WorldWideScience

Sample records for high-altitude cirrus clouds

  1. Lidar observations of high-altitude aerosol layers (cirrus clouds)

    Science.gov (United States)

    Deleva, Atanaska D.; Grigorov, Ivan V.

    2013-03-01

    Aerosols, clouds and aerosol-cloud interactions are recognized as the key factors influencing the climate. Clouds are the primary modulators of the Earth's radiative budget. This paper focuses on the detection of high-altitude aerosol layers in the troposphere over mid-latitude lidar station in Sofia, Bulgaria. They are situated in the height-region 6 km÷16 km, with thickness in the range 0.2 km÷5 km and have varying optical characteristics. On the basis of the general utilized classification of the Cirrus clouds, high values of the calculated atmospheric backscatter coefficient and Angströmexponent estimation results we conclude that the registered strongly scattered aerosol layers are Cirrus clouds. Lidar measurements are performed with an aerosol lidar, equipped with Nd:YAG laser at wavelengths 532 nm and 1064 nm. Mainly, lidar data are presented in terms of vertical atmospheric backscatter coefficient profiles. We also include 2Dcolormap in height-time coordinates build on the basis of so called range corrected signals. It shows in general changes of the aerosol stratification over the lidar station during the measurement period. We employed HYSPLIT backward trajectories and DREAM forecasts to analyze the lidar profile outlines and characterize the events during which Cirrus cloud samples were observed. So was remarked that most of the results were obtained during Saharan dust long-way transport over the city of Sofia. Reported experimental examples are extracted from regular lidar investigations of the atmosphere within the frame of European project EARLINET.

  2. Dual wavelength lidar observation of tropical high-altitude cirrus clouds during the ALBATROSS 1996 Campaign

    Science.gov (United States)

    Beyerle, G.; Schäfer, H.-J.; Neuber, R.; Schrems, O.; McDermid, I. S.

    Dual wavelength aerosol lidar observations of tropical high-altitude cirrus clouds were performed during the ALBATROSS 1996 campaign aboard the research vessel “POLARSTERN” on the Atlantic ocean in October-November 1996. On the basis of 57 hours of night-time observations between 23.5°N and 23.5°S we find in 72% of the altitude profiles indications of the presence of cirrus cloud layers. This percentage drops to 32% at subtropical latitudes (23.5°-30°) based on 15 hours of data. About one-half of the subtropical and tropical cirrus layers are subvisual with an optical depth of less than 0.03 at a wavelength of 532 nm. In general the clouds exhibit high spatial and temporal variability on scales of a few tens of meters vertically and a few hundred meters horizontally. No clouds are observed above the tropopause. An abrupt change in the relation between the color ratios of the parallel and perpendicular backscatter coefficients at about 240 K is interpreted in terms of changes of particle shape and/or size distribution. At temperatures between 195 and 255 K only a small fraction of the observations are consistent with the presence of small particles with dimensions of less than 0.1 µm.

  3. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    Science.gov (United States)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  4. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    Science.gov (United States)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  5. Lidar observations of tropical high-altitude cirrus clouds: results from dual-wavelength Raman lidar measurements during the ALBATROSS campaign 1996

    Science.gov (United States)

    Beyerle, Georg; Schaefer, H. J.; Schrems, Otto; Neuber, R.; Rairoux, P.; McDermid, I. S.

    1997-05-01

    Results from dual wavelength Raman lidar observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus clouds were present in more than 50% of the observations at latitudes between 23.5 degrees south and 23.5 degrees north and altitudes between 11 and 16 km. Volume depolarization is found to be a sensitive parameter for the detection of subvisible cloud layers. Using Mie scattering calculations estimates of the ice water content are derived.

  6. Lidar cirrus cloud retrieval - methodology and applications

    Science.gov (United States)

    Larroza, Eliane; Keckhut, Philippe; Nakaema, Walter; Brogniez, Gérard; Dubuisson, Philippe; Pelon, Jacques; Duflot, Valentin; Marquestaut, Nicolas; Payen, Guillaume

    2016-04-01

    In the last decades numerical modeling has experimented sensitive improvements on accuracy and capability for climate predictions. In the same time it has demanded the reduction of uncertainties related with the respective input parameters. In this context, high altitude clouds (cirrus) have attracted special attention for their role as radiative forcing. Also such clouds are associated with the vertical transport of water vapor from the surface to upper troposphere/lower stratosphere (URLS) in form of ice crystals with variability of concentration and morphology. Still cirrus formation can occur spatially and temporally in great part of the globe due to horizontal motion of air masses and circulations. Determining accurately the physical properties of cirrus clouds still represents a challenge. Especially the so-called subvisible cirrus clouds (optical depth inferior to 0.03) are invisible for space-based passive observations. On the other hand, ground based active remote sensing as lidar can be used to suppress such deficiency. Lidar signal can provide spatial and temporal high resolution to characterize physically (height, geometric thickness, mean temperature) and optically (optical depth, extinction-to-scattering ratio or lidar ratio, depolarization ratio) the cirrus clouds. This report describes the evolution of the methodology initially adopted to retrieval systematically the lidar ratio and the subsequent application on case studies and climatology on the tropical sites of the globe - São Paulo, Brazil (23.33 S, 46.44 W) and OPAR observatory at Ille de La Réunion (21.07 S, 55.38 W). Also is attempting a synergy between different instrumentations and lidar measurements: a infrared radiometer to estimate the kind of ice crystals compounding the clouds; CALIPSO satellite observations and trajectory model (HYSPLIT) for tracking air masses potentially responsible for the horizontal displacement of cirrus. This last approach is particularly interesting to

  7. Spectral emissivity of cirrus clouds

    Science.gov (United States)

    Beck, Gordon H.; Davis, John M.; Cox, Stephen K.

    1993-01-01

    The inference of cirrus cloud properties has many important applications including global climate studies, radiation budget determination, remote sensing techniques and oceanic studies from satellites. Data taken at the Parsons Kansas site during the FIRE II project are used for this study. On November 26 there were initially clear sky conditions gradually giving way to a progressively thickening cirrus shield over a period of a few hours. Interferometer radiosonde and lidar data were taken throughout this event. Two techniques are used to infer the downward spectral emittance of the observed cirrus layer. One uses only measurements and the other involves measurements and FASCODE III calculations. FASCODE III is a line-by line radiance/transmittance model developed at the Air Force Geophysics Laboratory.

  8. Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds

    Science.gov (United States)

    2009-12-01

    depths of thin cirrus clouds. 1. Introduction Numerous studies have demonstrated that thin cirrus clouds are frequently present near the tropical tropo ...Methodology a. Optical depth of tropical thin cirrus clouds Cirrus clouds are often present in the upper tropo - sphere or lower stratosphere, and more than

  9. HCN ice in Titan's high-altitude southern polar cloud

    CERN Document Server

    de Kok, Remco J; Maltagliati, Luca; Irwin, Patrick G J; Vinatier, Sandrine

    2014-01-01

    Titan's middle atmosphere is currently experiencing a rapid change of season after northern spring arrived in 2009. A large cloud was observed for the first time above Titan's southern pole in May 2012, at an altitude of 300 km. This altitude previously showed a temperature maximum and condensation was not expected for any of Titan's atmospheric gases. Here we show that this cloud is composed of micron-sized hydrogen cyanide (HCN) ice particles. The presence of HCN particles at this altitude, together with new temperature determinations from mid-infrared observations, indicate a very dramatic cooling of Titan's atmosphere inside the winter polar vortex in early 2012. Such a cooling is completely contrary to previously measured high-altitude warming in the polar vortex, and temperatures are a hundred degrees colder than predicted by circulation models. Besides elucidating the nature of Titan's mysterious polar cloud, these results thus show that post-equinox cooling at the winter pole is much more efficient th...

  10. Could cirrus clouds have warmed early Mars?

    Science.gov (United States)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  11. Measurement errors in cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    H. Larsen

    Full Text Available The limited accuracy of current cloud microphysics sensors used in cirrus cloud studies imposes limitations on the use of the data to examine the cloud's broadband radiative behaviour, an important element of the global energy balance. We review the limitations of the instruments, PMS probes, most widely used for measuring the microphysical structure of cirrus clouds and show the effect of these limitations on descriptions of the cloud radiative properties. The analysis is applied to measurements made as part of the European Cloud and Radiation Experiment (EUCREX to determine mid-latitude cirrus microphysical and radiative properties.

    Key words. Atmospheric composition and structure (cloud physics and chemistry · Meteorology and atmospheric dynamics · Radiative processes · Instruments and techniques

  12. Cirrus cloud iridescence: a rare case study

    Science.gov (United States)

    Sassen, Kenneth

    2003-01-01

    On the evening of 25 November 1998, a cirrus cloud revealing the pastel colors of the iridescence phenomenon was photographed and studied by a polarization lidar system at the University of Utah Facility for Atmospheric Remote Sensing (FARS). The diffraction of sunlight falling on relatively minute cloud particles, which display spatial gradients in size, is the cause of iridescence. According to the 14-year study of midlatitude cirrus clouds at FARS, cirrus rarely produce even poor iridescent patches, making this particularly long-lived and vivid occurrence unique. In this unusually high (13.2-14.4-km) and cold (-69.7 ° to -75.5°) tropopause-topped cirrus cloud, iridescence was noted from ~6.0° to ~13.5° from the Sun. On the basis of simple diffraction theory, this indicates the presence of particles of 2.5-5.5-μm effective diameter. The linear depolarization ratios of δ = 0.5 measured by the lidar verify that the cloud particles were nonspherical ice crystals. The demonstration that ice clouds can generate iridescence has led to the conclusion that iridescence is rarely seen in midlatitude cirrus clouds because populations of such small particles do not exist for long in the presence of the relatively high water-vapor supersaturations needed for ice-particle nucleation.

  13. Estimating cirrus cloud properties from MIPAS data

    Science.gov (United States)

    Mendrok, J.; Schreier, F.; Höpfner, M.

    2007-04-01

    High resolution mid-infrared limb emission spectra observed by the spaceborne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) showing evidence of cloud interference are analyzed. Using the new line-by-line multiple scattering [Approximate] Spherical Atmospheric Radiative Transfer code (SARTre), a sensitivity study with respect to cirrus cloud parameters, e.g., optical thickness and particle size distribution, is performed. Cirrus properties are estimated by fitting spectra in three distinct microwindows between 8 and 12 μm. For a cirrus with extremely low ice water path (IWP = 0.1 g/m2) and small effective particle size (D e = 10 μm) simulated spectra are in close agreement with observations in broadband signal and fine structures. We show that a multi-microwindow technique enhances reliability of MIPAS cirrus retrievals compared to single microwindow methods.

  14. Could Cirrus Clouds Have Warmed Early Mars?

    CERN Document Server

    Ramirez, Ramses M

    2016-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2-H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radiative-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ~75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more real...

  15. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high-altitude aircraft observations

    Science.gov (United States)

    Frey, W.; Borrmann, S.; Fierli, F.; Weigel, R.; Mitev, V.; Matthey, R.; Ravegnani, F.; Sitnikov, N. M.; Ulanovsky, A.; Cairo, F.

    2014-12-01

    The case study presented here focuses on the life cycle of clouds in the anvil region of a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high-altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focused on the anvil region of Hector in altitudes between 10.5 and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations, satellite imagery, and ozone measurements have been used to ensure that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements show a change not only with increasing altitude but also with the evolution of Hector. Clearly different cloud to aerosol particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating different freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger than 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change in ice crystal shape from the developing phase to rimed and aggregated particles in the mature and dissipating stages; the specific shape of particles in the developing phase cannot be distinguished from the measurements. Although optically thin, the clouds in the dissipating stage have a large vertical extent (roughly 6 km) and persist for at

  16. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high altitude aircraft observations

    Directory of Open Access Journals (Sweden)

    W. Frey

    2014-05-01

    Full Text Available The case study presented here focusses on the life cycle of clouds in a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focussed on the anvil region of Hector in altitudes between 10.5 km and 18.8 km (i.e. above 350 K potential temperature. Trajectory calculations and ozone measurements have been used to identify that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements not only show a change with increasing altitude but also with the evolution of Hector. Clearly different aerosol to cloud particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating a change in freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger 1.6 mm and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change from frozen droplets in the developing phase to rimed and aggregated particles. The clouds in the dissipating stage have a large vertical extend (roughly 6 km though optically thin and persist for at least 6 h. This poses a high potential for affecting the tropical tropopause layer background conditions regarding humidity, e.g. through facilitating subvisible

  17. Tropical deep convective life cycle: Cb-anvil cloud microphysics from high altitude aircraft observations

    Science.gov (United States)

    Frey, W.; Borrmann, S.; Fierli, F.; Weigel, R.; Mitev, V.; Matthey, R.; Ravegnani, F.; Sitnikov, N. M.; Ulanovsky, A.; Cairo, F.

    2014-05-01

    The case study presented here focusses on the life cycle of clouds in a tropical deep convective system. During the SCOUT-O3 campaign from Darwin, Northern Australia, the Hector storm system has been probed by the Geophysica high altitude aircraft. Clouds were observed by in situ particle probes, a backscatter sonde, and a miniature lidar. Additionally, aerosol number concentrations have been measured. On 30 November 2005 a double flight took place and Hector was probed throughout its life cycle in its developing, mature, and dissipating stage. The two flights were four hours apart and focussed on the anvil region of Hector in altitudes between 10.5 km and 18.8 km (i.e. above 350 K potential temperature). Trajectory calculations and ozone measurements have been used to identify that the same cloud air masses have been probed in both flights. The size distributions derived from the measurements not only show a change with increasing altitude but also with the evolution of Hector. Clearly different aerosol to cloud particle ratios as well as varying ice crystal morphology have been found for the different development stages of Hector, indicating a change in freezing mechanisms. The development phase exhibits the smallest ice particles (up to 300 μm) with a rather uniform morphology. This is indicative for rapid glaciation during Hector's development. Sizes of ice crystals are largest in the mature stage (larger 1.6 mm) and even exceed those of some continental tropical deep convective clouds, also in their number concentrations. The backscatter properties and particle images show a change from frozen droplets in the developing phase to rimed and aggregated particles. The clouds in the dissipating stage have a large vertical extend (roughly 6 km) though optically thin and persist for at least 6 h. This poses a high potential for affecting the tropical tropopause layer background conditions regarding humidity, e.g. through facilitating subvisible cirrus formation, and

  18. Remote sensing of contrails and aircraft altered cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Palikonda, R.; Nguyen, L.; Garber, D.P.; Smith, W.L. Jr [Analytical Services and Materials, Inc., Hampton, VA (United States); Minnis, P.; Young, D.F. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1997-12-31

    Analyses of satellite imagery are used to show that contrails can develop into fully extended cirrus cloud systems. Contrails can be advective on great distances, but would appear to observers as natural cirrus clouds. The conversion of simple contrails into cirrus may help explain the apparent increase of cloudiness over populated areas since the beginning of commercial jet air travel. Statistics describing the typical growth, advection, and lifetime of contrail cirrus is needed to evaluate their effects on climate. (author) 4 refs.

  19. Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations

    Science.gov (United States)

    Puspitarini, L.; Määttänen, A.; Fouchet, T.; Kleinboehl, A.; Kass, D. M.; Schofield, J. T.

    2016-11-01

    High altitude clouds have been observed in the Martian atmosphere. However, their properties still remain to be characterized. Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO) is an instrument that measures radiances in the thermal infrared, both in limb and nadir views. It allows us to retrieve vertical profiles of radiance, temperature and aerosols. Using the MCS data and radiative transfer model coupled with an automated inversion routine, we can investigate the chemical composition of the high altitude clouds. We will present the first results on the properties of the clouds. CO2 ice is the best candidate to be the main component of some high altitude clouds due to the most similar spectral variation compared to water ice or dust, in agreement with previous studies. Using cloud composition of contaminated CO2 ice (dust core surrounded by CO2 ice) might improve the fitting result, but further study is needed.

  20. Can cirrus clouds warm early Mars?

    Science.gov (United States)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222

  1. Dust ice nuclei effects on cirrus clouds

    Directory of Open Access Journals (Sweden)

    M. Kuebbeler

    2013-04-01

    Full Text Available In order to study aerosol-cloud interactions in cirrus clouds we apply a new multiple-mode ice microphysical scheme to the general circulation model ECHAM5-HAM. The multiple-mode ice microphysical scheme allows to analyse the competition between homogeneous freezing of solution droplets, deposition nucleation of pure dust particles, immersion freezing of coated dust particles and pre-existing ice. We base the freezing efficiencies of coated and pure dust particles on most recent laboratory data. The effect of pre-existing ice, which was neglected in previous ice nucleation parameterizations, is to deplete water vapour by depositional growth and thus prevent homogeneous and heterogeneous freezing from occurring. In a first step, we extensively tested the model and validated the results against in-situ measurements from various aircraft campaigns. The results compare well with observations; properties like ice crystal size and number concentration as well as supersaturation are predicted within the observational spread. We find that heterogeneous nucleation on mineral dust particles and the consideration of pre-existing ice in the nucleation process may lead to significant effects: globally, ice crystal number and mass are reduced by 10% and 5%, whereas the ice crystals size is increased by 3%. The reductions in ice crystal number are most pronounced in the tropics and mid-latitudes on the Northern Hemisphere. While changes in the microphysical and radiative properties of cirrus clouds in the tropics are mostly driven by considering pre-existing ice, changes in the northern hemispheric mid-latitudes mainly result from heterogeneous nucleation. The so called negative Twomey-effect in cirrus clouds is represented in ECHAM5-HAM. The net change in the radiation budget is −0.94 W m−2, implying that both, heterogeneous nucleation on dust and pre-existing ice have the potential to modulate cirrus properties in climate simulations and thus should be

  2. Cirrus cloud seeding has potential to cool climate

    Science.gov (United States)

    Storelvmo, T.; Kristjansson, J. E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A.

    2013-01-01

    Cirrus clouds, thin ice clouds in the upper troposphere, have a net warming effect on Earth's climate. Consequently, a reduction in cirrus cloud amount or optical thickness would cool the climate. Recent research indicates that by seeding cirrus clouds with particles that promote ice nucleation, their lifetimes and coverage could be reduced. We have tested this hypothesis in a global climate model with a state-of-the-art representation of cirrus clouds and find that cirrus cloud seeding has the potential to cancel the entire warming caused by human activity from pre-industrial times to present day. However, the desired effect is only obtained for seeding particle concentrations that lie within an optimal range. With lower than optimal particle concentrations, a seeding exercise would have no effect. Moreover, a higher than optimal concentration results in an over-seeding that could have the deleterious effect of prolonging cirrus lifetime and contributing to global warming.

  3. Fractal properties and denoising of lidar signals from cirrus clouds

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Driesenaar, M.L.; Lerou, R.J.L.

    2000-01-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by

  4. Star formation in a diffuse high-altitude cloud?

    CERN Document Server

    Kerp, J; Roehser, T

    2016-01-01

    A recent discovery of two stellar clusters associated with the diffuse high-latitude cloud HRK 81.4-77.8 has important implications for star formation in the Galactic halo. We derive a plausible distance estimate to HRK 81.4-77.8 primarily from its gaseous properties. We spatially correlate state-of-the-art HI, far-infrared and soft X-ray data to analyze the diffuse gas in the cloud. The absorption of the soft X-ray emission from the Galactic halo by HRK 81.4-77.8 is used to constrain the distance to the cloud. HRK 81.4-77.8 is most likely located at an altitude of about 400 pc within the disk-halo interface of the Milky Way Galaxy. The HI data discloses a disbalance in density and pressure between the warm and cold gaseous phases. Apparently, the cold gas is compressed by the warm medium. This disbalance might trigger the formation of molecular gas high above the Galactic plane on pc to sub-pc scales.

  5. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40° to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  6. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40°C to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  7. Interplanetary dust particles, not wind blown dust, control high altitude ice clouds on Mars

    Science.gov (United States)

    Hartwick, Victoria; Toon, Owen B.

    2016-10-01

    Water ice clouds on Mars are commonly observed at high altitudes. However, current generation Mars three-dimensional general circulation models (GCM) struggle to reproduce clouds above approximately 20-30 km. On Mars, as on Earth, ice cloud formation likely initiates by heterogeneous nucleation, which requires a population of suspended ice nuclei contiguous with supersaturated atmospheric water vapor. Although supersaturation is observed at high altitudes and has been reproduced in models, models predict very few ice nuclei. The small number of ice nuclei in the upper atmosphere is due to the assumption in Mars GCMs that the only source of ice nuclei is dust from the Martian surface. However, terrestrial mesospheric noctilucent clouds have been shown to form by ice nucleation on particles originating from ablated micrometeroids. Therefore, it is reasonable to assume that a population of micrometeoric ablation biproducts on Mars exists and can act as a site for cloud nucleation at high altitudes. We present simulations using the Community Atmosphere Model for Mars (MarsCAM) based on the National Center for Atmospheric Research (NCAR) Community Atmosphere Model for Earth,coupled with a physically based, state-of-the-art cloud and dust physics model, the Community Aerosol and Radiation Model for Atmospheres (CARMA) to show that ablating micrometeoroids can yield abundant ice nuclei throughout the upper atmosphere of Mars. We find that simulations including a constant annual micrometeoroid flux allows us to reproduce the observed properties of high altitude water ice clouds including vertical distribution and particle size. In general, effective radius decreases with increasing altitude. We have additionally explored the impact of variable ablation rates. Preliminary results suggest that relatively high ablation rates, near or greater than 50%, are required to reproduce observed cloud features.

  8. Gravity waves and high-altitude CO$_2$ ice cloud formation in the Martian atmosphere

    CERN Document Server

    Yiğit, Erdal; Hartogh, Paul

    2015-01-01

    We present the first general circulation model simulations that quantify and reproduce patches of extremely cold air required for CO$_2$ condensation and cloud formation in the Martian mesosphere. They are created by subgrid-scale gravity waves (GWs) accounted for in the model with the interactively implemented spectral parameterization. Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good agreement with observations of high-altitude CO$_2$ ice clouds. Our study confirms the key role of GWs in facilitating CO$_2$ cloud formation, discusses their tidal modulation, and predicts clouds at altitudes higher than have been observed to date.

  9. 3D reconstruction of tropospheric cirrus clouds

    Science.gov (United States)

    Kouahla, M. N.; Faivre, M.; Moreels, G.; Seridi, H.

    2016-10-01

    In this paper, we present a series of results from stereo-imagery of cirrus clouds in the troposphere. These clouds are either of natural origin or are created by aircraft exhausts. They are presently considered to be a major cause for the climate change. Two observation campaigns were conducted in France in 2013 and 2014. The observing sites were located in Marnay (47°17‧31.5″ N, 5°44‧58.8″ E; altitude 275 m) and in Mont Poupet (46°58‧31.5″ N, 5°52‧22.7″ E; altitude 600 m). The distance between both sites was 36 km. We used numeric CMOS photographic cameras. The image processing sequence included a contrast enhancement and a perspective inversion to obtain a satellite-type view. Finally, the triangulation procedure was used in an area that is a common part of both fields of view.

  10. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    Directory of Open Access Journals (Sweden)

    M. Wang

    2010-06-01

    Full Text Available A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K, but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  11. Cirrus cloud radiative forcing on surface-level shortwave and longwave irradiances at regional and global scale

    Science.gov (United States)

    Dupont, J. C.; Haeffelin, M.; Long, C. N.

    2009-04-01

    Cirrus clouds not only play a major role in the energy budget of the Earth-Atmosphere system, but are also important in the hydrological cycle. According to satellite passive remote sensing high-altitude clouds cover as much as 40% of the earth's surface on average and can reach 70% of cloud cover over the Tropics. Hence, given their very large cloud cover, the relatively small instantaneous radiative effects of these cirrus clouds can engender a significant cumulative radiative forcing at the surface. Precise calculations of the cirrus cloud radiative forcing are obtained from the difference between measured radiative fluxes downwelling at the surface in the presence of cirrus clouds (broadband flux measurements) and computed clear sky references (parametric models with RMS error water vapor content obtained in studying the 4 observatories allows us to quantify the combined influence of aerosol optical thickness and integrated water vapor on CRFSW* : 10 to 20 % CRFSW* range for turbid and pristine atmosphere. Moreover, the sensitivity of the CRFLW to both cloud emissivity and cloud temperature (noted CRFLW*) is established and the influence of integrated water vapor on CRFLW* quantified: partial infrared opacity for arctic site (dry atmosphere) and quasi-total infrared opacity for tropical site (wet atmosphere), respectively 20% and 97% of opacity. Cirrus cloud radiative forcing parameterizations are hence developed starting from the ground-based collocated measurements. They relate CRFSW or CRFLW to cirrus cloud macrophysical properties, atmospheric humidity, aerosol content and solar zenith angle. Satellite measurements are used next as input parameters to the cirrus cloud radiative forcing parameterizations to calculate CRFSW and CRFLW at global scale. CALIOP provide aerosol and cirrus cloud properties and AIRS the integrated water vapor. Meridian distribution are shown and discussed. They reveal a positive cirrus cloud net radiative effect (CRFSW + CRFLW) from

  12. Aviation effects on already-existing cirrus clouds

    Science.gov (United States)

    Tesche, Matthias; Achtert, Peggy; Glantz, Paul; Noone, Kevin J.

    2016-06-01

    Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.

  13. Cirrus cloud properties measurement using lidar in Beijing

    Science.gov (United States)

    Ji, Chengli; Tao, Zongming; Hu, Shunxing; Che, Huizheng; Yu, Jie; Feng, Caiyun; Xie, Chenbo; Liu, Dong; Zhong, Zhiqing; Yuan, Ke'e.; Cao, Kaifa; Huang, Jian; Zhou, Jun; Wang, Yingjian; Chen, Zhenyi

    2016-01-01

    Cirrus cloud has an important effect on the radiation balance between the earth's surface and the atmosphere. The vertical structures, optical depth and effective lidar ratio of cirrus cloud detected by Mie scattering-polarization-Raman lidar system in Beijing from April 11 to December 31, 2012 are analyzed. The results show that the cloud height in Beijing is lower in spring and higher in autumn, with a mean value of about 8km. The mean of cloud thickness is 0.74km. The mean of optical depth is 0.092, and most observed cirrus cloud is thin while optical depth is less than 0.3. The effective lidar ratio of cirrus is lower in summer and higher in winter, inversely related to local temperature, with a mean value of 32.29Sr.

  14. Towards an automatic Lidar cirrus cloud retrieval for climate studies

    Directory of Open Access Journals (Sweden)

    E. G. Larroza

    2013-04-01

    Full Text Available In the present study, a methodology to calculate lidar ratios for distinct cirrus clouds has been implemented for a site located in the Southern Hemisphere. The cirrus cloud lidar data processing has been developed to consider a large cloud variability with the final aim of cirrus cloud monitoring through a robust retrieval process. Among the many features lidar systems can extract for cirrus detection, we highlight: cloud geometrical information and extinction-to-backscatter ratio (also called lidar ratio – LR. LR's can, in general, provide important information on cirrus cloud microphysics due to the presence of ice crystals and their properties such as shape, size, composition and orientation of particles and their effect on LR values. Conditions for LR calculations and their resulting uncertainty have been improved as their analysis requires identifying cirrus cloud stationary periods through the use of a specific statistical approach well-established in the literature and employed here with good results, allowing for the study of specific cases with multi-layer cirrus cloud occurrence. The results from the measurements taken in the region of the Metropolitan City of São Paulo – MSP have been used to implement and test the methodology developed herein. In addition to the geometrical parameters extracted, improved values of LR's were calculated and showed significantly different values for the different layers inspected, varying between 19 ± 01 sr and 74 ± 13 sr. This large value interval allowed us to indirectly verify the presence of different ice crystal sizes and shapes and those associated with different air mass sources for the cirrus cloud formation.

  15. Towards Improved Cirrus Cloud Optical Depths from CALIPSO

    Science.gov (United States)

    Garnier, Anne; Vaughan, Mark; Pelon, Jacques; Winker, David; Trepte, Chip; Young, Stuart

    2016-06-01

    This paper reviews recent advances regarding the retrieval of optical depths of semi-transparent cirrus clouds using synergetic analyses of perfectly collocated observations from the CALIOP lidar and the IIR infrared radiometer aboard the CALIPSO satellite.

  16. Satellite observations of cirrus clouds in the Northern Hemisphere lowermost stratosphere

    Directory of Open Access Journals (Sweden)

    R. Spang

    2014-05-01

    Full Text Available Here we present observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA of cirrus cloud and water vapour in August 1997 in the upper troposphere and lower stratosphere (UTLS region. The observations indicate a considerable flux of moisture from the upper tropical troposphere into the extra-tropical lowermost stratosphere (LMS, resulting in the occurrence of high altitude optically thin cirrus clouds in the LMS. The locations of the LMS cloud events observed by CRISTA are consistent with the tropopause height determined from coinciding radiosonde data. For a hemispheric analysis in tropopause relative coordinates an improved tropopause determination has been applied to the ECMWF temperature profiles. We found that a significant fraction of the cloud occurrences in the tropopause region are located in the LMS, even if a conservative overestimate of the cloud top height (CTH determination by CRISTA of 500 m is assumed. The results show rather high occurrence frequencies (∼5% up to high northern latitudes (70° N and altitudes well above the tropopause (>500 m at ∼350 K and above in large areas at mid and high latitudes. Comparisons with model runs of the Chemical Lagragian Model of the Stratosphere (CLaMS over the CRISTA period show a reasonable consistency for the retrieved cloud pattern. For this purpose a limb ray tracing approach was applied through the 3-D model fields to obtain integrated measurement information through the atmosphere along the limb path of the instrument. The simplified cirrus scheme implemented in CLaMS seems to cause a systematic underestimation in the CTH occurrence frequencies in the LMS with respect to the observations. The observations together with the model results demonstrate the importance of isentropic, quasi-horizontal transport of water vapour from the sub-tropics and the potential for the occurrence of cirrus clouds in the lowermost stratosphere and tropopause region.

  17. Investigation on the monthly variation of cirrus optical properties over the Indian subcontinent using cloud-aerosol lidar and infrared pathfinder satellite observation (Calipso)

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Jayeshlal, G. S.; Mahadevan Pillai, V. P.; Krishnakumar, V.

    2016-05-01

    Cirrus clouds have been identified as one of the atmospheric component which influence the radiative processes in the atmosphere and plays a key role in the Earth Radiation Budget. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) is a joint NASA-CNES satellite mission designed to provide insight in understanding of the role of aerosols and clouds in the climate system. This paper reports the study on the variation of cirrus cloud optical properties of over the Indian sub - continent for a period of two years from January 2009 to December 2010, using cloud-aerosol lidar and infrared pathfinder satellite observations (Calipso). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. It is found that during the south-west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. Also it is observed that the north-east monsoon periods had optical thick clouds hugging the coast line. The summer had large cloud formation in the Arabian Sea. It is also found that the land masses near to the sea had large cirrus presence. These cirrus clouds were of high altitude and optical depth. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometrical thickness are generally similar to the results derived from the ground-based lidar. However, the difference in macrophysical parameter variability shows the limits of space-borne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  18. Quantifying the Amount of Ice in Cold Tropical Cirrus Clouds

    Science.gov (United States)

    Avery, Melody A.; Winker, David M.; Garnier, Anne; Lawson, R. Paul; Heymsfield, Andrew J.; Mo, Qixu; Schoeberl, Mark R.; Woods, Sarah; Lance, Sara; Young, Stuart A.; Vaughan, Mark A.; Trepte, Charles R.

    2014-01-01

    How much ice is there in the Tropical Tropopause layer, globally? How does one begin to answer that question? Clouds are currently the largest source of uncertainty in climate models, and the ice water content (IWC) of cold cirrus clouds is needed to understand the total water and radiation budgets of the upper troposphere and lower stratosphere (UT/LS). The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, originally a "pathfinder" mission only expected to last for three years, has now been operational for more than eight years. Lidar data from CALIPSO can provide information about how IWC is vertically distributed in the UT/LS, and about inter-annual variability and seasonal changes in cloud ice. However, cloud IWC is difficult to measure accurately with either remote or in situ instruments because IWC from cold cirrus clouds is derived from the particle cross-sectional area or visible extinction coefficient. Assumptions must be made about the relationship between the area, volume and density of ice particles with various crystal habits. Recently there have been numerous aircraft field campaigns providing detailed information about cirrus ice water content from cloud probes. This presentation evaluates the assumptions made when creating the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) global IWC data set, using recently reanalyzed aircraft particle probe measurements of very cold, thin TTL cirrus from the 2006 CR-AVE.

  19. Modification of cirrus clouds to reduce global warming

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, David L; Finnegan, William, E-mail: david.mitchell@dri.ed [Desert Research Institute, Reno, NV 89512-1095 (United States)

    2009-10-15

    Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m{sup -2} and could neutralize the radiative forcing due to a CO{sub 2} doubling (3.7 W m{sup -2}). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.

  20. Statistics of vertical backscatter profile of cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Veglio

    2011-09-01

    Full Text Available A nearly global statistical analysis of vertical backscatter and extinction profiles of cirrus clouds collected by the CALIOP lidar, on-board of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, is presented.

    Statistics on frequency of occurrence and distributions of bulk properties of cirrus clouds in general and, for the first time, of horizontally homogeneous (on a 5-km field of view cirrus clouds only are provided. Annual and seasonal backscatter profiles (BSP are computed for the horizontally homogeneous cirri. Differences found in the day/night cases and for midlatitudes and tropics are studied in terms of the mean physical parameters of the clouds from which they are derived.

    The relation between cloud physical parameters (optical depth, geometrical thickness and temperature and the shape of the BSP is investigated. It is found that cloud geometrical thickness is the main parameter affecting the shape of the mean CALIOP BSP. Specifically, cirrus clouds with small geometrical thicknesses show a maximum in mean BSP curve placed near cloud top. As the cloud geometrical thickness increases the BSP maximum shifts towards cloud base. Cloud optical depth and temperature have smaller effect on the shape of the CALIOP BSPs. In general a slight increase in the BSP maximum is observed as cloud temperature and optical depth increase.

    In order to fit mean BSPs, as functions of geometrical thickness and position within the cloud layer, polynomial functions are provided. The impact on satellite radiative transfer simulations in the infrared spectrum when using either a constant ice-content (IWC along the cloud vertical dimension or an IWC profile derived from the BSP fitting functions is evaluated. It is, in fact, demonstrated that, under realistic hypotheses, the mean BSP is linearly proportional to the IWC profile.

  1. Statistics of vertical backscatter profiles of cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Veglio

    2011-12-01

    Full Text Available A nearly global statistical analysis of vertical backscatter and extinction profiles of cirrus clouds collected by the CALIOP lidar, on-board of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation, is presented.

    Statistics on frequency of occurrence and distribution of bulk properties of cirrus clouds in general and, for the first time, of horizontally homogeneous (on a 5-km field of view cirrus clouds only are provided. Annual and seasonal backscatter profiles (BSP are computed for the horizontally homogeneous cirri. Differences found in the day/night cases and for midlatitudes and tropics are studied in terms of the mean physical parameters of the clouds from which they are derived.

    The relationship between cloud physical parameters (optical depth, geometrical thickness and temperature and the shape of the BSP is investigated. It is found that cloud geometrical thickness is the main parameter affecting the shape of the mean CALIOP BSP. Specifically, cirrus clouds with small geometrical thicknesses show a maximum in mean BSP curve located near cloud top. As the cloud geometrical thickness increases the BSP maximum shifts towards cloud base. Cloud optical depth and temperature have smaller effects on the shape of the CALIOP BSPs. In general a slight increase in the BSP maximum is observed as cloud temperature and optical depth increase.

    In order to fit mean BSPs, as functions of geometrical thickness and position within the cloud layer, polynomial functions are provided. The impact on satellite radiative transfer simulations in the infrared spectrum when using either a constant ice-content (IWC along the cloud vertical dimension or an IWC profile derived from the BSP fitting functions is evaluated. It is, in fact, demonstrated that, under realistic hypotheses, the mean BSP is linearly proportional to the IWC profile.

