated cuttings in the place of tall herb spruce forests. Tall herb spruce forests are very rare communities in the vegetation cover in this area due to clear cutting, melioration and peat extraction. An assessment of the succession status of tall herb spruce forests and nettle grey alder forests was carried out in this paper. The criteria of climax state and succession state of communities, developed for Eastern European forests, were used. These criteria are based on the degree of intensity of the following signs in the community: 1 the completeness of species composition of tree synusia; 2 the ontogenetic structure of tree species cenopopulation; 3 the gap-mosaic stand structure; 4 the diversity of microsites in soil cover; 5 the completeness of species composition and ecological-coenotic diversity of vascular species. We showed that tall herb spruce forest, as opposed to black alder forest, is close to communities of the climax type. This is evidenced by the following features of cenosis: firstly, all tree species in the area that covers the Bryansk Polesie and that are able to grow on lowland swamps are represented in the spruce forest (Alnus glutinosa, Betula pubescens, Fraxinus excelsior, Padus avium, Picea abies, Salix pentandra, Sorbus aucuparia, Ulmus glabra. Secondly, a steady turnover of generations is carried out in the cenopopulations of main edificators (Picea abies and Alnus glutinosa. This is evidenced by the complete and left-sided structure of their ontogenetic spectrum. Thirdly, a system of asynchronously developing gaps (parcels, which are formed on the site of old tree falls, is formed in the community. This ensures the continuous renewal of spruce and alder populations and creates conditions for the regeneration of other tree species. Fourthly, the structure of biogenic microsites has been formed

  4. Natural regeneration ecology of a secondary altimontane spruce forests at Jelendol

    International Nuclear Information System (INIS)

    Rozman, E.; Diaci, J.

    2008-01-01

    Natural regeneration of altimontane spruce forests at Jelendol is retarded due to many factors. In autumn 2003, gaps of different size and parts of the surrounding stand were covered with a 5 x 5 grid m to define sampling plots. A total of 227 plots with 1,5 x 1,5 m in size were installed to analyse general regeneration conditions and inhibitors. The following ecological parameters were estimated on each plot: micro relief, inclination, soil depth,ground cover, direct and diffuse solar radiation. Woody regeneration (density, height, height increment) and ground vegetation were recorded at each plot. Considering that N-S and E-W radiation asymmetry was explicit, the distribution of direct and diffuse radiation was divided into four groups among the plots. Spruce regeneration (28.,605 per ha) was mainly found at the edge of the large gap, though total regeneration density and radiation were not correlated. However, in both the stand and the small gaps, the lack of radiation hindered further development. This study showed that light conditions were not the only factors affecting the regeneration success at an altitude of 1,500 m. The presence of woody debris was important, while the influence of the herb layer (predominant species were Festuca altissima All. and Calamagrostis arundinacea (L.) Roth.) and soil depth proved to be negative. The impact of browsing, however, remained the main problem. (author)

  5. Susceptibility of burned black spruce (Picea mariana) forests to non-native plant invasions in interior Alaska

    Science.gov (United States)

    Katie V. Spellman; Christa P.H. Mulder; Teresa N. Hollingsworth

    2014-01-01

    As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn...

  6. Space sequestration below ground in old-growth spruce-beech forests – signs for facilitation?

    Directory of Open Access Journals (Sweden)

    Andreas eBolte

    2013-08-01

    Full Text Available Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤ 2 mm by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1 spruce as a central tree, (2 spruce as competitor, (3 beech as a central tree, and (4 beech as competitor. Mean values of life fine root attributes like biomass (FRB, length (FRL, and root area index (RAI were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA, asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

  7. Long-term landscape changes in a subalpine spruce-fir forest in central Utah, USA

    Directory of Open Access Journals (Sweden)

    Jesse L. Morris1

    2015-12-01

    Full Text Available Background: In Western North America, increasing wildfire and outbreaks of native bark beetles have been mediated by warming climate conditions. Bioclimatic models forecast the loss of key high elevation species throughout the region. This study uses retrospective vegetation and fire history data to reconstruct the drivers of past disturbance and environmental change. Understanding the relationship among climate, antecedent disturbances, and the legacy effects of settlement-era logging can help identify the patterns and processes that create landscapes susceptible to bark beetle epidemics. Methods: Our analysis uses data from lake sediment cores, stand inventories, and historical records. Sediment cores were dated with radiometric techniques (14C and 210Pb/137Cs and subsampled for pollen and charcoal to maximize the temporal resolution during the historical period (1800 CE to present and to provide environmental baseline data (last 10,500 years. Pollen data for spruce were calibrated to carbon biomass (C t/ha using standard allometric equations and a transfer function. Charcoal samples were analyzed with statistical models to facilitate peak detection and determine fire recurrence intervals. Results: The Wasatch Plateau has been dominated by Engelmann spruce forests for the last ~10,500 years, with subalpine fir becoming more prominent since 6000 years ago. This landscape has experienced a dynamic fire regime, where burning events are more frequent and of higher magnitude during the last 3000 years. Two important disturbances have impacted Engelmann spruce in the historical period: 1 high-grade logging during the late 19th century; and (2 a high severity spruce beetle outbreak in the late 20th century that killed >90 % of mature spruce (>10 cm dbh. Conclusions: Our study shows that spruce-dominated forests in this region are resilient to a range of climate and disturbance regimes. Several lines of evidence suggest that 19th century logging

  8. Morphogenetic Litter Types of Bog Spruce Forests

    Directory of Open Access Journals (Sweden)

    T. T. Efremova

    2015-02-01

    Full Text Available For the first time the representation of moss litter morphogenetic structure of valley-riverside and streamside spruce forests was determined for the wetland intermountain area of Kuznetsk Alatau. In general, the litter of (green moss-hypnum spruce forest can be characterized as medium thickness (9–17 cm with high storage of organic matter (77–99 t/ha, which differs in neutral environmental conditions pH 6.8–7.0 and high percentage of ash 11–28 %. Formation litter types were identified, which depend on the content of mineral inclusions in organogenic substrate and the degree of its drainage. The differentiation of litter subhorizons was performed, visual diagnostic indicators of fermentative layers were characterized, and additional (indexes to indicate their specificity were developed. Peat- and peaty-fermentative, humified-fermentative and (black mold humus-fermentative layers were selected. Peat- and peaty-fermentative layers are characterized by content of platy peat macroaggregates of coarse vegetable composition, the presence of abundant fungal mycelium and soil animals are the primary decomposers – myriopoda, gastropoda mollusks. Humified-fermentative layers are identified by including the newly formed amorphous humus-like substances, nutty-granular structural parts of humus nature and soil animals’ humificators – enchytraeids and earthworms. (Black mold humus-fermentative layers are diagnosed by indicators with similar humified-fermentative, but differ from them in clay-humus composition of nutty-granular blue-grey parts. The nomenclature and classification of moss litter were developed on the basis of their diagnostic characteristics of fermentative layers – peat, peaty, reduced peaty, (black mold humus-peaty, reduced (black mold humus-peaty. Using the method of discriminant analysis, we revealed that the physical-chemical properties, mainly percentage of ash and decomposition degree of plant substrate, objectively

  9. Performance of the Forest Vegetation Simulator in managed white spruce plantations influenced by eastern spruce budworm in northern Minnesota

    Science.gov (United States)

    Matthew B. Russell; Anthony W. D' Amato; Michael A. Albers; Christopher W. Woodall; Klaus J. Puettmann; Michael R. Saunders; Curtis L. VanderSchaaf

    2015-01-01

    Silvicultural strategies such as thinning may minimize productivity losses from a variety of forest disturbances, including forest insects. This study analyzed the 10-year postthinning response of stands and individual trees in thinned white spruce (Picea glauca [Moench] Voss) plantations in northern Minnesota, USA, with light to moderate defoliation...

  10. Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests

    Science.gov (United States)

    Patrick T. Moore; R. Justin DeRose; James N. Long; Helga. van Miegroet

    2012-01-01

    Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....

  11. Ecophysiology of seedling establishment in contrasting spruce-fir forests of southern Appalachian and Rocky Mountain ecotones, USA

    Science.gov (United States)

    William K. Smith; Keith N.C. Reinhardt; Daniel M. Johnson

    2010-01-01

    Fraser fir (Abies fraseri [Pursh] Poiret) and red spruce (Picea rubens Sarg.) occur as codominant trees in six relic, mountain-top populations that make up the high-elevation forests of the Southern Appalachian Mountains (SA). These two relic species of the former boreal forest have experienced a significant decline over the past...

  12. Ecological Factors Influencing Norway Spruce Regeneration on Nurse Logs in a Subalpine Virgin Forest

    Directory of Open Access Journals (Sweden)

    Sophie Stroheker

    2018-03-01

    Full Text Available Regeneration of Picea abies in high-elevation mountain forests often depends on the presence of coarse woody debris (CWD, as logs provide sites with more favorable conditions for spruce regeneration compared to the forest floor. However, there is little quantitative knowledge on the factors that are conducive to or hindering spruce establishment on CWD. We examined spruce regeneration on CWD by sampling 303 plots (50 cm × 50 cm each on 56 downed logs in a virgin forest in the Swiss Alps. Variables describing microsite conditions were measured, and fungi were isolated from wood samples. To investigate the relationship between the ecological factors and establishment success, two models were fitted with seedling and sapling density as response variables, respectively. Besides log diameter, the models identified different ecological factors as significant for seedling and sapling establishment, i.e., regeneration depends on different factors in different development stages. Seedling density depended on the type of rot, log inclination, and decay stage. Sapling density depended mainly on light availability, cover by bark and moss, the time of tree fall, and the distance between the log surface and the forest floor. A total of 22 polypore fungi were isolated from the wood samples, four of them being threatened species. White- and brown-rot fungi were found in all decay stages. The visual assessment of the type of rot in the field corresponded in only 15% of cases to the type of rot caused by the isolated fungi; hence caution is needed when making field assessments of rot types.

  13. Ecology and silviculture of the spruce-fir forests of eastern North America

    Science.gov (United States)

    Marinus. Westveld

    1953-01-01

    Using the climax forest as a guide to growing the species best suited to the climate and the site, the author offers a silvicultural system for managing the spruce-fir forests of eastern North America. Based on ecological principles, such silviculture is aimed to bring about forests that are inherently healthy and have a natural resistance to insects and disease.

  14. Haloperoxidase-like activity in spruce forest soil. A source of volatile halogenated organic compounds?

    DEFF Research Database (Denmark)

    Laturnus, F.; Mehrtens, G.; Grøn, C.

    1995-01-01

    Haloperoxidase-like activity was monitored in samples from a podzol soil in an uncontaminated spruce forest at Klosterhede, Denmark. Activity for the oxidation of chloride and bromide was found. The pH optima for chlorination and bromination ranged between pH 2.5 and 4: Very high activity, up to 4...

  15. Interspecific Competition and Trade-offs in Resource Allocation are the Key to Successful Growth of Seedlings of White Spruce (Picea glauca (Moench) Voss) at Subarctic Treelines in Warming Alaska.

    Science.gov (United States)

    Okano, K.; Bret-Harte, M. S.

    2015-12-01

    Alpine treelines in Alaska have advanced for the past 50 years in response to the recent climate warming. However, further increases in temperatures may cause treeline species drought stress and increase susceptibility to insect outbreaks and fire. Complex factors such as soil conditions and plant species composition also impact the growth of seedlings, which are essential to sustain boreal forests. Our goals were to assess 1) the current optimal elevation for the treeline species Picea glauca (white spruce) seedlings and how it is altered by climate change, and 2) their growth/survival strategies at each environmental site. We studied the growth response of spruce seedlings along an altitudinal gradient at 6 sites, consisting of tundra, forest, or transitional ecotone in Denali National Park and one forest site in Fairbanks, AK. In May 2012, four-month old seedlings were planted with or without naturally occurring plants to compare the presence or absence of the interspecific interaction. Summer temperatures were increased by one small greenhouse per site. Over 2 growing seasons, growth was measured non-destructively, and then the seedlings were harvested. Relative growth rate (RGR) in height was increased significantly as the altitude was increased. Elevated temperature increased height only in seedlings at a high-altitude forest. Seedlings with neighboring plants had a higher RGR in height than seedlings that had neighbors removed, while significantly wider diameters were measured from the seedlings without neighbors. A weak trend of declining diameter width with increasing altitudes was seen. Seedlings that grew taller did not grow their stems wider, indicating trade-offs in resource allocation. None of the altitudinal sites had a clear advantage for the growth of the seedlings. Habitat microclimate and the interaction with other species could be more important than the altitude or temperatures and hence, key to the survival and growth of spruce seedlings in

  16. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst)

    International Nuclear Information System (INIS)

    Nikolova, Petia S.; Andersen, Christian P.; Blaschke, Helmut; Matyssek, Rainer; Haeberle, Karl-Heinz

    2010-01-01

    The effects of experimentally elevated O 3 on soil respiration rates, standing fine-root biomass, fine-root production and δ 13 C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O 3 under beech and spruce, and was related to O 3 -stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O 3 on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O 3 regime. δ 13 C signature of newly formed fine-roots was consistent with the differing g s of beech and spruce, and indicated stomatal limitation by O 3 in beech and by drought in spruce. Our study showed that drought can override the stimulating O 3 effects on fine-root dynamics and soil respiration in mature beech and spruce forests. - Drought has the capacity to override the stimulating ozone effect on soil respiration in adult European beech/Norway spruce forest.

  17. Carbon and Nitrogen Pools and Fluxes in Adjacent Mature Norway Spruce and European Beech Forests

    Directory of Open Access Journals (Sweden)

    Filip Oulehle

    2016-11-01

    Full Text Available We compared two adjacent mature forest ecosystem types (spruce vs. beech to unravel the fate of assimilated carbon (C and the cycling of organic and inorganic nitrogen (N without the risk of the confounding influences of climatic and site differences when comparing different sites. The stock of C in biomass was higher (258 t·ha−1 in the older (150 years beech stand compared to the younger (80 years planted spruce stand (192 t·ha−1, whereas N biomass pools were comparable (1450 kg·ha−1. Significantly higher C and N soil pools were measured in the beech stand, both in forest floor and mineral soil. Cumulative annual CO2 soil efflux was similar among stands, i.e., 9.87 t·ha−1·year−1 of C in the spruce stand and 9.01 t·ha−1·year−1 in the beech stand. Soil temperature explained 78% (Q10 = 3.7 and 72% (Q10 = 4.2 of variability in CO2 soil efflux in the spruce and beech stand, respectively. However, the rather tight N cycle in the spruce stand prevented inorganic N losses, whereas losses were higher in the beech stand and were dominated by nitrate in the mineral soil. Our results highlighted the long-term consequences of forest management on C and N cycling.

  18. Modelling long-term water yield effects of forest management in a Norway spruce forest

    Czech Academy of Sciences Publication Activity Database

    Yu, X.; Lamačová, A.; Duffy, Ch.; Krám, P.; Hruška, Jakub; White, T.; Bhatt, G.

    2015-01-01

    Roč. 60, č. 2 (2015), s. 174-191 ISSN 0262-6667 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Lysina critical zone observatory * PIHM * Norway spruce * forest management Subject RIV: EH - Ecology, Behaviour Impact factor: 2.182, year: 2015

  19. Contrasting development of declining and living larch-spruce stands after a disturbance event: A case study from the High Tatra Mts.

    Directory of Open Access Journals (Sweden)

    Šebeň Vladimír

    2015-09-01

    Full Text Available The decline of spruce stands caused by bark beetle outbreaks is a serious economic and ecological problem of forestry in Slovakia. In the preceding period, the decline affected mainly secondary spruce forests. Over the last decade, due to large bark-beetle outbreaks this problem has been observed also in natural spruce forests, even at high elevations. We dealt with this issue in a case study of short-term development of larch-spruce stands in the High Tatras (at a site called Štart. We compared the situation in the stand infested by bark beetles several years after the wind-throw in 2004 with the stand unaffected by bark beetles. We separately analysed the development of the mature (parent stands and the regeneration. The results indicated that forest decline caused by bark beetles significantly depended on the stand structure (mainly tree species composition, which affected the period of stand disintegration. Mortality of spruce trees slowed down biomass accumulation (and thus carbon sequestration in the forest ecosystem. In the new stand, pioneer tree species dominated (in the conditions of the High Tatras it is primarily rowan, although their share in the parent stand was negligible. The results showed different trends in the accumulation of below-ground and above-ground biomass in the declined and living stands. In the first years after the stand decline, rowan accumulated significantly more biomass than the main tree species, i.e. spruce. The reverse situation was under the surviving stand, where spruce trees accumulated more biomass than rowan. The different share of spruce and pioneer tree species, mainly rowan, affected the ratio between fixed (in woody parts of trees and rotating (in foliage carbon in the undergrowth. Forest die-back is a big source of carbon emissions from dead individuals, and the compensation of these losses in the form of carbon sequestration by future stands is a matter of several decades.

  20. Mountain Norway spruce forests: Needle supply and its nutrient content

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Marcela; Vacek, S.

    2003-01-01

    Roč. 49, - (2003), s. 327-332 ISSN 1212-4834 R&D Projects: GA AV ČR KSK6005114; GA ČR GA206/99/1416 Institutional research plan: CEZ:AV0Z6005908 Keywords : Šumava Mts. * Mountain Norway spruce forest * needle mass Subject RIV: EF - Botanics

  1. Nutrient imbalance in Norway spruce

    International Nuclear Information System (INIS)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  2. Nutrient imbalance in Norway spruce

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  3. Altitude profiles of total chlorinated paraffins in humus and spruce needles from the Alps (MONARPOP)

    Energy Technology Data Exchange (ETDEWEB)

    Iozza, Saverio, E-mail: saverio.iozza@empa.c [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Analytical Chemistry, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel (Switzerland); Schmid, Peter, E-mail: peter.schmid@empa.c [Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Analytical Chemistry, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Oehme, Michael, E-mail: michael.oehme@unibas.c [University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel (Switzerland); Bassan, Rodolfo [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Belis, Claudio [Regional Agency for Environmental Protection of Lombardia (Italy); Jakobi, Gert; Kirchner, Manfred; Schramm, Karl-Werner [GSF-National Research Centre for Environment and Health (Germany); Kraeuchi, Norbert [Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Moche, Wolfgang; Offenthaler, Ivo; Weiss, Peter [Federal Environment Agency Ltd. (Austria); Simoncic, Primoz [Slovenian Forestry Institute (Slovenia); Knoth, Wilhelm [Federal Environment Agency (Germany)

    2009-12-15

    Chlorinated paraffins (CPs) are toxic, bioaccumulative, persistent, and ubiquitously present in the environment. CPs were analyzed in humus and needle samples, which were taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) at sampling sites of 7 different altitude profiles in the Alps. Gas chromatography combined with electron ionization tandem mass spectrometry (EI-MS/MS) was used for the determination of total CPs (sum of short, medium and long chain CPs). CPs were found in all samples; the concentrations varied between 7 and 199 ng g{sup -1} dry weight (dw) and within 26 and 460 ng g{sup -1} dw in humus and needle samples, respectively. A clear vertical tendency within the individual altitude profiles could not be ascertained. Within all altitude profiles, elevated concentrations were observed in humus samples taken between 700 and 900 m and between 1300 and 1500 m. In the needle samples no similar correlation could be observed due to higher variation of the data. - For the first time, CP levels of humus and spruce needle samples from the Alps (MONARPOP) were presented including the evaluation of altitude profiles.

  4. Seedling establishment and distribution of direct radiation in slit-shaped openings of Norway spruce forests in the intermediate Alps

    International Nuclear Information System (INIS)

    Brang, P.

    1996-01-01

    Direct radiation is crucial for Norway spruce (Picea abies (L.) Karst.) seedling establishment in high-montane and subalpine spruce forests. Fisheye photography was used to estimate the daily distribution of direct radiation in small forest openings on a north-northwest and a south facing slope near Sedrun (Grisons, Switzerland). In slit-shaped openings on the north-northwest facing slope long sunflecks mostly occurred in the afternoon, when the sun shines parallel to the slit axis. This is in accordance to the silvicultural intention. However, since the stands are clumpy and therefore pervious to sunlight, the daily sunfleck distribution is fairly even notwithstanding the slit orientation, and direct radiation at noon is the dominant form of incident energy. In small circular to rectangular openings on the south facing slope direct radiation peaks at noontide. A seeding trial imitating natural seedling establishment was set in place in openings on both slopes. Based on this trial, the relations among seedling establishment, aspect, slit shape, size, and orientation are discussed for Norway spruce forests in the intermediate Alps. The directional weather factors such as radiation and precipitation can be highly influenced by slits, which is why suitable microclimate for seedling establishment can be promoted provided the slits are oriented appropriately. Slits in which the most insolated edges are oriented windward are especially favourable

  5. Aerodynamic resistance of spruce forest stand in relation to roughness length and airflow

    Czech Academy of Sciences Publication Activity Database

    Hurtalová, T.; Matějka, F.; Rožnovský, J.; Janouš, Dalibor

    2003-01-01

    Roč. 33, č. 3 (2003), s. 147-160 ISSN 1335-2806 R&D Projects: GA ČR(CZ) GA526/03/1104 Keywords : aerodynamic resistance * spruce forest stand * roughness length Subject RIV: DG - Athmosphere Sciences, Meteorology

  6. Establishment and growth of white spruce on a boreal forest floodplain: interactions between microclimate and mammalian herbivory

    Science.gov (United States)

    Amy C. Angell; Knut. Kielland

    2009-01-01

    White spruce (Picea glauca (Moench) Voss) is a dominant species in late-successional ecosystems along the Tanana River, interior Alaska, and the most important commercial timber species in these boreal floodplain forests. Whereas white spruce commonly seed in on young terraces in early primary succession, the species does not become a conspicuous...

  7. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    Science.gov (United States)

    Walker, Xanthe J; Mack, Michelle C; Johnstone, Jill F

    2015-08-01

    Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ∆(13)C responses on a subsample of trees as representative of the wider region. The negative ∆(13)C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ∆(13)C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought-induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. © 2015 John Wiley & Sons Ltd.

  8. A comparison of structural characteristics and ecological factors between forest reserves and managed silver fir - Norway spruce forests in Slovenia

    International Nuclear Information System (INIS)

    Marinšek, A.; Diaci, J.

    2011-01-01

    In order to examine ecological, floristic and structural differences between the forest stands of managed and unmanaged silver fir - Norway spruce forests (Bazzanio trilobatae-Abietetum albae), twelve sample plots (25x25 m) were established in forest reserves and managed forests. Within the plots, subplots and microplots we conducted phytosociological and pedological surveys, analyses of the stand structure, natural regeneration and estimation of solar radiation. We determined that there are no significant differences in floristic composition and ecological factors between managed forest and forest reserve stands. The only variables that were significantly different were the solar radiation variables (ISF; TSF; DSF), vertical structure (cover indexes (CI)) and stand basal area. Small differences in the composition and the structure of the vegetation indicate that, as far as ecosystematic changes are concerned, managing these forests is not as significant as the soil conditions. Solar radiation had a major influence on natural regeneration. Indirect solar radiation seemed to be more important than direct solar radiation. We found a statistically significant positive correlation between silver fir and Norway spruce regeneration and indirect solar radiation and confirmed that the management of light is a significant factor in the management of regeneration. Another trend that was detected was an increase in the number of beech, which will have quite a large proportion in the upper tree layer of the next generation, especially in forest reserves

  9. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995

    DEFF Research Database (Denmark)

    Andersen, H.V.; Hovmand, M.F.; Hummelshøj, P.

    1999-01-01

    The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons...... measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during...... at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest...

  10. Changes of Soil Enzyme Activities in Different Restoration Ages of Spruce Forests on the Eastern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-mei; BAO Wei-kai; PANG Xue-yong; WU Ning; ZHOU Guo-yi

    2005-01-01

    Six soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase ) were chosen for investigation under different spruce forests with restoration ages of 4,10,16 years and an old-growth spruce forest over 400 years old in the eastern Qinghai-Tibet Plateau, China. Results showed that the activities of invertase, phosphatase, proteinase, catalase and peroxidase decreased in newly restored forests except for pholyphenoloxidase. With the development of forests after restoration, the activities of invertase, acid phosphadase, proteinase increased gradually. Our study also indicated that the soil enzyme activities were associated with surface soils and decreased with depths. This result suggested that in the earlier restoration stage the application of organic fertilizer may be more effective by surface addition to soils than deep addition.

  11. Microbial Activity in Forest Soil Under Beech, Spruce, Douglas Fir and Fir

    Directory of Open Access Journals (Sweden)

    Hajnal-Jafari Timea

    2016-08-01

    Full Text Available The aim of this research was to investigate the microbial activity in forest soil from different sites under deciduous and coniferous trees in Serbia. One site on Stara planina was under beech trees (Fagus sp. while another under mixture of spruce (Picea sp. and Douglas fir (Pseudotsuga sp.. The site on Kopaonik was under mixture of beech (Fagus sp. and spruce (Picea sp. trees. The site on Tara was dominantly under fir (Abies sp., beech (Fagus sp. and spruce (Picea sp.. The total number of bacteria, the number of actinobacteria, fungi and microorganisms involved in N and C cycles were determined using standard method of agar plates. The activities of dehydrogenase and ß-glucosidase enzymes were measured by spectrophotometric methods. The microbial activity was affected by tree species and sampling time. The highest dehydrogenase activity, total number of bacteria, number of actinobacteria, aminoheterotrophs, amylolytic and cellulolytic microorganisms were determined in soil under beech trees. The highest total number of fungi and number of pectinolytic microorganisms were determined in soil under spruce and Douglas fir trees. The correlation analyses proved the existence of statistically significant interdependency among investigated parameters.

  12. Soil saprotrophic micromycetes in Norway spruce forests in the Šumava National Park

    Czech Academy of Sciences Publication Activity Database

    Nováková, Alena

    2001-01-01

    Roč. 7, - (2001), s. 177-184 ISSN 1211-7420 R&D Projects: GA ČR GA206/99/1416 Institutional research plan: CEZ:AV0Z6066911 Keywords : soil saprotrophic micromycetes * Norway spruce forest * bark beetle Subject RIV: EH - Ecology, Behaviour

  13. A Tale of Two Forests: Simulating Contrasting Lodgepole Pine and Spruce Forest Water and Carbon Fluxes Following Mortality from Bark Beetles

    Science.gov (United States)

    Ewers, B. E.; Peckham, S. D.; Mackay, D. S.; Pendall, E.; Frank, J. M.; Massman, W. J.; Reed, D. E.; Borkhuu, B.

    2014-12-01

    In recent decades, bark beetle infestation in western North America has reached epidemic levels. The resulting widespread forest mortality may have profound effects on present and future water and carbon cycling with potential negative consequences to a region that relies on water from montane and subalpine watersheds. We simulated stand-level ecosystem fluxes of water and carbon at two bark beetle-attacked conifer forests in southeast Wyoming, USA. The lower elevation site dominated by lodgepole pine (Pinus contorta) was attacked by mountain pine beetle (Dendroctonus ponderosae) during 2008-2010. The high elevation Engelmann spruce (Picea engelmannii) dominated site was attacked by the spruce beetle (Dendroctonus rufipennis) during roughly the same time period. Both beetle infestations resulted in >60% canopy mortality in the footprint of eddy covariance towers located at each site. However, carbon and water fluxes responses to mortality depended on the forest type. Using data collected at the sites, we scaled simulated plant hydraulic conductivity by either percent canopy mortality or loss of live tree basal area during infestation. We also simulated a case of no beetle attack. At the lodgepole site, the no-beetle model best fit the data and showed no significant change in growing season carbon flux and a 15% decrease in evapotranspiration (ET). However, at the spruce site, the simulation that tracked canopy loss agreed best with observations: carbon flux decreased by 72% and ET decreased by 31%. In the lodgepole stand, simulated soil water content agreed with spatially distributed measurements that were weighted to reflect overall mortality in the tower footprint. Although these two forest ecosystems are only 20 km apart, separated by less than 300m in elevation, and have been impacted by similar mortality agents, the associated changes in carbon and water cycling are significantly different. Beetle effects on hydrologic cycling were greatest at high elevation

  14. Is it possible and necessary to control European spruce bark beetle Ips typographus (L. outbreak in the Białowieża Forest?

    Directory of Open Access Journals (Sweden)

    Hilszczański Jacek

    2017-03-01

    Full Text Available In response to the information published in ‘Forest Research Papers’ (vol. 77(4, 2016, regarding the problem of the European spruce bark beetle Ips typographus (L. in the Białowieża Forest, we present our viewpoint on this issue. The role of the European spruce bark beetle in the Białowieża Forest is discussed based on the experience gained in Europe’s forests. We present the effects of I. typographus outbreaks on forest biodiversity as well as outbreak mitigation in the context of the processes taking place in semi-natural forests.

  15. Understory Structure and Vascular Plant Diversity in Naturally Regenerated Deciduous Forests and Spruce Plantations on Similar Clear-Cuts: Implications for Forest Regeneration Strategy Selection

    Directory of Open Access Journals (Sweden)

    ZhiQiang Fang

    2014-04-01

    Full Text Available The active effect of natural regeneration on understory vegetation and diversity on clear-cut forestlands, in contrast to conifer reforestation, is still controversial. Here we investigated differences in understory vegetation by comparing naturally regenerated deciduous forests (NR and reforested spruce plantations (SP aged 20–40 years on 12 similar clear-cuts of subalpine old-growth spruce-fir forests from the eastern Tibetan Plateau. We found that 283 of the 334 vascular plant species recorded were present in NR plots, while only 264 species occurred in SP plots. This was consistent with richer species, higher cover, and stem (or shoot density of tree seedlings, shrubs, and ferns in the NR plots than in the SP plots. Moreover, understory plant diversity was limited under dense canopy cover, which occurred more frequently in the SP plots. Our findings implied that natural deciduous tree regeneration could better preserve understory vegetation and biodiversity than spruce reforestation after clear-cutting. This result further informed practices to reduce tree canopy cover for spruce plantations or to integrate natural regeneration and reforestation for clear-cuts in order to promote understory vegetation and species diversity conservation.

  16. Partitioning of ecosystem respiration in a paludified shallow-peat spruce forest in the southern taiga of European Russia

    International Nuclear Information System (INIS)

    Kurbatova, J; Tatarinov, F; Varlagin, A; Avilov, V; Molchanov, A; Kozlov, D; Ivanov, D; Valentini, R

    2013-01-01

    Soil, tree stems, and ecosystem carbon dioxide fluxes were measured by chambers and eddy covariance methods in a paludified shallow-peat spruce forest in the southern taiga of European Russia (Tver region, 56° N 33° E) during the growing seasons of 2002–2012. The site was established in 1998 as part of the EUROSIBERIAN CARBONFLUX project, an international field experiment examining atmosphere–biosphere interaction in Siberia and European Russia. In all years the observed annual cumulative net ecosystem flux was positive (the forest was a source of carbon to the atmosphere). Soil and tree stem respiration was a significant part of the total ecosystem respiration (ER) in this paludified shallow-peat spruce forest. On average, 49% of the ER came from soil respiration. We found that the soil fluxes exhibited high seasonal variability, ranging from 0.7 to 10 μmol m −2  s −1 . Generally, the soil respiration depended on the soil temperature and ground water level. In drought conditions, the soil respiration was low and did not depend on temperature. The stem respiration of spruces grew intensively in May, had permanently high values from June to the end of September, and in October it dramatically decreased. The tree stem respiration in midsummer was about 3–5 μmol m −2  s −1 for dominant trees and about 1–2 μmol m −2  s −1 for subdominant trees. The respiration of living tree stems was about 10–20% of the ER. (letter)

  17. Effect of Organic Layer Thickness on Black Spruce Aging Mistakes in Canadian Boreal Forests

    Directory of Open Access Journals (Sweden)

    Ahmed Laamrani

    2016-03-01

    Full Text Available Boreal black spruce (Picea mariana forests are prone to developing thick organic layers (paludification. Black spruce is adapted to this environment by the continuous development of adventitious roots, masking the root collar and making it difficult to age trees. Ring counts above the root collar underestimate age of trees, but the magnitude of age underestimation of trees in relation to organic layer thickness (OLT is unknown. This age underestimation is required to produce appropriate age-correction tools to be used in land resource management. The goal of this study was to assess aging errors that are done with standard ring counts of trees growing in sites with different degrees of paludification (OLT; 0–25 cm, 26–65 cm, >65 cm. Age of 81 trees sampled at three geographical locations was determined by ring counts at ground level and at 1 m height, and real age of trees was determined by cross-dating growth rings down to the root collar (root/shoot interface. Ring counts at 1 m height underestimated age of trees by a mean of 22 years (range 13–49 and 52 years (range 14–112 in null to low vs. moderately to highly paludified stands, respectively. The percentage of aging-error explained by our linear model was relatively high (R2adj = 0.71 and showed that OLT class and age at 0-m could be used to predict total aging-error while neither DBH nor geographic location could. The resulting model has important implications for forest management to accurately estimate productivity of these forests.

  18. A 4-year record of sitka spruce and western hemlock seed fall on the Cascade Head Experimental Forest.

    Science.gov (United States)

    Robert H. Ruth; Carl M. Berntsen

    1955-01-01

    Four years' measurement of seed fall in the spruce-hemlock type on the Cascade Head Experimental Forest indicates that an ample supply of seed is distributed over clear-cut areas under staggered-setting cutting. The largest tract sampled was 81 acres; in spite of a seed crop failure in 1950, it received an average of 243,000 viable spruce and hemlock seeds per...

  19. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    International Nuclear Information System (INIS)

    Jafarov, E E; Romanovsky, V E; Marchenko, S S; Genet, H; McGuire, A D

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ∼80 cm) and upland (with thin organic layers, ∼30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming. (letter)

  20. Foliar and soil chemistry at red spruce sites in the Monongahela National Forest

    Science.gov (United States)

    Stephanie J. Connolly

    2010-01-01

    In 2005, soil and foliar chemistry were sampled from 10 sites in the Monongahela National Forest which support red spruce. Soils were sampled from hand-dug pits, by horizon, from the O-horizon to bedrock or 152 cm, and each pit was described fully. Replicate, archived samples also were collected.

  1. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Magda; Prach, Karel

    2004-01-01

    Roč. 23, č. 1 (2004), s. 15-27 ISSN 0925-8574 Institutional research plan: CEZ:AV0Z6087904 Keywords : forest management * mountain spruce forest * natural regeneration Subject RIV: GK - Forestry Impact factor: 0.890, year: 2004 http://www.sciencedirect.com

  2. Management intensity affects traits of soil microarthropod community in montane spruce forest

    Czech Academy of Sciences Publication Activity Database

    Farská, Jitka; Prejzková, Kristýna; Rusek, Josef

    2014-01-01

    Roč. 75, March (2014), s. 71-79 ISSN 0929-1393 R&D Projects: GA ČR GA526/03/1259; GA ČR GAP504/12/1218; GA MŠk LC06066 Grant - others:GAJU(CZ) 143/2010/P Institutional support: RVO:60077344 Keywords : Oribatida * Collembola * spruce forest * trait * management intensity Subject RIV: EH - Ecology, Behaviour Impact factor: 2.644, year: 2014

  3. The immigration and spread of spruce forest in Norway, traced by biostratigraphical studies and radiocarbon datings. A preliminary report

    International Nuclear Information System (INIS)

    Hafsten, U.

    1985-01-01

    Pollen-analytic studies and radiocarbon datings from 86 sites, mostly ombrotrophic peatbogs, situated within the Norwegian spruce domain, show that the occupation of the areas by spruce forest was the result of a protracted spread from cast, or northeast, to west and south, which started in late pre-Christian time and was completed mainly during the Middle Ages

  4. Genetic variability and health of Norway spruce stands in the Regional Directorate of the State Forests in Krosno

    Directory of Open Access Journals (Sweden)

    Gutkowska Justyna

    2017-03-01

    Full Text Available The study was conducted in 2015 in six spruce stands situated in different forest districts administratively belonging to the Regional Directorate of State Forests in Krosno. Each spruce population was represented by 30 trees and assessed in terms of their current health status. Genetic analyses were performed on shoot samples from each tree using nine nuclear DNA markers and one mitochondrial DNA marker (nad1. The health status of the trees was described according to the classification developed by Szczepkowski and Tarasiuk (2005 and the correlation between health classes and the level of genetic variability was computed with STATISTICA (α = 0.05.

  5. Release of suppressed red spruce using canopy gap creation—Ecological restoration in the Central Appalachians

    Science.gov (United States)

    Rentch, J.S.; Ford, W. Mark; Schuler, T.S.; Palmer, J.; Diggins, Corinne A.

    2016-01-01

    Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the results of an understory red spruce release experiment in hardwood-dominated stands that have a small component of understory red spruce. In 2005, 188 target spruce were identified in sample plots at six locations in central West Virginia. We projected a vertical cylinder above the crown of all target spruces, and in 2007, we performed a release treatment whereby overtopping hardwoods were treated with herbicide using a stem injection technique. Release treatments removed 0–10% (Control), 11–50% (Low), 51–89% (Medium), and ≤90% (High) of the basal area of overtopping trees. We also took canopy photographs at the time of each remeasurement in 2007, 2010, and 2013, and compared basal removal treatments and resulting 2010 canopy openness and understory light values. The high treatment level provided significantly greater six-year dbh and height growth than the other treatment levels. Based on these results, we propose that a tree-centered release approach utilizing small canopy gaps that emulate the historical, gap-phase disturbance regime provides a good strategy for red spruce restoration in hardwood forests where overstory spruce are virtually absent, and where red spruce is largely relegated to the understory.

  6. Evaluating the Suitability of Management Strategies of Pure Norway Spruce Forests in the Black Forest Area of Southwest Germany for Adaptation to or Mitigation of Climate Change

    Science.gov (United States)

    Yousefpour, Rasoul; Hanewinkel, Marc; Le Moguédec, Gilles

    2010-02-01

    The study deals with the problem of evaluating management strategies for pure stands of Norway spruce ( Picea abies Karst) to balance adaptation to and mitigation of climate change, taking into account multiple objectives of a forest owner. A simulation and optimization approach was used to evaluate the management of a 1000 ha model Age-Class forest, representing the age-class distribution of an area of 66,000 ha of pure Norway spruce forests in the Black Forest region of Southwest Germany. Eight silvicultural scenarios comprising five forest conversion schemes which were interpreted as “adaptation” strategies which aims at increasing the proportion of Beech, that is expected to better cope with climate change than the existing Norway spruce, and three conventional strategies including a “Do-nothing” alternative classified as “mitigation”, trying to keep rather higher levels of growing stock of spruce, were simulated using the empirical growth simulator BWINPro-S. A linear programming approach was adapted to simultaneously maximize the net present values of carbon sequestration and timber production subject to the two constraints of wood even flow and partial protection of the oldest (nature protection). The optimized plan, with the global utility of 11,687 €/ha in forty years, allocated a combination of silvicultural scenarios to the entire forest area. Overall, strategies classified as “mitigation” were favored, while strategies falling into the “adaptation”-category were limited to the youngest age-classes in the optimal solution. Carbon sequestration of the “Do-nothing” alternative was between 1.72 and 1.85 million tons higher than the other alternatives for the entire forest area while the differences between the adaptation and mitigation approaches were approximately 133,000 tons. Sensitivity analysis showed that a carbon price of 21 €/ t is the threshold at which carbon sequestration is promoted, while an interest rate of above 2

  7. High-Titer Methane from Organosolv-Pretreated Spruce and Birch

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2017-02-01

    Full Text Available The negative impact of fossil fuels and the increased demand for renewable energy sources has led to the use of novel raw material sources. Lignocellulosic biomass could serve as a possible raw material for anaerobic digestion and production of biogas. This work is aimed at using forest biomass, both softwood (spruce and hardwood (birch, as a raw material for anaerobic digestion. We examined the effect of different operational conditions for the organosolv pretreatment (ethanol content, duration of treatment, and addition of acid catalyst on the methane yield. In addition, we investigated the effect of addition of cellulolytic enzymes during the digestion. We found that inclusion of an acid catalyst during organosolv pretreatment improved the yields from spruce, but it did not affect the yields from birch. Shorter duration of treatment was advantageous with both materials. Methane yields from spruce were higher with lower ethanol content whereas higher ethanol content was more beneficial for birch. The highest yields obtained were 185 mL CH4/g VS from spruce and 259.9 mL CH4/g VS from birch. Addition of cellulolytic enzymes improved these yields to 266.6 mL CH4/g VS and 284.2 mL CH4/g VS, respectively.

  8. The wind and fire disturbance in Central European mountain spruce forests: the regeneration after four years

    Directory of Open Access Journals (Sweden)

    Monika Budzáková

    2013-03-01

    Full Text Available A strong windstorm in November 2004 resulted in a huge blown-down spruce forest area in the southern part of the Tatra National Park in the Western Carpathians in Slovakia, Central Europe. The aim of this work is to study the vegetation composition of spruce forest at differently managed sites four years after this disturbance. Four study areas were selected for this purpose: (i an area where the fallen trees were extracted and new seedlings were planted; (ii an area, which was hit by a forest fire after the extraction; (iii an area where no active management was applied; (iv a reference forest unaffected by such disturbance. A total of 100 plots were selected, 25 of each area type. The result of DCA and CCA analyses consistently indicated that after this short period the non-extracted and extracted areas are currently most similar to the reference forest area, while the fire affected area differed. A one-way ANOVA comparing species cover for the different plot sizes indicated some significant differences between the extracted and non-extracted plots. The abundance of certain species commonly occurring in spruce forests, such as Dyopteris carthusiana agg., Vaccinium myrtillus and Avenella flexuosa, correlated weli with the non-extracted plots, compared to the extracted plots. Coverage of these species was lowest on burned plots. The lowest Shannon-Wiener’s diversity values were recorded in burned plots. This was most likely a consequence of mono-dominant competitive species spread, (mainly Chamerion angustifolium which profited from the altered ecological conditions following the fire. Although some differences were also registered in the Shannon-Wiener diversity index between the remaining research plots, however these were not statistically significant. The most important results of our investigations include the extensive influence of fire disturbance on vegetation. Study revealed that the wind-disturbed area is able to regenerate

  9. Soil evolution in spruce forest ecosystems: role and influence of humus studied by morphological approach

    Directory of Open Access Journals (Sweden)

    Chersich S

    2007-01-01

    Full Text Available In order to understand the role and the mutual influences of humus and soil in alpine spruce forest ecosystems we studied and classified 7 soil - humic profiles on the 4 main forestry dynamics: open canopy, regeneration, young stand, tree stage. We studied the role of humification process in the pedologic process involving soils and vegetations studing humic and soil horizons. Study sites are located at an altitude of 1740 m a.s.l near Pellizzano (TN, and facing to the North. The parent soil material is predominantly composed of morenic sediments, probably from Cevedale glacier lying on a substrate of tonalite from Presanella (Adamello Tertiary pluton. The soil temperature regime is frigid, while the moisture regime is udic. The characteristics observed in field were correlated with classical chemical and physical soil analyses (MIPAF 2000. In order to discriminate the dominant soil forming process, the soils were described and classified in each site according to the World Reference Base (FAO-ISRIC-ISSS 1998. Humus was described and classified using the morphological-genetic approach (Jabiol et al. 1995. The main humus forms are acid and they are for the greater part Dysmoder on PODZOLS. The main pedogenetic processes is the podzolization, locally there are also hydromorphic processes. We associate a definite humus form with a pedological process at a particular step of the forest evolution. We concluded thath the soil study for a correct pedological interpretation must take count of the characteristics of the humic epipedon.

  10. Natural regeneration ecology of a secondary altimontane spruce forests at Jelendol

    OpenAIRE

    Rozman, Elizabeta; Diaci, Jurij

    2008-01-01

    Natural regeneration of altimontane spruce forests at Jelendol is retarded dueto many factors. In autumn 2003, gaps of different size and parts of the surrounding stand were covered with a 5 x 5 grid m to define sampling plots. Atotal of 227 plots with 1,5 x 1,5 m in size were installed to analyse generalregeneration conditions and inhibitors. The following ecological parameters were estimated on each plot: micro relief, inclination, soil depth,ground cover, direct and diffuse solar radiation...

  11. Multi-Cohort Stand Structural Classification: Ground- and LiDAR-based Approaches for Boreal Mixedwood and Black Spruce Forest Types of Northeastern Ontario

    Science.gov (United States)

    Kuttner, Benjamin George

    Natural fire return intervals are relatively long in eastern Canadian boreal forests and often allow for the development of stands with multiple, successive cohorts of trees. Multi-cohort forest management (MCM) provides a strategy to maintain such multi-cohort stands that focuses on three broad phases of increasingly complex, post-fire stand development, termed "cohorts", and recommends different silvicultural approaches be applied to emulate different cohort types. Previous research on structural cohort typing has relied upon primarily subjective classification methods; in this thesis, I develop more comprehensive and objective methods for three common boreal mixedwood and black spruce forest types in northeastern Ontario. Additionally, I examine relationships between cohort types and stand age, productivity, and disturbance history and the utility of airborne LiDAR to retrieve ground-based classifications and to extend structural cohort typing from plot- to stand-levels. In both mixedwood and black spruce forest types, stand age and age-related deadwood features varied systematically with cohort classes in support of an age-based interpretation of increasing cohort complexity. However, correlations of stand age with cohort classes were surprisingly weak. Differences in site productivity had a significant effect on the accrual of increasingly complex multi-cohort stand structure in both forest types, especially in black spruce stands. The effects of past harvesting in predictive models of class membership were only significant when considered in isolation of age. As an age-emulation strategy, the three cohort model appeared to be poorly suited to black spruce forests where the accrual of structural complexity appeared to be more a function of site productivity than age. Airborne LiDAR data appear to be particularly useful in recovering plot-based cohort types and extending them to the stand-level. The main gradients of structural variability detected using Li

  12. Comparing modern and presettlement forest dynamics of a subboreal wilderness: Does spruce budworm enhance fire risk?

    Science.gov (United States)

    Sturtevant, Brian R.; Miranda, Brian R.; Shinneman, Douglas J.; Gustafson, Eric J.; Wolter, Peter T.

    2012-01-01

    Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more “big pines” (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction

  13. Decomposition of soil organic matter from boreal black spruce forest: Environmental and chemical controls

    Science.gov (United States)

    Wickland, K.P.; Neff, J.C.

    2008-01-01

    Black spruce forests are a dominant covertype in the boreal forest region, and they inhabit landscapes that span a wide range of hydrologic and thermal conditions. These forests often have large stores of soil organic carbon. Recent increases in temperature at northern latitudes may be stimulating decomposition rates of this soil carbon. It is unclear, however, how changes in environmental conditions influence decomposition in these systems, and if substrate controls of decomposition vary with hydrologic and thermal regime. We addressed these issues by investigating the effects of temperature, moisture, and organic matter chemical characteristics on decomposition of fibric soil horizons from three black spruce forest sites. The sites varied in drainage and permafrost, and included a "Well Drained" site where permafrost was absent, and "Moderately well Drained" and "Poorly Drained" sites where permafrost was present at about 0.5 m depth. Samples collected from each site were incubated at five different moisture contents (2, 25, 50, 75, and 100% saturation) and two different temperatures (10??C and 20??C) in a full factorial design for two months. Organic matter chemistry was analyzed using pyrolysis gas chromatography-mass spectrometry prior to incubation, and after incubation on soils held at 20??C, 50% saturation. Mean cumulative mineralization, normalized to initial carbon content, ranged from 0.2% to 4.7%, and was dependent on temperature, moisture, and site. The effect of temperature on mineralization was significantly influenced by moisture content, as mineralization was greatest at 20??C and 50-75% saturation. While the relative effects of temperature and moisture were similar for all soils, mineralization rates were significantly greater for samples from the "Well Drained" site compared to the other sites. Variations in the relative abundances of polysaccharide-derivatives and compounds of undetermined source (such as toluene, phenol, 4-methyl phenol, and

  14. Building Resilience into Sitka Spruce (Picea sitchensis (Bong. Carr. Forests in Scotland in Response to the Threat of Climate Change

    Directory of Open Access Journals (Sweden)

    Andrew D. Cameron

    2015-02-01

    Full Text Available It is expected that a warming climate will have an impact on the future productivity of European spruce forests. In Scotland, Sitka spruce (Picea sitchensis (Bong. Carr. dominates the commercial forestry sector and there is growing pressure to develop alternative management strategies to limit potential economic losses through climate change. This review considers management options to increase the resilience of Sitka spruce dominated forests in Scotland. Given the considerable uncertainty over the potential long-term impacts of climate change, it is recommended that Sitka spruce should continue to be planted where it already grows well. However, new planting and restocking should be established in mixtures where silviculturally practicable, even if no-thin regimes are adopted, to spread future risks of damage. Three potentially compatible species with Sitka spruce are western hemlock (Tsuga heterophylla (Raf. Sarg., grand fir (Abies grandis (Lamb. Lindl. and Douglas fir (Pseudotsuga menziesii (Mirb. Franco and all form natural mixtures in its native range in North America. The predicted windier climate will require a range of management inputs, such as early cutting of extraction racks and early selective thinning, to improve stability. The potential to improve resilience to particularly abiotic damage through transforming even-aged stands into irregular structures and limiting the overall size of the growing stock is discussed.

  15. Utilization of hyperspectral image optical indices to assess the Norway spruce forest health status

    Czech Academy of Sciences Publication Activity Database

    Mišurec, J.; Kopáčková, V.; Lhotáková, Z.; Hanuš, Jan; Weyermann, J.; Entcheva-Campbel, P.; Albrechtová, J.

    2012-01-01

    Roč. 6, JUN 2012 (2012), 63545-1-63545-25 ISSN 1931-3195 R&D Projects: GA ČR GA205/09/1989 Institutional research plan: CEZ:AV0Z60870520 Keywords : chlorophyll * optical indices * Norway spruce * continuum removal * HyMap * actual physiological status * Sokolov basin * forest management Subject RIV: CE - Biochemistry Impact factor: 0.876, year: 2012

  16. Ecophysiology and Growth of White Spruce Seedlings from Various Seed Sources along a Climatic Gradient Support the Need for Assisted Migration

    OpenAIRE

    Guillaume Otis Prud'homme; Mohammed S. Lamhamedi; Lahcen Benomar; André Rainville; Josianne DeBlois; Jean Bousquet; Jean Bousquet; Jean Beaulieu; Jean Beaulieu

    2018-01-01

    With climate change, favorable growing conditions for tree species are shifting northwards and to higher altitudes. Therefore, local populations are becoming less adapted to their environment. Assisted migration is one of the proposed adaptive measures to reduce the vulnerability of natural populations and maintain forest productivity. It consists of moving genetic material to a territory where future climate conditions correspond to those of its current location. Eight white spruce (Picea gl...

  17. Seasonal changes in camera-based indices from an open canopy black spruce forest in Alaska, and comparison with indices from a closed canopy evergreen coniferous forest in Japan

    Science.gov (United States)

    Nagai, Shin; Nakai, Taro; Saitoh, Taku M.; Busey, Robert C.; Kobayashi, Hideki; Suzuki, Rikie; Muraoka, Hiroyuki; Kim, Yongwon

    2013-06-01

    Evaluation of the carbon, water, and energy balances in evergreen coniferous forests requires accurate in situ and satellite data regarding their spatio-temporal dynamics. Daily digital camera images can be used to determine the relationships among phenology, gross primary productivity (GPP), and meteorological parameters, and to ground-truth satellite observations. In this study, we examine the relationship between seasonal variations in camera-based canopy surface indices and eddy-covariance-based GPP derived from field studies in an Alaskan open canopy black spruce forest and in a Japanese closed canopy cedar forest. The ratio of the green digital number to the total digital number, hue, and GPP showed a bell-shaped seasonal profile at both sites. Canopy surface images for the black spruce forest and cedar forest mainly detected seasonal changes in vegetation on the floor of the forest and in the tree canopy, respectively. In contrast, the seasonal cycles of the ratios of the red and blue digital numbers to the total digital numbers differed between the two sites, possibly due to differences in forest structure and leaf color. These results suggest that forest structural characteristics, such as canopy openness and seasonal forest-floor changes, should be considered during continuous observations of phenology in evergreen coniferous forests.

  18. Climatic Sensitivity of a Mixed Forest Association of White Spruce and Trembling Aspen at Their Southern Range Limit

    Directory of Open Access Journals (Sweden)

    Sophan Chhin

    2016-10-01

    Full Text Available Climatic sensitivity of white spruce (Picea glauca (Moench Voss was examined growing in association with trembling aspen (Populus tremuloides Michx. at their southern limit of distribution in a transitional ecotone between the southern boreal forest and northern prairie region. The study was carried out in the Spruce Woods Provincial Park (SWPP located in southwestern Manitoba, Canada. The dry regional climate restricted trembling aspen growth during the growing season via moisture deficiency and temperature induced drought stress. Warm, mild winters also negatively affected radial growth of trembling aspen. Growth of white spruce was moderated by conditions within the aspen stands as radial growth patterns showed low variability from year to year, a low common growth signal, and a stronger response to temperature than to precipitation. Nonetheless, the dry regional climate still restricted growth of white spruce during the growing season via temperature induced drought stress. The findings of the study for white spruce support the stress gradient hypothesis in which facilitative interactions between tree species are expected under harsher environmental conditions.

  19. Climatic control of stand thinning in unmanaged spruce forests of the southern taiga in European Russia

    International Nuclear Information System (INIS)

    Vygodskaya, N.N.; Schulze, E.D.; Tchebakova, N.M.

    2002-01-01

    The demography of Picea abies trees was studied over a period of about 30 yr on permanent plots in six forest types of an unmanaged forest located in a forest reserve of the Southern Taiga, NW of Moscow. This study encompassed a broad range of conditions that are typical for old growth spruce forests in the boreal region, including sites with a high water table and well drained sites, podzolic soils, acidic soils and organic soils. At all sites stand density, tree height, breast height diameter and age has been periodically recorded since 1968. Tree density ranged between 178 and 1035 trees/ha for spruce and between 232 and 1168 trees/ha for the whole stand, including mainly Betula and Populus. Biomass ranged between 5.4 and 170 tdw/ha for spruce and between 33 to 198 tdw/ha for the whole stand. Averaged over a long period of time, biomass did not change with stand density according to the self-thinning rule. In fact, on most sites biomass remained almost constant in the long term, while stand density decreased. The study demonstrates that the loss of living trees was not regulated by competitive interactions between trees, but by disturbances caused by climatic events. Dry years caused losses of minor and younger trees without affecting biomass. In contrast, periodic storms resulted in a loss of biomass without affecting density, except for extreme events, where the whole stand may fall. Dry years followed by wet years enhance the effect on stand density. Since mainly younger trees were lost, the apparent average age of the stand increased more than real time (20% for Picea). Average mortality was 2.8 ± 0.5% yr 1 for spruce. Thus, the forest is turned over once every 160-180 yr by disturbances. The demography of dead trees shows that the rate of decay depends on the way the tree died. Storm causes uprooting and stem breakage, where living trees fall to the forest floor and decay with a mean residence time (t1/2) of about 16 yr (decomposition rate constant k d = 0

  20. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China

    Directory of Open Access Journals (Sweden)

    Jun-Wei Yue

    2018-05-01

    Full Text Available Background The spruce forests are dominant communities in northwest China, and play a key role in national carbon budgets. However, the patterns of carbon stock distribution and accumulation potential across stand ages are poorly documented. Methods We investigated the carbon stocks in biomass and soil in the natural spruce forests in the region by surveys on 39 plots. Biomass of tree components were estimated using allometric equations previously established based on tree height and diameter at breast height, while biomass in understory (shrub and herb and forest floor were determined by total harvesting method. Fine root biomass was estimated by soil coring technique. Carbon stocks in various biomass components and soil (0–100 cm were estimated by analyzing the carbon content of each component. Results The results showed that carbon stock in these forest ecosystems can be as high as 510.1 t ha−1, with an average of 449.4 t ha−1. Carbon stock ranged from 28.1 to 93.9 t ha−1 and from 0.6 to 8.7 t ha−1 with stand ages in trees and deadwoods, respectively. The proportion of shrubs, herbs, fine roots, litter and deadwoods ranged from 0.1% to 1% of the total ecosystem carbon, and was age-independent. Fine roots and deadwood which contribute to about 2% of the biomass carbon should be attached considerable weight in the investigation of natural forests. Soil carbon stock did not show a changing trend with stand age, ranging from 254.2 to 420.0 t ha−1 with an average of 358.7 t ha−1. The average value of carbon sequestration potential for these forests was estimated as 29.4 t ha−1, with the lower aged ones being the dominant contributor. The maximum carbon sequestration rate was 2.47 t ha−1 year−1 appearing in the growth stage of 37–56 years. Conclusion The carbon stock in biomass was the major contributor to the increment of carbon stock in ecosystems. Stand age is not a good predictor of soil carbon stocks and accurate

  1. Soil Warming: Consequences for Foliar Litter Decay in a Spruce-Fir Forest in Maine, USA

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    Increased rates of litter decay due to projected global warming could substantially alter the balance between C assimilation and release in forest soils, with consequent feedbacks to climate change. This study was conducted to investigate the effects of soil warming on the decomposition of red spruce (Picea rubens Sarg.) and red maple (...

  2. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  3. Effects of bark beetle attack on canopy fuel flammability and crown fire potential in lodgepole pine and Engelmann spruce forests

    Science.gov (United States)

    Wesley G. Page; Martin E. Alexander; Michael J. Jenkins

    2015-01-01

    Large wildland fires in conifer forests typically involve some degree of crowning, with their initiation and propagation dependent upon several characteristics of the canopy fuels. Recent outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) in lodgepole pine (Pinus contorta Dougl. var. latifolia E ngelm.) forests and spruce beetle (Dendroctonus...

  4. SPRUCE experiment data infrastructure

    Science.gov (United States)

    Krassovski, M.; Hanson, P. J.; Boden, T.; Riggs, J.; Nettles, W. R.; Hook, L. A.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data activities CDIAC performs are design and implementation of the data systems. One current example is the data system and network for SPRUCE experiment. The SPRUCE experiment (http://mnspruce.ornl.gov) is the primary component of the Terrestrial Ecosystem Science Scientific Focus Area of ORNL's Climate Change Program, focused on terrestrial ecosystems and the mechanisms that underlie their responses to climatic change. The experimental work is to be conducted in a bog forest in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The site is located at the southern margin of the boreal peatland forest. Experimental work in the 8.1-ha S1 bog will be a climate change manipulation focusing on the combined responses to multiple levels of warming at ambient or elevated CO2 (eCO2) levels. The experiment provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, the cycling and release of CO2 and CH4 to the atmosphere). The manipulation will evaluate the response of the existing biological communities to a range of warming levels from ambient to +9°C, provided via large, modified open-top chambers. The ambient and +9°C warming treatments will also be conducted at eCO2 (in the range of 800 to 900 ppm). Both direct and indirect effects of these experimental perturbations will be analyzed to develop and refine models needed for full Earth system analyses. SPRUCE provides wide range continuous and discrete measurements. To successfully manage SPRUCE data flow

  5. VARIATION OF MACROMYCETES SPECIES COMPOSITION IN TWO FOREST HABITATS FROM GIUMALĂU MASSIF (EASTERN CARPATHIANS, ROMANIA

    Directory of Open Access Journals (Sweden)

    BÎRSAN Ciprian

    2013-12-01

    Full Text Available Norway spruce (Picea abies is the most common species with a large spreading in forests from Giumalău Massif. In this study the authors investigated the macromycetes species composition in two forest communities from Giumalău Massif: Hieracio transsilvanico-Piceetum and Leucanthemo waldsteinii-Fagetum. A total of 243 macromycetes species in 30 sampling areas have been identified. Changes in macromycetes species composition have been related to environmental factors (altitude and vegetation (canopy cover, plant species diversity. The results suggest that variation in macromycetes species composition in the two forests types from Giumalău Massif is directly related to abiotic factors (altitude, woody species composition and plants communities’ structure.

  6. Communities of oribatid mites (Acari: Oribatida) of naturally regenerating and salvage-logged montane spruce forests of Šumava Mountains

    Czech Academy of Sciences Publication Activity Database

    Kokořová, Petra; Starý, Josef

    2017-01-01

    Roč. 72, č. 4 (2017), s. 445-451 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional research plan: CEZ:AV0Z60660521 Institutional support: RVO:60077344 Keywords : oribatid mites * spruce forest * community * bark beetle gradation * forest management Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.759, year: 2016

  7. A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1. N2O emissions

    Science.gov (United States)

    Papen, Hans; Butterbach-Bahl, Klaus

    1999-08-01

    For 3 years we followed the complete annual cycles of N2O emission rates with 2-hour resolution in spruce and beech plantations of the Höglwald Forest, Bavaria, Germany, in order to gain detailed information about seasonal and interannual variations of N2O emissions. In addition, microbiological process studies were performed for identification of differences in N turnover rates in the soil of a spruce and a beech site and for estimation of the contribution of nitrification and denitrification to the actual N2O emission. Both pronounced seasonal and extreme interannual variations of N2O emissions were identified. During long-term frost periods, while the soil was frozen, and during soil thawing, extremely high N2O emissions occurred, contributing up to 73% to the total annual N2O loss. The enormous N2O releases during the long-term frost period were due to high microbial N turnover rates (tight coupling of ammonification, nitrification, denitrification) in small unfrozen water films of the frozen soil at high concentrations of easily degradable substrates derived from the enormous pool of dead microbial biomass produced during the long-term frost period. Liming of a spruce site resulted in a significant increase in ammonification, nitrification, and N2O emissions as compared with an untreated spruce control site. The beech control site exhibited 4-5 times higher N2O emissions than the spruce control site, indicating that forest type itself is an important modulator of N2O release from soil. At all sites, nitrification contributed ˜70% to the N2O flux, whereas denitrification contributed markedly less (˜30%). There was a significant positive correlation between amount of in situ N input by wet deposition and magnitude of in situ N2O emissions. At the beech site, 10% of the actual N input was released from the soil in form of N2O, whereas at the spruce site the fraction was 0.5%. N2O emission rates were positively correlated with net nitrification rates. The

  8. Athletes at High Altitude.

    Science.gov (United States)

    Khodaee, Morteza; Grothe, Heather L; Seyfert, Jonathan H; VanBaak, Karin

    2016-01-01

    Athletes at different skill levels perform strenuous physical activity at high altitude for a variety of reasons. Multiple team and endurance events are held at high altitude and may place athletes at increased risk for developing acute high altitude illness (AHAI). Training at high altitude has been a routine part of preparation for some of the high level athletes for a long time. There is a general belief that altitude training improves athletic performance for competitive and recreational athletes. A review of relevant publications between 1980 and 2015 was completed using PubMed and Google Scholar. Clinical review. Level 3. AHAI is a relatively uncommon and potentially serious condition among travelers to altitudes above 2500 m. The broad term AHAI includes several syndromes such as acute mountain sickness (AMS), high altitude pulmonary edema (HAPE), and high altitude cerebral edema (HACE). Athletes may be at higher risk for developing AHAI due to faster ascent and more vigorous exertion compared with nonathletes. Evidence regarding the effects of altitude training on athletic performance is weak. The natural live high, train low altitude training strategy may provide the best protocol for enhancing endurance performance in elite and subelite athletes. High altitude sports are generally safe for recreational athletes, but they should be aware of their individual risks. Individualized and appropriate acclimatization is an essential component of injury and illness prevention.

  9. Ground vegetation dynamics in mountain spruce (Picea abies (L.) Karsten) forests recovering after air pollution stress impact

    Czech Academy of Sciences Publication Activity Database

    Vávrová, Eva; Cudlín, O.; Vavříček, D.; Cudlín, Pavel

    2009-01-01

    Roč. 205, č. 2 (2009), s. 305-321 ISSN 1385-0237 R&D Projects: GA MŠk(CZ) OC 141 Institutional research plan: CEZ:AV0Z60870520 Keywords : forest decline * norway spruce * microsite conditions * recovery * understorey layer Subject RIV: GK - Forestry Impact factor: 1.567, year: 2009

  10. Short-term effects of forest disturbances on soil nematode communities in European mountain spruce forests.

    Science.gov (United States)

    Čerevková, A; Renčo, M; Cagáň, L

    2013-09-01

    The nematode communities in spruce forests were compared with the short-term effects of forest damage, caused by windstorm, wildfire and management practices of forest soils. Soil samples were collected in June and October from 2006 to 2008 in four different sites: (1) forest unaffected by the wind (REF); (2) storm-felled forest with salvaged timber (EXT); (3) modified forest affected by timber salvage (wood removal) and forest fire (FIR); and (4) storm-felled forest where timber had been left unsalvaged (NEX). Nematode analysis showed that the dominant species in all four investigated sites were Acrobeloides nanus and Eudorylaimus silvaticus. An increase of A. nanus (35% of the total nematode abundance) in the first year in the FIR site led to the highest total abundance of nematodes compared with other sites, where nematode abundance reached the same level in the third year. In the FIR site bacterial feeders appeared to be the most representative trophic group, although in the second and third year, after disturbance, the abundance of this trophic group gradually decreased. In the NEX site, the number of nematode species, population densities and Maturity Index were similar to that recorded for the FIR site. In EXT and NEX sites, the other dominant species was the plant parasitic nematode Paratylenchus microdorus. Analyses of nematodes extracted from different forest soil samples showed that the highest number of species and diversity index for species (H'spp) were in the REF site. Differences between the nematode fauna in REF and other localities were clearly depicted by cluster analysis. The greatest Structure Index and Enrichment Index values were also in REF. In the EXT site, the number of nematode species, their abundance, H'spp and Maturity Index were not significantly different from those recorded in the reference site.

  11. BVOC emission in Norway spruce: the effect of stand structure, high temperature and ozone levels.

    Science.gov (United States)

    Pallozzi, Emanuele; Guidolotti, Gabriele; Večeřová, Kristýna; Esposito, Raffaela; Lusini, Ilaria; Juráň, Stanislav; Urban, Otmar; Calfapietra, Carlo

    2015-04-01

    Norway spruce (Picea abies L.) is a widely distributed conifer species in the boreal zone and mountain areas of central Europe and is a moderate emitter of volatile organic compounds (BVOC). Although the vaporization and diffusion processes from resin ducts were generally considered to be the main processes for monoterpene emissions in conifers, recently it has been showed that a significant portion (up to one third) of monoterpene emissions of Norway spruce can originate from novel biosynthesis, thus depending on photosynthetic processes. For this reason, both biosynthesis and emission are strongly influenced by the environment and the stand structure. They increase with both increasing light and temperature during the warmer periods, although those are the periods with the higher ozone concentration that usually act as an inhibitor of both assimilation and isoprenoids synthesis and emission. On the other hand, stand structure can play an important role, because the photosynthetic capacity is influenced by temperature and light conditions through the canopy. In order to assess the effects of stand structure, temperature and ozone on isoprenoids emission of Norway spruce we carried out field and laboratory experiments. In the experimental field campaigns we measured: assimilation and BVOC emission from needles of sun and shade layers within the canopy of the spruce forest present at the Bily Kriz experimental research site (Moravian-Silesian Beskydy Mountains, 49° 33' N, 18° 32' E, NE of Czech Republic, 908 m a.s.l.). Moreover in the same layers we measured continuously concentration of BVOCs in the air using a PTR-TOF-MS. In laboratory we analyzed the effects of short-term exposure to high temperature and high ozone concentrations on branches of spruce trees collected at the Bily Kriz experimental research site. Preliminary results show that in Norway spruce both stand structure and environmental conditions influenced the gas exchange and BVOC emission rates

  12. Release of Suppressed Red Spruce Using Canopy Gap Creation--Ecological Restoration in the Central Appalachians

    Science.gov (United States)

    J.S. Rentch; W.M. Ford; Thomas Schuler; Jeff Palmer; C.A. Diggins

    2016-01-01

    Red spruce (Picea rubens) and red spruce-northern hardwood mixed stands once covered as much as 300,000 ha in the Central Appalachians, but now comprise no more than 21,000 ha. Recently, interest in restoration of this forest type has increased because red spruce forests provide habitat for a number of rare animal species. Our study reports the...

  13. Windstorms as mediator of soil nematode community changes: Evidence from European spruce forest

    Directory of Open Access Journals (Sweden)

    Renčo M.

    2017-03-01

    Full Text Available Nematode communities in a Norway spruce forest in High Tatra National Park, Slovakia were monitored for the period of several years (2006 and 2013. Unfortunately, in May 2014 natural windstorm damaged the forest. This disastrous event, together with preliminary obtained results allowed us to compare the direct impact of windstorm damage of forest habitat on soil nematode assemblages. The forest destruction by windstorm had a significant effect on the total nematode abundance, the abundance of omnivores and herbivores, as well as the nematode species diversity. The most dominant species, representing 55 % of the total nematode fauna, in the plot studied were Acrobeloides nanus followed by Malenchus exiguus, Filenchus vulgaris, Plectus communis, Plectus parvus and Tylencholaimus mirabilis. The abundance of bacterivorous signifi cantly increased after the windstorm, meanwhile the abundance of omnivores, fungivores, and herbivores ectoparasites and epidermal/root hair feeders showed an opposite trend. Of the evaluative indicators, Shannon species diversity (H’spp, maturity index (MI, maturity index 2-5 (MI2-5, sigma maturity index (ΣMI, enrichment index (EI and structure index (SI decreased significantly after windstorm. The EI and SI indexes characterized soil ecosystems before windstorm (2006 - 2013 as maturing with low or moderate disturbance, but soil ecosystems shortly after the windstorm (2014 were degraded and nutrient depleted. This also corresponded with graphical display of metabolic footprints characteristics of soil food web. Overall, the nematode communities differed significantly before and after forest damage. These results suggest the role of nematode communities as indicators of environment condition quality or its disruption.

  14. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    Science.gov (United States)

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  15. Yield Responses of Black Spruce to Forest Vegetation Management Treatments: Initial Responses and Rotational Projections

    Directory of Open Access Journals (Sweden)

    Peter F. Newton

    2012-01-01

    Full Text Available The objectives of this study were to (1 quantitatively summarize the early yield responses of black spruce (Picea mariana (Mill. B.S.P. to forest vegetation management (FVM treatments through a meta-analytical review of the scientific literature, and (2 given (1, estimate the rotational consequences of these responses through model simulation. Based on a fixed-effects meta-analytic approach using 44 treated-control yield pairs derived from 12 experiments situated throughout the Great Lakes—St. Lawrence and Canadian Boreal Forest Regions, the resultant mean effect size (response ratio and associated 95% confidence interval for basal diameter, total height, stem volume, and survival responses, were respectively: 54.7% (95% confidence limits (lower/upper: 34.8/77.6, 27.3% (15.7/40.0, 198.7% (70.3/423.5, and 2.9% (−5.5/11.8. The results also indicated that early and repeated treatments will yield the largest gains in terms of mean tree size and survival. Rotational simulations indicated that FVM treatments resulted in gains in stand-level operability (e.g., reductions of 9 and 5 yr for plantations established on poor-medium and good-excellent site qualities, resp.. The challenge of maintaining coniferous forest cover on recently disturbed sites, attaining statutory-defined free-to-grow status, and ensuring long-term productivity, suggest that FVM will continue to be an essential silvicultural treatment option when managing black spruce plantations.

  16. High altitude illness

    Science.gov (United States)

    Hartman-Ksycińska, Anna; Kluz-Zawadzka, Jolanta; Lewandowski, Bogumił

    High-altitude illness is a result of prolonged high-altitude exposure of unacclimatized individuals. The illness is seen in the form of acute mountain sickness (AMS) which if not treated leads to potentially life-threatening high altitude pulmonary oedema and high-altitude cerebral oedema. Medical problems are caused by hypobaric hypoxia stimulating hypoxia-inducible factor (HIF) release. As a result, the central nervous system, circulation and respiratory system function impairment occurs. The most important factor in AMS treatment is acclimatization, withdrawing further ascent and rest or beginning to descent; oxygen supplementation, and pharmacological intervention, and, if available, a portable hyperbaric chamber. Because of the popularity of high-mountain sports and tourism better education of the population at risk is essential.

  17. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    Science.gov (United States)

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  18. Heavy metal pollution and forest health in the Ukrainian Carpathians

    International Nuclear Information System (INIS)

    Shparyk, Y.S.; Parpan, V.I.

    2004-01-01

    The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils. - Local industrial emissions of heavy metal pollution and the condition of Ukrainian Carpathians forests are examined

  19. Height-Diameter Models for Mixed-Species Forests Consisting of Spruce, Fir, and Beech

    Directory of Open Access Journals (Sweden)

    Petráš Rudolf

    2014-06-01

    Full Text Available Height-diameter models define the general relationship between the tree height and diameter at each growth stage of the forest stand. This paper presents generalized height-diameter models for mixed-species forest stands consisting of Norway spruce (Picea abies Karst., Silver fir (Abies alba L., and European beech (Fagus sylvatica L. from Slovakia. The models were derived using two growth functions from the exponential family: the two-parameter Michailoff and three-parameter Korf functions. Generalized height-diameter functions must normally be constrained to pass through the mean stand diameter and height, and then the final growth model has only one or two parameters to be estimated. These “free” parameters are then expressed over the quadratic mean diameter, height and stand age and the final mathematical form of the model is obtained. The study material included 50 long-term experimental plots located in the Western Carpathians. The plots were established 40-50 years ago and have been repeatedly measured at 5 to 10-year intervals. The dataset includes 7,950 height measurements of spruce, 21,661 of fir and 5,794 of beech. As many as 9 regression models were derived for each species. Although the “goodness of fit” of all models showed that they were generally well suited for the data, the best results were obtained for silver fir. The coefficient of determination ranged from 0.946 to 0.948, RMSE (m was in the interval 1.94-1.97 and the bias (m was -0.031 to 0.063. Although slightly imprecise parameter estimation was established for spruce, the estimations of the regression parameters obtained for beech were quite less precise. The coefficient of determination for beech was 0.854-0.860, RMSE (m 2.67-2.72, and the bias (m ranged from -0.144 to -0.056. The majority of models using Korf’s formula produced slightly better estimations than Michailoff’s, and it proved immaterial which estimated parameter was fixed and which parameters

  20. Food Abundance Is the Main Determinant of High-Altitude Range Use in Snub-Nosed Monkeys

    Directory of Open Access Journals (Sweden)

    Cyril C. Grueter

    2012-01-01

    Full Text Available High-altitude dwelling primates have to optimize navigating a space that contains both a vertical and horizontal component. Black-and-white or Yunnan snub-nosed monkeys (Rhinopithecus bieti are extreme by primate standards in inhabiting relatively cold subalpine temperate forests at very high altitudes where large seasonal variation in climate and food availability is expected to profoundly modulate their ranging strategies so as to ensure a positive energy balance. A “semi-nomadic” group of R. bieti was followed for 20 months in the montane Samage Forest, Baimaxueshan Nature Reserve, Yunnan, PRC, which consisted of evergreen conifers, oaks, and deciduous broadleaf trees. The aim of this study was to disentangle the effects of climate and phenology on patterns of altitudinal range use. Altitude used by the group ranged from a maximum of 3550 m in July 2007 to a minimum of 3060 m in April 2006. The proportional use of lichen, the monkeys’ staple fallback food, in the diet explained more variation in monthly use of altitudes than climatic factors and availability of flush and fruit. The abundance of lichens at high altitudes, the lack of alternative foods in winter, and the need to satisfy the monkey's basal energetic requirements explain the effect of lichenivory on use of altitudes.

  1. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    Science.gov (United States)

    Petrillo, M.; Cherubini, P.; Fravolini, G.; Ascher, J.; Schärer, M.; Synal, H.-A.; Bertoldi, D.; Camin, F.; Larcher, R.; Egli, M.

    2015-09-01

    Due to the large size and highly heterogeneous spatial distribution of deadwood, the time scales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests have been poorly investigated and are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the five-decay class system commonly employed for forest surveys, based on a macromorphological and visual assessment. For the decay classes 1 to 3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) and some others not having enough tree rings, radiocarbon dating was used. In addition, density, cellulose and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model. In the decay classes 1 to 3, the ages of the CWD were similar varying between 1 and 54 years for spruce and 3 and 40 years for larch with no significant differences between the classes; classes 1-3 are therefore not indicative for deadwood age. We found, however, distinct tree species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were 0.012 to 0.018 yr-1 for spruce and 0.005 to 0.012 yr-1 for larch. Cellulose and lignin time trends half-lives (using a multiple-exponential model) could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 yr for spruce and 50 yr for larch. The half-life of lignin is considerably higher and may be more than 100 years in larch CWD.

  2. Climate-induced mortality of spruce stands in Belarus

    Science.gov (United States)

    Kharuk, Viacheslav I.; Im, Sergei T.; Dvinskaya, Maria L.; Golukov, Alexei S.; Ranson, Kenneth J.

    2015-12-01

    The aim of this work is an analysis of the causes of spruce (Picea abies L.) decline and mortality in Belarus. The analysis was based on forest inventory and Landsat satellite (land cover classification, climate variables (air temperature, precipitation, evaporation, vapor pressure deficit, SPEI drought index)), and GRACE-derived soil moisture estimation (equivalent of water thickness anomalies, EWTA). We found a difference in spatial patterns between dead stands and all stands (i.e., before mortality). Dead stands were located preferentially on relief features with higher water stress risk (i.e., higher elevations, steeper slopes, south and southwestern exposure). Spruce mortality followed a series of repeated droughts between 1990 and 2010. Mortality was negatively correlated with air humidity (r = -0.52), and precipitation (r = -0.57), and positively correlated with the prior year vapor pressure deficit (r = 0.47), and drought increase (r = 0.57). Mortality increased with the increase in occurrence of spring frosts (r = 0.5), and decreased with an increase in winter cloud cover (r = -0.37). Spruce mortality was negatively correlated with snow water accumulation (r = -0.81) and previous year anomalies in water soil content (r = -0.8). Weakened by water stress, spruce stands were attacked by pests and phytopathogens. Overall, spruce mortality in Belarussian forests was caused by drought episodes and drought increase in synergy with pest and phytopathogen attacks. Vast Picea abies mortality in Belarus and adjacent areas of Russia and Eastern Europe is a result of low adaptation of that species to increased drought. This indicates the necessity of spruce replacement by drought-tolerant indigenous (e.g., Pinus sylvestris, Querqus robur) or introduced (e.g., Larix sp. or Pseudotsuga menzieslii) species to obtain sustainable forest growth management.

  3. Size-mediated tree transpiration along soil drainage gradients in a boreal black spruce forest wildfire chronosequence.

    Science.gov (United States)

    Angstmann, J L; Ewers, B E; Kwon, H

    2012-05-01

    Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had ∼ 50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.

  4. Using Silviculture to Influence Carbon Sequestration in Southern Appalachian Spruce-Fir Forests

    Directory of Open Access Journals (Sweden)

    Patrick T. Moore

    2012-06-01

    Full Text Available Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled. We explicitly considered C stored in standing forest stocks and the fate of forest products derived from harvesting. Over a 100-year simulation period the even-aged scenario (250 Mg C ha1 outperformed the no-action scenario (241 Mg C ha1 in total carbon (TC sequestered. The uneven-aged scenario approached 220 Mg C ha1, but did not outperform the no-action scenario within the simulation period. While the average annual change in C (AAC of the no-action scenario approached zero, or carbon neutral, during the simulation, both the even-aged and uneven-aged scenarios surpassed the no-action by year 30 and maintained positive AAC throughout the 100-year simulation. This study demonstrates that silvicultural treatment of forest stands can increase potential C storage, but that careful consideration of: (1 accounting method (i.e., TC versus AAC; (2 fate of harvested products and; (3 length of the planning horizon (e.g., 100 years will strongly influence the evaluation of C sequestration.

  5. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  6. Carbon sequestration by young Norway spruce monoculture

    Science.gov (United States)

    Pokorny, R.; Rajsnerova, P.; Kubásek, J.

    2012-04-01

    Many studies have been focused on allometry, wood-mass inventory, carbon (C) sequestration, and biomass expansion factors as the first step for the evaluation of C sinks of different plant ecosystems. To identify and quantify these terrestrial C sinks, and evaluate CO2 human-induced emissions on the other hand, information for C balance accounting (for impletion of commitment to Kyoto protocol) are currently highly needed. Temperate forest ecosystems have recently been identified as important C sink. Carbon sink might be associated with environmental changes (elevated [CO2], air temperature, N deposition etc.) and large areas of managed fast-growing young forests. Norway spruce (Pice abies L. Karst) is the dominant tree species (35%) in Central European forests. It covers 55 % of the total forested area in the Czech Republic, mostly at high altitudes. In this contribution we present C sequestration by young (30-35 year-old) Norway spruce monocultures in highland (650-700 m a.s.l., AT- mean annual temperature: 6.9 ° C; P- annual amount of precipitation: 700 mm; GL- growing season duration: 150 days) and mountain (850-900 m a.s.l.; AT of 5.5 ° C; P of 1300 mm; and GL of 120 days) areas and an effect of a different type of thinning. However, the similar stem diameter at the breast height and biomass proportions among above-ground tree organs were obtained in the both localities; the trees highly differ in their height, above-ground organ's biomass values and total above ground biomass, particularly in stem. On the total mean tree biomass needle, branch and stem biomass participated by 22 %, 24 % and 54 % in highland, and by 19 %, 23 % and 58 % in mountain area, respectively. Silvicultural management affects mainly structure, density, and tree species composition of the stand. Therefore, dendrometric parameters of a tree resulted from genotype, growth conditions and from management history as well. Low type of thinning (LT; common in highland) stimulates rather tree

  7. Managing Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model

    Directory of Open Access Journals (Sweden)

    Gilles Joanisse

    2013-07-01

    Full Text Available Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces recruitment and causes stagnant conifer growth, lasting decades on some sites. Additionally, peat accumulation due to Sphagnum growth after harvest forces the roots of regenerating conifers out of the relatively nutrient rich and warm mineral soil into the relatively nutrient poor and cool organic layer, with drastic effects on growth. Shifts from once productive black spruce forests to ericaceous heaths or paludified forests affect forest productivity and biodiversity. Under natural disturbance dynamics, fires severe enough to substantially reduce the organic layer thickness and affect ground cover species are required to establish a productive regeneration layer on such sites. We succinctly review how understory vegetation influences black spruce ecosystem dynamics in eastern boreal Canada, and present a multi-scale research model to understand, limit the loss and restore productive and diverse ecosystems in this region. Our model integrates knowledge of plant-level mechanisms in the development of silvicultural tools to sustain productivity. Fundamental knowledge is integrated at stand, landscape, regional and provincial levels to understand the distribution and dynamics of ericaceous shrubs and paludification processes and to support tactical and strategic forest management. The model can be adapted and applied to other natural resource management problems, in other biomes.

  8. The effects of a western spruce budworm outbreak on the dead wood component in relation to ownership in forests of eastern Oregon

    Science.gov (United States)

    David. Azuma

    2010-01-01

    Forest Inventory and Analysis data were used to investigate the effects of a severe western spruce budworm outbreak on the dead wood component of forests in 11 counties of eastern Oregon for two time periods. The ownership and the level of damage (as assessed by aerial surveys) affected the resulting down woody material and standing dead trees. The pattern of coarse...

  9. Combined fluorescence, reflectance, and ground measurements of a stressed Norway spruce forest for forest damage assessment

    Science.gov (United States)

    Banninger, C.

    1991-01-01

    The detection and monitoring of stress and damage in forested areas is of utmost importance to forest managers for planning purposes. Remote sensing are the most suitable means to obtain this information. This requires that remote sensing data employed in a forest survey be properly chosen and utilized for their ability to measure canopy spectral features directly related to key tree and canopy properties that are indicators of forest health and vitality. Plant reflectance in the visible to short wave IR regions (400 to 2500 nm) provides information on its biochemical, biophysical, and morphological make up, whereas plant fluorescence in the 400 to 750 nm region is more indicative of the capacity and functioning of its photosynthetic apparatus. A measure of both these spectral properties can be used to provide an accurate assessment of stress and damage within the forest canopy. Foliar chlorophyll and nitrogen are essential biochemical constituents required for the proper functioning and maintenance of a plant's biological processes. Chlorophyll-a is the prime reactive center for photosynthesis, by which a plant converts CO2 and H2O into necessary plant products. Nitrogen forms an important component of the amino-acids, enzymes, proteins, alkaloids, and cyanogenic compounds that make up a plant, including its pigments. Both chlorophyll and nitrogen have characteristic absorption features in the visible to short wave IR region. By measuring the wavelength position and depth of these features and the fluorescence response of the foliage, the health and vitality of a canopy can be ascertained. Examples for a stressed Norway spruce forest in south-eastern Austria are presented.

  10. Pattern recognition of spruce trees. An integrated, analytical approach to forest damage

    International Nuclear Information System (INIS)

    Simmleit, N.; Schulten, H.R.

    1989-01-01

    In-source pyrolysis-field ionization mass spectrometry was used to fingerprint old needles taken from 90-year-old Norway spruce trees (Picea abies) grown in the Taunus mountains (Federal Republic of Germany). Biometric, physiological variables and elemental compositions of needle and forest soil samples were gathered for the same trees. The mass spectral and conventional data sets were evaluated by principal-component and multiple regression analysis. The results indicate that the mass signal pattern of antioxidants, the soil acidity, the water status, and the nutritional supply of the plant contribute most to the variance of damage symptoms observed in the forest stand investigated. The visual needle loss of the canopy can be predicted by antioxidant, soil acidity, and water status parameters, whereas a further classification according to the discoloration of the needles can only be achieved by adding a soil nutrient component. It is emphasized that multivariate statistical evaluation of complex data sets should be used for the investigation of environmental problems

  11. Vitality of the Estonian forests (results of the inventory and research)

    International Nuclear Information System (INIS)

    Karoles, K.

    1991-01-01

    Factors affecting Estonian forests are: The environmental, specially atmospheric pollution, - the foundation of new forests as monoculture on unsuitable locations, - mechanical damages by unsuitable forest machinery, - unfavourable water conditions, - Heterobasidion or Armillaria rot roots. Local damages in consequence of air pollutants are distributed in environments of Tallinn, Kivioli, Kohtla-Jaerve and the thermal power stations (Narva), where the SO 2 -content in the air is on the average higher than 50 (80) μg/m 3 . Pine forests on dry sand soils (600 ha damaged in 1989) and the older spruce forests show the new type of forest decline. High Al-ion concentration, disturbances of the Ca-Mg-metabolism, an extreme nutrient deficit, (specially N-deficit) and periodical water deficit as well as pathogenic fungi are damaging the trees. Spruces show nonspecific defoliation, needle necrosis, needlefall, occurence of fungal diseases. More damaged are the spruce forests in regions with basic precipitations and high sulphur-deposition. (orig./UWA) [de

  12. The historical role of Ips hauseri (Coleoptera: Curculionidae) in the spruce forest of Ile-Alatausky and Medeo National Parks

    Science.gov (United States)

    N. Mukhamadiev; A. Lynch; C. O' Connor; A. Sagitov; N. Ashikbaev; I. Panyushkina

    2014-01-01

    On 17 May and 27 June 2011 severe cyclonic storms damaged several hundred hectares of spruce forest (Picea schrenkiana) in the Tian Shan Mountains. Bark beetle populations increased rapidly in dead and damaged trees, particularly Ips hauseri, I. typographus, I. sexdentatus, and Piiyogenesperfossus (all Coleoptera: Curculionidae), and there is concern about the...

  13. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir forest soil in Maine, USA

    Science.gov (United States)

    Lindsey E. Rustad; Ivan J. Fernandez

    1998-01-01

    The effect of soil warming on CO2 and CH4 flux from a spruce-fir forest soil was evaluated at the Howland Integrated Forest Study site in Maine, USA from 1993 to 1995. Elevated soil temperatures (~5 °C) were maintained during the snow-free season (May-November) in replicated 15 × 15-m plots using electric cables buried 1-2...

  14. IMPACT OF ALTITUDES ON SOIL CHARACTERISTICS AND ENZYMATIC ACTIVITIES IN FOREST AND FALLOW LANDS OF ALMORA DISTRICT OF CENTRAL HIMALAYA

    OpenAIRE

    B. R. Maurya; Vimal Singh; P. P. Dhyani

    2014-01-01

    Abstract: Altitude is one of the major topographical factors which influence the fertility status of soil. Population explosion has rooted deforestation at different altitudes to bring more area under cultivation leading to fallow lands. Objective of this study was to assess the impact of altitude on electro-chemical properties and enzymatic activities of forest and fallow land soils of Almora district of Central Himalaya. Seventy soil samples were collected from different altitudes of forest...

  15. Patterns of cross-continental variation in tree seed mass in the Canadian Boreal Forest.

    Directory of Open Access Journals (Sweden)

    Jushan Liu

    Full Text Available Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill. B.S.P., white spruce (Picea glauca (Moench Voss and jack pine (Pinus banksiana Lamb across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively, indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they

  16. Predictive Modeling of Black Spruce (Picea mariana (Mill. B.S.P. Wood Density Using Stand Structure Variables Derived from Airborne LiDAR Data in Boreal Forests of Ontario

    Directory of Open Access Journals (Sweden)

    Bharat Pokharel

    2016-12-01

    Full Text Available Our objective was to model the average wood density in black spruce trees in representative stands across a boreal forest landscape based on relationships with predictor variables extracted from airborne light detection and ranging (LiDAR point cloud data. Increment core samples were collected from dominant or co-dominant black spruce trees in a network of 400 m2 plots distributed among forest stands representing the full range of species composition and stand development across a 1,231,707 ha forest management unit in northeastern Ontario, Canada. Wood quality data were generated from optical microscopy, image analysis, X-ray densitometry and diffractometry as employed in SilviScan™. Each increment core was associated with a set of field measurements at the plot level as well as a suite of LiDAR-derived variables calculated on a 20 × 20 m raster from a wall-to-wall coverage at a resolution of ~1 point m−2. We used a multiple linear regression approach to identify important predictor variables and describe relationships between stand structure and wood density for average black spruce trees in the stands we observed. A hierarchical classification model was then fitted using random forests to make spatial predictions of mean wood density for average trees in black spruce stands. The model explained 39 percent of the variance in the response variable, with an estimated root mean square error of 38.8 (kg·m−3. Among the predictor variables, P20 (second decile LiDAR height in m and quadratic mean diameter were most important. Other predictors describing canopy depth and cover were of secondary importance and differed according to the modeling approach. LiDAR-derived variables appear to capture differences in stand structure that reflect different constraints on growth rates, determining the proportion of thin-walled earlywood cells in black spruce stems, and ultimately influencing the pattern of variation in important wood quality attributes

  17. Optimal uneven-aged stocking guides: an application to spruce-fir stands in New England

    Science.gov (United States)

    Jeffrey H. Gove; Mark J. Ducey

    2014-01-01

    Management guides for uneven-aged forest stands periodically need to be revisited and updated based on new information and methods. The current silvicultural guide for uneven-aged spruce-fir management in Maine and the northeast (Frank, R.M. and Bjorkbom, J.C. 1973 A silvicultural guide for spruce-fir in the northeast. General Technical Report NE-6, Forest Service. U.S...

  18. Forest Floor Carbon Exchange of a Boreal Black Spruce Forest in Eastern Canada

    Science.gov (United States)

    Bergeron, O.; Margolis, H. A.; Coursolle, C.

    2009-06-01

    This study reports continuous automated measurements of forest floor carbon (C) exchange over feathermoss, lichen, and sphagnum micro-sites in a black spruce forest in eastern North America during snow-free periods over three years. The response of soil respiration (Rs-auto) and forest floor photosynthesis (Pff) to environmental factors was determined. The seasonal contributions of scaled up Rs-auto adjusted for spatial representativeness (Rs-adj) and Pff (Pff-eco) relative to that of total ecosystem respiration (Re) and photosynthesis (Peco), respectively, were also quantified. Shallow soil temperature explained 67-86% of the variation in Rs-auto for all ground cover types, while deeper soil temperatures were related to Rs-auto only for the feathermoss micro-sites. Base respiration was consistently lower under feathermoss, intermediate under sphagnum, and higher under lichen during all three years. The Rs-adj/Re ratio increased from spring through autumn and ranged from 0.85 to 0.87 annually for the snow-free period. The Rs-adj/Re ratio was negatively correlated with the difference between air and shallow soil temperature and this correlation was more pronounced in autumn than summer and spring. Maximum photosynthetic capacity of the forest floor (Pffmax) saturated at low irradiance levels (~200 μmol m-2 s-1) and decreased with increasing air temperature and vapor pressure deficit for all three ground cover types, suggesting that Pff was more limited by desiccation than by light availability. Pffmax was lowest for sphagnum, intermediate for feathermoss, and highest for lichen for two of the three years. Pff normalized for light peaked at air temperatures of 5-8°C, suggesting that this is the optimal temperature range for Pff. The Pff-eco/Peco ratio varied seasonally from 13 to 24% and reached a minimum in mid-summer when both air temperature and Peco were at their maximum. On an annual basis, Pff-eco accounted for 17-18% of Peco depending on the year and the

  19. Derivation of canopy resistance for water vapour fluxes over a spruce forest, using a new technique for the viscous sublayer resistance

    DEFF Research Database (Denmark)

    Jensen, N.O.; Hummelshøj, P.

    1995-01-01

    The paper reports on some evaporation measurements made above a spruce forest (Picea abies) during late August and the beginning of September 1991. The period was dry, and the response of the trees to this condition is clearly seen in the form of the diurnal course of the evapotranspiration...

  20. Drivers of variability in tree transpiration in a Boreal Black Spruce Forest Chronosequence

    Science.gov (United States)

    Angstmann, J. L.; Ewers, B. E.; Kwon, H.

    2009-12-01

    Boreal forests are of particular interest in climate change studies because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through the impact of more frequent wildfires, warmer, longer growing seasons, and potential drainage of forested wetlands. This study aims to quantify the influence of stand age, drainage condition, and species on tree transpiration and its drivers in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 113 trees (69 Picea mariana (black spruce), 25 Populus tremuloides (trembling aspen), and 19 Pinus banksiana (jack pine) at four stand ages, each containing a well- and poorly-drained site over three growing seasons (2006-2008). Sap flux per unit xylem area, JS, was expressed as transpiration per unit ground area, EC, and transpiration per unit leaf area, EL, using site- and species-specific allometry to obtain sapwood area (AS)and leaf area(AL)per unit ground area. Well-drained, younger Picea mariana daily JS was 47-64% greater than the older well-drained burn ages and younger poorly-drained stands were 64-68% greater than the two oldest poorly-drained stands. Daily EL in the well-drained Picea mariana stands was on average 12-33% higher in younger stand than in the two oldest stands whereas young, poorly-drained Picea mariana had 71% greater daily EL than the older stands. Well-drained Picea mariana trees had 52% higher daily EC than older trees and poorly-drained Picea mariana in the 1964 burn had 42-81% higher daily EC than the oldest stands. Populus tremuloides located in the two youngest stands had daily JS 38-58% greater rates than the 1930 burn, whereas daily EL and EC had no distint differences due to high interannual variability. Pinus banksiana experienced 21-33% greater daily JS in the 1989 burn than in the older 1964 burn for well- and poorly-drained sites

  1. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  2. Migration and bioavailability of 137Cs in forest soil of southern Germany

    International Nuclear Information System (INIS)

    Konopleva, I.; Klemt, E.; Konoplev, A.; Zibold, G.

    2009-01-01

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered

  3. Behaviour of arsenic in forested catchments following a high-pollution period

    International Nuclear Information System (INIS)

    Novak, Martin; Erbanova, Lucie; Fottova, Daniela; Cudlin, Pavel; Kubena, Ales

    2011-01-01

    Due to high availability of adsorption sites, forested catchments could be net sinks for pollutant arsenic both during the period of increasing and decreasing pollution. We tested this hypothesis along a north-south pollution gradient in spruce die-back affected areas of Central Europe. For two water years (2007-2008), we monitored As fluxes via spruce-canopy throughfall, open-area precipitation, and runoff in four headwater catchments (Czech Republic). Since 1980, atmospheric As inputs decreased 26 times in the north, and 13 times in the south. Arsenic export by runoff was similar to atmospheric inputs at three sites, resulting in a near-zero As mass balance. One site exhibited a net export of As (2.2 g ha -1 yr -1 ). In contrast, the preceding period (1995-2006) showed much higher As fluxes, and higher As export. Czech catchments do not serve as net sinks of atmospheric As. A considerable proportion of old industrial arsenic is flushed out of the soil. - Following a period of high atmospheric As deposition, a considerable proportion of old industrial arsenic is flushed out of soil and exported from forested catchments.

  4. A comparison of Alpine emissions to forest soil and spruce needle loads for persistent organic pollutants (POPs)

    Energy Technology Data Exchange (ETDEWEB)

    Belis, C.A., E-mail: claudio.belis@jrc.ec.europa.e [Regional Agency for Environmental Protection of Lombardia (Italy); Offenthaler, I.; Uhl, M.; Nurmi-Legat, J. [Umweltbundesamt GmbH (Austria); Bassan, R. [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Jakobi, G.; Kirchner, M. [Helmholtz Zentrum Muenchen, German Research Centre for Environment and Health (Germany); Knoth, W. [German Federal Environmental Agency (Germany); Kraeuchi, N. [WSL Swiss Federal Institute for Forest, Snow and Landscape Research (Switzerland); Levy, W. [Helmholtz Zentrum Muenchen, German Research Centre for Environment and Health (Germany); Magnani, T. [Regional Agency for Environmental Protection of Lombardia (Italy); Moche, W. [Umweltbundesamt GmbH (Austria); Schramm, K.-W. [Regional Agency for Environmental Prevention and Protection of Veneto (Italy); Simoncic, P. [Slovenian Forestry Institute (Slovenia); Weiss, P. [Umweltbundesamt GmbH (Austria)

    2009-12-15

    The project MONARPOP analysed the concentrations of semivolatile organic compounds (SVOCs) in two important sink compartments, needles of Norway spruce (Picea abies [L.] Karst.) and forest soil from 40 remote Alpine forest sites in Austria, Germany, Italy, Slovenia and Switzerland. In the present study the load of PCDD/F, PCB, PBDE, PAH, HCB, HCH and DDT in the Alps calculated on the basis of measured data are compared with their estimated emissions in the Alpine region. It comes out that the masses of the studied pollutants stored in the forests are higher than the corresponding emissions in the Alpine area indicating that the Alps are a sink for POPs advected from surrounding areas. It is assumed that local emissions of PCDD/F and PAH deriving from biomass burning are probably underestimated and that the pool of these pollutants in the forests represents the accumulation over some decades. - The loads of POPs in the Alps are higher than their emissions in the Alpine region.

  5. High-altitude pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    X-Q. Xu

    2009-03-01

    Full Text Available High-altitude pulmonary hypertension (HAPH is a specific disease affecting populations that live at high elevations. The prevalence of HAPH among those residing at high altitudes needs to be further defined. Whereas reduction in nitric oxide production may be one mechanism for the development of HAPH, the roles of endothelin-1 and prostaglandin I2 pathways in the pathogenesis of HAPH deserve further study. Although some studies have suggested that genetic factors contribute to the pathogenesis of HAPH, data published to date are insufficient for the identification of a significant number of gene polymorphims in HAPH. The clinical presentation of HAPH is nonspecific. Exertional dyspnoea is the most common symptom and signs related to right heart failure are common in late stages of HAPH. Echocardiography is the most useful screening tool and right heart catheterisation is the gold standard for the diagnosis of HAPH. The ideal management for HAPH is migration to lower altitudes. Phosphodiesterase 5 is an attractive drug target for the treatment of HAPH. In addition, acetazolamide is a promising therapeutic agent for high-altitude pulmonary hypertension. To date, no evidence has confirmed whether endothelin-receptor antagonists have efficacy in the treatment of high-altitude pulmonary hypertension.

  6. Migration and bioavailability of {sup 137}Cs in forest soil of southern Germany

    Energy Technology Data Exchange (ETDEWEB)

    Konopleva, I.; Klemt, E. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Konoplev, A. [Scientific Production Association ' TYPHOON' , Obninsk (Russian Federation); Zibold, G. [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany)], E-mail: zibold@hs-weingarten.de

    2009-04-15

    To give a quantitative description of the radiocaesium soil-plant transfer for fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus), physical and chemical properties of soils in spruce and mixed forest stands were investigated. Of special interest was the selective sorption of radiocaesium, which was determined by measuring the Radiocaesium Interception Potential (RIP). Forest soil and plants were taken at 10 locations of the Altdorfer Wald (5 sites in spruce forest and 5 sites in mixed forest). It was found that the bioavailability of radiocaesium in spruce forest was on average seven times higher than in mixed forest. It was shown that important factors determining the bioavailability of radiocaesium in forest soil were its exchangeability and the radiocaesium interception potential (RIP) of the soil. Low potassium concentration in soil solution of forest soils favors radiocaesium soil-plant transfer. Ammonium in forest soils plays an even more important role than potassium as a mobilizer of radiocaesium. The availability factor - a function of RIP, exchangeability and cationic composition of soil solution - characterized reliably the soil-plant transfer in both spruce and mixed forest. For highly organic soils in coniferous forest, radiocaesium sorption at regular exchange sites should be taken into account when its bioavailability is considered.

  7. Ozone gradients in a spruce forest stand in relation to wind speed and time of the day

    Science.gov (United States)

    Pleijel, H.; Wallin, G.; Karlsson, P. E.; Skärby, L.

    Ozone concentrations were measured outside and inside a 60-year-old 15-20 m tall spruce forest at a wind-exposed forest edge in southwest Sweden, at 3 and 13 m height 15 m outside the forest, and at 3 and 13 m height inside the forest 45 m from the forest edge. Measurements at 3 m were made with three replicate tubes on each site, the replicates being separated by 10 m. In addition, horizontal and vertical wind speeds were measured at 8 m height outside and inside the forest. During daytime, the concentrations inside the forest were generally slightly lower. Negative ozone concentration gradients from the open field into the forest were observed at 3 m height when the wind speed was below approximately 1.5 m s -1. At very low wind speeds, mainly occurring during the night, the ozone concentrations at 3 m height were frequently higher inside the forest than outside the forest. This may be caused by a very large aerodynamic resistance to ozone deposition, due to very small air movements inside the forest under stable conditions. It is concluded that ozone uptake by the trees is likely to be very small at night, even if stomata are not entirely closed. Results from open-top chamber experiments are also discussed.

  8. Life-history traits maintain the genomic integrity of sympatric species of the spruce budworm (Choristoneura fumiferana) group on an isolated forest island

    Science.gov (United States)

    Lisa M. Lumley; Felix A.H. Sperling

    2011-01-01

    Identification of widespread species collected from islands can be challenging due to the potential for local ecological and phenotypic divergence in isolated populations. We sought to determine how many species of the spruce budworm (Choristoneura fumiferana) complex reside in Cypress Hills, an isolated remnant coniferous forest in western Canada....

  9. Environmental equity and the conservation of unique ecosystems: an analysis of the distribution of benefits for protecting Southern Appalachian spruce-fir forests

    Science.gov (United States)

    Joseph E. Aldy; Randall A. Kramer; Thomas P. Holmes

    1999-01-01

    Some critics in the environmental equity literature argue that low-income populations disproportionately have environmental risks, while the wealthy and better educated gain disproportionately from protecting unique ecosystems. The authors test this hypothesis in an analysis of the decline of Southern Appalachian spruce-fir forests. They calculate willingness-to-pay...

  10. Detection of Spatio-Temporal Changes of Norway Spruce Forest Stands in Ore Mountains Using Landsat Time Series and Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Jan Mišurec

    2016-01-01

    Full Text Available The study focuses on spatio-temporal changes in the physiological status of the Norway spruce forests located at the central and western parts of the Ore Mountains (northwestern part of the Czech Republic, which suffered from severe environmental pollution from the 1970s to the 1990s. The situation started improving after the pollution loads decreased significantly at the end of the 1990s. The general trends in forest recovery were studied using the tasseled cap transformation and disturbance index (DI extracted from the 1985–2015 time series of Landsat data. In addition, 16 vegetation indices (VIs extracted from airborne hyperspectral (HS data acquired in 1998 using the Advanced Solid-State Array Spectroradiometer (ASAS and in 2013 using the Airborne Prism Experiment (APEX were used to study changes in forest health. The forest health status analysis of HS image data was performed at two levels of spatial resolution; at a tree level (original 2.0 m spatial resolution, as well as at a forest stand level (generalized to 6.0 m spatial resolution. The temporal changes were studied primarily using the VOG1 vegetation index (VI as it was showing high and stable sensitivity to forest damage for both spatial resolutions considered. In 1998, significant differences between the moderately to heavily damaged (central Ore Mountains and initially damaged (western Ore Mountains stands were detected for all the VIs tested. In 2013, the stands in the central Ore Mountains exhibited VI values much closer to the global mean, indicating an improvement in their health status. This result fully confirms the finding of the Landsat time series analysis. The greatest difference in Disturbance Index (DI values between the central (1998: 0.37 and western Ore Mountains stands (1998: −1.21 could be seen at the end of the 1990s. Nonetheless, levelling of the physiological status of Norway spruce was observed for the central and western parts of the Ore Mountains in

  11. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    Science.gov (United States)

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  12. Near real time/low latency data collection for climate warming manipulations and an elevated CO2 SPRUCE experiment

    Science.gov (United States)

    Krassovski, M.; Hanson, P. J.; Riggs, J. S.; Nettles, W. R., IV

    2017-12-01

    Climate change studies are one of the most important aspects of modern science and related experiments are getting bigger and more complex. One such experiment is the Spruce and Peatland Responses Under Climatic and Environmental Change experiment (SPRUCE, http://mnspruce.ornl.gov) conducted in in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The SPRUCE experimental mission is to assess ecosystem-level biological responses of vulnerable, high carbon terrestrial ecosystems to a range of climate warming manipulations and an elevated CO2 atmosphere. This manipulation experiment generates a lot of observational data and requires a reliable onsite data collection system, dependable methods to transfer data to a robust scientific facility, and real-time monitoring capabilities. This presentation shares our experience of establishing near real time/low latency data collection and monitoring system using satellite communication.

  13. Acute high-altitude sickness

    Directory of Open Access Journals (Sweden)

    Andrew M. Luks

    2017-02-01

    Full Text Available At any point 1–5 days following ascent to altitudes ≥2500 m, individuals are at risk of developing one of three forms of acute altitude illness: acute mountain sickness, a syndrome of nonspecific symptoms including headache, lassitude, dizziness and nausea; high-altitude cerebral oedema, a potentially fatal illness characterised by ataxia, decreased consciousness and characteristic changes on magnetic resonance imaging; and high-altitude pulmonary oedema, a noncardiogenic form of pulmonary oedema resulting from excessive hypoxic pulmonary vasoconstriction which can be fatal if not recognised and treated promptly. This review provides detailed information about each of these important clinical entities. After reviewing the clinical features, epidemiology and current understanding of the pathophysiology of each disorder, we describe the current pharmacological and nonpharmacological approaches to the prevention and treatment of these diseases.

  14. Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation.