  2. Why cirrus cloud seeding cannot substantially cool the planet

    Science.gov (United States)

    Gasparini, Blaž; Lohmann, Ulrike

    2016-05-01

    The net warming effect of cirrus clouds has driven part of the geoengineering research toward the idea of decreasing their occurrence frequency by seeding them with efficient ice nucleating particles. We study responses of cirrus clouds to simplified global seeding strategies in terms of their radiative fluxes with the help of the ECHAM-HAM general circulation model. Our cirrus scheme takes into account the competition between homogeneous and heterogeneous freezing, preexisting ice crystals, and the full spectrum of updraft velocities. While we find that the cirrus cloud radiative effect evaluated from our model is positive and large enough (5.7 W/m2) to confirm their geoengineering potential, none of the seeding strategies achieves a significant cooling due to complex microphysical mechanisms limiting their climatic responses. After globally uniform seeding is applied, we observe an increase in cirrus cloud cover, a decrease in ice crystal number concentration, and a decrease in ice crystal radius. An analysis of their respective radiative contributions points to the ice crystal radius decrease as the main factor limiting seeding effectiveness.

  3. Evidence of impact of aviation on cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    C. S. Zerefos

    2003-06-01

    Full Text Available This work examines changes in cirrus cloud cover in possible association with aviation activities at congested air corridors. The analysis is based on the latest version of the International Satellite Cloud Climatology Project D2 data set and covers the period 1984&ndash1998. Over areas with heavy air traffic, the effect of large-scale modes of natural climate variability such as ENSO, QBO and NAO as well as the possible influence of the tropopause variability, were first removed from the cloud data set in order to calculate long-term changes of observed cirrus cloudiness. The results show increasing trends in cirrus cloud coverage, between 1984 and 1998, over the high air traffic corridors of North America, North Atlantic and Europe, which in the summertime only over the North Atlantic are statistically significant at the 99.5% confidence level (2.6% per decade. In wintertime however, statistically significant changes at the 95% confidence level are found over North America, amounting to +2.1% per decade. Statistically significant increases at the 95% confidence level are also found for the annual mean cirrus cloud coverage over the North Atlantic air corridor (1.2% per decade. Over adjacent locations with lower air traffic, the calculated trends are statistically insignificant and in most cases negative both during winter and summer in regions studied. Moreover, it is shown that the longitudinal distribution of decadal changes in cirrus cloudiness along the latitude belt centered at the North Atlantic air corridor, parallels the spatial distribution of fuel consumption from highflying air traffic, providing an independent test of possible impact of aviation on contrail cirrus formation. Results from this study are compared with other studies and different periods of records and it appears as evidenced in this and in earlier studies that there exists general agreement on the aviation effect on high cloud trends.

  4. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    Energy Technology Data Exchange (ETDEWEB)

    Jayeshlal, G. S., E-mail: drssatyanarayana.malladi@gmail.com; Satyanarayana, Malladi, E-mail: drssatyanarayana.malladi@gmail.com; Dhaman, Reji K., E-mail: drssatyanarayana.malladi@gmail.com; Motty, G. S., E-mail: drssatyanarayana.malladi@gmail.com [Department of Optoelectronics, University of Kerala, Karyavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  5. Cirrus microphysics and radiative transfer: Cloud field study on October 28, 1986

    Science.gov (United States)

    Kinne, Stefan; Ackerman, Thomas P.; Heymsfield, Andrew J.; Valero, Francisco P. J.; Sassen, Kenneth; Spinhirne, James D.

    1990-01-01

    The radiative properties of cirrus clouds present one of the unresolved problems in weather and climate research. Uncertainties in ice particle amount and size and, also, the general inability to model the single scattering properties of their usually complex particle shapes, prevent accurate model predictions. For an improved understanding of cirrus radiative effects, field experiments, as those of the Cirrus IFO of FIRE, are necessary. Simultaneous measurements of radiative fluxes and cirrus microphysics at multiple cirrus cloud altitudes allows the pitting of calculated versus measured vertical flux profiles; with the potential to judge current cirrus cloud modeling. Most of the problems in this study are linked to the inhomogeneity of the cloud field. Thus, only studies on more homogeneous cirrus cloud cases promises a possibility to improve current cirrus parameterizations. Still, the current inability to detect small ice particles will remain as a considerable handicap.

  6. Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: a case study over Tsukuba

    Directory of Open Access Journals (Sweden)

    A. Bril

    2011-11-01

    Full Text Available Lidar observations of vertical profiles of aerosols and thin cirrus clouds were made at Tsukuba (36.1° N, 140.1° E, Japan, to investigate the influence of aerosols and thin cirrus clouds on the column-averaged dry-air mole fraction of carbon dioxide (XCO2 retrieved from observation data of the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer, measured in the Short-Wavelength InfraRed band (TANSO-FTS SWIR, onboard the Greenhouse gases Observing SATellite (GOSAT. The lidar system measured the backscattering ratio, depolarization ratio, and/or the wavelength exponent of atmospheric particles. The lidar observations and ground-based high-resolution FTS measurements at the Tsukuba Total Carbon Column Observing Network (Tsukuba TCCON site were recorded simultaneously during passages of GOSAT over Tsukuba. GOSAT SWIR XCO2 data (version 01.xx released in August 2010 were compared with the lidar and Tsukuba TCCON data. High-altitude aerosols and thin cirrus clouds had a large impact on the GOSAT SWIR XCO2 results. By taking into account the observed aerosol/cirrus vertical profiles and using a more adequate solar irradiance database in the GOSAT SWIR retrieval, the difference between the GOSAT SWIR XCO2 data and the Tsukuba TCCON data was greatly reduced.

  7. Microphysical properties of contrails and natural cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, B.; Wendling, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany)

    1997-12-31

    The radiative properties of a condensation trail (contrail) are determined by its microphysical properties. Therefore an understanding of the concentration, size distribution, and shapes of the particles is necessary for an estimation of the climatic impact of contrails. In-situ particle measurements by use of an ice replicator are presented for several contrail and cirrus events. Contrail particles aged about 2 minutes show shapes which are nearly spherical. Typical sizes are 5 to 10 {mu}m. Concentration values reach up to the order of 1000 cm{sup -3}. Aged contrail size distributions are within the variability of those found in natural cirrus clouds. (author) 2 refs.

  8. Can cirrus cloud seeding be used for geoengineering?

    Science.gov (United States)

    Penner, Joyce E.; Zhou, Cheng; Liu, Xiaohong

    2015-10-01

    Cirrus cloud seeding has been proposed as a possible technique that might thin cirrus clouds leading to reduced heating. The technique was shown to be viable in one model evaluation. Here we use an updated version of the Community Atmosphere Model version 5 (CAM5) and reevaluate whether seeding is a viable mechanism for cooling. We explore different model setups (with and without secondary organic aerosols acting as heterogeneous ice nuclei). None of the updated versions of the CAM5 lead to a significant amount of negative climate forcing and hence do not lead to cooling. We only calculate a net negative cloud forcing (-0.74 ± 0.25 W m-2) if we restrict the modeled subgrid-scale updraft velocity during nucleation to <0.2 m s-1 and if the deposition of water vapor onto preexisting ice crystals during nucleation is not included. Hence, we do not find that cirrus cloud seeding is a viable climate intervention technique.

  9. Modification of cirrus clouds to reduce global warming

    Science.gov (United States)

    Mitchell, D. L.

    2009-12-01

    Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous freezing nucleation dominates). Weather modification research has developed ice nucleating substances that are extremely effective at these cold temperatures, are non-toxic and are relatively inexpensive. The seeding material could be released in both clear and cloudy conditions to build up a background concentration of efficient ice nuclei so that non-contrail cirrus will experience these nuclei and grow larger ice crystals. Flight corridors are denser in the high- and mid-latitudes where global warming is more severe. A risk with any geoengineering experiment is that it could affect climate in unforeseen ways, causing more harm than good. Since seeding aerosol residence times in the troposphere are 1-2 weeks, the climate might return back to its normal state within a few months after stopping the geoengineering. A drawback to this approach is that it would not stop ocean acidification. It may not have many of the draw-backs that

  10. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  11. The Three-Dimensional Spatial Structure of Cirrus Clouds Determined from Lidar Satellite Observations

    Science.gov (United States)

    Eloranta, E. W.; Wylie, D.; Wolf, W.

    1996-01-01

    Simultaneous imagery from the University of Wisconsin Volume Imaging Lidar (VIL) and meteorological satellites were used to quantify the spatial structure of cirrus clouds with 60 m resolution. This data was used to determine the spatial distributions of cloud base altitude, cloud top altitude, and mid-cloud altitude. Two dimensional auto-correlation functions describing the mean shape of cirrus clouds were computed. Because cirrus clouds seldom have distinct edges, these correlation functions are derived as a function of a threshold value which defines the cloud edge.

  12. Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: a case study over Tsukuba

    Directory of Open Access Journals (Sweden)

    A. Bril

    2012-04-01

    Full Text Available Lidar observations of vertical profiles of aerosols and thin cirrus clouds were made at Tsukuba (36.05° N, 140.12° E, Japan, to investigate the influence of aerosols and thin cirrus clouds on the column-averaged dry-air mole fraction of carbon dioxide (XCO2 retrieved from observation data of the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer, measured in the Short-Wavelength InfraRed band (TANSO-FTS SWIR, onboard the Greenhouse gases Observing SATellite (GOSAT. The lidar system measured the backscattering ratio, depolarization ratio, and/or the wavelength exponent of atmospheric particles. The lidar observations and ground-based high-resolution FTS measurements at the Tsukuba Total Carbon Column Observing Network (Tsukuba TCCON site were recorded simultaneously during passages of GOSAT over Tsukuba. GOSAT SWIR XCO2 data (Version 01.xx released in August 2010 were compared with the lidar and Tsukuba TCCON data. High-altitude aerosols and thin cirrus clouds had a large impact on the GOSAT SWIR XCO2 results. By taking into account the observed aerosol/cirrus vertical profiles and using a more adequate solar irradiance database in the GOSAT SWIR retrieval, the difference between the GOSAT SWIR XCO2 data and the Tsukuba TCCON data was reduced. The 3-band retrieval approach where the aerosol and cirrus profiles were retrieved gave us the best results and the retrieved XCO2 data followed the seasonal cycle of ~8 ppm observed at Tsukuba TCCON site.

  13. 3D reconstruction of tropospheric cirrus clouds by stereovision system

    Science.gov (United States)

    Nadjib Kouahla, Mohamed; Moreels, Guy; Seridi, Hamid

    2016-07-01

    A stereo imaging method is applied to measure the altitude of cirrus clouds and provide a 3D map of the altitude of the layer centroid. They are located in the high troposphere and, sometimes in the lower stratosphere, between 6 and 10 km high. Two simultaneous images of the same scene are taken with Canon cameras (400D) in two sites distant of 37 Km. Each image processed in order to invert the perspective effect and provide a satellite-type view of the layer. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a correlation coefficient (ZNCC: Zero mean Normalized Cross-correlation or ZSSD: as Zero mean Sum of Squared Differences). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in June 2014 in France. The images were taken simultaneously at Marnay (47°17'31.5" N, 5°44'58.8" E; altitude 275 m) 25 km northwest of Besancon and in Mont poupet (46°58'31.5" N, 5°52'22.7" E; altitude 600 m) southwest of Besancon at 43 km. 3D maps of the Natural cirrus clouds and artificial like "aircraft trails" are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the cirrus barycenter is located at 8.5 ± 1km on June 11.

  14. Cirrus cloud retrieval from MSG/SEVIRI during day and night using artificial neural networks

    Science.gov (United States)

    Strandgren, Johan; Bugliaro, Luca

    2017-04-01

    By covering a large part of the Earth, cirrus clouds play an important role in climate as they reflect incoming solar radiation and absorb outgoing thermal radiation. Nevertheless, the cirrus clouds remain one of the largest uncertainties in atmospheric research and the understanding of the physical processes that govern their life cycle is still poorly understood, as is their representation in climate models. To monitor and better understand the properties and physical processes of cirrus clouds, it's essential that those tenuous clouds can be observed from geostationary spaceborne imagers like SEVIRI (Spinning Enhanced Visible and InfraRed Imager), that possess a high temporal resolution together with a large field of view and play an important role besides in-situ observations for the investigation of cirrus cloud processes. CiPS (Cirrus Properties from Seviri) is a new algorithm targeting thin cirrus clouds. CiPS is an artificial neural network trained with coincident SEVIRI and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations in order to retrieve a cirrus cloud mask along with the cloud top height (CTH), ice optical thickness (IOT) and ice water path (IWP) from SEVIRI. By utilizing only the thermal/IR channels of SEVIRI, CiPS can be used during day and night making it a powerful tool for the cirrus life cycle analysis. Despite the great challenge of detecting thin cirrus clouds and retrieving their properties from a geostationary imager using only the thermal/IR wavelengths, CiPS performs well. Among the cirrus clouds detected by CALIOP, CiPS detects 70 and 95 % of the clouds with an optical thickness of 0.1 and 1.0 respectively. Among the cirrus free pixels, CiPS classify 96 % correctly. For the CTH retrieval, CiPS has a mean absolute percentage error of 10 % or less with respect to CALIOP for cirrus clouds with a CTH greater than 8 km. For the IOT retrieval, CiPS has a mean absolute percentage error of 100 % or less with respect to

  15. Parameterization of cirrus optical depth and cloud fraction

    Energy Technology Data Exchange (ETDEWEB)

    Soden, B. [Princeton Univ., Princeton, NJ (United States)

    1995-09-01

    This research illustrates the utility of combining satellite observations and operational analysis for the evaluation of parameterizations. A parameterization based on ice water path (IWP) captures the observed spatial patterns of tropical cirrus optical depth. The strong temperature dependence of cirrus ice water path in both the observations and the parameterization is probably responsible for the good correlation where it exists. Poorer agreement is found in Southern Hemisphere mid-latitudes where the temperature dependence breaks down. Uncertainties in effective radius limit quantitative validation of the parameterization (and its inclusion into GCMs). Also, it is found that monthly mean cloud cover can be predicted within an RMS error of 10% using ECMWF relative humidity corrected by TOVS Upper Troposphere Humidity. 1 ref., 2 figs.

  16. A modelling study of moisture redistribution by thin cirrus clouds

    Directory of Open Access Journals (Sweden)

    T. Dinh

    2014-05-01

    Full Text Available A high resolution 2-dimensional numerical model is used to study the moisture redistribution following homogeneous ice nucleation induced by Kelvin waves in the tropical tropopause layer (TTL. We compare results for dry/moist initial conditions, and three levels of complexity for the representation of cloud processes: full bin microphysics and radiative effects of the ice, ditto but without radiative effects, and instantaneous removal of moisture in excess of saturation upon nucleation. Cloud evolution and the profiles of moisture redistribution are found to be sensitive to initial conditions and cloud processes. Ice sedimentation leads to a downward flux of water. On the other hand, the cloud radiative heating induces upward advection of the cloudy air. This results in an upward flux of water vapour if the cloudy air is moister (or drier than the environment, which is typically when the environment is subsaturated (or supersaturated. The numerical results show that only a small fraction (less than 25% of the cloud experiences nucleation. Sedimentation and reevaporation are important, and hydrated layers in observation may be as good an indicator as dehydrated layers for the occurrence of thin cirrus clouds. The calculation with instantaneous removal of condensates misses the hydration by construction, but also underestimates dehydration due to lack of moisture removal from sedimenting particles below the nucleation level, and due to nucleation before reaching the minimum saturation mixing ratio. The sensitivity to initial conditions and cloud processes suggests that it is difficult to reach generic, quantitative conclusions regarding the role of thin cirrus clouds for the moisture distribution in the TTL and stratosphere.

  17. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  18. Understanding Seasonal Variability in thin Cirrus Clouds from Continuous MPLNET Observations at GSFC in 2012

    Science.gov (United States)

    Lolli, Simone; Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Gu, Y.

    2016-06-01

    Optically thin cirrus cloud (optical depth effect can outweigh the infrared greenhouse effect, cooling the earthatmosphere system rather than warming it exclusively. As result, based on latitude, the net forcing of sub-visible cirrus clouds can be more accurately parameterized in climate models.

  19. Distinguishing cirrus cloud presence in autonomous lidar measurements

    Directory of Open Access Journals (Sweden)

    J. R. Campbell

    2014-07-01

    Full Text Available Level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP satellite-based cloud datasets from 2012 are investigated for metrics that help distinguish the cirrus cloud presence of in autonomous lidar measurements, using temperatures, heights, optical depth and phase. A thermal threshold, proposed by Sassen and Campbell (2001; SC2001 for cloud top temperature Ttop ≤ −37 °C, is evaluated vs. CALIOP algorithms that identify ice-phase cloud layers alone using depolarized backscatter. Global mean cloud top heights (11.15 vs. 10.07 km a.m.s.l., base heights (8.76 vs. 7.95 km a.m.s.l., temperatures (−58.48 °C vs. −52.18 °C and −42.40 °C vs. −38.13 °C, respectively for tops and bases and optical depths (1.18 vs. 1.23 reflect the sensitivity to these competing constraints. Over 99% of all Ttop ≤ −37 °C clouds are classified as ice by CALIOP Level 2 algorithms. Over 81% of all ice clouds correspond with Ttop ≤ −37 °C. For instruments lacking polarized measurements, and thus practical phase estimates, Ttop ≤ −37 °C proves stable for distinguishing cirrus, as opposed to the risks of glaciated liquid water cloud contamination occurring in a given sample from clouds identified at warmer temperatures. Uncertainties in temperature profiles use to collocate with lidar data (i.e., model reanalyses/sondes may justifiably relax the Ttop ≤ −37 °C threshold to include warmer cases. The ambiguity of "warm" (Ttop > −37 °C ice cloud genus cannot be reconciled completely with available measurements, however, conspicuously including phase. Cloud top heights and optical depths are evaluated as potential constraints, as functions of CALIOP-retrieved phase. However, these data provide, at best, additional constraint in regional samples, compared with temperature alone, and may exacerbate classification uncertainties overall globally.

  20. Airborne lidar observations of cirrus clouds in the Tropics, Mid-latitudes, and the Arctic

    Science.gov (United States)

    Ismail, S.; Browell, E.; Ferrare, R.; Grant, W.; Kooi, S.; Brackett, V.; Mahoney, M.

    2003-04-01

    Airborne lidar systems have demonstrated an unsurpassed capability to detect and profile optically thin cirrus. The airborne Lidar Atmospheric Sensing Experiment (LASE) has demonstrated a capability to detect thin cirrus at aerosol scattering levels of latitudes. LASE data from these field experiments have been used to characterize the cirrus as thin laminae, thick cirrus, deep convective cirrus, and cirrus anvils. In addition, characteristics including the cloud top height, optical depth, aerosol scattering ratio, lidar extinction-to-backscatter ratio have been derived for optically thin cirrus. During these field experiments, many data sets were available to interpret the cirrus cloud properties including data from satellites, in situ temperature and moisture instruments on aircraft, radiosondes, and during some field experiments, the Microwave Temperature Profiler (MTP). LASE data from long-range flights have been used to derive a relationship between the latitudinal variation of cloud top heights and tropopause locations. These measurements were also used to examine the relationship between relative humidity and the presence of cirrus. LASE observations of cirrus clouds and water vapor fields have also been used to identify dynamical processes like stratosphere-troposphere exchange and to study their characteristics. Examples of these observations and analyses are presented to demonstrate the advantage of using LASE measurements for conducting atmospheric science investigations.

  1. CSIR NLC mobile lidar observation of cirrus cloud

    CSIR Research Space (South Africa)

    Sivakumar, V

    2011-09-01

    Full Text Available and with less frequent content of super-cooled water. Apart from the cirrus cloud observations, the figure clearly illustrates the temporal evolution of the planetary boundary layer (PBL). At the beginning of the observation, the PBL is observed... at the height range just above 2 km and later it gradually decreased to 1.2 ? 1.5 km during the middle of the observation. Thereafter, a slow increase in the PBL is noted indicating the decrease in atmosphere stability. It is important to note here...

  2. Evidence of impact of aviation on cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    C. S. Zerefos

    2003-01-01

    Full Text Available This work examines changes in cirrus cloud cover (CCC in possible association with aviation activities at congested air corridors. The analysis is based on the latest version of the International Satellite Cloud Climatology Project D2 data set and covers the period 1984-1998. Over the studied areas, the effect of large-scale modes of natural climate variability such as ENSO, QBO and NAO as well as the possible influence of the tropopause variability, were first removed from the cloud data set in order to calculate long-term changes of observed cirrus cloudiness. The results show increasing trends in (CCC between 1984 and 1998 over the high air traffic corridors of North America, North Atlantic and Europe. Of these upward trends, only in the summertime over the North Atlantic and only in the wintertime over North America are statistically significant (exceeding +2.0% per decade. Over adjacent locations with low air traffic, the calculated trends are statistically insignificant and in most cases negative both during winter and summer in the regions studied. These negative trends, over low air traffic regions, are consistent with the observed large scale negative trends seen in (CCC over most of the northern middle latitudes and over the tropics. Moreover, further investigation of vertical velocities over high and low air traffic regions provide evidence that the trends of opposite signs in (CCC over these regions, do not seem to be caused by different trends in dynamics. It is also shown that the longitudinal distribution of decadal changes in (CCC along the latitude belt centered at the North Atlantic air corridor, parallels the spatial distribution of fuel consumption from highflying air traffic, providing an independent test of possible impact of aviation on contrail cirrus formation. The correlation between the fuel consumption and the longitudinal variability of (CCC is significant (+0.7 over the middle latitudes but not over the tropics

  3. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

    Science.gov (United States)

    Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas

    2016-06-01

    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ change in cloud morphology at Jungfraujoch above ˜ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected here have a positive CRFNET. This confirms that these thin, high cirrus have a warming effect on the Earth's climate, whereas cooling clouds typically have cloud edges too low in altitude to satisfy the FLICA criterion of temperatures below -38 °C. We find CRFNET = 0.9 W m-2 for Jungfraujoch and 1.0 W m-2 (1.7 W m-2) for Zürich (Jülich). Further, we calculate that subvisible cirrus (τ < 0.03) contribute about 5 %, thin cirrus (0.03 < τ < 0.3) about 45 %, and opaque cirrus (0.3 < τ) about 50 % of the total cirrus radiative forcing.

  4. Properties of subvisible cirrus clouds formed by homogeneous freezing

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2002-04-01

    Full Text Available Number concentrations and mean sizes of ice crystals and derived microphysical and optical properties of subvisible cirrus clouds (SVCs formed by homogeneous freezing of supercooled aerosols are investigated as a function of temperature and updraft speed of adiabatically ascending air parcels. The properties of such clouds are insensitive to variations of the aerosol number and size distribution. Based on criteria constraining the optical extinction, sedimentation time, and existence time of SVCs, longer-lived (>10 min clouds, capable of exerting a measurable radiative or chemical impact, are generated within a narrow range of updraft speeds below 1 - 2 cm s -1 at temperatures below about 215K, with concentrations of ice crystals not exceeding 0.1 cm-3. The clouds do not reach an equilibrium state because the ice crystals sediment out of the formation layer typically before the supersaturation is removed. Given these results, it seems likely that a limited number (<0.1 cm-3 of effective heterogeneous freezing nuclei that nucleate ice below the homogeneous freezing threshold can control the formation and properties of SVCs, although homogeneous freezing nuclei are far more abundant.

  5. A combined atmospheric radiative transfer (CART) model and its applications for cirrus clouds simulations

    Science.gov (United States)

    Wei, Heli; Cao, Ya'nan; Chen, Xiuhong

    2012-11-01

    A fast atmospheric radiative transfer model called Combined Atmospheric Radiative Transfer model (CART) has been developed to rapidly calculate atmospheric transmittance and background radiance in the wavenumber range from 1 to 25000 cm-1 with spectral resolution of 1 cm-1. The spectral radiative properties of cirrus clouds at various effective sizes, optical thicknesses, and altitudes from visible to infrared wavelength region are simulated using the CART. The analyses show that the properties of cirrus clouds might be retrieved from the satellite-base spectral characteristics of cirrus clouds based on these simulations.

  6. Revisiting the iris effect of tropical cirrus clouds with TRMM and A-Train satellite data

    Science.gov (United States)

    Choi, Yong-Sang; Kim, WonMoo; Yeh, Sang-Wook; Masunaga, Hirohiko; Kwon, Min-Jae; Jo, Hyun-Su; Huang, Lei

    2017-06-01

    Just as the iris of human eye controls the light influx (iris effect), tropical anvil cirrus clouds may regulate the Earth's surface warming by controlling outgoing longwave radiation. This study examines this possible effect with monthly satellite observations such as Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer cirrus fraction, and Clouds and the Earth's Radiant Energy System top-of-the-atmosphere radiative fluxes averaged over different tropical domains from March 2000 to October 2014. To confirm that high-level cirrus is relevant to this study, Cloud-Aerosol Lidar with Orthogonal Polarization high cloud observations were also analyzed from June 2006 to December 2015. Our analysis revealed that the increase in sea surface temperature in the tropical western Pacific tends to concentrate convective cloud systems. This concentration effect very likely induces the significant reduction of both stratiform rain rate and cirrus fraction, without appreciable change in the convective rain rate. This reduction of stratiform rain rate and cirrus fraction cannot be found over its subregion or the tropical eastern Pacific, where the concentration effect of anvil cirrus is weak. Consistently, over the tropical western Pacific, the higher ratio of convective rain rate to total rain rate (i.e., precipitation efficiency) significantly correlates with warmer sea surface temperature and lower cirrus fraction. The reduced cirrus eventually increased outgoing longwave radiation to a greater degree than absorbed solar radiation. Finally, the negative relationship between precipitation efficiency and cirrus fraction tends to correspond to a low global equilibrium climate sensitivity in the models in the Coupled Model Intercomparison Project Phase 5. This suggests that tropical anvil cirrus clouds exert a negative climate feedback in strong association with precipitation efficiency.

  7. Techniques for the measurements of the line of sight velocity of high altitude Barium clouds

    Science.gov (United States)

    Mende, S. B.

    1981-01-01

    It is demonstrated that for maximizing the scientific output of future ion cloud release experiments a new type of instrument is required which will measure the line of sight velocity of the ion cloud by the Doppler Technique. A simple instrument was constructed using a 5 cm diameter solid Fabry-Perot etalon coupled to a low light level integrating television camera. It was demonstrated that the system has both the sensitivity and spectral resolution for the detection of ion clouds and the measurement of their line of sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check the sensitivity, (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than about 1 kilorayleigh and it had a wavelength resolution much better than .2A which corresponds to about 12 km/sec or an acceleration potential of 100 volts.

  8. Microphysical properties of cirrus clouds between 75°N and 25°S derived from extensive airborne in-situ observations

    Science.gov (United States)

    Krämer, Martina

    2016-04-01

    Numerous airborne field campaigns were performed in the last decades to record cirrus clouds microphysical properties. Beside the understanding of the processes of cirrus formation and evolution, an additional motivation for those studies is to provide a database to evaluate the representation of cirrus clouds in global climate models. This is of importance for an improved certainty of climate predictions, which are affected by the poor understanding of the microphysical processes of ice clouds (IPCC, 2013). To this end, the observations should ideally cover the complete respective parameter range and not be influenced by instrumental artifacts. However, due to the difficulties in measuring cirrus properties on fast-flying, high-altitude aircraft, some issues with respect to the measurements %evolved have arisen. In particular, concerns about the relative humidity in and around cirrus clouds and the ice crystal number concentrations were under discussion. Too high ice supersaturations as well as ice number concentrations were often reported. These issues have made more challenging the goal of compiling a large database using data from a suite of different instruments that were used on different campaigns. In this study, we have have addressed these challenges and compiled a large data set of cirrus clouds, sampled during eighteen field campaigns between 75°N and 25°S, representing measurements fulfilling the above mentioned requirements. The most recent campaigns were performed in 2014; namely, the ATTREX campaign with the research aircraft Global Hawk and the ML-CIRRUS and ACRIDICON campaigns with HALO. % The observations include ice water content (IWC: 130 hours of observations), ice crystal numbers (N_ice: 83 hours), ice crystal mean mass size (Rice: 83 hours) and relative humidity (RH_ice) in- and outside of cirrus clouds (78 and 140 hours). % We will present the parameters as PDFs versus temperature and derive medians and core ranges (including the most

  9. Study of Ice Crystal Orientation in Cirrus Clouds based on Satellite Polarized Radiance Measurements

    OpenAIRE

    Noel, Vincent; Chepfer, Hélène

    2004-01-01

    International audience; The goal of this paper is to retrieve information about ice particle orientation in cirrus clouds. This is achieved by comparing simulations of sunlight reflection on a cirrus cloud with measurements of polarized radiances from the spaceborne instrument Polarization and Directionality of the Earth's Reflectance (POLDER-1) on Advanced Earth Observing Satellite-1 (ADEOS-1). Results show that horizontal orientation of cr ystals can be spotted by the presence of a local ma...

  10. Measurement of the line-of-sight velocity of high-altitude barium clouds A technique

    Science.gov (United States)

    Mende, S. B.; Harris, S. E.

    1982-01-01

    It is demonstrated that for maximizing the scientific output of future ionospheric and magnetospheric ion cloud release experiments a new type of instrument is required which will measure the line-of-sight velocity of the ion cloud by the Doppler technique. A simple instrument was constructed using a 5-cm diam solid Fabry-Perot etalon coupled to a low-light-level integrating TV camera. It was demonstrated that the system has both the sensitivity and spectral resolution for detection of ion clouds and measurement of their line-of-sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check sensitivity, and (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than approximately 1 kR, and it had a wavelength resolution much better than 0.2 A, which corresponds to approximately 12 km/sec or in the case of barium ion an acceleration potential of 100 V. The instrument is rugged and, therefore, simple to use in field experiments or on flight instruments. The sensitivity limit of the instrument can be increased by increasing the size of the etalon.

  11. Cirrus Cloud Macrophysical and Optical Properties over North China from CALIOP Measurements

    Institute of Scientific and Technical Information of China (English)

    MIN Min; WANG Pucai; James R. CAMPBELL; ZONG Xuemei; XIA Junrong

    2011-01-01

    Two years of mid-latitude cirrus cloud macrophysical and optical properties over North China are described from Earth-orbiting Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite measurements. Global cloud climatological studies based on active remote sensing data sets benefit from more accurate resolution of vertical structure and more reliable detection of optically thin layers. The mean values for cirrus cases over North China are 0.19-0.18 for infrared emittance, 0.41±0.68 for visible optical depth,0.26±0.12 for integrated depolarization ratio, and 0.72±0.22 for integrated color ratio. When studied using reasonable assumptions for the relationship between extinction and ice crystal backscatter coefficients, our results show that most of the cirrus clouds profiled using the 0.532 μm channel data stream correspond with an optical depth of less than 1.0. The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometry thickness are generally similar to the results derived from the ground-based lidar,which are mainly impacted by the adiabatic process on the ice cloud content. However, the differences in macrophysical parameter variability indicate the limits of spaceborne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  12. Cirrus Cloud Macrophysical and Optical Properties over North China from CALIOP Measurements

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Two years of mid-latitude cirrus cloud macrophysical and optical properties over North China are described from Earth-orbiting Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) satellite measurements. Global cloud climatological studies based on active remote sensing data sets benefit from more accurate resolution of vertical structure and more reliable detection of optically thin layers.The mean values for cirrus cases over North China are 0.19±0.18 for infrared emittance,0.41±0.68 for visible optical depth, 0.26±0.12 for integrated depolarization ratio,and 0.72±0.22 for integrated color ratio.When studied using reasonable assumptions for the relationship between extinction and ice crystal backscatter coefficients,our results show that most of the cirrus clouds profiled using the 0.532μm channel data stream correspond with an optical depth of less than 1.0.The dependence of cirrus cloud properties on cirrus cloud mid-cloud temperature and geometry thickness are generally similar to the results derived from the ground-based lidar, which are mainly impacted by the adiabatic process on the ice cloud content.However,the differences in macrophysical parameter variability indicate the limits of spaceborne-lidar and dissimilarities in regional climate variability and the nature and source of cloud nuclei in different geographical regions.

  13. Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity

    Directory of Open Access Journals (Sweden)

    W. Haag

    2003-06-01

    Full Text Available Factors controlling the distribution of relative humidity above ice saturation in the upper troposphere and lower stratosphere in the presence of cirrus clouds are examined with the help of microphysical trajectory simulations using a box model. Our findings are related to results from recent field campaigns and global model studies. We suggest that the relative humidities at which ice crystals form in the atmosphere can be inferred from in situ measurements of water vapor and temperature close to, but outside of, cirrus clouds. The comparison with similar measurements performed inside cirrus clouds provides a clue to freezing mechanisms active in cirrus. The comparison with field data reveals distinct interhemispheric differences in cirrus cloud freezing thresholds. Combining the present findings with recent results addressing the frequency distributions of updraft speeds and cirrus ice crystal number densities (Kärcher and Ström, 2993} provides evidence for the existence of complex heterogeneous freezing mechanisms in cirrus, at least in the polluted northern hemisphere, and further emphasizes the key role of gravity wave-induced dynamical variability in vertical air motion at the mesoscale. The key features of distributions of upper tropospheric relative humidity simulated by a global climate model are shown to be in general agreement with both, microphysical simulations and field observations, delineating a feasible method to include and validate ice supersaturation in other large-scale models of the atmosphere, in particular chemistry-transport and weather forecast models.

  14. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    Science.gov (United States)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  15. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W, located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio and macrophysical (top/base heights and thickness properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable LR value in CALIOP inversion procedures.

  16. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Ochoa, Héctor; Gil-Ojeda, Manuel

    2016-06-01

    Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W), located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW) in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio) and macrophysical (top/base heights and thickness) properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable) LR value in CALIOP inversion procedures.

  17. Particle backscatter and relative humidity measured across cirrus clouds and comparison with state-of-the-art cirrus modelling

    Directory of Open Access Journals (Sweden)

    M. Brabec

    2012-04-01

    Full Text Available Advanced measurement and modelling techniques are employed to determine the partitioning of atmospheric water between the gas phase and the condensed phase in and around cirrus clouds, and thus to identify in-cloud and out-of-cloud supersaturations with respect to ice. In November 2008 the newly developed balloon-borne backscatter sonde COBALD (Compact Optical Backscatter and AerosoL Detector was flown 14 times together with a CFH (Cryogenic Frost point Hygrometer from Lindenberg, Germany (52° N, 14° E. The case discussed here in detail shows two cirrus layers with in-cloud relative humidities with respect to ice between 50% and 130%. Global operational analysis data of ECMWF (roughly 1° × 1° horizontal and 1 km vertical resolution, 6-hourly stored fields fail to represent ice water contents and relative humidities. Conversely, regional COSMO-7 forecasts (6.6 km × 6.6 km, 5-min stored fields capture the measured humidities and cloud positions remarkably well. The main difference between ECMWF and COSMO data is the resolution of small-scale vertical features responsible for cirrus formation. Nevertheless, ice water contents in COSMO-7 are still off by factors 2–10, likely reflecting limitations in COSMO's ice phase bulk scheme. Significant improvements can be achieved by comprehensive size-resolved microphysical and optical modelling along backward trajectories based on COSMO-7 wind and temperature fields, which allow accurate computation of humidities, ice particle size distributions and backscatter ratios at the COBALD wavelengths. However, only by superimposing small-scale temperature fluctuations, which remain unresolved by the NWP models, can we obtain a satisfying agreement with the observations and reconcile the measured in-cloud non-equilibrium humidities with conventional ice cloud microphysics.

  18. Birds of a high-altitude cloud forest in Alta Verapaz, Guatemala.

    Science.gov (United States)

    Eisermann, Knut; Schulz, Ulrich

    2005-01-01

    The Northern Central American Highlands have been recognized as endemic bird area, but little is known about bird communities in Guatemalan cloud forests. From 1997 to 2001 a total of 142 bird species were recorded between 2000 and 2400 masl in cloud forest and agricultural clearings on Montaña Caquipec (Alta Verapaz, Guatemala). The bird community is described based on line transect counts within the forest. Pooling census data from undisturbed and disturbed forest, the Gray-breasted Wood-Wren (Henicorhina leucophrys) was found to be the most abundant species, followed in descending order by the Common Bush-Tanager (Chlorospingus ophthalmicus), the Paltry Tyrannulet (Zimmerius vilissimus), the Yellowish Flycatcher (Empidonax flavescens), the Ruddy-capped Nightingale-Thrush (Catharus frantzi), and the Amethyst-throated Hummingbird (Lampornis amethystinus). Bird communities in undisturbed and disturbed forest were found to be similar (Serensen similarity index 0.85), indicating low human impact. Of all recorded species, approximately 27% were Nearctic-Neotropical migratory birds. The most abundant one was the Wilson's Warbler (Wilsonia pusilla). The Montaña Caquipec is an important area for bird conservation, which is indicated by the presence of four species listed in the IUCN Red List (Highland Guan Penelopina nigra, Resplendent Quetzal Pharomachrus mocinno, Pink-headed Warbler Ergaticus versicolor, Golden-cheeked Warbler Dendroica chrysoparia), and 42 Mesoamerican endemics, of which 14 species are endemic to the Central American Highlands. The results presented here will be useful as baseline data for a long-term monitoring.