    Directory of Open Access Journals (Sweden)

    Jiří Kaňa

    Full Text Available Mountain forests in National park Bohemian Forest (Czech Republic were affected by bark beetle attack and windthrows in 2004-2008, followed by an extensive tree dieback. We evaluated changes in the biochemistry of the uppermost soil horizons with the emphasis on carbon (C and nitrogen (N cycling in a near-natural spruce (Picea abies mountain forest after the forest dieback, and compared it with an undisturbed control plot of similar age, climate, elevation, deposition, N-saturation level, and land use history. We hypothesised that the high litter input after forest dieback at the disturbed plot and its consequent decomposition might influence the availability of C for microorganisms, and consequently, N transformations in the soil. The concentrations of dissolved organic C (DOC and N (DON in soil water extracts rapidly increased at the disturbed plot for 3 yeas and then continually decreased. Net ammonification exhibited a similar trend as DOC and DON, indicating elevated mineralization. Despite the high ammonium concentrations found after the forest dieback (an increase from 0.5 mmol kg-1 to 2-3 mmol kg-1, net nitrification was stable and low during these 3 years. After the DOC depletion and decrease in microbial biomass 5 years after the forest dieback, net nitrification started to rise, and nitrate concentrations increased from 0.2-1 mmol kg-1 to 2-3 mmol kg-1. Our results emphasize the key role of the availability of organic C in microbial N transformations, which probably promoted microbial heterotrophic activity at the expense of slow-growing nitrifiers.

  15. Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050.

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-10-05

    Tibet's forests, in contrast to China's other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet's forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr -1 between 2001 and 2010 and a decrease of 1.9 Tg C yr -1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet's mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity.

  16. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  17. Solar radiation as a factor influencing the raid spruce bark beetle (Ips typographus) during spring swarming

    International Nuclear Information System (INIS)

    Mezei, P.

    2011-01-01

    Monitoring of spruce bark beetle in nature reserve Fabova hola Mountain in the Slovenske Rudohorie Mountains at an altitude of 1.100-1.440 meters was conducted from 2006 to 2009. Slovenske Rudohorie Mountains was affected by two windstorms (2004 and 2007) followed by a gradation of bark beetles. This article has examined the dependence between amount of solar radiation and trapping of spruce bark beetle into pheromone traps.

  18. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US

    Science.gov (United States)

    Johnny L. Boggs; Steven G. McNulty; Linda H. Pardo

    2007-01-01

    We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999...

  19. Recovery of carbon pools a decade after wildfire in black spruce forests of interior Alaska: effects of soil texture and landscape position

    Science.gov (United States)

    Gregory P. Houle; Evan S. Kane; Eric S. Kasischke; Carolyn M. Gibson; Merritt R. Turetsky

    2017-01-01

    We measured organic-layer (OL) recovery and carbon stocks in dead woody debris a decade after wildfire in black spruce (Picea mariana (Mill.) B.S.P.) forests of interior Alaska. Previous study at these research plots has shown the strong role that landscape position plays in governing the proportion of OL consumed during fire and revegetation after...

  20. Diagnostic criteria of high-altitude de-adaptation for high-altitude migrants returning to the plains: a multicenter, randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Qi-quan ZHOU

    2012-02-01

    Full Text Available Objective  To investigate the diagnostic method of high-altitude de-adaptation and constitute the diagnostic criteria of high-altitude de-adaptation for people returning to the plains from high-altitude. Methods  Epidemiological survey and clinical multicenter randomized controlled studies were used to determine/perform blood picture, routine urine analysis, routine stool examination, myocardial enzymes, liver and kidney functions, nerve function, sex hormone, microalbuminuria, ECG, echocardiography, pulmonary function tests, and so on, in 3011 subjects after they returned to the plains from high-altitude. The diagnostic criteria of high-altitude de-adaptation were formulated by a comparative analysis of the obtained data with those of healthy subjects living in the same area, altitude, and age. The regularity and characteristics of high-altitude de-adaptation syndrome were found and diagnostic criteria for high-altitude de-adaptation was established based on the results. Results  The investigative results showed that the incidence of high-altitude de-adaptation syndrome was found in 84.36% of population returning to the plains from high-altitude. About 60% of them were considered to have mild reactions, 30% medium, and only 10% were severe. The lower the altitude they returned to, the longer the duration of stay in highland, and the heavier the labor they engaged in high altitude, the higher the incidence rate of high-altitude de-adaptation syndrome was. Patients with high-altitude de-adaptation syndrome exhibited hematological abnormality and abnormal ventricular function, especially the right ventricular diastolic function after returning for 1 year to 5 years. Long-term hypoxia exposure often caused obvious change in cardiac morphology with left and right ventricular hypertrophy, particularly the right ventricle. In addition, low blood pressure and low pulse pressure were found at times. Microalbuminuria was found in some high-altitude de

  1. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    Science.gov (United States)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  2. Forest biomass carbon stocks and variation in Tibet’s carbon-dense forests from 2001 to 2050

    Science.gov (United States)

    Sun, Xiangyang; Wang, Genxu; Huang, Mei; Chang, Ruiying; Ran, Fei

    2016-01-01

    Tibet’s forests, in contrast to China’s other forests, are characterized by primary forests, high carbon (C) density and less anthropogenic disturbance, and they function as an important carbon pool in China. Using the biomass C density data from 413 forest inventory sites and a spatial forest age map, we developed an allometric equation for the forest biomass C density and forest age to assess the spatial biomass C stocks and variation in Tibet’s forests from 2001 to 2050. The results indicated that the forest biomass C stock would increase from 831.1 Tg C in 2001 to 969.4 Tg C in 2050, with a net C gain of 3.6 Tg C yr−1 between 2001 and 2010 and a decrease of 1.9 Tg C yr−1 between 2040 and 2050. Carbon tends to allocate more in the roots of fir forests and less in the roots of spruce and pine forests with increasing stand age. The increase of the biomass carbon pool does not promote significant augmentation of the soil carbon pool. Our findings suggest that Tibet’s mature forests will remain a persistent C sink until 2050. However, afforestation or reforestation, especially with the larger carbon sink potential forest types, such as fir and spruce, should be carried out to maintain the high C sink capacity. PMID:27703215

  3. Forest floor carbon exchange of a boreal black spruce forest in eastern North America

    Science.gov (United States)

    Bergeron, O.; Margolis, H. A.; Coursolle, C.

    2009-09-01

    This study reports continuous automated measurements of forest floor carbon (C) exchange over feathermoss, lichen, and sphagnum micro-sites in a black spruce forest in eastern North America during snow-free periods over three years. The response of soil respiration (Rs-auto) and forest floor photosynthesis (Pff) to environmental factors was determined. The seasonal contributions of scaled up Rs-auto adjusted for spatial representativeness (Rs-adj) and Pff (Pff-eco) relative to that of total ecosystem respiration (Re) and photosynthesis (Peco), respectively, were also quantified. Shallow (5 cm) soil temperature explained 67-86% of the variation in Rs-auto for all ground cover types, while deeper (50 and 100 cm) soil temperatures were related to Rs-auto only for the feathermoss micro-sites. Base respiration was consistently lower under feathermoss, intermediate under sphagnum, and higher under lichen during all three years. The Rs-adj/Re ratio increased from spring through autumn and ranged from 0.85 to 0.87 annually for the snow-free period. The Rs-adj/Re ratio was negatively correlated with the difference between air and shallow soil temperature and this correlation was more pronounced in autumn than summer and spring. Maximum photosynthetic capacity of the forest floor (Pff-max) saturated at low irradiance levels (~200 μmol m-2 s-1) and decreased with increasing air temperature and vapor pressure deficit for all three ground cover types, suggesting that Pff was more limited by desiccation than by light availability. Pff-max was lowest for sphagnum, intermediate for feathermoss, and highest for lichen for two of the three years. Pff normalized for light peaked at air temperatures of 5-8°C, suggesting that this is the optimal temperature range for Pff. The Pff-eco/Peco ratio varied from 13 to 24% over the snow-free period and reached a minimum in mid-summer when both air temperature and Peco were at their maximum. On an annual basis, Pff-eco accounted for 17

  4. Warming and neighbor removal affect white spruce seedling growth differently above and below treeline.

    Science.gov (United States)

    Okano, Kyoko; Bret-Harte, M Syndonia

    2015-01-01

    Climate change is expected to be pronounced towards higher latitudes and altitudes. Warming triggers treeline and vegetation shifts, which may aggravate interspecific competition and affect biodiversity. This research tested the effects of a warming climate, habitat type, and neighboring plant competition on the establishment and growth of white spruce (Picea glauca (Moench) Voss) seedlings in a subarctic mountain region. P. glauca seedlings were planted in June 2010 under 4 different treatments (high/control temperatures, with/without competition) in 3 habitats (alpine ridge above treeline/tundra near treeline /forest below treeline habitats). After two growing seasons in 2011, growth, photosynthesis and foliar C and N data were obtained from a total of 156, one-and-a-half year old seedlings that had survived. Elevated temperatures increased growth and photosynthetic rates above and near treeline, but decreased them below treeline. Competition was increased by elevated temperatures in all habitat types. Our results suggest that increasing temperatures will have positive effects on the growth of P. glauca seedlings at the locations where P. glauca is expected to expand its habitat, but increasing temperatures may have negative effects on seedlings growing in mature forests. Due to interspecific competition, possibly belowground competition, the upslope expansion of treelines may not be as fast in the future as it was the last fifty years.

  5. Carbon and Nitrogen dynamics in forest soils depending on light conditions and tree species

    Science.gov (United States)

    Veselinovic, Bojana; Hager, Herbert

    2013-04-01

    Climate change mitigation actions under the Kyoto Protocol apply among other decreases of CO2-emissions and/or increases of carbon (C) stocks. As soils represent the second biggest C-reservoir on Earth, an exact estimation of the stocks and reliable knowledge on C-dynamics in forest soils is of high importance. Anyhow, here, the accurate GHG-accounting, emission reductions and increase in C stocks is hampered due to lack of reliable data and solid statistical methods for the factors which influence C-sequestration in and its release from these systems. In spite of good progress in the scientific research, these factors are numerous and diverse in their interactions. This work focuses on influence of the economically relevant tree species - Picea abies, Fagus sylvatica and Quercus spp. - and light conditions on forest floor and mineral soil C and N dynamics in forest soils. Spruce monocultures have been widely used management practices in central European forests during the past century. Such stands are in lower altitudes and on heavy and water logged soils unstable and prone to disturbances, especially to windthrows. We hypothesize that windthrow areas loose C & N and that the establishment of the previous nutrient stocks is, if at all, only possible to be reached over the longer periods of time. We research also how the increased OM depletion affects the change of C & N stocks in forest floor vs. mineral soil. Conversion of such secondary spruce monocultures to site adequate beech and oak forests may enable higher stocks allocated predominantly as stable organic carbon and as plant available nitrogen. For this purpose sites at 300-700 m altitude with planosols were chosen in the region of the Northern Alpine Foothills. A false chronosequence approach was used in order to evaluate the impacts of the tree species and change in light conditions on dynamic of C & N in the forest floor and mineral soil, over the period 0-100 (for oak 120 y.) years. The C- and N

  6. Animal vectors of eastern dwarf mistletoe of black spruce.

    Science.gov (United States)

    Michael E. Ostry; Thomas H. Nicholls; D.W. French

    1983-01-01

    Describes a study to determine the importance of animals in the spread of eastern dwarf mistletoe of black spruce. Radio telemetry, banding, and color-marking techniques were used to study vectors of this forest pathogen.

  7. Bioecology of the conifer swift moth, Korscheltellus gracilis, a root feeder associated with spruce-fir decline

    Science.gov (United States)

    William E. Wallner; David L. Wagner; Bruce L. Parker; Donald L. Tobi

    1991-01-01

    During the past two decades, the decline of red spruce, Picea rubens Sargent, and balsam fir, Abies balsamea (L), at high elevations (900-1200 m) in eastern North America has evoked concern about the effects of anthropogenic deposition upon terrestrial ecosystems. In many high-elevation forests across New England, as many as 50...

  8. Connection between the decline of spruce and occurrence of animal pests, especially nematodes

    Energy Technology Data Exchange (ETDEWEB)

    Timans, U.

    1986-12-01

    In various regions of Bavaria, affected by the decline of spruce, attack by insects and especially nematodes was examined on diseased and healthy spruces. A connection between harmful forest insects and the decline of spruce did not become evident, neither over wide areas nor by examination of single trees. Attack by nematodes was examined in soil and wood samples and also in fine feeder roots of diseased and healthy trees. Plant-parasitic nematodes were not found in the wood and in feeder roots. Although root-parasitic nematodes were present in soil samples, their density was too little to account for a direct damage to spruce. They occurred likewise in samples from healthy and diseased trees. Plant-parasitic nematodes can thus be excluded as a possible causal agent for the decline of spruce.

  9. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    Directory of Open Access Journals (Sweden)

    Zhaosheng Fan

    Full Text Available Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC into soil-water systems can stimulate the decomposition of soil OC (SOC via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude in boreal ecosystems. In this study, a coupled dissolved OC (DOC transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration, highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  10. Priming effects in boreal black spruce forest soils: quantitative evaluation and sensitivity analysis.

    Science.gov (United States)

    Fan, Zhaosheng; Jastrow, Julie D; Liang, Chao; Matamala, Roser; Miller, Raymond Michael

    2013-01-01

    Laboratory studies show that introduction of fresh and easily decomposable organic carbon (OC) into soil-water systems can stimulate the decomposition of soil OC (SOC) via priming effects in temperate forests, shrublands, grasslands, and agro-ecosystems. However, priming effects are still not well understood in the field setting for temperate ecosystems and virtually nothing is known about priming effects (e.g., existence, frequency, and magnitude) in boreal ecosystems. In this study, a coupled dissolved OC (DOC) transport and microbial biomass dynamics model was developed to simultaneously simulate co-occurring hydrological, physical, and biological processes and their interactions in soil pore-water systems. The developed model was then used to examine the importance of priming effects in two black spruce forest soils, with and without underlying permafrost. Our simulations showed that priming effects were strongly controlled by the frequency and intensity of DOC input, with greater priming effects associated with greater DOC inputs. Sensitivity analyses indicated that priming effects were most sensitive to variations in the quality of SOC, followed by variations in microbial biomass dynamics (i.e., microbial death and maintenance respiration), highlighting the urgent need to better discern these key parameters in future experiments and to consider these dynamics in existing ecosystem models. Water movement carries DOC to deep soil layers that have high SOC stocks in boreal soils. Thus, greater priming effects were predicted for the site with favorable water movement than for the site with limited water flow, suggesting that priming effects might be accelerated for sites where permafrost degradation leads to the formation of dry thermokarst.

  11. Dynamics of calcium concentration in stemwood of red spruce and Siberian fir

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Rakesh Minocha; Vladislav A. Alexeyev

    1996-01-01

    The atmospheric deposition of strong acid anions such as sulfate and nitrate shifts the ion exchange equilibrium in the rooting zone of sensitive forests. Red spruce and other northern coniferous forests are especially sensitive to deposition due to the shallow rooting of trees in a mor-type forest floor. Initially, the deposition of strong acid ions mobilizes...

  12. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US

    International Nuclear Information System (INIS)

    Boggs, Johnny L.; McNulty, Steven G.; Pardo, Linda H.

    2007-01-01

    We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999, we observed a significant correlation between mean growing season temperature and red spruce basal area growth. Red spruce and deciduous foliar %N correlated significantly with N deposition. Although N deposition has not changed significantly from 1987/1988 to 1999, net nitrification potential decreased significantly at Whiteface. This decrease in net potential nitrification is not consistent with the N saturation hypothesis and suggests that non-N deposition controls, such as climatic factors and immobilization of down dead wood, might have limited N cycling. - Data from the 1999 remeasurement of the red spruce forests suggest that N deposition, to some extent, is continuing to influence red spruce across the northeastern US as illustrated by a significant correlation between N deposition and red spruce foliar %N. Our data also suggest that the decrease in forest floor %N and net nitrification potential across sites from 1987 to 1999 may be due to factors other than N deposition, such as climatic factors and N immobilization in fine woody material (<5 cm diameter)

  13. Proceedings of the US/FRG research symposium: effects of atmospheric pollutants on the spruce-fir forests of the Eastern United States and the Federal Republic of Germany

    Science.gov (United States)

    Gerard, tech. coord. Hertel; Gerard Hertel

    1988-01-01

    Includes 66 papers presented at the US/FRG research symposium: effects of atmospheric pollutants on the spruce-fir forests of the Eastern United States and the Federal Republic of Germany, which was held October 19-23, 1987, in Burlington, Vermont.

  14. Analysis of high-altitude de-acclimatization syndrome after exposure to high altitudes: a cluster-randomized controlled trial.

    Science.gov (United States)

    He, Binfeng; Wang, Jianchun; Qian, Guisheng; Hu, Mingdong; Qu, Xinming; Wei, Zhenghua; Li, Jin; Chen, Yan; Chen, Huaping; Zhou, Qiquan; Wang, Guansong

    2013-01-01

    The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3(rd), 50(th), and 100(th). Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50(th) and 100(th) days, compared with the 3(rd) day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3(rd) day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50(th) day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100(th) day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥ 100(th) days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia.

  15. Radial Growth Response of Black Spruce Stands Ten Years after Experimental Shelterwoods and Seed-Tree Cuttings in Boreal Forest

    Directory of Open Access Journals (Sweden)

    Miguel Montoro Girona

    2016-10-01

    Full Text Available Partial cutting is thought to be an alternative to achieve sustainable management in boreal forests. However, the effects of intermediate harvest intensity (45%–80% on growth remain unknown in black spruce (Picea mariana (Mill. B.S.P. stands, one of the most widely distributed boreal species with great commercial interest. In this study, we analysed the effect of three experimental shelterwood and one seed-tree treatments on tree radial growth in even-aged black spruce stands, 10 years after intervention. Our results show that radial growth response 8–10 years after cutting was 41% to 62% higher than in untreated plots, with stand structure, treatment, tree position relative to skidding trails, growth before cutting and time having significant interactions. The stand structure conditioned tree growth after cutting, being doubled in younger and denser stands. Tree spatial position had a pronounced effect on radial growth; trees at the edge of the skidding trails showed twice the increase in growth compared to interior trees. Dominant trees before cutting located close to the skidding trails manifested the highest growth response after cutting. This research suggests that the studied treatments are effective to enhance radial wood production of black spruce especially in younger stands, and that the edge effect must be considered in silvicultural management planning.

  16. Impacts of non-native Norway spruce plantation on abundance and species richness of ground beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Z. Elek

    2001-06-01

    Full Text Available The impacts of non-native Norway spruce plantation on the abundance and species richness of carabids were studied in the Bükk National Park in Hungary, central Europe. Pitfall catches from recently established (5 yr old, young (15 yr after planting, middle-aged (30 yr after planting, old Norway spruce Picea abies plantation (50 yr after planting, and a native submontane beech forest (Fagetum sylvaticae as a control stand were compared.

    Our results showed that deciduous forest species decreased significantly in abundance in the plantations, and appeared in high abundance only in the native beech forest. Furthermore, open habitat species increased remarkably in abundance in the recently established plantation. Carabids were significantly more abundant and species rich in the native forest than in the plantations, while differences were not significant among the plantations. Multiple regression between the abundance and species richness of carabids and twelve environmental measurements showed that pH of the soil, herb cover and density of the carabids’ prey had a significant effect in determining abundance and species richness.

    Our results showed that plantation of non-native Norway spruce species had a detrimental effect on the composition of carabid communities and no regeneration could be observed during the growth of plantations even 50 yr after the establishment. This emphasises the importance of an active nature management practice to facilitate the recolonization of the native species.

  17. Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using random forest.

    Science.gov (United States)

    Holliday, Jason A; Wang, Tongli; Aitken, Sally

    2012-09-01

    Climate is the primary driver of the distribution of tree species worldwide, and the potential for adaptive evolution will be an important factor determining the response of forests to anthropogenic climate change. Although association mapping has the potential to improve our understanding of the genomic underpinnings of climatically relevant traits, the utility of adaptive polymorphisms uncovered by such studies would be greatly enhanced by the development of integrated models that account for the phenotypic effects of multiple single-nucleotide polymorphisms (SNPs) and their interactions simultaneously. We previously reported the results of association mapping in the widespread conifer Sitka spruce (Picea sitchensis). In the current study we used the recursive partitioning algorithm 'Random Forest' to identify optimized combinations of SNPs to predict adaptive phenotypes. After adjusting for population structure, we were able to explain 37% and 30% of the phenotypic variation, respectively, in two locally adaptive traits--autumn budset timing and cold hardiness. For each trait, the leading five SNPs captured much of the phenotypic variation. To determine the role of epistasis in shaping these phenotypes, we also used a novel approach to quantify the strength and direction of pairwise interactions between SNPs and found such interactions to be common. Our results demonstrate the power of Random Forest to identify subsets of markers that are most important to climatic adaptation, and suggest that interactions among these loci may be widespread.

  18. Shilajit: A panacea for high-altitude problems.

    Science.gov (United States)

    Meena, Harsahay; Pandey, H K; Arya, M C; Ahmed, Zakwan

    2010-01-01

    High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a "health rejuvenator" and help to overcome high-altitude related problems.

  19. Norway spruce (Picea abies/L./Karst.) health status on various forest soil ecological series in Silesian Beskids obtained by grid or selective survey

    Czech Academy of Sciences Publication Activity Database

    Samec, Pavel; Edwards-Jonášová, Magda; Cudlín, Pavel

    2017-01-01

    Roč. 10, 1-2 (2017), s. 57-66 ISSN 1803-2451 R&D Projects: GA MŠk LD15044; GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : spruce decline * survey design * defoliation * forest site ecological series Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) https://beskydy.mendelu.cz/10/1/0057/

  20. A "high severity" spruce beetle outbreak in Wyoming causes moderate-severity carbon cycle perturbations

    Science.gov (United States)

    Berryman, E.; Frank, J. M.; Speckman, H. N.; Bradford, J. B.; Ryan, M. G.; Massman, W. J.; Hawbaker, T. J.

    2017-12-01

    Bark beetle outbreaks in Western North American forests are often considered a high-severity disturbance from a carbon (C) cycling perspective, but field measurements that quantify impacts on C dynamics are very limited. Often, factors out of the researcher's control complicate the separation of beetle impacts from other drivers of C cycling variability and restrict statistical inference. Fortuitously, we had four years of pre-spruce beetle outbreak C cycle measurements in a subalpine forest in southeastern Wyoming (Glacier Lakes Ecosystem Experiments Site, or GLEES) and sustained intermittent monitoring for nearly a decade after the outbreak. Here, we synthesize published and unpublished pre- and post-outbreak measurements of key C cycle stocks and fluxes at GLEES. Multiple lines of evidence, including chamber measurements, eddy covariance measurements, and tracking of soil and forest floor C pools over time, point to the GLEES outbreak as a moderate-severity disturbance for C loss to the atmosphere, despite 70% to 80% of overstory tree death. Reductions in NEE were short-lived and the forest quickly returned to a carbon-neutral state, likely driven by an uptick in understory growth. Effect of mortality on the C cycle was asymmetrical, with a 50% reduction in net carbon uptake (NEE) two years into the outbreak, yet no measureable change in either ecosystem or growing season soil respiration. A small pulse in soil respiration occurred but was only detectable during the winter and amounted to < 10% of NEE. Possible reasons for the lack of measureable respiration response are discussed with emphasis on lessons learned for monitoring and modeling future outbreaks. We suggest a comprehensive assessment and definition of "moderate-severity" disturbances for Western forests and suggest that all tree mortality events may not be high-severity when it comes to C fluxes.

  1. Ecophysiological Responses of Three Tree Species to a High-Altitude Environment in the Southeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jirui Gong

    2018-01-01

    Full Text Available This paper measured the ecophysiological responses of Populus cathayana Rehd., Salix longistamina C. Wang et P. Y. Fu., and Ulmus pumila L. to high altitude in the Tibetan Plateau based on changes in water relations, gas exchange, and chlorophyll fluorescence. P. cathayana and U. pumila have higher survival rates than S. longistamina, but the latter has highest biomass. S. longistamina has higher water-use efficiency (WUE, lower transpiration rates (E, higher water potential (Ψ, highest light saturation point (LSP and higher photosystem II (PSII photochemistry efficiency (Fv’/Fm’ and non-photochemistry quenching (NPQ than the other species, and is thus adapted to its habitat for afforestation. U. pumila has lower E, light compensation point (LCP, dark respiration (Rd, Fv’/Fm’ and electron transport rate (ETR, with higher Ψ, apparent quantum yield (AQY, net photosynthetic rate (Pn and non-photochemical quenching (NPQ, which helps it maintain water balance and utilize weak light to survive at high altitude. Relative low WUE, Ψ, Rd, NPQ, with high E, Pn, Fv’/Fm’ and biomass, imply that P. cathayana is more suitable for shelterbelt forests than for a semi-arid habitat. These three species can adapt to high-altitude conditions by different physiological mechanisms and morphological characteristics, which can provide a theoretical basis for afforestation and forest management in the Qinghai Tibetan Plateau.

  2. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    DEFF Research Database (Denmark)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    .e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied...... ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to similar to 20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings....... In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble...

  3. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude. © 2015 New York Academy of Sciences.

  4. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate

    Science.gov (United States)

    E.E. Jafarov; V.E. Romanovsky; H. Genet; A.D. McGuire; S.S. Marchenko

    2013-01-01

    Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1)...

  5. Two-dimensional wavelet analysis of spruce budworm host basal area in the Border Lakes landscape

    Science.gov (United States)

    Patrick M. James; Brian R. Sturtevant; Phil Townsend; Pete Wolter; Marie-Josee. Fortin

    2011-01-01

    Increases in the extent and severity of spruce budworm (Choristoneura fumiferana Clem.) outbreaks over the last century are thought to be the result of changes in forest structure due to forest management. A corollary of this hypothesis is that manipulations of forest structure and composition can be used to reduce future forest vulnerability....

  6. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils

    Czech Academy of Sciences Publication Activity Database

    Siles, J. A.; Cajthaml, Tomáš; Minerbi, S.; Margesin, R.

    2016-01-01

    Roč. 92, č. 3 (2016), fiw008 ISSN 0168-6496 Institutional support: RVO:61388971 Keywords : Alpine soil s * forest * altitude Subject RIV: EE - Microbiology, Virology Impact factor: 3.720, year: 2016

  7. Disruption of calcium nutrition at Hubbard Brook Experimental Forest (New Hampshire) alters the health and productivity of red spruce and sugar maple trees and provides lessons pertinent to other sites and regions

    Science.gov (United States)

    Paul G. Schaberg; Gary J. Hawley

    2010-01-01

    Pollution-induced acidification and other anthropogenic factors are leaching calcium (Ca) and mobilizing aluminum (Al) in many forest soils. Because Ca is an essential nutrient and Al is a potential toxin, resulting depletions of Ca and increases in available Al may significantly alter the health and productivity of forest trees. Controlled experiments on red spruce (...

  8. High Altitude Launch for a Practical SSTO

    Science.gov (United States)

    Landis, Geoffrey A.; Denis, Vincent

    2003-01-01

    Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).

  9. Migration of 134,137Cs radionuclides in the soil and uptake by plants in German spruce forests

    International Nuclear Information System (INIS)

    Buermann, W.; Drissner, J.; Miller, R.; Heider, R.; Lindner, G.; Zibold, G.; Sykowa, T.

    1994-01-01

    In southern German spruce forests on different geological substrates the depth distributions of the activity inventories of 134 Cs and 137 Cs radionuclides from Chernobyl and nuclear weapons testing fallout and the corresponding activity concentrations in the dry mass of different plants were measured. Using a compartment model based on first order kinetics, the vertical residence half-times and migration rates of 137 Cs were calculated. Migration rates decrease with increasing soil depth and retention time of the 137 Cs radionuclides in the soil. The aggregated soil to plant transfer factors [m 2 /kg] on the other hand, are comparatively high: Up to 1.1 m 2 /kg for fern, and smaller values for bilberry and raspberry. It is suggested that a fixation of cesium radionuclides in the organic matter of the litter debris occurs and that the transfer to plants is mediated by carrier substances produced by microorganisms responsible for the degradation of the litter. (orig.)

  10. Application of GIS to Empirical Windthrow Risk Model in Mountain Forested Landscapes

    Directory of Open Access Journals (Sweden)

    Lukas Krejci

    2018-02-01

    Full Text Available Norway spruce dominates mountain forests in Europe. Natural variations in the mountainous coniferous forests are strongly influenced by all the main components of forest and landscape dynamics: species diversity, the structure of forest stands, nutrient cycling, carbon storage, and other ecosystem services. This paper deals with an empirical windthrow risk model based on the integration of logistic regression into GIS to assess forest vulnerability to wind-disturbance in the mountain spruce forests of Šumava National Park (Czech Republic. It is an area where forest management has been the focus of international discussions by conservationists, forest managers, and stakeholders. The authors developed the empirical windthrow risk model, which involves designing an optimized data structure containing dependent and independent variables entering logistic regression. The results from the model, visualized in the form of map outputs, outline the probability of risk to forest stands from wind in the examined territory of the national park. Such an application of the empirical windthrow risk model could be used as a decision support tool for the mountain spruce forests in a study area. Future development of these models could be useful for other protected European mountain forests dominated by Norway spruce.

  11. Impact of climate change on radial growth of Siberian spruce and Scots pine in North-western Russia

    Directory of Open Access Journals (Sweden)

    Lopatin E

    2007-01-01

    Full Text Available When adapting forest management practices to a changing environment, it is very important to understand the response of an unmanaged natural forest to climate change. The method used to identify major climatic factors influencing radial growth of Siberian spruce and Scots pine along a latitudinal gradient in north-western Russia is dendroclimatic analysis. A clear increasing long-term trend was identified in air temperature and precipitation. During the last 20 years, all meteorological stations experienced temperature increases, and 40 years ago precipitation began to increase. This is shown by the radial increment of Siberian spruce and Scots pine. Therefore, climate change could partly explain the increased forest productivity. The total variance explained by temperature varied from 22% to 41% and precipitation from 19% to 38%. The significant climatic parameters for radial increment in Komi Republic were identified, and the relation between temperature and precipitation in explained variance changes over time for Siberian spruce.

  12. Structure, development and health status of spruce forests affected by air pollution in the western Krkonoše Mts. in 1979–2014

    Directory of Open Access Journals (Sweden)

    Král Jan

    2015-09-01

    Full Text Available The structure and health status of waterlogged or peaty spruce (Picea abies [L.] Karst. forests in the summit parts of the Krkonoše Mts. in the Czech Republic were studied in 1979–2014. The objective was to evaluate the stand structure, dead wood, trend of the health status and productivity on four permanent research plots (PRP in relation to air pollution (SO2 and NOx concentrations and climatic conditions (temperatures and precipitation amounts. Stand structure was evaluated on the base of the measured parameters of individual trees on PRP. The health status of trees was evaluated according to foliage, and their vitality was assessed according to their radial growth documented by dendrochronological analyses. The radial growth was negatively correlated with SO2 and NOx concentrations. Stand dynamics during the observation period was characterised by increased tree mortality, the presence of dead wood and reduction of stand density from 1983 to 1992, while the most severe impairment of health status and stand stability occurred in 1982–1987. The foliage mass of living trees has been gradually increasing since 1988, but no pronounced improvement of tree vitality was documented after the decrease in SO2 concentration. However, particularly physiologically weakened spruce trees were attacked by the European spruce bark beetle (Ips typographus. The process of forest damage is manifested not only by foliage reduction but also by symptoms of various necroses on the assimilatory organs. In terms of climatic data, the weather in April had the most important effect on radial growth. Diameter increment showed positive statistically significant correlation with temperature in growing season, but the precipitation effect was low.

  13. Ozone concentration characteristics in and over a high-altitude forest

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, G.L.; Zeller, K.F.; Musselman, R.C. [USDA Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO (United States)

    1994-12-31

    Four years of atmospheric ozone data from a subalpine forest site at an elevation of 3180 m above mean sea level (msl) about 55 km west of Laramie, Wyoming, U.S.A., and at a 2680 msl forest-steppe ecotone site 15 km to the southeast, have been analyzed. These sites appear to be free of any urban or industrial pollutants. Data for January through June show that the amplitude of the diurnal cycle of hourly mean values is small in winter, then increases through June. The highest monthly mean concentrations occur in April or May, and decrease in June. Episodal high O{sub 3} values were measured during spring months in connection with cutoff low pressure centers aloft and probable stratospheric intrusions. Spectral analyses yield a peak at the diurnal period and broad peaks at longer periodicities, particularly during the spring season. (orig.)

  14. Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates

    Science.gov (United States)

    P.G. Shaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong

    2000-01-01

    Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...

  15. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, K.; Smith, W.K. [Wake Forest Univ., Winston-Salem, NC (United States). Dept. of Biology

    2008-01-15

    Global climate change is expected to increase regional cloud ceiling levels in many mountainous forested areas of the world. This study investigated environmental influences on the gas exchange physiology of understory red spruce and Fraser fir trees at 2 sites in the Appalachian mountains. The study hypothesized that the humid, cloudy environment would influence the photosynthetic performance of the trees, and that the species would adapt to low, diffuse light. The study also predicted that leaf conductance to carbon dioxide (CO{sub 2}) would be high as a result of low leaf-to-air-vapour pressure deficit (LAVD). The study demonstrated that leaf conductance decreased exponentially as LAVD increased. Predawn leaf water potentials remained stable, while late afternoon values declined. It was concluded that leaf gas exchange was correlated with the response of leaf conductance and LAVD. The cloudy, humid environment strongly influenced tree leaf gas exchange and water relations. It was suggested that further research is needed to investigate cloud impacts on carbon gain and water relations. 72 refs., 1 tab., 8 figs.

  16. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  17. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  18. Red spruce stand dynamics, simulations, and restoration opportunities in the central Appalachians

    Science.gov (United States)

    James S. Rentch; Thomas M. Schuler; W. Mark Ford; Gergory J. Nowacki

    2007-01-01

    Red spruce (Picea rubens)-dominated forests occupied as much as 600,000 ha in West Virginia prior to exploitive logging era of the late nineteenth and early twentieth centuries. Subsequently, much of this forest type was converted to northern hardwoods. As an important habitat type for a number of rare or sensitive species, only about 12,000 ha of...

  19. Drought-triggered western spruce budworm outbreaks in the Interior Pacific Northwest: A multi-century dendrochronological record

    Science.gov (United States)

    A. Flower; D. G. Gavin; E. K. Heyerdahl; R. A. Parsons; G. M. Cohn

    2014-01-01

    Douglas-fir forests in the interior Pacific Northwest are subject to sporadic outbreaks of the western spruce budworm, a species widely recognized as the most destructive defoliator in western North America. Outbreaks of the western spruce budworm often occur synchronously over broad regions and lead to widespread loss of leaf area and decrease in growth rates in...

  20. Comparison of the Chemical Properties of Forest Soil from the Silesian Beskid, Poland

    Directory of Open Access Journals (Sweden)

    Maria Zołotajkin

    2014-01-01

    Full Text Available There is spruce forests degradation observed in the Silesian Beskid. The aim of the work was the assessment of parameters diversifying organic layers of soils in two forest areas: degraded and healthy spruce forests of Silesian Beskid. 23 soil samples were collected from two fields—14 soil samples from a degraded forest and 9 soil samples from a forest, where pandemic dying of spruce is not observed. Implementation of hierarchical clustering to experimental data analysis allowed drawing a conclusion that the two forest areas vary significantly in terms of content of aluminium extracted with solutions of barium chloride (Alexch, sodium diphosphate (Alpyr, and pHKCl and in the amount of humus in soil.

  1. High-Altitude Illnesses: Physiology, Risk Factors, Prevention, and Treatment

    Directory of Open Access Journals (Sweden)

    Andrew T. Taylor

    2011-01-01

    Full Text Available High-altitude illnesses encompass the pulmonary and cerebral syndromes that occur in non-acclimatized individuals after rapid ascent to high altitude. The most common syndrome is acute mountain sickness (AMS which usually begins within a few hours of ascent and typically consists of headache variably accompanied by loss of appetite, nausea, vomiting, disturbed sleep, fatigue, and dizziness. With millions of travelers journeying to high altitudes every year and sleeping above 2,500 m, acute mountain sickness is a wide-spread clinical condition. Risk factors include home elevation, maximum altitude, sleeping altitude, rate of ascent, latitude, age, gender, physical condition, intensity of exercise, pre-acclimatization, genetic make-up, and pre-existing diseases. At higher altitudes, sleep disturbances may become more profound, mental performance is impaired, and weight loss may occur. If ascent is rapid, acetazolamide can reduce the risk of developing AMS, although a number of high-altitude travelers taking acetazolamide will still develop symptoms. Ibuprofen can be effective for headache. Symptoms can be rapidly relieved by descent, and descent is mandatory, if at all possible, for the management of the potentially fatal syndromes of high-altitude pulmonary and cerebral edema. The purpose of this review is to combine a discussion of specific risk factors, prevention, and treatment options with a summary of the basic physiologic responses to the hypoxia of altitude to provide a context for managing high-altitude illnesses and advising the non-acclimatized high-altitude traveler.

  2. The incidence of dwarf mistletoe in Minnesota black spruce stands detected by operational inventories

    Science.gov (United States)

    Fred Baker; Mark Hansen; John D. Shaw; Manfred Mielke; Dixon Shelstad

    2012-01-01

    We surveyed black spruce stands within 0.5 miles of US Forest Service Forest Inventory and Analysis (FIA) plots and compared dwarf mistletoe status with that of the FIA and Minnesota Department of Natural Resources (DNR) forest inventories. Our results differed from FIA results in 3 of 16 stands with FIA plots, with FIA most often not recording dwarf mistletoe in...

  3. Contribution of black spruce (Picea mariana) transpiration to growing season evapotranspiration in a subarctic discontinuous permafrost peatland complex

    Science.gov (United States)

    Helbig, M.; Warren, R. K.; Pappas, C.; Sonnentag, O.; Berg, A. A.; Chasmer, L.; Baltzer, J. L.; Quinton, W. L.; Patankar, R.

    2016-12-01

    Partitioning the components of evapotranspiration (ET), evaporation and transpiration, has been increasingly important for the better understanding and modeling of carbon, water, and energy dynamics, and for reliable water resources quantification and management. However, disentangling its individual processes remains highly uncertain. Here, we quantify the contribution of black spruce transpiration, the dominant overstory, to ET of a boreal forest-wetland landscape in the southern Taiga Plains. In these ecosystems, thawing permafrost induces rapid landscape change, whereby permafrost-supported forested plateaus are transformed into bogs or fens (wetlands), resulting in tree mortality. Using historical and projected rates of forest-wetland changes, we assess how the contribution of black spruce transpiration to landscape ET might be altered with continued permafrost loss, and quantify the resulting water balance changes. We use two nested eddy covariance flux towers and a footprint model to quantify ET over the entire landscape. Sap flux density of black spruce is measured using the heat ratio method during the 2013 (n=22) and 2014 (n=3) growing seasons, and is used to estimate tree-level transpiration. Allometric relations between tree height, diameter at breast height and sapwood area are derived to upscale tree-level transpiration to overstory transpiration within the eddy covariance footprint. Black spruce transpiration accounts for <10% of total landscape ET. The largest daily contribution of overstory transpiration to landscape ET is observed shortly after the landscape becomes snow-free, continually decreasing throughout the progression of the growing season. Total transpiration is notably lower in 2014 (2.34 mm) than 2013 (2.83 mm) over the same 40-day period, corresponding to 3% of cumulative landscape ET in both years. This difference is likely due to the antecedent moisture conditions, where the 2014 growing season was proceeded by lower than average

  4. Effects of prolonged soil drought on CH4 oxidation in a temperate spruce forest

    Science.gov (United States)

    Borken, W.; Brumme, R.; Xu, Y.-J.

    2000-03-01

    Our objective was to determine potential impacts of changes in rainfall amount and distribution on soil CH4 oxidation in a temperate forest ecosystem. We constructed a roof below the canopy of a 65-year-old Norway spruce forest (Picea abies (L.) Karst.) and simulated two climate change scenarios: (1) an extensively prolonged summer drought of 172 days followed by a rewetting period of 19 days in 1993 and (2) a less intensive summer drought of 108 days followed by a rewetting period of 33 days in 1994. CH4 oxidation, soil matric potential, and soil temperature were measured hourly to daily over a 2-year period. The results showed that annual CH4 oxidation in the drought experiment increased by 102% for the climate change scenario 1 and by 41% for the climate change scenario 2, compared to those of the ambient plot (1.33 kg CH4 ha-1 in 1993 and 1.65 kg CH4 ha-1 in 1994). We tested the relationships between CH4 oxidation rates, water-filled pore space (WFPS), soil matric potential, gas diffusivity, and soil temperature. Temporal variability in the CH4 oxidation rates corresponded most closely to soil matric potential. Employing soil matric potential and soil temperature, we developed a nonlinear model for estimating CH4 oxidation rates. Modeled results were in strong agreement with the measured CH4 oxidation for the ambient (r2 = 0.80) and drought plots (r2 = 0.89) over two experimental years, suggesting that soil matric potential is a highly reliable parameter for modeling CH4 oxidation rate.

  5. Time since death and decay rate constants of Norway spruce and European larch deadwood in subalpine forests determined using dendrochronology and radiocarbon dating

    Science.gov (United States)

    Petrillo, Marta; Cherubini, Paolo; Fravolini, Giulia; Marchetti, Marco; Ascher-Jenull, Judith; Schärer, Michael; Synal, Hans-Arno; Bertoldi, Daniela; Camin, Federica; Larcher, Roberto; Egli, Markus

    2016-03-01

    Due to the large size (e.g. sections of tree trunks) and highly heterogeneous spatial distribution of deadwood, the timescales involved in the coarse woody debris (CWD) decay of Picea abies (L.) Karst. and Larix decidua Mill. in Alpine forests are largely unknown. We investigated the CWD decay dynamics in an Alpine valley in Italy using the chronosequence approach and the five-decay class system that is based on a macromorphological assessment. For the decay classes 1-3, most of the dendrochronological samples were cross-dated to assess the time that had elapsed since tree death, but for decay classes 4 and 5 (poorly preserved tree rings) radiocarbon dating was used. In addition, density, cellulose, and lignin data were measured for the dated CWD. The decay rate constants for spruce and larch were estimated on the basis of the density loss using a single negative exponential model, a regression approach, and the stage-based matrix model. In the decay classes 1-3, the ages of the CWD were similar and varied between 1 and 54 years for spruce and 3 and 40 years for larch, with no significant differences between the classes; classes 1-3 are therefore not indicative of deadwood age. This seems to be due to a time lag between the death of a standing tree and its contact with the soil. We found distinct tree-species-specific differences in decay classes 4 and 5, with larch CWD reaching an average age of 210 years in class 5 and spruce only 77 years. The mean CWD rate constants were estimated to be in the range 0.018 to 0.022 y-1 for spruce and to about 0.012 y-1 for larch. Snapshot sampling (chronosequences) may overestimate the age and mean residence time of CWD. No sampling bias was, however, detectable using the stage-based matrix model. Cellulose and lignin time trends could be derived on the basis of the ages of the CWD. The half-lives for cellulose were 21 years for spruce and 50 years for larch. The half-life of lignin is considerably higher and may be more than

  6. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  7. Can High Altitude Influence Cytokines and Sleep?

    Science.gov (United States)

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  8. Effectiveness of polyethylene sheeting in controlling spruce beetles (Coleoptera: Scolytidae) in infested stacks of spruce firewood in Alaska.

    Science.gov (United States)

    Edward H. Holsten; Richard A. Werner

    1993-01-01

    Covering stacks of spruce firewood with either clear or black polyethylene sheeting does not raise log temperatures high enough to kill spruce beetle brood in the logs. Based on the results of this study, we do not recommend the use of polyethylene sheeting as a remedial measure for the reduction of spruce beetle brood in infested firewood or log decks in south-central...

  9. The Impact of Altitude on Sleep-Disordered Breathing in Children Dwelling at High Altitude: A Crossover Study.

    Science.gov (United States)

    Hughes, Benjamin H; Brinton, John T; Ingram, David G; Halbower, Ann C

    2017-09-01

    Sleep-disordered breathing (SDB) is prevalent among children and is associated with adverse health outcomes. Worldwide, approximately 250 million individuals reside at altitudes higher than 2000 meters above sea level (masl). The effect of chronic high-altitude exposure on children with SDB is unknown. This study aims to determine the impact of altitude on sleep study outcomes in children with SDB dwelling at high altitude. A single-center crossover study was performed to compare results of high-altitude home polysomnography (H-PSG) with lower altitude laboratory polysomnography (L-PSG) in school-age children dwelling at high altitude with symptoms consistent with SDB. The primary outcome was apnea-hypopnea index (AHI), with secondary outcomes including obstructive AHI; central AHI; and measures of oxygenation, sleep quality, and pulse rate. Twelve participants were enrolled, with 10 included in the final analysis. Median altitude was 1644 masl on L-PSG and 2531 masl on H-PSG. Median AHI was 2.40 on L-PSG and 10.95 on H-PSG. Both obstructive and central respiratory events accounted for the difference in AHI. Oxygenation and sleep fragmentation were worse and pulse rate higher on H-PSG compared to L-PSG. These findings reveal a clinically substantial impact of altitude on respiratory, sleep, and cardiovascular outcomes in children with SDB who dwell at high altitude. Within this population, L-PSG underestimates obstructive sleep apnea and central sleep apnea compared to H-PSG. Given the shortage of high-altitude pediatric sleep laboratories, these results suggest a role for home sleep apnea testing for children residing at high altitude. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress

    International Nuclear Information System (INIS)

    Grodzki, Wojciech; McManus, Michael; Knizek, Milos; Meshkova, Valentina; Mihalciuc, Vasile; Novotny, Julius; Turcani, Marek; Slobodyan, Yaroslav

    2004-01-01

    The spruce bark beetle, Ips typographus (L.) is the most serious pest of mature spruce stands, mainly Norway spruce, Picea abies (L.) Karst. throughout Eurasia. A complex of weather-related events and other environmental stresses are reported to predispose spruce stands to bark beetle attack and subsequent tree mortality; however the possible role of industrial pollution as a predisposing factor to attack by this species is poorly understood. The abundance and dynamics of I. typographus populations was evaluated in 60-80 year old Norway spruce stands occurring on 10x50 ha sites in five countries within the Carpathian range that were selected in proximity to established ozone measurement sites. Data were recorded on several parameters including the volume of infested trees, captures of adult beetles in pheromone traps, number of attacks, and the presence and relative abundance of associated bark beetle species. In several cases, stands adjacent to sites with higher ozone values were associated with higher bark beetle populations. The volume of sanitary cuttings, a reflection of tree mortality, and the mean daily capture of beetles in pheromone traps were significantly higher at sites where the O 3 level was higher. However, the mean infestation density on trees was higher in plots associated with lower O 3 levels. Captures of beetles in pheromone traps and infestation densities were higher in the zone above 800 m. However, none of the relationships was conclusive, suggesting that spruce bark beetle dynamics are driven by a complex interaction of biotic and abiotic factors and not by a single parameter such as air pollution. - Air pollution (ozone) can be one of predisposing factors that increases the susceptibility of mountain Norway spruce stands to attack by Ips typographus and associated bark beetle species

  11. Distribution of detritivores in tropical forest streams of peninsular Malaysia: role of temperature, canopy cover and altitude variability

    Science.gov (United States)

    Che Salmah, Md Rawi; Al-Shami, Salman Abdo; Abu Hassan, Ahmad; Madrus, Madziatul Rosemahanie; Nurul Huda, Abdul

    2014-07-01

    The diversity and abundance of macroinvertebrate shredders were investigated in 52 forested streams (local scale) from nine catchments (regional scale) covering a large area of peninsular Malaysia. A total of 10,642 individuals of aquatic macroinvertebrates were collected, of which 18.22 % were shredders. Biodiversity of shredders was described by alpha (αaverage ), beta (β) and gamma diversity (γ) measures. We found high diversity and abundance of shredders in all catchments, represented by 1,939 individuals (range 6-115 and average per site of 37.29 ± 3.48 SE) from 31 taxa with 2-13 taxa per site (αaverage = 6.98 ± 0.33 SE) and 10-15 taxa per catchment (γ = 13.33 ± 0.55 SE). At the local scale, water temperature, stream width, depth and altitude were correlated significantly with diversity (Adj- R 2 = 0.205). Meanwhile, dissolved oxygen, stream velocity, water temperature, stream width and altitude were correlated to shredder abundance (Adj- R 2 = 0.242). At regional scale, however, water temperature was correlated negatively with β and γ diversity ( r 2 = 0.161 and 0.237, respectively) as well as abundance of shredders ( r 2 = 0.235). Canopy cover was correlated positively with β diversity ( r 2 = 0.378) and abundance ( r 2 = 0.266), meanwhile altitude was correlated positively with β (quadratic: r 2 = 0.175), γ diversity (quadratic: r 2 = 0.848) as well as abundance (quadratic: r 2 = 0.299). The present study is considered as the first report describing the biodiversity and abundance of shredders in forested headwater streams across a large spatial scale in peninsular Malaysia. We concluded that water temperature has a negative effect while altitude showed a positive relationship with diversity and abundance of shredders. However, it was difficult to detect an influence of canopy cover on shredder diversity.

  12. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  13. Maine's forests 2008

    Science.gov (United States)

    George L. McCaskill; William H. McWilliams; Charles J. Barnett; Brett J. Butler; Mark A. Hatfield; Cassandra M. Kurtz; Randall S. Morin; W. Keith Moser; Charles H. Perry; Christopher W. Woodall

    2011-01-01

    The second annual inventory of Maine's forests was completed in 2008 after more than 3,160 forested plots were measured. Forest land occupies almost 17.7 million acres, which represents 82 percent of the total land area of Maine. The dominant forest-type groups are maple/beech/yellow birch, spruce/fir, white/red/jack pine, and aspen/white birch. Statewide volume...

  14. Variation in carbohydrate source-sink relations of forest and treeline white spruce in southern, interior and northern Alaska.

    Science.gov (United States)

    Sveinbjörnsson, Bjartmar; Smith, Matthew; Traustason, Tumi; Ruess, Roger W; Sullivan, Patrick F

    2010-08-01

    Two opposing hypotheses have been presented to explain reduced tree growth at the treeline, compared with growth in lower elevation or lower latitude forests: the carbon source and sink limitation hypotheses. The former states that treeline trees have an unfavorable carbon balance and cannot support growth of the magnitude observed at lower elevations or latitudes, while the latter argues that treeline trees have an adequate carbon supply, but that cold temperatures directly limit growth. In this study, we examined the relative importance of source and sink limitation in forest and treeline white spruce (Picea glauca) in three mountain ranges from southern to northern Alaska. We related seasonal changes in needle nonstructural carbohydrate (NSC) content with branch extension growth, an approach we argue is more powerful than using needle NSC concentration. Branch extension growth in the southernmost Chugach Mountains was much greater than in the White Mountains and the Brooks Range. Trees in the Chugach Mountains showed a greater seasonal decline in needle NSC content than trees in the other mountain ranges, and the seasonal change in NSC was correlated with site-level branch growth across mountain ranges. There was no evidence of a consistent difference in branch growth between the forest and treeline sites, which differ in elevation by approximately 100 m. Our results point to a continuum between source and sink limitation of growth, with high-elevation trees in northern and interior Alaska showing greater evidence of sink limitation, and those in southern Alaska showing greater potential for source limitation.

  15. Can aspen persist in conifer dominated forests?

    Science.gov (United States)

    Douglas H. Page; John D. Shaw

    2016-01-01

    In 1998 we measured a large, old aspen in a mixed spruce-fir-aspen forest on the Utah State University T.W. Daniel Experimental Forest in northern Utah. The tree was 297 years old - about the same age as the oldest spruce in the stand. A search of the forestry literature revealed that the oldest published age for an aspen came from a tree in the Sierra Nevada Range in...

  16. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection.

    Science.gov (United States)

    Hammerbacher, Almuth; Ralph, Steven G; Bohlmann, Joerg; Fenning, Trevor M; Gershenzon, Jonathan; Schmidt, Axel

    2011-10-01

    Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in spruce, we identified two similar stilbene synthase (STS) genes in Norway spruce (Picea abies), PaSTS1 and PaSTS2, which had orthologs with high sequence identity in sitka (Picea sitchensis) and white (Picea glauca) spruce. Despite the conservation of STS sequences in these three spruce species, they differed substantially from angiosperm STSs. Several types of in vitro and in vivo assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-coenzyme A and three molecules of malonyl-coenzyme A to yield the trihydroxystilbene resveratrol but do not directly form the dominant spruce stilbenes, which are tetrahydroxylated. However, in transgenic Norway spruce overexpressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol, which is further modified by hydroxylation, O-methylation, and O-glucosylation to yield astringin and isorhapontin. Inoculating spruce with fungal mycelium increased STS transcript abundance and tetrahydroxystilbene glycoside production. Extracts from STS-overexpressing lines significantly inhibited fungal growth in vitro compared with extracts from control lines, suggesting that spruce stilbenes have a role in antifungal defense.

  17. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest.

    Science.gov (United States)

    Kueppers, Lara M; Conlisk, Erin; Castanha, Cristina; Moyes, Andrew B; Germino, Matthew J; de Valpine, Perry; Torn, Margaret S; Mitton, Jeffry B

    2017-06-01

    Climate niche models project that subalpine forest ranges will extend upslope with climate warming. These projections assume that the climate suitable for adult trees will be adequate for forest regeneration, ignoring climate requirements for seedling recruitment, a potential demographic bottleneck. Moreover, local genetic adaptation is expected to facilitate range expansion, with tree populations at the upper forest edge providing the seed best adapted to the alpine. Here, we test these expectations using a novel combination of common gardens, seeded with two widely distributed subalpine conifers, and climate manipulations replicated at three elevations. Infrared heaters raised temperatures in heated plots, but raised temperatures more in the forest than at or above treeline because strong winds at high elevation reduced heating efficiency. Watering increased season-average soil moisture similarly across sites. Contrary to expectations, warming reduced Engelmann spruce recruitment at and above treeline, as well as in the forest. Warming reduced limber pine first-year recruitment in the forest, but had no net effect on fourth-year recruitment at any site. Watering during the snow-free season alleviated some negative effects of warming, indicating that warming exacerbated water limitations. Contrary to expectations of local adaptation, low-elevation seeds of both species initially recruited more strongly than high-elevation seeds across the elevation gradient, although the low-provenance advantage diminished by the fourth year for Engelmann spruce, likely due to small sample sizes. High- and low-elevation provenances responded similarly to warming across sites for Engelmann spruce, but differently for limber pine. In the context of increasing tree mortality, lower recruitment at all elevations with warming, combined with lower quality, high-provenance seed being most available for colonizing the alpine, portends range contraction for Engelmann spruce. The lower

  18. Acute high-altitude illness | Hofmeyr | South African Medical Journal

    African Journals Online (AJOL)

    A substantial proportion of South Africa (SA)'s population lives at high altitude (>1 500 m), and many travel to very high altitudes (>3 500 m) for tourism, business, recreation or religious pilgrimages every year. Despite this, knowledge of acute altitude illnesses is poor among SA doctors. At altitude, the decreasing ambient ...

  19. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600).

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-12-01

    Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. The Australians' sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians' sleep tended to be better than that of the Australians at altitude. Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives.

  20. Acidification of a white spruce ecosystem in eastern Cape Breton Island

    International Nuclear Information System (INIS)

    Bouman, O.T.

    2005-01-01

    A study was conducted in 2003 at an ecosystem monitoring plot near Sydney, Nova Scotia, in a mature white spruce stand on a Shulie soil. The objective was to examine how spruce forests filter atmospheric sulfur dioxide and become destabilized by the resulting soil acidification. The acid rain problem at the level of input, top soil, sub soil and run off was assessed following results from 4 monitoring stations equipped for bulk sampling of throughfall water and two lysimeters for soil water extraction at a depth of 15 cm and 45 cm, respectively. Rainwater was collected in 2 open areas outside the forest along with samples from a stream draining the forest and surrounding wetland. Water samples were collected 8 times between April 2003 and November 2004. Results show that the problem of acid rain is present in eastern Cape Breton Island. Canopy passage was found to lower the average rainwater pH from 4.7 to 4.2 with a related increase of sulfate from 2.2 ppm to 8.3 ppm. Top soil solution pH was 3.9 increasing to 4.5 in the sub soil. Aluminum was found to increase significantly in the soil solution when pH dropped below 4.2. This demonstrated that soil acidification due to acid rain frees the aluminum in the top soil. However, the concentration of metal was reduced at lower soil depth due to base cation exchange. High sodium concentrations in rainwater and throughfall were closely associated with sulfate values, indicating high inputs of saline oceanic spray with the potential to cause a salt effect in the top soil chemistry. Most water samples had very low nitrate concentrations. The water chemistry in the stream fluctuated with the pH, often dropping below 5 when sulfate contents increased during high run off events

  1. Dispersal of forest insects

    Science.gov (United States)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  2. Preacclimatization in hypoxic chambers for high altitude sojourns.

    Science.gov (United States)

    Küpper, Thomas E A H; Schöffl, Volker

    2010-09-01

    Since hypoxic chambers are more and more available, they are used for preacclimatization to prepare for sojourns at high altitude. Since there are different protocols and the data differ, there is no general consensus about the standard how to perform preacclimatization by simulated altitude. The paper reviews the different types of exposure and focuses on the target groups which may benefit from preacclimatization. Since data about intermittent hypoxia for some hours per day to reduce the incidence of acute mountain sickness differ, it is suggested to perform preacclimatization by sleeping some nights at a simulated altitude which follows the altitude profile of the "gold standard" for high altitude acclimatization.

  3. Plant hydraulic strategies and their variability at high latitudes: insights from a southern Canadian boreal forest site

    Science.gov (United States)

    Pappas, C.; Matheny, A. M.; Maillet, J.; Baltzer, J. L.; Stephens, J.; Barr, A.; Black, T. A.; Sonnentag, O.

    2016-12-01

    Boreal forests cover about one third of the world's forested area with a large part of the boreal zone located in Canada. These high-latitude ecosystems respond rapidly to environmental changes. Plant water stress and the resulting drought-induced mortality has been recently hypothesised as a major driver of forest changes in western Canada. Although boreal forests often exhibit low floristic complexity, local scale abiotic heterogeneities may lead to highly variable plant functional traits and thus to diverging plant responses to environmental changes. However, detailed measurements of plant hydraulic strategies and their inter- and intra-specific variability are still lacking for these ecosystems. Here, we quantify plant water use and hydraulic strategies of black spruce (Picea mariana) and larch (Larix laricina), that are widespread in the boreal zone, at a long-term monitoring site located in central Saskatchewan (53.99° N, 105.12° W; elevation 628.94 m a.s.l.). The site is characterized by a mature black spruce overstorey that dominates the landscape with few larch individuals. The ground cover consists mainly of mosses with some peat moss and lichens over a rich soil organic layer. Tree-level sap flux density, measured with Granier-style thermal dissipation probes (N=39), and concurrently recorded radial stem dynamics, measured with high frequency dendrometers (N=13), are used to quantify plant hydraulic functioning during the 2016 growing season. Hydrometeorological measurements, including soil moisture and micrometeorological data, are used to describe environmental constraints in plant water use. Tree-level dynamics are then integrated to the landscape and compared with ecosystem-level evapotranspiration measurements from an adjacent eddy-covariance flux tower. This experimental design allows us to quantify the main environmental drivers that shape plant hydraulic strategies in this southern boreal zone and to provide new insights into the inter- and

  4. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    Science.gov (United States)

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  5. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  6. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  7. Climate driven changes in Engelmann spruce stands at timberline in the La Sal Mountains

    Science.gov (United States)

    James F. Fowler; Steven Overby; Barb Smith

    2012-01-01

    Due to global warming spruce-fir forest and associated vegetation may experience elevational displacement and altered species composition at the timberline-treeline ecotone. These forests and their component species are predicted to migrate upslope and thus landscape features such as timberline and treeline may move upslope as well. Prior to this study, baseline data...

  8. Influence of fertilizing on the 137Cs soil-plant transfer in a spruce forest of Southern Germany

    International Nuclear Information System (INIS)

    Zibold, G.; Klemt, E.; Konopleva, I.; Konoplev, A.

    2009-01-01

    Fertilization with 2.5 t/ha limestone: (83% CaCO 3 , 8% MgO, 6% K 2 O, 3% P 2 O 5 ) reduces the 137 Cs transfer from spruce forest soil into plants like fern (Dryopteris carthusiana) and blackberry (Rubus fruticosus) by a factor of 2-5 during at least 11 years as measured by the aggregated transfer factor T ag . In 1997 and 2006 these results were confirmed by additional measurements of the 137 Cs transfer factor TF, related to the root zone (O h horizon), which were explained by the selective sorption of 137 Cs in the root zone by measurements of the Radiocaesium Interception Potential (RIP) in fertilized (RIP > 179 meq/kg) and non-fertilized soils (RIP < 74 meq/kg).

  9. Ecology and silvicultural management for the rehabilitation in rain forests of low altitude on complex metamorphic

    Directory of Open Access Journals (Sweden)

    Gonzalo Cantos Cevallos

    2018-01-01

    Full Text Available In order to characterize ecology and silvicultural management for the rehabilitation of the low altitude rain forest on a metamorphic complex, Quibiján-Naranjal del Toa sector, a floristic inventory was carried out, 36 sample plots of 20 x 25 m in the forest in both sides of Toa's riverside. Tree species with d1,3 e» 5 cm were measured, a total of 1507 individuals represented in 52 species belonging to 49 genera and 24 families were identified and evaluated. Both forests were statistically compared in terms of richness, composition, structure, diversity and abundance, with a high alpha and beta diversity. The species with the highest value index of ecological importance were determined. The families Fabaceae, Moraceae, Lauraceae and Meliaceae are the most representative in terms of species and genera. The most important species are Hibiscus elatus, Calophyllum utile, Carapa guianensis, Buhenavia capitata, y Guarea guara, among others, which stand out as the most abundant. Economic occupation was adequate in a few plots and incomplete in most of the sampling units. Taking into account the results obtained, we propose silvicultural actions aimed at sustainable forest management through the application of improvement shorts and the method of enrichment in dense spaced-groups for the rehabilitation and the achievement of the expected multiethane forest.

  10. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany

    International Nuclear Information System (INIS)

    Wu Xing; Brueggemann, Nicolas; Gasche, Rainer; Papen, Hans; Willibald, Georg; Butterbach-Bahl, Klaus

    2011-01-01

    Based on multi-year measurements of CH 4 exchange in sub-daily resolution we show that clear-cutting of a forest in Southern Germany increased soil temperature and moisture and decreased CH 4 uptake. CH 4 uptake in the first year after clear-cutting (-4.5 ± 0.2 μg C m -2 h -1 ) was three times lower than during the pre-harvest period (-14.2 ± 1.3 μg C m -2 h -1 ). In contrast, selective cutting did not significantly reduce CH 4 uptake. Annual mean uptake rates were -1.18 kg C ha -1 yr -1 (spruce control), -1.16 kg C ha -1 yr -1 (selective cut site) and -0.44 kg C ha -1 yr -1 (clear-cut site), respectively. Substantial seasonal and inter-annual variations in CH 4 fluxes were observed as a result of significant variability of weather conditions, demonstrating the need for long-term measurements. Our findings imply that a stepwise selective cutting instead of clear-cutting may contribute to mitigating global warming by maintaining a high CH 4 uptake capacity of the soil. - Highlights: → Long-term, sub-daily measurements of CH 4 exchange at differently managed forest sites. → Inter-annual variability in CH 4 uptake is affected by annual precipitation. → Clear-cutting reduces the CH 4 sink strength of forest soils, whereas thinning has no significant effect. → Sink strength changes due to clear cutting are long-term and were still present approx. nine years following forest harvest. - Forest management affects the soil CH 4 sink strength, with clear-cutting reducing uptake rates for at least eight years.

  11. Forest health restoration in south-central Alaska: a problem analysis.

    Science.gov (United States)

    Darrell W. Ross; Gary E. Daterman; Jerry L. Boughton; Thomas M. Quigley

    2001-01-01

    A spruce beetle outbreak of unprecedented size and intensity killed most of the spruce trees on millions of acres of forest land in south-central Alaska in the 1990s. The tree mortality is affecting every component of the ecosystem, including the socioeconomic culture dependent on the resources of these vast forests. Based on information obtained through workshops and...

  12. Animal damage to young spruce and fir in Maine

    Science.gov (United States)

    Barton M. Blum

    1977-01-01

    The loss of terminal buds on small balsam fir (Abies balsamea (L.) Mill.) and spruce (Picea spp.) trees because of nipping by mammals or birds has increased on the Penobscot Experimental Forest in recent years. The cut stem is smooth and slightly angled; there is no sign of tearing. Unnipped trees grew about 13 percent more than...

  13. Abundance and activity of soil microorganisms in Cedrus atlantica forests are more related to land use than to altitude or latitude

    Science.gov (United States)

    Ramírez Rojas, Irene; Perez Fernandez, María; Moreno Gallardo, Laura; Lechuga Ordoñez, Victor; Linares, Juan Carlos

    2016-04-01

    Several environmental traits might change the abundance and the function of soil microorganisms in forest soils by plant-mediated reactions. Few studies have related the landscape-scale forest structural diversity with the micro-scale distribution of microorganism and their activities. High mountain environments harbor ecosystems that are very sensitive to global change and hence highly vulnerable, as those of Atlantic cedar. Altitudinal gradients in mountains are orrelated with changes in vegetation. We propose that altitudinal gradients drive shifts in microbial communities and are correlated with land uses. Thus, the latitudinal and longitudinal pattern of abundance and activity of soil micro-organisms was studied in an intercontinental comparison. We investigate soil extractable organic carbon (EOC) and nitrogen and carbon, microbial biomass and microbial metabolic activities at eight different sites along the latitudinal range of Cedrus atlantica, covering different altitudes and soils characteristics both in Southern Spain and Northern Morocco. Analyses of the abundances of total bacteria, (16S rRNA gene), was conducted using the Ilumina metagenomics technique. Results show that the stands at the highest altitudes had distinct microbial and biochemical characteristics compared with other areas. Overall, microbial activity, as measured by soil respiration, is higher in forests subjected to lower human pressure than in stands highly degraded, probably reflecting the quality of litter input that results of the influence of local assemblage of different tree, shrub and annual species, though changes in the soil N and C contents. Indeed, total soil C and N contents explained the microbial properties at every scale. Our results suggest that in contrast to the observed pronounced altitudinal changes, the kind of human-mediate land management has a stronger role in defining changes in microbial composition and activities in the investigated forest systems.

  14. Effect of industrial pollution on behaviour of radionuclides in forest ecosystems; Forests ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Outola, I. (STUK-Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-06-15

    To investigate how and to what extent industrial pollution affects the behaviour of radionuclides in forest ecosystems, studies were conducted in the vicinity of two Cu-Ni smelters: one in a pine forest at Harjavalta, Finland, and the other in a spruce forest at Monchegorsk, Russia. Industrial pollution had significant effects on the distribution of radionuclides in soil horizons. With the increase in pollution towards the smelter, radionuclides were accumulated more in the litter layer because the conversion of litter into organic material was diminished due to inhibited microbial activity. As a result, the organic layer contained less radionuclides towards the smelter. The effect of industrial pollution on soil-to-plant transfer was complex. The effect varied with radionuclide, plant species and also on forest type. For 137Cs, soil-to-plant transfer decreased significantly as industrial pollution increased in pine forest, whereas the decrease was less pronounced in spruce forest. Root uptake of 239,240Pu by plants is extremely small, and plant contamination by resuspended soil is an important factor in considering the soil-to-plant transfer of this radionuclide. In spruce forest, more plutonium was transferred into plants when pollution load increased due to resuspension of litter particles, which contained higher concentrations of plutonium in the vicinity of the smelter. Soil-to-plant transfer of plutonium was much less affected in pine forests contaminated with industrial pollution. This research clearly indicates the sensitivity of the northern forest ecosystem to inorganic pollutants. Prediction of the soil-to-plant transfer of radionuclides in industrially polluted forest ecosystems requires detailed information on the total deposition, vertical distribution of radionuclides in soil, soil microbiological factors, other soil parameters as well as the rooting depths of the plants. (LN)

  15. Impact of soil drainage to the radial stem growth of Norway spruce (Picea Abies L. Karst. in peatland forests

    Directory of Open Access Journals (Sweden)

    Klempířová Barbora

    2013-12-01

    Full Text Available Peatland Norway spruce (Picea abies L. Karst. forests represent very valuable ecosystems with considerable importance for nature conservation. However, a lot of peatland forests have been drained or used for opencast mining of peat. Since dendrochronological and dendroecological studies on trees growing on peatlands in Europe are not many, this study aimed to reconstruct the impact of drainage to the growth of trees in forest stands older than 100 years in the moment of drainage. Dendrochronological analysis was performed on two 0.25-ha square sampling plots (50*50 m in two pre-selected stands (control site vs. drained site with similar natural conditions and age. The mean-value functions of the ring indices, comparing the drained site with the control site, in the period after 1940 revealed very similar radial-growth trends. After the year 1992, when one site was substantially drained, the radial-growth trends not showed any significant change. Likewise, the result of the independent two sample t-test for the period after 1992 has not revealed any substantial statistically important difference in the mean index between the control site and the drained site.

  16. Relation of Chlorophyll Fluorescence Sensitive Reflectance Ratios to Carbon FluxMeasurements ofMontanne Grassland and Norway Spruce Forest Ecosystems in the Temperate Zone

    Czech Academy of Sciences Publication Activity Database

    Ač, Alexander; Malenovský, Z.; Urban, Otmar; Hanuš, Jan; Zitová, Martina; Navrátil, M.; Vráblová, M.; Olejníčková, Julie; Špunda, V.; Marek, Michal V.

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 1-13 ISSN 1537-744X R&D Projects: GA MŽP(CZ) SP/2D1/70/08; GA MŽP(CZ) SP/2D1/93/07; GA MŠk(CZ) LM2010007; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Chlorophyll fluorescence * carbon flux * forest ecosystems * Norway Spruce * temperate zone Subject RIV: EH - Ecology, Behaviour Impact factor: 1.730, year: 2012

  17. Study of the radioactivity of forest ecosystems in some places of southern Bohemia following the Chernobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Konecny, J.; Vlcek, A.; Landa, M.; Obdrzalek, M.; Hofmannova, V.

    1989-01-01

    Following passage of the radioactive cloud, samples of forest ecocystems were analyzed and the data obtained were used in assessing the effect of radionuclides on the systems. Branches, bark, needles, leaves, mushrooms and soil were sampled. Dried and ground samples were measured using a scintillation detector linked to a gamma spectrometry system. The activities were assessed of 134 Cs, 137 Cs and also, informatively, of 40 K. High cesium concentrations were found in samples from 1987 when part of cesium was transformed into a soluble form and became thus accessible to plants. Pine needles were found to be most sensitive to concentration changes. The highest activities were observed in spruce needles, whereas birch showed very low cesium activites. High variations with the species and altitude above sea level were observed in mushrooms. (M.D.). 2 tabs., 10 refs

  18. Effects of soil calcium and aluminum on the physiology of balsam fir and red spruce saplings in northern New England

    Science.gov (United States)

    Richard L. Boyce; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Paula F. Murakami

    2013-01-01

    We examined the influence of calcium (Ca) and aluminum (Al) nutrition on the foliar physiology of red spruce (Picea rubens Sarg.) and balsam fir [Abies balsamea (L.) Mill.] in northern New England, USA. At the Hubbard Brook Experimental Forest (NH, USA), spruce and fir saplings were sampled from control, Al-, and Ca-supplemented...

  19. [Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation].

    Science.gov (United States)

    Gonzales, Gustavo F

    2011-03-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulting in higher hemoglobin and hematocrit levels to improve oxygen delivery capacity. Adaptation is the process of natural acclimatization where genetical variations and acclimatization play a role in allowing subjects to live without any difficulties at high altitudes. Testosterone is a hormone that regulates erythropoiesis and ventilation and could be associated to the processes of acclimatization and adaptation to high altitude. Excessive erythrocytosis, which leads to chronic mountain sickness, is caused by low arterial oxygen saturation, ventilatory inefficiency and reduced ventilatory response to hypoxia. Testosterone increases during acute exposure to high altitude and also in natives at high altitude with excessive erythrocytosis. Results of current research allow us to conclude that increase in serum testosterone and hemoglobin is adequate for acclimatization, as they improve oxygen transport, but not for high altitude adaptation, since high serum testosterone levels are associated to excessive erythrocytosis.

  20. Pathology of high altitude pulmonary oedema

    International Nuclear Information System (INIS)

    Saleem, N.

    2014-01-01

    Objective: To describe autopsy findings in fatal cases of high altitude pulmonary oedema. Study Design: Descriptive study. Place and Duration of Study: The study was carried out between 1999 and 2002 at an army field medical unit in Baltistan, Armed Forces Institute of Pathology, Rawalpindi and Army Medical College, Rawalpindi, Pakistan. Patients and Methods:Autopsies were performed in 17 fatal cases of High Altitude Pulmonary Edema (HAPE) occurring among soldiers serving in Siachen. Results:All cases were males with a mean age of 26.8 years (19-35). The mean altitude at which HAPE occurred was 5192 meters (2895-6492), and the mean duration of stay at these altitudes was 15.3 days (1-30). Eleven individuals had undergone proper acclimatization. The commonest clinical findings were cough (70%), dyspnoea (53%), nausea (47%), headache (41%), vomiting (35%), chest pain (35%) and tightness in chest (24%). Cyanosis and frothy secretions in the nostrils and mouth were present in all but one case. Mean combined weight of lungs was 1470 grams (1070-1810). There was marked congestion of outer and cut surfaces. Interstitial oedema was present in all cases. RBCs and leukocyte infiltrates were seen in 13 and alveolar hyaline membranes in 9 cases. Thrombi were seen in 2 cases. Cerebral oedema was present in 9 cases. Conclusion:HAPE can occur after more than two weeks of stay at high altitudes despite proper acclimatization. Concomitant cerebral oedema is frequently present. Our autopsy findings are consistent with what has been reported previously. (author)

  1. High rates of solar radiation - an important natural stress factor of the photosynthetic activity of mountainous norway spruce stands

    International Nuclear Information System (INIS)

    Sprtova, M.; Marek, M.V.

    1996-01-01

    Photosynthetic activity can be regarded as the basis of biomass productivity and vitality of forest trees, respectively. Moreover, this activity is under the strong influence of environment. Excess of photosynthetically active radiation (PhAR) can be a harmful factor of environment which is the reason of photoinhibition. Photoinhibition is demonstrated by a decrease of photosynthetic rate. An analysis of the influence of PhAR excess on function of the assimilatory apparatus of Norway spruce during summer days was done. The strong influence of PhAR excess on values of parameters of photosynthesis reflecting changes in the level of quanta capture and electron transport chain was observed. The comprehensive description of the method of chlorophyll a is given. Excess of PhAR caused rapid changes of assimilatory apparatus function and thus this PhAR excess can be regarded as a significant stress of productional activity of Norway spruce stands under field conditions

  2. Simulation of the Effect of Intensive Forest Management on Forest Production in Sweden

    Directory of Open Access Journals (Sweden)

    Ola Rosvall

    2011-03-01

    Full Text Available The effects of intensifying the management of 15% of the Swedish forest land on potential future forest production over a 100-year period were investigated in a simulation study. The intensive management treatments, which were introduced over a period of 50 years, were: intensive fertilization of Norway spruce (IntFert; bulking-up Norway spruce elite populations using somatic embryogenesis (SE-seedlings; planting of lodgepole pine, hybrid larch, and Sitka spruce (Contorta, Larch, and Sitka; fertilization with wood ash on peatlands (Wood ash; and conventional fertilization in mature forests (ConFert. Potential sites for applying intensive forest management (IFM to sites with low nature conservation values were determined with a nature conservation score (NCS. Four different scenarios were simulated: “Base scenario”, which aimed at reducing the negative impact on nature conservation values, “Fast implementation”, “No IntFert” (IntFert was not used, and “Large Forest Companies”, where the majority of plots were selected on company land. Total yields during the 100-year simulation period were about 85–92% higher for the intensive forest management scenarios than for the reference scenario (business as usual. In the “No IntFert” scenario total production was 1.8% lower and in the “Large Forest Companies” scenario total production was 4.8% lower than in the “Base scenario”. “Fast implementation” of IFM increased yield by 15% compared to the “Base scenario”. Norway spruce SE-seedlings and IntFert gave the highest yields, measured as total production during the 100-year simulation period, but relative to the yields in the reference scenario, the highest increases in yield were for Contorta. The “Base scenario” and “No IntFert” gave the highest yields for plots with the lowest NCS, but plots with higher NCS had to be used in the “Fast implementation” and “Large Forest Companies” scenarios. More than

  3. Age and size effects on seed productivity of northern black spruce

    Science.gov (United States)

    J. N. Viglas; C. D. Brown; J. F. Johnstone

    2013-01-01

    Slow-growing conifers of the northern boreal forest may require several decades to reach reproductive maturity, making them vulnerable to increases in disturbance frequency. Here, we examine the relationship between stand age and seed productivity of black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) in Yukon Territory and Alaska....

  4. The measurement of Cs-137 in Latvian forest litter

    International Nuclear Information System (INIS)

    Riekstina, D.; Veveris, O.

    1998-01-01

    The role of forests in the distribution of cesium 137 over the Latvian territory affected by the Chernobyl accident was examined. Concentrations of this radionuclide in soil in pine, spruce, and birch forests and in non-forest areas in Rucava (affected by the accident) and in Taurene (non-polluted zone) were compared. In Rucava, the concentrations of Cs-137 fluctuated over the region of 108-724 Bq/kg in a pine forest, 205-2270 Bq/kg in a spruce forest, and 15-30 Bq/kg beyond the forest region. In Taurene, the corresponding figures were 42-157, 19-133, and 3-19 Bq/kg, respectively. The data confirm the appreciable role of coniferous forests in the absorption of Cs-137 from the air and its redistribution within the forest area. (P.A.)

  5. Revisiting Pearson's climate and forest type studies on the Fort Valley Experimental Forest (P-53)

    Science.gov (United States)

    Joseph E. Crouse; Margaret M. Moore; Peter Z. Fule

    2008-01-01

    Five weather station sites were established in 1916 by Fort Valley personnel along an elevational gradient from the Experimental Station to near the top of the San Francisco Peaks to investigate the factors that controlled and limited forest types. The stations were located in the ponderosa pine, Douglas-fir, limber pine, Engelmann spruce, and Engelmann spruce/...

  6. Managing forest disturbances and community responses: lessons from the Kenai Peninsula, Alaska.

    Science.gov (United States)

    Courtney G. Flint; Richard. Haynes

    2006-01-01

    Managing forest disturbances can be complicated by diverse human community responses. Interview and quantitative analysis of mail surveys were used to assess risk perceptions and community actions in response to forest disturbance by spruce bark beetles. Despite high risk perception of immediate threats to personal safety and property, risk perceptions of broader...

  7. Influence of road salting on the adjacent Norway spruce (Picea abies) forest

    International Nuclear Information System (INIS)

    Forczek, S.T.; Benada, O.; Kofronova, O.; Sigler, K.; Matucha, M.

    2011-01-01

    Winter deicing and traffic spreads salt to road-adjacent Norway spruce trees in the form of spraying and salt slops. Our use of Na36Cl revealed roots as the main pathway of salt uptake. One-shot application of a concentrated Na36Cl solution to spruce saplings by both irrigation and spraying causes macroscopic damage to the needles and affects the needle phyllosphere. Irrigation affects the trees more than spraying because Cl uptake through roots is faster and eventually leads to higher chloride content in the plant. Along with the root-needle route, spray-deposited chloride from the needles is re-transported back into the soil and again taken up by roots to needles

  8. High altitude organic gold

    DEFF Research Database (Denmark)

    Pouliot, Mariève; Pyakurel, Dipesh; Smith-Hall, Carsten

    2018-01-01

    Ethnopharmacological relevance Ophiocordyceps sinensis (Berk.) G.H.Sung, J.M.Sung, Hywel-Jones & Spatafora, a high altitude Himalayan fungus-caterpillar product found in alpine meadows in China, Bhutan, Nepal, and India, has been used in the Traditional Chinese Medicine system for over 2000 years...

  9. Functions for biomass and basic density of stem, crown and root system of Norway spruce (Picea abies (L.) Karst.) in Denmark

    DEFF Research Database (Denmark)

    Skovsgaard, Jens Peter; Bald, Caroline; Nord-Larsen, Thomas

    2011-01-01

    Models for predicting the biomass of forest trees are becoming increasingly important for assessing forest resources and carbon sequestration in forests. We developed functions for predicting the biomass and basic density of above- and below-ground parts of Norway spruce (Picea abies (L.) Karst.)...

  10. In vivo function of Pgβglu-1 in the release of acetophenones in white spruce

    Directory of Open Access Journals (Sweden)

    Melissa H. Mageroy

    2017-07-01

    Full Text Available Eastern spruce budworm (Choristoneura fumiferiana Clemens (ESBW is a major forest pest which feeds on young shoots of white spruce (Picea glauca and can cause landscape level economic and ecological losses. Release of acetophenone metabolites, piceol and pungenol, from their corresponding glycosides, picein and pungenin, can confer natural resistance of spruce to ESBW. A beta-glucosidase gene, Pgβglu-1, was recently discovered and the encoded enzyme was characterized in vitro to function in the release of the defensive acetophenone aglycons. Here we describe overexpression of Pgβglu-1 in a white spruce genotype whose metabolome contains the glucosylated acetophenones, but no detectable amounts of the aglycons. Transgenic overexpression of Pgβglu-1 resulted in release of the acetophenone aglycons in planta. This work provides in vivo evidence for the function of Pgβglu-1.

  11. Searching Sinks and Sources: CO2 Fluxes Before and After Partial Deforestation of a Spruce Forest

    Science.gov (United States)

    Ney, P.; Graf, A.; Druee, C.; Esser, O.; Klosterhalfen, A.; Valler, V.; Pick, K.; Vereecken, H.

    2017-12-01

    Forest ecosystems in the northern mid-latitudes act as a sink for atmospheric carbon dioxide (CO2) and hence play an important role in the terrestrial carbon cycle. Disturbances of these landscapes may have a significant impact on their ecosystem carbon budget. We present seven years of eddy covariance (EC) measurements (September 2013 to September 2017) over a 70 year old spruce stock, including three years prior to and four years after partial deforestation. We analyzed the seasonal and inter-annual changes of carbon fluxes as affected mainly by the forest transition. The measurements were carried out in a small headwater catchment (38.5 ha) within the TERENO (TERrestrial Environmental Observatories) network in the Eifel National Park Germany (50°30'N, 06°19'E, 595-629 m a.s.l.). An EC system, mounted on the top of a 38 m high tower, continuously samples fluxes of momentum, sensible heat, latent heat and CO2. In August and September 2013, more than 20% of the catchment was deforested and planned for regeneration towards natural deciduous vegetation, and a second EC station (2.5 m height) was installed in the middle of this clearcut. Flux partitioning and gap filling methods were used to calculate full time series and annual carbon budgets of the measured net ecosystem exchange (NEE) and its components gross primary production (GPP) and total ecosystem respiration (Reco). Additionally, soil respiration was measured with manual chambers on a monthly to bi-monthly basis at 25 transect points in the forest and deforested area. Annual sums of NEE represent the forest as a carbon sink with small inter-annual variability. In contrast, the deforested area showed a clear trend. In the first year after partial deforestation, regrowth on the deforested area consisted mainly of grasses and red foxglove (Digitalis purpurea L.), while since the second year also growth of mountain ash (Sorbus aucuparia L.) and broom (Cytisus scoparius L.) increased. The regrowth of biomass is

  12. Forest floor carbon exchange of a boreal black spruce forest in eastern North America

    Directory of Open Access Journals (Sweden)

    O. Bergeron

    2009-09-01

    Full Text Available This study reports continuous automated measurements of forest floor carbon (C exchange over feathermoss, lichen, and sphagnum micro-sites in a black spruce forest in eastern North America during snow-free periods over three years. The response of soil respiration (Rs-auto and forest floor photosynthesis (Pff to environmental factors was determined. The seasonal contributions of scaled up Rs-auto adjusted for spatial representativeness (Rs-adj and Pff (Pff-eco relative to that of total ecosystem respiration (Re and photosynthesis (Peco, respectively, were also quantified.

    Shallow (5 cm soil temperature explained 67–86% of the variation in Rs-auto for all ground cover types, while deeper (50 and 100 cm soil temperatures were related to Rs-auto only for the feathermoss micro-sites. Base respiration was consistently lower under feathermoss, intermediate under sphagnum, and higher under lichen during all three years. The Rs-adj/Re ratio increased from spring through autumn and ranged from 0.85 to 0.87 annually for the snow-free period. The Rs-adj/Re ratio was negatively correlated with the difference between air and shallow soil temperature and this correlation was more pronounced in autumn than summer and spring.

    Maximum photosynthetic capacity of the forest floor (Pff-max saturated at low irradiance levels (~200 μmol m−2 s−1 and decreased with increasing air temperature and vapor pressure deficit for all three ground cover types, suggesting that Pff was more limited by desiccation than by light availability. Pff-max was lowest for sphagnum, intermediate for feathermoss, and highest for lichen for two

  13. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    Science.gov (United States)

    Brutsaert, Tom

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  14. Development of soil water regime under spruce stands

    Directory of Open Access Journals (Sweden)

    Tužinský Ladislav

    2017-06-01

    Full Text Available The aim of this paper is to analyse the water regime of soils under spruce ecosystems in relation to long-lasting humid and drought periods in the growing seasons 1991-2013. The dominant interval humidity in observing growing seasons is semiuvidic interval with soil moisture between hydro-limits maximal capillary capacity (MCC and point of diminished availability (PDA. Gravitationally seepage concentrated from accumulated winter season, water from melting snow and existing atmospheric precipitation occurs in the soil only at the beginning of the growing season. The supplies of soil water are significantly decreasing in the warm climate and precipitant deficient days. The greatest danger from drought threatens Norway spruce during the summer months and it depends on the duration of dry days, water supply at the beginning of the dry days, air temperature and the intensity of evapotranspiration. In the surface layers of the soil, with the maximum occurrence of active roots, the water in semiarid interval area between hydro-limits PDA and wilting point (WP decreases during the summer months. In the culminating phase occurs the drying to moisture state with capillary stationary and the insufficient supply of available water for the plants. Physiological weakening of Norway spruce caused by set of outlay components of the water balance is partially reduced by delivering of water by capillary action from deeper horizons. In extremely dry periods, soil moisture is decreasing also throughout the soil profile (0-100 cm into the bottom third of the variation margin hydro-limits MCC-PDA in the category of capillary less moving and for plants of low supply of usable water (60-90 mm. The issue of deteriorated health state of spruce ecosystems is considered to be actual. Changes and developments of hydropedological conditions which interfere the mountain forests represent the increasing danger of the drought for the spruce.

  15. Multipartite Symbioses Among Fungi, Mites, Nematodes, and the Spruce Beetle, Dendroctonus rufipennis.

    Science.gov (United States)

    Yasmin Cardoza; John Moser; Kier Klepzizg; Raffa Kenneth

    2008-01-01

    The spruce beetle, Dendroctonus rufipennis, is an eruptive forest pest of signifcant economic and ecological importance. D. rufipennis has symbiotic associations with a number of microorganisms, especially the ophiostomatoid fungus Leptographium abietinum. The nature of this interaction is only partially understood. Additionally, mite and nematode associates can...

  16. SOIL CO2 EFFLUX FROM ISOTOPICALLY LABELED BEECH AND SPRUCE IN SOUTHERN GERMANY

    Science.gov (United States)

    • Carbon acquisition and transport to roots in forest trees is difficult to quantify and is affected by a number of factors, including micrometeorology and anthropogenic stresses. The canopies of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) were expose...

  17. Woodland: dynamics of average diameters of coniferous tree stands of the principal forest types

    Directory of Open Access Journals (Sweden)

    R. A. Ziganshin

    2016-08-01

    Full Text Available The analysis of age dynamics of average diameters of deciduous tree stands of different forest types at Highland Khamar-Daban (natural woodland in South-East Baikal Lake region has been done. The aggregate data of average tree, the analysis of age dynamics of average diameters of a deciduous tree stands of stand diameters by age classes, as well as tree stand current periodic and overall average increment are presented and discussed in the paper. Forest management appraisal is done. The most representative forest types have been selected to be analyzed. There were nine of them including three Siberian stone pine Pinus sibirica Du Tour stands, three Siberian fir Abies sibirica Ledeb. stands, one Siberian spruce Picea obovata Ledeb. stand, and two dwarf Siberian pine Pinus pumila (Pallas Regel stands. The whole high-altitude range of mountain taiga has been evaluated. Mathematical and statistic indicators have been calculated for every forest type. Stone pine stands are the largest. Dynamics of mean diameters of forest stands have been examined by dominant species for every forest type. Quite a number of interesting facts have been elicited. Generally, all species have maximal values of periodic annual increment that is typical for young stands, but further decrease of increment is going on differently and connects to the different lifetime of wood species. It is curious that annual increment of the dwarf Siberian pine stands almost does not decrease with aging. As for mean annual increment, it is more stable than periodic annual increment. From the fifth age class (age of stand approaching maturity mean annual increment of cedar stands varies from 0.20 to 0.24 cm per year; from 0.12–0.15 to 0.18–0.21 cm per year – in fir stands; from 0.18 to 0.24 cm per year – in spruce stands; and from 0.02–0.03 to 0.05–0.06 cm per year – in draft pine stands. Mean annual increment of dwarf Siberian pine increases with aging and increment of other

  18. Effects of artificial defoliation of pines on the structure and physiology of the soil fungal community of a mixed pine-spruce forest

    Science.gov (United States)

    Cullings, Ken; Raleigh, Christopher; New, Michael H.; Henson, Joan

    2005-01-01

    Loss of photosynthetic area can affect soil microbial communities by altering the availability of fixed carbon. We used denaturing gradient gel electrophoresis (DGGE) and Biolog filamentous-fungus plates to determine the effects of artificial defoliation of pines in a mixed pine-spruce forest on the composition of the fungal community in a forest soil. As measured by DGGE, two fungal species were affected significantly by the defoliation of pines (P the frequency of members of the ectomycorrhizal fungus genus Cenococcum decreased significantly, while the frequency of organisms of an unidentified soil fungus increased. The decrease in the amount of Cenococcum organisms may have occurred because of the formation of extensive hyphal networks by species of this genus, which require more of the carbon fixed by their host, or because this fungus is dependent upon quantitative differences in spruce root exudates. The defoliation of pines did not affect the overall composition of the soil fungal community or fungal-species richness (number of species per core). Biolog filamentous-fungus plate assays indicated a significant increase (P the number of carbon substrates utilized by the soil fungi and the rate at which these substrates were used, which could indicate an increase in fungal-species richness. Thus, either small changes in the soil fungal community give rise to significant increases in physiological capabilities or PCR bias limits the reliability of the DGGE results. These data indicate that combined genetic and physiological assessments of the soil fungal community are needed to accurately assess the effect of disturbance on indigenous microbial systems.

  19. A 6-year-long manipulation with soil warming and canopy nitrogen additions does not affect xylem phenology and cell production of mature black spruce

    Directory of Open Access Journals (Sweden)

    Madjelia Cangre Ebou eDAO

    2015-11-01

    Full Text Available The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill. BSP] in Quebec, Canada. During 2008-2013, the soil around mature trees was warmed up by 4 °C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected.

  20. Diverse growth trends and climate responses across Eurasia's boreal forest

    Czech Academy of Sciences Publication Activity Database

    Hellmann, L.; Agafonov, L.; Ljungqvist, F. C.; Churakova (Sidorova), O.; Duethorn, E.; Esper, J.; Hulsmann, L.; Kirdyanov, A. V.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F. H.; Solomina, O.; Tegel, W.; Büntgen, Ulf

    2016-01-01

    Roč. 11, č. 7 (2016), č. článku 074021. ISSN 1748-9326 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : 20th-century summer warmth * tree-ring chronology * scots pine * 2 millennia * temperature variability * northern-hemisphere * central siberia * worlds forests * white spruce * carbon-cycle * boreal forest * climate variability * dendroecology * Eurasia * forest productivity * global warming * high northern latitudes Subject RIV: EH - Ecology, Behaviour Impact factor: 4.404, year: 2016

  1. Determination of the terpene flux from orange species and Norway spruce by relaxed eddy accumulation

    DEFF Research Database (Denmark)

    Christensen, C.S.; Hummelshøj, P.; Jensen, N.O.

    2000-01-01

    Terpene fluxes from a Norway spruce (Picea abies) forest and an orange orchard (Citrus clementii and Citrus sinensis) were measured by relaxed eddy accumulation (REA) during summer 1997. alpha-pinene and beta-pinene were the most abundant terpenes emitted from Norway spruce and constituted approx...... rate by using two precision pumps operated at approximately 60 mi min(-1). The terpenes collected on the adsorbent tubes were significantly decomposed by ozone during sampling unless ozone scrubbers were applied. (C) 2000 Elsevier Science Ltd. All rights reserved....

  2. CAMEX-4 ER-2 HIGH ALTITUDE DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 ER-2 High Altitude Dropsonde dataset was collected by the ER-2 High Altitude Dropsonde System (EHAD), which used dropwinsondes fitted with Global...

  3. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    Science.gov (United States)

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  4. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  5. Ash-forming elements in four Scandinavian wood species part 3: Combustion of five spruce samples

    Energy Technology Data Exchange (ETDEWEB)

    Werkelin, Johan; Lindberg, Daniel; Skrifvars, Bengt-Johan; Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FI-20500 Turku (Finland); Bostroem, Dan [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden)

    2011-01-15

    Forest residue is the remaining fraction after the outtake of timber, which comprises the tree tops and branches. It may as fuel cause damage to the combustion device through ash slagging and fouling. The objective of this work was to model the ash composition from well-specified samples of a spruce tree: wood, bark, twigs, needles, and shoots. Their ash at 1000 C was modelled using global chemical equilibrium calculations, and laboratory-made ash of the five samples was analyzed by XRD and SEM-EDXA. According to the results, the risk of slagging arises from the spruce foliage: molten alkali silicates from spruce needles and probably molten alkali phosphates from spruce shoots may cause problems in the furnace. Fouling caused by condensing alkali vapours can be produced by all five samples. The amount of alkali vapours in the flue gas was in the same order of magnitude for all five samples, in spite of large differences in their original alkali contents. (author)

  6. Modeling Wood Fibre Length in Black Spruce (Picea mariana (Mill. BSP Based on Ecological Land Classification

    Directory of Open Access Journals (Sweden)

    Elisha Townshend

    2015-09-01

    Full Text Available Effective planning to optimize the forest value chain requires accurate and detailed information about the resource; however, estimates of the distribution of fibre properties on the landscape are largely unavailable prior to harvest. Our objective was to fit a model of the tree-level average fibre length related to ecosite classification and other forest inventory variables depicted at the landscape scale. A series of black spruce increment cores were collected at breast height from trees in nine different ecosite groups within the boreal forest of northeastern Ontario, and processed using standard techniques for maceration and fibre length measurement. Regression tree analysis and random forests were used to fit hierarchical classification models and find the most important predictor variables for the response variable area-weighted mean stem-level fibre length. Ecosite group was the best predictor in the regression tree. Longer mean fibre-length was associated with more productive ecosites that supported faster growth. The explanatory power of the model of fitted data was good; however, random forests simulations indicated poor generalizability. These results suggest the potential to develop localized models linking wood fibre length in black spruce to landscape-level attributes, and improve the sustainability of forest management by identifying ideal locations to harvest wood that has desirable fibre characteristics.

  7. Ammonium assmilation in spruce ectomycorrhizas

    International Nuclear Information System (INIS)

    Chalot, M.; Brun, A.; Botton, B.; Stewart, G.

    1990-01-01

    Assimilation of labelled NH 4 + into amino acids has been followed in ectomycorrhizal roots of spruce. Over an 18 h period of NH 4 + feeding, Gln, Glu and Ala became the most abundant amino acids. Gln was also the most highly labelled amino acid during the experiment, followed by Glu and Ala. This result indicates that Gln synthesis is an important ammonium utilization reaction in spruce mycorrhizas. Addition of MSX to NH 4 + fed mycorrhizas caused an inhibition of Gln accumulation with a corresponding increase in Glu, Ala and Asn levels. The supply of MSX induced a sharp diminution of 15 N enrichment in both amino and amido groups of glutamine. In contrast, the 15 N incorporation into Glu and derivatives (Ala and Asp) remained very high. This study demonstrates that the fungal glutamate dehydrogenase is quite operative in spruce ectomycorrhizas since it is able to sustain ammonium assimilation when glutamine synthetase is inhibited

  8. Wood density variations of Norway spruce (Picea abies (L. Karst. under contrasting climate conditions in southwestern Germany

    Directory of Open Access Journals (Sweden)

    Marieke van der Maaten-Theunissen

    2013-05-01

    Full Text Available We analyzed inter-annual variations in ring width and maximumwood density of Norway spruce (Picea abies (L. Karst. at different altitudes in Baden-Württemberg, southwestern Germany, to determine the climate response of these parameters under contrasting climate conditions. In addition, we compared maximum, average and minimum wood density between sites. Bootstrapped correlation coefficients of ring width and maximum wood density with monthly temperature and precipitation, revealed a different climate sensitivity of both parameters. Ring width showed strong correlations with climate variables in the previous year and in the first half of the growingseason. Further, a negative relationship with summer temperature was observed at the low-altitude sites. Maximum wood density correlated best with temperature during the growing season, whereby strongest correlations were found between September temperature and maximum wood density at the high-altitude sites. Observed differences in maximum, average and minimum wood density are suggested to relate to the local climate; with lower temperature and higher water availability having a negative effect on wood density.

  9. Wood density variations of Norway spruce (Picea abies (L. Karst. under contrasting climate conditions in southwestern Germany

    Directory of Open Access Journals (Sweden)

    Marieke van der Maaten-Theunissen

    2013-07-01

    Full Text Available We analyzed inter-annual variations in ring width and maximum wood density of Norway spruce (Picea abies (L. Karst. at different altitudes in Baden-Württemberg, southwestern Germany, to determine the climate response of these parameters under contrasting climate conditions. In addition, we compared maximum, average and minimum wood density between sites. Bootstrapped correlation coefficients of ring width and maximum wood density with monthly temperature and precipitation, revealed a different climate sensitivity of both parameters. Ring width showed strong correlations with climate variables in the previous year and in the first half of the growing season. Further, a negative relationship with summer temperature was observed at the low-altitude sites. Maximum wood density correlated best with temperature during the growing season, whereby strongest correlations were found between September temperature and maximum wood density at the high-altitude sites. Observed differences in maximum, average and minimum wood density are suggested to relate to the local climate; with lower temperatures and higher water availability having a negative effect on wood density. 

  10. Feedbacks of windthrow for Norway spruce and Scots pine stands under changing climate

    International Nuclear Information System (INIS)

    Panferov, O; Rauch, E; Doering, C; Ahrends, B; Sogachev, A

    2009-01-01

    Wind damage is one of the major natural disturbances that can occur worldwide in most types of forests. Enhanced management using adequate decision support systems (DSS) can considerably reduce the risk of windthrow. The decision support system 'Forest and Climate Change' (DSS-WuK) which is currently being developed at Goettingen University aims at providing a tool for the quantitative assessment of biotic and abiotic risks for forest ecosystems under the conditions of changing climate. In order to assess the future risks of wind damage the system employs a coupled modelling approach combining the turbulence model SCAlar DIStribution (SCADIS) with the soil-vegetation-atmosphere-transfer (SVAT) model BROOK 90. The present study investigates projections of wind damage in Solling, Germany under climate scenarios A1B and B1, taking into account the windthrow feedbacks-changes of microclimate as a result of tree fall and consequent stabilization or destabilization of a forest stand. The results of the study indicate that in Solling the risk of windthrow for spruce and pine forest stands is likely to increase considerably during the 21st century. The general tendencies indicate that under A1B the probability of damage would be higher than under B1 and that under the same climate and soil conditions the risk for spruce stands would be higher than for pine stands of equal age. The degree of damage and feedback contribution as well as a sign of feedback in each particular case will strongly depend on the particular local or regional combination of climatic and soil factors with tree species, age and structure. For Solling the positive feedback to local climatic forcing is found. The feedback contributes considerably (up to 6% under given conditions) to the projected forest damage and cannot be neglected. Therefore, the adequate projection of future damage probabilities can be performed only with a process-based coupled soil-atmosphere model with corresponding high spatial

  11. Fertilization Changes Chemical Defense in Needles of Mature Norway Spruce (Picea abies

    Directory of Open Access Journals (Sweden)

    Line Nybakken

    2018-06-01

    Full Text Available Nitrogen availability limits growth in most boreal forests. However, parts of the boreal zone receive significant levels of nitrogen deposition. At the same time, forests are fertilized to increase volume growth and carbon sequestration. No matter the source, increasing nitrogen in the boreal forest ecosystem will influence the resource situation for its primary producers, the plants, with possible implications for their defensive chemistry. In general, fertilization reduces phenolic compound concentrations in trees, but existing evidence mainly comes from studies on young plants. Given the role of the phenolic compounds in protection against herbivores and other forest pests, it is important to know if phenolics are reduced with fertilization also in mature trees. The evergreen Norway spruce is long-lived, and it is reasonable that defensive strategies could change from the juvenile to the reproductive and mature phases. In addition, as the needles are kept for several years, defense could also change with needle age. We sampled current and previous year needles from an N fertilization experiment in a Norway spruce forest landscape in south-central Norway to which N had been added annually for 13 years. We analyzed total nitrogen (N and carbon (C, as well as low-molecular phenolics and condensed tannins. Needles from fertilized trees had higher N than those from controls plots, and fertilization decreased concentrations of many flavonoids, as well as condensed tannins in current year needles. In previous year needles, some stilbenes and condensed tannins were higher in fertilized trees. In control trees, the total phenolic concentration was almost five times as high in previous year needles compared with those from the current year, and there were great compositional differences. Previous year needles contained highest concentrations of acetophenone and stilbenes, while in the current year needles the flavonoids, and especially coumaroyl

  12. CO2-gas-exchange and transpiration of open-grown Norway spruce during the year in higher elevations of the Southern Black Forest under local air-conditions with and without ozone

    International Nuclear Information System (INIS)

    Abetz, P.; Kuenstle, E.; Wolfart, A.

    1993-03-01

    Aim and method: CO 2 -gas-exchange and transpiration of open-grown Norway spruce (about 12 m high) on the top of the Black Forest (1230 m a.s.l.) near Freiburg under local conditions with and without ozone are being continiously measured through the whole year. In the same intensity are registered the temperature of soil, needles, twigs, stem and air, the humidity in soil and air and the diameter-changes of the stem. Nearby other institutions measure the quality of air and depositions. Results: In winter with less snowfall, higher temperature and higher insolation, the youngest twigs of the spruce had a lower net-photosynthesis but a higher respiration at night on the southern part versus nothern part (with more shade). Perhaps it happened an inactivity of the photosynthesis-apparatus because of too high insolation. In the same time the colour of the needles on the southern part changed to yellowish green (on the northern part they remained dark green). During dry summer periods the photosynthesis dropped earlier and deeper. The 'radial-increment' stagnated. There was no difference in the gas-exchange when the ozone concentration had been enlarged, neither in winter nor in summertime. (orig.). 57 figs., 12 tabs., 178 refs [de

  13. The role of forest type on throughfall during extreme precipitation events - A comparison of methods using data from the Pohorje mountains (NE Slovenia)

    Science.gov (United States)

    Vilhar, Urša; Simončič, Primož

    2013-04-01

    Extreme precipitation in the Alpine region is a major environmental factor due to high frequency of such events and consequences such as flooding of populated valley floors, erosion, avalanches, debris flow and landslides endangering exposed settlements. However, the effects of extreme precipitation are buffered by forest cover, therefore forest management practices should aim towards decreased surface runoff and soil erosion in alpine climates. In Central Europe, many pure Norway spruce stands, established on primary beech sites, were converted into mixed stands over the last 60 years. The conversion of forest management from spruce monocultures into mixed deciduous-coniferous forests changed the forest structure dramatically. This changes could influence the hydrological processes on the catchment scale, associated with major river flooding following extreme precipitation events. In this study, the effect of forest management on the partitioning of rainfall into throughfall and stemflow in coniferous and mixed deciduous-coniferous stands on Pohorje mountains in NE Slovenia were investigated. Four spruce Picea abies (L. Karst) stands were compared to four mixed spruce-beech Fagus sylvatica (L.) stands with prevailing forest plant community Cardamine Savensi Fagetum with small areas of Sphagno - Piceetum, Bazzanio - Piceetum and Rhytidiodelpholorei - Piceetum intermixed. The monthly throughfall from rain collectors and half-hourly throughfall from automated rain gauges in growing seasons from 2008 till 2012 were analyzed in order to estimate the throughfall under forest canopies. In the mixed spruce-beech stands the monthly stemflow on beech trees was also measured. For the precipitation in the open an automated weather station and rainfall collectors in an open area located very close to the research plots were used. There were small differences in seasonal throughfall found between the coniferous and mixed deciduous-coniferous stands. The seasonal throughfall was

  14. Effects of altitude and exercise on pulmonary capillary integrity: evidence for subclinical high-altitude pulmonary edema.

    Science.gov (United States)

    Eldridge, Marlowe W; Braun, Ruedi K; Yoneda, Ken Y; Walby, William F

    2006-03-01

    Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could add significantly to augment the mechanical stress on the pulmonary microcirculation. We postulated that intense exercise at altitude would result in an augmented permeability edema. We recruited eight endurance athletes and examined their bronchoalveolar lavage fluid (BALF) for red blood cells (RBCs), protein, inflammatory cells, and soluble mediators at 2 and 26 h after intense exercise under normoxic and hypoxic conditions. After heavy exercise, under all conditions, the athletes developed a permeability edema with high BALF RBC and protein concentrations in the absence of inflammation. We found that exercise at altitude (3,810 m) caused significantly greater leakage of RBCs [9.2 (SD 3.1)x10(4) cells/ml] into the alveolar space than that seen with normoxic exercise [5.4 (SD 1.2)x10(4) cells/ml]. At altitude, the 26-h postexercise BALF revealed significantly higher RBC and protein concentrations, suggesting an ongoing capillary leak. Interestingly, the BALF profiles following exercise at altitude are similar to that of early high-altitude pulmonary edema. These findings suggest that pulmonary capillary disruption occurs with intense exercise in healthy humans and that hypoxia augments the mechanical stresses on the pulmonary microcirculation.

  15. Factors affecting spruce establishment and recruitment near western treeline, Alaska

    Science.gov (United States)

    Miller, A. E.; Sherriff, R.; Wilson, T. L.