  19. Understanding Seasonal Variability in thin Cirrus Clouds from Continuous MPLNET Observations at GSFC in 2012

    Directory of Open Access Journals (Sweden)

    Lolli Simone

    2016-01-01

    Full Text Available Optically thin cirrus cloud (optical depth < 0.3 net radiative forcing represents one of the primary uncertainties in climate feedback, as sub-visible clouds play a fundamental role in atmospheric radiation balance and climate change. A lidar is a very sensitive optical device to detect clouds with an optical depth as low as 10−4. In this paper we assess the daytime net radiative forcing of subvisible cirrus clouds detected at Goddard Space Flight Center, a permanent observational site of the NASA Micro Pulse Lidar Network in 2012. Depending on their height, season and hour of the day, the solar albedo effect can outweigh the infrared greenhouse effect, cooling the earthatmosphere system rather than warming it exclusively. As result, based on latitude, the net forcing of sub-visible cirrus clouds can be more accurately parameterized in climate models.

  20. Birds of a high-altitude cloud forest in Alta Verapaz, Guatemala

    Directory of Open Access Journals (Sweden)

    Knut Eisermann

    2005-09-01

    Full Text Available The Northern Central American Highlands have been recognized as endemic bird area, but little is known about bird communities in Guatemalan cloud forests. From 1997 to 2001 a total of 142 bird species were recorded between 2 000 and 2 400 masl in cloud forest and agricultural clearings on Montaña Caquipec (Alta Verapaz, Guatemala. The bird community is described based on line transect counts within the forest. Pooling census data from undisturbed and disturbed forest, the Gray-breasted Wood-Wren (Henicorhina leucophrys was found to be the most abundant species, followed in descending order by the Common Bush-Tanager (Chlorospingus ophthalmicus, the Paltry Tyrannulet (Zimmerius vilissimus, the Yellowish Flycatcher (Empidonax flavescens, the Ruddy-capped Nightingale-Thrush (Catharus frantzii, and the Amethyst-throated Hummingbird (Lampornis amethystinus. Bird communities in undisturbed and disturbed forest were found to be similar (Sørensen similarity index 0.85, indicating low human impact. Of all recorded species, ~27% were Nearctic-Neotropical migratory birds. The most abundant one was the Wilson’s Warbler (Wilsonia pusilla. The Montaña Caquipec is an important area for bird conservation, which is indicated by the presence of four species listed in the IUCN Red List (Highland Guan Penelopina nigra, Resplendent Quetzal Pharomachrus mocinno, Pink-headed Warbler Ergaticus versicolor, Golden-cheeked Warbler Dendroica chrysoparia, and 42 Mesoamerican endemics, of which 14 species are endemic to the Central American Highlands. The results presented here will be useful as baseline data for a long-term monitoring. Rev. Biol. Trop. 53(3-4: 577-594. Epub 2005 Oct 3.Las alturas del norte de Centroamérica han sido reconocidas como región de aves endémicas, pero se conoce poco sobre las comunidades de aves en bosques nubosos de Guatemala. De 1997 a 2001 se han detectado 142 especies de aves entre 2 000 y 2 400 msnm en el bosque nuboso y áreas agr

  1. Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer.

    Science.gov (United States)

    Sassen, K; Mace, G G; Hallett, J; Poellot, M R

    1998-03-20

    A high (14.0-km), cold (-71.0 degrees C) cirrus cloud was studied by ground-based polarization lidar and millimeter radar and aircraft probes on the night of 19 April 1994 from the Cloud and Radiation Testbed site in northern Oklahoma. A rare cirrus cloud lunar corona was generated by this 1-2-km-deep cloud, thus providing an opportunity to measure the composition in situ, which had previously been assumed only on the basis of lidar depolarization data and simple diffraction theory for spheres. In this case, corona ring analysis indicated an effective particle diameter of ~22 mum. A variety of in situ data corroborates the approximate ice-particle size derived from the passive retrieval method, especially near the cloud top, where impacted cloud samples show simple solid crystals. The homogeneous freezing of sulfuric acid droplets of stratospheric origin is assumed to be the dominant ice-particle nucleation mode acting in corona-producing cirrus clouds. It is speculated that this process results in a previously unrecognized mode of acid-contaminated ice-particle growth and that such small-particle cold cirrus clouds are potentially a radiatively distinct type of cloud.

  2. Corona-producing ice clouds: A case study of a cold mid-latitude cirrus layer

    Energy Technology Data Exchange (ETDEWEB)

    Sassen, K.; Mace, G.G. [University of Utah, Salt Lake City, Utah 84112 (United States); Hallett, J. [Desert Research Institute, Reno, Nevada 89506 (United States); Poellot, M.R. [University of North Dakota, Grand Forks, North Dakota 58202 (United States)

    1998-03-01

    A high (14.0-km), cold ({minus}71.0thinsp{degree}C) cirrus cloud was studied by ground-based polarization lidar and millimeter radar and aircraft probes on the night of 19 April 1994 from the Cloud and Radiation Testbed site in northern Oklahoma. A rare cirrus cloud lunar corona was generated by this 1{endash}2-km-deep cloud, thus providing an opportunity to measure the composition {ital in situ}, which had previously been assumed only on the basis of lidar depolarization data and simple diffraction theory for spheres. In this case, corona ring analysis indicated an effective particle diameter of {approximately}22 {mu}m. A variety of {ital in situ} data corroborates the approximate ice-particle size derived from the passive retrieval method, especially near the cloud top, where impacted cloud samples show simple solid crystals. The homogeneous freezing of sulfuric acid droplets of stratospheric origin is assumed to be the dominant ice-particle nucleation mode acting in corona-producing cirrus clouds. It is speculated that this process results in a previously unrecognized mode of acid-contaminated ice-particle growth and that such small-particle cold cirrus clouds are potentially a radiatively distinct type of cloud. {copyright} 1998 Optical Society of America

  3. Airborne observations of the microphysical structure of two contrasting cirrus clouds

    Science.gov (United States)

    O'Shea, S. J.; Choularton, T. W.; Lloyd, G.; Crosier, J.; Bower, K. N.; Gallagher, M.; Abel, S. J.; Cotton, R. J.; Brown, P. R. A.; Fugal, J. P.; Schlenczek, O.; Borrmann, S.; Pickering, J. C.

    2016-11-01

    We present detailed airborne in situ measurements of cloud microphysics in two midlatitude cirrus clouds, collected as part of the Cirrus Coupled Cloud-Radiation Experiment. A new habit recognition algorithm for sorting cloud particle images using a neural network is introduced. Both flights observed clouds that were related to frontal systems, but one was actively developing while the other dissipated as it was sampled. The two clouds showed distinct differences in particle number, habit, and size. However, a number of common features were observed in the 2-D stereo data set, including a distinct bimodal size distribution within the higher-temperature regions of the clouds. This may result from a combination of local heterogeneous nucleation and large particles sedimenting from aloft. Both clouds had small ice crystals (developing case the ice concentrations at the lowest temperatures are best explained by homogenous nucleation.

  4. Midlatitude Cirrus Clouds and Multiple Tropopauses from a 2002-2006 Climatology over the SIRTA Observatory

    CERN Document Server

    Noel, Vincent

    2007-01-01

    This study present a comparison of lidar observations of midlatitude cirrus clouds over the SIRTA observatory between 2002 and 2006 with multiple tropopauses (MT) retrieved from radiosounding temperature profiles. The temporal variability of MT properties (frequency, thickness) are discussed. Results show a marked annual cycle, with MT frequency reaching its lowest point in May (~18% occurrence of MT) and slowly rising to more than 40% in DJF. The average thickness of the MT also follows an annual cycle, going from less than 1 km in spring to 1.5 km in late autumn. Comparison with lidar observations show that cirrus clouds show a preference for being located close below the 1st tropopause. When the cloud top is above the 1st tropopause (7% of observations), in 20% of cases the cloud base is above it as well, resulting in a cirrus cloud "sandwiched" between the two tropopauses. Compared to the general distribution of cirrus, cross-tropopause cirrus show a higher frequency of large optical depths, while inter-t...

  5. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    Science.gov (United States)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for

  6. Impacts of cloud heterogeneities on cirrus optical properties retrieved from spatial thermal infrared radiometry

    Directory of Open Access Journals (Sweden)

    T. Fauchez

    2014-08-01

    Full Text Available This paper presents a study, based on simulations, of the impact of cirrus cloud heterogeneities on the retrieval of cloud parameters (optical thickness and effective diameter for the Imaging Infrared Radiometer (IIR on board CALIPSO. Cirrus clouds are generated by the stochastic model 3DCLOUD for two different cloud fields and for several averaged cloud parameters. One is obtained from a cirrus observed on the 25 May 2007 during the airborne campaign CIRCLE-2 and the other is a cirrus uncinus. The radiative transfer is simulated with the code 3DMCPOL. To assess the errors due to cloud heterogeneities, two related retrieval algorithms are used: (i The split window technique to retrieve the ice crystal effective diameter and (ii an algorithm similar to the IIR operational algorithm to retrieve the effective emissivity and the effective optical thickness. Differences between input parameters and retrieved parameters are compared as a function of different cloud properties such as the mean optical thickness, the heterogeneity parameter and the effective diameter. The optical thickness heterogeneity for each 1 km × 1 km observation pixel is represented by the optical thickness standard deviation computed using 100 m × 100 m subpixels. We show that optical thickness heterogeneity may have a strong impact on the retrieved parameters, mainly due to the Plane Parallel Approximation (PPA. In particular, for cirrus cloud with ice crystal size of approximately 10 μm, the averaged error on the retrieved effective diameter is about 2.5 μm (~ 25% and on the effective optical thickness of about −0.20 (~ 12%. Then, these biases decrease with the increase of the ice effective size due to a decrease of the cloud absorption and thus of the PPA bias. Cloud heterogeneity effects are much more higher than other possible sources of error. They become larger than the retrieval incertitude of the IIR algorithm from a standard deviation of the optical thickness

  7. Evaluation of Cirrus Cloud Simulations using ARM Data-Development of Case Study Data Set

    Science.gov (United States)

    Starr, David OC.; Demoz, Belay; Wang, Yansen; Lin, Ruei-Fong; Lare, Andrew; Mace, Jay; Poellot, Michael; Sassen, Kenneth; Brown, Philip

    2002-01-01

    Cloud-resolving models (CRMs) are being increasingly used to develop parametric treatments of clouds and related processes for use in global climate models (GCMs). CRMs represent the integrated knowledge of the physical processes acting to determine cloud system lifecycle and are well matched to typical observational data in terms of physical parameters/measurables and scale-resolved physical processes. Thus, they are suitable for direct comparison to field observations for model validation and improvement. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. The objective is to compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. Progress is assessing cloud and other environmental conditions will be described. Results of preliminary simulations using a regional cloud system model (MM5) and a CRM will be discussed. Focal science questions for the model comparison are strongly based on results of the idealized GCSS WG2 cirrus cloud model comparison projects (Idealized Cirrus Cloud Model Comparison Project and Cirrus Parcel Model Comparison Project), which will also be briefly summarized.

  8. Diagnosis of cirrus cloud occurrence using large-scale analysis data and a cloud-scale model

    Directory of Open Access Journals (Sweden)

    G. Cautenet

    Full Text Available The development of cirrus clouds is governed by large-scale synoptic movements such as updraft regions in convergence zones, but also by smaller scale features, for instance microphysical phenomena, entrainment, small-scale turbulence and radiative field, fall-out of the ice phase or wind shear. For this reason, the proper handling of cirrus life cycles is not an easy task using a large-scale model alone. We present some results from a small-scale cirrus cloud model initialized by ECMWF first-guess data, which prove more convenient for this task than the analyzed ones. This model is Starr's 2-D cirrus cloud model, where the rate of ice production/destruction is parametrized from environmental data. Comparison with satellite and local observations during the ICE89 experiment (North Sea shows that such an efficient model using large-scale data as input provides a reasonable diagnosis of cirrus occurrence in a given meteorological field. The main driving features are the updraft provided by the large-scale model, which enhances or inhibits the cloud development according to its sign, and the water vapour availability. The cloud fields retrieved are compared to satellite imagery. Finally, the use of a small-scale model in large-scale numerical studies is examined.

  9. In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus

    Science.gov (United States)

    Frey, W.; Borrmann, S.; Kunkel, D.; Weigel, R.; de Reus, M.; Schlager, H.; Roiger, A.; Voigt, C.; Hoor, P.; Curtius, J.; Krämer, M.; Schiller, C.; Volk, C. M.; Homan, C. D.; Fierli, F.; di Donfrancesco, G.; Ulanovsky, A.; Ravegnani, F.; Sitnikov, N. M.; Viciani, S.; D'Amato, F.; Shur, G. N.; Belyaev, G. V.; Law, K. S.; Cairo, F.

    2011-01-01

    In-situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 ''Geophysica'' with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two or three modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionate more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3, and satellite images clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow (developing MCS) ice crystal number concentrations of up to 8.3 cm-3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m-3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm-3, an ice water content of 2.3 × 10-4 g m-3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm-3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10-4 g m-3. All known in-situ measurements of subvisual tropopause cirrus are compared and an

  10. In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus

    Science.gov (United States)

    Frey, W.; Borrmann, S.; Kunkel, D.; Weigel, R.; de Reus, M.; Schlager, H.; Roiger, A.; Voigt, C.; Hoor, P.; Curtius, J.; Krämer, M.; Schiller, C.; Volk, C. M.; Homan, C. D.; Fierli, F.; di Donfrancesco, G.; Ulanovsky, A.; Ravegnani, F.; Sitnikov, N. M.; Viciani, S.; D'Amato, F.; Shur, G. N.; Belyaev, G. V.; Law, K. S.; Cairo, F.

    2011-06-01

    In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6) cm-3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m-3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm-3, an ice water content of 2.3 × 10-4 g m-3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm-3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10-4 g m-3. All known in situ measurements of subvisual tropopause cirrus are compared

  11. A case study of formation and maintenance of a lower stratospheric cirrus cloud over the tropics

    Science.gov (United States)

    Sandhya, M.; Sridharan, S.; Indira Devi, M.; Niranjan, K.; Jayaraman, A.

    2015-05-01

    A rare occurrence of stratospheric cirrus at 18.6 km height persisting for about 5 days during 3-7 March 2014 is inferred from the ground-based Mie lidar observations over Gadanki (13.5° N, 79.2° E) and spaceborne observations. Due to the vertical transport by large updrafts on 3 March in the troposphere, triggered by a potential vorticity intrusion, the water vapour mixing ratio shows an increase around the height of 18.6 km. Relative humidity with respect to ice is ~ 150%, indicating that the cirrus cloud may be formed though homogeneous nucleation of sulfuric acid. The cirrus cloud persists due to the cold anomaly associated with the presence of a 4-day wave.

  12. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    Science.gov (United States)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O'C.; Yang, Ping

    2008-01-01

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone.

  13. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    Science.gov (United States)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  14. Evidence of High Ice Supersaturation in Cirrus Clouds Using ARM Raman Lidar Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-06-05

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth’s climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  15. ARM Raman Lidar Measurements of High Ice Supersaturation in Cirrus Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Comstock, Jennifer M.; Ackerman, Thomas P.; Turner, David D.

    2004-09-01

    Water vapor amounts in the upper troposphere are crucial to understanding the radiative feedback of cirrus clouds on the Earth's climate. We use a unique, year-long dataset of water vapor mixing ratio inferred from ground-based Raman lidar measurements to study the role of ice supersaturation in ice nucleation processes. We find that ice supersaturation occurs 31% of the time in over 300,000 data points. We also examine the distribution of ice supersaturation with height and find that in the uppermost portion of a cloud layer, the air is ice supersaturated 43% of the time. These measurements show that large ice supersaturation is common in cirrus clouds, which supports the theory of ice forming homogeneously. Given the continuous nature of these Raman lidar measurements, our results have important implications for studying ice nucleation processes using cloud microphysical models.

  16. Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements

    Directory of Open Access Journals (Sweden)

    J. T. Wiensz

    2013-01-01

    Full Text Available We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

  17. High altitude clouds impacts on the design of optical feeder link and optical ground station network for future broadband satellite services

    Science.gov (United States)

    Poulenard, S.; Ruellan, M.; Roy, B.; Riédi, J.; Parol, F.; Rissons, A.

    2014-03-01

    Optical links at 1.55μm are envisaged to cope with the increasing capacity demand from geostationary telecom satellite operators without the need of Radio Frequency (RF) coordination. Due to clouds blockages, site diversity techniques based on a network of Optical Ground Stations (OGS) are necessary to reach the commonly required link availability (e.g. 99.9% over the year). Evaluation of the N Optical Ground Station Network (N-OGSN) availability is based on Clouds Masks (CMs) and depends on the clouds attenuation taken in the optical communication budget link. In particular, low attenuation of high semitransparent clouds (i.e. cirrus) could be incorporated into the budget link at the price of larger or more powerful optical terminals. In this paper, we present a method for the calibration of the attenuation at 1.55 μm of high semitransparent clouds. We perform OGS localization optimization in Europe and we find that the incorporation of thin cirrus attenuation in the budget link reduces by 20% the number of handover (i.e. switches OGS) and the handover rate. It is also shown that the minimum number of station required in Europe to reach 99.9% link availability is 10 to 11. When the zone of research is enlarged the Africa, this number is reduced to 3 to 4.

  18. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  19. Correlations among the Optical Properties of Cirrus-Cloud Particles: Microphysical Interpretation

    Science.gov (United States)

    Reichardt, J.; Reichardt, S.; Hess, M.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 deg N in January 1997 reveal a strong positive correlation between the particle optical properties, specifically depolarization ratio delta(sub par) and extinction- to-backscatter (lidar) ratio S, for delta(sub par) less than approximately 40%, and an anti-correlation for delta(sub par) greater than approximately 40%. Over the length of the measurements the particle properties vary systematically. Initially, delta (sub par) approximately equals 60% and S approximately equals 10sr are observed. Then, with decreasing delta(sub par), S first increases to approximately 27sr (delta(sub par) approximately equals 40%) before decreasing to values around 10sr again (delta(sub par) approximately equals 20%). The analysis of lidar humidity and radiosonde temperature data shows that the measured optical properties stem from scattering by dry solid ice particles, while scattering by supercooled droplets, or by wetted or subliming ice particles can be excluded. For the microphysical interpretation of the lidar measurements, ray-tracing computations of particle scattering properties have been used. The comparison with the theoretical data suggests that the observed cirrus data can be interpreted in terms of size, shape, and, under the assumption that the lidar measurements of consecutive cloud segments can be mapped on the temporal development of a single cloud parcel moving along its trajectory, growth of the cirrus particles: Near the cloud top in the early stage of cirrus development, light scattering by nearly isometric particles that have the optical characteristics of hexagonal columns (short, column-like particles) is dominant. Over time the ice particles grow, and as the cloud base height extends to lower altitudes characterized by warmer temperatures they become morphologically diverse. For large S and depolarization values of approximately 40%, the scattering contributions of column- and

  20. Cirrus clouds triggered by radiation, a multiscale phenomenon

    OpenAIRE

    2010-01-01

    In this study, the influence of radiative cooling and small eddies on cirrus formation is investigated. For this purpose the non-hydrostatic, anelastic model EULAG is used with a recently developed and validated ice microphysics scheme (Spichtinger and Gierens, 2009a). Additionally, we implemented a fast radiation transfer code (Fu et al., 1998). Using idealized profiles with high ice supersaturations up to 144% and weakly stable stratifications with Brunt-Vaisala frequencies down to 0....

  1. Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds

    Science.gov (United States)

    Gu, Yu

    2000-12-01

    A two-dimensional cirrus cloud model has been developed to investigate the interaction and feedback of radiation, ice microphysics, and turbulence-scale turbulence, and their influence on the evolution of cirrus clouds. The new features of the model include a detailed ice microphysical module for the prediction of ice crystal size distributions, a radiation scheme which interacts with the ice crystal size distribution via ice water content (IWC) and a mean effective ice crystal size, the effects of radiation on the diffusional growth of ice crystals, and a second-order closure for turbulence. Simulation results show that initial cloud formation occurs through ice nucleation associated with dynamic and thermodynamic forcings. Radiative processes enhance both the growth of ice crystals at the cloud top by radiative cooling and the sublimation of ice crystals in the lower region by radiative heating. In addition, the radiation effect on individual ice crystals through diffusional growth is shown to be significant. Turbulence begins to play a substantial role in cloud evolution during the maintenance and dissipation period of the cirrus cloud life cycle. The inclusion of turbulence tends to generate more intermediate-to-large ice crystals, especially in the middle and lower parts of the cloud. A three-dimensional (3D) radiative transfer model has also been developed to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilizes a diffusion approximation approach for application to inhomogeneous media employing Cartesian coordinates. The extinction coefficient, single-scattering albedo, and asymmetry factor are parameterized in terms of the ice water content and mean effective ice crystal size. We employ the correlated k- distribution method for incorporation of gaseous absorption in multiple scattering atmospheres. Delta- function adjustment is used to account for the strong forward diffraction nature of the phase

  2. Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds

    Directory of Open Access Journals (Sweden)

    Xiwei Fan

    2015-04-01

    Full Text Available Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST retrieval error of 11.0 K when using the generalized split-window (GSW algorithm with a cirrus optical depth (COD at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies.

  3. The accommodation coefficient of water molecules on ice – cirrus cloud studies at the AIDA simulation chamber

    Directory of Open Access Journals (Sweden)

    J. Skrotzki

    2013-04-01

    Full Text Available Cirrus clouds and their impact on the Earth's radiative budget are subjects of current research. The processes governing the growth of cirrus ice particles are central to the radiative properties of cirrus clouds. At temperatures relevant to cirrus clouds, the growth of ice crystals smaller than a few microns in size is strongly influenced by the accommodation coefficient of water molecules on ice, αice, making this parameter relevant for cirrus cloud modeling. However, the experimentally determined magnitude of αice for cirrus temperatures is afflicted with uncertainties of almost three orders of magnitude, and values for αice derived from cirrus cloud data lack significance so far. This has motivated dedicated experiments at the cloud chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere to determine αice in the cirrus-relevant temperature interval between 190 K and 235 K under realistic cirrus ice particle growth conditions. The experimental data sets have been evaluated independently with two model approaches: the first relying on the newly developed model SIGMA (Simple Ice Growth Model for determining Alpha, the second one on an established model, ACPIM (Aerosol-Cloud-Precipitation Interaction Model. Within both approaches a careful uncertainty analysis of the obtained αice values has been carried out for each AIDA experiment. The results show no significant dependence of αice on temperature between 190 K and 235 K. In addition, we find no evidence for a dependence of αice on ice particle size or on water vapor supersaturation for ice particles smaller than 20 μm and supersaturations of up to 70%. The temperature-averaged and combined result from both models is αice = 0.7−0.5+0.3, which implies that αice may only exert a minor impact on cirrus clouds and their characteristics when compared to the assumption of αice =1. Impact on prior calculations of cirrus cloud properties, e.g., in climate models, with

  4. Radiative Effects on the Diffusional Growth of Ice Particles in Cirrus Clouds.

    Science.gov (United States)

    Wu, Ting; Cotton, William R.; Cheng, William Y. Y.

    2000-09-01

    At Colorado State University the Regional Atmospheric Modeling System (RAMS) has been used to study the radiative effect on the diffusional growth of ice particles in cirrus clouds. Using soundings extracted from a mesoscale simulation of the 26 November 1991 cirrus event, the radiative effect was studied using a two-dimensional cloud-resolving model (CRM) version of RAMS, coupled to an explicit bin-resolving microphysics.The CRM simulations of the 26 November 1991 cirrus event demonstrate that the radiative impact on the diffusional growth (or sublimation) of ice crystals is significant. Even in a radiatively cooled atmospheric environment, ice particles may experience radiative warming because the net radiation received by an ice particle depends upon the emission from the particle, and the local upwelling and downwelling radiative fluxes.Model results show that radiative feedbacks on the diffusional growth of ice particles can be very complex. Radiative warming of an ice particle will restrict the particle's diffusional growth. In the case of radiative warming, ice particles larger than a certain size will experience so much radiative warming that surface ice saturation vapor pressures become large enough to cause sublimation of the larger crystals, while smaller crystals are growing by vapor deposition. However, ice mass production can be enhanced in the case of radiative cooling of an ice particle. For the 26 November 1991 cirrus event, radiative feedback results in significant reduction in the total ice mass, especially in the production of large ice crystals, and consequently, both radiative and dynamic properties of the cirrus cloud are significantly affected.

  5. Utilizing the MODIS 1.38 micrometer Channel for Cirrus Cloud Optical Thickness Retrievals: Algorithm and Retrieval Uncertainties

    Science.gov (United States)

    Meyer, Kerry; Platnick, Steven

    2010-01-01

    The cloud products from the Moderate Resolution Imaging Spectroradiometers (MODIS) on Terra and Aqua have been widely used within the atmospheric research community. The retrieval algorithms, however, oftentimes have difficulty detecting and retrieving thin cirrus, due to sensitivities to surface reflectance. Conversely, the 1.38 micron channel, located within a strong water vapor absorption band, is quite useful for detecting thin cirrus clouds since the signal from the surface can be blocked or substantially attenuated by the absorption of atmospheric water vapor below cirrus. This channel, however, suffers from nonnegligible attenuation due to the water vapor located above and within the cloud layer. Here we provide details of a new technique pairing the 1.38 micron and 1.24 micron channels to estimate the above/in-cloud water vapor attenuation and to subsequently retrieve thin cirrus optical thickness (tau) from attenuation-corrected 1.38 p.m reflectance measurements. In selected oceanic cases, this approach is found to increase cirrus retrievals by up to 38% over MOD06. For these cases, baseline 1.38 micron retrieval uncertainties are estimated to be between 15 and 20% for moderately thick cirrus (tau > 1), with the largest error source being the unknown cloud effective particle radius, which is not retrieved with the described technique. Uncertainties increase to around 90% for the thinnest clouds (tau < 0.5) where instrument and surface uncertainties dominate.

  6. Comparisons of cirrus cloud microphysical properties between polluted and pristine air

    Science.gov (United States)

    Diao, Minghui; Schumann, Ulrich; Minikin, Andreas; Jensen, Jorgen

    2015-04-01

    Cirrus clouds occur in the upper troposphere at altitudes where atmospheric radiative forcing is most sensitive to perturbations of water vapor concentration and water phase. The formation of cirrus clouds influences the distributions of water in both vapor and ice forms. The radiative properties of cirrus depend strongly on particle sizes. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions (e.g., industrial emission and biomass burning). If anthropogenic emissions influence cirrus formation in a significant manner, then one should expect a systematic difference in cirrus properties between pristine (clean) air and polluted air. Because of the pollution contrasts between the Southern (SH) and Northern Hemispheres (NH), cirrus properties could have hemispheric differences as well. Therefore, we study high-resolution (~200 m), in-situ observations from two global flight campaigns: 1) the HIAPER Pole-to-Pole Observations (HIPPO) global campaign in 2009-2011 funded by the US National Science Foundation (NSF), and 2) the Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign in 2000 funded by the European Union and participating research institutions. To investigate the changes of cirrus clouds by anthropogenic emissions, we compare ice crystal distributions in polluted and pristine air, in terms of their frequency occurrence, number concentration (Nc) and mean diameter (i.e., effective-mean Deff and volume-mean Dc). Total aerosol concentration is used to represent the combined influence of natural and anthropogenic aerosols. In addition, measured carbon monoxide (CO) mixing ratio is used to discriminate between polluted and pristine air masses. All analyses are restricted to temperatures ≤ -40°C to exclude mixed-phased clouds. The HIPPO campaign observations were obtained over the North America continent and the central Pacific Ocean

  7. Cirrus cloud properties from combined IIR and lidar observations of CALIPSO

    Science.gov (United States)

    Garnier, Anne; Pelon, Jacques; Winker, Dave M.; Dubuisson, Philippe; Vaughan, Mark A.; Pascal, Nicolas

    2013-05-01

    Cirrus clouds are of particular importance for the understanding and the survey of climate change due to their impact on the Earth radiation budget. However, their optical and microphysical properties are still poorly known. The NASA-CNES CALIPSO mission provides new pieces of information by combining observations of active (lidar) and passive (radiometer) remote sensing instruments. Cirrus cloud optical depths derived in the thermal infrared (12 μm) from the IIR are found in excellent agreement with those retrieved in the visible spectrum (532 nm) from the CALIOP lidar, down to optical depths smaller than 0.05. The ice water paths derived from the two instruments use very different approaches, and show a highly correlated linear relationship. On average, CALIOP retrievals are 1.7 times larger than IIR estimates, requiring further studies.

  8. Polarization lidars with conical scanning for retrieving the microphysical characteristics of cirrus clouds

    Science.gov (United States)

    Konoshonkin, Alexander V.; Borovoi, Anatoli G.; Liu, Dong; Wang, Zhenzhu; Balin, Yuri S.; Kustova, Natalia V.; Kokhanenko, Grigorii; Penner, Iogannes; Nasonov, Sergey V.; Bryukhanov, Ilia D.; Doroshkevich, Anton A.

    2015-11-01

    The paper presents the first results of observations of cirrus clouds by polarization lidars with conical scanning, which were developed in Hefei (China) and in Tomsk (Russia). The light scattering matrix of ice crystal particles of cirrus clouds has been calculated for the first by the authors within the framework of the physical optics approximations in the case of conical scanning lidar. It is found that in this case the Mueller matrix consists of ten non-zero elements, four of which are small and can't be applied to interpret the azimuthal distribution of particle orientation. All the diagonal elements have a strong azimuthal dependence. Among the off-diagonal elements only one element M34 carries additional information for interpreting the azimuthal distribution.

  9. Aerosol Particles From Tropical Cirrus Clouds in the Lower Stratosphere

    Science.gov (United States)

    Kojima, T.; Buseck, P. R.; Wilson, J. C.; Reeves, J. M.

    2002-12-01

    Aerosol samples were collected from convective systems and cirrus layers over Florida during the July 2002 CRYSTAL-FACE Mission. Particles between 0.02 and 700 \\micron were deposited directly onto TEM grids. Here we report preliminary results of the TEM study of particles collected near and above the tropopause. Most particles are sulfate droplets that range from 0.8 to 5 \\micron in diameter on the TEM grids. All have a characteristic appearance that consists of a main central particle (0.3 -1 \\micron) surrounded by many smaller satellite droplets. Their appearance suggests that the droplets were sulfuric acid partially neutralized with ammonium at the time of collection, with ammonium sulfate and bisulfate constituting the central particles (Bigg, 1975, 1980). The degree of ammoniation in individual droplets, which is indicated by the size of central particles relative to satellite ring diameter, is fairly uniform. The ratio of central particle diameter to satellite ring diameter is generally around 0.3. Such ammoniated droplets with solid cores may be more efficient in nucleating cirrus than pure sulfuric acid droplets (Tabazadeh and Toon, 1998). Ammonium sulfate particles without satellites commonly coexist with the acid droplets. Minor particles consist of C-rich amorphous material, silicates, Na- and K-chlorides and sulfates, and Cr- and Ti-oxides. Some were coated with sulfate. Many of the C-rich particles contain significant amount of K, S, and O with lesser N. All silicate particles are flakes of clay minerals that have pseudohexagonal structures. They would work as effective ice nuclei (Pruppacher and Klett, 1997).

  10. Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar

    Institute of Scientific and Technical Information of China (English)

    ZHONG Lingzhi; LIU Liping; DENG Min; ZHOU Xiuji

    2012-01-01

    Radar parameters including radar reflectivity,Doppler velocity,and Doppler spectrum width were obtained from Doppler spectrum moments.The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion.Unlike strong precipitation,the motion of particles in cirrus clouds is quite close to the air motion around them.In this study,a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity,mass-weighted diameter,effective particle size,and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships;however,the former is a more reasonable method.

  11. In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus

    Directory of Open Access Journals (Sweden)

    W. Frey

    2011-06-01

    Full Text Available In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100 and a Cloud Imaging Probe (CIP operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS. Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm.

    Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130

  12. In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus

    Directory of Open Access Journals (Sweden)

    W. Frey

    2011-01-01

    Full Text Available In-situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100 and a Cloud Imaging Probe (CIP operated aboard the Russian high altitude research aircraft M-55 ''Geophysica'' with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS. Two or three modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionate more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3, and satellite images clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow (developing MCS ice crystal number concentrations of up to 8.3 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm.

    Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean

  13. Cirrus microphysics and radiative transfer - Cloud field study on 28 October 1986

    Science.gov (United States)

    Kinne, Stefan; Ackerman, Thomas P.; Heymsfield, Andrew J.; Valero, Francisco P. J.; Sassen, Kenneth; Spinhirne, James D.

    1992-01-01

    An analysis of remote-sensing measurements which had detected an inhomogeneous cloud structure, at 6-11 km altitude, in the data acquired during the FIRE 86 experiment in a 75 x 50 km cirrus cloud field, has derived fluxes whose comparison with modeled fluxes imply a modeling-based underestimation of both solar reflectivity/attenuation and downward IR fluxes. Reconciliation of model results with measurements can be achieved either by adding large concentrations of ice crystals or by altering the backscattering properties of ice crystals.

  14. Influence of heterogeneous freezing on the microphysical and radiative properties of orographic cirrus clouds

    Directory of Open Access Journals (Sweden)

    H. Joos

    2013-07-01

    Full Text Available The influence of heterogeneous freezing on the microphysical and optical properties of orographic cirrus clouds has been simulated with the cloud resolving model EULAG. Idealized simulations with different concentrations of ice nuclei (IN in a dynamically dominated regime with high vertical velocities have been performed. Furthermore the temperature under which the cloud forms as well as the critical supersaturation which is needed for the initiation of heterogenoues freezing have been varied. The short wave, long wave and net cloud forcing has been calculated under the assumption that the clouds form between 06:00 and 12:00 LT or between 12:00 and 18:00 LT, respectively. In general it can be seen that the onset of homogeneous freezing is shifted in time depending on the IN concentration as part of the available water vapor is depleted before the critical threshold for homogeneous freezing is reached. Although the high vertical velocities in an orographic gravity wave lead to a strong adiabatic cooling followed by high ice supersaturations, a small number concentration of IN in the order of 5 L−1 is already able to strongly decrease the simulated ice crystal number burden (ICNB, ice water path (IWP and optical depth of the cloud. In general, the ICNB, IWP and optical depth strongly decrease when the IN concentrations are increased from 0 to 50 L−1. The absolute values of the short wave, long wave and net cloud forcing are also reduced with increasing IN concentrations. If a cloud produces a net warming or cooling depends on the IN concentration, the temperature and the time of day at which the cloud forms. The clouds that form between 06:00 and 12:00 LT are mainly cooling whereas the clouds with the same microphysical properties can lead to a warming when they form between 12:00 and 18:00 LT. In order to predict the radiative forcing of cirrus clouds it is therefore necessary to take the correct dynamical and thermodynamical processes as

  15. Characterization and quantification of aerosol chemical species present below and within cloud over an eastern Himalayan high altitude hill station in India

    Science.gov (United States)

    Roy, Arindam; Chatterjee, Abhijit; Sarkar, Chirantan; Ghosh, Sanjay; Raha, Sibaji

    2016-07-01

    There are two main processes through which aerosols and gases get scavenged by rain called below-cloud scavenging or "washout" and in-cloud scavenging or "rainout". The first process refers to the washout of the aerosols and gases present below the cloud during precipitation events by raindrops along their fall. The second process corresponds to the condensation of water vapor on aerosol particles during the formation of cloud droplets and incorporation of gases surrounding the droplets by aqueous-phase reactions. However, the most efficient pathway to remove the atmospheric pollutants is below cloud scavenging which is a major pointer of ecosystem, biogeochemical cycle as well as the climate change. A study has been conducted in 2014 and 2015 monsoon (June-September) in Darjeeling (27.01 ° N, 88.15 ° E), a high altitude (2200 m asl) hill station over eastern Himalaya in India. The study was focused on the below-cloud and in-cloud scavenging of various aerosol ionic species. Attempt was also made to estimate the contribution of in-cloud scavenging and below-cloud scavenging by collecting rain samples sequentially for different rain events. Sea-salt (Na+, sea-Mg2+, Cl- and sea-SO4 2-) and soil dust (non-sea Ca2+, non-sea-Mg2+) species show sharp decrease in concentration for each of the rain sample. This indicates that these species were mostly accumulated below the cloud and washed out during rain. Their concentrations were thus decreased sharply as rains progressed. On the other hand, non-SO4-2 and NH4+ showed different behavior. Their concentrations decreased sharply at the initial stage of the rain and then remained almost constant with rainfall. This explains wash out of these two species at the initial stage of the rain and their contribution from "within the cloud". NH4 + and non-sea-SO4 2- could thus act as cloud condensation nuclei over this part of Himalaya. A strong correlation between these two species indicates their association as (NH4)2SO4. Acidity

  16. Comparisons of cirrus cloud formation and evolution lifetime between five field campaigns

    Science.gov (United States)

    Diao, M.; Zondlo, M. A.; DiGangi, J. P.; O'Brien, A.; Heymsfield, A.; Rogers, D. C.; Beaton, S. P.