    2015-12-01

    Regional warming and increases in tree growth are contributing to increased productivity near the western forest margin in Alaska. The effects of warming on seedling recruitment has received little attention, in spite of forecasted forest expansion near western treeline. Here, we used stand structure and environmental data from white spruce (Picea glauca) stands (n = 95) sampled across a longitudinal gradient to explore factors influencing white spruce growth, establishment and recruitment in southwest Alaska. Using tree-ring chronologies developed from a subset of the plots (n = 30), we estimated establishment dates and basal area increment (BAI) for trees of all age classes across a range of site conditions. We used GLMs (generalized linear models) to explore the relationship between tree growth and temperature in undisturbed, low elevation sites along the gradient, using BAI averaged over the years 1975-2000. In addition, we examined the relationship between growing degree days (GDD) and seedling establishment over the previous three decades. We used total counts of live seedlings, saplings and live and dead trees, representing four cohorts, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance of the different size classes. We hypothesized that the relationship between abundance and longitude would vary by size class, and that this relationship would be mediated by growing season temperature. We found that mean BAI for trees in undisturbed, low elevation sites increased with July maximum temperature, and that the slope of the relationship with temperature changed with longitude (interaction significant with 90% confidence). White spruce establishment was positively associated with longer summers and/or greater heat accumulation, as inferred from GDD. Seedling, sapling and tree abundance were also positively correlated with temperature across the study area. The response to longitude was mixed, with smaller size classes

  16. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    Science.gov (United States)

    Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter

    2013-01-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.

  17. Effect of oxygen supplementation in a hatchery at high altitude and ...

    African Journals Online (AJOL)

    The objective of this study was to investigate the effect of oxygen supplementation on broiler eggs in a hatchery at high altitude on the growth performance and ascites syndrome of broilers reared at low altitude. The treatment groups were low altitude with no oxygen supplemented in the hatchery (LA-NOX); high altitude with ...

  18. Chernobyl radioactivity and high altitude air-particulate monitoring at Islamabad

    International Nuclear Information System (INIS)

    Bhatti, M.S.; Ihsanullah; Shafiq, M.; Perveen, N.; Orfi, S.D.

    1987-11-01

    High altitude sampling of air particulates for radioactivity monitoring was conducted at Islamabad after the CHERNOBYL accident. Smears from aeroplanes flying at varying altitudes were collected and analysed for fresh fission products mainly gamma emitters e.g. Ru-103 and Cs-137 etc. The maximum radioactivity observed was of the order of 15Bq/sample for Ru-103 and 9Bq/sample for Cs-137 respectively. The study was purely qualitative in nature indicated the presence of fresh fission radioactivity at high altitudes over Islamabad. For quantitative measurements at high altitudes sophisticated instrumentation/procedure needs to be adopted. (author)

  19. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce

    Science.gov (United States)

    Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison

    2009-01-01

    Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...

  20. Birds of a high-altitude cloud forest in Alta Verapaz, Guatemala.

    Science.gov (United States)

    Eisermann, Knut; Schulz, Ulrich

    2005-01-01

    The Northern Central American Highlands have been recognized as endemic bird area, but little is known about bird communities in Guatemalan cloud forests. From 1997 to 2001 a total of 142 bird species were recorded between 2000 and 2400 masl in cloud forest and agricultural clearings on Montaña Caquipec (Alta Verapaz, Guatemala). The bird community is described based on line transect counts within the forest. Pooling census data from undisturbed and disturbed forest, the Gray-breasted Wood-Wren (Henicorhina leucophrys) was found to be the most abundant species, followed in descending order by the Common Bush-Tanager (Chlorospingus ophthalmicus), the Paltry Tyrannulet (Zimmerius vilissimus), the Yellowish Flycatcher (Empidonax flavescens), the Ruddy-capped Nightingale-Thrush (Catharus frantzi), and the Amethyst-throated Hummingbird (Lampornis amethystinus). Bird communities in undisturbed and disturbed forest were found to be similar (Serensen similarity index 0.85), indicating low human impact. Of all recorded species, approximately 27% were Nearctic-Neotropical migratory birds. The most abundant one was the Wilson's Warbler (Wilsonia pusilla). The Montaña Caquipec is an important area for bird conservation, which is indicated by the presence of four species listed in the IUCN Red List (Highland Guan Penelopina nigra, Resplendent Quetzal Pharomachrus mocinno, Pink-headed Warbler Ergaticus versicolor, Golden-cheeked Warbler Dendroica chrysoparia), and 42 Mesoamerican endemics, of which 14 species are endemic to the Central American Highlands. The results presented here will be useful as baseline data for a long-term monitoring.

  1. Results of forest monitoring on Olkiluoto island in 2009

    Energy Technology Data Exchange (ETDEWEB)

    Aro, L.; Helmisaari, H.S.; Hoekkae, H.; Lindroos, A.-J.; Rautio, P.; Derome, J. (Finnish Forest Research Institute, Vantaa (Finland))

    2010-11-15

    Forest investigations carried out on Olkiluoto aim to monitor the state of the forest ecosystems, quantify Olkiluoto-specific processes taking place in the forests producing input data for the safety assessment of spent nuclear fuel disposal, and follow possible changes in the forest condition resulting from the intensive construction activities currently being carried out in the area. The forest investigations form a part of the monitoring programme being carried out on Olkiluoto Island under the management of Posiva Oy. This report focuses on activities performed on bulk deposition and forest intensive monitoring plots (MRK and FIP plots) in 2009. In general, the deposition levels in 2009 in the open area and in stand throughfall were quite comparable to those in earlier years, although sulphur and calcium depositions were somewhat higher in the open area than in earlier years. The soil solution quality in 2009 was also quite comparable to that in earlier years. The NH{sub 4}-N and NO{sub 3}-N concentrations were low at all depths in the mineral soil of the FIP plots. There appeared to be a gradual decrease in sulphate concentrations in the mineral soil during the monitoring period. In 2009 the monthly level of transipiration in the Scots pine dominated stand was comparable to previous years (2007-2008). Instead, monthly transpiration in the Norway spruce dominated stand was clearly lower in 2009 than in 2007-2008. Annual total litterfall production was smaller in 2008 than in 2007. The most notable differences between the plots were detected in Al and N concentrations. The Al concentration was higher in living pine needles than in spruce needles. High Al and Fe concentrations were found in remaining litter, and are most likely due to soil dust. The average defoliation level of the pines was 4.6 % and of the spruces 24.1 %, indicating a good crown condition: the pines were classified as non-defoliated and the spruces as slightly defoliated. The minirhizotrone

  2. Results of forest monitoring on Olkiluoto island in 2009

    International Nuclear Information System (INIS)

    Aro, L.; Helmisaari, H.S.; Hoekkae, H.; Lindroos, A.-J.; Rautio, P.; Derome, J.

    2010-11-01

    Forest investigations carried out on Olkiluoto aim to monitor the state of the forest ecosystems, quantify Olkiluoto-specific processes taking place in the forests producing input data for the safety assessment of spent nuclear fuel disposal, and follow possible changes in the forest condition resulting from the intensive construction activities currently being carried out in the area. The forest investigations form a part of the monitoring programme being carried out on Olkiluoto Island under the management of Posiva Oy. This report focuses on activities performed on bulk deposition and forest intensive monitoring plots (MRK and FIP plots) in 2009. In general, the deposition levels in 2009 in the open area and in stand throughfall were quite comparable to those in earlier years, although sulphur and calcium depositions were somewhat higher in the open area than in earlier years. The soil solution quality in 2009 was also quite comparable to that in earlier years. The NH 4 -N and NO 3 -N concentrations were low at all depths in the mineral soil of the FIP plots. There appeared to be a gradual decrease in sulphate concentrations in the mineral soil during the monitoring period. In 2009 the monthly level of transipiration in the Scots pine dominated stand was comparable to previous years (2007-2008). Instead, monthly transpiration in the Norway spruce dominated stand was clearly lower in 2009 than in 2007-2008. Annual total litterfall production was smaller in 2008 than in 2007. The most notable differences between the plots were detected in Al and N concentrations. The Al concentration was higher in living pine needles than in spruce needles. High Al and Fe concentrations were found in remaining litter, and are most likely due to soil dust. The average defoliation level of the pines was 4.6 % and of the spruces 24.1 %, indicating a good crown condition: the pines were classified as non-defoliated and the spruces as slightly defoliated. The minirhizotrone images

  3. Hemoglobin and testosterone: importance on high altitude acclimatization and adaptation

    OpenAIRE

    Gonzales, Gustavo F.; Jefe de la Unidad de Reproducción, Instituto de Investigaciones de la Altura y Jefe del Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Doctor en Medicina y Doctor en Ciencias. Especialista en Endocrinología.

    2011-01-01

    The different types of response mechanisms that the organism uses when exposed to hypoxia include accommodation, acclimatization and adaptation. Accommodation is the initial response to acute exposure to high altitude hypoxia and is characterized by an increase in ventilation and heart rate. Acclimatization is observed in individuals temporarily exposed to high altitude, and to some extent, it enables them to tolerate the high altitudes. In this phase, erythropoiesis is increased, resulti...

  4. Spatial distribution of lead and lead isotopes in soil B-horizon, forest-floor humus, grass (Avenella flexuosa) and spruce (Picea abies) needles across the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Sucharova, Julie; Suchara, Ivan [Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Kvetnove namesti 391, 252 43 Pruhonice (Czech Republic); Reimann, Clemens, E-mail: Clemens.Reimann@ngu.no [Geological Survey of Norway, P.O. Box 6315 Sluppen, 7491 Trondheim (Norway); Boyd, Rognvald [Geological Survey of Norway, P.O. Box 6315 Sluppen, 7491 Trondheim (Norway); Filzmoser, Peter [Institute for Statistics and Probability Theory, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Wien (Austria); Englmaier, Peter [Faculty of Life Science, University of Vienna, Althanstr. 14, A-1090 Vienna (Austria)

    2011-07-15

    Highlights: > Pb-concentrations and {sup 206}Pb/{sup 207}Pb isotope ratios are provided for four different sample materials for the Czech Republic. > The paper demonstrates the local impact of a number of different contamination sources. > The data provide clear evidence that traffic emissions are no major source of Pb to the Czech environment. > The data demonstrate that the B-horizon provides no valid 'background' for Pb-concentration or the {sup 206}Pb/{sup 207}Pb isotope ratio. > Pb isotope ratios change during soil weathering and at the interface biosphere/pedosphere. - Abstract: Lead concentrations were determined in samples of soil B-horizon (N = 258), forest-floor humus (O-horizon, N = 259), grass (Avenella flexuosa, N = 251) and spruce (Picea abies, N = 253) needles (2nd year) collected at the same locations evenly spread over the territory of the Czech Republic at an average density of 1 site/300 km{sup 2}. Median Pb concentrations differ widely in the four materials: soil B-horizon: 27 mg/kg (3.3-220 mg/kg), humus: 78 mg/kg (19-1863 mg/kg), grass: 0.37 mg/kg (0.08-8 mg/kg) and spruce needles: 0.23 mg/kg (0.07-3 mg/kg). In the Pb distribution maps for humus, grass and spruce a number of well-known Pb-contamination sources are indicated by unusually high concentrations (e.g., the Pb smelter at Pribram, the metallurgical industry in the NE of the Czech Republic and along the Polish border, as well as the metallurgical industry in Upper Silesia and Europe's largest coal-fired power plant at Bogatynia, Poland). The ratio {sup 206}Pb/{sup 207}Pb was determined in all four materials. The median value of the {sup 206}Pb/{sup 207}Pb isotope ratio in the soil B-horizon is 1.184 (variation: 1.145-1.337). In both humus and grass the median value for the {sup 206}Pb/{sup 207}Pb isotope ratio is 1.162 (variation: 1.130-1.182), in spruce needles the median ratio is 1.159 (variation: 1.116-1.186). In humus, grass and spruce needles the known contamination

  5. Sustainable forest management of Natura 2000 sites: a case study from a private forest in the Romanian Southern Carpathians

    Directory of Open Access Journals (Sweden)

    Helge Walentowski

    2013-07-01

    Full Text Available Biodiversity and forest management are analyzed for a 500 ha privately owned forest within the Natura 2000 area “ROSCI0122 Muntii Fagaras”. Habitat types and indicator species are identified to measure environmental quality. Working towards an integrated approach to conservation, a range of options that will result in sustainable forest management are then considered. For beech forests light heterogeneity emerges as a crucial management target to ensure tree species richness and structural diversity as a basis for saving indicator species such as Morimus funereus, Cucujus cinnaberinus, Bolitophagus reticulatus and Xestobium austriacum. For spruce forests thinning over a broad range of diameters and maintenance of veteran trees would provide habitats for indicator species such asOlisthaerus substriatus. The populations of a number of bird species would be increased by strip-harvesting slopes: species such as Tetrao urogallus, Bonasia bonasia and Ficedula parva prefer forest margins. Steep slopes, and the areas around springs and watercourses, as well as rock faces, should remain unmanaged. Future management should start with a grid-based inventory to create an objective database of forest structure and life. An example is presented for high-elevation spruce forest. The inventory should quantify the variations in diameter, height and volume of trees per unit area. Such data would allow the advanced planning of forest operations. We discuss a wide range of administrative and organizational changes; changes that are needed for the sustainable forest management of the vast close-to-natural forests of the Muntii Fagaras, the maintenance of the Nardusgrasslands and the protection of wetland vegetation around springs and streams in this Natura 2000-area. 

  6. Can people with Raynaud's phenomenon travel to high altitude?

    Science.gov (United States)

    Luks, Andrew M; Grissom, Colin K; Jean, Dominique; Swenson, Erik R

    2009-01-01

    To determine whether high altitude travel adversely affects mountain enthusiasts with Raynaud's phenomenon. Volunteers with Raynaud's phenomenon were recruited using announcements disseminated by organizations dedicated to climbing or wilderness travel and Internet discussion boards dedicated to mountain activities to complete an online, anonymous survey. Survey questions addressed demographic variables, aspects of their Raynaud's phenomenon, and features of their mountain activities. Respondents compared experiences with Raynaud's phenomenon between high (>2440 m; 8000 feet) and low elevations and rated agreement with statements concerning their disease and the effects of high altitude. One hundred forty-two people, 98% of whom had primary Raynaud's phenomenon, completed the questionnaire. Respondents spent 5 to 7 days per month at elevations above 2440 m and engaged in 5.4 +/- 2.0 different activities. Eighty-nine percent of respondents engaged in winter sports and only 22% reported changing their mountain activities because of Raynaud's phenomenon. Respondents reported a variety of tactics to prevent and treat Raynaud's attacks, but only 12% used prophylactic medications. Fifteen percent of respondents reported an episode of frostbite following a Raynaud's phenomenon attack at high altitude. There was considerable heterogeneity in participants' perceptions of the frequency, duration, and severity of attacks at high altitude compared to their home elevation. Motivated individuals with primary Raynaud's phenomenon, employing various prevention and treatment strategies, can engage in different activities, including winter sports, at altitudes above 2440 m. Frostbite may be common in this population at high altitude, and care must be taken to prevent its occurrence.

  7. Fine root status element contents in three Norway spruce stands in the Krkonose Mts

    Czech Academy of Sciences Publication Activity Database

    Goldbold, D.; Fritz, H.; Cudlín, Pavel; Bonifacio, E.

    2003-01-01

    Roč. 22, Suppl. 1 (2003), s. 91-94 ISSN 1335-342X. [Long Term Air Pollution Effect on Forest Ecosystems (International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems)/20./. Zvolen, 30.08.2002-01.09.2002] R&D Projects: GA MŠk OK 355 Institutional research plan: CEZ:AV0Z6087904 Keywords : Ca:Al ratios, fine roots, spruce Subject RIV: EH - Ecology, Behaviour Impact factor: 0.100, year: 2003

  8. Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude

    Directory of Open Access Journals (Sweden)

    Krystal de Alcantara Notaro

    2014-04-01

    Full Text Available Agroforestry systems are an alternative option for sustainable production management. These systems contain trees that absorb nutrients from deeper layers of the soil and leaf litter that help improve the soil quality of the rough terrain in high altitude areas, which are areas extremely susceptible to environmental degradation. The aim of this study was to characterize the stock and nutrients in litter, soil activity and the population of microorganisms in coffee (Coffea arabica L. plantations under high altitude agroforestry systems in the semi-arid region of the state of Pernambuco, Brazil. Samples were collected from the surface litter together with soil samples taken at two depths (0-10 and 10-20 cm from areas each subject to one of the following four treatments: agroforestry system (AS, native forest (NF, biodynamic system (BS and coffee control (CT.The coffee plantation had been abandoned for nearly 15 years and, although there had been no management or harvesting, still contained productive coffee plants. The accumulation of litter and mean nutrient content of the litter, the soil nutrient content, microbial biomass carbon, total carbon, total nitrogen, C/N ratio, basal respiration, microbial quotient, metabolic quotient and microbial populations (total bacteria, fluorescent bacteria group, total fungi and Trichoderma spp. were all analyzed. The systems thatwere exposed to human intervention (A and BS differed in their chemical attributes and contained higher levels of nutrients when compared to NF and CT. BS for coffee production at high altitude can be used as a sustainable alternative in the high altitude zones of the semi-arid region in Brazil, which is an area that is highly susceptible to environmental degradation.

  9. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado.

    Science.gov (United States)

    Mietkiewicz, Nathan; Kulakowski, Dominik; Veblen, Thomas T

    2018-03-01

    Over the past 30 years, forest disturbances have increased in size, intensity, and frequency globally, and are predicted to continue increasing due to climate change, potentially relaxing the constraints of vegetation properties on disturbance regimes. However, the consequences of the potentially declining importance of vegetation in determining future disturbance regimes are not well understood. Historically, bark beetles preferentially attack older trees and stands in later stages of development. However, as climate warming intensifies outbreaks by promoting growth of beetle populations and compromising tree defenses, smaller diameter trees and stands in early stages of development now are being affected by outbreaks. To date, no study has considered how stand age and other pre-outbreak forest conditions mediate the effects of outbreaks on surface and aerial fuel arrangements. We collected fuels data across a chronosequence of post-outbreak sites affected by spruce beetle (SB) between the 1940s and the 2010s, stratified by young (130 yr) post-fire stands. Canopy and surface fuel loads were calculated for each tree and stand, and available crown fuel load, crown bulk density, and canopy bulk densities were estimated. Canopy bulk density and density of live canopy individuals were reduced in all stands affected by SB, though foliage loss was proportionally greater in old stands as compared to young stands. Fine surface fuel loads in young stands were three times greater shortly (fuels decreased to below endemic (i.e., non-outbreak) levels. In both young and old stands, the net effect of SB outbreaks during the 20th and 21st centuries reduced total canopy fuels and increased stand-scale spatial heterogeneity of canopy fuels following outbreak. Importantly, the decrease in canopy fuels following outbreaks was greater in young post-fire stands than in older stands, suggesting that SB outbreaks may more substantially reduce risk of active crown fire when they affect

  10. CLIMATE CHANGE AND ORIENTAL SPRUCE (PICEA ORIENTALIS ECOSYSTEMS IN EASTERN BLACKSEA REGION OF TURKEY

    Directory of Open Access Journals (Sweden)

    Aydın Tüfekçioğlu

    2008-04-01

    Full Text Available Climate change has been getting more attention from scientific community recently. Eastern Black Sea Region of Turkey will get significant influences from the climate change according to regional climate model (RegCM3. Oriental spruce (Picea orientalis L. is an important tree species of Turkey and it only grows in the Eastern Black Sea Region of Turkey. With the increase in global warming, spruce forests started to have serious bark beetle problems. More than 200 000 trees died in the region recently due to bark beetle attack. We used existing literature related to oriental spruce and future climate of the region and field observations done in the different times to assess current status of the spruce stands. Future climate of the region has been predicted using RegCM3 regional climate model. Climate change could significantly influence distribution, diversity, structure and stability of the oriental spruce ecosystems. According to RegCM3 regional climate model, the temperatures will increase 2-4 °C in the region in the next century. Future climate scenarios predict 200-300 mm increases in precipitation in the eastern part of the region while the western part won't have any increase in precipitation in the next century. Temperature increases in the western part of the region can cause more stress on spruce trees and would probably increase bark beetle attacks. Also, fire could become an important threat in the western part of the region. It is possible to observe 400-800 m upward shift in the spruce belt in the western part. Treeline of spruce stands would probably move upward both in western and eastern part of the North-eastern Blacksea Region.

  11. Ocular morbidity among porters at high altitudes.

    Science.gov (United States)

    Gnyawali, Subodh; Shrestha, Gauri Shankar; Khanal, Safal; Dennis, Talisa; Spencer, John C

    2017-01-01

    High altitude, often characterized by settings over 2400m, can be detrimental to the human body and pose a significant risk to ocular health. Reports concerning various ocular morbidities occurring as a consequence of high altitude are limited in the current literature. This study was aimed at evaluating the ocular health of porters working at high altitudesof Himalayas in Nepal. A mobile eye clinic was set up in Ghat and patient data were collected from its out- patient unit by a team of seven optometrists which was run for five days. Ghat is a small village in north-eastern Nepal, located at 2860 m altitude. Travellers walking through the trekking route were invited to get their eyes checked at the clinic. Comprehensive ocular examinations were performed, including visual acuities, objective and subjective refraction, anterior and posterior segment evaluations, and intraocular pressure measurements; blood pressure and blood glucose levels were also measured as required. Ocular therapeutics, prescription glasses, sunglasses and ocular health referrals were provided free of cost as necessary. A total of 1890 people visited the eye clinic, among which 57.4% (n=1084) were porters. Almost half of the porters had an ocular morbidity. Correctable refractive error was most prevalent, with other ocular health-related complications, including dry eye disease, infectious disorders, glaucoma and cataract. Proper provision of regular and effective eye care services should be made more available for those residing at these high altitudes in Nepal. © NEPjOPH.

  12. Results of forest monitoring on Olkiluoto island in 2010

    International Nuclear Information System (INIS)

    Aro, L.; Huhta, A.-P.; Hoekkae, H.; Lindroos, A.-J.; Rautio, P.; Helmisaari, H.-S.

    2011-11-01

    Forest investigations carried out on Olkiluoto aim to monitor the state of the forest ecosystems, quantify Olkiluoto-specific processes taking place in the forests producing input data for the safety assessment of spent nuclear fuel disposal, and follow possible changes in the forest condition resulting from the intensive construction activities currently being carried out in the area. The forest investigations form a part of the monitoring programme being carried out on Olkiluoto Island under the management of Posiva Oy. This report focuses on activities performed on bulk deposition and forest intensive monitoring plots (MRK and FIP plots) in 2010. In general, the deposition levels in 2010 in the open area and in stand throughfall were quite comparable to those in earlier years, although sulphur and calcium depositions were somewhat higher in the open area than in earlier years (2004-2008). The soil solution quality in 2010 was also quite comparable to that in earlier years. The NH 4 -N and NO 3 -N concentrations were low at all depths in the mineral soil of the FIP plots 4, 10 and 11. Instead, nitrate concentrations were high in the soil solution on FIP14. There appeared to be a clear overall increase in sulphate concentrations with increasing depth on FIP4 and FIP10. Chloride concentrations in the soil solution were extremely high at all depths on all FIP plots throughout the monitoring period; it is clear that there is a considerable input of NaCl in the deposition derived from the sea. The concentrations of heavy metals (Cd, Cr, Ni, Pb) in the soil solution at all depths at Olkiluoto during 2004-2010 continued in many cases to be close to or below the limit of quantification. In 2010 the monthly level of transpiration in the Scots pine dominated stand was smaller in May and bigger in July than during previous years (2007-2009). Monthly transpiration in the Norway spruce dominated stand was clearly lower in 2010 than in 2007-2009, and there is a decreasing

  13. Results of forest monitoring on Olkiluoto island in 2010

    Energy Technology Data Exchange (ETDEWEB)

    Aro, L.; Huhta, A.-P.; Hoekkae, H.; Lindroos, A.-J.; Rautio, P. [Finnish Forest Research Institute, Vantaa (Finland); Helmisaari, H.-S. [Helsinki Univ. (Finland)

    2011-11-15

    Forest investigations carried out on Olkiluoto aim to monitor the state of the forest ecosystems, quantify Olkiluoto-specific processes taking place in the forests producing input data for the safety assessment of spent nuclear fuel disposal, and follow possible changes in the forest condition resulting from the intensive construction activities currently being carried out in the area. The forest investigations form a part of the monitoring programme being carried out on Olkiluoto Island under the management of Posiva Oy. This report focuses on activities performed on bulk deposition and forest intensive monitoring plots (MRK and FIP plots) in 2010. In general, the deposition levels in 2010 in the open area and in stand throughfall were quite comparable to those in earlier years, although sulphur and calcium depositions were somewhat higher in the open area than in earlier years (2004-2008). The soil solution quality in 2010 was also quite comparable to that in earlier years. The NH{sub 4}-N and NO{sub 3}-N concentrations were low at all depths in the mineral soil of the FIP plots 4, 10 and 11. Instead, nitrate concentrations were high in the soil solution on FIP14. There appeared to be a clear overall increase in sulphate concentrations with increasing depth on FIP4 and FIP10. Chloride concentrations in the soil solution were extremely high at all depths on all FIP plots throughout the monitoring period; it is clear that there is a considerable input of NaCl in the deposition derived from the sea. The concentrations of heavy metals (Cd, Cr, Ni, Pb) in the soil solution at all depths at Olkiluoto during 2004-2010 continued in many cases to be close to or below the limit of quantification. In 2010 the monthly level of transpiration in the Scots pine dominated stand was smaller in May and bigger in July than during previous years (2007-2009). Monthly transpiration in the Norway spruce dominated stand was clearly lower in 2010 than in 2007-2009, and there is a

  14. Forest insects and diseases in Kouchibouguac National Park in 1994. Technical note No. 306

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G.R.

    1995-11-01

    Personnel of the Forest Insect and Disease Survey regularly survey national parks for forest insect and disease conditions. This document presents some of the conditions encountered in Kouchibouguac National Park in 1992, including balsam twig aphids, gypsy moth, whitespotted sawyer bettle, white pine weevil, frost damage, Eastern tent caterpiller, uglynest caterpillar, hypoxylon canker, spruce budmoth, Eastern spruce gall adelgid, and other pests encountered.

  15. Forest insects and diseases in Kouchibouguac National Park in 1993. Technical note No. 295

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G.R.

    1994-01-01

    Personnel of the Forest Insect and Disease Survey regularly survey national parks for forest insect and disease conditions. This document presents some of the conditions encountered in Kouchibouguac National Park in 1992, including balsam twig aphids, gypsy moth, whitespotted sawyer bettle, white pine weevil, frost damage, Eastern tent caterpiller, uglynest caterpillar, hypoxylon canker, spruce budmoth, Eastern spruce gall adelgid, and other pests encountered.

  16. Shape memory alloy resistance behaviour at high altitude for feedback control

    Science.gov (United States)

    Ng, W. T.; Sedan, M. F.; Abdullah, E. J.; Azrad, S.; Harithuddin, A. S. M.

    2017-12-01

    Many recent aerospace technologies are using smart actuators to reduce the system's complexity and increase its reliability. One such actuator is shape memory alloy (SMA) actuator, which is lightweight, produces high force and large deflection. However, some disadvantages in using SMA actuators have been identified and they include nonlinear response of the strain to input current, hysteresis characteristic that results in inaccurate control and less than optimum system performance, high operating temperatures, slow response and also high requirement of electrical power to obtain the desired actuation forces. It is still unknown if the SMA actuators can perform effectively at high altitude with low surrounding temperature. The work presented here covers the preliminary process of verifying the feasibility of using resistance as feedback control at high altitude for aerospace applications. Temperature and resistance of SMA actuator at high altitude is investigated by conducting an experiment onboard a high altitude balloon. The results from the high altitude experiment indicate that the resistance or voltage drop of the SMA wire is not significantly affected by the low surrounding temperature at high altitude as compared to the temperature of SMA. Resistance feedback control for SMA actuators may be suitable for aerospace applications.

  17. Phenotypic evidence suggests a possible major-gene element to weevil resistance in Sitka spruce

    Science.gov (United States)

    John N. King; René I. Alfaro; Peter Ott; Lara vanAkker

    2012-01-01

    The weevil resistance breeding program against the white pine weevil, Pissodes strobi Peck (Coleoptera: Curculionidae), particularly for Sitka spruce (Picea sitchensis (Bong.) Carr), is arguably one of the most successful pest resistance breeding programs for plantation forest species, and it has done a lot to rehabilitate...

  18. Typical land use pattern in high-mountain landscape - part of the Vysoke Tatry Mts. and the Podtatranska kotlina Basin; map fragment

    International Nuclear Information System (INIS)

    Hrnciarova, T.; Kubicek, F.; Ruzickova, H.; Berkova, A.; Simonovic, V.

    2002-01-01

    The territory of the Vysoke Tatry (High Tatras) Mts. and the Podtatranska kotlina Basin documents the human impact even in the highest situated parts of Slovakia. The human impact was obvious the same in the past (lowering of the upper timberline and the dwarf pine scrub by grazing) as in the present time (recreation, tourism, and sport). The most frequent wood species of the Tatras forests is the spruce tree. Fir occurs up to the altitude of 1,250 m above sea level. The wood species accompanying the spruce in higher positions are larch, cembra pine, and mountain ash where they form the upper timberline. The mountain dwarf pine scrub creates an independent tier above the upper timber line in the altitude oscillating between 1,550 m and 1,850 m and gradually transits into alpine meadows with rare flora and fauna. The foothill landscape is intensively agriculturally used. The present species composition of the meadows and pastures, as well as their landscape scenery was decisively determined by intensification of farming (adjustments of the terrain, draining of waterlogged areas and spring areas, removal of woody vegetation, creation of disproportionately large fields, sowing of introduced grass species, and the like). It has not only caused the change of the original nature of meadows and pastures, but it has also changed the whole sub-Tatras landscape. (authors)

  19. Juvenility and serial vegetative propagation of Norway spruce clones (Picea abies Karst.).

    Science.gov (United States)

    J.B. St. Clair; J. Kleinschmit; J. Svolba

    1985-01-01

    Effects associated with progressive maturation of clones are of greatest concern in clonal tree improvement programs. Serial propagation has been in use at the Lower Saxony Forest Research Institute since 1968 to arrest maturation in Norway spruce clones. By 1980 cuttings were established in the nursery that had been serially propagated from one to five cycles. This...

  20. Potential impact of global warming on the range of Spruce, Fir, Beech and sessile Oak in France

    International Nuclear Information System (INIS)

    Piedallu, Christian; Perez, Vincent; Gegout, Jean-Claude; Lebourgeois, Francois; Bertrand, Romain

    2009-01-01

    There have been many studies all over the world that forecast the impact of global warming on vegetation but there is little information currently available to assess its consequences on French forests. The authors studied the range of four common species - spruce, fir, beech and sessile oak - so as to determine their ecology as accurately as possible and assess their sensitivity to global warming. Their range over the period from 1961-1990 was modelled and mapped for the whole of France using ecological variables that characterize climate, water supply, and soil nutrition. The models constructed predict effects from temperature, the water resource, water-logging and the trophic level of soils that are consistent with empirical knowledge about these species. Changes in the probabilities of presence during the 21. century investigated by simulating the A2 and B2 scenarios of the HadCM3 climate model. Changes in climate as predicted by this model would lead to a decrease of the probabilities of presence for all four species initially in the first part of the 21. century at the outer limits of their ranges and then a very significant drop in most plains and medium altitude upland areas, even according to the most optimistic forecasts under scenario B2. The reduction in the forest surface areas that are favourable to the species investigated for the period 2070-2100 is estimated, depending on the scenario, to be between 92% and 99% for spruce, 80% and 93% for beech, 63% and 83% for fir and 43% and 83% for sessile oak. These forecasted changes are very significant in comparison with the current conditions that are favourable to the presence of these species for which edaphic variables act as a local filter within the overall climate envelope. The authors conclude by underscoring the value of these tools for identifying and mapping the most vulnerable areas so as to be in a position to track the behaviour of these species in these areas and determine the appropriate

  1. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.

    Science.gov (United States)

    Storz, Jay F; Scott, Graham R; Cheviron, Zachary A

    2010-12-15

    High-altitude environments provide ideal testing grounds for investigations of mechanism and process in physiological adaptation. In vertebrates, much of our understanding of the acclimatization response to high-altitude hypoxia derives from studies of animal species that are native to lowland environments. Such studies can indicate whether phenotypic plasticity will generally facilitate or impede adaptation to high altitude. Here, we review general mechanisms of physiological acclimatization and genetic adaptation to high-altitude hypoxia in birds and mammals. We evaluate whether the acclimatization response to environmental hypoxia can be regarded generally as a mechanism of adaptive phenotypic plasticity, or whether it might sometimes represent a misdirected response that acts as a hindrance to genetic adaptation. In cases in which the acclimatization response to hypoxia is maladaptive, selection will favor an attenuation of the induced phenotypic change. This can result in a form of cryptic adaptive evolution in which phenotypic similarity between high- and low-altitude populations is attributable to directional selection on genetically based trait variation that offsets environmentally induced changes. The blunted erythropoietic and pulmonary vasoconstriction responses to hypoxia in Tibetan humans and numerous high-altitude birds and mammals provide possible examples of this phenomenon. When lowland animals colonize high-altitude environments, adaptive phenotypic plasticity can mitigate the costs of selection, thereby enhancing prospects for population establishment and persistence. By contrast, maladaptive plasticity has the opposite effect. Thus, insights into the acclimatization response of lowland animals to high-altitude hypoxia can provide a basis for predicting how altitudinal range limits might shift in response to climate change.

  2. Efflux of CO2 from soil in Norway Spruce stands of different ages: a case study

    Czech Academy of Sciences Publication Activity Database

    Dařenová, Eva; Fabiánek, Tomáš; Pavelka, Marian

    2016-01-01

    Roč. 6, č. 2 (2016), s. 98-102 ISSN 1805-0174 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : spruce forest * Picea abies * soil temperatures * moisture * respiration Subject RIV: EH - Ecology, Behaviour

  3. Remote sensing of forest decline in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Ardoe, J.

    1998-04-01

    This thesis describes the localization and quantification of deforestation and forest damage in Norway spruce forests in northern Czech Republic using Landsat data. Severe defoliation increases the spectral reflectance in all wavelength bands, especially in the mid infrared region. These spectral differences allow the separation of three damage categories with an accuracy of 75% using TM data and regression based relationships. Estimating the same categories using an artificial neural network, multi temporal TM data and topographic data yields slightly higher accuracy (78%). The methods are comparable when using identical input data, but the neural network more efficiently manage large input data sets without pre.processing, The estimated coniferous deforestation in northern Bohemia from 1972 to 1989 reveals especially affected areas between 600 and 1000 m.a.s.l. and on slopes facing south and southeast. The sector downwind a large source of sulphur dioxide was strongly deforested. Comparing regional forest damage statistics to three methods estimating harmful effects of sulphur dioxide on Norway spruce yielded significant relationships versus level of forest damage and accumulated salvage felling. Quantifying the effect of data uncertainties permit mapping the probabilities of areas to be significantly over or below thresholds for harmful effects on spruce forests. Satellite based estimation of coniferous forest health is a good complement to field surveys and aerial photography 137 refs, 7 figs, 2 tabs

  4. Root uptake of lead by Norway spruce grown on Pb-210 spiked soils

    DEFF Research Database (Denmark)

    Hovmand, M.F.; Nielsen, Sven Poul; Johnsen, I.

    2009-01-01

    The root uptake of lead (Pb) by trees and the transfer of Pb by leaf litter deposition to the forest floor were investigated through a pot experiment with Norway spruce. Natural Pb and radio isotopic lead (210Pb) were determined in needles and twigs and in the pot soil spiked with 210Pb...

  5. Low-Altitude Long-Endurance Solar Unmanned Plane for Forest Fire Prevention: Application to the Natural Park of Serra do Xures (spain)

    Science.gov (United States)

    González-Jorge, H.; Bueno, M.; Martínez-Sánchez, J.; Arias, P.

    2017-08-01

    Unamnned aerial systems (UAS) show great potential in operations related to surveillance. These systems can be successfully applied to the prevention of forest fires, especially those caused by human intervention. The present works focuses on a study of the operational possibilities of the unmanned system "AtlantikSolar" developed by the ETH Zurich for the prevention of forest fires in the Spanish natural park of Serra do Xurés, an area of 20,920 ha with height variations between 300 m and 1,500 m. The operation evaluation of AtlantikSolar is based on the use of Flir Tau 2 LWIR camera as imaging payload which could detect illegal activities in the forest, such as bonfires, uncontrolled burning or pyromaniacs. Flight surveillance is planned for an altitude of 100 m to obey the legal limit of the Spanish UAS regulation. This altitude produces a swath width of 346.4 m and pixel resolution between 1.5 and 1.8 pixels/m. Operation is planned to adapt altitude to the change on the topography and obtain a constant ground resolution. Operational speed is selected to 52 km/h. The UAS trajectory is adapted to the limits of the natural park and the border between Spain and Portugal. Matlab code is developed for mission planning. The complete surveillance of the natural park requires a total time of 15.6 hours for a distance of 811.6 km.

  6. LOW-ALTITUDE LONG-ENDURANCE SOLAR UNMANNED PLANE FOR FOREST FIRE PREVENTION: APPLICATION TO THE NATURAL PARK OF SERRA DO XURES (SPAIN

    Directory of Open Access Journals (Sweden)

    H. González-Jorge

    2017-08-01

    Full Text Available Unamnned aerial systems (UAS show great potential in operations related to surveillance. These systems can be successfully applied to the prevention of forest fires, especially those caused by human intervention. The present works focuses on a study of the operational possibilities of the unmanned system “AtlantikSolar” developed by the ETH Zurich for the prevention of forest fires in the Spanish natural park of Serra do Xurés, an area of 20,920 ha with height variations between 300 m and 1,500 m. The operation evaluation of AtlantikSolar is based on the use of Flir Tau 2 LWIR camera as imaging payload which could detect illegal activities in the forest, such as bonfires, uncontrolled burning or pyromaniacs. Flight surveillance is planned for an altitude of 100 m to obey the legal limit of the Spanish UAS regulation. This altitude produces a swath width of 346.4 m and pixel resolution between 1.5 and 1.8 pixels/m. Operation is planned to adapt altitude to the change on the topography and obtain a constant ground resolution. Operational speed is selected to 52 km/h. The UAS trajectory is adapted to the limits of the natural park and the border between Spain and Portugal. Matlab code is developed for mission planning. The complete surveillance of the natural park requires a total time of 15.6 hours for a distance of 811.6 km.

  7. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of usa and former USSR

    International Nuclear Information System (INIS)

    Sun Jingwen

    1999-11-01

    The author briefly introduces some knowledge about high altitude nuclear explosion (HANE) and presents a general review on high altitude nuclear tests of USA and former USSR. Physical phenomenon generated by HANE is given. The effects of HANE on space flyer, artificial satellite and communication are discussed. Some aspects of a mechanism of antimissile for HANE are described and the effect and role of HANE for USA and USSR are reviewed

  8. Research progress on high altitude retinopathy and application of Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Hai-Xiang Huang

    2014-11-01

    Full Text Available High altitude retinopathy(HARrefers to the body which can't adapt to the hypobaric hypoxia environment at high altitude leading to retinal diseases, which typically manifested as retinal hemorrhages, optic disc edema and cotton wool spots. With the development of high altitude medicine, HAR become a hot topic of eye research in recent years. New researches show a significantly higher incidence of HAR, and HAR has a close contact with acute mountain sickness, high altitude cerebral edema and high altitude pulmonary edema. A further study in pathogenesis and prevention measures of HAR will promote the prevention of altitude sickness. Traditional Chinese Medicine has achieved good effects in the prevention of altitude sickness, but the effect and mechanism of herbs on HAR has not been reported. Through read and summarize the relevant literatures and reports, the author will give an overview of the research advances on HAR's pathogenesis and application of Traditional Chinese Medicine.

  9. Altitude dependence of trace substance deposition from clouds to forests. Final report; Hoehenabhaengigkeit der Spurenstoffdeposition durch Wolken auf Waelder. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pahl, S.; Winkler, P.

    1995-12-31

    Novel forest decline is particularly pronounced in the area of the ridges of medium-range mountains. Whereas acid precipitation was viewed as its sole cause early on in the discussions, it turned out later that the impact of trace gases, too, contributes to the damaging of forests. This report wants to point out the importance of fog interception, which equally plays a part in the pollutant receipts of forests. The deposition of fog water to a forest stand depends very much on altitude, so that trace substance deposition, too, is to be expected to be dependent on altitude. By attempting to quantify this effect, the report helps to pinpoint areas of relevance of this deposition pathway (orig./KW) [Deutsch] Die neuartigen Waldschaeden sind in den Kammlagen der Mittelgebirge besonders ausgepraegt. Waehrend in der anfaenglichen Diskussion die sauren Niederschlaege als alleinige Ursache angesehen wurden, zeigte sich spaeter, dass auch Einwirkungen von Spurengasen zur Schaedigung des Waldes beitragen. Dieser Bericht soll auf die Bedeutung der Nebelinterzeption aufmerksam machen, die ebenfalls zum Schadstoffeintrag in den Wald beitraegt. Die Deposition von Wolkenwasser auf einen Waldbestand ist stark abhaengig von der Hoehenlage, in der sich der Waldbestand befindet, so dass auch eine Hoehenabhaengigkeit des Spurenstoffeintrages zu erwarten ist. Durch den Versuch der Quantifizierung traegt dieser Bericht dazu bei, Gebiete zu erkennen, in denen dieser Eintragspfad eine Rolle spielt. (orig./KW)

  10. Norway spruce crown structure changes under long-term multiple stress impact in Central European Mts

    Czech Academy of Sciences Publication Activity Database

    Moravec, Ivo; Cudlín, Pavel; Polák, T.

    2003-01-01

    Roč. 22, Suppl. 1 (2003), s. 252-255 ISSN 1335-342X. [Long Term Air Pollution Effect on Forest Ecosystems (International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems)/20./. Zvolen, 30.08.2002-01.09.2002] R&D Projects: GA MŠk OK 355 Institutional research plan: CEZ:AV0Z6087904 Keywords : Norway spruce * crown transformation * tree status Subject RIV: EH - Ecology, Behaviour Impact factor: 0.100, year: 2003

  11. Analysis of energetic exchange processes within the two different forest ecosystems

    International Nuclear Information System (INIS)

    Pivec, J.

    2002-01-01

    The utilisation of energy within the floodplain forest ecosystem near Lednice - south Moravia, and spruce monoculture ecosystem near Rájec Jestřebí - central Moravia during the years 1988 and 1989 was measured. Net radiation balance, global solar radiation, wet bulb and dry bulb temperatures and soil heat flux directly by instruments and sensors; latent, sensible heat flux and heat flux to the vegetation was calculated. It is possible to say, considering hitherto results, that well watered (groundwater) floodplain forest ecosystem shows greater evapotranspiration and therefore latent heat flux than spruce monoculture. Greater flux of energy was recorded in a daily course of sensible heat flux (65% proportion to net radiation), in contrast with the spruce monoculture. The floodplain forest latent heat flux proportion to net radiation was found to be variable within the growing season; in the middle of the vegetation period (from June to August) it reached the value of about 70%, at the end (in October) of about 20%. The estimation of the floodplain forest actual evapotranspiration was possible almost all over the season, the actual evapotranspiration reached its maximum of about 0.72 mm/square m per h one hour after the maximum of radiation balance. The time lag of about 4 hours was observed when compared the diurnal course of air humidity gradient to the air temperature gradient above the forest canopy. This phenomenon caused the left side asymmetry of the diurnal course of the Bowen ratio. It was not possible to measure the spruce monoculture latent heat flux all over the season, probably due to smaller gradient of the air humidity although it was measured across at greater distance than in the floodplain forest (12 m in comparison with 9 m). The values of the second half of May and the first half of June ones were at our disposal only. The spruce monoculture latent heat flux proportion to radiation balance was found about 25%, the actual evapotranspiration

  12. Exploring the Limits of High Altitude GPS for Future Lunar Missions

    Science.gov (United States)

    Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael

    2018-01-01

    An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.

  13. AltitudeOmics: Resetting of cerebrovascular CO2 reactivity following acclimatization to high altitude

    Directory of Open Access Journals (Sweden)

    Jui-Lin eFan

    2016-01-01

    Full Text Available Previous studies reported enhanced cerebrovascular CO2 reactivity upon ascent to high altitude using linear models. However, there is evidence that this response may be sigmoidal in nature. Moreover, it was speculated that these changes at high altitude are mediated by alterations in acid-base buffering. Accordingly, we reanalyzed previously published data to assess middle cerebral blood flow velocity (MCAv responses to modified rebreathing at sea level (SL, upon ascent (ALT1 and following 16 days of acclimatization (ALT16 to 5,260 m in 21 lowlanders. Using sigmoid curve fitting of the MCAv responses to CO2, we found the amplitude (95% vs. 129%, SL vs. ALT1, 95% confidence intervals (CI [77, 112], [111, 145], respectively, P=0.024 and the slope of the sigmoid response (4.5 vs. 7.5 %/mmHg, SL vs. ALT1, 95% CIs [3.1, 5.9], [6.0, 9.0], respectively, P=0.026 to be enhanced at ALT1, which persisted with acclimatization at ALT16 (amplitude: 177%, 95% CI [139, 215], P<0.001; slope: 10.3 %/mmHg, 95% CI [8.2, 12.5], P=0.003 compared to SL. Meanwhile, the sigmoidal response midpoint was unchanged at ALT1 (SL: 36.5 mmHg; ALT1: 35.4 mmHg, 95% CIs [34.0, 39.0], [33.1, 37.7], respectively, P=0.982, while it was reduced by ~7 mmHg at ALT16 (28.6 mmHg, 95% CI [26.4, 30.8], P=0.001 vs. SL, indicating leftward shift of the cerebrovascular CO2 response to a lower arterial partial pressure of CO2 (PaCO2 following acclimatization to altitude. Sigmoid fitting revealed a leftward shift in the midpoint of the cerebrovascular response curve which could not be observed with linear fitting. These findings demonstrate that there is resetting of the cerebrovascular CO2 reactivity operating point to a lower PaCO2 following acclimatization to high altitude. This cerebrovascular resetting is likely the result of an altered acid-base buffer status resulting from prolonged exposure to the severe hypocapnia associated with ventilatory acclimatization to high altitude.

  14. Radiation exposure and high-altitude flight. NCRP Commentary No. 12

    International Nuclear Information System (INIS)

    1995-01-01

    Enhanced air crew and public radiation exposure while flying at current altitudes and speeds has not been adequately addressed. However, the commercial aircraft industry continues to expand with greater numbers of passengers and more air crews year by year. With the expected expansions in high-altitude flight in the next two decades there will be many more people exposed to higher levels of ionizing radiation than currently. The equivalent dose rates at the higher altitudes are of the order of two to three times those received at current aircraft altitudes, but are not known very well, partly because of limitations in the knowledge of the component radiations, especially the high-energy neutron component. The risks are also more uncertain than for low-LET exposures on the ground because of uncertainty in an average W R to use for high-LET radiations. Exposures of current air crew are presently comparable with the average exposures of other radiation workers on the ground (EPA, 1995). Substantially higher exposures must be expected at high altitudes to air crew (perhaps approaching or possibly exceeding the current limit for workers on the ground). Higher exposures to sensitive groups of the population such as the fetuses carried by pregnant women are of special concern. Therefore, steps must be taken to improve our knowledge base with respect to dose levels and risks at these high altitudes. Following acquisition of this knowledge, modifications in radiation protection practices with respect to air crew and passengers will need to be considered and recommended to assure that adequate radiation protection is provided with respect to high-altitude flight

  15. Observation on the effect of gamma rays on spruce (Picea smithiana) seeds germination

    International Nuclear Information System (INIS)

    Sharma, S.K.

    1997-01-01

    Spruce (Picea smithiana) forests cover extensive areas in western Himalayas and account for 48.80% of the total conifer forest area and growing stock in the region. Baldwin studied the effect of x-rays on the seeds of conifers trees. A little work has been done on the genus Picea in respect of physical mutagens. Keeping this in consideration the present trial has been done at preliminary level to study the effect of gamma rays on the germination behaviour. (author). 3 refs., 1 tab

  16. Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2018-01-01

    Full Text Available High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training.

  17. Importance of Arboreal Cyanolichen Abundance to Nitrogen Cycling in Sub-Boreal Spruce and Fir Forests of Central British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    Ania Kobylinski

    2015-07-01

    Full Text Available The importance of N2-fixing arboreal cyanolichens to the nitrogen (N-balance of sub-boreal interior hybrid spruce (Picea glauca × engelmannii and subalpine fir (Abies lasiocarpa forests was examined at field sites in central BC, Canada. Host trees were accessed by a single-rope climbing technique and foliage as well as arboreal macrolichen functional groups were sampled by branch height in eight random sample trees from each of two high (High Cyano and two low (Low Cyano cyanolichen abundance sites for a total of 32 sample trees. Natural abundances of stable isotopes of N (15N, 14N and carbon (13C, 12C were determined for aggregate host tree and epiphytic lichen samples, as well as representative samples of upper organic and soil horizons (Ae and Bf from beneath host trees. As expected, N2-fixing cyanolichens had 2–6-fold greater N-contents than chlorolichens and a δ15N close to atmospheric N2, while foliage and chlorolichens were more depleted in 15N. By contrast, soils at all trees and sites were 15N-enriched (positive δ15N, with declining (not significant δ15N with increased tree-level cyanolichen abundance. Lichen functional groups and tree foliage fell into three distinct groups with respect to δ13C; the tripartite cyanolichen Lobaria pulmonaria (lightest, host-tree needles (intermediate, and bipartite cyanolichens, hair (Alectoria and Bryoria spp. and chlorolichens (heaviest. Branch height of host trees was an effective predictor of needle δ13C. Our results showed a modest positive correlation between host tree foliage N and cyanolichen abundance, supporting our initial hypothesis that higher cyanolichen abundances would elevate host tree foliar N. Further study is required to determine if high cyanolichen abundance enhances host tree and/or stand-level productivity in sub-boreal forests of central BC, Canada.

  18. Animal communities in forests - their usability as indicators for the state of ecosystems

    International Nuclear Information System (INIS)

    Funke, W.

    1991-06-01

    The usability of soil protoza, nemotoda, annelida und insecta of spruce stands, decidous forests, an old orchard, and partly also of areas which were treeless and strongly altered by man as indicators of the conditions of ecosystems and their alterations was tested. Generally showed these areas certain similarities. However, considerable differences in species-range, abundance, biomass, dominance structure and diversity of animal coummunities were also found. Some of these remarkable differences in spruce stands are not evident in studies of plant communities. Most animal groups and a lot of species indicate strong relations to soil-humidity and esp. to the H + - concentration of the substrate. Often they are reacting very sensitively to liming, fertilizing, acid pollutions and to additional precipitations etc. Oscillations and fluctuations of population densities are inclined at a high degree by climatic influences particularly in forests with poor litter and humus layers. The population structures of Mycorrhiza-feeders (in spruce stands) correlates to a certain degree with the physical condition of trees. (orig./VHE) With 60 figs., 53 tabs., 204 refs [de

  19. Numerical simulation of the ionization effects of low- and high-altitude nuclear explosions

    International Nuclear Information System (INIS)

    Zhao Zhengyu; Wang Xiang

    2007-01-01

    Low-altitude and high-altitude nuclear explosions are sources of intensive additional ionization in ionosphere. In this paper, in terms of the ionization equilibrium equation system and the equation of energy deposition of radiation in atmosphere, and considering the influence of atmosphere, the temporal and spatial distribution of ionization effects caused by atmospheric nuclear detonation are investigated. The calculated results show that the maximum of additional free electron density produced by low-altitude nuclear explosion is greater than that by the high-altitude nuclear burst. As to the influence of instant nuclear radiation, there is obvious difference between the low-altitude and the high-altitude explosions. The influence range and the continuance time caused by delayed nuclear radiation is less for the low-altitude nuclear detonation than that for the high-altitude one. (authors)

  20. Association of ectomycorrhizal fungi with Picea crassifolia (Pinaceae, Piceoidae) from high-altitude stands in Mount Helan Nature Reserve, China.

    Science.gov (United States)

    Fan, Y J; Grebenc, T; Wei, J; Zhao, Y L; Yan, W; Wang, L B

    2016-09-02

    We investigated the diversity of ectomycorrhiza associated with the endemic Picea crassifolia in Mount Helan National Nature Reserve in Inner Mongolia, China. Toward this objective, we conducted morphological and molecular identification of ectomycorrhizae in soil cubes taken from pure P. crassifolia stands. Eleven types of ectomycorrhizal (ECM) organisms were separated, briefly described, and identified. Nine morphotypes belonged to the phylum Basidiomycotina [Amphinema byssoides, Cortinarius sp (cf. limonius), Cortinarius vernus, Inocybe cf. nitidiscula, Inocybe sp 1, Sebacina incrustans, Sebacina sp, Suillus luteus, and Piceirhiza tuberculata x Picea crassifolia (comb. Nov.)], and two morphotypes to the phylum Ascomycotina (Cenococcum geophilum and Helvella sp). The diversity of ECM organisms in P. crassifolia was lower than that reported by other studies on spruce or pine forests, or on sporocarp diversity in the high-mountain forests of China. Most of the fungi in the rhizosphere did not correspond to species previously recorded as sporocarps above ground. Here, several new ectomycorrhiza morphotypes are proposed and described. We also confirmed the ectomycorrhizal status of the genus Sebacina (order Sebacinales).

  1. Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes

    Science.gov (United States)

    Ader, Marilyn; Bergman, Richard N.

    2015-01-01

    Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis. PMID:25675133

  2. Aerodynamic parameter changes above a young spruce forest stand during five growing seasons

    Czech Academy of Sciences Publication Activity Database

    Hurtalová, T.; Matejka, F.; Rožnovský, J.; Marková, Irena; Janouš, Dalibor

    2004-01-01

    Roč. 34, č. 2 (2004), s. 131-146 ISSN 1335-2806 R&D Projects: GA ČR(CZ) GA526/00/0485 Keywords : aerodynamic parameters * roughness length * young spruce stand Subject RIV: DG - Athmosphere Sciences, Meteorology

  3. Effects of warming on the structure and function of a boreal black spruce forest

    Energy Technology Data Exchange (ETDEWEB)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground

  4. Size-dependence of tree growth response to drought for Norway spruce and European beech individuals in monospecific and mixed-species stands.

    Science.gov (United States)

    Ding, H; Pretzsch, H; Schütze, G; Rötzer, T

    2017-09-01

    Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size-dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany. Samples were collected in both monospecific and mixed-species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods. The results show that ageing-related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over-yielding spruce in pure stands. The importance of the influence of size-dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Structure and resilience of fungal communities in Alaskan boreal forest soils

    Science.gov (United States)

    D. Lee Taylor; Ian C. Herriott; Kelsie E. Stone; Jack W. McFarland; Michael G. Booth; Mary Beth Leigh

    2010-01-01

    This paper outlines molecular analyses of soil fungi within the Bonanza Creek Long Term Ecological Research program. We examined community structure in three studies in mixed upland, black spruce (Picea mariana (Mill.) BSP), and white spruce (Picea glauca (Moench) Voss) forests and examined taxa involved in cellulose...

  6. Evaluation of Forest Health Conditions using Unmanned Aircraft Systems (UAS)

    Science.gov (United States)

    Hatfield, M. C.; Heutte, T. M.

    2016-12-01

    US Forest Service Alaska Region Forest Health Protection (FHP) and University of Alaska Fairbanks, Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) are evaluating capability of Unmanned Aerial Systems (UAS) to monitor forest health conditions in Alaska's Interior Region. In July 2016, the team deployed UAS at locations in the Tanana Valley near Fairbanks in order to familiarize FHP staff with capabilities of UAS for evaluating insect and disease damage. While many potential uses of UAS to evaluate and monitor forest health can be envisioned, this project focused on use of a small UAS for rapid assessment of insect and disease damage. Traditional ground-based methods are limited by distance from ground to canopy and inaccessibility of forest stands due to terrain conditions. Observation from fixed-wing aircraft provide a broad overview of conditions but are limited by minimum safe flying altitude (500' AGL) and aircraft speed ( 100 mph). UAS may provide a crucial bridge to fill in gaps between ground and airborne methods, and offer significant cost savings and greater flexibility over helicopter-based observations. Previous uses of UAS for forest health monitoring are limited - this project focuses on optimizing choice of vehicle, sensors, resolution and area scanned from different altitudes, and use of visual spectrum vs NIR image collection. The vehicle selected was the ACUASI Ptarmigan, a small hexacopter (based on DJI S800 airframe and 3DR autopilot) capable of carrying a 1.5 kg payload for 15 min for close-range environmental monitoring missions. Sites were chosen for conditions favorable to UAS operation and presence of forest insect and disease agents including spruce broom rust, aspen leaf miner, birch leaf roller, and willow leafblotch miner. A total of 29 flights were conducted with 9000+ images collected. Mission variables included camera height, UAS speed, and medium- (Sony NEX-7) vs low-resolution (GoPro Hero) cameras. Invaluable

  7. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  8. Hemorrhages and hemostasis in guinea-pigs exposed to irradiation at high altitude

    International Nuclear Information System (INIS)

    Tartakovskij, V.N.; Daniyarov, S.B.

    1988-01-01

    Hemorrhagic intensity, hemostasis and blood vessel wall resistance to mechanical effects were studied in guinea-pigs exposed to whole-body irradiation (3.0 Gy). The animals were irradiated at low altitude (760 m above sea level) and at high altitude (3200 m above sea level) after 1 and 31 days of adaptation. It was demonstrated that hemorrhagic intensity in both groups of guinea-pigs irradiated at high altitude was significantly reduced in comparison with that at low altitude. The decrease of radiation-induced hemorrhages at high altitude is associated with less severe changes in thrombopoiesis, blood vessel wall and blood coagulation

  9. Forest insects and diseases in Kouchibouguac National Park in 1992. Technical note No. 275. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G.R.

    1993-01-01

    Personnel of the Forest Insect and Disease Survey regularly survey national parks for forest insect and disease conditions. This document presents some of the conditions encountered in Kouchibouguac National Park in 1992, including balsam twig aphids, gypsy moth, whitespotted sawyer bettle, white pine weevil, frost damage, Eastern tent caterpiller, uglynest caterpillar, hypoxylon canker, spruce budmoth, Eastern spruce gall adelgid, and other pests encountered.

  10. Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.

    Science.gov (United States)

    Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C

    2017-01-01

    Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).

  11. Assessing the impacts of climate change and nitrogen deposition on Norway spruce growth in Austria with BIOME-BGC

    Energy Technology Data Exchange (ETDEWEB)

    Eastaugh, Chris S.; Potzelsberger, Elisabeth; Hasenaueur, Hubert

    2011-03-15

    The purpose of this study is to determine if the climate change has had an apparent impact in Austrian forests. This research has been conducted on Norway spruce forests as this is the predominant species in Austria. Growth data between regions which have different temperature and precipitation trendsw was then compared, with results showing increased productivity in all regions thus implying that growth of the forest is driven by other factors than climate. This conclusion is consistent with previous studies supporting that forest growth is mainly driven by increasing nitrogen deposition.

  12. High altitude medicine education in China: exploring a new medical education reform.

    Science.gov (United States)

    Luo, Yongjun; Luo, Rong; Li, Weiming; Huang, Jianjun; Zhou, Qiquan; Gao, Yuqi

    2012-03-01

    China has the largest plateau in the world, which includes the whole of Tibet, part of Qinghai, Xinjiang, Yunnan, and Sichuan. The plateau area is about 257.2×10(4) km(2), which accounts for about 26.8% of the total area of China. According to data collected in 2006, approximately twelve million people were living at high altitudes, between 2200 to 5200 m high, on the Qinghai-Tibetan Plateau. Therefore, there is a need for medical workers who are trained to treat individuals living at high altitudes. To train undergraduates in high altitude medicine, the College of High Altitude Military Medicine was set up at the Third Military Medical University (TMMU) in Chongqing in 1999. This is the only school to teach high altitude medicine in China. Students at TMMU study natural and social sciences, basic medical sciences, clinical medical sciences, and high altitude medicine. In their 5(th) year, students work as interns at the General Hospital of Tibet Military Command in Lhasa for 3 months, where they receive on-site teaching. The method of on-site teaching is an innovative approach for training in high altitude medicine for undergraduates. Three improvements were implemented during the on-site teaching component of the training program: (1) standardization of the learning progress; (2) integration of formal knowledge with clinical experience; and (3) coaching students to develop habits of inquiry and to engage in ongoing self-improvement to set the stage for lifelong learning. Since the establishment of the innovative training methods in 2001, six classes of high altitude medicine undergraduates, who received on-site teaching, have graduated and achieved encouraging results. This evidence shows that on-site teaching needs to be used more widely in high altitude medicine education.

  13. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  14. Effects of climate change on fire and spruce budworm disturbance regimes and consequences on forest biomass production in eastern Canada

    International Nuclear Information System (INIS)

    Gauthier, S.

    2004-01-01

    The dynamics of spruce budworm (SBW) outbreaks and wildfires are expected to change as climatic change progresses. The effects of an altered, combined interaction between SBW and fire may be of greater importance than the individual effect of either on forest biomass production. The objectives of this study are to define current fire and SBW regimes in eastern Canada and relate the characteristics of each regime based upon climate model outputs for 2050 and 2100. The study also attempts to evaluate the impact of predicted changes in SBW and fire disturbance regimes on forest dynamics. The methodology used in the study included data from the Canadian Large Fire Database and historical records of SBW outbreaks. Spatial and environmental variables were presented along with climate models. The analysis was conducted using constrained ordination techniques, and canonical correspondence and redundancy analysis. Projected disturbance regimes were presented for both fire and SBW. The effects of the regimes on biomass productivity were also examined, using a Landscape Disturbance Simulator (LAD). It was concluded that this model will help evaluate the consequences of changes imposed by climatic change on both disturbances individually, as well as their interaction. 10 refs., 1 tab., 2 figs

  15. Environmental effect studies on a forest ecosystem in Germany

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Bunzl, K.

    1993-01-01

    Long-term acid deposition on a forest ecosystem can have serious impacts on many physicochemical processes in the soil. Since 1984 extensive studies have been carried out in the 'Hoglwald', an old Norway spruce stand near Munich, Germany. In 1986 a variety of radionuclides were deposited in the canopy and on the forest floor of the Hoglwald following the reactor accident at Chernobyl. The amount of 137 Cs from Chernobyl was about 10 times larger than that present in the soil before Chernobyl. Six experimental plots were established in order to study the potential disturbances caused by artificial acid irrigation and compensative liming. Using these fields, investigations on the interception and retention of radionuclides by a coniferous woodland have been done together with the deposition and vertical migration of the radionuclides in the forest. One of the most important results obtained was that 134 Cs deposition velocity in the spruce stand was as high as 5.5 mm/s, and thus higher by a factor of 10 than the corresponding value for the grassland. By evaluating the depth profiles of the Chernobyl-derived 137 Cs in the soil with a compartment model. The fixation of radiocesium in the forest soil was found to be a rather slow process. (author)

  16. Outdoor Activity and High Altitude Exposure During Pregnancy: A Survey of 459 Pregnancies.

    Science.gov (United States)

    Keyes, Linda E; Hackett, Peter H; Luks, Andrew M

    2016-06-01

    To evaluate whether women engage in outdoor activities and high altitude travel during pregnancy; the health care advice received regarding high altitude during pregnancy; and the association between high altitude exposure and self-reported pregnancy complications. An online survey of women with at least 1 pregnancy distributed on websites and e-mail lists targeting mothers and/or mountain activities. Outcome measures were outdoor activities during pregnancy, high altitude (>2440 m) exposure during pregnancy, and pregnancy and perinatal complications. Hiking, running, and swimming were the most common activities performed during pregnancy. Women traveled to high altitude in over half of the pregnancies (244/459), and most did not receive counseling regarding altitude (355, 77%), although a small proportion (14, 3%) were told not to go above 2440 m. Rates of miscarriage and most other complications were similar between pregnancies with and without travel above 2440 m. Pregnancies with high altitude exposure were more likely to have preterm labor (odds ratio [OR] 2.3; 95% CI 0.97-5.4; P = .05). Babies born to women who went to high altitude during pregnancy were more likely to need oxygen at birth (OR 2.34; 95% CI 1.04-5.26; P sports and travel to high altitude have a low rate of complications. Given the limitations of our data, further research is necessary on the risks associated with high altitude travel and physical activity and how these apply to the general population. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  17. HIGH ALTITUDES EFFECTS ON HEMATOLOGIC BLOOD PARAMETERS

    Directory of Open Access Journals (Sweden)

    Hasim Rushiti

    2015-05-01

    Full Text Available The approach and the objective of this experiment are consistent with the determination of changes of blood parameters after the stay of the students at an altitude of 1800-2300 meters, for a ten-day long ski course. In this paper are included a total of 64 students of the Faculty of Sport Sciences in Prishtina, of the age group of 19-25 (the average age is 21. All students previously have undergone a medical check for TA, arterial pulse and respiratory rate. In particular, the health situation is of subjects was examined, then, all students, at the same time, gave blood for analysis. In this experiment, three main hematologic parameters were taken in consideration: such as hemoglobin, hematocrit and red blood cells. The same analyses were carried out after the 10-day stay at a high altitude. The results of the experiment have shown significant changes after the ten-day stay at high altitude, despite the previous results that show changes only after the twenty-day stay in such elevations.

  18. Spatial distribution of hydroxylamine and its role in aerobic N2O formation in a Norway spruce forest soil

    Science.gov (United States)

    Liu, S.; Weymann, D.; Gottselig, N.; Wiekenkamp, I.; Vereecken, H.; Brueggemann, N.

    2014-12-01

    Hydroxylamine (HA) as a crucial intermediate in the microbial oxidation of ammonium to nitrite (nitrification) is a potential precursor of abiotic N2O formation in the soil. However, the determination of HA concentration in natural soil samples has not been reported until now. Here, we determined the HA concentrations in organic (Oh) and mineral (Ah) layers of 135 soil samples collected from a spruce forest (Wüstebach, Eifel National Park, Germany) using a novel approach, based on the fast extraction of HA from the soil at a pH of 1.7, the oxidation of HA to N2O with Fe3+, and the analysis of produced N2O using gas chromatography (GC). Meanwhile, N2O emission rates were determined by means of aerobic laboratory incubations of 3-g soil in 22-mL vials. Subsequently, the spatial distribution of soil HA concentrations and N2O emission rates in the Oh and Ah layers of the whole sampling area were analyzed using a geostatistical approach. The correlations among soil HA, N2O emission rate, pH, soil C, N, Fe, Mn and soil water content (SWC) were further explored. The HA concentrations ranged from 0.3-44.6 μg N kg-1 dry soil and 0.02-16.2 μg N kg-1 dry soil in the Oh and the Ah layer, respectively. The spatial distribution of HA was similar in both layers, with substantial spatial variability dependent on soil type, tree density and distance to a stream. For example, HA concentration was greater at locations with a thick litter layer or at locations close to the stream. The average N2O emission rate in the Oh layer was 0.38 μg N kg-1 dry soil h-1, 10-fold larger than in the Ah layer. Interestingly, N2O emission rate exhibited high correlation with soil HA content in the Oh (R2 = 0.65, p < 0.01) and Ah (R2 = 0.45, p < 0.05) layer. The results demonstrated that HA is a crucial component for aerobic N2O formation and emission in spruce forest soils. Moreover, HA concentration was negatively correlated with pH and positively correlated with SWC in the Oh layer, while

  19. [Physiological aspects of altitude training and the use of altitude simulators].

    Science.gov (United States)

    Ranković, Goran; Radovanović, Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatisation, which improves oxygen transport and/or utilisation, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training through hypoxia), and live high and train low (the new trend). In an effort to reduce the financial and logistical challenges of travelling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters). Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarised.

  20. Physiological aspects of altitude training and the use of altitude simulators

    Directory of Open Access Journals (Sweden)

    Ranković Goran

    2005-01-01

    Full Text Available Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training, live low and train high (training through hypoxia, and live high and train low (the new trend. In an effort to reduce the financial and logistical challenges of traveling to high-altitude training sites, scientists and manufactures have developed artificial high-altitude environments, which simulate the hypoxic conditions of moderate altitude (2000-3000 meters. Endurance athletes from many sports have recently started using nitrogen environments, or hypoxic rooms and tents as part of their altitude training programmes. The results of controlled studies on these modalities of high-altitude training, their practical approach, and ethics are summarized.

  1. Low-resolution ship detection from high-altitude aerial images

    Science.gov (United States)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  2. Radiocesium in forest ecosystems in South Bohemia

    International Nuclear Information System (INIS)

    Uhlířová, H.; Konečný, J.

    1994-01-01

    Radiocaesium accumulation in spruce needles, forest floor horizons, lichens, mosses, mushrooms and bilberry shrubs was measured in the South Bohemia region before setting the nuclear power plant Temelin into operation. Radiocaesium accumulated mainly in decomposed forest floor horizons, mosses, lichens and some species of mushrooms. Plots at a higher altitude with higher rainfall amounts showed the increased levels of both 134Cs and 137Cs activity in all treated compartments of forest ecosystem. 137Cs in forest floor accumulated in most decomposed horizons H (0.29-1.95) and L+F (0.21-1.08 Bq.g-1). Lower activity was detected in the upper 3-5 cm of mineral soil (0.01-0.41 Bq.g-1). 134Cs activity which is unambiguously of Chernobyl origin ranged between 0.03 and 0.11 Bq.g-1 in the L+F horizon and between 0.03 and 0.16 Bq.g-1 in the H horizon. In the A horizon no activity of 134Cs was detected. Specific activities of radiocaesium in mushrooms collected in July 1992 only on two plots showed great differences between species and localities. 137Cs activity in one-year-old spruce needles ranged between 0.05 and 0.26 Bq.g-1. It was not detectable on sample plots Podhaji, Kaliste and Strouha. 134Cs activity was very often under detection limit except the plots Zdikov (0.03 Bq.g-1) and Hnevkovice (0.01 Bq.g-1). The lower activity of 137Cs in 1991 and 1992 should be due to summer and winter droughts. Specific activity of radiocaesium and sum-beta activity in ash from bilberry shrubs was higher in samples collected in the open area than in those under canopies, except the Zdikov plot. Lichens are very good ecological bioindicatores of radiocaesium deposition, among them on study plots the best was Parmelia spec. Comparative measurements of 137Cs activity in different mosses on two plots with a higher radioactive background showed the high accumulation of radiocaesium in Dicranum scoparium and Sphagnum spec. The accumulation of beta-counting radionuclides in Dicranum scoparium

  3. Determination of dry and wet deposition in forest areas in the Federal Republic of Germany. Final report. Pt. A. Feststellung der Schadstoffbelastung von Waldgebieten in der Bundesrepublik Deutschland durch trockene und nasse Deposition. Abschlussbericht. T. A

    Energy Technology Data Exchange (ETDEWEB)

    Georgii, H.W.; Grosch, S.; Schmitt, G.

    1986-08-01

    A network of 7 forest stations was maintained during the period of 1982-1985. The investigation included the evaluation of the dry and wet deposition of the following compounds: H/sup +/, SO/sub 4//sup 2-/, NO/sub 3//sup -/, Cl/sup -/, Pb, Mn, Fe, Cd, Na, K, Ca and Mg. During a certain period of time also the compounds Al, Cu, Cr and NH/sub 4//sup +/ were analyzed. Measurements of the aerosols and bulk deposition in different levels of the forest stands give information about the influence of spruce stands on the distribution of deposition. Detailed investigation on the composition of fogwater show the importance of fog with respect to the atmospheric input into forest ecosystems. Investigations of ozone at stations in the Taunus area show increasing concentrations with increasing altitudes. The sudden release of accumulated pollutants in snow appearing in the spring time during the thaw is shown. Sequential rain sampling at stations at different altitudes gives information about the contribution of 'rain-out' and 'wash-out'-processes with respect of the chemical composition of the rain. (orig.) With 55 refs., 20 tabs., 99 figs.

  4. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Science.gov (United States)

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  5. H and Al ionic toxicity in seedlings of spruce and beech trees

    Energy Technology Data Exchange (ETDEWEB)

    Rost-Siebert, K.

    1985-01-01

    The influence of aluminium and hydrogen on seedlings of spruce and beech trees was tested. Parameters as root growth, state of health, minerals content and production of dry matter were measured. The results are discussed and show that ion concentrations of hydrogen and aluminium, average for todays forest soils, reduce root growth, damage roots and disturb the uptake of Ca/sup 2+/ and Mg/sup 2+/.

  6. Distribution of Lepidopteran Larvae on Norway Spruce: Effects of Slope and Crown Aspect.

    Science.gov (United States)

    Kulfan, Ján; Dvořáčková, Katarína; Zach, Peter; Parák, Michal; Svitok, Marek

    2016-04-01

    Lepidoptera associated with Norway spruce, Picea abies (L.) Karsten, play important roles in ecosystem processes, acting as plant pests, prey for predators, and hosts for parasites and parasitoids. Their distribution patterns in spruce crowns and forests are only poorly understood. We examined how slope and crown aspect affect the occurrence and abundance of moth larvae on solitary spruce trees in a montane region in Central Europe. Moth larvae were collected from southern and northern crowns of trees growing on south- and north-facing slopes (four treatments) using emergence boxes at the end of winter and by the beating method during the growing season. Species responses to slope and crown aspect were not uniform. Treatment effects on moth larvae were stronger in the winter than during the growing season. In winter, the abundance of bud-boring larvae was significantly higher in northern than in southern crowns regardless of the slope aspect, while both slope and aspect had marginally significant effects on abundance of miners. During the growing season, the occurrence of free-living larvae was similar among treatments. Emergence boxes and beating spruce branches are complementary techniques providing valuable insights into the assemblage structure of moth larvae on Norway spruce. Due to the uneven distribution of larvae detected in this study, we recommend adoption of a protocol that explicitly includes sampling of trees from contrasting slopes and branches from contrasting crown aspect in all seasons. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Estimation of arboreal lichen biomass available to woodland caribou in Hudson Bay lowland black spruce sites

    Directory of Open Access Journals (Sweden)

    Sarah K. Proceviat

    2003-04-01

    Full Text Available An arboreal lichen index to be utilized in assessing woodland caribou habitat throughout northeastern Ontario was developed. The "index" was comprised of 5 classes, which differentiated arboreal lichen biomass on black spruce trees, ranging from maximal quantities of arboreal lichen (class 5 to minimal amounts of arboreal lichen (class 1. This arboreal lichen index was subsequently used to estimate the biomass of arboreal lichen available to woodland caribou on lowland black spruce sites ranging in age from 1 year to 150 years post-harvest. A total of 39 sites were assessed and significant differences in arboreal lichen biomass were found, with a positive linear relationship between arboreal lichen biomass and forest age. It is proposed that the index be utilized by government and industry as a means of assessing the suitability of lowland black spruce habitat for woodland caribou in this region.

  8. Oxyfluorfen safe to use engelmann spruce seedbeds. Forest Service research note

    Energy Technology Data Exchange (ETDEWEB)

    Sloan, J.P.

    1993-06-01

    Oxyfluorfen, a diphenylether herbicide, can be applied to Engelmann spruce nursery beds without significant damage to seedlings. Oxyfluorfen, applied at 0.5 lb/acre with preemergence timing for two years, reduced seedling dry mass. When the rate of herbicide application was reduced, the timing was delayed, or the applications were discontinued the second year, there was little damage to seedlings. Five of 10 herbicide treatments significantly reduced seedling densities compared to the no-treatment plots.

  9. Rainfall interception and spatial variability of throughfall in spruce stand

    Directory of Open Access Journals (Sweden)

    Dohnal Michal

    2014-12-01

    Full Text Available The interception was recognized as an important part of the catchment water balance in temperate climate. The mountainous forest ecosystem at experimental headwater catchment Liz has been subject of long-term monitoring. Unique dataset in terms of time resolution serves to determine canopy storage capacity and free throughfall. Spatial variability of throughfall was studied using one weighing and five tipping bucket rain gauges. The basic characteristics of forest affecting interception process were determined for the Norway spruce stand at the experimental area - the leaf area index was 5.66 - 6.00 m2 m-2, the basal area was 55.7 m2 ha-1, and the crown closure above individual rain gauges was between 19 and 95%. The total interception loss in both growing seasons analyzed was 34.5%. The mean value of the interception capacity determined was about 2 mm. Throughfall exhibited high variability from place to place and it was strongly affected by character of rainfall. On the other hand, spatial pattern of throughfall in average showed low variability.

  10. Quantifying Boreal Forest Structure and Composition Using UAV Structure from Motion

    Directory of Open Access Journals (Sweden)

    Michael Alonzo

    2018-03-01

    Full Text Available The vast extent and inaccessibility of boreal forest ecosystems are barriers to routine monitoring of forest structure and composition. In this research, we bridge the scale gap between intensive but sparse plot measurements and extensive remote sensing studies by collecting forest inventory variables at the plot scale using an unmanned aerial vehicle (UAV and a structure from motion (SfM approach. At 20 Forest Inventory and Analysis (FIA subplots in interior Alaska, we acquired overlapping imagery and generated dense, 3D, RGB (red, green, blue point clouds. We used these data to model forest type at the individual crown scale as well as subplot-scale tree density (TD, basal area (BA, and aboveground biomass (AGB. We achieved 85% cross-validation accuracy for five species at the crown level. Classification accuracy was maximized using three variables representing crown height, form, and color. Consistent with previous UAV-based studies, SfM point cloud data generated robust models of TD (r2 = 0.91, BA (r2 = 0.79, and AGB (r2 = 0.92, using a mix of plot- and crown-scale information. Precise estimation of TD required either segment counts or species information to differentiate black spruce from mixed white spruce plots. The accuracy of species-specific estimates of TD, BA, and AGB at the plot scale was somewhat variable, ranging from accurate estimates of black spruce TD (+/−1% and aspen BA (−2% to misallocation of aspen AGB (+118% and white spruce AGB (−50%. These results convey the potential utility of SfM data for forest type discrimination in FIA plots and the remaining challenges to develop classification approaches for species-specific estimates at the plot scale that are more robust to segmentation error.

  11. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  12. Effects of sewage sludge addition to Norway spruce seedlings on nitrogen availability and soil fauna in clear-cut areas

    International Nuclear Information System (INIS)

    Nieminen, Jouni K.; Räisänen, Mikko

    2013-01-01

    Anaerobically digested and composted sewage sludge (CSS) has been suggested to be a slow-release fertilizer in forestry and an alternative to quick-release inorganic fertilizers. The effects of CSS with or without added carbohydrate on inorganic nitrogen availability and on soil animals were tested in two Norway spruce plantations. Half of the seedlings were individually fertilized with CSS, and the rest were left as controls. Solid sucrose was added to half of the fertilized and untreated seedlings. Soil samples were taken in the autumn in the first and the second year after the treatments. CSS increased soil NH 4 –N (2100%), the proportion of soil NO 3 –N, and the N concentration of spruce needles. CSS greatly reduced the abundances of enchytraeids, tardigrades and collembolans, but increased the proportion and abundance of bacterial-feeding nematodes irrespective of carbohydrate addition. A better stabilization method needs to be developed before CSS can be used as a forest fertilizer. -- Highlights: •Spruces were fertilized with anaerobically digested and composted sewage sludge (CSS). •CSS increased soil N, proportion of NO 3 –N, and N concentration of spruce needles. •CSS reduced the abundances of enchytraeids, tardigrades and collembolans. •CSS increased the proportion and abundance of bacterial-feeding nematodes. •Sucrose did not reduce N pools or counteract negative CSS effects on soil animals. -- Composting and carbohydrate addition do not mitigate the harmful effects of anaerobically digested sewage sludge in boreal forest soil

  13. Culturable bacterial populations associated with ectomycorrhizae of Norway spruce stands with different degrees of decline in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Avidano, L.; Rinaldi, M.; Gindro, R.; Cudlín, Pavel; Martinotti, M G.; Fracchia, L.

    2010-01-01

    Roč. 56, č. 1 (2010), s. 52-64 ISSN 0008-4166 Institutional research plan: CEZ:AV0Z60870520 Keywords : Ectomycorrhizae * Norway spruce * forest decline Subject RIV: EE - Microbiology, Virology Impact factor: 1.235, year: 2010

  14. Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests

    Science.gov (United States)

    Shenoy, A.; Kielland, K.; Johnstone, J. F.

    2011-12-01

    Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (μg N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species

  15. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    Science.gov (United States)

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  16. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  17. Evaporation and transpiration from forests in Central Europe - relevance of patch-level studies for spatial scaling

    Science.gov (United States)

    Köstner, B.

    Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.

  18. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  19. Biomass equations and biomass expansion factors (BEFs) for pine (pinus spp.), spruce (picea spp.) and broadleaved dominated stands in Norway

    OpenAIRE

    Viken, Knut Ole

    2012-01-01

    Abstract The objectives of this study were (1) to develop models for estimation of stand-level tree biomass for spruce (picea spp.)- pine (pinus spp.)- and broadleaved-dominated forest in Norway and, (2) develop biomass expansion factors (BEFs; ratio of stem volume to biomass) which convert stem volume to whole tree biomass for Norwegian forest conditions. A dataset from a 5 year period (2006 – 2010) from the Norwegian National Forest Inventory (NFI) were used to develop the...

  20. High-altitude haematology: Quechua-Aymara comparisons.

    Science.gov (United States)

    Arnaud, J; Quilici, J C; Rivière, G

    1981-01-01

    Haematological studies have been carried out at various altitudes between 450 m and 4800 m, on two separate human groups (Quechuas and Aymaras) living in South America. Changes in the haematological parameters do not develop linearly in relation to the attitude. Th impact of chronic hypoxia on erythropoiesis is greater above 3000 m. The haemogram varies quantitatively and not qualitatively (mean corpuscular volume and mean haemoglobin concentration remain constant). The haematological study also reveals the greater adaptability to high altitude of the Aymaras, an adaptability characterized by an increase in red cell count and concentration and a decrease in red cell volume. The adaptative phenomena observed in the Quechuas are reversible, whereas they persist in the Aymaras when they migrate to the lowlands (450 m).

  1. Growth and nutrition of coniferous forests on acidic mineral soils - status and effects of liming and fertilization

    International Nuclear Information System (INIS)

    Sikstroem, Ulf

    2001-01-01

    Deposited air-borne S- and N- containing pollutants acidify forest soils in southern Sweden. It has been suggested that this may severely affect forest yield. Liming and/or application of specific nutrients, e.g. phosphorus (P) and potassium (K), have been proposed as countermeasures. The influence of such measures, and of nitrogen (N) addition, was investigated in two experimental series over 5-10 years. Stem growth and needle element concentrations were assessed, predominantly in high-yielding Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) stands, 30-60 years old, growing on acidic mineral soils in southern Sweden. The effect on crown transparency was also evaluated in some of the Norway spruce stands. The treatments included liming (500-6,000 kg ha -1 ), and N addition at low annual doses (2x10 kg N ha -1 ) and in single shots (150 kg N ha -1 ). Combinations of lime+N, lime+PK and lime+PKN were also tested. The effects were generally weak or negligible, except that growth was significantly increased by N fertilization in the Scots pine stands, and by lime+PKN in some of the Norway spruce stands. In another study, the survival and growth of Norway spruce seedlings were found to be more or less unaffected when planted in pre-harvest acidified, limed or N fertilized soil, although the Ca and Zn concentrations in their needles rose after liming, while those of Mn and Al declined. In closed-canopy stands of Norway spruce and Scots pine with N concentrations of more than 15-16 mg (g DM) -1 in current-year needles, N fertilization was indicated to not necessarily stimulate increased growth. Other indicators of highly N-rich forests (e.g. elevated arginine levels) also start to appear above this level. The closed-canopy stands growing on the most acidic soils showed no signs of severe damage or nutrient deficiencies. These findings, together with the small or negligible effects of the tested countermeasures against soil acidification

  2. Effects of a western spruce budworm outbreak on private lands in eastern Oregon, 1980-1994.

    Science.gov (United States)

    David L. Azuma; David L. Overhulser

    2008-01-01

    Forest Inventory and Analysis data from three inventory periods were used to examine the effects of a western spruce budworm outbreak on private lands in eastern Oregon. Growth was negatively related to defoliation with differences between crown ratio and species. The mortality and salvage harvesting caused changes in stand structure on private lands. Although many...

  3. The radiation protection problems of high altitude and space flight

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1993-01-01

    This paper considers the radiation environment in aircraft at high altitudes and spacecraft in low earth orbit and in deep space and the factors that influence the dose equivalents. Altitude, latitude and solar cycle are the major influences for flights below the radiation belts. In deep space, solar cycle and the occurrence of solar particle events are the factors of influence. The major radiation effects of concern are cancer and infertility in males. In high altitude aircraft the radiation consists mainly of protons and neutrons, with neutrons contributing about half the equivalent dose. The average dose rate at altitudes of transcontinental flights that approach the polar regions are greater by a factor of about 2.5 than on routes at low latitudes. Current estimates of does to air crews suggest they are well within the ICRP (1990) recommended dose limits for radiation workers

  4. Forest health in Canada, Atlantic Maritime ecozone 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.E.; Loo, J.; DesRochers, P.; Hirvonen, H.

    2004-07-01

    This paper describes the key forest health issues affecting Canada's Atlantic Maritime ecozone which includes 9 main forest types known collectively as the Acadian Forest. In order to protect and conserve biological diversity, the Canadian Council of Forest Ministers adopted national criteria to measure sustainable forest management. This report describes the Acadian Forest landscape conditions, pre-industrial ecological influences, current ecological influences, and the impact of invasive alien insects and diseases on the diversity of tree species. Spruce trees in the Atlantic Maritime ecozone are threatened by the brown spruce longhorn beetle and pine trees are threatened by a pine shoot beetle recently introduced to North America from Asia. Diseases are also attacking the butternut, beech and dutch trees. The impact of land use practices such as forest harvesting on forest structure and composition was also addressed along with the impact of air pollution and climate change. It was noted that there is a direct relationship between deteriorating air quality and decline in mountain paper birch. Some of the anticipated impacts from climate change include a greater incidence of vector borne diseases resulting from the migration of new insect species in a warmer Canadian climate. An increase in extreme weather events such as ice storms may also weaken trees. refs., tabs., figs.

  5. The Late-Glacial and Holocene Marboré Lake sequence (2612 m a.s.l., Central Pyrenees, Spain): Testing high altitude sites sensitivity to millennial scale vegetation and climate variability

    Science.gov (United States)

    Leunda, Maria; González-Sampériz, Penélope; Gil-Romera, Graciela; Aranbarri, Josu; Moreno, Ana; Oliva-Urcia, Belén; Sevilla-Callejo, Miguel; Valero-Garcés, Blas

    2017-10-01

    This paper presents the environmental, climate and vegetation changes reconstructed for the last 14.6 kyr cal BP from the Marboré Lake sedimentary sequence, the highest altitude record (2612 m a.s.l.) in the Pyrenees studied up to date. We investigate the sensitivity of this high altitude site to vegetational and climate dynamics and altitudinal shifts during the Holocene by comparing palynological spectra of the fossil sequence and pollen rain content from current moss pollsters. We hypothesize that the input of sediments in lakes at such altitude is strongly controlled by ice phenology (ice-free summer months) and that during cold periods Pollen Accumulation Rate (PAR) and Pollen Concentration (PC) reflect changes in ice-cover and thus is linked to temperature changes. Low sedimentation rates and low PC and PAR occurred during colder periods as the Younger Dryas (GS-1) and the Holocene onset (12.6-10.2 kyr cal BP), suggesting that the lake-surface remained ice-covered for most of the year during these periods. Warmer conditions are not evident until 10.2 kyr cal BP, when an abrupt increase in sedimentation rate, PC and PAR occur, pointing to a delayed onset of the Holocene temperature increase at high altitude. Well-developed pinewoods and deciduous forest dominated the mid montane belt since 9.3 kyr cal BP until mid-Holocene (5.2 kyr cal BP). A downwards shift in the deciduous forest occurred after 5.2 kyr cal BP, in agreement with the aridity trend observed at a regional and Mediterranean context. The increase of herbaceous taxa during the late-Holocene (3.5 kyr cal BP-present) reflects a general trend to reduced montane forest, as anthropogenic disturbances were not evident until 1.3 kyr cal BP when Olea proportions from lowland areas and other anthropogenic indicators clearly expand. Our study demonstrates the need to perform local experimental approaches to check the effect of ice phenology on high altitude lakes sensitivity to vegetation changes to obtain

  6. Risk Stratification for Athletes and Adventurers in High-Altitude Environments: Recommendations for Preparticipation Evaluation.

    Science.gov (United States)

    Campbell, Aaron D; McIntosh, Scott E; Nyberg, Andy; Powell, Amy P; Schoene, Robert B; Hackett, Peter

    2015-12-01

    High-altitude athletes and adventurers face a number of environmental and medical risks. Clinicians often advise participants or guiding agencies before or during these experiences. Preparticipation evaluation (PPE) has the potential to reduce risk of high-altitude illnesses in athletes and adventurers. Specific conditions susceptible to high-altitude exacerbation also important to evaluate include cardiovascular and lung diseases. Recommendations by which to counsel individuals before participation in altitude sports and adventures are few and of limited focus. We reviewed the literature, collected expert opinion, and augmented principles of a traditional sport PPE to accommodate the high-altitude wilderness athlete/adventurer. We present our findings with specific recommendations on risk stratification during a PPE for the high-altitude athlete/adventurer. Copyright © 2015. Published by Elsevier Inc.

  7. Nasal variation in relation to high-altitude adaptations among Tibetans and Andeans.

    Science.gov (United States)

    Butaric, Lauren N; Klocke, Ross P

    2018-05-01

    High-altitude (>2500 m) populations face several pressures, including hypoxia and cold-dry air, resulting in greater respiratory demand to obtain more oxygen and condition inspired air. While cardiovascular and pulmonary adaptations to high-altitude hypoxia have been extensively studied, adaptations of upper-respiratory structures, e.g., nasal cavity, remain untested. This study investigates whether nasal morphology presents adaptations to hypoxic (larger noses) and/or cold-dry (tall/narrow noses) conditions among high-altitude samples. CT scans of two high- and four low-altitude samples from diverse climates were collected (n = 130): high-altitude Tibetans and Peruvians; low-altitude Peruvians, Southern Chinese (temperate), Mongolian-Buriats (cold-dry), and Southeast Asians (hot-wet). Facial and nasal distances were calculated from 3D landmarks placed on digitally-modeled crania. Temperature, precipitation, and barometric pressure data were also obtained. Principal components analysis and analyses of variance primarily indicate size-related differences among the cold-dry (Mongolian-Buriats) and hot-wet (Southeast Asians) adapted groups. Two-block partial least squares (PLS) analysis show weak relationships between size-standardized nasal dimensions and environmental variables. However, among PLS1 (85.90% of covariance), Tibetans display relatively larger nasal cavities related to lower temperatures and barometric pressure; regression analyses also indicate high-altitude Tibetans possess relatively larger internal nasal breadths and heights for their facial size. Overall, nasal differences relate to climate among the cold-dry and hot-wet groups. Specific nasal adaptations were not identified among either Peruvian group, perhaps due to their relatively recent migration history and population structure. However, high-altitude Tibetans seem to exhibit a compromise in nasal morphology, serving in increased oxygen uptake, and air-conditioning processes. © 2018

  8. Mast cells in the human lung at high altitude

    Science.gov (United States)

    Heath, Donald

    1992-12-01

    Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.

  9. Biomass of Sacrificed Spruce/Aspen (SNF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Dimension analysis (diameter at breast high, tree height, depth of crown), estimated leaf area, and total aboveground biomass for sacrificed spruce and aspens in...

  10. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    Bravo Alvarez, H.; Sosa Echeverria, R.; Sanchez Alvarez, P.; Krupa, S.

    2013-01-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  11. Monitoring post-fire changes in species composition and stand structure in boreal forests using high-resolution, 3-D aerial drone data and Landsat

    Science.gov (United States)

    Alonzo, M.; Morton, D. C.; Cook, B.; Andersen, H. E.; Mack, M. C.

    2017-12-01

    The growing frequency and severity of boreal forest fires has important consequences for fire carbon emissions and ecosystem composition. Severe fires are typically associated with high degrees of both canopy and soil organic layer (SOL) consumption, particularly in black spruce stands. Complete canopy consumption can decrease the likelihood of spruce regeneration due to reduced viability of the aerial seedbank. Deeper burning of the SOL increases fire emissions and can expose mineral soil that promotes colonization by broadleaf species. There is mounting evidence that a disturbance-driven shift from spruce to broadleaf forests may indicate an ecological state change with feedbacks to regional and global climate. If post-fire successional dynamics can be characterized at an ecosystem scale using remote sensing data, we will be better equipped to constrain carbon and energy fluxes from SOL losses and albedo changes. In this study, we used Landsat time series, very high-resolution structure-from-motion (SFM) drone imagery, and field measurements to investigate post-fire regrowth 13 years after the 2004 Taylor Complex (TC) fires in interior Alaska. Twenty-seven TC plots span a gradient of moisture conditions and burn severity as estimated by loss of SOL. A range of variables potentially governing seedling species dominance (e.g., moisture status, distance to seed sources) have been collected systematically over the years following fire. In July 2017, we additionally collected drone imagery over 25 of the TC plots. We processed these highly overlapped, nadir-view and oblique angle photos into extremely dense (>700 pts/m2) RGB-colored point clouds using SFM techniques. With these point clouds and high resolution orthomosaics, we estimated: 1) snag heights and biomass, 2) remnant snag fine branching, and 3) species and structure of shrubs and groundcover that have regrown since fire. We additionally assembled a dense Landsat time series arranged by day-of-year to monitor

  12. The variations of aluminium species in mountainous forest soils and its implications to soil acidification.

    Science.gov (United States)

    Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej

    2015-11-01

    Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.

  13. Balsam fir conservation and red spruce ecosystem restoration initiatives in the West Virginia highlands

    Science.gov (United States)

    Corey A. Bonasso; David W. Saville

    2010-01-01

    The West Virginia Highlands Conservancy has been working for more than a decade to protect, conserve, and restore the spruce-fir forests in West Virginia. Beginning in the mid 1990s an effort was initiated to conserve balsam fir in West Virginia where it reaches its southern most extent in North America. This work led to further efforts which have focused on the...

  14. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    International Nuclear Information System (INIS)

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    Highlights: • High solids (30% dry matter) pretreatment, enzymatic hydrolysis and fermentation. • Horizontal rotary reactor for hydrolysis and fermentation. • In situ hydrolysates detoxification using inhibitors adsorbing PEI polymer. • 50% of inhibitors recovered as by-product, recyclability of PEI polymer up to 5 times. • 76% of maximum theoretical ethanol was fermented at final concentration of 51 g/kg. - Abstract: Performing the bioethanol production process at high solids loading is a requirement for economic feasibility at industrial scale. So far this has successfully been achieved using wheat straw and other agricultural residues at 30% of water insoluble solids (WIS), but for softwood species (i.e. spruce) this has been difficult to reach. The main reason behind this difference is the higher recalcitrance of woody substrates which require harsher pretreatment conditions, thus generating higher amounts of inhibitory compounds, ultimately lowering fermentation performances. In this work we studied ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to ∼20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings. In batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble polyelectrolyte polymer (polyethylenimine, PEI) to absorb inhibitory compounds in the material. On average 50% removal and recovery of the main inhibitors (HMF, furfural, acetic acid and formic acid) was achieved dosing 1.5% w/w of soluble PEI. The use of PEI was compatible with operating the process at high solids loadings and enabled fermentation of hydrolysates, which

  15. Circulatory adaptation to long-term high altitude exposure in Aymaras and Caucasians.

    Science.gov (United States)

    Stuber, Thomas; Scherrer, Urs

    2010-01-01

    About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.

  16. Damage by the Sitka spruce weevil (Pissodes strobi) and growth patterns for 10 spruce species and hybrids over 26 years in the Pacific Northwest.

    Science.gov (United States)

    Russel G. Mitchell; Kenneth H. Wright; Norman E. Johnson

    1990-01-01

    Ten species and hybrids of spruce (Picea spp.) were planted and observed annually for 26 years at three coastal locations in Oregon and Washington to evaluate growth rates and susceptibility to the Sitka spruce weevil (= white pine weevil), Pissodes strobi The 10 spruce were: Sitka spruce, Norway spruce, Lutz spruce, black...

  17. Spectral differences of the functional crown parts and status of Norway spruce trees studied using remote sensing information

    Czech Academy of Sciences Publication Activity Database

    Malenovský, Zbyněk; Clevers, J G P W.; Arkima, H.; Kuosmanen, V.; Cudlín, Pavel; Polák, T.

    2003-01-01

    Roč. 22, Suppl. 1 (2003), s. 207-210 ISSN 1335-342X. [Long Term Air Pollution Effect on Forest Ecosystems (International Meeting for Specialists in Air Pollution Effects on Forest Ecosystems)/20./. Zvolen, 30.08.2002-01.09.2002] R&D Projects: GA MŠk OK 389 Institutional research plan: CEZ:AV0Z6087904 Keywords : Norway spruce * stress response * remote sensing Subject RIV: EH - Ecology, Behaviour Impact factor: 0.100, year: 2003

  18. Relating structural growth environment to white spruce sapling establishment at the Forest-Tundra Ecotone

    Science.gov (United States)

    Maguire, A.; Boelman, N.; Griffin, K. L.; Jensen, J.; Hiers, E.; Johnson, D. M.; Vierling, L. A.; Eitel, J.

    2017-12-01

    The effect of climate change on treeline position at the latitudinal Forest-Tundra ecotone (FTE) is poorly understood. While the FTE is expansive (stretching 13,000 km acros the panarctic), understanding relationships between climate and tree function may depend on very fine scale processes. High resolution tools are therefore needed to appropriately characterize the leading (northernmost) edge of the FTE. We hypothesized that microstructural metrics obtainable from lidar remote sensing may explain variation in the physical growth environment that governs sapling establishment. To test our hypothesis, we used terrestrial laser scanning (TLS) to collect highly spatially resolved 3-D structural information of white spruce (Picea glauca) saplings and their aboveground growth environment at the leading edge of a FTE in northern Alaska and Northwest Territories, Canada. Coordinates of sapling locations were extracted from the 3-D TLS data. Within each sampling plot, 20 sets of coordinates were randomly selected from regions where no saplings were present. Ground roughness, canopy roughness, average aspect, average slope, average curvature, wind shelter index, and wetness indexwere extracted from point clouds within a variable radius from all coordinates. Generalized linear models (GLM) were fit to determine which microstructural metrics were most strongly associated with sapling establishment. Preliminary analyses of three plots suggest that vegetation roughness, wetness index, ground roughness, and slope were the most important terrain metrics governing sapling presence (Figure 1). Comprehensive analyses will include eight plots and GLMs optimized for scale at which structural parameters affect sapling establishment. Spatial autocorrelation of sample locations will be accounted for in models. Because these analyses address how the physical growth environment affects sapling establishment, model outputs will provide information for improving understanding of the

  19. Nonlinearities, scale-dependence, and individualism of boreal forest trees to climate forcing

    Science.gov (United States)

    Wolken, J. M.; Mann, D. H.; Grant, T. A., III; Lloyd, A. H.; Hollingsworth, T. N.

    2013-12-01

    Our understanding of the climate-growth relationships of trees are complicated by the nonlinearity and variability of these responses through space and time. Furthermore, trees growing at the same site may exhibit opposing growth responses to climate, a phenomenon termed growth divergence. To date the majority of dendrochronological studies in Interior Alaska have involved white spruce growing at treeline, even though black spruce is the most abundant tree species. Although changing climate-growth relationships have been observed in black spruce, there is little known about the multivariate responses of individual trees to temperature and precipitation and whether or not black spruce exhibits growth divergences similar to those documented for white spruce. To evaluate the occurrence of growth divergences in black spruce, we collected cores from trees growing on a steep, north-facing toposequence having a gradient in environmental parameters. Our overall goal was to assess how the climate-growth relationships of black spruce change over space and time. Specifically, we evaluated how topography influences the climate-growth relationships of black spruce and if the growth responses to climate are homogeneous. At the site-level most trees responded negatively to temperature and positively to precipitation, while at the tree-level black spruce exhibited heterogenous growth responses to climate that varied in both space (i.e., between sites) and time (i.e., seasonally and annually). There was a dominant response-type at each site, but there was also considerable variability in the proportion of trees exhibiting each response-type combination. Even in a climatically extreme setting like Alaska's boreal forest, tree responses to climate variability are spatially and temporally complex, as well as highly nonlinear.

  20. Cerebral venous system and anatomical predisposition to high-altitude headache

    NARCIS (Netherlands)

    Wilson, Mark H.; Davagnanam, Indran; Holland, Graeme; Dattani, Raj S.; Tamm, Alexander; Hirani, Shashivadan P.; Kolfschoten, Nicky; Strycharczuk, Lisa; Green, Cathy; Thornton, John S.; Wright, Alex; Edsell, Mark; Kitchen, Neil D.; Sharp, David J.; Ham, Timothy E.; Murray, Andrew; Holloway, Cameron J.; Clarke, Kieran; Grocott, Mike P. W.; Montgomery, Hugh; Imray, Chris; Ahuja, V.; Aref-Adib, G.; Burnham, R.; Chisholm, A.; Clarke, K.; Coates, D.; Coates, M.; Cook, D.; Cox, M.; Dhillon, S.; Dougall, C.; Doyle, P.; Duncan, P.; Edsell, M.; Edwards, L.; Evans, L.; Gardiner, P.; Grocott, M.; Gunning, P.; Hart, N.; Harrington, J.; Harvey, J.; Holloway, C.; Howard, D.; Hurlbut, D.; Imray, C.; Ince, C.; Jonas, M.; van der Kaaij, J.

    2013-01-01

    As inspired oxygen availability falls with ascent to altitude, some individuals develop high-altitude headache (HAH). We postulated that HAH results when hypoxia-associated increases in cerebral blood flow occur in the context of restricted venous drainage, and is worsened when cerebral compliance

  1. Training-dependent cognitive advantage is suppressed at high altitude.

    Science.gov (United States)

    Li, Peng; Zhang, Gang; You, Hai-Yan; Zheng, Ran; Gao, Yu-Qi

    2012-06-25

    Ascent to high altitude is associated with decreases in cognitive function and work performance as a result of hypoxia. Some workers with special jobs typically undergo intensive mental training because they are expected to be agile, stable and error-free in their job performance. The purpose of this study was to determine the risk to cognitive function acquired from training following hypoxic exposure. The results of WHO neurobehavioral core tests battery (WHO-NCTB) and Raven's standard progressive matrices (RSPM) tests of a group of 54 highly trained military operators were compared with those of 51 non-trained ordinary people and were investigated at sea level and on the fifth day after arrival at high altitudes (3900m). Meanwhile, the plasma levels of brain-derived neurotrophic factor (BDNF), interleukin 1β (IL-1β) and vascular endothelial growth factor (VEGF) were examined. The result showed that at sea level, the trained group exhibited significantly better performance on neurobehavioral and RSPM tests. At high altitude, both groups had decreased accuracy in most cognitive tests and took longer to finish them. More importantly, the highly trained subjects showed more substantial declines than the non-trained subjects in visual reaction accuracy, auditory reaction speed, digit symbol scores, ability to report correct dots in a pursuit aiming test and total RSPM scores. This means that the training-dependent cognitive advantages in these areas were suppressed at high altitudes. The above phenomenon maybe associated with decreased BDNF and elevated inflammatory factor during hypoxia, and other mechanisms could not be excluded. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    1. The solubility of oxygen in water increases with decreasing temperature. This has led to a general perception of cold, high mountain streams as more oxygen rich than warmer lowland streams, and that macroinvertebrates inhabiting high altitude streams have had no need to adapt to critical oxygen...... conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...... the mean weight-specific respiratory rate of macroinvertebrates declined by only 50%, from 400 to 3800 m. We suggest that this disproportionately large gap between availability and demand of oxygen at high altitudes may imply a potential oxygen deficiency for the fauna, and we discuss how oxygen deficiency...

  3. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    Science.gov (United States)

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  4. Effect of industrial pollution on behaviour of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Outola, I.

    2009-01-01

    To investigate how and to what extent industrial pollution affects the behaviour of radionuclides in forest ecosystems, studies were conducted in the vicinity of two Cu-Ni smelters: one in a pine forest at Harjavalta, Finland, and the other in a spruce forest at Monchegorsk, Russia. Industrial pollution had significant effects on the distribution of radionuclides in soil horizons. With the increase in pollution towards the smelter, radionuclides were accumulated more in the litter layer because the conversion of litter into organic material was diminished due to inhibited microbial activity. As a result, the organic layer contained less radionuclides towards the smelter. The effect of industrial pollution on soil-to-plant transfer was complex. The effect varied with radionuclide, plant species and also on forest type. For 137 Cs, soil-to-plant transfer decreased significantly as industrial pollution increased in pine forest, whereas the decrease was less pronounced in spruce forest. Root uptake of 239,240 Pu by plants is extremely small, and plant contamination by resuspended soil is an important factor in considering the soil-to-plant transfer of this radionuclide. In spruce forest, more plutonium was transferred into plants when pollution load increased due to resuspension of litter particles, which contained higher concentrations of plutonium in the vicinity of the smelter. Soil-to-plant transfer of plutonium was much less affected in pine forests contaminated with industrial pollution. This research clearly indicates the sensitivity of the northern forest ecosystem to inorganic pollutants. Prediction of the soil-to-plant transfer of radionuclides in industrially polluted forest ecosystems requires detailed information on the total deposition, vertical distribution of radionuclides in soil, soil microbiological factors, other soil parameters as well as the rooting depths of the plants. (LN)

  5. Influence of fire frequency on carbon consumption in Alaskan blackspruce forests

    Science.gov (United States)

    Hoy, E.; Kasischke, E. S.

    2014-12-01

    Increasing temperatures and drier conditions within the boreal forests of Alaska have resulted in increases in burned area and fire frequency, which alter carbon storage and emissions. In particular, analyses of satellite remote sensing data showed that >20% of the area impacted by fires in interior Alaska occurred in areas that had previously burned since 1950 (e.g., short to intermediate interval fires). Field studies showed that in immature black spruce forests ~ 35 to 55 years old organic layers experienced deep burning regardless of topographic position or seasonality of burning, factors that control depth of burning in mature black spruce forests. Here, refinements were made to a carbon consumption model to account for variations in fuel loads and fraction of carbon consumed associated with fire frequency based on quantifying burned area in recently burned sites using satellite imagery. An immature black spruce (Picea mariana) fuel type (including stands of ~0-50 years) was developed which contains new ground-layer carbon consumption values in order to more accurately account for differences between various age classes of black spruce forest. Both versions of the model were used to assess carbon consumption during 100 fire events (over 4.4 x 10^6 ha of burned area) from two recent ultra-large fire years (2004 and 2005). Using the improved model to better attribute fuel type and consumption resulted in higher ground-layer carbon consumption (4.9% in 2004 and 6.8% in 2005) than previously estimated. These adjustments in ground-layer burning resulted in total carbon consumption within 2004 and 2005 of 63.5 and 42.0 Tg of carbon, respectively. Results from this research could be incorporated into larger scale modeling efforts to better assess changes in the climate-fire-vegetation dynamics in interior Alaskan boreal forests, and to understand the impacts of these changes on carbon consumption and emissions.