    2013-12-01

    In order to understand the microphysical properties of cirrus clouds, it is important to understand the formation and evolution of the environments where ice crystals form and reside on the microscale (~100 m). Uncertainties remain in simulating/parameterizing the evolution of ice crystals, which require more analyses in the Lagrangian view. However, most in situ observations are in the Eulerian view and are restricted from examining the lifecycle of cirrus clouds. In this work, a new method of Diao et al. GRL (2013)* is used to separate out five phases of ice crystal evolution, using the horizontal spatial relationships between ice supersaturated regions (ISSRs) and ice crystal regions (ICRs). In-situ, aircraft-based observations from five flight campaigns are used to compare the evolution processes of ISSRs and ICRs, which include the National Science Foundation HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011 Arctic to Antarctic over the central Pacific Ocean), the Stratosphere Troposphere Analyses Regional Transport 2008 (START08) campaign (2008 North America), the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) campaign (2010 tropical western Atlantic), the Tropical Ocean Troposphere Exchange of Reactive Halogen Species and Oxygenated VOC (2012 Costa Rica), and the Deep Convection, Clouds, and Chemistry (DC3) campaign (2011 Interior North America). To understand the evolution of ICRs and ISSRs on the microscale, we compare the microphysical evolution processes inside ISSRs and ICRs in terms of relative humidity with respect to ice (RHi), ice crystal mean diameter (Dc) and ice crystal number density (Nc) at different meteorological and dynamical backgrounds during these five campaigns. Different phases of ice nucleation and evolution are contrasted to understand how cirrus clouds evolve from clear-sky ISS into fully developed clouds, and finally into sedimentation/evaporation phase. The results show that the ratios of

  17. Evaluation of cloud resolving model simulations of midlatitude cirrus with ARM and A-Train observations

    Science.gov (United States)

    Muehlbauer, A. D.; Ackerman, T. P.; Lawson, P.; Xie, S.; Zhang, Y.

    2015-12-01

    This paper evaluates cloud resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration (NASA) A-train satellites. Vertical profiles of temperature, relative humidity and wind speeds are reasonably well simulated by the CSRM and CRM but there are remaining biases in the temperature, wind speeds and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in GCMs and in CSRM simulations with horizontal grid spacings on the order of 1km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable

  18. Optical remote measurement of ozone in cirrus clouds; Optische Fernmessung von Ozon in Zirruswolken

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1998-12-31

    The subject of this thesis is theoretical and experimental investigations into the simultaneous optical remote measurement of atmospheric ozone concentration and particle properties. A lidar system was developed that combines the Raman-lidar and the polarization-lidar with the Raman-DIAL technique. An error analysis is given for ozone measurements in clouds. It turns out that the wavelength dependencies of photon multiple scattering and of the particle extinction coefficient necessitate a correction of the measured ozone concentration. To quantify the cloud influence, model calculations based on particle size distributions of spheres are carried out. The most important experimental result of this thesis is the measured evidence of pronounced minima in the ozone distribution in a humid upper troposphere shortly before and during cirrus observation. Good correlation between ozone-depleted altitude ranges and ice clouds is found. This finding is in contrast to ozone profiles measured in a dry and cloud-free troposphere. (orig.) 151 refs.

  19. A Simple Framework for the Dynamic Response of Cirrus Clouds to Local Diabatic Radiative Heating

    CERN Document Server

    Schmidt, C T

    2012-01-01

    This paper presents a simple analytical framework for the dynamic response of cirrus to a local radiative flux convergence, expressible in terms of three independent modes of cloud evolution. Horizontally narrow and tenuous clouds within a stable environment adjust to radiative heating by ascending gradually across isentropes while spreading sufficiently fast so as to keep isentropic surfaces nearly flat. More optically dense clouds experience very concentrated heating, and if they are also very broad, they develop a convecting mixed layer. Along isentropic spreading still occurs, but in the form of turbulent density currents rather than laminar flows. A third adjustment mode relates to evaporation, which erodes cloudy air as it lofts. The dominant mode is determined from two dimensionless numbers, whose predictive power is shown in comparisons with high resolution numerical cloud simulations. The power and simplicity of the approach hints that fast, sub-grid scale radiative-dynamic atmospheric interactions m...

  20. Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2009-10-01

    Full Text Available In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.

  1. Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2010-02-01

    Full Text Available In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.

  2. On the origin of subvisible cirrus clouds in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    M. Reverdy

    2012-12-01

    Full Text Available Spaceborne lidar observations have recently revealed a previously undetected significant population of Subvisible Cirrus (SVC. We show them to be colder than −74 °, with an optical depth below 0.0015 on average. The formation and persistence over time of this new cloud population could be related to several atmospheric phenomena. In this paper, we investigate if these clouds follow the same formation mechanisms as the general tropical cirrus population (including convection and in-situ ice nucleation, or if specific nucleation sites and trace species play a role in their formation. The importance of three scenarios in the formation of the global SVC population is investigated through different approaches that include comparisons with data imaging from several spaceborne instruments and back-trajectories that document the history and behavior of air masses leading to the point in time and space where subvisible cirrus were detected. In order to simplify the study of their formation, we singled out SVC with coherent temperature histories (mean variance lower than 4 K according to back-trajectories along 5, 10 or 15 days (respectively 58, 25 and 11% of SVC. Our results suggest that external processes, including local increases in liquid and hygroscopic aerosol concentration (either through biomass burning or volcanic injection forming sulfate-based aerosols in the troposphere or the stratosphere have very limited short-term or mid-term impact on the SVC population. On the other hand, we find that ~20% of air masses leading to SVC formation interacted with convective activity 5 days before they led to cloud formation and detection, a number that climbs to 60% over 15 days. SVC formation appears especially linked to convection over Africa and Central America, more so during JJA than DJF. These results support the view that the SVC population observed by CALIOP is an extension of the general upper tropospheric ice clouds population with its extreme

  3. The vertical distribution of aerosols, Saharan dust and cirrus clouds in Rome (Italy in the year 2001

    Directory of Open Access Journals (Sweden)

    G. P. Gobbi

    2004-01-01

    Full Text Available A set of 813 lidar profiles of tropospheric aerosol and cirrus clouds extinction and depolarization observed in Rome, Italy, between February 2001 and February 2002 is analyzed and discussed. The yearly record reveals a meaningful contribution of both cirrus clouds (38% and Saharan dust (12% to the total optical thickness (OT of 0.26, at 532nm. Seasonal analysis shows the planetary boundary layer (PBL aerosols to be confined below 2km in winter and 3.8km in summer, with relevant OT shifting from 0.08 to 0.16, respectively. Cirrus clouds maximise in spring and autumn, in both cases with average OT similar to the PBL aerosols one. With the exception of winter months, Saharan dust is found to represent an important third layer mostly residing between PBL aerosols and cirrus clouds, with yearly average OT0.03. Saharan dust and cirrus clouds were detected in 20% and in 45% of the observational days, respectively. Validation of the lidar OT retrievals against collocated sunphotometer observations show very good agreement. These results represent one of the few yearly records of tropospheric aerosol vertical profiles available in the literature.

  4. On the origin of subvisible cirrus clouds in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    M. Reverdy

    2012-06-01

    Full Text Available Spaceborne lidar observations have recently revealed a previously undetected significant population of SubVisible Cirrus (SVC. We show them to be colder than −74 °C, with an optical depth below 0.0015 on average. The formation and persistence over time of this new cloud population could be related to several atmospheric phenomena. In this paper, we investigate the importance of external processes in the creation of this cloud population, vs. the traditional ice cloud formation theory through convection. The importance of three scenarios in the formation of the global SVC population is investigated through different approaches that include comparisons with data imaging from several spaceborne instruments and back-trajectories that document the history and behavior of air masses leading to a point in time and space where subvisible cirrus were detected. In order simplify the study of cloud formation processes, we singled out SVC with coherent temperature histories (mean variance lower than 4 K according to back-trajectories along 5, 10 or 15 days (respectively 58, 25 and 11% of SVC. Our results suggest that external processes, including local increases in liquid and hygroscopic aerosol concentration (either through biomass burning or volcanic injection forming sulfate-based aerosols in the troposphere or the stratosphere have no noticeable short-term or mid-term impact on the SVC population. On the other hand, we find that ~60% of air masses interacted with convective activity in the days before they led to cloud formation and detection, which correspond to 37 to 65% of SVC. These results put forward the important influence of classical cloud formation processes compared to external influences in forming SVC. They support the view that the SVC population observed by CALIOP is an extension of the general upper tropospheric ice clouds population with its extreme thinness as its only differentiating factor.

  5. Insights into the role of soot aerosols in cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2007-08-01

    Full Text Available Cirrus cloud formation is believed to be dominated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiquitous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. Both scenarios assume soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.

  6. Insights into the role of soot aerosols in cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2007-06-01

    Full Text Available Cirrus cloud formation is believed to be domi-nated by homogeneous freezing of supercooled liquid aerosols in many instances. Heterogeneous ice nuclei such as mineral dust, metallic, and soot particles, and some crystalline solids within partially soluble aerosols are suspected to modulate cirrus properties. Among those, the role of ubiqui-tous soot particles is perhaps the least understood. Because aviation is a major source of upper tropospheric soot particles, we put emphasis on ice formation in dispersing aircraft plumes. The effect of aircraft soot on cirrus formation in the absence of contrails is highly complex and depends on a wide array of emission and environmental parameters. We use a microphysical-chemical model predicting the formation of internally mixed, soot-containing particles up to two days after emission, and suggest two principal scenarios, both assuming soot particles to be moderate ice nuclei relative to cirrus formation by homogeneous freezing in the presence of few efficient dust ice nuclei: high concentrations of original soot emissions could slightly increase the number of ice crystals; low concentrations of particles originating from coagulation of emitted soot with background aerosols could lead to a significant reduction in ice crystal number. A critical discussion of laboratory experiments reveals that the ice nucleation efficiency of soot particles depends strongly on their source, and, by inference, on atmospheric aging processes. Mass and chemistry of soluble surface coatings appear to be crucial factors. Immersed soot particles tend to be poor ice nuclei, some bare ones nucleate ice at low supersaturations. However, a fundamental understanding of these studies is lacking, rendering extrapolations to atmospheric conditions speculative. In particular, we cannot yet decide which indirect aircraft effect scenario is more plausible, and options suggested to mitigate the problem remain uncertain.

  7. A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO

    Science.gov (United States)

    Pan, Honglin; Bu, Lingbing; Kumar, K. Raghavendra; Gao, Haiyang; Huang, Xingyou; Zhang, Wentao

    2017-08-01

    The CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are the members of satellite observation system of A-train to achieve the quasi-synchronization observation on the same orbit. With the help of active (CALIOP and CPR) and passive payloads from these two satellites, respectively, unprecedented detailed information of microphysical properties of ice cloud can be retrieved. The ice water content (IWC) is regarded as one of the most important microphysical characteristics of cirrus for its prominent role in cloud radiative forcing. In this paper, we proposed a new joint (Combination) retrieval method using the full advantages of different well established retrieval methods, namely the LIDAR method (for the region Lidar-only), the MWCR method (for the region Radar-only), and Wang method (for the region Lidar-Radar) proposed by Wang et al. (2002). In retrieval of cirrus IWC, empirical formulas of the exponential type were used for both thinner cirrus (detected by Lidar-only), thicker cirrus (detected by radar-only), and the part of cirrus detected by both, respectively. In the present study, the comparison of various methods verified that our proposed new joint method is more comprehensive, rational and reliable. Further, the retrieval information of cirrus is complete and accurate for the region that Lidar cannot penetrate and Radar is insensitive. On the whole, the retrieval results of IWC showed certain differences retrieved from the joint method, Ca&Cl, and ICARE which can be interpreted from the different hypothesis of microphysical characteristics and parameters used in the retrieval method. In addition, our joint method only uses the extinction coefficient and the radar reflectivity factor to calculate the IWC, which is simpler and reduces to some extent the accumulative error. In future studies, we will not only compare the value of IWC but also explore the detailed macrophysical and microphysical characteristics of

  8. The Polarization Signature of Cirrus Clouds At Mm and Sub-mm Wavelength: Effect of Particle Size, Shape, and Orientation

    Science.gov (United States)

    Miao, J.

    Cirrus clouds can be found globally from the tropics to polar regions in the upper troposphere and lower stratosphere. They are composed primarily of ice crystals in various shapes, with or without preferred orientation. Research shows that they have significant effects on the radiation budget of the Earth, on the water budget of the atmosphere, and therefore on the global climate. Information on the microphysical parameters of cirrus clouds is crucial to the understanding of the cirrus clouds impact on our climate. Recent work in both simulations and measurements has demonstrated the usefulness of passive millimeter and sub-millimeter radiometric measurements from space in determining cirrus cloud parameters such as the integrated ice water content (or ice water path) and the characteristic size of ice particles. However, these studies were mainly concerned with the information content of the radiometric inten- sity measurements, albeit some brief discussions on the potential of the polarization measurements were given in some literature. Frankly speaking, there is a shortage of systematic studies on the polarization signature from cirrus clouds at the millimeter and sub-millimeter wavelengths, i.e., how the polarization difference measured at two orthogonal polarizations is related to the ice particle size, the shape, and the orienta- tion. Here we present some results of a systematic analysis on the polarization effect of non-spherical ice particles. Three types of particles are considered: nearly spherical, cylindrical, and plate-like particles. Studies are carried out at the following 7 frequen- cies: 90, 157, 220, 340, 463, 683, and 874 GHz. Among these frequencies some (e.g. 90, 157, 220, and 340 GHz) have been tested in space-borne or air-borne sensors and some (e.g. 463, 683, and 874 GHz) are proved by simulations to be well suited for cirrus clouds measurements and therefore planned currently for a future satellite mis- sion.

  9. The Prevalence of the 22 deg Halo in Cirrus Clouds

    Science.gov (United States)

    Diedenhoven, vanBastiaan

    2014-01-01

    Halos at 22 deg from the sun attributed to randomly-orientated, pristine hexagonal crystals are frequently observed through ice clouds. These frequent sightings of halos formed by pristine crystals pose an apparent inconsistency with the dominance of distorted, nonpristine ice crystals indicated by in situ and remote sensing data. Furthermore, the 46 deg halo, which is associated with pristine hexagonal crystals as well, is observed far less frequently than the 22 deg halo. Considering that plausible mechanisms that could cause crystal distortion such as aggregation, sublimation, riming and collisions are stochastic processes that likely lead to distributions of crystals with varying distortion levels, here the presence of the 22 deg and 46 deg halo features in phase functions of mixtures of pristine and distorted hexagonal ice crystals is examined. We conclude that the 22 deg halo feature is generally present if the contribution by pristine crystals to the total scattering cross section is greater than only about 10% in the case of compact particles or columns, and greater than about 40% for plates. The 46 deg halo feature is present only if the mean distortion level is low and the contribution of pristine crystals to the total scattering cross section is above about 20%, 50% and 70%, in the case of compact crystals, plates and columns, respectively. These results indicate that frequent sightings of 22 deg halos are not inconsistent with the observed dominance of distorted, non-pristine ice crystals. Furthermore, the low mean distortion levels and large contributions by pristine crystals needed to produce the 461 halo features provide a potential explanation of the common sighting of the 22 deg halo without any detectable 46 deg halo.

  10. The Cloud Radar System

    Science.gov (United States)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

    2003-01-01

    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  11. Adaptation to High Altitude

    OpenAIRE

    1984-01-01

    Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude native...

  12. High Altitude Cerebral Edema

    Science.gov (United States)

    1986-03-01

    such enzyme inhibition would favor the creation of a metabolic acidosis to offset the hypoxic respiratory alkalosis of high altitude hyperventilation...that some of their symptoms might be due to the early respiratory alkalosis seen upon arrival at high altitude. Unfortunately 23 out of the 30 subjects...i I Hamilton-16 was negative in all cases and normal respiratory excursions were seen. CSF chemistries and cell counts were normal. Houston and

  13. Adaptation to High Altitude

    Directory of Open Access Journals (Sweden)

    H. S. Nayar

    1984-10-01

    Full Text Available Hypoxia is inconsequential for physiologically fit persons below an effective altitude of 2640 metres. At higher altitudes, the adaptation is brought about by four main factors, viz., hyperventilation, increased diffusion of oxygen across alveolar membrane, erythrocythemia and maintenance of body hydration. Carbon dioxide sensitivity is markedly elevated at high altitude, both in sojourners and acclimatized low-landers. The greater pulmonary diffusing capacity observed in high altitude natives is well documented. RBC count, haemoglobin and haematocrit increase whereas arterial oxyhaemoglobin saturation percentage decreases at high altitude. Diuretics (Furosemide have no role in adaptation to high altitude and adequate body hydration must be maintained.The ultimate adaptive mechanisms occur at tissue level which facilitate the diffusion of oxygen from blood to tissue and its utilization. The work capacity decreases at high altitude and a relationship between load carried and speed of marching has been determined at various altitudes. Although altitude has an adverse effect on process of cold acclimatization, yet it is possible to induce cold acclimatization by exposing subjects to a temperature of 0° to -5°C for a period of three hours daily for three weeks. The caloric requirements increase at high altitudes and are 4,286 K Cal and 4,380 K Cal at 13000 feet (3950 m and 17000 feet (5170 m, respectively.

  14. HIGH-ALTITUDE ILLNESS

    Directory of Open Access Journals (Sweden)

    Dwitya Elvira

    2015-05-01

    Full Text Available AbstrakHigh-altitude illness (HAI merupakan sekumpulan gejala paru dan otak yang terjadi pada orang yang baru pertama kali mendaki ke ketinggian. HAI terdiri dari acute mountain sickness (AMS, high-altitude cerebral edema (HACE dan high-altitude pulmonary edema (HAPE. Tujuan tinjauan pustaka ini adalah agar dokter dan wisatawan memahami risiko, tanda, gejala, dan pengobatan high-altitude illness. Perhatian banyak diberikan terhadap penyakit ini seiring dengan meningkatnya popularitas olahraga ekstrim (mendaki gunung tinggi, ski dan snowboarding dan adanya kemudahan serta ketersediaan perjalanan sehingga jutaan orang dapat terpapar bahaya HAI. Di Pherice, Nepal (ketinggian 4343 m, 43% pendaki mengalami gejala AMS. Pada studi yang dilakukan pada tempat wisata di resort ski Colorado, Honigman menggambarkan kejadian AMS 22% pada ketinggian 1850 m sampai 2750 m, sementara Dean menunjukkan 42% memiliki gejala pada ketinggian 3000 m. Aklimatisasi merupakan salah satu tindakan pencegahan yang dapat dilakukan sebelum pendakian, selain beberapa pengobatan seperti asetazolamid, dexamethasone, phosopodiestrase inhibitor, dan ginko biloba.Kata kunci: high-altitude illness, acute mountain sickness, edema cerebral, pulmonary edema AbstractHigh-altitude illness (HAI is symptoms of lung and brain that occurs in people who first climb to altitude. HAI includes acute mountain sickness (AMS, high-altitude cerebral edema (HACE and high altitude pulmonary edema (HAPE. The objective of this review was to understand the risks, signs, symptoms, and treatment of high-altitude illness. The attention was given to this disease due to the rising popularity of extreme sports (high mountain climbing, skiing and snowboarding and the ease and availability of the current travelling, almost each year, millions of people could be exposed to the danger of HAI. In Pherice, Nepal (altitude 4343 m, 43% of climbers have symptoms of AMS. Furthermore, in a study conducted at sites in

  15. High Altitude and Heart

    Directory of Open Access Journals (Sweden)

    Murat Yalcin

    2011-04-01

    Full Text Available Nowadays, situations associated with high altitude such as mountaineering, aviation increasingly draw the attention of people. Gas pressure decreases and hypoxia is encountered when climbing higher. Physiological and pathological responses of human body to different heights are different. Therefore, physiological and pathological changes that may occur together with height and to know the clinical outcomes of these are important . Acute mountain sickness caused by high altitude and high altitude cerebral edema are preventable diseases with appropriate precautions. Atmospheric oxygen decreasing with height, initiates many adaptive mechanisms. These adaptation mechanisms and acclimatization vary widely among individuals because of reasons such as environmental factors, exercise and cold. High altitude causes different changes in the cardiovascular system with various mechanisms. Although normal individuals easily adapt to these changes, this situation can lead to undesirable results in people with heart disease. For this reason, it should be known the effective evaluation of the people with known heart disease before traveling to high altitude and the complications due to the changes with height and the recommendations can be made to these patients. [TAF Prev Med Bull 2011; 10(2.000: 211-222

  16. Cirrus cloud occurrence as function of ambient relative humidity: a comparison of observations obtained during the INCA experiment

    Directory of Open Access Journals (Sweden)

    J. Ström

    2003-01-01

    Full Text Available Based on in-situ observations performed during the Interhemispheric differences in cirrus properties from anthropogenic emissions (INCA experiment, we introduce and discuss the cloud presence fraction (CPF defined as the ratio between the number of data points determined to represent cloud at a given ambient relative humidity over ice (RHI divided by the total number of data points at that value of RHI. The CPFs are measured with four different cloud probes. Within similar ranges of detected particle sizes and concentrations, it is shown that different cloud probes yield results that are in good agreement with each other. The CPFs taken at Southern Hemisphere (SH and Northern Hemisphere (NH midlatitudes differ from each other. Above ice saturation, clouds occurred more frequently during the NH campaign. Local minima in the CPF as a function of RHI are interpreted as a systematic underestimation of cloud presence when cloud particles become invisible to cloud probes. Based on this interpretation, we find that clouds during the SH campaign formed preferentially at RHIs between 140 and 155%, whereas clouds in the NH campaign formed at RHIs somewhat below 130%. The data show that interstitial aerosol and ice particles coexist down to RHIs of 70-90%, demonstrating that the ability to distinguish between different particle types in cirrus conditions depends on the sensors used to probe the aerosol/cirrus system. Observed distributions of cloud water content differ only slightly between the NH and SH campaigns and seem to be only weakly, if at all, affected by the freezing aerosols.

  17. Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays

    Science.gov (United States)

    Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard

    2017-07-01

    Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.

  18. Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays

    Directory of Open Access Journals (Sweden)

    L. Forster

    2017-07-01

    Full Text Available Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.

  19. Development and Comparison of Ground and Satellite-based Retrievals of Cirrus Cloud Physical Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, David L

    2009-10-14

    This report is the final update on ARM research conducted at DRI through May of 2006. A relatively minor amount of work was done after May, and last month (November), two journal papers partially funded by this project were published. The other investigator on this project, Dr. Bob d'Entremont, will be submitting his report in February 2007 when his no-cost extension expires. The main developments for this period, which concludes most of the DRI research on this project, are as follows: (1) Further development of a retrieval method for cirrus cloud ice particle effective diameter (De) and ice water path (IWP) using terrestrial radiances measured from satellites; (2) Revision and publication of the journal article 'Testing and Comparing the Modified Anomalous Diffraction Approximation'; and (3) Revision and publication of our radar retrieval method for IWC and snowfall rate.

  20. An automated cirrus classification

    Science.gov (United States)

    Gryspeerdt, Edward; Quaas, Johannes; Sourdeval, Odran; Goren, Tom

    2017-04-01

    Cirrus clouds play an important role in determining the radiation budget of the earth, but our understanding of the lifecycle and controls on cirrus clouds remains incomplete. Cirrus clouds can have very different properties and development depending on their environment, particularly during their formation. However, the relevant factors often cannot be distinguished using commonly retrieved satellite data products (such as cloud optical depth). In particular, the initial cloud phase has been identified as an important factor in cloud development, but although back-trajectory based methods can provide information on the initial cloud phase, they are computationally expensive and depend on the cloud parametrisations used in re-analysis products. In this work, a classification system (Identification and Classification of Cirrus, IC-CIR) is introduced. Using re-analysis and satellite data, cirrus clouds are separated in four main types: frontal, convective, orographic and in-situ. The properties of these classes show that this classification is able to provide useful information on the properties and initial phase of cirrus clouds, information that could not be provided by instantaneous satellite retrieved cloud properties alone. This classification is designed to be easily implemented in global climate models, helping to improve future comparisons between observations and models and reducing the uncertainty in cirrus clouds properties, leading to improved cloud parametrisations.

  1. Implications of the ISOCLOUD campaigns at the AIDA Cloud Chamber for ice growth in cold cirrus

    Science.gov (United States)

    Lamb, Kara; Clouser, Benjamin; Sarkozy, Laszlo; Wagner, Steven; Ebert, Volker; Kerstel, Erik; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth

    2015-04-01

    In-situ water vapor measurements in the upper troposphere and lower stratosphere (UTLS) have routinely observed anomalous supersaturations on the order of 10-20particles when temperatures were below 200 K, raising questions about the physics of how ice forms at cold temperatures in the atmosphere1,2,3,4. The ISOCLOUD campaigns in 2012-2013 at the AIDA Aerosol and Cloud Chamber sought to investigate ice growth at cold temperatures by simulating cirrus clouds at temperatures and pressures characteristic of the upper troposphere. Experiments tested both homogeneous nucleation of sulfate aerosols and heterogeneous nucleation with various ice nuclei, including mineral dust and organic aerosols with and without nitric acid coatings. Optical instruments, both in-situ (TDLAS) and extractive (TDLAS and OFCEAS), measured ice particle number density, water vapor, total water, and water vapor isotopic concentrations, with multiple instruments measuring water. In a series of cirrus formation experiments, we observed no evidence of anomalous saturation vapor pressure and no evidence of ice growth inhibition at low temperatures for the parameter space tested during the ISOCLOUD campaigns. That is, we see no evidence for temperature dependence in the deposition coefficient. In these experiments we determined the deposition coefficient from bulk parameters of the gas (vapor concentration and ice number density). The ISOCLOUD experiments were particularly suited to deposition coefficient measurements since they involved lower pressures and often lower temperatures than previous similar campaigns, producing lower error bars.5 These results can aid in the interpretation of data from aircraft campaigns in the UTLS by solidifying our understanding of the microphysics of ice formation at cold temperatures. [1] Gao, R. et al., Science, 303, no. 6567, 516-520, (2004). [2] Jensen, E. et al., Atmos. Chem. Phys., 5, 851-862, (2005). [3] Peter, T. et al., Science, 314, no. 5804, 1399

  2. Effects of Ice-Crystal Structure on Halo Formation: Cirrus Cloud Experimental and Ray-Tracing Modeling Studies

    Science.gov (United States)

    Sassen, Kenneth; Knight, Nancy C.; Takano, Yoshihide; Heymsfield, Andrew J.

    1994-01-01

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22 deg halo-producing cirrus clouds were studied jointly from a ground-based polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow-ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  3. A Study of Global Cirrus Cloud Morphology with AIRS Cloud-clear Radiances (CCRs)

    Science.gov (United States)

    Wu, Dong L.; Gong, Jie

    2012-01-01

    Version 6 (V6) AIRS cloud-clear radiances (CCR) are used to derive cloud-induced radiance (Tcir=Tb-CCR) at the infrared frequencies of weighting functions peaked in the middle troposphere. The significantly improved V 6 CCR product allows a more accurate estimation of the expected clear-sky radiance as if clouds are absent. In the case where strong cloud scattering is present, the CCR becomes unreliable, which is reflected by its estimated uncertainty, and interpolation is employed to replace this CCR value. We find that Tcir derived from this CCR method are much better than other methods and detect more clouds in the upper and lower troposphere as well as in the polar regions where cloud detection is particularly challenging. The cloud morphology derived from the V6 test month, as well as some artifacts, will be shown.

  4. Retrieval of Cirrus Cloud Optical Depth under Day and Night Conditions from MODIS Collection 6 Cloud Property Data

    Directory of Open Access Journals (Sweden)

    Andrew K. Heidinger

    2015-06-01

    Full Text Available This paper presents a technique to generate cirrus optical depth and particle effective size estimates from the cloud emissivities at 8.5, 11 and 12 μm contained in the Collection-6 (C6 MYD06 cloud product. This technique employs the latest scattering models and scattering radiative transfer approximations to estimate cloud optical depth and particle effective size using efficient analytical formulae. Two scattering models are tested. The first is the same scattering model as that used in the C6 MYD06 solar reflectance products. The second model is an empirical model derived from radiometric consistency. Both models are shown to generate optical depths that compare well to those from constrained CALIPSO retrievals and MYD06. In terms of effective radius retrievals, the results from the radiometric empirical model agree more closely with MYD06 than those from the C6 model. This analysis is applied to AQUA/MODIS data collocated with CALIPSO/CALIOP during January 2010.

  5. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  6. Technical note: Fu–Liou–Gu and Corti–Peter model performance evaluation for radiative retrievals from cirrus clouds

    Directory of Open Access Journals (Sweden)

    S. Lolli

    2017-06-01

    Full Text Available We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti–Peter (CP model, versus the more complex Fu–Liou–Gu (FLG model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  7. Discovery and imaging of a Galactic cirrus cloud with the far ultraviolet space telescope

    Science.gov (United States)

    Haikala, Lauri K.; Mattila, Kalevi; Bowyer, Stuart; Sasseen, Timothy P.; Lampton, Michael; Knude, Jens

    1995-01-01

    We present new far-ultraviolet (1400-1800 A) data concerning a Galactic cirrus cloud G251.2+73.3 near the north Galactic pole obtained with the space-borne imaging telescope FAUST (Far Ultraviolet Space Telescope). We obtain a good correlation between the far-ultraviolet (FUV) and IRAS 100 micrometers surface brightnesses, their relation being I(sub FUV) = (128 +/- 3) I(sub 100 micrometers) - (264 +/- 9), where the I(sub FUV) flux is given in units of photon/s/sq cm/A/sr and I(sub 100 micrometers) in MJy/sr. Using uvbyH-beta photometry, we get a distance of 120 pc and a visual extinction in the center of the cloud of 0.39 mag corresponding to an extinction of 1.0 mag at 1565 A. We have performed a multiple scattering calculation for the scattered light using the Monte Carlo method. These calculations provide restrictions on the FUV scattering properties of the interstellar dust.

  8. Large scale and cloud scale dynamics and microphysics in the formation and evolution of a TTL cirrus : a case modelling study

    Science.gov (United States)

    Podglajen, Aurélien; Plougonven, Riwal; Hertzog, Albert; Legras, Bernard

    2015-04-01

    Cirrus clouds in the tropical tropopause layer (TTL) control dehydration of air masses entering the stratosphere and strongly contribute to the local radiative heating. In this study, we aim at understanding, through a real case simulation, the dynamics controlling the formation and life cycle of a cirrus cloud event in the TTL. We also aim at quantifying the chemical and radiative impacts of the clouds. To do this, we use the Weather Research and Forecast (WRF) model to simulate a large scale TTL cirrus event happening in January 2009 (27-29) over the Eastern Pacific, which has been extensively described through satellite observations (Taylor et al., 2011). Comparison of simulated and observed high clouds shows a fair agreement, and validates the reference simulation regarding cloud extension, location and life time. The simulation and Lagrangian trajectories within the simulation are then used to characterize the evolution of the cloud : displacement, Lagrangian life time and links with dynamics. The efficiency of dehydration by such clouds is also examined. Sensitivity tests were performed to evaluate the importance of different microphysics schemes and initial and boundary conditions to accurately simulate the cirrus. As expected, both were found to have strong impacts. In particular, there were substantial differences between simulations using different initial and boundary conditions from atmospheric analyses (NCEP CFSR and ECMWF). This illustrates the primordial role of accurate vapour and dynamics for realistic cirrus modelling, on top of the need for appropriate microphysics. Last, we examined the effects of cloud radiative heating. Long wave radiative heating in cirrus clouds has been invoked to induce a cloud scale circulation that would lengthen the cloud lifetime, and increase the size of its dehydration area (Dinh et al. 2010). To try to diagnose this, we have carried out simulations using different radiative schemes, including or suppressing the

  9. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    National Research Council Canada - National Science Library

    Valery N Shcherbakov; Carl G Schmitt; Andrew J Heymsfield

    2016-01-01

    ...) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the -40 to -60-°C range...

  10. Likely seeding of cirrus clouds by stratospheric Kasatochi volcanic aerosol particles near a mid-latitude tropopause fold

    Science.gov (United States)

    Campbell, James R.; Welton, Ellsworth J.; Krotkov, Nickolay A.; Yang, Kai; Stewart, Sebastian A.; Fromm, Michael D.

    2012-01-01

    Following the explosive 7-8 August 2008 Mt. Kasatochi volcanic eruption in southwestern Alaska, a segment of the dispersing stratospheric aerosol layer was profiled beginning 16 August in continuous ground-based lidar measurements over the Mid-Atlantic coast of the eastern United States. On 17-18 August, the layer was displaced downward into the upper troposphere through turbulent mixing near a tropopause fold. Cirrus clouds and ice crystal fallstreaks were subsequently observed, having formed within the entrained layer. The likely seeding of these clouds by Kasatochi aerosol particles is discussed. Cloud formation is hypothesized as resulting from either preferential homogenous freezing of relatively large sulfate-based solution droplets deliquesced after mixing into the moist upper troposphere or through heterogeneous droplet activation by volcanic ash. Satellite-borne spectrometer measurements illustrate the evolution of elevated Kasatochi SO 2 mass concentrations regionally and the spatial extent of the cirrus cloud band induced by likely particle seeding. Satellite-borne polarization lidar observations confirm ice crystal presence within the clouds. Geostationary satellite-based water vapor channel imagery depicts strong regional subsidence, symptomatic of tropopause folding, along a deepening trough in the sub-tropical westerlies. Regional radiosonde profiling confirms both the position of the fold and depth of upper-tropospheric subsidence. These data represent the first unambiguous observations of likely cloud seeding by stratospheric volcanic aerosol particles after mixing back into the upper troposphere.

  11. Validation of the CALIPSO-CALIOP extinction coefficients from in situ observations in midlatitude cirrus clouds during the CIRCLE-2 experiment

    Science.gov (United States)

    Mioche, Guillaume; Josset, Damien; Gayet, Jean-FrançOis; Pelon, Jacques; Garnier, Anne; Minikin, Andreas; Schwarzenboeck, Alfons

    2010-01-01

    This paper presents a comparison of combined Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) extinction retrievals with airborne lidar and in situ cirrus cloud measurements. Specially oriented research flights were carried out in western Europe in May 2007 during the Cirrus Cloud Experiment (CIRCLE-2) with the German Deutsches Zentrum für Luft- und Raumfahrt (DLR) and the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon aircraft equipped for remote and in situ measurements, respectively. Four cirrus cloud situations including thin cirrus layers and outflow cirrus linked to midlatitude fronts and convective systems were chosen to perform experimental collocated observations along the satellite overpasses. The measurements were carried out with temperatures ranging between -38°C and -60°C and with extinction coefficients no larger than 2 km-1. Comparisons between CALIOP and airborne lidar (LEANDRE New Generation (LNG)) attenuated backscatter coefficients reveal much larger CALIOP values for one frontal cirrus situation which could be explained by oriented pristine ice crystals. During the four selected cases the CALIOP cirrus extinction profiles were compared with in situ extinction coefficients derived from the Polar Nephelometer. The results show a very good agreement for two situations (frontal and outflow cases) despite very different cloud conditions. The slope parameters of linear fittings of CALIOP extinction coefficients with respect to in situ measurements are 0.90 and 0.94, with correlation coefficients of 0.69 and only 0.36 for the latter case because of a small number of measurements. On the contrary, significant differences are evidenced for two other situations. In thin frontal cirrus at temperatures ranging between -58°C and -60°C, systematic larger CALIOP extinctions can be explained by horizontally

  12. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    Directory of Open Access Journals (Sweden)

    A. K. Pandit

    2015-06-01

    Full Text Available 16 year (1998–2013 climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness and optical properties (cloud optical thickness observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E, India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006–December 2013 of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50–55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between −50 to −70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013 which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  13. Ear - blocked at high altitudes

    Science.gov (United States)

    High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... eustachian tube is a connection between the middle ear (the space deep to the eardrum) and the ...