  6. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects

  7. Nitrogen availability in Norway spruce forest floor – the effect of forest defoliation induced by bark beetle infestation

    Czech Academy of Sciences Publication Activity Database

    Tahovská, K.; Kopáček, Jiří; Šantrůčková, H.

    2010-01-01

    Roč. 15, č. 6 (2010), 553–564. ISSN 1239-6095 R&D Projects: GA ČR(CZ) GA206/07/1200; GA AV ČR(CZ) KJB600960907 Grant - others:FM EHS(CZ) CZ-0051 Institutional research plan: CEZ:AV0Z60170517 Keywords : nitrogen availability * Norway spruce * soil Subject RIV: GK - Forestry Impact factor: 1.296, year: 2010

  8. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt

    International Nuclear Information System (INIS)

    Gruenwald, Thomas.; Bernhofer, Christian

    2007-01-01

    At Tharandt/Germany eddy covariance (EC) measurements of carbon dioxide and heat fluxes are performed above an old spruce forest since 1996. The last ten years cover almost all meteorological extremes observed during the last 45 years: the coldest and warmest year with mean air temperature of 6.1 deg C (1996) and 9.6 deg C (2000) as well as the fourth wettest and the driest year with a precipitation of 1098 mm (2002) and 501 mm (2003), respectively. In general, the observed annual carbon net ecosystem exchange (NEE) indicates a high net sink from -395 g C/m 2 /a (2003) to -698 g C/m 2 /a (1999) with a coefficient of variation c v = 16.6%. The yearly evapotranspiration (ET) has a lower interannual variability (cv = 9.5%) between 389 mm (2003) and 537 mm (2000). The influence of flux correction and gap filling on the amount of annual NEE and ET is considerable. Using different methods of gap filling (non-linear regressions, mean diurnal courses) yields annual NEE totals that differ by up to 18%. Consistency analysis regarding energy balance closure, comparisons with independent soil respiration and biomass increment measurements indicate reliability of the fluxes. The average gap of the energy balance is 15% of the available energy based on regression slope with an intercept of 3 to 16 W/m 2 , but around zero for annual flux ratios. Between 47% and 63% of the net ecosystem productivity was fixed above ground according to up-scaled tree ring data and forest inventories, respectively. Chamber measurements of soil respiration yield up to 90% of nighttime EC based total ecosystem respiration. Thus, we conclude that the EC based flux represents an upper limit of the C sink at the site

  10. EFFECT OF HIGH ALTITUDE ON ERECTILE FUNCTION IN OTHERWISE HEALTHY INDIVIDUALS

    Directory of Open Access Journals (Sweden)

    Usama Bin Zubair

    2016-06-01

    Full Text Available Objective: To determine the effect of high altitude on Erectile function in otherwise healthy individuals and associated socio demographic factors. Study Design: Cross sectional descriptive study. Place and Duration of Study: January 2014 to March 2014 at Goma, Siachin. Material and Methods: One hundred & twenty two married male subjects living at an altitude of more than 15000 feet for more than 3 month and less than one year were included in the study. Erectile dysfunction (ED was assessed using International Index of Erectile Function-5 (IIEF-5. Age, education, smoking, monthly income, any drug intake, altitude, duration of stay and weather conditions were correlated independently with ED. Results: Out of 122, 26 (21.3% had no ED, 18 had mild, 28 (14.8% had mild to moderate, 36(29.5% had moderate and 14 (11.5% had severe ED. Advancing age, low monthly income, smoking, high altitude, cold weather and longer duration of stay had significant association with ED (p-value<0.05 while education and use of any drug were not found significantly associated in our study. Conclusion: This study showed a high prevalence of erectile dysfunction among otherwise healthy individuals when exposed to high altitude. Special attention should be paid on individuals with more age, less income and those working or residing at higher altitudes in peak winter season. Smoking and stay for longer durations should also be discouraged.

  11. Patterns of mast fruiting of common beech, sessile and common oak, Norway spruce and Scots pine in Central and Northern Europe

    DEFF Research Database (Denmark)

    Nussbaumer, Anita; Waldner, Peter; Etzold, Sophia

    2016-01-01

    Occurrence of mast years, i.e. the synchronous production of vast amounts of fruits or seeds, has an important impact on forest ecosystems, their functioning and their services. We investigated the mast patterns of the forest tree species common beech, common and sessile oak, Norway spruce...... and Scots pine in Central and Northern Europe over the last two to three decades. We analysed data from the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) and additional Danish, German, Flemish and Swiss datasets.Within-plot synchrony...

  12. Physiological aspects of altitude training and the use of altitude simulators

    OpenAIRE

    Ranković Goran; Radovanović Dragan

    2005-01-01

    Altitude training in various forms is widely practiced by athletes and coaches in an attempt to improve sea level endurance. Training at high altitude may improve performance at sea level through altitude acclimatization, which improves oxygen transport and/or utilization, or through hypoxia, which intensifies the training stimulus. This basic physiological aspect allows three training modalities: live high and train high (classic high-altitude training), live low and train high (training thr...

  13. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  14. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude

    DEFF Research Database (Denmark)

    Møller, Kirsten; Paulson, Olaf B; Hornbein, Thomas F.

    2002-01-01

    The authors investigated the effect of acclimatization to high altitude on cerebral blood flow and oxidative metabolism at rest and during exercise. Nine healthy, native sea-level residents were studied 3 weeks after arrival at Chacaltaya, Bolivia (5,260 m) and after reacclimatization to sea level....... At high altitude at rest, arterial carbon dioxide tension, oxygen saturation, and oxygen tension were significantly reduced, and arterial oxygen content was increased because of an increase in hemoglobin concentration. Global cerebral blood flow was similar in the four conditions. Cerebral oxygen delivery...... and cerebral metabolic rates of oxygen and glucose also remained unchanged, whereas cerebral metabolic rates of lactate increased slightly but nonsignificantly at high altitude during exercise compared with high altitude at rest. Reaction time was unchanged. The data indicate that cerebral blood flow...

  15. Design study for remotely piloted, high-altitude airplanes powered by microwave energy

    Science.gov (United States)

    Morris, C. E. K., Jr.

    1983-01-01

    A design study has been conducted for unmanned, microwave-powered airplanes that must fly with long endurance at high altitude. They are proposed to conduct communications-relay, observation, or various scientific missions above approximately 55,000 feet altitude. The special characteristics of the microwave-power system and high-altitude, low-speed vehicle are reviewed. Examples of both sizing and performance analysis are used to suggest design procedure guidelines.

  16. Forest pest conditions in the maritimes in 1992. Information report No. M-X-183E. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Magasi, L.P.; Cormier, J.R.

    1993-01-01

    Review of the status of forest insects and diseases in the Maritimes Region in 1992, along with forecast conditions for 1993 when appropriate. Describes pests and problems of conifers, hardwoods, and high value areas such as nurseries, seed orchards, plantations, and Christmas tree areas and summarizes control operations against spruce budworm and Sirococcus shoot blight. A chapter on forest health monitoring brings together the various aspects of work dealing with changes in forest conditions. Forest insect monitoring systems, such as pheromones and light traps, are briefly described. A list of reports and publications relating to forest pest conditions is included.

  17. Determination and analysis of uptake of gaseous hydrogen peroxide by red spruce seedlings, determined by CSTR-type chamber experiments

    International Nuclear Information System (INIS)

    Claiborn, C.S.; Aneja, V.P.; Carbonell, R.G.

    1991-01-01

    In order to better understand the pathways for damage, the fate of gaseous hydrogen peroxide in red spruce needles was examined. The uptake of gaseous hydrogen peroxide by red spruce trees was determined from controlled exposure chamber experiments in which the chamber behaved as a Continuous Stirred Tank Reactor (CSTR). The results from these experiments were analyzed using a detailed transport model developed from fundamental principles, in order to determine the fate of hydrogen peroxide in the needles and characterize the exposure. The chamber was specially designed to accommodate highly reactive gases. All inner surfaces were Teflon-coated to minimize wall losses. Fluxes of hydrogen peroxide, carbon dioxide, and water vapor were determined. Both daytime and nighttime conditions were examined. Although other investigators have reported that the flux of other, less water-soluble pollutants to red spruce decreases at night when the stomata closes, the hydrogen peroxide flux did not exhibit this behavior. The results of these studies suggest that, at the concentrations observed in the atmosphere, hydrogen peroxide does not reach the inner, mesophyll tissues, but is lost in water condensing in the cuticular wax residing in the stomatal antechamber, above the stomata. The implications of the condensation in the stomatal antechamber and subsequent reactions occurring in this water for forest damage are discussed

  18. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  19. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  20. Kajian Teknologi High Altitude Platform (HAP [Study of High Altitude Platform (HAP Technology

    Directory of Open Access Journals (Sweden)

    Amry Daulat Gultom

    2016-07-01

    Full Text Available High Altitude Platform (HAP merupakan solusi alternatif untuk mengatasi keterbatasan infrastruktur terestrial maupun satelit. HAP merupakan pesawat ataupun balon udara yang ditempatkan pada ketinggian 20-50 km di atas permukaan bumi. Kelebihan yang utama dari HAP adalah kemudahan dalam penempatan, fleksibilitas, biaya operasionalnya rendah, delay  propagasi rendah, sudut elevasi lebar, cakupan yang luas. Penelitian ini dilakukan untuk mengetahui potensi HAP untuk komunikasi pita lebar dan perkembangannya di Indonesia. Analisis dilakukan secara deskriptif dengan mengolah data literatur yang didapat. Hasil penelitian menunjukkan bahwa di Indonesia terdapat potensi teknologi HAP untuk komunikasi pita lebar dengan lebar pita 2x300 MHz di band 27,9-28,2 GHz dan 31-31,3 GHz. Namun, belum ada peraturan yang mengatur alokasi frekuensi untuk HAP secara khusus di Indonesia.*****High Altitude Platform (HAP has been developed as an alternative solution in order to overcome limitation of terrestrial and satellite communication system. HAP is an aircraft or balloon situated on 20-50 km above the earth. Main advantages of HAP are flexibility in deployment, low propagation delay, wide elevation angle and broad coverage. The research is conducted to gather HAP potential for broadband communication and its development in Indonesia. Analysis is conducted by descriptive analysis from literature study gather. The research result shows that in Indonesia, there is potential of HAP technology for broadband communication with 2x300 MHz bandwidth within 27,9-28,2 GHz and 31-31,3 GHz. Yet, there are no specific regulations managing frequency allocation for HAP in Indonesia.

  1. Damages and causes of death in plantations with containerised seedlings of Scots pine and Norway spruce in the central of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Naumburg, Jan

    2000-07-01

    In 1972, 94 forest areas were planted with containerised seedlings, 83 with Scots pine (Pinus sylvestris L.) and 11 with Norway spruce (Picea abies (L.) Karst.), in the central of Sweden. In the first season after planting, 99% of the Scots pine and 98% of the Norway spruce seedlings survived. Three seasons after plantation, 67% of Scots pine and 62% of Norway spruce were alive. The most common type of known damages causing mortality were mammals and insects. Vegetation was registered as the cause of mortality at some occasions in Scots pine plantations, whereas vegetation never was considered as the cause of death in Norway spruce plantations. The average size of the scarification patches were 0.25 m{sup 2} and 0.4 m{sup 2} in Scots pine and Norway spruce respectively. In Scots pine plantations there were 1600 planted seedlings ha{sup -1} and in Norway spruce there were 1550 ha{sup -1}. After the third growing season, the numbers of main crop plants, including naturally regenerated hardwood and softwood plants, were 1500 ha{sup -1} for Scots pine and 1350 ha{sup -1} for Norway spruce. The studied plantings had been approved if the recommended number of seedlings had been planted. As there always is some mortality among planted seedlings, in the present study 35-40%, this phenomenon has to be taken into consideration when dimensioning the number of seedlings which are to be planted.

  2. Difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite

    Directory of Open Access Journals (Sweden)

    Ming-ke JIAO

    2017-02-01

    Full Text Available Objective To determine the difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite during the wound healing. Methods Twenty four male rats were randomly divided into control group (n=8, normal frostbite group (n=8, and high-altitude group (n=8. The normal frostbite group rats were frozen to produce mid-degree frostbite models by controlling the freezing time with liquid nitrogen penetration equipment. The high-altitude frostbite group rats were acclimated to a hypoxic and low-pressure environment for 1 week, and then the high-altitude frostbite models were constructed by the same way with liquid nitrogen penetration apparatus. On days 3, 7, 11, 15, 19, and 23 after modeling, the recovery situation of blood circulation of each group was observed with contrast ultrasonography by injecting SonoVue micro-bubble into rats' tail. Finally, the micro-bubble concentration (MC was calculated to confirm the blood circulation recovery with software Image Pro. Results At different time points, the wound area of the high-altitude frostbite group was bigger than that of the normal frostbite group, and the MC of control group was always about (27±0.2×109/ml. On day 3, 7, 11, 15, 19, and 23, the MC was significantly lower in the high-altitude frostbite group than in the control group and normal frostbite group (P<0.05. The MC of normal frostbite group was significantly lower than that of the control group on day 3, 7, 11, 15 and 19 (P<0.05. In addition, no obvious difference in MC was found between normal group and control group on the 23th day (P<0.05. Conclusion The blood microcirculation recovery after high-altitude frostbite is significantly slower than the normal frostbite. DOI: 10.11855/j.issn.0577-7402.2017.01.13

  3. Civilian Training in High-Altitude Flight Physiology

    Science.gov (United States)

    1991-08-01

    A survey was conducted to determine if training in high-altitude physiology should : be required for civilian pilots; what the current status of such training was; and, : if required, what should be included in an ideal curriculum. The survey include...

  4. Salvage felling in the Slovak forests in the period 2004–2013

    Directory of Open Access Journals (Sweden)

    Kunca Andrej

    2015-09-01

    Full Text Available Salvage felling is one of the indicators of the forest health quality and stability. Most of the European Union countries monitor forest harmful agents, which account for salvage felling, in order to see trends or functionality between factors and to be able to predict their development. The systematic evidence of forest harmful agents and volume of salvage felling in Slovakia started at the Forest Research Institute in Zvolen in 1960. The paper focuses on the occurrence of the most relevant harmful agents and volume of salvage felling in the Slovak forests over the last decade. Within the 10 years period (2004–2013 salvage felling in Slovakia reached 42.31 mil. m3 of wood, which was 53.2% of the total felling. Wind and European spruce bark beetle Ips typographus damaged 78.4% of salvage wood, i.e. they were the most important pest agents. Norway spruce (Picea abies was the most frequently damaged tree species that represented the amount of 35.6 mil. m3 of wood (81.2% of total volume of salvage felling. As Norway spruce grows mostly in mountains, these regions of Central and Northern Slovakia were most affected. At the damaged localities new forests were prevailingly established with regard to suitable ecological conditions for trees, climate change scenarios and if possible, natural regeneration has been preferred. These approaches in forest stand regeneration together with silvicultural and control measures are assumed to gradually decrease the amount of salvage felling over long term perspective.

  5. Evaluating the impact of abrupt changes in forest policy and management practices on landscape dynamics: analysis of a Landsat image time series in the Atlantic Northern Forest.

    Science.gov (United States)

    Legaard, Kasey R; Sader, Steven A; Simons-Legaard, Erin M

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging forest ecology.

  6. The Effect Of Enhanced UV-B Radiation On Norway Spruce (Picea Abies (L.) Karst.) And Consequences For The Mountain Forest; Ucinek Ultravijolicnega Sevanja Na Smreko (Picea abies (L.) Karst.) In Posledice Za Garski Gozdni Ekosistem

    Energy Technology Data Exchange (ETDEWEB)

    Trošt Sedej, T.

    2005-07-01

    NaNorway spruce trees from the sub alpine stand are exposed not only to high UV-B radiation but also to a complex of other environmental factors, such as high photosynthetically active radiation, extreme temperature conditions, deficient water and mineral supply, which might cause stress responses. Current year needles from the sub alpine stand exhibited lower photochemical efficiency and total chlorophyll content compared to samples from lower altitudes. The result suggested that young needles were most vulnerable to stress factors, since the protective mechanisms were not fully developed. Current+1 year needles from the sub alpine stand exhibited lower ETSvalues and higher total UV-B absorbing compounds, which may be interpreted as most successful protection against UVB radiation of current+1 year needles among the three needle age classes.Despite the obtained results, the effect of a single stress factor on spruce could not be easily drawn out. Still, we may assume that the spruce is quite tolerant to high UV-B radiation and other extreme environmental factors in the mountains. [Serbian] Rastline, ki uspevajo v gorah, so pogosto izpostavljene stresnim razmeram, predvsem pove ani jakosti sevanja UV-B, skrajnim temperaturnim razmeram ter pomanjkanju vode in hranil. Odziv smreke na okoljske razmere je kompleksen. Pri enoletnih iglicah v visokogorju smo izmerili manjšo fotokemi no u inkovitost in vsebnost klorofilov, kar kaže na ob utljivost mladih iglic, kjer zaš itni mehanizmi še niso dokon no razviti. Pri starejših iglicah razlika ni bila ve statisti no zna ilna, zato sklepamo, da se poškodbe v drugem in tretjem letu prepre ijo ali popravijo. Pri dveletnih iglicah smreke z visokogorskega rastiš a je bil dihalni potencial zna ilno manjši in vsebnost UV-B absorbirajo ih snovi zna ilno ve ja, kar pojasnjujemo s tem, da so dveletne iglice z visokogorskega rastiš a med tremi starostnimi razredi najbolj odporne proti UV-B sevanju. Iz rezultatov sicer ne moremo

  7. Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy

    International Nuclear Information System (INIS)

    Struis, Rudolf P.W.J.; Ludwig, Christian; Barrelet, Timothee; Kraehenbuehl, Urs; Rennenberg, Heinz

    2008-01-01

    Profiles of the major sulfur functional groups in mature Norway spruce wood tissue have been established for the first time. The big challenge was the development of a method suitable for sulfur speciation in samples with very low sulfur content (< 100 ppm). This became possible by synchrotron X-ray absorption spectroscopy at the sulfur L-edge in total electron yield (TEY) detection mode with thin gold-coated wood slices. Functional groups were identified using sulfur compound spectra as fingerprints. Latewood of single year rings revealed metabolic plausible sulfur forms, particularly inorganic sulfide, organic disulfide, methylthiol, and highly oxidized sulfur. Form-specific profiles with Norway spruces from three different Swiss forest sites revealed high, but hitherto little-noticed, sulfur intensities attributable to natural heartwood formation and a common, but physiologically unexpected maximum around year ring 1986 with trees from the industrialized Swiss Plateau. It is hypothesized whether it may have resulted from the huge reduction in sulfur emissions after 1980 due to Swiss policy. Comparison with total S content profiles from optical emission spectroscopy underlined the more accurate and temporally better resolved TEY data with single wood year rings and it opened novel insights into the wood cell chemistry

  8. Growth comparison of northern white-cedar to balsam fir and red spruce by site class

    Science.gov (United States)

    Philip V. Hofmeyer; Laura S. Kenefic; Robert S. Seymour; John C. Brissette

    2006-01-01

    Though northern white-cedar is a common and economically important component of the Acadian Forest of Maine and adjacent Canada, there is little regional data about the growth and development of this species. Sixty sites in northern Maine were used to compare growth of cedar to that of red spruce and balsam fir along a range of site classes and light exposures. On...

  9. Recent evolution and divergence among populations of a rare Mexican endemic, Chihuahua spruce, following holocene climatic warming

    Science.gov (United States)

    F. Thomas Ledig; Virginia Jacob-Cervantes; Paul D. Hodgskiss

    1997-01-01

    Fragmentation and reduction in population size are expected to reduce genetic diversity. However, examples from natural populations of forest trees are scarce. The range of Chihuahua spruce retreated northward and fragmented coincident with the warming climate that marked the early Holocene. The isolated populations vary from 15 to 2441 trees, which provided an...

  10. Aspirated Compressors for High Altitude Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  11. Soil surface CO2 flux in a boreal black spruce fire chronosequence

    Science.gov (United States)

    Wang, Chuankuan; Bond-Lamberty, Ben; Gower, Stith T.

    2003-02-01

    Understanding the effects of wildfire on the carbon (C) cycle of boreal forests is essential to quantifying the role of boreal forests in the global carbon cycle. Soil surface CO2 flux (Rs), the second largest C flux in boreal forests, is directly and indirectly affected by fire and is hypothesized to change during forest succession following fire. The overall objective of this study was to measure and model Rs for a black spruce (Picea mariana [Mill.] BSP) postfire chronosequence in northern Manitoba, Canada. The experiment design was a nested factorial that included two soil drainage classes (well and poorly drained) × seven postfire aged stands. Specific objectives were (1) to quantify the relationship between Rs and soil temperature for different aged boreal black spruce forests in well-drained and poorly drained soil conditions, (2) to examine Rs dynamics along postfire successional stands, and (3) to estimate annual soil surface CO2 flux for these ecosystems. Soil surface CO2 flux was significantly affected by soil drainage class (p = 0.014) and stand age (p = 0.006). Soil surface CO2 flux was positively correlated to soil temperature (R2 = 0.78, p aged stand combination. Soil surface CO2 flux was significantly greater at the well-drained than the poorly drained stands (p = 0.007) during growing season. Annual soil surface CO2 flux for the 1998, 1995, 1989, 1981, 1964, 1930, and 1870 burned stands averaged 226, 412, 357, 413, 350, 274, and 244 g C m-2 yr-1 in the well-drained stands and 146, 380, 300, 303, 256, 233, and 264 g C m-2 yr-1 in the poorly drained stands. Soil surface CO2 flux during the winter (from 1 November to 30 April) comprised from 5 to 19% of the total annual Rs. We speculate that the smaller soil surface CO2 flux in the recently burned than the older stands is mainly caused by decreased root respiration.

  12. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  13. Influence of sulfur dioxide on the mineral composition of needles from spruces

    Energy Technology Data Exchange (ETDEWEB)

    Materna, J

    1961-01-01

    Until recently all the authors knew about changes in the mineral composition of plants exposed to air pollution was that the sulfur content increases considerably. The question arises whether other mineral substances, too, accumulate in the assimilating organs of smoke injured plants, particularly cations such as calcium, potassium and magnesium. Results of analyses of spruce needles from an air polluted forest in the Erzebirge in Czechoslovakia yielded no relationship between the accumulation of sulfates and the mentioned cations.

  14. Climate Change Impacts on High-Altitude Ecosystems

    OpenAIRE

    Harald Pauli

    2016-01-01

    Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  15. Altitude profiles of total chlorinated paraffins in humus and spruce needles from the Alps (MONARPOP).

    Science.gov (United States)

    Iozza, Saverio; Schmid, Peter; Oehme, Michael; Bassan, Rodolfo; Belis, Claudio; Jakobi, Gert; Kirchner, Manfred; Schramm, Karl-Werner; Kräuchi, Norbert; Moche, Wolfgang; Offenthaler, Ivo; Weiss, Peter; Simoncic, Primoz; Knoth, Wilhelm

    2009-12-01

    Chlorinated paraffins (CPs) are toxic, bioaccumulative, persistent, and ubiquitously present in the environment. CPs were analyzed in humus and needle samples, which were taken within the Monitoring Network in the Alpine Region for Persistent and other Organic Pollutants (MONARPOP) at sampling sites of 7 different altitude profiles in the Alps. Gas chromatography combined with electron ionization tandem mass spectrometry (EI-MS/MS) was used for the determination of total CPs (sum of short, medium and long chain CPs). CPs were found in all samples; the concentrations varied between 7 and 199 ng g(-1) dry weight (dw) and within 26 and 460 ng g(-1) dw in humus and needle samples, respectively. A clear vertical tendency within the individual altitude profiles could not be ascertained. Within all altitude profiles, elevated concentrations were observed in humus samples taken between 700 and 900 m and between 1300 and 1500 m. In the needle samples no similar correlation could be observed due to higher variation of the data.

  16. Effect of egg composition and oxidoreductase on adaptation of Tibetan chicken to high altitude.

    Science.gov (United States)

    Jia, C L; He, L J; Li, P C; Liu, H Y; Wei, Z H

    2016-07-01

    Tibetan chickens have good adaptation to hypoxic conditions, which can be reflected by higher hatchability than lowland breeds when incubated at high altitude. The objective of this trial was to study changes in egg composition and metabolism with regards the adaptation of Tibetan chickens to high altitude. We measured the dry weight of chicken embryos, egg yolk, and egg albumen, and the activity of lactate dehydrogenase (LDH) and succinic dehydrogenase (SDH) in breast muscle, heart, and liver from embryos of Tibetan chicken and Dwarf chicken (lowland breed) incubated at high (2,900 m) and low (100 m) altitude. We found that growth of chicken embryos was restricted at high altitude, especially for Dwarf chicken embryos. In Tibetan chicken, the egg weight was lighter, but the dry weight of egg yolk was heavier than that of Dwarf chicken. The LDH activities of the three tissues from the high altitude groups were respectively higher than those of the lowland groups from d 15 to hatching, except for breast muscle of Tibetan chicken embryos on d 15. In addition, under the high altitude environment, the heart tissue from Tibetan chicken had lower LDH activity than that from Dwarf chicken at d 15 and 18. The lactic acid content of blood from Tibetan chicken embryos was lower than that of Dwarf chicken at d 12 and 15 of incubation at high altitude. There was no difference in SDH activity in the three tissues between the high altitude groups and the lowland groups except in three tissues of hatchlings and at d 15 of incubation in breast muscle, nor between the two breeds at high altitude except in the heart of hatchlings. Consequently, the adaptation of Tibetan chicken to high altitude may be associated with higher quantities of yolk in the egg and a low metabolic oxygen demand in tissue, which illuminate the reasons that the Tibetan chicken have higher hatchability with lower oxygen transport ability. © 2016 Poultry Science Association Inc.

  17. Multi-sensor data fusion for estimating forest species composition and abundance in northern Minnesota

    Science.gov (United States)

    Peter P. Wolter; Phillip A. Townsend

    2011-01-01

    The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar in northern Minnesota and neighboring Ontario, Canada have increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered increased...

  18. Incidence and Symptoms of High Altitude Illness in South Pole Workers: Antarctic Study of Altitude Physiology (ASAP

    Directory of Open Access Journals (Sweden)

    Paul J. Anderson

    2011-01-01

    Full Text Available Introduction Each year, the US Antarctic Program rapidly transports scientists and support personnel from sea level (SL to the South Pole (SP, 2835 m providing a unique natural laboratory to quantify the incidence of acute mountain sickness (AMS, patterns of altitude related symptoms and the field effectiveness of acetazolamide in a highly controlled setting. We hypothesized that the combination of rapid ascent (3 hr, accentuated hypobarism (relative to altitude, cold, and immediate exertion would increase altitude illness risk. Methods Medically screened adults (N = 246, age = 37 ± 11 yr, 30% female, BMI = 26 ± 4 kg/m 2 were recruited. All underwent SL and SP physiological evaluation, completed Lake Louise symptom questionnaires (LLSQ, to define AMS, and answered additional symptom related questions (eg, exertional dyspnea, mental status, cough, edema and general health, during the 1st week at altitude. Acetazolamide, while not mandatory, was used by 40% of participants. Results At SP, the barometric pressure resulted in physiological altitudes that approached 3400 m, while T ° C averaged -42, humidity 0.03%. Arterial oxygen saturation averaged 89% ± 3%. Overall, 52% developed LLSQ defined AMS. The most common symptoms reported were exertional dyspnea-(87%, sleeping difficulty-(74%, headache-(66%, fatigue-(65%, and dizziness/lightheadedness-(46%. Symptom severity peaked on days 1-2, yet in >20% exertional dyspnea, fatigue and sleep problems persisted through day 7. AMS incidence was similar between those using acetazolamide and those abstaining (51 vs. 52%, P = 0.87. Those who used acetazolamide tended to be older, have less altitude experience, worse symptoms on previous exposures, and less SP experience. Conclusion The incidence of AMS at SP tended to be higher than previously reports in other geographic locations at similar altitudes. Thus, the SP constitutes a more intense altitude exposure than might be expected considering physical

  19. Butterflies of the high altitude Atacama Desert: habitat use and conservation

    Directory of Open Access Journals (Sweden)

    Emma eDespland

    2014-09-01

    Full Text Available The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 500 m asl (prepuna, puna and Andean steppe habitats as well as in high and low altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life-history strategies and relationships with host plants.

  20. High altitude-induced albuminuria in normal man is enhanced by infusion of low-dose dopamine

    DEFF Research Database (Denmark)

    Hansen, J M; Kanstrup, I L; Richalet, J P

    1996-01-01

    -85) (median with quartiles in parentheses) at high altitude. High altitude hypoxia increased Ualb from 3.2 micrograms min-1 (2.7-3.5) to 5.0 micrograms min-1 (3.3-6.6) (p ... flow (ERPF) from 465 ml min-1 (412-503) to 410 ml min-1 (385-451) (p high altitude. Dopamine...... increased ERPF, GFR, CLi, CNa, and decreased the filtration fraction in both environments. Infusion of dopamine further increased Ualb to 10.5 micrograms min-1 (5.5-64.8) (p high altitude, but had no effect on Ualb at sea level. In conclusion, high altitude hypoxia per se increases the urinary...

  1. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  2. Pelletizing properties of torrefied spruce

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    analysis revealed a cohesive failure mechanism due to strong inter-particle bonding in spruce pellets as a resulting from a plastic flow of the amorphous wood polymers, forming solid polymer bridges between adjacent particles. Fracture surfaces of pellets made from torrefied spruce possessed gaps and voids...

  3. Life?cycle impacts of ethanol production from spruce wood chips under high-gravity conditions

    OpenAIRE

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Background Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life?cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. Results The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main p...

  4. Experiences with the Haertel-Truebungstest at diagnosing injuries to spruce caused by atmospheric pollution

    Energy Technology Data Exchange (ETDEWEB)

    Pelz, E

    1958-01-01

    The Haertel-Truebungstest is based on the observation that spruce needles secrete more wax at the stomata in areas affected by atmospheric pollution than in areas without. The increased secretion of wax is taken for a symptom of injury caused by atmospheric pollution. The wax is extracted in boiling water and, after cooling down, the turbidity of the extract is measured quantitatively in a photometer. Investigations on spruce in Saxony and Thuringia confirm the tendency to increasing turbidity towards the source of smoke. A considerable dispersion of turbidity values however impairs the results of this method, so that a great number of samples must be used in order to find out a trend. The dispersion of turbidity values in spruce forests that are not directly influenced by atmospheric pollution substantially exceeds the dispersion of the +/- 1% of the turbidity value that was found by Haertel. As was stated by Haertel and Papesch, the dispersion of individual turbidity values grows with increasing doses of SO/sub 2/. In Saxony the individual smoke emissions so densely cover one another, that there are scarcely any areas without air pollution and, probably, a relation exists between this continuous influence of smoke and SO/sub 2/ and the dispersion of turbidity values. It may be, however, that the environmental factors have also a certain influence, as, on vast areas of Saxony, spruce is growing on sites that are not its natural habitat.

  5. SPLENIC INFARCTION: an intriguing and important cause of pain abdomen in high altitude

    Directory of Open Access Journals (Sweden)

    P. K. Hota

    2015-01-01

    Full Text Available Background: Patients with Sickle cell trait (SCT are usually asymptomatic. They are usually unaware of their condition unless they have a family history. There are specific situations, where these people suffer from the effects of sickle cell trait. Splenic syndrome at high altitude is one of the specific problems. It is usually seen after a patient with SCT has been inducted to high altitude like in case of mountaineers and military personnel deployed in high altitude warfare. Pain abdomen due to splenic infarction in individuals with SCT is one of the manifestations. These patients, if diagnosed in time, they can be spared from unnecessary surgical interventions. We present herewith our experience of splenic infarction due to SCT in high altitude and their management.

  6. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

    Science.gov (United States)

    Ahmad Dar, Javid; Somaiah, Sundarapandian

    2015-02-01

    Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

  7. Long-term trends in radial growth of Siberian spruce and Scots pine in Komi Republic (northwestern Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Lopatin, E. (Univ. of Joensuu (Finland)); Kolstroem, T. (Russian Academy of Sciences, Syktyvkar (Russian Federation)); Spiecker, H. (Univ. of Freiburg (Germany))

    2008-07-01

    Komi is situated on the eastern boundary of the European part of Russia, in the boreal region where large areas of natural forest still exist. Using radial growth measurements it was possible to attain positive long-term trends of growth in Scots pine (Pinus sylvestris) and Siberian spruce (Picea obovata) in the Komi Republic. Increases in the radial growth of Siberian spruce in the forest-tundra were 134% and in the northern taiga zone 35% over successive 50-year periods from 1901 to 1950 and from 1951 to 2000. Respectively, in the middle taiga zone a 76% increase in radial growth was found (over 100 years), whilst in the southern taiga zone the changes were not statistically significant. The increase in radial growth of Scots pine in the northern taiga zone was 32%. In the middle taiga zone the radial growth increase in Scots pine was 55% and in the southern taiga zone the changes were not statistically significant. The long-term growth trends of Komi were compared with those in other parts of Europe. (orig.)

  8. Vertical and horizontal differences of soil parameters and radiocaesium contents in soil profiles (dystric cambisol) under spruce

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.

    1997-05-01

    In a spruce forest stand 9 pooled soil profiles (ten auger cores each, 4 layers) were collected within a homogeneous area of 200 ha. This sampling technique provides sufficient accuracy for the determination of most physico-chemical soil characteristics as well as for the assessment of vertical gradients and horizontal variability within the investigation area. The results reveal the soils' tendency for podsolization and acidification processes. In spite of the small sample sizes cation wash-out (Ca, Mg) due to differences in the orographic situation was determined with high significance. 86 % of 137 Cs-contamination derived from the Chernobyl-fallout in 1986 are still found in the top-soil (10 cm). Nutrient-cycling and the high binding capacity of soil organic matter retard vertical migration of 137 Cs in forest soils effectively. From the present data sets for different soil parameters the minimum number of soil samples ensuring maximum admissible errors of 10 and 20 % were calculated. (author)

  9. Experimental StudyHigh Altitude Forced Convective Cooling of Electromechanical Actuation Systems

    Science.gov (United States)

    2016-01-01

    34 Massachusetts Institute of Technology , 1989. [3] FedBizOps.Gov, " Integrated Vehicle Energy Technology (INVENT) Development Program for the 6th...AFRL-RQ-WP-TR-2016-0043 EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS Evan M. Racine...TITLE AND SUBTITLE EXPERIMENTAL STUDY—HIGH ALTITUDE FORCED CONVECTIVE COOLING OF ELECTROMECHANICAL ACTUATION SYSTEMS 5a. CONTRACT NUMBER In-house

  10. Chernobyl pollution in forest biogeocenoses

    International Nuclear Information System (INIS)

    Baldini, E.; Bettoli, M.G.; Tubertini, O.

    1987-01-01

    The effects of the Chernobyl pollution on forest biogeocenoses are described. Spruce, scotch pine, larch, beech, lichens and soils samples were analysed by high resolution gamma-spectrometry. In the established tree organs radioactivity was related to their structural and physiological features, as well as to their surface/dry weight ratios. In the developing organs growth dilution and translocation caused a lower radioactivity. Lichens retained remarkable amounts of radionuclides. The abnormal 137 Cs/ 134 Cs ratios in the organic soils were explained by analysing the 'before Chernobyl' soils sampled in the same area. (orig.)

  11. Text mining and network analysis to find functional associations of genes in high altitude diseases.

    Science.gov (United States)

    Bhasuran, Balu; Subramanian, Devika; Natarajan, Jeyakumar

    2018-05-02

    Travel to elevations above 2500 m is associated with the risk of developing one or more forms of acute altitude illness such as acute mountain sickness (AMS), high altitude cerebral edema (HACE) or high altitude pulmonary edema (HAPE). Our work aims to identify the functional association of genes involved in high altitude diseases. In this work we identified the gene networks responsible for high altitude diseases by using the principle of gene co-occurrence statistics from literature and network analysis. First, we mined the literature data from PubMed on high-altitude diseases, and extracted the co-occurring gene pairs. Next, based on their co-occurrence frequency, gene pairs were ranked. Finally, a gene association network was created using statistical measures to explore potential relationships. Network analysis results revealed that EPO, ACE, IL6 and TNF are the top five genes that were found to co-occur with 20 or more genes, while the association between EPAS1 and EGLN1 genes is strongly substantiated. The network constructed from this study proposes a large number of genes that work in-toto in high altitude conditions. Overall, the result provides a good reference for further study of the genetic relationships in high altitude diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Birds of a high-altitude cloud forest in Alta Verapaz, Guatemala

    Directory of Open Access Journals (Sweden)

    Knut Eisermann

    2005-09-01

    Full Text Available The Northern Central American Highlands have been recognized as endemic bird area, but little is known about bird communities in Guatemalan cloud forests. From 1997 to 2001 a total of 142 bird species were recorded between 2 000 and 2 400 masl in cloud forest and agricultural clearings on Montaña Caquipec (Alta Verapaz, Guatemala. The bird community is described based on line transect counts within the forest. Pooling census data from undisturbed and disturbed forest, the Gray-breasted Wood-Wren (Henicorhina leucophrys was found to be the most abundant species, followed in descending order by the Common Bush-Tanager (Chlorospingus ophthalmicus, the Paltry Tyrannulet (Zimmerius vilissimus, the Yellowish Flycatcher (Empidonax flavescens, the Ruddy-capped Nightingale-Thrush (Catharus frantzii, and the Amethyst-throated Hummingbird (Lampornis amethystinus. Bird communities in undisturbed and disturbed forest were found to be similar (Sørensen similarity index 0.85, indicating low human impact. Of all recorded species, ~27% were Nearctic-Neotropical migratory birds. The most abundant one was the Wilson’s Warbler (Wilsonia pusilla. The Montaña Caquipec is an important area for bird conservation, which is indicated by the presence of four species listed in the IUCN Red List (Highland Guan Penelopina nigra, Resplendent Quetzal Pharomachrus mocinno, Pink-headed Warbler Ergaticus versicolor, Golden-cheeked Warbler Dendroica chrysoparia, and 42 Mesoamerican endemics, of which 14 species are endemic to the Central American Highlands. The results presented here will be useful as baseline data for a long-term monitoring. Rev. Biol. Trop. 53(3-4: 577-594. Epub 2005 Oct 3.Las alturas del norte de Centroamérica han sido reconocidas como región de aves endémicas, pero se conoce poco sobre las comunidades de aves en bosques nubosos de Guatemala. De 1997 a 2001 se han detectado 142 especies de aves entre 2 000 y 2 400 msnm en el bosque nuboso y áreas agr

  13. Afforestation of Boreal Open Woodlands: Early Performance and Ecophysiology of Planted Black Spruce Seedlings

    OpenAIRE

    Tremblay, Pascal; Boucher, Jean-Francois; Tremblay, Marc; Lord, Daniel

    2013-01-01

    Open lichen woodlands (LWs) are degraded stands that lack the ability to regenerate naturally due to a succession of natural and/or anthropogenic disturbances. As they represent both interesting forest restoration and carbon sequestration opportunities, we tested disc scarification and planting of two sizes of containerized black spruce (Picea mariana Mill. (BSP)) seedlings for their afforestation. We compared treatment of unproductive LWs to reforestation of harvested, closed-crown black spr...

  14. Ozone deposition in relation to canopy physiology in a mixed conifer forest in Denmark

    DEFF Research Database (Denmark)

    Ro-Poulsen, H.; Mikkelsen, Teis Nørgaard; Hovmand, M.F.

    1998-01-01

    In this study CO(2) and H(2)O flux measurements made above a spruce forest was compared with the ozone flux to the canopy during growing season 1995. The fluxes were determined by micro meteorological gradient methods using a 36-m tall meteorological mast. The trees were about 12 m high and air s...

  15. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  16. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  17. Effect of phosphate supplementation on oxygen delivery at high altitude

    Science.gov (United States)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  18. Forest pest conditions in the maritimes in 1991. Information report No. M-X-181E. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Magasi, L.P.

    1992-01-01

    This report reviews the status of forest insects and diseases in the Maritimes region in 1991 and forecasts conditions for 1992, when appropriate. Pests and problems of conifers, hardwoods, and high-value areas, such as nurseries, seed orchards, plantations, and Christmas tree areas, are described as observed in 1991. Control operations against spruce budworm, hemlock looper, and Sirococcus shoot blight are summarized. A section on forest health monitoring brings together the various aspects of work dealing with changes in forest conditions, some of which are still unexplained. Forest insect monitoring systems, pheromones, and light traps are briefly described. A list of reports and publications relating to forest pest conditions is included.

  19. Spruce needles used as radioecological biotracers

    International Nuclear Information System (INIS)

    Seidel, C.; Gruber, V.; Baumgartner, A.

    2009-01-01

    In a two years project spruce needle samples of the Austrian Bioindicator Grid were analysed by gamma-ray spectrometry to investigate the spatial and temporal distribution of radionuclides in spruce needles of the last 25 years with the main focus on the radioactive contamination before and after the Chernobyl fallout 1986. More than 600 spruce needle samples at selected locations of the Bioindicator Grid were analysed for different natural and anthropogenic radionuclides: 137 Cs, 40 K, 210 Pb, 226 Ra, 228 Ra, 238 U. Additionally, soil samples were taken at selected sites to study the soil-to-plant transfer. This radioecological evaluation is an important part of an existing environmental surveillance programme in Upper Austria in order to gain basic information on the impact of environmental changes on the radioecological behaviour of spruce trees. (orig.)

  20. Soc stock in different forest-related land-uses in central Stara planina mountain, Bulgaria

    Directory of Open Access Journals (Sweden)

    Zhiyanski Miglena

    2009-01-01

    Full Text Available Forest conversions may lead to an accumulation of carbon in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Understanding these effects is important to addressing issues relevant to ecosystem function and productivity, and to global balance of carbon. The study investigated the effects of the created coniferous plantations on former beech and pasture sites on the soil organic carbon storage. The major forest-related land-uses in the high mountainous regions of central Stara Planina Mountain were investigated: mountainous pasture, coniferous plantations (planted on previous pasture and beech forests between four and five decades ago and natural beech forests. The experimental data of soil properties, conducted in 2005, 2006 and 2007, were used in determining the variations in organic carbon storage in forest litter and in mineral soil under different land-use patterns. At each site five representative soil profiles were opened and described giving a total 75 soil samples from the soil layers respectively at 0-10, 10-30 and 30-50 cm depth. A total of 55 samples from forest floor layers (Aol, Aof, Aoh and greensward were collected with 25:25 cm plastic frame. The main soil properties were determined in accordance with the standardized methods in the Laboratory of soil science at the Forest Research Institute - BAS. The IPCC Good Practice Guidance for Land Use, Land Use Change and Forestry was used to estimate the soil organic carbon stock in soil and litter. The results obtained showed that the SOC stock was quite similar among forest land-uses. The conversion of natural beech forests to coniferous plantations in studied region is related with slightly expressed decrease in soil carbon storage. The values of SOC stocks in 0-50 cm soil layer in these sites were 8.5 (±2.1 tones/ha for pine and 11.0 (±1.4 tones/ha for spruce, while under the natural beech forest it was 14.8 (±1.0 tones

  1. Bat habitat use in White Mountain National Forest

    Science.gov (United States)

    Rachel A. Krusic; Mariko Yamasaki; Christopher D. Neefus; Peter J. Pekins

    1996-01-01

    In 1992 and 1993, we surveyed the foraging and feeding activity of bat species with broadband bat detectors at 2 foliage heights in 4 age classes of northern hardwood and spruce/fir forest stands in White Mountain National Forest, New Hampshire and Maine. The association of bat activity with trails and water bodies and the effect of elevation were measured. Mist nets,...

  2. Differentiation of pulmonary embolism from high altitude pulmonary edema

    International Nuclear Information System (INIS)

    Khan, D.A.; Hashim, R.; Mirza, T.M.; Matloob-ur-Rehman, M.

    2003-01-01

    Objective: To differentiate the high altitude pulmonary edema (HAPE) from pulmonary embolism (PE) by clinical probability model of PE, lactate dehydrogenase (LDH), aspartate transaminase (AST) and D-dimer assays at high altitude. Subjects and Methods: Consecutive 40 patients evacuated from height > 3000 meters with symptoms of PE or HAPE were included. Clinical pretest probabilities scores of PE, Minutex D-dimer assay (Biopool international) and cardiac enzymes estimation by IFCC approved methods, were used for diagnosis. Mann-Whitney U test was applied by using SPSS and level of significance was taken at (p 500 ng/ml. Plasma D-dimer of 500 ng/ml was considered as cut-off value; 6(66.7%) patients of PE could be diagnosed and 30 (96.7%) cases of HAPE excluded indicating very good negative predictive value. Serum LDH, AST and CK were raised above the reference ranges in 8 (89%), 7 (78%) and 3 (33%) patients of PE as compared to 11 (35%), 6 (19%) and 9 (29%) of HAPE respectively. Conclusion: Clinical assessment in combination with D-dimer assay, LDH and AST can be used for timely differentiation of PE from HAPE at high altitude where diagnostic imaging procedures are not available. (author)

  3. Changes in species occurrence and phytomass after clearfelling, prescribed burning and slash removal in two Swedish spruce forests

    International Nuclear Information System (INIS)

    Nykvist, N.

    1997-01-01

    In two old Norway spruce stands, the one at Garpenberg in central Sweden, the other at Flakatraesk in northern Sweden, the phytomass of the field- and ground-layer was measured before clearfelling and one and four years later. The phytomass of the field-layer was also measured 10 and 16 years after clearfelling. Of 13-14 plant species originally in the field-layer, 2-3 were not found after clearfelling. In contrast, 15 and 9 new species appeared on the plots on which slash was left, at Garpenberg and at Flakatraesk. Some were short-lived, and 16 years after clearfelling, only 11 and 7, respectively, persisted. Corresponding figures for the plots from which slash was removed were 9 and 8, and for the burnt plots 11 and 9. Clearfelling of the old forests also increased the phytomass of the field-layer. Removal of slash decreased the phytomass of some species, increased it for others. During the first years after burning, phytomass on the burnt plots was less than that on the controls, but three years later it was similar to that on the unburnt plots. The spatial variation in phytomass was great, and no significant difference was found between treatments after clearfelling. The biomass of the most common moss species of Swedish coniferous forests declined strongly after clearfelling. Two new mosses appeared on the clearfelled plots, viz. Polytrichum spp. and Ceratodon purpureus; the latter being found only on burnt plots at Flakatraesk four years after burning 17 refs, 16 figs, 18 tabs. four years after burning 17 refs, 16 figs, 18 tabs

  4. Minimal approaches to genetic improvement of growth rates in white spruce

    Science.gov (United States)

    D.T. Lester

    1973-01-01

    Several features of central importance to genetic improvement of white spruce have been demonstrated by tree breeders. First, white spruce is genetically a highly variable species and much of the existent variation can be readily incorporated in planting stock (Jeffers 1969, Holst and Teich 1969). Second, local seed often is not the best for rapid growth (Nienstaedt...

  5. Measurements of radioactive dust in high altitude air

    International Nuclear Information System (INIS)

    Kobayashi, Mika; Kohara, Eri; Muronoi, Naohiro; Masuda, Yousuke; Midou, Tomotaka; Ishida, Yukiko; Shimizu, Toshihiko; Saga, Minoru; Endo, Hiromu

    2012-01-01

    The radioactivity in samples of airborne dust was measured. The samples had been collected at high altitude by the Japan Air Self-Defense Force. The data were obtained for the gross beta activity, gamma nuclide determination and radiochemical analysis. It was shown that there was no appreciable difference between the activity levels obtained in this time and in the year before. Seasonal variations were not very pronounced. It was found that the radioactivity at high altitude had been stable at a low level. Radioactive gases (gaseous radioiodine and xenon gas) were not detected. This report does not include the result on radionuclide measurements that Technical Research and Development Institute executed for examining the nuclear emergency situation at Fukushima Daiichi and Daini nuclear power plants after Tohoku Region Pacific Ocean Earthquake on March 11, 2011. (author)

  6. Rare Particle Searches with the high altitude SLIM experiment

    CERN Document Server

    Balestra, S; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Margiotta, A; Medinaceli, E; Nogales, J; Patrizii, L; Popa, V; Quereshi, I; Saavedra, O; Sher, G; Shahzad, M; Spurio, M; Ticona, R; Togo, V; Velarde, A; Zanini, A

    2005-01-01

    The search for rare particles in the cosmic radiation remains one of the main aims of non-accelerator particle astrophysics. Experiments at high altitude allow lower mass thresholds with respect to detectors at sea level or underground. The SLIM experiment is a large array of nuclear track detectors located at the Chacaltaya High Altitude Laboratory (5290 m a.s.l.). The preliminary results from the analysis of a part of the first 236 sq.m exposed for more than 3.6 y are here reported. The detector is sensitive to Intermediate Mass Magnetic Monopoles and to SQM nuggets and Q-balls, which are possible Dark Matter candidates.

  7. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests

    Science.gov (United States)

    G. Shetler; .R. Turetsky; E. Kane; E. Kasischke

    2008-01-01

    The high water retention of hummock-forming Sphagnum species minimizes soil moisture fluctuations and might protect forest floor organic matter from burning during wildfire. We hypothesized that Sphagnum cover reduces overall forest floor organic matter consumption during wildfire compared with other ground-layer vegetation. We...

  8. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  9. The diversity of microhabitats and their impact on the regeneration of spruce and rowan in the mountain forests of the Low Tatras

    International Nuclear Information System (INIS)

    Gloncak, P.

    2010-01-01

    In this paper the authors describe the questions: what is proportion of different types of microhabitats in natural spruce?; which types of microhabitats prefers spruce (Picea abies) and rowan (Sorbus aucuparia) in the early stages of their development?; what role do ground vegetation and dead wood play?

  10. The diversity of microhabitats and their impact on the regeneration of spruce and rowan in the mountain forests of the Low Tatras

    International Nuclear Information System (INIS)

    Gloncak, P.

    2010-01-01

    In this presentation the authors describe the questions: what is proportion of different types of microhabitats in natural spruce?; which types of microhabitats prefers spruce (Picea abies) and rowan (Sorbus aucuparia) in the early stages of their development?; what role do ground vegetation and dead wood play?

  11. Sequencing of 50 human exomes reveals adaptation to high altitude

    DEFF Research Database (Denmark)

    Yi, Xin; Liang, Yu; Huerta-Sanchez, Emilia

    2010-01-01

    Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which repres...... in genetic adaptation to high altitude.......Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which...... represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency...

  12. Relative Match Intensities at High Altitude in Highly-Trained Young Soccer Players (ISA3600).

    Science.gov (United States)

    Buchheit, Martin; Hammond, Kristal; Bourdon, Pitre C; Simpson, Ben M; Garvican-Lewis, Laura A; Schmidt, Walter F; Gore, Christopher J; Aughey, Robert J

    2015-03-01

    To compare relative match intensities of sea-level versus high-altitude native soccer players during a 2-week camp at 3600 m, data from 7 sea-level (Australian U17 National team, AUS) and 6 high-altitude (a Bolivian U18 team, BOL) native soccer players were analysed. Two matches were played at sea-level and three at 3600 m on Days 1, 6 and 13. The Yo-Yo Intermittent recovery test (vYo-YoIR1) was performed at sea-level, and on Days 3 and 10. Match activity profiles were measured via 10-Hz GPS. Distance covered >14.4 km.h(-1) (D>14.4 km·h(-1)) and >80% of vYo-YoIR1 (D>80%vYo-YoIR1) were examined. Upon arrival at altitude, there was a greater decrement in vYo-YoIR1 (Cohen's d +1.0, 90%CL ± 0.8) and D>14.4 km·h(-1) (+0.5 ± 0.8) in AUS. D>14.4 km.h(-1) was similarly reduced relative to vYo-YoIR1 in both groups, so that D>80%vYo-YoIR1 remained similarly unchanged (-0.1 ± 0.8). Throughout the altitude sojourn, vYo-YoIR1 and D>14.4 km·h(-1) increased in parallel in AUS, so that D>80%vYo-YoIR1 remained stable in AUS (+6.0%/match, 90%CL ± 6.7); conversely D>80%vYo-YoIR1 decreased largely in BOL (-12.2%/match ± 6.2). In sea-level natives competing at high-altitude, changes in match running performance likely follow those in high-intensity running performance. Bolivian data confirm that increases in 'fitness' do not necessarily translate into greater match running performance, but rather in reduced relative exercise intensity. Key pointsWhen playing at high-altitude, players may alter their activities during matches in relation to their transient maximal physical capacities, possibly to maintain a 'tolerable' relative exercise intensity.While there is no doubt that running performance per se in not the main determinant of match outcomes (Carling, 2013), fitness levels influence relative match intensity (Buchheit et al., 2012, Mendez-Villanueva et al., 2013), which in-turn may impact on decision making and skill performance (Rampinini et al., 2008).In the context of

  13. Beech and spruce under the influence of electromagnetic radiation by radar

    International Nuclear Information System (INIS)

    Götz, G.; Matyssek, R.; Käs, G.