  14. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    National Research Council Canada - National Science Library

    M. Schnaiter; E. Järvinen; P. Vochezer; A. Abdelmonem; R. Wagner; O. Jourdan; G. Mioche; V. N. Shcherbakov; C. G. Schmitt; U. Tricoli; Z. Ulanowski; A. J. Heymsfield

    2015-01-01

    ...) cloud chamber of the Karlsruhe Institute of Technology (KIT). A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the −40 to −60 °C range...

  15. Sensitivity Studies of Dust Ice Nuclei Effect on Cirrus Clouds with the Community Atmosphere Model CAM5

    Science.gov (United States)

    Liu, Xiaohong; Zhang, Kai; Jensen, Eric J.; Gettelman, Andrew; Barahona, Donifan; Nenes, Athanasios; Lawson, Paul

    2012-01-01

    In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0+/-0.1Wm (sup-2) (1 uncertainty) and 2.4+/-0.1Wm (sup-2), respectively due to the presence of dust IN, with the net cloud forcing change of -0.40+/-0.20W m(sup-2). Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205-230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190- 205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (greater than 200 L(sup-1) and underestimate the frequency of low ice crystal number concentration (less than 30 L(sup-1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

  16. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    Science.gov (United States)

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; Xie, S.; Zhang, Y.

    2015-07-01

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. This paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated by the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating

  17. A decadal cirrus clouds climatology from ground-based and spaceborne lidars above the south of France (43.9° N–5.7° E

    Directory of Open Access Journals (Sweden)

    C. Hoareau

    2013-07-01

    Full Text Available This study provides an analysis of cirrus cloud properties at midlatitude in the southern part of France from ground-based and spaceborne lidars. A climatology of cirrus cloud properties and their evolution over more than 12 yr is presented and compared to other mid-latitude climatological studies. Cirrus clouds occur ~37% of the total observation time and remain quasi-constant across seasons with a variation within ~5% around the mean occurrence. Similar results are obtained from CALIOP and the ground-based lidar, with a mean difference in occurrence of ~5% between both instruments. From the ground-based lidar data, a slight decrease in occurrence of ~3% per decade is observed but found statistically insignificant. Based on a clustering analysis of cirrus cloud parameters, three distinct classes have been identified and investigations concerning their origin are discussed. Properties of these different classes are analysed, showing that thin cirrus in the upper troposphere represent ~50% of cloud cover detected in summer and fall, decreasing by 15–20% for other seasons.

  18. Depolarization properties of cirrus clouds from polarization lidar measurements over Hefei in spring

    Institute of Scientific and Technical Information of China (English)

    Zhenzhu Wang; Ruli Chi; Bo Liu; Jun Zhou

    2008-01-01

    @@ A new polarization lidar has been developed for detecting depolarization characteristics of aerosol and cirrus over Hefei (31.90°N, 117.16°E), China. The fundamental principle of polarization lidar is briefly introduced.

  19. Effects of air traffic on cirrus cloud formation in Europe. Final report of the development area environmental and climate research; Untersuchungen zum Einfluss des Flugverkehrs auf die Cirrus-Bewoelkung in Europa. Endbericht im Foerdergebiet Umwelt und Klimaforschung

    Energy Technology Data Exchange (ETDEWEB)

    Mannstein, H.; Wendling, P.

    2001-06-01

    The cloud cover over Europe caused by linear condensation trails has been investigated already in earlier studies. However, after quite a short period of time, these can no longer be distinguished from natural cirrus clouds. There were no data on the effect of air travel on cirrus formation. This study investigated the effects of air travel on cirrus cloud formation by investigating a time series of METEOSAT data and relating it to air travel data in high temporal and local resolution. (orig.) [German] Der Bedeckungsgrad an deutlich im Satellitenbild erkennbaren, linearen Kondensstreifen ueber Europa wurde bereits untersucht. Nach relativ kurzer Zeit sind Kondensstreifen jedoch mit den bisher bekannten Fernerkundungsmethoden nicht mehr von natuerlichen Cirren zu unterscheiden. In welchem Masse der Flugverkehr zur Cirrus-Bewoelkung beitraegt, war bisher nicht bekannt. In dieser Arbeit wurde mit hoher Signifikanz der Einfluss des Flugverkehrs auf die Cirrusbedeckung, wie sie sich ans METEOSAT-Daten ableiten laesst, nachgewiesen. Dazu wurde eine Zeitserie von METEOSAT-Daten im Vergleich zu zeitlich und raeumlich hochaufgeloesten Flugverkehrsdaten untersucht. (orig.)

  20. The SARTre model for radiative transfer in spherical atmospheres and its application to the derivation of cirrus cloud properties

    Energy Technology Data Exchange (ETDEWEB)

    Mendrock, J.

    2006-07-01

    Modeling of radiative transfer (RT) is one of the essentials of atmospheric remote sensing. It has been common to use separate models for the simulation of shortwave radiation dominated by scattering of sunlight and longwave radiation characterized by emission from trace gases. These days also shortwave instruments are operated in limb mode, which demand models taking the sphericity of the Earth and atmosphere into account. On the other hand, infrared and microwave sounders are increasingly being used for the observation of ice clouds, that necessitate the modeling of scattering by cloud particles. Both trends require RT models, that are capable of taking into account scattering as well as the sphericity of the atmosphere. This suggests a unified handling of short- and longwave radiation, which furthermore allows for a consistent evaluation of multispectral data. Focusing on these aspects, the RT-model SARTre ([Approximate] Spherical Atmospheric Radiative Transfer model) has been developed. To our knowledge, SARTre is the first model, that is capable of limb modeling in the ultraviolet, visible, near to far infrared, and microwave spectral region. Here, algorithm baseline, implementation, verification and validation of SARTre are presented. SARTre has been used to study effects of cirrus clouds on infrared limb emission spectra. An exemplary retrieval of cirrus parameters from MIPAS measurements is demonstrated, and the plausibility of the results is discussed. (orig.)

  1. Energy at high altitude.

    Science.gov (United States)

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  2. High Altitude Dermatology

    Science.gov (United States)

    Singh, Lt. Col. G K

    2017-01-01

    Approximately, 140 million people worldwide live permanently at high altitudes (HAs) and approximately another 40 million people travel to HA area (HAA) every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV) light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc.), cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc.) nail changes (koilonychias), airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma) are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place. PMID:28216727

  3. High altitude dermatology

    Directory of Open Access Journals (Sweden)

    G K Singh

    2017-01-01

    Full Text Available Approximately, 140 million people worldwide live permanently at high altitudes (HAs and approximately another 40 million people travel to HA area (HAA every year for reasons of occupation, sports or recreation. In India, whole of Ladakh region, part of Northwest Kashmir, Northern part of Sikkim and Tenga valley of Arunachal are considered inhabited areas of HAA. The low quantity of oxygen, high exposure of ultraviolet (UV light, very low humidity, extreme subzero temperature in winter, high wind velocity, make this region difficult for lowlanders as well as for tourists. Acute mountain sickness, HA pulmonary edema, HA cerebral edema, and thromboembolic conditions are known to occur in HA. However, enough knowledge has not been shared on dermatoses peculiar to this region. Xerosis, UV-related skin disorders (tanning, photomelanosis, acute and chronic sunburn, polymorphic light eruption, chronic actinic dermatitis, actinic cheilitis, etc., cold injuries (frostbite, chilblains, acrocyanosis, erythrocyanosis, etc. nail changes (koilonychias, airborne contact dermatitis, insect bite reaction, and skin carcinoma (basal cell carcinomas, squamous cell carcinomas, and also rarely malignant melanoma are the dermatoses seen in HAAs. Early diagnosis and knowledge of HA dermatoses may prevent serious consequences of disease and improve the quality of life for the visitors as well as for native of the place.

  4. Brain Food at High Altitude.

    Science.gov (United States)

    Jain, Vishal

    2016-01-01

    Scenic view at high altitude is a pleasure to the eyes, but it has some shortcoming effects as well. High altitude can be divided into different categories, i.e., high altitude (3000-5000 ft), very high altitude (5000-8000 ft), and extreme altitude (above 8000 ft). Much of the population resides at high altitude, and others go there for tourism. Military personnel are also posted there to defend boundaries. As we ascent to high altitude, partial pressure of oxygen reduces, whereas concentration remains the same; this reduces the availability of oxygen to different body parts. This pathophysiological condition is known as hypobaric hypoxia (HH) which leads to oxidative stress and further causes cognitive dysfunction in some cases. Hypoxia causes neurodegeneration in different brain regions; however, the hippocampus is found to be more prone in comparison to other brain regions. As the hippocampus is affected most, therefore, spatial memory is impaired most during such condition. This chapter will give a brief review of the damaging effect of high altitude on cognition and also throw light on possible herbal interventions at high altitude, which can improve cognitive performance as well as provide protection against the deteriorating effect of hypobaric hypoxia at high altitude.

  5. Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: a case study over Tsukuba

    OpenAIRE

    A. Bril; S. Oshchepkov; A. Uchiyama; A. Yamazaki; Shibata, T.; Shimizu, A.; T. Nagai; Y. Yoshida; Morino, I.; Sakai, T; N. Kikuchi; O. Uchino; Yokota, T

    2011-01-01

    Lidar observations of vertical profiles of aerosols and thin cirrus clouds were made at Tsukuba (36.1° N, 140.1° E), Japan, to investigate the influence of aerosols and thin cirrus clouds on the column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from observation data of the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer, measured in the Short-Wavelength InfraRed band (TANSO-FTS SWIR), onboard the Greenhouse gases Observing ...

  6. Cardiovascular physiology at high altitude.

    Science.gov (United States)

    Hooper, T; Mellor, A

    2011-03-01

    The role of the cardiovascular system is to deliver oxygenated blood to the tissues and remove metabolic effluent. It is clear that this complex system will have to adapt to maintain oxygen deliver in the profound hypoxia of high altitude. The literature on the adaptation of both the systemic and pulmonary circulations to high altitude is reviewed.

  7. Combining multiple remote sensors with reanalysis and a radiative transfer model to assess the microphysical impact of smoke on cirrus clouds

    Science.gov (United States)

    Kablick, G. P.

    2011-12-01

    A multi-spectral technique for retrieving properties of smoke contaminated ice clouds is evaluated. This method utilizes Earth orbiting active and passive remote sensors combined with atmospheric reanalysis and a multiple scattering, single column radiative transfer algorithm. This study focuses on a specific type of cirrus cloud that exhibits IR radiances, lidar backscatter values, color ratios and depolarization ratios comparable to thick cirrus as observed by MODIS and CALIPSO. However, the radar reflectivities as determined by CloudSat are significantly lower than expected for clouds with such large visible optical depths. This work also demonstrates the sensitivity of retrievals to a priori assumptions by using a few notable cases. Collocated data observed during the boreal fire season of 2010 is analyzed using this methodology as a first step to ascertain the impact that pyroconvection may have on ice cloud properties.

  8. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Cuevas, Emilio; Ochoa, Héctor; Gil-Ojeda, Manuel

    2017-01-01

    Cirrus (Ci) cloud properties can change significantly from place to place over the globe as a result of weather processes, reflecting their likely different radiative and climate implications. In this work Cirrus clouds (Ci) features observed in late autumn/early winter season at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements were carried out in three stations: São Paulo (MSP, Brazil) and Tenerife (SCO, Canary Islands, Spain), as subtropical sites, and the polar Belgrano II base (BEL, Argentina) in the Antarctic continent. The backscattering ratio (BSR) profiles and the top and base heights of the Ci layers together to their Cirrus Cloud Optical Depth (CCOD) and Lidar Ratio (LR) for Ci clouds were derived. In addition, temperatures at the top and base boundaries of the Ci clouds were also obtained from local radiosoundings to verify pure ice Ci clouds occurrence using a given temperature top threshold ( 70 km far), inferring the irregular extension and inhomogeneity of the Ci clouds over each study area. These considerations can be useful for assimilation of the Ci features into climate models and evaluation of future space-borne lidar observations of Ci clouds, especially for the future ESA/Copernicus-Sentinel and ESA/EarthCARE missions.

  9. Vertical Sizing of Cirrus Clouds using the 1.38 μm Spectral Lines and MODIS Data

    Science.gov (United States)

    Wang, X.; Liou, K.; Ou, S.

    2006-12-01

    Atmospheric albedo and heating rates in cloudy conditions are dependent on the vertical inhomogeneity of clouds. For example, small ice crystal sizes aloft coupled with larger sizes at the cloud base would reflect more solar radiation as compared to the use of an averaged ice crystal size for the same cloud. Significant variability of the heating rate also occurs in association with vertical inhomogeneity. In situ measurements from the airborne optical probe, replicator, and cloud scope clearly illustrate the vertical distribution of ice crystal size and shape. We have developed an approach to infer the vertical profile of mean effective particle size on the basis of the spectral line reflectance of the 1.38 μm water vapor band. In it, seventeen narrow bands of various water vapor absorption strengths have been selected. The physical principle for this approach is based on the fact that the reflectance in strong absorptive wavelengths is most sensitive to cloud top properties, whereas the reflectance in less absorptive wavelengths senses the microphysical properties deeper into the cloud. To test this concept, we have prescribed several cloud vertical structures and used an adding-doubling radiative transfer program coupled with the correlated k-distribution method to calculate the look-up tables of reflectance for a variety of cloud settings. We show some success of hypothetical retrieval exercises by applying a χ2 minimization principle. The vertical sizing idea described above has been applied to the MODIS visible and three near-IR channels and we demonstrate that it is possible to derive two vertical ice crystal sizes from a combination of these channels. For validation purposes, we have selected a number of cirrus scenes over the ARM Southern Great Plain site and compared the retrieved vertical ice crystal sizes with the ground-based cloud radar retrieval values. The vertical sizing results determined from the 1.38 μm spectral lines and MODIS data will be

  10. Inhomogeneities in cirrus clouds and their effects on solar radiative transfer; Inhomogenitaeten in Cirren und ihre Auswirkungen auf den solaren Strahlungstransport

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, N. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2001-07-01

    Inhomogeneities in cirrus clouds have an important impact on radiative transfer calculations in climate models. Compared to homogeneous clouds, inhomogeneities within clouds decrease reflectivity and result in an increased transmission of solar radiation through the cloud towards the surface. A quantitative investigation of this effect is still to be done. In-situ and remote sensing data of 11 cirrus clouds are used to investigate horizontal inhomogeneities. The 3-dimensional radiative transfer model GRIMALDI is used to calculate radiative flux densities and absorption for a cloudy atmosphere. Comparisons between homogeneous and heterogeneous calculations show, that the homogeneous assumption can cause relative errors up to {+-} 30% for radiative flux densities and absorption especially for tropical cirrus clouds. Mid-latitude cirrus clouds with mean optical thickness smaller than 5 and minor inhomogeneity result in relative errors smaller than {+-} 10% for radiative flux density and absorption. A correction scheme is developed to account for horizontal inhomogeneity in optically thick cirrus clouds in homogeneous radiative transfer calculations. This way, for a known horizontal distribution of optical thickness, relative errors of radiative properties can be reduced to a maximum of {+-} 10%. (orig.) [German] Inhomogenitaeten in Cirrus-Wolken spielen insbesondere bei Strahlungstransportrechnungen in Klimamodellen eine bedeutende Rolle. Im Vergleich zur homogenen Wolkenbetrachtung verringern Inhomogenitaeten die Reflektivitaet der Wolken und fuehren zu einer hoeheren Transmission solarer Strahlung durch die Wolke zum Erdboden. Eine quantitative Untersuchung dieses Effekts steht allerdings bislang aus. Flugzeugmessungen sowie Fernerkundungsdaten von insgesamt 11 Cirrus-Wolken werden auf ihre horizontale Inhomogenitaet untersucht. Das 3-dimensionale Strahlungstransportmodell GRIMALDI wird fuer die Berechnung solarer Strahlungsflussdichten und Absorption in bewoelkter

  11. Origin and transport of tropical cirrus clouds observed over Paramaribo, Suriname (5.8°N, 55.2°W)

    Science.gov (United States)

    Fortuin, J. P. F.; Becker, C. R.; Fujiwara, M.; Immler, F.; Kelder, H. M.; Scheele, M. P.; Schrems, O.; Verver, G. H. L.

    2007-05-01

    The Intertropical Convergence Zone (ITCZ) passes twice a year over tropical Suriname, bringing two wet and two dry seasons. During a pilot study campaign in Suriname, cirrus clouds were observed with a mobile aerosol Raman lidar (MARL) and with balloon sondes containing a frost point hygrometer called Snow White, over the period October-November 2004. These observations are used to study the origin of cirrus clouds and the dynamical processes that determine their transport, using European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses. The height of cirrus occurrence is in phase with the height of the cold point tropopause, with maximum heights occurring during Northern Hemisphere winter that are about 2 km above the minimum values in summertime. The occurrence of cirrus often corresponds with a northerly meridional wind flow (in a layer underneath the tropopause), also when the ITCZ lies to the south in the period January-May. ECMWF analyses point out that inertial instability flow, in the form of vertically stacked meridional circulation cells in the upper troposphere (UT), can explain the transport of these cirrus events. Also evident is that radiative cooling of a moist layer transported in the UT leads to a thermal wind in the form of an easterly/westerly jet associated with the southward/northward transport of moist air. An interactive play between the inertial instability and thermal wind mechanisms explains many of the observed features of cirrus occurrence over Suriname. The observed cirrus mostly originates from the ITCZ or from deep convective centers to the south that form during the early summer monsoon.

  12. Cirrus clouds, humidity, and dehydration in the tropical tropopause layer observed at Paramaribo, Suriname (5.8°N, 55.2°W)

    Science.gov (United States)

    Immler, Franz; Krüger, Kirstin; Tegtmeier, Susann; Fujiwara, Masatomo; Fortuin, Paul; Verver, Gé; Schrems, Otto

    2007-02-01

    In the framework of the European Project STAR the Mobile Aerosol Raman Lidar (MARL) of the Alfred Wegener Institute (AWI) was operated in Paramaribo, Suriname (5.8°N, 55.2°W), and carried out extensive observations of tropical cirrus clouds during the local dry season from 28 September 2004 to 16 November 2004. The coverage with ice clouds was very high with 81% in the upper troposphere (above 12 km). The frequency of occurrence of subvisual clouds was found to be clearly enhanced compared to similar observations performed with the same instrument at a station in the midlatitudes. The extinction-to-backscatter ratio of thin tropical cirrus is with 26 ± 7 sr significantly higher than that of midlatitude cirrus (16 ± 9 sr). Subvisual cirrus clouds often occur in the tropical tropopause layer (TTL) above an upper tropospheric inversion. Our observations show that the ice-forming ability of the TTL is very high. The transport of air in this layer was investigated by means of a newly developed trajectory model. We found that the occurrence of clouds is highly correlated with the temperature and humidity history of the corresponding air parcel. Air that experienced a temperature minimum before the measurement took place was generally cloud free, while air that was at its temperature minimum during the observation and thus was saturated contained ice. We also detected extremely thin cloud layers slightly above the temperature minimum in subsaturated air. The solid particles of such clouds are likely to consist of nitric acid trihydrate (NAT) rather than ice.

  13. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    Science.gov (United States)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  14. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    Science.gov (United States)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  15. Comparisons of cirrus cloud properties between polluted and pristine air based on in-situ observations from the NSF HIPPO, EU INCA and NASA ATTREX campaigns

    Science.gov (United States)

    Diao, M.; Schumann, U.; Jensen, J. B.; Minikin, A.

    2015-12-01

    The radiative forcing of cirrus clouds is influenced by microphysical (e.g., ice crystal number concentration and size distribution) and macroscopic properties. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions. In this work, we use airborne in-situ observations to compare cirrus cloud properties between polluted and pristine regions. Our dataset includes: the NSF HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011), the EU Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign (2000) and the NASA Airborne Tropical Tropopause Experiment (ATTREX) campaign (2014). The combined dataset include observations of both extratropical (HIPPO and INCA) and tropical (ATTREX) cirrus, over the Northern and Southern Hemispheres. We use the in-situ measured carbon monoxide (CO) mixing ratio as a pollution indicator, and compare ice microphysical properties (i.e., ice crystal number concentration (Nc) and number-weighted mean diameter (Dc)) between air masses with higher and lower CO. All analyses are restricted to T ≤ -40°C. By analyzing ice crystals (Fast-2DC, 87.5-1600 µm) in HIPPO, we found that Dc decreases with increasing CO concentration at multiple constant pressure levels. In addition, analysis of INCA data shows that Nc and extinction of small ice particles (FSSP 3-20 µm) increases with increasing CO. Particles < 87.5 µm in Fast-2DC data are not considered due to uncertainty in sample volume, and the FSSP measurements are subject to possible shattering. We further analyze the ice crystals (SPEC FCDP, 1-50 µm) in the tropical tropopause layer in ATTREX. At -70°C to -90°C, we found that the average Nc (Dc) increases (decreases) at higher CO. Overall, our results suggest that extratropical and tropical cirrus are likely to have more numerous small ice particles, when sampled in the more polluted background. Back

  16. Development and demonstration of a high-altitude atmospheric backscatter Lidar system

    Science.gov (United States)

    Dolash, Thomas M.; Garvey, John; Leonelli, Joseph; Bradford, Mark; Rose, Lynn

    1994-06-01

    Battelle has designed and fabricated an upward-looking atmospheric backscatter lidar for high-altitude airborne applications. The compact, rugged system was assembled and integrated into a cupola on top of a Lear 36 aircraft to provide particle backscatter data and aerosol profile distributions of cirrus clouds occurring between 50,000 and 100,000 ft ASL. The high altitude airborne lidar system consists of a laser transmitter operating at 532 and 1064 nm simultaneously with output energy of 75 mJ at both wavelengths and a collecting telescope aperture of 10 inches in diameter. Laser backscatter energy is collected and directed via a dichroic beamsplitter to two avalanche photodetectors (APD) through narrow bandpass optical filters at 532 and 1064 nm. The outputs of the APDs are digitized by a 10-bit, 100-MHz transient digitizer before being recorded to a 1.2-Gbyte hard disk with IRIG timing for data analysis. This paper describes the lidar system design, predicted performance, and some of the operational challenges.

  17. Optical properties of the cirrus cloud ice crystals with preferred azimuthal orientation for polarization lidars with azimuthal scanning

    Science.gov (United States)

    Konoshonkin, Alexander V.; Kustova, Natalia V.; Nasonov, Sergey V.; Bryukhanov, Ilia D.; Shishko, Viktor A.; Timofeev, Dmitriy N.; Borovoi, Anatoly G.

    2016-10-01

    Optical properties of the cirrus cloud ice crystals with preferred azimuthal orientation are required for current numerical models of the Earth's radiation balance. Retrieving the orientation distributions function of the crystals from a vertically pointing polarization lidar measuring the full Mueller matrix is a very complicated problem because of lake of information. Lidars with zenith scanning can be used only to retrieve the properties of horizontally oriented particles. The paper shows that if the particles have preferred azimuthal orientation, the polarization lidars with azimuthal scanning should be used. It is also shown that all the elements of the Mueller matrix give no extra information compare to the depolarization ratio. Optical properties of preferred azimuthal oriented hexagonal ice columns with size from 10 to 1000 μm for wavelengths of 0.355, 0.532 and 1.064 μm were collected as a data bank.

  18. An intensified hydrological cycle in the simulation of geoengineering by cirrus cloud thinning using ice crystal fall speed changes

    Science.gov (United States)

    Jackson, L. S.; Crook, J. A.; Forster, P. M.

    2016-06-01

    Proposals to geoengineer Earth's climate by cirrus cloud thinning (CCT) potentially offer advantages over solar radiation management schemes: amplified cooling of the Arctic and smaller perturbations to global mean precipitation in particular. Using an idealized climate model implementation of CCT in which ice particle fall speeds were increased 2×, 4×, and 8× we examine the relationships between effective radiative forcing (ERF) at the top of atmosphere, near-surface temperature, and the response of the hydrological cycle. ERF was nonlinear with fall speed change and driven by the trade-off between opposing positive shortwave and negative longwave radiative forcings. ERF was -2.0 Wm-2 for both 4× and 8× fall speeds. Global mean temperature decreased linearly with ERF, while Arctic temperature reductions were amplified compared with the global mean change. The change in global mean precipitation involved a rapid adjustment (~ 1%/Wm2), which was linear with the change in the net atmospheric energy balance, and a feedback response (~2%/°C). Global mean precipitation and evaporation increased strongly in the first year of CCT. Intensification of the hydrological cycle was promoted by intensification of the vertical overturning circulation of the atmosphere, changes in boundary layer climate favorable for evaporation, and increased energy available at the surface for evaporation (from increased net shortwave radiation and reduced subsurface storage of heat). Such intensification of the hydrological cycle is a significant side effect to the cooling of climate by CCT. Any accompanying negative cirrus cloud feedback response would implicitly increase the costs and complexity of CCT deployment.

  19. Seasonal Variations of the Relative Optical Air Mass Function for Background Aerosol and Thin Cirrus Clouds at Arctic and Antarctic Sites

    Directory of Open Access Journals (Sweden)

    Claudio Tomasi

    2015-06-01

    Full Text Available New calculations of the relative optical air mass function are made over the 0°–87° range of apparent solar zenith angle θ, for various vertical profiles of background aerosol, diamond dust and thin cirrus cloud particle extinction coefficient in the Arctic and Antarctic atmospheres. The calculations were carried out by following the Tomasi and Petkov (2014 procedure, in which the above-mentioned vertical profiles derived from lidar observations were used as weighting functions. Different sets of lidar measurements were examined, recorded using: (i the Koldewey-Aerosol-Raman Lidar (KARL system (AWI, Germany at Ny-Ålesund (Spitsbergen, Svalbard in January, April, July and October 2013; (ii the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO satellite-based sensor over Barrow (Alaska, Eureka (Nunavut, Canada and Sodankylä (northern Finland, and Neumayer III, Mario Zucchelli and Mirny coastal stations in Antarctica in the local summer months of the last two years; (iii the National Institute of Optics (INO, National Council of Research (CNR Antarctic lidar at Dome C on the Antarctic Plateau for a typical “diamond dust” case; and (iv the KARL lidar at Ny-Ålesund and the University of Rome/National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA lidar at Thule (northwestern Greenland for some cirrus cloud layers in the middle and upper troposphere. The relative optical air mass calculations are compared with those obtained by Tomasi and Petkov (2014 to define the seasonal changes produced by aerosol particles, diamond dust and cirrus clouds. The results indicate that the corresponding air mass functions generally decrease as angle θ increases with rates that are proportional to the increase in the pure aerosol, diamond dust and cirrus cloud particle optical thickness.

  20. Cirrus feedback on interannual climate fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Dessler, A E; Zelinka, M D; Yang, P; Wang, T

    2014-12-28

    Cirrus clouds are not only important in determining the current climate, but also play an important role in climate change and variability. Analysis of satellite observations shows that the amount and altitude of cirrus clouds (optical depth <3.6, cloud top pressure <440 hPa) increase in response to inter-annual surface warming. Thus, cirrus clouds are likely to act as a positive feedback on short-term climate fluctuations, by reducing the planet’s ability to radiate longwave radiation to space in response to planetary surface warming. Using cirrus cloud radiative kernels, the magnitude of cirrus feedback is estimated to be 0.20±0.21W/m2/°C, which is comparable to the surface albedo feedback. Most of the cirrus feedback comes from increasing cloud amount in the tropical tropopause layer (TTL) and subtropical upper troposphere.

  1. Polarimetric Retrievals of Surface and Cirrus Clouds Properties in the Region Affected by the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Ottaviani, Matteo; Cairns, Brian; Chowdhary, Jacek; Van Diedenhoven, Bastiaan; Knobelspiesse, Kirk; Hostetler, Chris; Ferrare, Rich; Burton, Sharon; Hair, John; Obland, Michael D.; Rogers, Raymond

    2012-01-01

    prohibitive variability in atmospheric conditions (very inhomogeneous aerosol distribution and cloud cover). Although the results presented for the surface are essentially unaffected, we discuss the results obtained by typing algorithms in sorting the complex mix of aerosol types, and show evidence of oriented ice in cirrus clouds present in the area. In this context, polarization measurements at 1880 nm were used to infer ice habit and cirrus optical depth, which was found in the subvisual/threshold-visible regime, confirming the utility of the aforementioned RSP channel for the remote sensing of even thin cold clouds.

  2. “Using Statistical Comparisons between SPartICus Cirrus Microphysical Measurements, Detailed Cloud Models, and GCM Cloud Parameterizations to Understand Physical Processes Controlling Cirrus Properties and to Improve the Cloud Parameterizations”

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Sarah [SPEC Inc., Boulder, CO (United States)

    2015-12-01

    The dual objectives of this project were improving our basic understanding of processes that control cirrus microphysical properties and improvement of the representation of these processes in the parameterizations. A major effort in the proposed research was to integrate, calibrate, and better understand the uncertainties in all of these measurements.

  3. Balloon-borne and Raman lidar observations of Asian dust and cirrus cloud properties over Tsukuba, Japan

    Science.gov (United States)

    Sakai, Tetsu; Orikasa, Narihiro; Nagai, Tomohiro; Murakami, Masataka; Tajiri, Takuya; Saito, Atsushi; Yamashita, Katsuya; Hashimoto, Akihiro

    2014-03-01

    The vertical distributions of the microphysical and optical properties of tropospheric aerosols and cirrus cloud were measured using an instrumented balloon and a ground-based Raman lidar over Tsukuba, Japan (36°N, 140°E), during the Asian dust events on 9 and 21 May 2007 to investigate the influence of Asian mineral dust on ice cloud formation in the upper troposphere. The instrumented balloon measured the particle size distribution, ice crystal images, dew/frost point, relative humidity, and temperature. The Raman lidar measured the particle backscattering and extinction coefficients and the depolarization ratio at a wavelength of 532 nm. The results of the balloon measurements showed that supermicrometer (0.7 to 2.8 µm in optical-equivalent radius) dust particles and ice crystals (10 to 400 µm in maximum dimension) were present in the upper troposphere (8 to 12 km in altitude), with number concentrations varying from 5 × 10-3 to 0.6 cm-3 for dust and from 5 × 10-3 to 0.15 cm-3 for ice crystals. The Raman lidar measurement indicated that the particle depolarization ratios were 15 to 35% in the altitude range of 6 to 12 km, indicating the predominance of nonspherical particles in the region. The temperature ranged from -33 to -63°C, and the relative humidity with respect to ice (RHi), estimated from the total (vapor plus condensate) water content obtained with the Snow White hygrometer in the cloud, was 130% at maximum on 9 May, which was close to the activation point of Asian mineral dust as ice nuclei to form ice crystals.

  4. LIDAR and Millimeter-Wave Cloud RADAR (MWCR) techniques for joint observations of cirrus in Shouxian (32.56°N, 116.78°E), China

    Science.gov (United States)

    Bu, Lingbing; Pan, Honglin; Kumar, K. Raghavendra; Huang, Xingyou; Gao, Haiyang; Qin, Yanqiu; Liu, Xinbo; Kim, Dukhyeon

    2016-10-01

    Cirrus plays an important role in the regulation of the Earth-atmosphere radiation budget. The joint observation using both the LIght Detection And Ranging (LIDAR) and Millimeter-Wave Cloud RADAR (MWCR) was implemented in this study to obtain properties of cirrus at Atmospheric Radiation Measurement (ARM) mobile facility in Shouxian (32.56°N, 116.78°E, 21 m above sea level), China during May-December 2008. We chose the simultaneous measurements of LIDAR and MWCR with effective data days, and the days must with cirrus. Hence, the cirrus properties based on 37 days of data between October 18th and December 13th, 2008 were studied in the present work. By comparing the LIDAR data with the MWCR data, we analyzed the detection capabilities of both instruments quantitatively for measuring the cirrus. The LIDAR cannot penetrate through the thicker cirrus with optical depth (τ) of more than 1.5, while the MWCR cannot sense the clouds with an optical depth of less than 0.3. Statistical analysis showed that the mean cloud base height (CBH) and cloud thickness (CT) of cirrus were 6.5±0.8 km and 2.1±1.1 km, respectively. Furthermore, we investigated three existing inversion methods for deriving the ice water content (IWC) by using the separate LIDAR, MWCR, and the combination of both, respectively. Based on the comparative analysis, a novel joint method was provided to obtain more accurate IWC. In this joint method, cirrus was divided into three different categories according to the optical depth (τ≤0.3, τ≥1.5, and 0.3<τ<1.5). Based on the joint method used in this study, the mean IWC was calculated by means of the statistics, which showed that the mean IWC of cirrus was 0.011±0.008 g m-3.

  5. Cold Stress at High Altitudes

    Directory of Open Access Journals (Sweden)

    N. C. Majumdar

    1983-04-01

    Full Text Available The problem of cold at high altitudes has been analysed from a purely physical standpoint. It has been shown that Siple's Wind-Chill Index is not reliable because (i it does not make use of the well established principles governing the physical processes of heat transfer by convection and radiation, and (ii it assumes that the mean radiant temperature of the surroundings is the same as the ambient dry bulb temperature. A Cold Stress Index has been proposed which is likely to be a more reliable guide for assessing the climatic hazards of high altitude environments. The Index can be quickly estimated with the help of two nomograms devised for the purpose.

  6. Spectral reflectance and atmospheric energetics in cirrus-like clouds. Part II: Applications of a Fourier-Riccati approach to radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, S.C.; King, M.D. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States); Gabriel, P.M.; Stephens, G.L. [Colorado State Univ., Fort Collins, CO (United States)

    1996-12-01

    One of the major sources of uncertainty in climate studies is the detection of cirrus clouds and characterization of their radiative properties. Combinations of water vapor absorption channels (e.g., 1.38 {mu}m), ice-water absorption channels (e.g., 1.64 {mu}m), and atmospheric window channels (e.g., 11 {mu}m) in the imager, together with a lidar profiler on future EOS platforms, will contribute to enhancing present understanding of cirrus clouds. The aforementioned spectral channels are used in this study to explore the effects exerted by uncertainties in cloud microphysical properties (e.g., particle size distribution) and cloud morphology on the apparent radiative properties, such as spectral reflectance and heating and cooling rate profiles. As in Part I of the previous study, which establishes the foundations of the Fourier-Riccati method of radiative transfer in inhomogeneous media, cloud extinction and scattering functions are characterized by simple spatial variations with measured and hypothesized microphysics to facilitate the understanding of their radiative properties. Results of this study suggest that (i) while microphysical variations in the scattering and extinction functions of clouds affect the magnitudes of their spectral reflectances, cloud morphology significantly alters the shape of their angular distribution; (ii) spectral reflectances viewed near nadir are least affected by cloud variability; and (iii) cloud morphology can lead to spectral heating and cooling rate profiles that differ substantially from their plane-parallel averaged equivalents. Since there are no horizontal thermal gradients in plane-parallel clouds, it may be difficult to correct for this deficiency. 32 refs., 11 figs., 1 tab.

  7. Cirrus cloud occurrence as function of ambient relative humidity: A comparison of observations from the Southern and Northern Hemisphere midlatitudes obtained during the INCA experiment

    Directory of Open Access Journals (Sweden)

    J. Ström

    2003-06-01

    Full Text Available The occurrence frequency of cirrus clouds as function of ambient relative humidity over ice, based on in-situ observations performed during the INCA experiment, show a clear difference between the campaign carried out at Southern Hemisphere (SH midlatitudes and the campaign carried out at Northern Hemisphere (NH midlatitudes. At a given relative humidity above ice saturation, clouds are more frequent in the NH. At relative humidities near ice saturation, clouds defined as containing particles with sizes larger than 0.55 μm diameter and an integral number density above 0.2 cm−3 were present 70% of the time during the SH campaign, whereas clouds where present 95% of the time during the NH campaign. Using a size threshold of 1 μm diameter to define the presence of clouds result in a less frequent occurrence of 60% of the time in the SH campaign and 75% of the time in the NH campaign. The data show that the presence of particles is a common characteristic of cirrus clouds. Clouds at ice saturation defined as having crystal sizes of at least 5 μm diameter and a number density exceeding 0.001 cm−3 were present in about 80% of the time during the SH campaign, and almost 90% of the time during the NH campaign. The observations reveal a significant cloud presence fraction at humidities well below ice saturation. Local minima in the cloud presence fraction as a function of relative humidity are interpreted as systematic underestimation of cloud presence because cloud particles may become invisible to cloud probes. Based on this interpretation the data suggests that clouds in the SH form preferentially at relative humidities between 140 and 155%, whereas clouds in the NH formed at relative humidities less than 130%. A simple assumption about the probability to reach successively higher humidities in an ice supersaturated air parcel provides a model that explains the main trend of the cloud presence fraction as function of

  8. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    Science.gov (United States)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-03-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  9. Shallow cirrus convection – a source for ice supersaturation

    Directory of Open Access Journals (Sweden)

    Peter Spichtinger

    2014-09-01

    Full Text Available The origin and persistence of high ice supersaturation is still not well understood. In this study, the impact of local dynamics as source for ice supersaturation inside cirrus clouds is investigated. Nucleation and growth of ice crystals inside potentially unstable layers in the tropopause region might lead to shallow convection inside (layered cirrus clouds due to latent heat release. The intrinsic updraught inside convective cells constitutes a dominant but transient source for ice supersaturation. A realistic case of shallow cirrus convection is investigated using radiosonde data, meteorological analyses and large-eddy simulations of cirrus clouds. The simulations corroborate the existence of ice supersaturation inside cirrus clouds as a transient phenomenon. Ice supersaturation is frequent, but determined by the life cycle of convective cells in shallow cirrus convection. Cirrus clouds driven by shallow cirrus convection are mostly not in thermodynamic equilibrium; they are usually in a subsaturated or supersaturated state.

  10. High Altitude Cooking and Food Safety

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... 286) Actions ${title} Loading... High Altitude Cooking and Food Safety What is considered a high altitude? How is ...

  11. Microphysics of Pyrocumulonimbus Clouds

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  12. Microphysics of Pyrocumulonimbus Clouds

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew S.; Fridlind, Ann

    2004-01-01

    The intense heat from forest fires can generate explosive deep convective cloud systems that inject pollutants to high altitudes. Both satellite and high-altitude aircraft measurements have documented cases in which these pyrocumulonimbus clouds inject large amounts of smoke well into the stratosphere (Fromm and Servranckx 2003; Jost et al. 2004). This smoke can remain in the stratosphere, be transported large distances, and affect lower stratospheric chemistry. In addition recent in situ measurements in pyrocumulus updrafts have shown that the high concentrations of smoke particles have significant impacts on cloud microphysical properties. Very high droplet number densities result in delayed precipitation and may enhance lightning (Andrew et al. 2004). Presumably, the smoke particles will also lead to changes in the properties of anvil cirrus produces by the deep convection, with resulting influences on cloud radiative forcing. In situ sampling near the tops of mature pyrocumulonimbus is difficult due to the high altitude and violence of the storms. In this study, we use large eddy simulations (LES) with size-resolved microphysics to elucidate physical processes in pyrocumulonimbus clouds.

  13. Cirrus Crystal Terminal Velocities.

    Science.gov (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  14. CALIPSO Observations of PSCs and Cirrus During the 2015-2016 Arctic Winter

    Science.gov (United States)

    Pitts, Michael; Poole, Lamont

    2016-04-01

    The POLSTRACC (POlar STRAtosphere in a Changing Climate) field campaign was conducted in the Arctic during December 2015 - March 2016 to investigate the chemical, microphysical, and dynamical processes of the Arctic lowermost stratosphere and upper troposphere. The primary measurement platform for POLSTRACC was the German HALO (High Altitude LOng range) research aircraft carrying a large suite of in situ and remote sensing instruments to measure key chemical species, tracers, as well as aerosol and cloud particles and meteorological parameters. Two primary science objectives of POLSTRACC are to improve our understanding of polar stratospheric cloud (PSC) particle characteristics and formation processes and investigate the impact of Arctic cirrus clouds on radiative forcing and chlorine activation. To complement the more focused measurements from the POLSTRACC field campaign, we have used spaceborne lidar measurements from CALIPSO to characterize PSC occurrence and composition, as well as the occurrence of Arctic cirrus during the 2015-2016 season on vortex-wide scales. In this paper, we present a general overview of the 2015-2016 winter, examine in detail the evolution of PSCs and cirrus during the season, and explore the unique aspects of this season in attempt to understand the underlying physical mechanisms.

  15. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    Science.gov (United States)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  16. Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans

    Science.gov (United States)

    Garnier, A.; Pelon, J.; Vaughan, M. A.; Winker, D. M.; Trepte, C. R.; Dubuisson, P.

    2015-07-01

    Cirrus cloud absorption optical depths retrieved at 12.05 μm are compared to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR) and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) flying on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite. IIR infrared absorption optical depths are compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent two-way transmittance through the cloud. An evaluation of the CALIOP multiple scattering factor is inferred from these comparisons after assessing and correcting biases in IIR and CALIOP optical depths reported in version 3 data products. In particular, the blackbody radiance taken in the IIR version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40 % as the temperature at the layer centroid altitude decreases from 240 to 200 K. It is discussed that this behavior can be explained by variations of the multiple scattering factor ηT applied to correct the measured apparent two-way transmittance for contribution of forward-scattering. While the CALIOP version 3 retrievals hold ηT fixed at 0.6, this study shows that ηT varies with temperature (and hence cloud particle size) from ηT = 0.8 at 200 K to ηT = 0.5 at 240 K for single-layered semi-transparent cirrus clouds with optical depth larger than 0.3. The revised parameterization of ηT introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP

  17. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    Science.gov (United States)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  18. Sensitivity of cirrus and mixed-phase clouds to the ice nuclei spectra in McRAS-AC: single column model simulations

    Directory of Open Access Journals (Sweden)

    R. Morales Betancourt

    2012-06-01

    Full Text Available The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP and Barahona and Nenes (BN. The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T~260 K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted average values of IWP within ±15% of the observations.

  19. Sensitivity of cirrus and mixed-phase clouds to the ice nuclei spectra in McRAS-AC: single column model simulations

    Directory of Open Access Journals (Sweden)

    R. Morales Betancourt

    2012-11-01

    Full Text Available The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice nucleation parameterizations of Liu and Penner (LP and Barahona and Nenes (BN. The performance of both parameterizations was assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments were established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to describe the availability of IN for heterogeneous ice nucleation. The results showed large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there were some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to the effective transfer of liquid to ice, so that on average, the clouds were fully glaciated at T 260 K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted average values of IWP within ±15% of the observations.

  20. Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States); Ou, S. C. [Univ. of California, Los Angeles, CA (United States); Gu, Y. [Univ. of California, Los Angeles, CA (United States); Takano, Y. [Univ. of California, Los Angeles, CA (United States)

    2016-02-22

    During the report period, we have made the following research accomplishments. First, we performed analysis for a number of MODIS scenes comprising of heavy dust events and ice clouds, covering regions of frequent dust outbreaks in East Asia, Middle East, and West Africa, as well as areas associated with long-range dust transports over the Equatorial Tropical Atlantic Ocean. These scenes contain both dust/aerosols and clouds. We collected suitable aerosol/ice-cloud data, correlated ice cloud and aerosol parameters by means of statistical analysis, and interpreted resulting correlation trends based on the physical principles governing cloud microphysics. Aerosol and cloud optical depths and cloud effective particle size inferred from MODIS for selected domains were analyzed from which the parameters including dust aerosol number concentration, ice cloud water path, and ice particle number concentration were subsequently derived. We illustrated that the Twomey (solar albedo) effect can be statistically quantified based on the slope of best-fit straight lines in the correlation study. Analysis of aerosol and cloud retrieval products revealed that for all cases, the region with a larger dust aerosol optical depth is always characterized by a smaller cloud particle size, consistent with the Twomey hypothesis for aerosol-cloud interactions. Second, we developed mean correlation curves with uncertainties associated with small ice-crystal concentration observations for the mean effective ice crystal size (De) and ice water content (IWC) by dividing the atmosphere into three characteristic regions: Tropics cirrus, Midlatitude cirrus, including a temperature classification to improve correlation, and Arctic ice clouds. We illustrated that De has a high correlation with IWC based on theoretical consideration and analysis of thousands of observed ice crystal data obtained from a number of ARM-DOE field campaigns and other experiments. The correlation has the form: ln(De) = a

  1. 1962 Satellite High Altitude Radiation Belt Database

    Science.gov (United States)

    2014-03-01

    TR-14-18 1962 Satellite High Altitude Radiation Belt Database Approved for public release; distribution is unlimited. March...the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database”, AFRL-VS-PS-TR- 2006-1079, Air Force Research Laboratory...Roth, B., “Blue Ribbon Panel and Support Work Assessing the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database

  2. Economy of Adaptation to High Altitude

    Institute of Scientific and Technical Information of China (English)

    Jean-Paul Richalet

    2004-01-01

    @@ The international meeting that will be held in Xining and Lhasa in August 2004 will be a wonderful occasion to share facts and concepts dealing with adaptation to high altitude. Life at high altitude is a challenge for thousands of animal species and millions of humans residing or visiting high altitude regions of the world. To try to understand the physiological mechanisms involved in the adaptation processes to high altitude hypoxia, it is convenient to start by defining what is "extreme" from a biological point of view.

  3. Aspirated Compressors for High Altitude Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  4. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  5. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  6. Molecular Hydrogen in Infrared Cirrus

    CERN Document Server

    Gillmon, K; Gillmon, Kristen

    2006-01-01

    We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000...

  7. Contrails, contrail cirrus, and ship tracks

    OpenAIRE

    Gierens, Klaus Martin

    2007-01-01

    The following text is an enlarged version of the conference tutorial lecture on contrails, contrail cirrus, and ship tracks. I start with a general introduction into aerosol effects on clouds. Contrail formation and persistence, aviation’s share to cirrus trends and ship tracks are treated then.

  8. Pupillary light reaction during high altitude exposure.

    Directory of Open Access Journals (Sweden)

    Maximilian Schultheiss

    Full Text Available PURPOSE: This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS. This work is related to the Tübingen High Altitude Ophthalmology (THAO study. METHODS: Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity were quantified in 14 healthy volunteers at baseline (341 m and high altitude (4559 m over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline and the 95% confidence interval for each time point. RESULTS: During high altitude exposure the initial diameter size was significantly reduced (p<0.05. In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05 on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. CONCLUSIONS: Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS.

  9. Pupillary Light Reaction during High Altitude Exposure

    Science.gov (United States)

    Schatz, Andreas; Wilhelm, Barbara; Peters, Tobias; Fischer, M. Dominik; Zrenner, Eberhart; Bartz-Schmidt, Karl U.; Gekeler, Florian; Willmann, Gabriel

    2014-01-01

    Purpose This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP) and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. Methods Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity) were quantified in 14 healthy volunteers at baseline (341 m) and high altitude (4559 m) over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline) and the 95% confidence interval for each time point. Results During high altitude exposure the initial diameter size was significantly reduced (p<0.05). In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05) on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. Conclusions Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS. PMID:24503770

  10. Developmental functional adaptation to high altitude: review.

    Science.gov (United States)

    Frisancho, A Roberto

    2013-01-01

    Various approaches have been used to understand the origins of the functional traits that characterize the Andean high-altitude native. Based on the conceptual framework of developmental functional adaptation which postulates that environmental influences during the period of growth and development have long lasting effects that may be expressed during adulthood, we initiated a series of studies addressed at determining the pattern of physical growth and the contribution of growth and development to the attainment of full functional adaptation to high-altitude of low and high altitude natives living under rural and urban conditions. Current research indicate that: (a) the pattern of growth at high altitude due to limited nutritional resources, physical growth in body size is delayed but growth in lung volumes is accelerated because of hypoxic stress); (b) low-altitude male and female urban natives can attain a full functional adaptation to high altitude by exposure to high-altitude hypoxia during the period of growth and development; (c) both experimental studies on animals and comparative human studies indicate that exposure to high altitude during the period of growth and development results in the attainment of a large residual lung volume; (d) this developmentally acquired enlarged residual lung volume and its associated increase in alveolar area when combined with the increased tissue capillarization and moderate increase in red blood cells and hemoglobin concentration contributes to the successful functional adaptation of the Andean high-altitude native to hypoxia; and (e) any specific genetic traits that are related to the successful functional adaptation of Andean high-altitude natives have yet to be identified.

  11. Laboratory measurements of HDO/H$_{2}$O isotopic fractionation during ice deposition in simulated cirrus clouds

    CERN Document Server

    Lamb, Kara; Bolot, Maximilien; Sarkozy, Laszlo; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth

    2015-01-01

    The stable isotopologues of water have been used in atmospheric and climatic studies for over fifty years, because the temperature-dependent preferential condensation of heavy isotopologues during phase changes makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation has never been directly measured at temperatures below 233 K (-40$^{\\circ}$C), conditions of cirrus formation in the atmosphere and routinely observed at surface elevation in polar regions. (Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief, 1967.) Non-equilibrium effects that should alter preferential partitioning have also not been well-characterized experimentally (Jouzel and Merlivat 1984). We present here the first direct experimental measurements of the HDO/H$_2$O equilibrium fractionation factor between vapour and ice ($\\alpha_{\\mathrm {eq}}$) at cirrus-relevant temperatures, and the first quantitative validation of the kinetic modification to equilibr...

  12. Optical depths of semi-transparent cirrus clouds over oceans from CALIPSO infrared radiometer and lidar measurements, and an evaluation of the lidar multiple scattering factor

    Directory of Open Access Journals (Sweden)

    A. Garnier

    2015-02-01

    Full Text Available This paper provides a detailed evaluation of cloud absorption optical depths retrieved at 12.05 μm and comparisons to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP flying on-board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations satellite. The blackbody radiance taken in the IIR Version 3 algorithm is evaluated, and IIR retrievals are corrected accordingly. IIR infrared absorption optical depths are then compared to CALIOP visible extinction optical depths when the latter can be directly derived from the measured apparent 2-way transmittance through the cloud. Numerical simulations and IIR retrievals of ice crystal sizes suggest that the ratios of CALIOP extinction and IIR absorption optical depths should remain roughly constant with respect to temperature. Instead, these ratios are found to increase quasi-linearly by about 40% as the temperature at the layer centroid altitude decreases from 240 to 200 K. This behavior is explained by variations of the multiple scattering factor ηT to be applied to correct the measured transmittance, which is taken equal to 0.6 in the CALIOP Version 3 algorithm, and which is found here to vary with temperature (and hence cloud particle size from ηT = 0.8 at 200 K to ηT = 0.5 at 240 K for clouds with optical depth larger than 0.3. The revised parameterization of ηT introduces a concomitant temperature dependence in the simultaneously derived CALIOP lidar ratios that is consistent with observed changes in CALIOP depolarization ratios and particle habits derived from IIR measurements.

  13. High Altitude Clear Air Turbulence Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...

  14. The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft

    Science.gov (United States)

    Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed

    2003-01-01

    The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.

  15. Optical-Microphysical Cirrus Model

    Science.gov (United States)

    Reichardt, J.; Reichardt, S.; Lin, R.-F.; Hess, M.; McGee, T. J.; Starr, D. O.

    2008-01-01

    A model is presented that permits the simulation of the optical properties of cirrus clouds as measured with depolarization Raman lidars. It comprises a one-dimensional cirrus model with explicit microphysics and an optical module that transforms the microphysical model output to cloud and particle optical properties. The optical model takes into account scattering by randomly oriented or horizontally aligned planar and columnar monocrystals and polycrystals. Key cloud properties such as the fraction of plate-like particles and the number of basic crystals per polycrystal are parameterized in terms of the ambient temperature, the nucleation temperature, or the mass of the particles. The optical-microphysical model is used to simulate the lidar measurement of a synoptically forced cirrostratus in a first case study. It turns out that a cirrus cloud consisting of only monocrystals in random orientation is too simple a model scenario to explain the observations. However, good agreement between simulation and observation is reached when the formation of polycrystals or the horizontal alignment of monocrystals is permitted. Moreover, the model results show that plate fraction and morphological complexity are best parameterized in terms of particle mass, or ambient temperature which indicates that the ambient conditions affect cirrus optical properties more than those during particle formation. Furthermore, the modeled profiles of particle shape and size are in excellent agreement with in situ and laboratory studies, i.e., (partly oriented) polycrystalline particles with mainly planar basic crystals in the cloud bottom layer, and monocrystals above, with the fraction of columns increasing and the shape and size of the particles changing from large thin plates and long columns to small, more isometric crystals from cloud center to top. The findings of this case study corroborate the microphysical interpretation of cirrus measurements with lidar as suggested previously.

  16. Pulmonary Embolism Masquerading as High Altitude Pulmonary Edema at High Altitude.

    Science.gov (United States)

    Pandey, Prativa; Lohani, Benu; Murphy, Holly

    2016-12-01

    Pandey, Prativa, Benu Lohani, and Holly Murphy. Pulmonary embolism masquerading as high altitude pulmonary edema at high altitude. High Alt Med Biol. 17:353-358, 2016.-Pulmonary embolism (PE) at high altitude is a rare entity that can masquerade as or occur in conjunction with high altitude pulmonary edema (HAPE) and can complicate the diagnosis and management. When HAPE cases do not improve rapidly with descent, other diagnoses, including PE, ought to be considered. From 2013 to 2015, we identified eight cases of PE among 303 patients with initial diagnosis of HAPE. Upon further evaluation, five had deep vein thrombosis (DVT). One woman had a contraceptive ring and seven patients had no known thrombotic risks. PE can coexist with or mimic HAPE and should be considered in patients presenting with shortness of breath from high altitude regardless of thrombotic risk.

  17. The radiation budget of a Cirrus layer deduced from simultaneous aircraft observations and model calculations

    Science.gov (United States)

    Ackerman, Thomas P.; Kinne, Stefan A.; Heymsfield, Andrew J.; Valero, Francisco P. J.

    1990-01-01

    Several aircraft were employed during the FIRE Cirrus IFO in order to make nearly simultaneous observations of cloud properties and fluxes. A segment of the flight data collected on 28 October 1988 during which the NASA Ames ER-2 overflew the NCAR King Air was analyzed. The ER-2 flew at high altitude making observations of visible and infrared radiances and infrared flux and cloud height and thickness. During this segment, the King Air flew just above the cloud base making observations of ice crystal size and shape, local meteorological variables, and infrared fluxes. While the two aircraft did not collect data exactly coincident in space and time, they did make observations within a few minutes of each other. For this case study, the infrared radiation balance of the cirrus layer is of primary concern. Observations of the upwelling 10 micron radiance, made from the ER-2, can be used to deduce the 10 micron optical depth of the layer. The upwelling broadband infrared flux is also measured from the ER-2. At the same time, the upwelling and downwelling infrared flux at the cloud base is obtained from the King Air measurements. Information on cloud microphysics is also available from the King Air. Using this data in conjunction with atmospheric temperature and humidity profiles from local radiosondes, the necessary inputs for an infrared radiative transfer model can be developed. Infrared radiative transfer calculations are performed with a multispectral two-stream model. The model fluxes at the cloud base and at 19 km are then compared with the aircraft observations to determine whether the model is performing well. Cloud layer heating rates can then be computed from the radiation exchange.

  18. A multi-approach to the optical depth of a contrail cirrus cluster

    Science.gov (United States)

    Vazquez-Navarro, Margarita; Bugliaro, Luca; Schumann, Ulrich; Strandgren, Johan; Wirth, Martin; Voigt, Christiane

    2017-04-01

    ., Curtius, J., Dollner, M., Dörnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix, A., Forster, L., Frank, F., Fütterer, D., Giez, A., Graf, K., Grooß, J.-U., Groß, S., Heimerl, K., Heinold, B., Hüneke, T., Järvinen, E., Jurkat, T., Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T., Kohl, R., Krämer, M., Krisna, T. C., Luebke, A., Mayer, B., Mertes, S., Molleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter, P., Rolf, C., Rose, D., Sauer, D., Schäfler, A., Schlage, R., Schnaiter, M., Schneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A., Weigel, R., Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M., Zahn, A., Ziereis, H., and Zöger, M.: ML-CIRRUS - The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO, Bull. Amer. Meteorol. Soc., in press, doi: 10.1175/BAMS-D-15-00213.1, 2017.

  19. Early history of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2016-02-01

    High-altitude physiology can be said to have begun in 1644 when Torricelli described the first mercury barometer and wrote the immortal words "We live submerged at the bottom of an ocean of the element air." Interestingly, the notion of atmospheric pressure had eluded his teacher, the great Galileo. Blaise Pascal was responsible for describing the fall in pressure with increasing altitude, and Otto von Guericke gave a dramatic demonstration of the enormous force that could be developed by atmospheric pressure. Robert Boyle learned of Guericke's experiment and, with Robert Hooke, constructed the first air pump that allowed small animals to be exposed to a low pressure. Hooke also constructed a small low-pressure chamber and exposed himself to a simulated altitude of about 2400 meters. With the advent of ballooning, humans were rapidly exposed to very low pressures, sometimes with tragic results. For example, the French balloon, Zénith, rose to over 8000 m, and two of the three aeronauts succumbed to the hypoxia. Paul Bert was the first person to clearly state that the deleterious effects of high altitude were caused by the low partial pressure of oxygen (PO2), and later research was accelerated by high-altitude stations and expeditions to high altitude.

  20. Long-lived contrails and convective cirrus above the tropical tropopause

    Science.gov (United States)

    Schumann, Ulrich; Kiemle, Christoph; Schlager, Hans; Weigel, Ralf; Borrmann, Stephan; D'Amato, Francesco; Krämer, Martina; Matthey, Renaud; Protat, Alain; Voigt, Christiane; Volk, C. Michael

    2017-02-01

    This study has two objectives: (1) it characterizes contrails at very low temperatures and (2) it discusses convective cirrus in which the contrails occurred. (1) Long-lived contrails and cirrus from overshooting convection are investigated above the tropical tropopause at low temperatures down to -88 °C from measurements with the Russian high-altitude research aircraft M-55 Geophysica, as well as related observations during the SCOUT-O3 field experiment near Darwin, Australia, in 2005. A contrail was observed to persist below ice saturation at low temperatures and low turbulence in the stratosphere for nearly 1 h. The contrail occurred downwind of the decaying convective system Hector of 16 November 2005. The upper part of the contrail formed at 19 km altitude in the tropical lower stratosphere at ˜ 60 % relative humidity over ice at -82 °C. The ˜ 1 h lifetime is explained by engine water emissions, slightly enhanced humidity from Hector, low temperature, low turbulence, and possibly nitric acid hydrate formation. The long persistence suggests large contrail coverage in case of a potential future increase of air traffic in the lower stratosphere. (2) Cirrus observed above the strongly convective Hector cloud on 30 November 2005 was previously interpreted as cirrus from overshooting convection. Here we show that parts of the cirrus were caused by contrails or are mixtures of convective and contrail cirrus. The in situ data together with data from an upward-looking lidar on the German research aircraft Falcon, the CPOL radar near Darwin, and NOAA-AVHRR satellites provide a sufficiently complete picture to distinguish between contrail and convective cirrus parts. Plume positions are estimated based on measured or analyzed wind and parameterized wake vortex descent. Most of the non-volatile aerosol measured over Hector is traceable to aircraft emissions. Exhaust emission indices are derived from a self-match experiment of the Geophysica in the polar stratosphere

  1. Hubble Provides Infrared View of Jupiter's Moon, Ring, and Clouds

    Science.gov (United States)

    1997-01-01

    Probing Jupiter's atmosphere for the first time, the Hubble Space Telescope's new Near Infrared Camera and Multi-Object Spectrometer (NICMOS) provides a sharp glimpse of the planet's ring, moon, and high-altitude clouds.The presence of methane in Jupiter's hydrogen- and helium-rich atmosphere has allowed NICMOS to plumb Jupiter's atmosphere, revealing bands of high-altitude clouds. Visible light observations cannot provide a clear view of these high clouds because the underlying clouds reflect so much visible light that the higher level clouds are indistinguishable from the lower layer. The methane gas between the main cloud deck and the high clouds absorbs the reflected infrared light, allowing those clouds that are above most of the atmosphere to appear bright. Scientists will use NICMOS to study the high altitude portion of Jupiter's atmosphere to study clouds at lower levels. They will then analyze those images along with visible light information to compile a clearer picture of the planet's weather. Clouds at different levels tell unique stories. On Earth, for example, ice crystal (cirrus) clouds are found at high altitudes while water (cumulus) clouds are at lower levels.Besides showing details of the planet's high-altitude clouds, NICMOS also provides a clear view of the ring and the moon, Metis. Jupiter's ring plane, seen nearly edge-on, is visible as a faint line on the upper right portion of the NICMOS image. Metis can be seen in the ring plane (the bright circle on the ring's outer edge). The moon is 25 miles wide and about 80,000 miles from Jupiter.Because of the near-infrared camera's narrow field of view, this image is a mosaic constructed from three individual images taken Sept. 17, 1997. The color intensity was adjusted to accentuate the high-altitude clouds. The dark circle on the disk of Jupiter (center of image) is an artifact of the imaging system.This image and other images and data received from the Hubble Space Telescope are posted on the

  2. Persistent Ice Supersaturation in Tropical Anvil Cirrus

    Science.gov (United States)

    Jensen, E.; Fridlind, A.; Ackerman, A.; Pfister, L.; Herman, R.; Bui, T.; Baumgardner, D.; Lawson, P.

    2003-12-01

    During the 2002 Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), the NASA WB-57 spent many hours sampling cloud microphysical properties, temperature, turbulence, and water vapor concentration within subtropical anvil cirrus. These measurements indicate that air within the cirrus is often substantially supersaturated with respect to ice, with average ice supersaturations increasing from about 5 to 30% as cloud temperature decreases from 220 to 195 K. The persistence of large supersaturations in cirrus with high ice crystal surface areas is unexpected. In this study, we examine the dependence of the measured anvil supersaturations on parameters such as ice water content, turbulence, anvil age, and temperature. We also use a three-dimensional cloud model that resolves the size distributions of cloud particles to investigate the physical processes responsible for the maintenance of ice supersaturation in anvils. The effects of radiatively driven turbulence, wave-driven temperature oscillations, and entrainment of ambient air will be discussed.

  3. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  4. Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Kuo-Nan [Univ. of California, Los Angeles, CA (United States); Ou, S. C. [Univ. of California, Los Angeles, CA (United States); Gu, Y. [Univ. of California, Los Angeles, CA (United States); Takano, Y. [Univ. of California, Los Angeles, CA (United States)

    2016-02-22

    During the report period, we have made the following research accomplishments. First, we performed analysis for a number of MODIS scenes comprising of heavy dust events and ice clouds, covering regions of frequent dust outbreaks in East Asia, Middle East, and West Africa, as well as areas associated with long-range dust transports over the Equatorial Tropical Atlantic Ocean. These scenes contain both dust/aerosols and clouds. We collected suitable aerosol/ice-cloud data, correlated ice cloud and aerosol parameters by means of statistical analysis, and interpreted resulting correlation trends based on the physical principles governing cloud microphysics. Aerosol and cloud optical depths and cloud effective particle size inferred from MODIS for selected domains were analyzed from which the parameters including dust aerosol number concentration, ice cloud water path, and ice particle number concentration were subsequently derived. We illustrated that the Twomey (solar albedo) effect can be statistically quantified based on the slope of best-fit straight lines in the correlation study. Analysis of aerosol and cloud retrieval products revealed that for all cases, the region with a larger dust aerosol optical depth is always characterized by a smaller cloud particle size, consistent with the Twomey hypothesis for aerosol-cloud interactions. Second, we developed mean correlation curves with uncertainties associated with small ice-crystal concentration observations for the mean effective ice crystal size (De) and ice water content (IWC) by dividing the atmosphere into three characteristic regions: Tropics cirrus, Midlatitude cirrus, including a temperature classification to improve correlation, and Arctic ice clouds. We illustrated that De has a high correlation with IWC based on theoretical consideration and analysis of thousands of observed ice crystal data obtained from a number of ARM-DOE field campaigns and other experiments. The correlation has the form: ln(De) = a

  5. Orographic cirrus in the future climate

    Directory of Open Access Journals (Sweden)

    H. Joos

    2009-04-01

    Full Text Available A cloud resolving model (CRM is used to investigate the formation of orographic cirrus clouds in the current and future climate. The formation of cirrus clouds depends on a variety of dynamical and thermodynamical processes, which act on different scales. First, the capability of the CRM in realistically simulating orographic cirrus clouds has been tested by comparing the simulated results to aircraft measurements of an orographic cirrus cloud. The influence of a warmer climate on the microphysical and optical properties of cirrus clouds has been investigated by initializing the CRM with vertical profiles of horizontal wind, temperature and moisture from IPCC A1B simulations for the current climate and for the period 2090–2099 for two regions representative for North and South America. In a future climate, the increase in moisture dampens the vertical propagation of gravity waves and the occurring vertical velocities. Together with higher temperatures fewer ice crystals nucleate homogeneously. Assuming that the relative humidity does not change in a warmer climate the specific humidity in the model is increased. This increase in specific humidity in a warmer climate results in a higher ice water content. The net effect of a reduced ice crystal number concentration and a higher ice water content is an increased optical depth.

  6. Estimation of cirrus parameters from multispectral measurements in the near-infrared and statements about multilayered clouds

    Science.gov (United States)

    Costanzo, Claudio; Bakan, Stephan

    1997-01-01

    During the aircraft campaign EUCREX 94 different missions with the multispectral sensor OVID were flown inside frontal ice cloud systems. This study present estimated effective radii and cloud optical depths from measurements around 1.05 and 1.6 micrometer under the assumption of different particle shapes. The best agreement with independent measurements of other instruments result from the assumption of an irregular polycrystal. The measured effective radii vary between 18 and 46 micrometer which is compatible with published particle size distributions of moderate ambient temperatures between minus 45 and minus 55 degrees Celsius. An additional consideration of spatial features allow the distinction of cloud layers in different altitudes in the atmosphere and perhaps the estimation of cloud parameters from individual layers. This study show an example of such a recognition and discuss the potential for an operational algorithm.

  7. Sleep of Andean high altitude natives.

    Science.gov (United States)

    Coote, J H; Stone, B M; Tsang, G

    1992-01-01

    The structure of sleep in lowland visitors to altitudes greater than 4000 m is grossly disturbed. There are no data on sleep in long-term residents of high altitudes. This paper describes an electroencephalographic study of sleep in high altitude dwellers who were born in and are permanent residents of Cerro de Pasco in the Peruvian Andes, situated at 4330 m. Eight healthy male volunteers aged between 18 and 69 years were studied. Sleep was measured on three consecutive nights for each subject. Electroencephalographs, submental electromyographs and electro-oculograms were recorded. Only data from the third night were used in the analysis. The sleep patterns of these subjects resembled the normal sleep patterns described by others in lowlanders at sea level. There were significant amounts of slow wave sleep in the younger subjects and rapid eye movement sleep seemed unimpaired.

  8. Can High Altitude Influence Cytokines and Sleep?

    Directory of Open Access Journals (Sweden)

    Valdir de Aquino Lemos

    2013-01-01

    Full Text Available The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2 induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β, Interleukin-6 (IL-6, and tumor necrosis factor-alpha (TNF-α production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain.

  9. Can High Altitude Influence Cytokines and Sleep?

    Science.gov (United States)

    de Aquino Lemos, Valdir; dos Santos, Ronaldo Vagner Thomatieli; Lira, Fabio Santos; Rodrigues, Bruno; Tufik, Sergio; de Mello, Marco Tulio

    2013-01-01

    The number of persons who relocate to regions of high altitude for work, pleasure, sport, or residence increases every year. It is known that the reduced supply of oxygen (O2) induced by acute or chronic increases in altitude stimulates the body to adapt to new metabolic challenges imposed by hypoxia. Sleep can suffer partial fragmentation because of the exposure to high altitudes, and these changes have been described as one of the responsible factors for the many consequences at high altitudes. We conducted a review of the literature during the period from 1987 to 2012. This work explored the relationships among inflammation, hypoxia and sleep in the period of adaptation and examined a novel mechanism that might explain the harmful effects of altitude on sleep, involving increased Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production from several tissues and cells, such as leukocytes and cells from skeletal muscle and brain. PMID:23690660

  10. High-altitude physiology: lessons from Tibet

    Science.gov (United States)

    Wagner, Peter D.; Simonson, Tatum S.; Wei, Guan; Wagner, Harrieth; Wuren, Tanna; Yan, Ma; Qin, Ga; Ge, Rili

    2013-05-01

    Polycythemia is a universal lowlander response to altitude; healthy Andean high-altitude natives also have elevated [Hb]. While this may enhance O2 transport to tissues, studies have shown that acute isovolumic changes in [Hb] do not affect exercise capacity. Many high-altitude Tibetans have evolved sea-level values of [Hb], providing a natural opportunity to study this issue. In 21 young healthy male Tibetans with [Hb] between 15 and 23 g/dl, we measured VO2MAX and O2 transport capacity at 4200m. VO2MAX was higher when [Hb] was lower (Pcardiac output and muscle O2 diffusional conductance, but neither ventilation nor the alveolar-arterial PO2 difference (AaPO2) varied with [Hb]. In contrast, Andean high altitude natives remain polycythemic with larger lungs and higher lung diffusing capacity, a smaller exercising AaPO2, and lower ventilation. The challenges now are (1) to understand the different adaptive pathways used by Andeans and Tibetans, and (2) to determine in Tibetans whether, during evolution, reduced [Hb] appeared first, causing compensatory cardiac and muscle adaptations, or if enhanced cardiac function and muscle O2 transport capacity appeared first, permitting secondary reduction in [Hb]. For (2), further research is necessary to determine the basis of enhanced cardiac function and muscle O2 transport, and identify molecular targets of evolution in heart and muscle. Putative mutations can then be timed and compared to appearance of those affecting [Hb].

  11. Breathing and sleep at high altitude.

    Science.gov (United States)

    Ainslie, Philip N; Lucas, Samuel J E; Burgess, Keith R

    2013-09-15

    We provide an updated review on the current understanding of breathing and sleep at high altitude in humans. We conclude that: (1) progressive changes in pH initiated by the respiratory alkalosis do not underlie early (48 h), complex cellular and neurochemical re-organization occurs both in the peripheral chemoreceptors as well as within the central nervous system. The latter is likely influenced by central acid-base changes secondary to the extent of the initial respiratory responses to initial exposure to high altitude; (3) sleep at high altitude is disturbed by various factors, but principally by periodic breathing; (4) the extent of periodic breathing during sleep at altitude intensifies with duration and severity of exposure; (5) complex interactions between hypoxic-induced enhancement in peripheral and central chemoreflexes and cerebral blood flow--leading to higher loop gain and breathing instability--underpin this development of periodic breathing during sleep; (6) because periodic breathing may elevate rather than reduce mean SaO2 during sleep, this may represent an adaptive rather than maladaptive response; (7) although oral acetazolamide is an effective means to reduce periodic breathing by 50-80%, recent studies using positive airway pressure devices to increase dead space, hyponotics and theophylline are emerging but appear less practical and effective compared to acetazolamide. Finally, we suggest avenues for future research, and discuss implications for understanding sleep pathology.

  12. Parameterization of convective clouds mesoscale convective systems, and convective-generated cirrus. Final report, September 15, 1990--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, W.R.