    2001-01-01

    Throughout a three-year study period beech and spruce trees were examined for potential effects of electromagnetic radiation by radar on the morphological and physiological performance at the crown level. No effects of radar on photosynthesis, transpiration, stomatal regulation as well as twig and foliage differentiation were found in late summer after seasonal exposure to this kind of radiation, when comparing radar-exposed with shielded crown parts. Adverse effects caused by radar on forest trees appear to be unlikely on a short-term scale, given conditions similar to those of this case study [de

  14. Nutrição para os praticantes de exercício em grandes altitudes Nutritional strategy for exercising in high altitudes

    Directory of Open Access Journals (Sweden)

    Caroline Buss

    2006-02-01

    Full Text Available Quando o atleta ascende a uma grande altitude, ele é exposto a uma pressão barométrica reduzida, e os efeitos fisiológicos que acompanham estas mudanças da pressão atmosférica podem ter grande influência sobre o seu organismo e seu desempenho físico. Acredita-se que a hipóxia seja responsável pelo início de uma cascata de eventos sinalizadores que, ao final, levam à adaptação à altitude. A exposição aguda à hipóxia provoca sonolência, fadiga mental e muscular e prostração. Cefaléia, náusea e anorexia são sintomas provocados pela Doença Aguda das Montanhas, que pode ocorrer nos primeiros dias de permanência na altitude. Uma estratégia nutricional adequada é fundamental para que o organismo não sofra nenhum estresse adicional. O objetivo deste trabalho foi apresentar os principais efeitos da altitude sobre o organismo e sobre o desempenho físico, discutir e/ou sugerir recomendações nutricionais para esta situação e, se possível, apresentar uma orientação nutricional prática para o atleta na altitude. Algumas das principais conclusões encontradas foram: o consumo energético deve ser aumentado; é fundamental monitorar a quantidade de líquidos ingeridos e escolher alimentos agradáveis ao paladar, ricos em energia e nutrientes. Recomenda-se trabalhar com um nutricionista do esporte com antecedência, para que um plano alimentar individual seja elaborado e colocado em prática antes mesmo da viagem à altitude.When athletes are subject to high altitudes, they are exposed to a lower barometric pressure and the physiological effects that accompany these atmospheric pressure changes can have a strong influence on their bodies and performance. Hypoxia is thought to be responsible for triggering a cascade of signaling events that eventually leads to altitude acclimatization. Acute exposure to hypoxia causes sleepiness, mental and muscle fatigue and prostration. Headache, nausea and anorexia are some of the

  15. First results about effects of liming on saprophytic fungal communities in the Ah-horizon of a spruce forest soil in France (Vosges); Erste Resultate ueber den Effekt von Kalkung auf die Pilzpopulation (Saprophyten) im Ah-Horizont eines Fichtenwaldbodens in Frankreich (Vogesen)

    Energy Technology Data Exchange (ETDEWEB)

    Devevre, O [Centre I.N.R.A. de Nancy, Lab. de Microbiologie Forestiere, 54 - Champenoux (France); Roquebert, M F [Musee National d` Histoire Naturelle, Lab. de Cryptogamie, 75 - Paris (France); Garbaye, J [Centre I.N.R.A. de Nancy, Lab. de Microbiologie Forestiere, 54 - Champenoux (France)

    1993-04-01

    Soil fungi, including mycorrhiza, are strongly affected by zoil chemical parameters such as the ratio of calcium and/or magnesium to aluminium and the pH-value. So, it was very interesting to compare the rhizospheric microfungal flora between a declining spruce stand and a healthy spruce stand. The site chosen for this investigation was situated in the Vosges in the northeast of France. The rhizospheric soil, from the Ah-horizon of a sandy loam podzol, limed (the healthy spruce stand) or unlimed (the declining spruce stand) was sampled in a 65-year-old Norway spruce forest. The study was made 7 years after liming. Fungal isolations were performed using the dilution plate method. Pronounced differences in species abundance and composition were found between the limed and the unlimed stands. Of the 49 isolated species (24 from declining spruce plot and 34 from healthy spruce plot) only nine were found at both plots. The greatest diversity is observed at the healthy spruce stand; it may be due to the liming. This study indicates that soil microfungi could be sensitive to increased acidity of the rain with subsequent effects. (orig.) [Deutsch] Bodenpilze einschliesslich der Mykorrhizapilze sind stark von bodenchemischen Parameters wie dem Verhaeltnis von Calcium und/oder Magnesium zu Aluminium sowie vom pH-Wert des Bodens abhaengig. Deshalb wurde die Pilzmikroflora eines geschaedigten Fichtenbestand mit einem gesunden Fichtenbestand in den Vogesen, im Nordosten Frankreichs verglichen. In einem 65jaehrigen Fichtenbestand wurde der durchwurzelte Boden des Ah-Horizontes eines sandig-lehmigen Podsols einer gekalkten (gesunder Fichtenbestand) sowie einer ungekalkten Parzelle (geschaedigter Fichtenbestand) beprobt. Die Studie wurde 7 Jahre nach der Kalkung durchgefuehrt. Die Isolation der Pilze wurde anhand der Verduennungstechnik auf Kulturmedium mit DRBC-Agar durchgefuehrt. Sowohl im Artenvorkommen als auch in den Populationsstaerken bestanden betraechtliche Unterschiede

  16. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  17. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives

    DEFF Research Database (Denmark)

    Lundby, Carsten; Sander, Mikael; van Hall, Gerrit

    2006-01-01

    , and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4,100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle...... O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia....... The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min(-1) mmHg(-1)) 55.2+/-3.7 (SL), 48...

  18. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  19. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease.

    Science.gov (United States)

    Riley, Callum James; Gavin, Matthew

    2017-06-01

    Riley, Callum James, and Matthew Gavin. Physiological changes to the cardiovascular system at high altitude and its effects on cardiovascular disease. High Alt Med Biol. 18:102-113, 2017.-The physiological changes to the cardiovascular system in response to the high altitude environment are well understood. More recently, we have begun to understand how these changes may affect and cause detriment to cardiovascular disease. In addition to this, the increasing availability of altitude simulation has dramatically improved our understanding of the physiology of high altitude. This has allowed further study on the effect of altitude in those with cardiovascular disease in a safe and controlled environment as well as in healthy individuals. Using a thorough PubMed search, this review aims to integrate recent advances in cardiovascular physiology at altitude with previous understanding, as well as its potential implications on cardiovascular disease. Altogether, it was found that the changes at altitude to cardiovascular physiology are profound enough to have a noteworthy effect on many forms of cardiovascular disease. While often asymptomatic, there is some risk in high altitude exposure for individuals with certain cardiovascular diseases. Although controlled research in patients with cardiovascular disease was largely lacking, meaning firm conclusions cannot be drawn, these risks should be a consideration to both the individual and their physician.

  20. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    Science.gov (United States)

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Spruce aphid (Elatobium abietinum Walker) (Hemiptera: Aphididae) [Chapter XXIV

    Science.gov (United States)

    Ann M. Lynch

    2014-01-01

    Elatobium abietinum Walker is a spruce-feeding aphid that in Europe is referred to as the green spruce aphid (Day et al., 1998a) (Fig. 1). However, in North America E. abietinum is known simply as the spruce aphid, while the common name "green spruce aphid" refers to a different species, Cinara fornacula Hottes (Hemiptera: Aphididae) (http://www.entsoc.org/...

  2. Analytical approaches to the determination of simple biophenols in forest trees such as Acer (maple), Betula (birch), Coniferus, Eucalyptus, Juniperus (cedar), Picea (spruce) and Quercus (oak).

    Science.gov (United States)

    Bedgood, Danny R; Bishop, Andrea G; Prenzler, Paul D; Robards, Kevin

    2005-06-01

    Analytical methods are reviewed for the determination of simple biophenols in forest trees such as Acer (maple), Betula (birch), Coniferus, Eucalyptus, Juniperus (cedar), Picea (spruce) and Quercus (oak). Data are limited but nevertheless clearly establish the critical importance of sample preparation and pre-treatment in the analysis. For example, drying methods invariably reduce the recovery of biophenols and this is illustrated by data for birch leaves where flavonoid glycosides were determined as 12.3 +/- 0.44 mg g(-1) in fresh leaves but 9.7 +/- 0.35 mg g(-1) in air-dried samples (data expressed as dry weight). Diverse sample handling procedures have been employed for recovery of biophenols. The range of biophenols and diversity of sample types precludes general procedural recommendations. Caution is necessary in selecting appropriate procedures as the high reactivity of these compounds complicates their analysis. Moreover, our experience suggests that their reactivity is very dependent on the matrix. The actual measurement is less contentious and high performance separation methods particularly liquid chromatography dominate analyses whilst coupled techniques involving electrospray ionization are becoming routine particularly for qualitative applications. Quantitative data are still the exception and are summarized for representative species that dominate the forest canopy of various habitats. Reported concentrations for simple phenols range from trace level (<0.1 microg g(-1)) to in excess of 500 microg g(-1) depending on a range of factors. Plant tissue is one of these variables but various biotic and abiotic processes such as stress are also important considerations.

  3. High altitude environmental monitoring: the SHARE project and CEOP-HE

    Science.gov (United States)

    Tartari, G.

    2009-04-01

    Mountain areas above 2,500 m a.s.l. constitute about 25% of the Earth's surface and play a fundamental role in the global water balance, while influencing global climate and atmospheric circulation systems. Several millions, including lowlanders, are directly affected by the impacts of climate change on glaciers and water resource distribution. Mountains and high altitude plateaus are subject to the highest rate of temperature increase (e.g., Tibetan Plateau) and are recognized as particularly vulnerable to the effects of climate change. In spite of this, the number of permanent monitoring sites in the major environmental networks decreases with altitude. On a sample of two hundred high altitude automatic weather stations located above 2,500 m a.s.l., less than 20% are over 4,000 m, while there are only 24 stations in the world that could be considered "complete" high altitude observatories. Furthermore, entire mountain areas are left uncovered, creating significant data gaps which make reliable modelling and forecasting nearly impossible. In response to these problems, Ev-K2-CNR has developed the project SHARE (Stations at High Altitude for Research on the Environment) with the support of the Italian government and in collaboration with UNEP. This integrated environmental monitoring and research project aims to improve knowledge on the local, regional and global consequences of climate change in mountain regions and on the influence of high elevations on climate, atmospheric circulation and hydrology. SHARE today boasts a network of 13 permanent monitoring stations between 2,165 m and 8,000 m. Affiliated researchers have produced over 150 scientific publications in atmospheric sciences, meteorology and climate, glaciology, limnology and paleolimnology and geophysics. SHARE network data is also contributed to international programs (UNEP-ABC, WMO-GAW, WCRP-GEWEX-CEOP, NASA-AERONET, ILTER, EU-EUSAAR, EU-ACCENT). Within this context, the CEOP-High Elevations (CEOP

  4. Comparison of different ground techniques to map leaf area index of Norway spruce forest canopy

    NARCIS (Netherlands)

    Homolova, L.; Malenovsky, Z.; Hanus, J.; Tomaskova, I.; Dvoráková, M.; Pokorny, R.

    2007-01-01

    The leaf area index (LAI) of three monocultures of Norway spruce (Picea abies (L.) Karst), different in age and structure, was measured by means of two indirect optical techniques of LAI field mapping: 1/ plant canopy analyser LAI-2000, and 2/ digital hemispherical photographs (DHP). The supportive

  5. Turbojet Performance and Operation at High Altitudes with Hydrogen and Jp-4 Fuels

    Science.gov (United States)

    Fleming, W A; Kaufman, H R; Harp, J L , Jr; Chelko, L J

    1956-01-01

    Two current turbojet engines were operated with gaseous-hydrogen and JP-4 fuels at very high altitudes and a simulated Mach number of 0.8. With gaseous hydrogen as the fuel stable operation was obtained at altitudes up to the facility limit of about 90,000 feet and the specific fuel consumption was only 40 percent of that with JP-4 fuel. With JP-4 as the fuel combustion was unstable at altitudes above 60,000 to 65,000 feet and blowout limits were reached at 75,000 to 80,000 feet. Over-all performance, component efficiencies, and operating range were reduced considerable at very high altitudes with both fuels.

  6. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae, a lizard dwell at altitudes higher than any other living lizards in the world.

    Directory of Open Access Journals (Sweden)

    Xiaolong Tang

    Full Text Available Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae, which inhabits high altitudes (4500 m and Phrynocephalusprzewalskii (Lacertilia: Agamidae, which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD and the HOAD/citrate synthase (CS ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.

  7. The GRAD high-altitude balloon flight over Antarctica

    International Nuclear Information System (INIS)

    Eichhorn, G.; Coldwell, R.L.; Dunnam, F.E.; Rester, A.C.; Trombka, J.I.; Starr, R.; Lasche, G.P.

    1989-01-01

    The Gamma Ray Advanced Detector(GRAD) consists of a n-type germanium detector inside an active bismuth-germanate Compton and charged particle shield with additional active plastic shielding across the aperture. It will be flown on a high altitude balloon at 36 km altitude at a latitude of 78 degree S over Antarctica for observations of gamma radiation emitted by the radioactive decay of 56 Co in the Supernova SN1987A, for assessment of the performance of bismuth-germanate scintillation material in the radiation environment of near space, for gathering information on the gamma-ray background over Antarctica, and for testing fault-tolerant software

  8. Estimation of Spruce Needle-Leaf Chlorophyll Content Based on DART and PARAS Canopy Reflectance Models

    Czech Academy of Sciences Publication Activity Database

    Yáñez-Rausell, L.; Malenovský, Z.; Rautiainen, M.; Clevers, J G P W.; Lukeš, Petr; Hanuš, Jan; Schaepman, M. E.

    2015-01-01

    Roč. 8, č. 4 (2015), s. 1534-1544 ISSN 1939-1404 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Chlorophyll a plus b estimation * CHRIS-PROBA * coniferous forest * continuum removal * discrete anisotropic radiative transfer model (DART) * needle-leaf * Norway spruce * optical indices * PARAS * PROSPECT * radiative transfer * recollision probability Subject RIV: EH - Ecology, Behaviour Impact factor: 2.145, year: 2015

  9. Coca: High Altitude Remedy of the Ancient Incas.

    Science.gov (United States)

    Biondich, Amy Sue; Joslin, Jeremy D

    2015-12-01

    The use of coca leaf for medicinal purposes is a centuries-old tradition of the native peoples of South America. Coca products are thought by many laypersons to provide risk-free benefits to users participating in strenuous activities at high altitude. Physiologic studies of coca have increased understanding of its possible mechanism of action as well as its potential impact on high altitude activities. This present work explores the role of coca throughout the history of the Andean peoples and explores whether this ancient remedy has a place in modern medicine. A focused summary of research articles with particular relevance to the field of wilderness medicine is also included to better provide the reader with lessons not only from history but also from another culture. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  10. EVALUATION OF VARIOUS SPECTRAL INPUTS FOR ESTIMATION OF FOREST BIOCHEMICAL AND STRUCTURAL PROPERTIES FROM AIRBORNE IMAGING SPECTROSCOPY DATA

    Directory of Open Access Journals (Sweden)

    L. Homolová

    2016-06-01

    Full Text Available In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab and leaf area index (LAI from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž. The retrieval algorithm was based on a machine learning method – support vector regression (SVR. Performance of the four spectral inputs used to train SVR was evaluated: a all available hyperspectral bands, b continuum removal (CR 645 – 710 nm, c CR 705 – 780 nm, and d CR 680 – 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab −2 and for LAI < 1.5, with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 – 710 nm, whereas CR bands in range of 680 – 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  11. White Mountain Research Station: 25 years of high-altitude research. [organization and functions of test facility for high altitude research

    Science.gov (United States)

    Pace, N.

    1973-01-01

    The organization and functions of a test facility for conducting research projects at high altitudes are discussed. The projects conducted at the facility include the following: (1) bird physiology, (2) cardiorespiratory physiology, (3) endocrinological studies, (4) neurological studies, (5) metabolic studies, and (6) geological studies.

  12. Islands in the desert-forest vegetation of Kenya's smaller mountains ...

    African Journals Online (AJOL)

    Camphor forests (Ocotetea usambarensis) cover altitudes from 1,600-2,400 m in the southern Aberdare Range. In the submontane Imenti and Ngaia forests, and the Nyambeni Hills, between 1,200-1,600 m altitude, a variety of forest types related to the Guineo Congolian rainforest were encountered. These forests are ...

  13. Biochemical indicators for novel forest decline in spruce

    International Nuclear Information System (INIS)

    Baur, M.; Lauchert, U.; Wild, A.

    1998-01-01

    The impact of air pollution on 24 stands of spruce trees in several regions in Germany was investigated. We looked for evidence of biochemical and physiological change at the level of the photosynthetic thylakoid membranes as well as for changes in the antioxidative system in two year old needles. We observed that, as the chlorophyll content decreases in the needles, the among of D1 protein declines far more rapidly in relation to the redox components P700 and cytochrome f. Consequently, the PSII/PSI stoichiometry keeps dropping to progressively lower, meaning unfavorable, values at the chlorophyll content diminishes. This is particularly the case in the higher elevation characteristically increases while the D1 protein content falls. The higher α-tocopherol values, however, are obviously neither able to protect the D1 protein from degradation nor to compensate for the higher oxidative stress. Apart from that the ascorbate/tocopherol ratios remained in the majority of cases in the unfavorable range of far below 10, where an effective protection of the membranes from free radicals is not guaranteed. This then is mirrored in the increased degradation of D1 and the lower PSII/PSI ratio

  14. Warming drives a front of white spruce establishment near western treeline, Alaska.

    Science.gov (United States)

    Miller, Amy E; Wilson, Tammy L; Sherriff, Rosemary L; Walton, James

    2017-12-01

    Regional warming has led to increased productivity near the boreal forest margin in Alaska. To date, the effects of warming on seedling recruitment have received little attention, in spite of forecasted forest expansion. Here, we used stand structure and environmental data from 95 white spruce (Picea glauca) plots sampled across a longitudinal gradient in southwest Alaska to explore factors influencing spruce establishment and recruitment near western treeline. We used total counts of live seedlings, saplings, and trees, representing five life stages, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance, using current abundance distributions as a surrogate for climate conditions in the past. We used generalized linear models to test the null hypothesis that conditions favorable for recruitment were similar along the environmental gradient represented by longitude, by exploring relationships between per-plot counts of each life stage and the covariates hypothesized to affect abundance. We also examined the relationship between growing degree days (GDD) and seedling establishment over a period of three decades using tree-ring chronologies obtained from cores taken at a subset of our sites (n = 30). Our results indicated that seedling, sapling, and tree abundance were positively correlated with temperature across the study area. The response to longitude was mixed, with earlier life stages (seedlings, saplings) most abundant at the western end of the gradient, and later life stages (trees) most abundant to the east. The differential relationship between longitude and life-stage abundance suggests a moving front of white spruce establishment through time, driven by changes in environmental conditions near the species' western range limit. Likewise, we found a positive relationship between periods of seedling establishment and GDD, suggesting that longer summers and/or greater heat accumulation might enhance establishment

  15. High Altitude Warfare: The Kargil Conflict and the Future

    National Research Council Canada - National Science Library

    Acosta, Marcus

    2003-01-01

    The unique combination of thin air, freezing temperatures, and mountainous terrain that forms the high altitude environment has resisted advances in military technology for centuries, The emergence...

  16. Carbon dioxide and water vapour exchange from understory species in boreal forest.

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    Although recent eddy covariance measurements in boreal forests provide CO2 and energy exchange data for the whole ecosystem, very little is known about the role of the understory vegetation. We conducted chamber flux measurements in an Alaskan black spruce forest in order to compare CO2 and water

  17. Lens autofluorescence is not increased at high altitude

    DEFF Research Database (Denmark)

    Kessel, Line; Kofoed, Peter Kristian; Zubieta-Calleja, Gustavo

    2010-01-01

    in Denmark. RESULTS: No significant differences in lens fluorescence or transmittance were found between Bolivian and Danish volunteers. CONCLUSION: Age-corrected lens fluorescence and transmittance were comparable for healthy participants living at high altitude near the equator and healthy volunteers...

  18. Old lower stem bark lesions apparently caused by unsuccessful spruce beetle attacks still evident on live spruce trees years later

    Science.gov (United States)

    John S. Hard; Ken P. Zogas

    2010-01-01

    We examined old bark lesions on Lutz spruce in young stands on the Kenai Peninsula, Alaska, to determine their cause. Distribution of these lesions along lower stems was similar to the distribution of spruce beetle attacks during epidemics. These lesions apparently resulted from unsuccessful attacks by spruce beetles during the late 1980s and early 1990s and appear to...

  19. The dynamics of aerosol behaviour and fate within spruce canopies

    International Nuclear Information System (INIS)

    Ould-Dada, Zitouni

    1996-01-01

    The current work was intended to provide data on aerosol inputs to forest ecosystems and their subsequent fate. The background to the project was the Chernobyl accident which highlighted the importance of forests and other semi-natural ecosystems as a link in the transfer of radioactivity to man. In the aftermath of the Chernobyl accident, forests were identified as a specific type of semi-natural ecosystem for which radioecological data were almost completely absent within the countries of the European Union. Information on radionuclide behaviour and transfer in forest ecosystems was therefore needed to establish and test radiological assessment models which can be used to evaluate the likely contribution to radiological dose-to-man contaminated forests may make. The objective of this study was thus to provide data on dry deposition, resuspension and field loss of aerosols to forest canopies, in particular those of Norway spruce (Picea abies), from wind tunnel experiments conducted with small scale 'model' canopies. An aerosol generation system was developed to produce aerosol particles in the size range of 0.13-1.37 μm (VMD). Particle size distributions can be controlled within desired limits and with sufficient stability over time allowing the technique to be suitable for use in extended aerosol deposition studies. A full scale dry deposition experiment using 0.82 μm (VMAD) uranium particles was performed in the wind tunnel using Norway spruce saplings of approximately 45 cm height. Deposition velocities (V g ) were obtained and these were related to meteorological measurements (wind speed, friction velocity, turbulence intensity) inside the wind tunnel and LAI of the canopy. The latter was divided into five horizontal layers and both horizontal and vertical variations in deposition were assessed. A V g value of 0.497 cm s -1 was obtained for the canopy as a whole with the highest and lowest fluxes of 2.85 x 10 -8 and 8.14 x 10 -9 μgU cm -2 s -1 occurring at

  20. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  1. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    Science.gov (United States)

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration

  2. The Biomonitoring project – monitoring of forest ecosystems in non-intervention areas of the Šumava National Park

    Czech Academy of Sciences Publication Activity Database

    Zenáhlíková, J.; Červenka, J.; Čížková, P.; Bečka, P.; Starý, M.; Marek, P.; Křenová, Zdeňka; Svoboda, M.

    2015-01-01

    Roč. 21, č. 1 (2015), s. 95-104 ISSN 1211-7420 Institutional support: RVO:67179843 Keywords : Bohemian forest * forest inventory * dead wood * natural regeneration * Norway spruce Subject RIV: EH - Ecology, Behaviour

  3. Long-distance dispersal of spruce budworm (Choristoneura fumiferana Clemens) in Minnesota (USA) and Ontario (Canada) via the atmospheric pathway

    Science.gov (United States)

    Brian R. Sturtevant; Gary L. Achtemeier; Joseph J. Charney; Dean P. Anderson; Barry J. Cooke; Phillip A. Townsend

    2013-01-01

    Dispersal can play an important role in the population dynamics of forest insects, but the role of long-distance immigration and emigration remains unclear due to the difficulty of quantifying dispersal distance and direction. We designed an agent-based spruce budworm flight behavior model that, when interfaced with temperature, wind speed, and precipitation output...

  4. Right ventricular morphology and function in chronic obstructive pulmonary disease patients living at high altitude.

    Science.gov (United States)

    Güvenç, Tolga Sinan; Erer, Hatice Betül; Kul, Seref; Perinçek, Gökhan; Ilhan, Sami; Sayar, Nurten; Yıldırım, Binnaz Zeynep; Doğan, Coşkun; Karabağ, Yavuz; Balcı, Bahattin; Eren, Mehmet

    2013-01-01

    Pulmonary vasculature is affected in patients with chronic pulmonary obstructive disease (COPD). As a result of increased pulmonary resistance, right ventricular morphology and function are altered in COPD patients. High altitude and related hypoxia causes pulmonary vasoconstriction, thereby affecting the right ventricle. We aimed to investigate the combined effects of COPD and altitude-related chronic hypoxia on right ventricular morphology and function. Forty COPD patients living at high altitude (1768 m) and 41 COPD patients living at sea level were enrolled in the study. All participants were diagnosed as COPD by a pulmonary diseases specialist depending on symptoms, radiologic findings and pulmonary function test results. Detailed two-dimensional echocardiography was performed by a cardiologist at both study locations. Oxygen saturation and mean pulmonary artery pressure were higher in the high altitude group. Right ventricular end diastolic diameter, end systolic diameter, height and end systolic area were significantly higher in the high altitude group compared to the sea level group. Parameters of systolic function, including tricuspid annular systolic excursion, systolic velocity of tricuspid annulus and right ventricular isovolumic acceleration were similar between groups, while fractional area change was significantly higher in the sea level groups compared to the high altitude group. Indices of diastolic function and myocardial performance index were similar between groups. An increase in mean pulmonary artery pressure and right ventricular dimensions are observed in COPD patients living at high altitude. Despite this increase, systolic and diastolic functions of the right ventricle, as well as global right ventricular performance are similar in COPD patients living at high altitude and sea level. Altitude-related adaptation to chronic hypoxia could explain these findings. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic

  5. Liming effects on the chemical composition of the organic surface layer of a mature Norway spruce stand (Picea abies [L.] Karst.)

    NARCIS (Netherlands)

    Rosenberg, W.; Nierop, K.G.J.; Knicker, H.; Jager, de P.A.; Kreutzer, K.; Weiá, T.

    2003-01-01

    The application of lime in a mature Norway spruce (Picea abies [L.] Karst.) forest in southern Germany induced major changes in the activity of soil organisms and root growth. Since this may influence the chemical compostion of the soil organic matter (SOM) of the organic surface layer, its

  6. Carbon stocks of three secondary coniferous forests along an altitudinal gradient on Loess Plateau in inland China

    Science.gov (United States)

    Liu, Ning; Nan, Hongwei

    2018-01-01

    Natural forests in inland China are generally distributed in montane area and secondary due to a semi-arid climate and past anthropogenic disturbances. However, quantification of carbon (C) stock in these forests and the role of altitude in determining C storage and its partition among ecosystem components are unclear. We sampled 54 stands of three secondary coniferous forests (Larix principis-rupprechtii (LP) forest, Picea meyerii (PM) forest and Pinus tabulaeformis (PT) forest) on Loess Plateau in an altitudinal range of 1200-2700m a.s.l. C stocks of tree layer, shrub layer, herb layer, coarse wood debris, forest floor and soil were estimated. We found these forests had relatively high total C stocks. Driven by both higher vegetation and soil C stocks, total C stocks of LP and PM forests in the high altitudinal range were 375.0 and 368.4 t C ha-1 respectively, significantly higher than that of PT forest in the low altitudinal range (230.2 t C ha-1). In addition, understory shrubs accounted for about 20% of total biomass in PT forest. The proportions of vegetation to total C stock were similar among in the three forests (below 45%), so were the proportions of soil C stock (over 54%). Necromass C stocks were also similar among these forests, but their proportions to total C stock were significantly lower in LP and PM forests (1.4% and 1.6%) than in PT forest (3.0%). Across forest types, vegetation biomass and soil C stock simultaneously increased with increasing altitude, causing fairly unchanged C partitioning among ecosystem components along the altitudinal gradient. Soil C stock also increased with altitude in LP and PT forests. Forest floor necromass decreased with increasing altitude across the three forests. Our results suggest the important role of the altitudinal gradient in C sequestration and floor necromass of these three forests in terms of alleviated water conditions and in soil C storage of LP and PM forests in terms of temperature change. PMID

  7. The evolution of Titan's high-altitude aerosols under ultraviolet irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Tigrine, Sarah; Gavilan, Lisseth; Nahon, Laurent; Gudipati, Murthy S.

    2018-04-01

    The Cassini-Huygens space mission revealed that Titan's thick brownish haze is initiated high in the atmosphere at an altitude of about 1,000 km, before a slow transportation down to the surface. Close to the surface, at altitudes below 130 km, the Huygens probe provided information on the chemical composition of the haze. So far, we have not had insights into the possible photochemical evolution of the aerosols making up the haze during their descent. Here, we address this atmospheric aerosol aging process, simulating in the laboratory how solar vacuum ultraviolet irradiation affects the aerosol optical properties as probed by infrared spectroscopy. An important evolution was found that could explain the apparent contradiction between the nitrogen-poor infrared spectroscopic signature observed by Cassini below 600 km of altitude in Titan's atmosphere and a high nitrogen content as measured by the aerosol collector and pyrolyser of the Huygens probe at the surface of Titan.

  8. Regional Instability in the Abundance of Open Stands in the Boreal Forest of Eastern Canada

    Directory of Open Access Journals (Sweden)

    Rija Rapanoela

    2016-05-01

    Full Text Available Fires are a key disturbance of boreal forests. In fact, they are the main source of renewal and evolution for forest stands. The variability of fire through space and time results in a diversified forest mosaic, altering their species composition, structure and productivity. A resilient forest is assumed to be in a state of dynamic equilibrium with the fire regime, so that the composition, age structure and succession stages of forests should be consistent with the fire regime. Dense spruce-moss stands tend, however, to diminish in favour of more open stands similar to spruce-lichen stands when subjected to more frequent and recurring disturbances. This study therefore focused on the effects of spatial and temporal variations in burn rates on the proportion of open stands over a large geographic area (175,000 km2 covered by black spruce (Picea mariana (Mill. Britton, Sterns, Poggenb.. The study area was divided into 10 different zones according to burn rates, as measured using fire-related data collected between 1940 and 2006. To test if the abundance of open stands was unstable over time and not in equilibrium with the current fire regime, forest succession was simulated using a landscape dynamics model that showed that the abundance of open stands should increase progressively over time in zones where the average burn rate is high. The proportion of open stands generated during a specific historical period is correlated with the burn rate observed during the same period. Rising annual burn rates over the past two decades have thereby resulted in an immediate increase in the proportion of open stands. There is therefore a difference between the current proportion of open stands and the one expected if vegetation was in equilibrium with the disturbance regime, reflecting an instability that may significantly impact the way forest resources are managed. It is apparent from this study that forestry planning should consider the risks associated

  9. Modelling Forest Water Consumption in The Netherlands

    NARCIS (Netherlands)

    Dolman, A.J.; Nonhebel, S.

    1988-01-01

    The water consumption of oak, beech, spruce and pine forest is predicted from routinely measured meteorological data for five locations in the Netherlands. Differences in water consumption are found to be primarily a result of differences in interception loss. Predicted interception loss was found

  10. The timing and nature of Late Quaternary vegetation changes in the northern Great Plains, USA and Canada: a re-assessment of the spruce phase

    Science.gov (United States)

    Yansa, Catherine H.

    2006-02-01

    This paper revises the chronology for the northward migration of Picea glauca (white spruce) across the northern Great Plains, following the recession of the Laurentide Ice Sheet, and reinterprets the species composition and structure of the late-glacial vegetation on the basis of pollen and plant-macrofossil analysis. The timing of spruce migration is based on 26 14C ages obtained from Picea macrofossils. The date for the appearance of white spruce in southern South Dakota, USA, remains unchanged, 12,600 14C yr BP (ca 15,000 cal yr BP), but its arrival in southern Saskatchewan, Canada, by 10,300 14C yr BP (ca 12,100 cal yr BP) is about 1500 years later than previously estimated based on an organic sediment date. Picea glauca thus migrated northwards at an average rate of 0.38 km/ 14C year (0.30 km/calendar year), significantly slower than the previously published rate of 2 km/ 14C year. White spruce trees probably inhabited lake shorelines, whereas prairie, parkland, and boreal plants occupied both lowlands and uplands, forming an open white spruce parkland. This interpretation differs from a previous reconstruction of a boreal-type spruce forest and thus offers another paleoclimatic interpretation. Precipitation was probably low and summer temperatures relatively mild, averaging about 19 °C.

  11. High altitude and hemoglobin function in the vultures Gyps rueppelli and Aegypius monachus

    DEFF Research Database (Denmark)

    Weber, Roy E.; Hiebl, Inge; Braunitzer, Gerhard

    1988-01-01

    Functional characteristics of the stripped composite hemoglobins (Hbs) of lhevultures Gyps rueppellii and Aegypills monachus that can fly at extremely high altitudes, and of component Hbs of G. rueppellii are reported, in relation to influences of pH, temperalure and inositol hexaphosphate. G...... structures of the constituent polypeptide chains to trace molecular adaptations to high-altitude respiration, and to physiological factors (pulmonary hypoxia and hypocapnia, body temperature shifts, and lung and nasal gas and heat exchange) to discern their possible survival value at altitudes of 11300 m....

  12. The altitude of alpine treeline: a bellwether of climate change effects

    Science.gov (United States)

    William K. Smith; Matthew J. Germino; Daniel M. Johnson; Keith Reinhardt

    2009-01-01

    Because of the characteristically low temperatures and ambient CO2 concentrations associated with greater altitudes, mountain forests may be particularly sensitive to global warming and increased atmospheric CO2. Moreover, the upper treeline is probably the most stressful location within these forests, possibly providing an...

  13. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude

    Directory of Open Access Journals (Sweden)

    Stacie L. Wing-Gaia

    2014-02-01

    Full Text Available Exposure to extreme altitude presents many physiological challenges. In addition to impaired physical and cognitive function, energy imbalance invariably occurs resulting in weight loss and body composition changes. Weight loss, and in particular, loss of fat free mass, combined with the inherent risks associated with extreme environments presents potential performance, safety, and health risks for those working, recreating, or conducting military operations at extreme altitude. In this review, contributors to muscle wasting at altitude are highlighted with special emphasis on protein turnover. The article will conclude with nutritional strategies that may potentially attenuate loss of fat free mass during high altitude exposure.

  14. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  15. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  16. Interactions between near-ground temperature and radiation, silvicultural treatments and frost damage to Norway spruce seedlings

    OpenAIRE

    Langvall, Ola

    2000-01-01

    Several different silvicultural treatments were studied in two experiments. In the first, mechanical scarification, slash removal, vegetation control, clear-cut age and seedling types were investigated with respect to frost injury to Norway spruce (Picea abies (L.) Karst.) seedlings. Frost damage was also related to near-ground minimum temperature. In the other experiment, the effects of Scots pine (Pinus sylvestris (L.)) shelterwood density gradients, ranging from dense, uncut forest to comp...

  17. Effects of erythrocyte infusion on VO2max at high altitude

    DEFF Research Database (Denmark)

    Young, Jette Feveile; Sawka, M N; Muza, S R

    1996-01-01

    This study investigated whether autologous erythrocyte infusion would ameliorate the decrement in maximal O2 uptake (VO2max) experienced by lowlanders when they ascend to high altitude. VO2max was measured in 16 men (treadmill running) at sea level (SL) and on the 1st (HA1) and 9th (HA9) days...... of high-altitude (4,300 m) residence. After VO2max was measured at SL, subjects were divided into two matched groups (n = 8). Twenty-four hours before ascent to high altitude, the experimental group received a 700-ml infusion of autologous erythrocytes and saline (42% hematocrit), whereas the control...... group received only saline. The VO2max of erythrocyte-infused [54 +/- 1 (SE) ml.kg-1.min-1] and control subjects (52 +/- 2 ml.kg-1.min-1) did not differ at SL before infusion. The decrement in VO2max on HA1 did not differ between groups, averaging 26% overall, despite higher (P

  18. Significant mean and extreme climate sensitivity of Norway spruce and silver fir at mid-elevation mesic sites in the Alps.

    Directory of Open Access Journals (Sweden)

    Marco Carrer

    Full Text Available Climate forcing is the major abiotic driver for forest ecosystem functioning and thus significantly affects the role of forests within the global carbon cycle and related ecosystem services. Annual radial increments of trees are probably the most valuable source of information to link tree growth and climate at long-term time scales, and have been used in a wide variety of investigations worldwide. However, especially in mountainous areas, tree-ring studies have focused on extreme environments where the climate sensitivity is perhaps greatest but are necessarily a biased representation of the forests within a region. We used tree-ring analyses to study two of the most important tree species growing in the Alps: Norway spruce (Picea abies and silver fir (Abies alba. We developed tree-ring chronologies from 13 mesic mid-elevation sites (203 trees and then compared them to monthly temperature and precipitation data for the period 1846-1995. Correlation functions, principal component analysis and fuzzy C-means clustering were applied to 1 assess the climate/growth relationships and their stationarity and consistency over time, and 2 extract common modes of variability in the species responses to mean and extreme climate variability. Our results highlight a clear, time-stable, and species-specific response to mean climate conditions. However, during the previous-year's growing season, which shows the strongest correlations, the primary difference between species is in their response to extreme events, not mean conditions. Mesic sites at mid-altitude are commonly underrepresented in tree-ring research; we showed that strong climatic controls of growth may exist even in those areas. Extreme climatic events may play a key role in defining the species-specific responses on climatic sensitivity and, with a global change perspective, specific divergent responses are likely to occur even where current conditions are less limited.

  19. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.

    Science.gov (United States)

    Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus

    2017-11-02

    The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.

  20. Pennsylvania boreal conifer forests and their bird communities: past, present, and potential

    Science.gov (United States)

    Douglas A. Gross

    2010-01-01

    Pennsylvania spruce (Picea spp.)- and eastern hemlock (Tsuga canadensis)-dominated forests, found primarily on glaciated parts of the Allegheny Plateau, are relicts of boreal forest that covered the region following glacial retreat. The timber era of the late 1800s and early 1900s (as late as 1942) destroyed most of the boreal...

  1. Thoracic skeletal morphology and high-altitude hypoxia in Andean prehistory.

    Science.gov (United States)

    Weinstein, Karen J

    2007-09-01

    Living humans from the highland Andes exhibit antero-posteriorly and medio-laterally enlarged chests in response to high-altitude hypoxia. This study hypothesizes that morphological responses to high-altitude hypoxia should also be evident in pre-Contact Andean groups. Thoracic skeletal morphology in four groups of human skeletons (N = 347) are compared: two groups from coastal regions (Ancón, Peru, n = 79 and Arica, Chile, n = 123) and two groups from high altitudes (San Pedro de Atacama, Chile, n = 102 and Machu Picchu and Cuzco, Peru, n = 43). Osteometric variables that represent proportions of chest width and depth include sternal and clavicular lengths and breadths and rib length, curvature, and area. Each variable was measured relative to body size, transformed into logarithmic indices, and compared across sex-specific groups using ANOVA and Tukey multiple comparison tests. Atacama highlanders have the largest sternal and clavicular proportions and ribs with the greatest area and least amount of curvature, features that suggest an antero-posteriorly deep and mediolaterally wide thoracic skeleton. Ancón lowlanders exhibit proportions indicating narrower and shallower chests. Machu Picchu and Cuzco males cluster with the other highland group in rib curvature and area at the superior levels of the thorax, whereas chest proportions in Machu Picchu and Cuzco females resemble those of lowlanders. The variation in Machu Picchu and Cuzco males and females is interpreted as the result of population migrations. The presence of morphological traits indicative of enlarged chests in some highland individuals suggests that high-altitude hypoxia was an environmental stressor shaping the biology of highland Andean groups during the pre-Contact period. (c) 2007 Wiley-Liss, Inc.

  2. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, D.R. [Wyoming Univ., Laramie, WY (United States). Dept. of Renewable Resources; Gower, S.T. [Wisconsin Univ., Madison, WI (United States). Dept. of Forest Ecology and Management

    2010-04-15

    Substantial increases in climatic temperatures may cause boreal forests to become a carbon source. An improved understanding of the effect of climatic warming on photosynthesis and autotrophic respiration is needed in order to determine the impact of temperature increases on net carbon balances. This study measured the light-saturated photosynthesis foliage respiration and stem respiration of black spruce in heated and control plots during a 3-year period at a site located in Thompson, Manitoba. Greenhouses and soil-heating cables were used to maintain air and soil temperatures at 5 degrees C above ambient air and soil temperatures. Studies were conducted to determine the influence of soil and air warming; soil-only warming; and greenhouses maintained at ambient temperatures. The study showed that treatment differences for photosynthesis, foliage respiration, and stem respiration were not significant over the 3-year period. Results suggested that black spruce may not have significant changes in photosynthesis or respiration rates in warmer climates. 38 refs., 3 tabs., 4 figs.

  3. Distribution and elevated soil pools of mercury in an acidic subtropical forest of southwestern China

    International Nuclear Information System (INIS)

    Zhou, Jun; Wang, Zhangwei; Zhang, Xiaoshan; Chen, Jian

    2015-01-01

    Tieshanping catchment in southwest China was supposed to a large pool of atmospheric mercury. This work was aimed to examine THg (total mercury) concentrations, pools and influence factors in the acidic forest. THg concentrations were highly elevated in the study area, which was significantly depended on TOM (total organic matter) concentrations and altitudinal elevation, whereas negatively correlated with soil pH. The pools of mercury accumulated in soils were correlated strongly with the stocks of TOM and altitude, ranged from 5.9 to 32 mg m −2 and averaged 14.5 mg m −2 , indicating that the acidic forest was a great sink of atmospheric mercury in southwest China. THg concentrations in stream waters decreased with altitude increasing and regression analyses showed that soil/air exchange flux would be increased with the decrease of altitude. Present results suggest that elevation increasing decreases THg losses as low THg concentrations in runoffs and volatilization from soils. - Highlights: • Soil THg pools and influence factors were studied at an acidic catchment in southwestern China. • THg concentrations was increased significantly with TOM concentrations and altitude increasing, decreased with pH. • THg pools in soils were highly elevated and deepened on TOM pools and altitude. • Difference in THg output by volatilization and runoff was a major reason for THg distribution at different altitudes. - Mercury pools increased with altitude increasing as mercury lost more at low elevation area in acidic subtropical forest

  4. Metabolic Effects of High Altitude Trekking in Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; Fokkert, Marion J.; de Vries, Suzanna T.; de Koning, Eelco J. P.; Dikkeschei, Bert D.; Gans, Rijnold O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2012-01-01

    OBJECTIVE-Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS-Thirteen individuals with type 2 diabetes took part, in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  5. Metabolic effects of high altitude trekking in patients with type 2 diabetes

    NARCIS (Netherlands)

    Mol, P. de; Fokkert, M.J.; Vries, S.T. de; Koning, E.J. de; Dikkeschei, B.D.; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2012-01-01

    OBJECTIVE Limited information is available regarding the metabolic effects of high altitude trekking in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Thirteen individuals with type 2 diabetes took part in a 12-day expedition to the summit of Mount Toubkal (altitude, 4,167 m), Morocco,

  6. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    Science.gov (United States)

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  7. Increased Cardiometabolic Risk and Worsening Hypoxemia at High Altitude.

    Science.gov (United States)

    Miele, Catherine H; Schwartz, Alan R; Gilman, Robert H; Pham, Luu; Wise, Robert A; Davila-Roman, Victor G; Jun, Jonathan C; Polotsky, Vsevolod Y; Miranda, J Jaime; Leon-Velarde, Fabiola; Checkley, William

    2016-06-01

    Miele, Catherine H., Alan R. Schwartz, Robert H. Gilman, Luu Pham, Robert A. Wise, Victor G. Davila-Roman, Jonathan C. Jun, Vsevolod Y. Polotsky, J. Jaime Miranda, Fabiola Leon-Velarde, and William Checkley. Increased cardiometabolic risk and worsening hypoxemia at high altitude. High Alt Med Biol. 17:93-100, 2016.-Metabolic syndrome, insulin resistance, diabetes, and dyslipidemia are associated with an increased risk of cardiovascular disease. While excessive erythrocytosis is associated with cardiovascular complications, it is unclear how worsening hypoxemia of any degree affects cardiometabolic risk factors in high-altitude populations. We studied the relationship between daytime resting oxyhemoglobin saturation and cardiometabolic risk factors in adult participants living in Puno, Peru (3825 m above sea level). We used multivariable logistic regression models to study the relationship between having a lower oxyhemoglobin saturation and markers of cardiometabolic risk. Nine hundred and fifty-four participants (mean age 55 years, 52% male) had information available on pulse oximetry and markers of cardiometabolic risk. Average oxyhemoglobin saturation was 90% (interquartile range 88%-92%) and 43 (4.5%) had excessive erythrocytosis. Older age, decreased height-adjusted lung function, and higher body mass index (BMI) were associated with having an oxyhemoglobin saturation ≤85%. When adjusting for age, sex, socioeconomic status, having excessive erythrocytosis, and site, we found that each 5% decrease in oxyhemoglobin saturation was associated with a higher adjusted odds of metabolic syndrome (OR = 1.35, 95% CI: 1.07-1.72, p 2 mass units (OR = 1.29, 95% CI: 1.00-1.67, p < 0.05), hemoglobin A1c ≥6.5% (OR = 1.66, 95% CI: 1.09-2.51, p < 0.04), and high sensitivity C-reactive protein (hs-CRP) ≥3 mg/L (OR = 1.46, 95% CI: 1.09-1.96, p < 0.01). In high-altitude populations in Puno, Peru, a higher BMI and lower pulmonary function were

  8. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  9. Succession after fire: variation in \\delta13C of organic tissues and respired CO2 in boreal forests

    Science.gov (United States)

    Fessenden, J. E.; Li, H.; Mack, M.; Schuur, T.; Warren, S.; Randerson, J. T.

    2001-12-01

    Isotope ratios of carbon dioxide and leaf organic matter were measured in 5 neighboring forests of varying ages: 7, 14, 45, 140, and 160 years. These forests are composed primarily of black spruce (Picea Mariana) and quaking aspen (Populus tremuloides) with a shift in species dominance from aspen to spruce 50 years after fire disturbance. Research on the carbon isotope ratios of leaf material and CO2 was conducted to look for influences from species composition, forest age, and time after most recent burn. Samples of organic \\delta13C in whole leaf tissue were collected from the dominant species of each forest. Concurrent aboveground NPP measurements allowed us to estimate total ecosystem \\delta13C by providing a method for weighting \\delta13C of individual species and plant tissues. \\delta13CO2 and [CO2] were measured on canopy CO2 to determine the isotopic ratio of ecosystem respiration. The atmospheric results indicated that the \\delta13C of ecosystem respiration changes with successional stage. Specifically, the aspen dominating forests showed 13C depleted values relative to the spruce dominated forests. Organic results showed more 13C-enriched values with increased forest age and vegetation functional type. Specifically, oldest trees within the coniferous species had the most 13C-enriched values in leaf tissues. These results suggest that increases in the disturbance regime of northern boreal forests will lead to a decrease in the \\delta13C of ecosystem carbon with consequences for the atmospheric \\delta13C budget.

  10. Systems Design and Experimental Evaluation of a High-Altitude Relight Test Facility

    Science.gov (United States)

    Paxton, Brendan

    Novel advances in gas turbine engine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and industrial research ventures into improving the high-altitude lean blow-out and relight performance of modern gas turbine engine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati (UC) Combustion and Fire Research Laboratory (CFRL). Following its construction, an experimental evaluation of its abilities to facilitate optically-accessible ignition, combustion, and spray testing for gas turbine engine combustor hardware at simulated high-altitude conditions was performed. In its evaluation, performance limit references were established through testing of the HARTF vacuum and cryogenic air-chilling capabilities. These tests were conducted with regard to end-user control---the creation and the maintenance of a realistic high-altitude

  11. ACUTE PHASE PROTEIN INCREASE IN HIGH ALTITUDE MOUNTAINEERS

    Directory of Open Access Journals (Sweden)

    Tolga Saka

    Full Text Available ABSTRACT Introduction: Many middle-aged Turks go hiking in mountains to breathe some fresh air or to maintain fitness. Objective: This study investigated the effects of regular high altitude mountain climbing on the metabolic and hematological responses of mountaineers. Methods: Hematological and biochemical parameters were studied, as well as some hormonal values of 21 mountaineers and 16 healthy age-matched sedentary volunteers. Results: The neutrophil to lymphocyte ratio (NLR was significantly lower (p<0.04 in mountaineers compared with the sedentary group. Total protein (p<0.001 and albumin (p<0.001 were lower, while the levels of ferritin (p<0.04, creatine (p<0.03 and creatine phosphokinase (p<0.01 were higher in mountaineers. Other hematological and biochemical parameters, i.e., erythrocytes, leukocytes, hemoglobin and hematocrit, did not change significantly. Conclusion: Our results show that regular exposure to high altitude increased the serum levels of some acute phase proteins with anti-inflammatory properties.

  12. Variation of biomass and carbon pool with NDVI and altitude in sub-tropical forests of northwestern Himalaya.

    Science.gov (United States)

    Bhardwaj, D R; Banday, Muneesa; Pala, Nazir A; Rajput, Bhalendra Singh

    2016-11-01

    In the present study, forests at three altitudes, viz., A 1 (600-900 m), A 2 (900-1200 m) and A 3 (1200-1500 m) above mean sea level having normalised differential vegetation index (NDVI) values of N 1 (0.0-0.1), N 2 (0.1-0.2), N 3 (0.2-0.3), N 4 (0.3-0.4) and N 5 (0.4-0.5) were selected for studying their relationship with the biomass and carbon pool in the state of Himachal Pradesh, India. The study reported maximum stem density of (928 trees ha -1 ) at the A 2 altitude and minimum in the A 3 and A 1 with 600 trees ha -1 each. The stem densities in relation to NDVIs were observed in the order N 5 > N 3 > N 4 > N 1 > N 2 and did not show any definite trend with increasing altitude. Highest stem volume (295.7 m 3  ha -1 ) was observed in N 1 NDVI and minimum (194.1 m 3  ha -1 ) in N 3 index. The trend observed for stem biomass at different altitudes was A 3 > A 1 > A 2 and for NDVIs, it was N 5 > N 1 > N 4 > N 2 > N 3 . Maximum aboveground biomass (265.83 t ha -1 ) was recorded in the 0.0-0.1 NDVI and minimum (169.05 t ha -1 ) in 0.2-0.3 NDVI index. Significantly, maximum total soil carbon density (90.82 t C ha -1 ) was observed in 0.4-0.5 NDVI followed by 0.3-0.4 NDVI (77.12 t C ha -1 ). The relationship between soil carbon and other studied parameters was derived through different functions simultaneously. Cubic function showed highest r 2 in most cases, followed by power, inverse and exponential function. The relationship with NDVI showed highest r 2 (0.62) through cubic functions. In relationship between ecosystem carbon with other parameters of different altitudinal gradient and NDVI, only one positively significant relation was formed with total density (0.579) through cubic function. The present study thus reveals that soil carbon density was directly related to altitude and NDVIs, but the vegetation carbon density did not bear any significant relation with altitude and NDVI.

  13. United States high-altitude test experiences. A review emphasizing the impact on the environment

    International Nuclear Information System (INIS)

    Hoerlin, H.

    1976-06-01

    The US high-altitude nuclear explosions of the 1955-1962 period are listed chronologically; dates, locations, and yields are given. The major physical phases of the interactions of the weapon outputs with the atmosphere are described, such as the formation of fireballs at the low high-altitudes and the partition of energies and their distribution over very large spaces at the higher high-altitudes. The effects of these explosions on the normal activities of populations and the protective measures taken are documented. Many scientific observations, together with their significance and values, are reviewed. 109 refs

  14. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  15. Syndrome of Acute Anxiety Among Marines After Recent Arrival at High Altitude

    Science.gov (United States)

    2014-05-01

    Naval Health Research Center Syndrome of Acute Anxiety Among Marines After Recent Arrival at High Altitude Michael K. Sracic Darren Thomas...Allen Pate Jacob Norris Marc Norman, Jeffrey H. Gertsch Report No. 13-29 The views expressed in this article are those of the authors...MEDICINE, 179, 5:559, 2014 Syndrome of Acute Anxiety Among Marines After Recent Arrival at High Altitude LT Michael K. Sracic, MC USN*; LT Darren Thomas

  16. Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska

    Science.gov (United States)

    Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut

    2011-01-01

    There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence

  17. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions

    International Nuclear Information System (INIS)

    Nunn, Angela J.; Wieser, Gerhard; Metzger, Ursula; Loew, Markus; Wipfler, Philip; Haeberle, Karl-Heinz; Matyssek, Rainer

    2007-01-01

    Whole-tree O 3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O 3 flux. O 3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O 3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O 3 risk assessment and modeling. - Sap flow-based assessment of whole-tree O 3 uptake reflects similar responsiveness of canopy conductance and O 3 uptake across contrasting tree species and site conditions

  18. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site

    Science.gov (United States)

    Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.

    1995-06-01

    Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.

  19. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Science.gov (United States)

    Björklund, Heidi; Valkama, Jari; Tomppo, Erkki; Laaksonen, Toni

    2015-01-01

    Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis), common buzzard (Buteo buteo) and European honey buzzard (Pernis apivorus). We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m) around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.

  20. Habitat Effects on the Breeding Performance of Three Forest-Dwelling Hawks.

    Directory of Open Access Journals (Sweden)

    Heidi Björklund

    Full Text Available Habitat loss causes population declines, but the mechanisms are rarely known. In the European Boreal Zone, loss of old forest due to intensive forestry is suspected to cause declines in forest-dwelling raptors by reducing their breeding performance. We studied the boreal breeding habitat and habitat-associated breeding performance of the northern goshawk (Accipiter gentilis, common buzzard (Buteo buteo and European honey buzzard (Pernis apivorus. We combined long-term Finnish bird-of-prey data with multi-source national forest inventory data at various distances (100-4000 m around the hawk nests. We found that breeding success of the goshawk was best explained by the habitat within a 2000-m radius around the nests; breeding was more successful with increasing proportions of old spruce forest and water, and decreasing proportions of young thinning forest. None of the habitat variables affected significantly the breeding success of the common buzzard or the honey buzzard, or the brood size of any of the species. The amount of old spruce forest decreased both around goshawk and common buzzard nests and throughout southern Finland in 1992-2010. In contrast, the area of young forest increased in southern Finland but not around hawk nests. We emphasize the importance of studying habitats at several spatial and temporal scales to determine the relevant species-specific scale and to detect environmental changes. Further effort is needed to reconcile the socioeconomic and ecological functions of forests and habitat requirements of old forest specialists.