    1993-11-05

    The overall goal of this research is to develop a scheme to parameterize diabatic heating, moisture/water substance, and momentum transports, and precipitation from mesoscale convective systems (MCSs) for use in general circulation models (GCMs). Our approach is to perform explicit cloud-resolving simulations of MCSs in the spirit of the GEWEX Cloud Systems Study (GCSS), by using the Regional Atmospheric Modeling System (RAMS) developed at Colorado State University (CSU). We then perform statistical analyses (conditional sampling, ensemble-averages, trajectory analyses) of simulated MCSs to assist in fabricating a parameterization scheme, calibrating coefficients, and provide independent tests of the efficacy of the parameterization scheme. A cloud-resolving simulation of ordinary cumulonimbi forced by sea breeze fronts has been completed. Analysis of this case and comparison with parameterized convection simulations has resulted in a number of refinements in the scheme. Three three-dimensional, cloud-resolving simulations of MCSs have been completed. Statistical analyses of model-output data are being performed to assist in developing a parameterization scheme of MCSs in general circulation models.

  13. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G.G.; Ackerman, T.P.; George, A.T. [Penn State Univ., University Park, PA (United States)

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  14. Microphysical Ice Crystal Properties in Mid-Latitude Frontal Cirrus

    Science.gov (United States)

    Schlage, Romy; Jurkat, Tina; Voigt, Christiane; Minikin, Andreas; Weigel, Ralf; Molleker, Sergej; Klingebiel, Marcus; Borrmann, Stephan; Luebke, Anna; Krämer, Martina; Kaufmann, Stefan; Schäfler, Andreas

    2015-04-01

    Cirrus clouds modulate the climate by reflection of shortwave solar radiation and trapping of longwave terrestrial radiation. Their net radiative effect can be positive or negative depending on atmospheric and cloud parameters including ice crystal number density, size and shape. Latter microphysical ice crystal properties have been measured during the mid-latitude cirrus mission ML-CIRRUS with a set of cloud instruments on the new research aircraft HALO. The mission took place in March/April 2014 with 16 flights in cirrus formed above Europe and the Atlantic. The ice clouds were encountered at altitudes from 7 to 14 km in the typical mid-latitude temperature range. A focus of the mission was the detection of frontal cirrus linked to warm conveyor belts (WCBs). Within WCBs, water vapor is transported in the warm sector of an extra-tropical cyclone from the humid boundary layer to the upper troposphere. Cirrus cloud formation can be triggered in the WCB outflow region at moderate updraft velocities and additionally at low updrafts within the high pressure system linked to the WCB. Due to their frequent occurrence, WCBs represent a major source for regions of ice supersaturation and cirrus formation in the mid-latitudes. Here, we use data from the Cloud and Aerosol Spectrometer with detection for POLarization (CAS-POL) and the Cloud Combination Probe (CCP), combining a Cloud Droplet Probe (CDP) and a greyscale Cloud Imaging Probe (CIPgs) to investigate the ice crystal distribution in the size range from 0.5 µm to 1 mm. We derive microphysical cirrus properties in mid-latitude warm front cirrus. Further, we investigate their variability and their dependence on temperature and relative humidity. Finally, we compare the microphysical properties of these frontal cirrus to cirrus clouds that formed at low updrafts within high pressure systems or at high updraft velocities in lee waves. We quantify statistically significant differences in cirrus properties formed in these

  15. Is High Altitude Pulmonary Edema Relevant to Hawai‘i?

    Science.gov (United States)

    2014-01-01

    High altitude clinical syndromes have been described in the medical literature but may be under recognized in the state of Hawai‘i. As tourism increases, high altitude injuries may follow given the easy access to high altitude attractions. Visitors and clinicians should be aware of the dangers associated with the rapid ascent to high altitudes in the perceived comfort of a vehicle. This paper will review the basic pathophysiology, prevention, and treatment of the most serious of the high altitude clinical syndromes, high altitude pulmonary edema. PMID:25478294

  16. Sleep at high altitude: guesses and facts.

    Science.gov (United States)

    Bloch, Konrad E; Buenzli, Jana C; Latshang, Tsogyal D; Ulrich, Silvia

    2015-12-15

    Lowlanders commonly report a poor sleep quality during the first few nights after arriving at high altitude. Polysomnographic studies reveal that reductions in slow wave sleep are the most consistent altitude-induced changes in sleep structure identified by visual scoring. Quantitative spectral analyses of the sleep electroencephalogram have confirmed an altitude-related reduction in the low-frequency power (0.8-4.6 Hz). Although some studies suggest an increase in arousals from sleep at high altitude, this is not a consistent finding. Whether sleep instability at high altitude is triggered by periodic breathing or vice versa is still uncertain. Overnight changes in slow wave-derived encephalographic measures of neuronal synchronization in healthy subjects were less pronounced at moderately high (2,590 m) compared with low altitude (490 m), and this was associated with a decline in sleep-related memory consolidation. Correspondingly, exacerbation of breathing and sleep disturbances experienced by lowlanders with obstructive sleep apnea during a stay at 2,590 m was associated with poor performance in driving simulator tests. These findings suggest that altitude-related alterations in sleep may adversely affect daytime performance. Despite recent advances in our understanding of sleep at altitude, further research is required to better establish the role of gender and age in alterations of sleep at different altitudes, to determine the influence of acclimatization and of altitude-related illness, and to uncover the characteristics of sleep in highlanders that may serve as a study paradigm of sleep in patients exposed to chronic hypoxia due to cardiorespiratory disease.

  17. High altitude balloon experiments at IIA

    Science.gov (United States)

    Nayak, Akshata; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    Recent advances in balloon experiments as well as in electronics have made it possible to fly scientific payloads at costs accessible to university departments. We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bengaluru. The primary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but we will also try scientific exploration of the phenomena occurring in the upper atmosphere, including sprites and meteorite impacts. We present the results of the initial experiments carried out at the CREST campus of IIA, Hosakote, and describe our plans for the future.

  18. Orographic cirrus in a future climate

    Directory of Open Access Journals (Sweden)

    H. Joos

    2009-10-01

    Full Text Available A cloud resolving model (CRM is used to investigate the formation of orographic cirrus clouds in the current and future climate. The formation of cirrus clouds depends on a variety of dynamical and thermodynamical processes, which act on different scales. First, the capability of the CRM in realistically simulating orographic cirrus clouds has been tested by comparing the simulated results to aircraft measurements of an orographic cirrus cloud. The influence of a warmer climate on the microphysical and optical properties of cirrus clouds has been investigated by initializing the CRM with vertical profiles of horizontal wind, potential temperature and equivalent potential temperature, respectively. The vertical profiles are extracted from IPCC A1B simulations for the current climate and for the period 2090–2099 for two regions representative for North and South America. The influence of additional moisture in a future climate on the propagation of gravity waves and the formation of orographic cirrus could be estimated. In a future climate, the increase in moisture dampens the vertical propagation of gravity waves and the occurring vertical velocities in the moist simulations. Together with higher temperatures fewer ice crystals nucleate homogeneously. Assuming that the relative humidity does not change in a warmer climate the specific humidity in the model is increased. This increase in specific humidity in a warmer climate results in a higher ice water content. The net effect of a reduced ice crystal number concentration and a higher ice water content is an increased optical depth. However, in some moist simulations dynamical changes contribute to changes in the ice water content, ice crystal number concentration and optical depth. For the corresponding dry simulations dynamical changes are more pronounced leading to a decreased optical depth in a future climate in some cases.

  19. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    Science.gov (United States)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-07-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10-100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below. The vertical

  20. Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow, Water and Clear Sky Pixels in Sentinel-2 MSI Images

    Directory of Open Access Journals (Sweden)

    André Hollstein

    2016-08-01

    Full Text Available Classification of clouds, cirrus, snow, shadows and clear sky areas is a crucial step in the pre-processing of optical remote sensing images and is a valuable input for their atmospheric correction. The Multi-Spectral Imager on board the Sentinel-2’s of the Copernicus program offers optimized bands for this task and delivers unprecedented amounts of data regarding spatial sampling, global coverage, spectral coverage, and repetition rate. Efficient algorithms are needed to process, or possibly reprocess, those big amounts of data. Techniques based on top-of-atmosphere reflectance spectra for single-pixels without exploitation of external data or spatial context offer the largest potential for parallel data processing and highly optimized processing throughput. Such algorithms can be seen as a baseline for possible trade-offs in processing performance when the application of more sophisticated methods is discussed. We present several ready-to-use classification algorithms which are all based on a publicly available database of manually classified Sentinel-2A images. These algorithms are based on commonly used and newly developed machine learning techniques which drastically reduce the amount of time needed to update the algorithms when new images are added to the database. Several ready-to-use decision trees are presented which allow to correctly label about 91 % of the spectra within a validation dataset. While decision trees are simple to implement and easy to understand, they offer only limited classification skill. It improves to 98 % when the presented algorithm based on the classical Bayesian method is applied. This method has only recently been used for this task and shows excellent performance concerning classification skill and processing performance. A comparison of the presented algorithms with other commonly used techniques such as random forests, stochastic gradient descent, or support vector machines is also given. Especially

  1. Oxygen ion energization observed at high altitudes

    Directory of Open Access Journals (Sweden)

    M. Waara

    2010-04-01

    Full Text Available We present a case study of significant heating (up to 8 keV perpendicular to the geomagnetic field of outflowing oxygen ions at high altitude (12 RE above the polar cap. The shape of the distribution functions indicates that most of the heating occurs locally (within 0.2–0.4 RE in altitude. This is a clear example of local ion energization at much higher altitude than usually reported. In contrast to many events at lower altitudes, it is not likely that the locally observed wave fields can cause the observed ion energization. Also, it is not likely that the ions have drifted from some nearby energization region to the point of observation. This suggests that additional fundamentally different ion energization mechanisms are present at high altitudes. One possibility is that the magnetic moment of the ions is not conserved, resulting in slower outflow velocities and longer time for ion energization.

  2. The High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafa, Miguel; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a continuously operated, wide field of view experiment comprised of an array of 300 water Cherenkov detectors (WCDs) to study transient and steady emission of TeV gamma and cosmic rays. Each 200000 l WCD is instrumented with 4 PMTs providing charge and timing information. The array covers ~22000 m2 at an altitude of 4100 m a.s.l. inside the Pico de Orizaba national park in Mexico. The high altitude, large active area, and optical isolation of the PMTs allows us to reliably estimate the energy and determine the arrival direction of gamma and cosmic rays with significant sensitivity over energies from several hundred GeV to a hundred TeV. Continuously observing 2 / 3 of the sky every 24 h, HAWC plays a significant role as a survey instrument for multi-wavelength studies. The performance of HAWC makes possible the detection of both transient and steady emissions, the study of diffuse emission and the measurement of the spectra of gamma-ray sources at TeV energies. HAWC is also sensitive to the emission from GRBs above 100 GeV. I will highlight the results from the first year of operation of the full HAWC array, and describe the ongoing site work to expand the array by a factor of 4 to explore the high energy range.

  3. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-01-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface

  4. The Dependence of Cirrus Gamma Size Distributions Expressed as Volumes in N(sub 0)-Lambda-Mu Phase Space and Bulk Cloud Properties on Environmental Conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS)

    Science.gov (United States)

    Jackson, Robert C.; McFarquhar, Greg M.; Fridlind, Ann M.; Atlas, Rachel

    2015-01-01

    The variability of cirrus ice microphysical properties is investigated using observations obtained during the Small Particles in Cirrus (SPARTICUS) campaign. An existing approach that represents a size distribution (SD) as a single gamma function using an ellipsoid of equally realizable solutions in (N(sub 0), lambda, mu) phase space is modified to automatically identify multiple modes in SDs and characterize each mode by such an ellipsoid. The modified approach is applied to ice crystals with maximum dimension D greater than15 micrometers collected by the 2-D stereo and 2-D precipitation probes on the Stratton Park Engineering Company Learjet. The dependencies of N(sub 0), mu, and lambda from each mode, total number concentration, bulk extinction, ice water content (IWC), and mass median maximum dimension D(sub mm) as a function of temperature T and cirrus type are then analyzed. The changes in the observed codependencies between N(sub 0), mu, and lambda, bulk extinction, IWC, and D(sub mm) with environmental conditions indicate that particles were larger at higher T during SPARTICUS. At most two modes were observed in any SD during SPARTICUS, with the average boundary between them at 115 micrometers, similar to past studies not using probes with shatter mitigating tips and artifact removal algorithms. The bimodality of the SDs increased with T. This and the differences in N(sub 0), mu, and lambda between the modes suggest that particles with smaller D nucleated more recently than particles with larger D, which grew via vapor deposition and aggregation. Because smaller crystals, whose concentrations are uncertain, make marginal contributions to higher order moments, the use of higher moments for evaluating model fields is suggested.

  5. HAWC - The High Altitude Water Cherenkov Detector

    Science.gov (United States)

    Tepe, Andreas; HAWC Collaboration

    2012-07-01

    The high altitude water Cherenkov observatory (HAWC) is an instrument for the detection of high energy cosmic gamma-rays. Its predecessor Milagro has successfully proven that the water Cherenkov technology for gamma-ray astronomy is a useful technique. HAWC is currently under construction at Sierra Negra in Mexico at an altitude of 4100 m and will include several improvements compared to Milagro. Two complementary DAQ systems of the HAWC detector allow for the observation of a large fraction of the sky with a very high duty cycle and independent of environmental conditions. HAWC will observe the gamma-ray sky from about 100 GeV up to 100 TeV. Also the cosmic ray flux anisotropy on different angular length scales is object of HAWC science. Because of HAWC's large effective area and field of view, we describe its prospects to observe gamma-ray bursts (GRBs) as an example for transient sources.

  6. Sleep apneas and high altitude newcomers.

    Science.gov (United States)

    Goldenberg, F; Richalet, J P; Onnen, I; Antezana, A M

    1992-10-01

    Sleep and respiration data from two French medical high altitude expeditions (Annapurna 4,800 m and Mt Sajama 6,542 m) are presented. Difficulties in maintaining sleep and a SWS decrease were found with periodic breathing (PB) during both non-REM and REM sleep. Extent of PB varied considerably among subjects and was not correlated to the number of arousals but to the intercurrent wakefulness duration. There was a positive correlation between the time spent in PB and the individual hypoxic ventilatory drive. The relation between PB, nocturnal desaturation, and mountain sickness intensity are discussed. Acclimatization decreased the latency toward PB and improved sleep. Hypnotic benzodiazepine intake (loprazolam 1 mg) did not worsen either SWS depression or apneas and allowed normal sleep reappearance after acclimatization.

  7. Lifetime Extension of Cirrus Cloud Ice Particles upon Contamination with HCl and HNO3 under conditions of the Upper Troposphere and Lower Stratosphere

    Science.gov (United States)

    Rossi, Michel J.; Delval, Christophe

    2016-04-01

    Ice particles in the Upper Troposphere/Lower Stratosphere (UT/LS) are the seat of heterogeneous chemical processes that are important in polar ozone chemistry. Estimated evaporative lifetimes of typical pure ice particles of a few micrometers radius in Cirrus clouds are on the order of a minute or so at 80% relative humidity, too short to allow significant heterogeneous processing. We took this as a motivation to systematically measure absolute rates of evaporation and condensation of H2O in 1 to 2 micrometer thick ice films taken as proxies for small atmospheric ice particles under controlled conditions of HCl and HNO3 trace gas contamination. We have used a multidiagnostic reaction vessel equipped with residual gas mass spectrometry (MS), FTIR absorption spectroscopy in transmission and a quartz crystal microbalance (QCMB) in order to simultaneously observe both the gas and condensed phases under relevant atmospheric conditions. The rates (Rev(H2O)) or fluxes of evaporation (Jev(H2O)) of H2O from thin ice films contaminated by a measured amount of HCl in the range of 10% of a formal monolayer to 20 formal monolayers decreased by factors of between 2 and 50 depending on parameters such as temperature of deposition (Tdep), rate (RHCl) and dose (NHCl) of contaminant doping. Experiments with HCl fell into two categories as far as the decrease of Jev with the average mole fraction of contaminant (χHCl) in the remaining ice slab was concerned: one group where Jev(H2O) decreased gradually after pure ice evaporated, and another group where Jev(H2O) abruptly changes with χHCl after evaporation of excess ice. FTIR spectroscopy revealed an unknown, yet crystalline form of HCl hydrate upon HCl doping that does not correspond to a known crystalline hydrate. Of importance is the observation, that the equilibrium vapor pressure of these contaminated ices correspond to that of pure ice even after evaporation of excess ice at the characteristic rate of pure ice evaporation

  8. Aerosol-cirrus interactions: a number based phenomenon at all?

    Directory of Open Access Journals (Sweden)

    M. Seifert

    2004-01-01

    Full Text Available In situ measurements of the partitioning of aerosol particles within cirrus clouds were used to investigate aerosol-cloud interactions in ice clouds. The number density of interstitial aerosol particles (non-activated particles in between the cirrus crystals was compared to the number density of cirrus crystal residuals. The data was obtained during the two INCA (Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions campaigns, performed in the Southern Hemisphere (SH and Northern Hemisphere (NH midlatitudes. Different aerosol-cirrus interactions can be linked to the different stages of the cirrus lifecycle. Cloud formation is linked to positive correlations between the number density of interstitial aerosol (Nint and crystal residuals (Ncvi, whereas the correlations are smaller or even negative in a dissolving cloud. Unlike warm clouds, where the number density of cloud droplets is positively related to the aerosol number density, we observed a rather complex relationship when expressing Ncvi as a function of Nint for forming clouds. The data sets are similar in that they both show local maxima in the Nint range 100 to 200cm, where the SH- maximum is shifted towards the higher value. For lower number densities Nint and Ncvi are positively related. The slopes emerging from the data suggest that a tenfold increase in the aerosol number density corresponds to a 3 to 4 times increase in the crystal number density. As Nint increases beyond the ca. 100 to 200cm, the mean crystal number density decreases at about the same rate for both data sets. For much higher aerosol number densities, only present in the NH data set, the mean Ncvi remains low. The situation for dissolving clouds allows us to offer two possible, but at this point only speculative, alternative interactions between aerosols and cirrus: evaporating clouds might be associated with a source of aerosol particles, or air pollution (high aerosol number density might

  9. THE HIGH ALTITUDE GAMMA RAY OBSERVATORY, HAWC

    Directory of Open Access Journals (Sweden)

    M. M. González

    2011-01-01

    Full Text Available El volcán Sierra Negra en Puebla, México fue seleccionado para albergar a HAWC (High Altitude Water Cherenkov, un observatorio de gran apertura (2Pi sr, único en el mundo, capaz de observar contínuamente el cielo a energías de 0.1 a 100 TeV. HAWC consiste en un arreglo a una altitud de 4100 m sobre el nivel del mar de 300 contenedores de 7.3 m de diámetro y 5 m de altura llenos de agua pura y sensores de luz que observan partículas sumamente energ´eticas provenientes de los eventos más violentos del universo y será 15 veces más sensible que su antecesor Milagro. Las aportaciones científicas de Milagro han demostrado las capacidades únicas de este tipo de observatorios. En este trabajo se presentará HAWC y se discutirá brevemente su caso científico y capacidades.

  10. Solar electric energy supply at high altitude

    Energy Technology Data Exchange (ETDEWEB)

    Knaupp, W.; Mundschau, E. [Zentrum fur Sonnenenergie- und Wasserstoff-Forschung (ZSW), Ulm (Germany)

    2004-04-01

    Solar-hydrogen systems were analyzed regarding their usability as energy supply system for high altitude platforms. In a first step for an assessment of solar and photovoltaic resources near-ground spectral transmittances of atmosphere were extended with simplified height correction functions to achieve spectral irradiance descriptions versus atmospheric height up to 25 km. The influence of atmospheric height to different solar cell technologies regarding electrical performance was quantified at some examples for the aspect of spectral distribution with the help of the introduced spectral height factor. The main attention during analysis of the whole solar-hydrogen energy system was directed to characteristics of current or near term available technology. Specific power weight of photovoltaic system, electrolyzer, fuel cell and gas tanks and their dependence on operation mode and power range were assessed. A pre-design of a solar-hydrogen energy system was carried out for an airship (volume 580,000 m3) withstanding continuous wind speeds up to {approx} 130 km/h. The calculated coverage ratio of photovoltaic and load share of energy system mark the frame of usability. Depending on the airship size, shape and other external boundary conditions the total electrical energy demand could be covered by a solar-hydrogen energy system of current or near term technology for full year operation. However further investigations are necessary regarding e.g. further mass reductions. (author)

  11. The High-Altitude Water Cherenkov Observatory

    Science.gov (United States)

    Mostafá, Miguel A.

    2014-10-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array.

  12. The high-altitude water Cherenkov Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Miguel A., E-mail: miguel@psu.edu [Department of Physics, Colorado State University, Ft Collins, CO (United States)

    2014-07-01

    The High-Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV γ -ray experiment under construction at 4,100ma.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow to detect both the transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV γ -ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from γ -ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first 30 WCDs (forming an array approximately the size of Milagro) were deployed in Summer 2012, and 100 WCDs will be taking data by May, 2013. We present in this paper the motivation for constructing the HAWC observatory, the status of the deployment, and the first results from the constantly growing array. (author)

  13. The High Altitude Water Cherenkov (HAWC) Observatory

    Science.gov (United States)

    Springer, Wayne

    2014-06-01

    The High Altitude Water Cherenkov (HAWC) observatory is a continuously operated, wide field of view detector based upon a water Cherenkov technology developed by the Milagro experiment. HAWC observes, at an elevation of 4100 m on Sierra Negra Mountain in Mexico, extensive air showers initiated by gamma and cosmic rays. The completed detector will consist of 300 closely spaced water tanks each instrumented with four photomultiplier tubes that provide timing and charge information used to reconstruct energy and arrival direction. HAWC has been optimized to observe transient and steady emission from point as well as diffuse sources of gamma rays in the energy range from several hundred GeV to several hundred TeV. Studies in solar physics as well as the properties of cosmic rays will also be performed. HAWC has been making observations at various stages of deployment since completion of 10% of the array in summer 2012. A discussion of the detector design, science capabilities, current construction/commissioning status, and first results will be presented...

  14. Development of the High Altitude Student Platform

    Science.gov (United States)

    Guzik, T. G.; Besse, S.; Calongne, A.; Dominique, A.; Ellison, S. B.; Gould, R.; Granger, D.; Olano, D.; Smith, D.; Stewart, M.; Wefel, J. P.

    2008-11-01

    The High Altitude Student Platform (HASP) was originally conceived to provide student groups with access to the near-space environment for flight durations and experiment capabilities intermediate between what is possible with small sounding balloons and low Earth orbit rocket launches. HASP is designed to carry up to twelve student payloads to an altitude of about 36 km with flight durations of 15 20 h using a small zero-pressure polyethylene film balloon. This provides a flight capability that can be used to flight-test compact satellites, prototypes and other small payloads designed and built by students. HASP includes a standard mechanical, power and communication interface for the student payload to simplify integration and allows the payloads to be fully exercised. Over the last two years a partnership between the NASA Balloon Program Office (BPO), Columbia Scientific Balloon Facility (CSBF), Louisiana State University (LSU), the Louisiana Board of Regents (BoR), and the Louisiana Space Consortium (LaSPACE) has led to the development, construction and, finally, the first flight of HASP with a complement of eight student payloads on September 4, 2006. Here we discuss the primary as-built HASP systems and features, the student payload interface, HASP performance during the first flight and plans for continuing HASP flights. The HASP project maintains a website at http://laspace.lsu.edu/hasp/ where flight application, interface documentation and status information can be obtained.

  15. The High Altitude Water Cherenkov Observatory

    CERN Document Server

    ,

    2013-01-01

    The High Altitude Water Cherenkov (HAWC) observatory is a large field of view, continuously operated, TeV gamma-ray experiment under construction at 4,100 m a.s.l. in Mexico. The HAWC observatory will have an order of magnitude better sensitivity, angular resolution, and background rejection than its predecessor, the Milagro experiment. The improved performance will allow us to detect both transient and steady emissions, to study the Galactic diffuse emission at TeV energies, and to measure or constrain the TeV spectra of GeV gamma-ray sources. In addition, HAWC will be the only ground-based instrument capable of detecting prompt emission from gamma-ray bursts above 50 GeV. The HAWC observatory will consist of an array of 300 water Cherenkov detectors (WCDs), each with four photomultiplier tubes. This array is currently under construction on the flanks of the Sierra Negra volcano near the city of Puebla, Mexico. The first thirty WCDs (forming an array approximately the size of Milagro) were deployed in Summer...

  16. Pulmonary embolism in young natives of high altitude

    Directory of Open Access Journals (Sweden)

    Sanjay Singhal

    2016-01-01

    Full Text Available Thrombotic events are relatively common in high altitude areas and known to occur in young soldiers working at high altitude without usual risk factors associated with thrombosis at sea-level. However, till now, cases with thrombotic events were reported only in lowlanders staying at high altitude. These two cases of pulmonary embolism demonstrate that thrombotic events can occur in highlanders after a prolonged stay at the extreme altitude.

  17. Impact of Cirrus Crystal Shape on Solar Spectral Irradiance: A Case Study for Subtropical Cirrus

    Science.gov (United States)

    Wendisch, Manfred; Pilewskie, Peter; Pommier, John; Howard, Steve; Yang, Ping; Heymsfield, Andrew J.; Schmitt, Carl G.; Baumgardner, Darrel; Mayer, Barnhard

    2005-01-01

    Profiles of in situ measurements of ice crystal size distribution of subtropical cirrus were used to calculate solar spectral irradiances above and below the clouds. Spheres and nonspherical ice crystal habits (columns, hollows, plates, bullets, and aggregates) were assumed in the calculations. The simulation results were compared to irradiance measurements from the NASA Solar Spectral Flux Radiometer. The microphysical and radiation data were collected by three aircraft during CRYSTAL-FACE. Two cirrus cases (optical thickness of about 1 and 7) from two mission dates (26 and 23 July 2002) were investigated in detail. The measured downwelling and upwelling irradiance spectra above the cirrus could mostly be reproduced by the radiation model to within +/- 5-10% for most ice crystal habits. Below the cirrus the simulations disagreed with the measured irradiances due to surface albedo variability along the flight track, and nonoptimal colocation between the microphysical and irradiance measurements. The impact of shape characteristics of the crystals was important for the reflected irradiances above the optically thin cirrus, especially for small solar zenith angles, because in this case single-scattering dominated the solar radiation field. For the cirrus of moderate optical thickness the enhanced multiple scattering tended to diminish particular shape features caused by nonspherical single-scattering. Within the ice absorption bands the shape-related differences in the absorption characteristics of the individual nonspherical ice crystals were amplified if multiple scattering prevailed. Furthermore, it was found that below the cloud the shape sensitivity of the downwelling irradiance spectra is larger compared to the nonsphericity effects on reflected irradiances above the cirrus. Finally, it was shown that the calculated cirrus solar radiative forcing could vary by as much as 26% depending on the ice crystal habit.

  18. High altitude pulmonary oedema (HAPE) in an Indian pilgrim.

    Science.gov (United States)

    Panthi, Sagar; Basnyat, Buddha

    2013-11-01

    Increasing number of Hindu pilgrims visit the Himalayas where some of them suffer from high altitude illness including the life threatening forms, high altitude pulmonary oedema (HAPE) and high altitude cerebral oedema. Compared to tourists and trekkers, pilgrims are usually ignorant about altitude illness. This is a case of a pilgrim who suffered from HAPE on his trip to Kailash-Mansarovar and is brought to a tertiary level hospital in Kathmandu. This report emphasises on how to treat a patient with HAPE, a disease which is increasingly being seen in the high altitude pilgrim population.

  19. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  20. High altitude pulmonary edema among "Amarnath Yatris"

    Directory of Open Access Journals (Sweden)

    Parvaiz A Koul

    2013-01-01

    Full Text Available Background: Annual pilgrimage (Yatra to the cave shrine of Shri Amarnath Ji′ is a holy ritual among the Hindu devotees of Lord Shiva. Located in the Himalayan Mountain Range (altitude 13,000 ft in south Kashmir, the shrine is visited by thousands of devotees and altitude sickness is reportedly common. Materials and Methods: More than 600,000 pilgrims visited the cave shrine in 2011 and 2012 with 239 recorded deaths. Thirty one patients with suspected altitude sickness were referred from medical centers en-route the cave to Sher-i-Kashmir Institute of Medical Sciences, a tertiary-care center in capital Srinagar (5,000 ft. The clinical features and the response to treatment were recorded. Results: Thirty-one patients (all lowlanders, 19 male; age 18-60 years, median 41 had presented with acute onset breathlessness of 1-4 days (median 1.9 d starting within 12-24 h of a rapid ascent; accompanied by cough (68%, headache (8%, dizziness and nausea (65%. Sixteen patients had associated encephalopathy. Clinical features on admission included tachypnea ( n = 31, tachycardia ( n = 23, bilateral chest rales ( n = 29, cyanosis ( n = 22 and grade 2-4 encephalopathy. Hypoxemia was demonstrable in 24 cases and bilateral infiltrates on radiologic imaging in 29. Ten patients had evidence of high-altitude cerebral edema. All patients were managed with oxygen, steroids, nifedipine, sildenafil and other supportive measures including invasive ventilation ( n = 3. Three patients died due to multiorgan dysfunction. Conclusions: Altitude sickness is common among Amaranath Yatris from the plains and appropriate educational strategies should be invoked for prevention and prompt treatment.

  1. Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation.

    Science.gov (United States)

    Luo, Yongjun; Yang, Xiaohong; Gao, Yuqi

    2013-08-01

    Mitochondria are the energy metabolism centers of the cell. More than 95% of cellular energy is produced by mitochondrial oxidative phosphorylation. Hypoxia affects a wide range of energy generation and consumption processes in animals. The most important mechanisms limiting ATP consumption increase the efficiency of ATP production and accommodate the reduced production of ATP by the body. All of these mechanisms relate to changes in mitochondrial function. Mitochondrial function can be affected by variations in mitochondrial DNA, including polymorphisms, content changes, and deletions. These variations play an important role in acclimatization or adaptation to hypoxia. In this paper, the association between mitochondrial genome sequences and high-altitude adaptation is reviewed.

  2. The optical properties of equatorial cirrus in the pilot radiation observation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Platt, C.M.R.; Young, S.A.; Manson, P.; Patterson, G.R. [CSIRO, Victoria (Australia)] [and others

    1996-04-01

    The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported. The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical properties by the lidar/radiometer, or LIRAD, method was described by Platt et al.; the latter paper also describes a year`s data on mid-latitude cirrus. The optical properties of equatorial cirrus (i.e., cirrus within a few degrees of the equator) have hardly been studied at all. The same is true of tropical cirrus, although a few observations have been reported by Davis and Platt et al.This paper describes obersvations performed on cirrus clouds, analysis methods used, and results.

  3. An extremely high altitude plume seen at Mars morning terminator

    Science.gov (United States)

    Sanchez-Lavega, Agustin; Garcia-Muñoz, Antonio; Garcia-Melendo, Enrique; Perez-Hoyos, Santiago; Gomez-Forrellad, Josep M.; Pellier, Christophe; Delcroix, Marc; Lopez-Valverde, Miguel Angel; Gonzalez-Galindo, Francisco; Jaeschke, Wayne; Parker, Donald C.; Phillips, James H.; Peach, Damian

    2014-11-01

    We report the occurrence in March and April 2012 of two bright very high altitude plumes at the Martian terminator at 250 km or more above the surface, thus well into the ionosphere and bordering on the exosphere. They were located at about 195 deg West longitude and -45 deg latitude (at Terra Cimmeria) and lasted for about 10 days. The features showed day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behavior. Photometric measurements are used to explore two possible scenarios to explain their nature. If the phenomenon is due to suspended particles (dust, CO2 or H2O ice clouds) reflecting solar radiation, the mean size is about 0.1 microns with a nadir optical depth > 0.06. Alternatively, the plume could be auroral emission above a region with a strong magnetic anomaly and where aurora has previously been detected. Importantly, both explanations defy our current understanding of the Mars upper atmosphere.AcknowledgementsThis work was supported by the Spanish MINECO projects AYA2012-36666 with FEDER support, CONSOLIDER program ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55.

  4. Introductory address: lessons to be learned from high altitude.

    Science.gov (United States)

    Houston, C S

    1979-07-01

    A historical account of the important landmarks in man's experience with the high altitude environment is followed by comments on the important stages in the understanding of its physiological effects. The work of The Mount Logan High Altitude Physiology Study on acute mountain sickness is reviewed from its inception in 1967 until the present.

  5. Soldier at High Altitude: Problem & Preventive Measures

    Directory of Open Access Journals (Sweden)

    S.S Purkayastha

    2000-04-01

    Full Text Available Due to military and j trategic reasons, a large body of troops is being regularly dcployed in the snowbound areas through ut the Himalayan regions to guard Ihe Ironliers. Thc mountain environment at high 'allitude (HA consisls of several faclors alien lo plain dwellers, which evoke a series of physiological responses in human system. Some of the sea' level residents on induction to HA suffer from several unloward symploms of HA" ailmenls varying from mild-lo-severe degrees. Suddenexposure to HA is detrimental to physical and mental  performance of the low landers and  certain cases, may even lead to dreaded condition like high altitude pulmonary oedema (HAPO. These may make a man Jisturbed physically and mentally. So, there is a need lo prevent such hazards v(hich ispossible if the individual is aware of the problems and prevenlive measures ofHA ailments in advance, before going to HA for a safe and happy living there. Hence, a noble effort has been made to provide guidelines to create awareness about physical and physiological problems of life at HA and themethods of protection against its ill-effects for the soldiers, mountaineers and sojourners conducting scientific trials it HA. In th.:s revieJ, an attempt has been made to describe vital aspects of HA in a popular way, st~ing with its concept and various environmental factors which exert considerableettects on human body functions, heallh and performance on exposure to such environment, on the b¥is of a series of studies coitlucted at Ithe Defence Institute of Physiology & Allied Sciences, Delhi, oVer the years. The most important featurelof HA (3,000 m and above is hypoxia or deficiency ofoxygej1 in the body. Olher cnvironmental tactors are: scverc cold, high velocity wind, low rclalivc humidily, high solar radiatior, increased ultraviolet radialion and difficult terrain. These faclors are responsible for various HA cWtdc old syndromes, viz., acute mountain sickness, HAPO, dehydration,4

  6. Factors controlling contrail cirrus optical depth

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2009-08-01

    Full Text Available Aircraft contrails develop into contrail cirrus by depositional growth and sedimentation of ice particles and horizontal spreading due to wind shear. Factors controlling this development include temperature, ice supersaturation, thickness of ice-supersaturated layers, and vertical gradients in the horizontal wind field. An analytical microphysical cloud model is presented and validated that captures these processes. Many individual contrail cirrus are simulated that develop differently owing to the variability in the controlling factors, resulting in large samples of cloud properties that are statistically analyzed. Contrail cirrus development is studied over the first four hours past formation, similar to the ages of line-shaped contrails that were tracked in satellite imagery on regional scales. On these time scales, contrail cirrus optical depth and microphysical variables exhibit a marked variability, expressed in terms of broad and skewed probability distribution functions. Simulated mean optical depths at a wavelength of 0.55 μm range from 0.05-0.5 and a substantial fraction 20-50% of contrail cirrus stay subvisible (optical depth <0.02, depending on meteorological conditions.

    A detailed analysis based on an observational case study over the continental USA suggests that previous satellite measurements of line-shaped persistent contrails have missed about 89%, 50%, and 11% of contrails with optical depths 0-0.05, 0.05-0.1, and 0.1-0.2, respectively, amounting to 65% of contrail coverage of all optical depths. When comparing observations with simulations and when estimating the contrail cirrus climate impact, not only mean values but also the variability in optical depth and microphysical properties need to be considered.

  7. Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems

    Science.gov (United States)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.; Liu, Zhaoyan; Liu, Gin-Rong; Campbell, James R.; Liew, Soo Chin; Barnes, John E.

    2012-08-01

    Cirrus clouds, particularly subvisual high thin cirrus with low optical thickness, are difficult to screen in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to systematically examine the susceptibility of operational aerosol products to cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask (VFM) and the Moderate Resolution Imaging Spectroradiometer (MODIS) thin cirrus screening parameters for the purpose of evaluating cirrus contamination. Key results of this study include: (1) quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted; although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons; (2) challenges in matching up different data for analysis are highlighted and corresponding solutions proposed; and (3) estimates of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  8. Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman-Mie-Rayleigh lidar

    Science.gov (United States)

    Dionisi, D.; Keckhut, P.; Liberti, G. L.; Cardillo, F.; Congeduti, F.

    2013-12-01

    A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh-Mie-Raman (RMR) lidar in Rome Tor Vergata (RTV). A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a data set consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio) and the cirrus mid-height temperature (estimated from the radiosonde data of Pratica di Mare, WMO, World Meteorological Organization, site no. 16245) of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid- and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach at the lidar site of the Observatoire de Haute-Provence (OHP), allows characterization of cirrus clouds over the RTV site and attests to the robustness of such classification. To acquire some indications about the cirrus generation methods for the different classes, analyses of the extinction-to-backscatter ratio (lidar ratio, LReff, in terms of frequency distribution functions and dependencies on the mid-height cirrus temperature, have been performed. A preliminary study relating some meteorological parameters (e.g., relative humidity, wind components) to cirrus clusters has also been conducted. The RTV cirrus results, recomputed through the cirrus classification by Sassen and Cho (1992), show good agreement with other midlatitude lidar cirrus observations for the relative occurrence of subvisible (SVC), thin and opaque cirrus classes (10%, 49% and 41%, respectively). The overall mean value of cirrus optical depth is 0.37 ± 0.18, while most retrieved LReff values

  9. Cirrus Susceptibility to Changes in Ice Nuclei: Physical Processes, Model Uncertainties, and Measurement Needs

    Science.gov (United States)

    Jensen, Eric

    2017-01-01

    In this talk, I will begin by discussing the physical processes that govern the competition between heterogeneous and homogeneous ice nucleation in upper tropospheric cirrus clouds. Next, I will review the current knowledge of low-temperature ice nucleation from laboratory experiments and field measurements. I will then discuss the uncertainties and deficiencies in representations of cirrus processes in global models used to estimate the climate impacts of changes in cirrus clouds. Lastly, I will review the critical field measurements needed to advance our understanding of cirrus and their susceptibility to changes in aerosol properties.

  10. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  11. Aging, High Altitude, and Blood Pressure: A Complex Relationship.

    Science.gov (United States)

    Parati, Gianfranco; Ochoa, Juan Eugenio; Torlasco, Camilla; Salvi, Paolo; Lombardi, Carolina; Bilo, Grzegorz

    2015-06-01

    Parati, Gianfranco, Juan Eugenio Ochoa, Camilla Torlasco, Paolo Salvi, Carolina Lombardi, and Grzegorz Bilo. Aging, high altitude, and blood pressure: A complex relationship. High Alt Biol Med 16:97-109, 2015.--Both aging and high altitude exposure may induce important changes in BP regulation, leading to significant increases in BP levels. By inducing atherosclerotic changes, stiffening of large arteries, renal dysfunction, and arterial baroreflex impairment, advancing age may induce progressive increases in systolic BP levels, promoting development and progression of arterial hypertension. It is also known, although mainly from studies in young or middle-aged subjects, that exposure to high altitude may influence different mechanisms involved in BP regulation (i.e., neural central and reflex control of sympathetic activity), leading to important increases in BP levels. The evidence is less clear, however, on whether and to what extent advancing age may influence the BP response to acute or chronic high altitude exposure. This is a question not only of scientific interest but also of practical relevance given the consistent number of elderly individuals who are exposed for short time periods (either for leisure or work) or live permanently at high altitude, in whom arterial hypertension is frequently observed. This article will review the evidence available on the relationship between aging and blood pressure levels at high altitude, the pathophysiological mechanisms behind this complex association, as well as some questions of practical interest regarding antihypertensive treatment in elderly subjects, and the effects of antihypertensive drugs on blood pressure response during high altitude exposure.

  12. Cirrus and aerosol lidar profilometer - analysis and results

    Energy Technology Data Exchange (ETDEWEB)

    Spinhirne, J.D.; Scott, V.S. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Reagan, J.A.; Galbraith, A. [Univ. of Arizona, Tucson, AZ (United States)

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  13. Cirrus microphysics and infrared radiative transfer: A case study

    Science.gov (United States)

    Ackerman, Thomas P.; Heymsfield, Andrew J.; Valero, Francisco P. J.; Kinne, Stefan

    1988-01-01

    Coincident measurements of cirrus cloud microphysical properties such as particle size distribution and particle shape and morphology, and measurements of infrared intensity and flux were made. Data was acquired nearly simultaneously in space and time by a KingAir in cloud and by an ER-2 at an altitude of 19 km. Upwelling infrared intensities and fluxes measured from the ER-2 and observations of cloud particle size distributions and particle phase and morphology made from the KingAir are discussed. Broad-band flux measurements were available both in and below the cirrus layer from the KingAir.

  14. Kajian Teknologi High Altitude Platform (HAP [Study of High Altitude Platform (HAP Technology

    Directory of Open Access Journals (Sweden)

    Amry Daulat Gultom

    2016-07-01

    Full Text Available High Altitude Platform (HAP merupakan solusi alternatif untuk mengatasi keterbatasan infrastruktur terestrial maupun satelit. HAP merupakan pesawat ataupun balon udara yang ditempatkan pada ketinggian 20-50 km di atas permukaan bumi. Kelebihan yang utama dari HAP adalah kemudahan dalam penempatan, fleksibilitas, biaya operasionalnya rendah, delay  propagasi rendah, sudut elevasi lebar, cakupan yang luas. Penelitian ini dilakukan untuk mengetahui potensi HAP untuk komunikasi pita lebar dan perkembangannya di Indonesia. Analisis dilakukan secara deskriptif dengan mengolah data literatur yang didapat. Hasil penelitian menunjukkan bahwa di Indonesia terdapat potensi teknologi HAP untuk komunikasi pita lebar dengan lebar pita 2x300 MHz di band 27,9-28,2 GHz dan 31-31,3 GHz. Namun, belum ada peraturan yang mengatur alokasi frekuensi untuk HAP secara khusus di Indonesia.*****High Altitude Platform (HAP has been developed as an alternative solution in order to overcome limitation of terrestrial and satellite communication system. HAP is an aircraft or balloon situated on 20-50 km above the earth. Main advantages of HAP are flexibility in deployment, low propagation delay, wide elevation angle and broad coverage. The research is conducted to gather HAP potential for broadband communication and its development in Indonesia. Analysis is conducted by descriptive analysis from literature study gather. The research result shows that in Indonesia, there is potential of HAP technology for broadband communication with 2x300 MHz bandwidth within 27,9-28,2 GHz and 31-31,3 GHz. Yet, there are no specific regulations managing frequency allocation for HAP in Indonesia.

  15. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  16. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  17. NHAP = National High-Altitude Aerial Photography: 1980 - 1989

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The National High Altitude Photography (NHAP) program, which was operated from 1980-1989, was coordinated by the U.S. Geological Survey as an interagency project to...

  18. Travelling to new heights: practical high altitude medicine.

    Science.gov (United States)

    Plant, Tracie; Aref-Adib, Golnar

    2008-06-01

    Over 40 million people travel to high altitude for both work and pleasure each year, and all of them are at risk of the acute effects of hypoxia. This article reviews the prevention, diagnostic features and treatments of these illnesses.

  19. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    Yu Yongqing; Guo Jian; Yin Yu; Mao Yan; Li Guangfan; Fan Jianbin; Lu Jiayu; Su Zhiyi; Li Peng; Li Qingfeng; Liao Weiming; Zhou Jun

    2010-01-01

    @@ The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions,design scheme, the main performances and parameters of the test facilities, as well as the tests and research tasks already carried out.

  20. Increased oxidative stress following acute and chronic high altitude exposure.

    Science.gov (United States)

    Jefferson, J Ashley; Simoni, Jan; Escudero, Elizabeth; Hurtado, Maria-Elena; Swenson, Erik R; Wesson, Donald E; Schreiner, George F; Schoene, Robert B; Johnson, Richard J; Hurtado, Abdias

    2004-01-01

    The generation of reactive oxygen species is typically associated with hyperoxia and ischemia reperfusion. Recent evidence has suggested that increased oxidative stress may occur with hypoxia. We hypothesized that oxidative stress would be increased in subjects exposed to high altitude hypoxia. We studied 28 control subjects living in Lima, Peru (sea level), at baseline and following 48 h exposure to high altitude (4300 m). To assess the effects of chronic altitude exposure, we studied 25 adult males resident in Cerro de Pasco, Peru (altitude 4300 m). We also studied 27 subjects living in Cerro de Pasco who develop excessive erythrocytosis (hematocrit > 65%) and chronic mountain sickness. Acute high altitude exposure led to increased urinary F(2)-isoprostane, 8-iso PGF(2 alpha) (1.31 +/- 0.8 microg/g creatinine versus 2.15 +/- 1.1, p = 0.001) and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.37 +/- 0.09, p = 0.002), with a trend to increased plasma thiobarbituric acid reactive substance (TBARS) (59.7 +/- 36 pmol/mg protein versus 63.8 +/- 27, p = NS). High altitude residents had significantly elevated levels of urinary 8-iso PGF(2 alpha) (1.3 +/- 0.8 microg/g creatinine versus 4.1 +/- 3.4, p = 0.007), plasma TBARS (59.7 +/- 36 pmol/mg protein versus 85 +/- 28, p = 0.008), and plasma total glutathione (1.29 +/- 0.10 micromol versus 1.55 +/- 0.19, p < 0.0001) compared to sea level. High altitude residents with excessive erythrocytosis had higher levels of oxidative stress compared to high altitude residents with normal hematological adaptation. In conclusion, oxidative stress is increased following both acute exposure to high altitude without exercise and with chronic residence at high altitude.

  1. Functions and Design Scheme of Tibet High Altitude Test Base

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The functional orientation of the Tibet High Altitude Test Base, subordinated to the State Grid Corporation of China (SGCC), is to serve power transmission projects in high altitude areas, especially to provide technical support for southwestern hydropower delivery projects by UHVDC transmission and Qinghai-Tibet grid interconnection project. This paper presents the matters concerned during siting and planning, functions, design scheme, the main performances and parameters of the test facilities, as well as...

  2. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  3. The effect of high altitude on nasal nitric oxide levels.

    Science.gov (United States)

    Altundag, Aytug; Salihoglu, Murat; Cayonu, Melih; Cingi, Cemal; Tekeli, Hakan; Hummel, Thomas

    2014-09-01

    The aim of the present study was to investigate whether nasal nitric oxide (nNO) levels change in relation to high altitude in a natural setting where the weather conditions were favorable. The present study included 41 healthy volunteers without a history of acute rhinosinusitis within 3 weeks and nasal polyposis. The study group consisted of 31 males (76 %) and 10 females (24 %) and the mean age of the study population was 38 ± 10 years. The volunteers encamped for 2 days in a mountain village at an altitude of 1,500 m above sea level (masl) and proceeded to highlands at an altitude of 2,200 masl throughout the day. The measurements of nNO were done randomly, either first at the mountain village or at sea level. Each participant had nNO values both at sea level and at high altitude at the end of the study. The nNO values of sea level and high altitude were compared to investigate the effect of high altitude on nNO levels. The mean of average nNO measurements at the high altitude was 74.2 ± 41 parts-per-billion (ppb) and the mean of the measurements at sea level was 93.4 ± 45 ppb. The change in nNO depending on the altitude level was statistically significant (p high altitude even if the weather conditions were favorable, such as temperature, humidity, and wind.

  4. Retrieving Cirrus Microphysical Properties from Stellar Aureoles

    CERN Document Server

    DeVore, John G; Rappaport, Saul

    2013-01-01

    The aureoles around stars caused by thin cirrus limit nighttime measurement opportunities for ground-based astronomy but can provide information on high-altitude ice crystals for climate research. In this paper we attempt to demonstrate quantitatively how this works. Aureole profiles can be followed out to ~0.2 degrees from stars and ~0.5 degrees from Jupiter. Interpretation of diffracted starlight is similar to that for sunlight, but emphasizes larger particles. Stellar diffraction profiles are very distinctive, typically being approximately flat out to a critical angle followed by gradually steepening power-law falloff with slope less steep than -3. Using the relationship between the phase function for diffraction and the average Fourier transform of the projected area of complex ice crystals we show that defining particle size in terms of average projected area normal to the propagation direction of the starlight leads to a simple, analytic approximation representing large-particle diffraction that is near...

  5. SSH-2 measurements of cirrus at 18-28 micrometers from the King Air during FIRE 2

    Science.gov (United States)

    Griffin, Michael K.

    1993-01-01

    In November of 1991, the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Phase II cirrus study took place at Coffeyville, Kansas. The field experiment incorporated instrumentation from surface, aircraft, and satellite to attempt to define the optical, radiative, and microphysical characteristics of these high altitude, predominantly ice clouds. The NCAR King Air research aircraft was outfitted with a variety of radiative and microphysical instrumentation for the FIRE II project. Included for this project was the SSH-2, a 16-channel passive radiometer. The SSH-2 was originally designed as a space-qualified infrared (IR) temperature and water vapor sounder for deployment onboard the Defense Meteorological Satellite Program (DMSP) series of environmental satellites. For this experiment, only those channels associated with the water vapor profiling function have been examined although downwelling radiance measurements were taken at all channels during the project. With supporting information from the aircraft telemetry observations it may be possible to relate these SSH-2 measurements to cloud radiative and microphysical properties. The following sections will describe the spectral characteristics of the instrument, the calibration scheme used to convert the raw measured counts into calibrated radiances, and the case studies that will be covered in this paper. This will be followed by a discussion of the results of this preliminary investigation and a description of future work to be done.

  6. Sub-visual cirrus LIDAR measurements for satellite masking improvement

    Science.gov (United States)

    Landulfo, Eduardo; Larroza, Eliane G.; Lopes, Fábio J. S.; de Jesus, Wellington C.; Bottino, Marcus; Nakaema, Walter M.; Steffens, Juliana

    2008-10-01

    Understanding the impact of cirrus cloud on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds have a warming effect on our climate. However, the satellites as GOES from the NOAA series are limited to the cloud top and its reflectivity or brightness temperature, without assessing accurately the optical depth or physical thickness. Other more recent sensors as MODIS are able to determine optical depths for aerosols and clouds but when related to cirrus they are still inaccurate. Research programs as First ISCCP, FIRE, HOIST, ECLIPS and ARM have concentrated efforts in the research of cirrus, being based mainly on the observations of combined terrestrial remote sensing and airplanes instruments. LIDARs are able to detect sub-visual cirrus cloud (SVCs) in altitudes above 15 km and estimate exactly their height, thickness and optical depth, contributing with information for satellites sensors and radiative transfer models. In order to research characteristics of SVCs, the LIDAR system at Instituto de Pesquisas Energeticas e Nucleares has as objective to determine such parameters and implement a cirrus cloud mask that could be used in the satellite images processing as well as in the qualitative improvement of the radiative parameters for numerical models of climate changes. The first preliminary study shows where we compare the data lidar with Brightness temperature differences between the split-window data from GOES-10 (DSA/INPE) and CALIPSO.

  7. On the Survival of High-Altitude Open Clusters within the Milky Way Galaxy Tides

    CERN Document Server

    Martinez-Medina, L A; Peimbert, A; Moreno, E

    2016-01-01

    It is a common assumption that high-altitude open clusters live longer compared with clusters moving close to the Galactic plane. This is because at high altitudes, open clusters are far from the disruptive effects of in-plane substructures, such as spiral arms, molecular clouds and the bar. However, an important aspect to consider in this scenario is that orbits of high-altitude open clusters will eventually cross the Galactic plane, where the vertical tidal field of the disk is strong. In this work we simulate the interaction of open clusters with the tidal field of a detailed Milky Way Galactic model at different average altitudes and galactocentric radii. We find that the life expectancy of clusters decreases as the maximum orbital altitude increases and reaches a minimum at altitudes of approximately 600 pc. Clusters near the Galactic plane live longer because they do not experience strong vertical tidal shocks from the Galactic disk; then, for orbital altitudes higher than 600 pc, clusters start again t...

  8. Shilajit: A panacea for high-altitude problems.

    Science.gov (United States)

    Meena, Harsahay; Pandey, H K; Arya, M C; Ahmed, Zakwan

    2010-01-01

    High altitude problems like hypoxia, acute mountain sickness, high altitude cerebral edema, pulmonary edema, insomnia, tiredness, lethargy, lack of appetite, body pain, dementia, and depression may occur when a person or a soldier residing in a lower altitude ascends to high-altitude areas. These problems arise due to low atmospheric pressure, severe cold, high intensity of solar radiation, high wind velocity, and very high fluctuation of day and night temperatures in these regions. These problems may escalate rapidly and may sometimes become life-threatening. Shilajit is a herbomineral drug which is pale-brown to blackish-brown, is composed of a gummy exudate that oozes from the rocks of the Himalayas in the summer months. It contains humus, organic plant materials, and fulvic acid as the main carrier molecules. It actively takes part in the transportation of nutrients into deep tissues and helps to overcome tiredness, lethargy, and chronic fatigue. Shilajit improves the ability to handle high altitudinal stresses and stimulates the immune system. Thus, Shilajit can be given as a supplement to people ascending to high-altitude areas so that it can act as a "health rejuvenator" and help to overcome high-altitude related problems.

  9. Travel to High Altitude Following Solid Organ Transplantation.

    Science.gov (United States)

    Luks, Andrew M

    2016-09-01

    Luks, Andrew M. Clinician's corner: travel to high altitude following solid organ transplantation. High Alt Med Biol. 17:147-156, 2016.-As they regain active lifestyles following successful organ transplantation, transplant recipients may travel to high altitude for a variety of activities, including skiing, climbing, and trekking. This review is intended to provide information for medical providers who may encounter transplant patients seeking advice before planned high altitude travel or care for medical issues that develop during the actual sojourn. There is currently limited information in the literature about outcomes during high-altitude travel following solid organ transplantation, but the available evidence suggests that the physiologic responses to hypobaric hypoxia are comparable to those seen in nontransplanted individuals and well-selected transplant recipients with no evidence of organ rejection can tolerate ascents as high as 6200 m. All transplant recipients planning high-altitude travel should undergo pretravel assessment and counseling with an emphasis on the recognition, prevention, and treatment of altitude illness, as well as the importance of preventing infection and limiting sun exposure. Transplant recipients can use the standard medications for altitude illness prophylaxis and treatment, but the choice and dose of medication should take into account the patient's preexisting medication regimen and current renal function. With careful attention to these and other details, the healthy transplant recipient can safely experience the rewards of traveling in the mountains.

  10. Children's exercise capacity at high altitude in Tibet.

    Science.gov (United States)

    Bianba; Andersen, Lars Bo; Stigum, Hein; Ouzhuluobu; Bjertness, Espen

    2014-11-01

    Maximal oxygen uptake (exercise capacity) is a vital parameter in the evaluation of adaptation to high altitude, providing an index of the integrated function of the oxygen transport system. Previous studies of maximal oxygen uptake in population at high altitude have mainly focused on adults and adolescents, though data on children are uncommon. Maximal oxygen uptake can be measured directly, using an oxygen analyser, or indirectly through the development of equations for estimation from the maximal power output (W(max)). Such estimations and studies of the physiological aspects of children's capacity to work and live at different altitudes in Tibet ancestry were not reported previously, although differences similar to those seen in adults may be expected to occur. The present paper summarized the findings of studies on exercise capacity among children living at high altitude in Tibet.

  11. Microcomputer-controlled high-altitude data aquisition system

    Science.gov (United States)

    1985-05-01

    A new microcomputer controlled high altitude data acquisition system was developed. The system provides a new technique for data acquisition from China's astronomical, meteorological and other high altitude experiments and opens up new territory in microcomputer applications. This microcomputer controlled high altitude data acquisition system is made up of a Z80 single board computer, 10 K memory expansion board, and keyboard and display board which can collect 16 analog signals simultaneously, and through analog/digital conversion can convert external analog signals into digital signals then encode them in a certain form through program modulation and store them on audio cassette. The data is immediately retrieved from the tape and sent to the surface microcomputer system for data processing and analysis.

  12. The yak genome and adaptation to life at high altitude.

    Science.gov (United States)

    Qiu, Qiang; Zhang, Guojie; Ma, Tao; Qian, Wubin; Wang, Junyi; Ye, Zhiqiang; Cao, Changchang; Hu, Quanjun; Kim, Jaebum; Larkin, Denis M; Auvil, Loretta; Capitanu, Boris; Ma, Jian; Lewin, Harris A; Qian, Xiaoju; Lang, Yongshan; Zhou, Ran; Wang, Lizhong; Wang, Kun; Xia, Jinquan; Liao, Shengguang; Pan, Shengkai; Lu, Xu; Hou, Haolong; Wang, Yan; Zang, Xuetao; Yin, Ye; Ma, Hui; Zhang, Jian; Wang, Zhaofeng; Zhang, Yingmei; Zhang, Dawei; Yonezawa, Takahiro; Hasegawa, Masami; Zhong, Yang; Liu, Wenbin; Zhang, Yan; Huang, Zhiyong; Zhang, Shengxiang; Long, Ruijun; Yang, Huanming; Wang, Jian; Lenstra, Johannes A; Cooper, David N; Wu, Yi; Wang, Jun; Shi, Peng; Wang, Jian; Liu, Jianquan

    2012-07-01

    Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.

  13. GCSS Idealized Cirrus Model Comparison Project

    Science.gov (United States)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; hide

    2000-01-01

    The GCSS Working Group on Cirrus Cloud Systems (WG2) is conducting a systematic comparison and evaluation of cirrus cloud models. This fundamental activity seeks to support the improvement of models used for climate simulation and numerical weather prediction through assessment and improvement of the "process" models underlying parametric treatments of cirrus cloud processes in large-scale models. The WG2 Idealized Cirrus Model Comparison Project is an initial comparison of cirrus cloud simulations by a variety of cloud models for a series of idealized situations with relatively simple initial conditions and forcing. The models (16) represent the state-of-the-art and include 3-dimensional large eddy simulation (LES) models, two-dimensional cloud resolving models (CRMs), and single column model (SCM) versions of GCMs. The model microphysical components are similarly varied, ranging from single-moment bulk (relative humidity) schemes to fully size-resolved (bin) treatments where ice crystal growth is explicitly calculated. Radiative processes are included in the physics package of each model. The baseline simulations include "warm" and "cold" cirrus cases where cloud top initially occurs at about -47C and -66C, respectively. All simulations are for nighttime conditions (no solar radiation) where the cloud is generated in an ice supersaturated layer, about 1 km in depth, with an ice pseudoadiabatic thermal stratification (neutral). Continuing cloud formation is forced via an imposed diabatic cooling representing a 3 cm/s uplift over a 4-hour time span followed by a 2-hour dissipation stage with no cooling. Variations of these baseline cases include no-radiation and stable-thermal-stratification cases. Preliminary results indicated the great importance of ice crystal fallout in determining even the gross cloud characteristics, such as average vertically-integrated ice water path (IWP). Significant inter-model differences were found. Ice water fall speed is directly

  14. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  15. Neurophysiological Problems in Snow Bound High Altitude Areas

    Directory of Open Access Journals (Sweden)

    W. Selvamurthy

    1984-10-01

    Full Text Available A series of studies have been conducted to evaluate the neurophysiological responses in young healthy soldiers during acclimatization at 3,500m altitude in Western Himalayas. The responses of autonomic nervous system, electroencephalogram hypothalamic thermoregulatory efficiency, orthostatic tolerance, sleep profile and effects of sleep deprivation have been studied in fresh inductees during three to five weeks of acclimatization at high altitude and compared with those of one year acclimatized lowlanders and high altitude natives. Physiological significance of these neurophysiological responses in the process of altitude adaptation is discussed in the light of current knowledge in the field.

  16. Effects of Ascent to High Altitude on Human Antimycobacterial Immunity

    Science.gov (United States)

    Aldridge, Robert W.; Siedner, Mark J.; Necochea, Alejandro; Leybell, Inna; Valencia, Teresa; Herrera, Beatriz; Wiles, Siouxsie; Friedland, Jon S.; Gilman, Robert H.; Evans, Carlton A.

    2013-01-01

    Background Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity. Methods Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants’ whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG) mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants’ whole blood versus positive-control culture broth and versus negative-control plasma. Results Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p≤0.002) of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p≤0.01) of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents. Conclusions An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or

  17. Cirrus microphysics and radiative transfer: A case study

    Science.gov (United States)

    Kinne, Stefan A.; Ackerman, Thomas P.; Heymsfield, Andrew J.

    1990-01-01

    During the Cirrus Intensive Field Operations of FIRE, data collected by the NCAR King Air in the vicinity of Wausau, WI on October 28 were selected to study the influence of cirrus cloud microphysics on radiative transfer and the role of microphysical approximations in radiative transfer models. The instrumentation of the King Air provided, aside from temperature and wind data, up-and downwelling broadband solar and infrared fluxes as well as detailed microphysical data. The aircraft data, supplied every second, are averaged over the 7 legs to represent the properties for that altitude. The resulting vertical profiles, however, suffer from the fact that each leg represents a different cloud column path. Based on the measured microphysical data particle size distributions of equivalent spheres for each cloud level are developed. Accurate radiative transfer calculations are performed, incorporating atmospheric and radiative data from the ground and the stratosphere. Comparing calculated to the measured up- and downwelling fluxes at the seven cloud levels for both the averaged and the three crossover data will help to assess the validity of particle size and shape approximation as they are frequently used to model cirrus clouds. Once agreement is achieved the model results may be applied to determine, in comparison to a cloudfree case, the influence of this particular cirrus on the radiation budget of the earth atmosphere system.

  18. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior st

  19. Climate Change Impacts on High-Altitude Ecosystems

    Directory of Open Access Journals (Sweden)

    Harald Pauli

    2016-02-01

    Full Text Available Reviewed: Climate Change Impacts on High-Altitude Ecosystems By Münir Öztürk, Khalid Rehman Hakeem, I. Faridah-Hanum and Efe. Recep, Cham, Switzerland: Springer International Publishing, 2015. xvii + 696 pp. US$ 239.00. ISBN 978-3-319-12858-0.

  20. Pathophysiology of acute mountain sickness and high altitude pulmonary oedema

    DEFF Research Database (Denmark)

    Sutton, J R; Lassen, N

    1979-01-01

    We review the evidence that acute mountain sickness (AMS) and high altitude pulmonary oedema (HAPO) occur together more often than is realized. We hypothesize that AMS and HAPO have a common pathophysiological basis: both are due to increased pressure and flow in the microcirculation, causing...

  1. Chicxulub High-Altitude Ballistic Ejecta from Central Belize

    Science.gov (United States)

    Pope, K. O.; Ocampo, A. C.

    2000-01-01

    Chicxulub ejecta are found in central Belize, 475 km southeast of the impact crater center. These deposits are ballistic ejecta launched along high-altitude trajectories above the atmosphere and deposited as a discontinuous sheet on the terminal Cretaceous land surface.

  2. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a f

  3. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects imme

  4. Reduced autonomic activity during stepwise exposure to high altitude

    NARCIS (Netherlands)

    Sevre, K; Bendz, B; Hanko, E; Nakstad, AR; Hauge, A; Kasin, JI; Lefrandt, JD; Smit, AJ; Eide, [No Value; Rostrup, M

    2001-01-01

    Several studies have shown increased sympathetic activity during acute exposure to hypobaric hypoxia. In a recent field study we found reduced plasma catecholamines during the first days after a stepwise ascent to high altitude. In the present study 14 subjects were exposed to a simulated ascent in

  5. Abnormal blood flow in the sublingual microcirculation at high altitude

    NARCIS (Netherlands)

    Martin, D.S.; Ince, C.; Goedhart, P.; Levett, D.Z.H.; Grocott, M.P.W.

    2009-01-01

    We report the first direct observations of deranged microcirculatory blood flow at high altitude, using sidestream dark-field imaging. Images of the sublingual microcirculation were obtained from a group of 12 volunteers during a climbing expedition to Cho Oyu (8,201 m) in the Himalayas.

  6. Acute occlusive mesenteric ischemia in high altitude of ...

    African Journals Online (AJOL)

    in our region. Keywords: Acute mesenteric ischemia, high altitude, Saudi Arabia. Résumé .... Saudi Arabia for many diseases such as stroke,[13] deep venous .... intestinal vascular failure: a collective review of 43 cases in Taiwan. Br J Clin ...

  7. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects imme

  8. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?

    DEFF Research Database (Denmark)

    Jacobsen, Dean; Rostgaard, S.; Vásconez, J. J.

    2003-01-01

    conditions. However, this fails to take into account that oxygen solubility declines with decreasing atmospheric pressure, which may be of importance at high altitudes. 2. Based on samples of macroinvertebrate benthos and in situ measurements of respiratory oxygen demand of macroinvertebrates in small...

  9. Preparation for football competition at moderate to high altitude.

    Science.gov (United States)

    Gore, C J; McSharry, P E; Hewitt, A J; Saunders, P U

    2008-08-01

    Analysis of approximately 100 years of home-and-away South American World Cup matches illustrate that football competition at moderate/high altitude (>2000 m) favors the home team, although this is more than compensated by the likelihood of sea-level teams winning at home against the same opponents who have descended from altitude. Nevertheless, the home team advantage at altitudes above approximately 2000 m may reflect that traditionally, teams from sea level or low altitude have not spent 1-2 weeks acclimatizing at altitude. Despite large differences between individuals, in the first few days at high altitude (e.g. La Paz, 3600 m) some players experience symptoms of acute mountain sickness (AMS) such as headache and disrupted sleep, and their maximum aerobic power (VO2max) is approximately 25% reduced while their ventilation, heart rate and blood lactate during submaximal exercise are elevated. Simulated altitude for a few weeks before competition at altitude can be used to attain partial ventilatory acclimation and ameliorated symptoms of AMS. The variety of simulated altitude exposures usually created with enriched nitrogen mixtures of air include resting or exercising for a few hours per day or sleeping approximately 8 h/night in hypoxia. Preparation for competition at moderate/high altitude by training at altitude is probably superior to simulated exposure; however, the optimal duration at moderate/high altitude is unclear. Preparing for 1-2 weeks at moderate/high altitude is a reasonable compromise between the benefits associated with overcoming AMS and partial restoration of VO2max vs the likelihood of detraining.

  10. Why Are High Altitude Natives So Strong at High Altitude? Nature vs. Nurture: Genetic Factors vs. Growth and Development.

    Science.gov (United States)

    Brutsaert, Tom

    Among high-altitude natives there is evidence of a general hypoxia tolerance leading to enhanced performance and/or increased capacity in several important domains. These domains likely include an enhanced physical work capacity, an enhanced reproductive capacity, and an ability to resist several common pathologies of chronic high-altitude exposure. The "strength" of the high-altitude native in this regard may have both a developmental and a genetic basis, although there is better evidence for the former (developmental effects) than for the latter. For example, early-life hypoxia exposure clearly results in lung growth and remodeling leading to an increased O2 diffusing capacity in adulthood. Genetic research has yet to reveal a population genetic basis for enhanced capacity in high-altitude natives, but several traits are clearly under genetic control in Andean and Tibetan populations e.g., resting and exercise arterial O2 saturation (SaO2). This chapter reviews the effects of nature and nurture on traits that are relevant to the process of gas exchange, including pulmonary volumes and diffusion capacity, the maximal oxygen consumption (VO2max), the SaO2, and the alveolar-arterial oxygen partial pressure difference (A-aDO2) during exercise.

  11. Mid-latitude cirrus classification at Rome Tor Vergata through a multi-channel Raman–Mie–Rayleigh lidar

    Directory of Open Access Journals (Sweden)

    D. Dionisi

    2013-04-01

    Full Text Available A methodology to identify and characterize cirrus clouds has been developed and applied to the multichannel-multiwavelength Rayleigh–Mie–Raman (RMR lidar in Rome-Tor Vergata (RTV. A set of 167 cirrus cases, defined on the basis of quasi-stationary temporal period conditions, has been selected in a dataset consisting of about 500 h of nighttime lidar sessions acquired between February 2007 and April 2010. The derived lidar parameters (effective height, geometrical and optical thickness and mean back-scattering ratio and the cirrus mid-height temperature (estimated from the radiosoundings of Pratica di Mare, WMO site #16245 of this sample have been analyzed by the means of a clustering multivariate analysis. This approach identified four cirrus classes above the RTV site: two thin cirrus clusters in mid and upper troposphere and two thick cirrus clusters in mid-upper troposphere. These results, which are very similar to those derived through the same approach in the lidar site of the Observatoire of Haute Provence (OHP, allows characterizing cirrus clouds over RTV site and attests the robustness of such classification. To have some indications about the cirrus generation methods for the different classes, the analyses of the extinction-to-backscatter ratio (lidar ratio, LReff, in terms of the frequency distribution functions and depending on the mid-height cirrus temperature have been performed. This study suggests that smaller (larger ice crystals compose thin (thick cirrus classes. This information, together with the value of relative humidity over ice (110 ± 30%, calculated through the simultaneous WV Raman measurements for the mid-tropospheric thin class, indicates that this class could be formed by an heterogeneous nucleation mechanism. The RTV cirrus results, re-computed through the cirrus classification by Sassen and Cho (1992, shows good agreement to other mid-latitude lidar cirrus observation for the relative occurrence of

  12. Sensitivity of Cirrus Simulations in Idealized Situations: The WG2 Test Cases

    Science.gov (United States)

    Starr, David OC.

    1998-01-01

    GCSS Cirrus Cloud Systems Working Group (WG2) is presently conducting a comparison of cirrus cloud models for idealized initial conditions. The experiments involve binary (off/on) tests of model sensitivity to infrared radiative processes, and thermal stratification, and vertical wind shear for situations of weakly forced (3 cm/s uplift) cold (-60 to -70 C) and warm (-35 to -50 C) cirrus clouds. A range of model types are involved including parcel, SCM, 2-D CRM, 3-D CRM and LES models. The test cases will be described and results from 2-dimensional cirrus cloud models with bulk microphysics (implicit second moment scheme) and explicit bin microphysics will be compared. Vertical ice mass flux (particle fall speed) is a critical model component leading to significant intermodel differences. Efforts are ongoing to better quantify this aspect. Future plans of WG2 will also be briefly described and include model comparisons for a well-observed case of cold (ARM IOP) cirrus and of warm (EUCREX) cirrus, as well as, a joint activity with WG4 to consider the treatment of anvil cirrus in a variety of models.

  13. Initial Feasibility Assessment of a High Altitude Long Endurance Airship

    Science.gov (United States)

    Colozza, Anthony; Dolce, James (Technical Monitor)

    2003-01-01

    A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines the feasibility of this concept. Factors such as time of year, latitude, wind speeds and payload are considered in establishing the capabilities of a given size airship. East and West coast operation were evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. A modular system design was chosen with four independent power/propulsion units utilized by the airship. Results on payload capacity and flight envelope (latitude and time of year) were produced for a range of airship sizes.

  14. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  15. Body Structure and Respiratory Efficiency among High Altitude Himalayan Populations

    OpenAIRE

    2005-01-01

    To understand the morphological and physiological variations among the temporary and permanent residents of high altitude, this study was undertaken at Leh, Ladakh. It is situated at 3500 m (11500 feet) above sea level, the mean barometric pressure was 500 tors and air temperature varied from 2 °C to 20 °C. The highland Tibetans showed broadest chest and most developed musculature closely followed by Ladakhi Bods. These high altude natives also displayed significantly higher value of vital ca...

  16. Lens autofluorescence is not increased at high altitude

    DEFF Research Database (Denmark)

    Kessel, Line; Kofoed, Peter Kristian; Zubieta-Calleja, Gustavo

    2010-01-01

    PURPOSE: To study the relation between ambient environmental ultraviolet radiation exposure and lens fluorescence. METHODS: Non-invasive lens fluorometry measurements were compared in healthy Bolivian and Danish subjects. Background ultraviolet radiation was 4.5 times higher in Bolivia than...... in Denmark. RESULTS: No significant differences in lens fluorescence or transmittance were found between Bolivian and Danish volunteers. CONCLUSION: Age-corrected lens fluorescence and transmittance were comparable for healthy participants living at high altitude near the equator and healthy volunteers...

  17. Nike Black Brant V high altitude dynamic instability characteristics

    Science.gov (United States)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  18. Blood-Brain Barrier Changes in High Altitude.

    Science.gov (United States)

    Lafuente, José V; Bermudez, Garazi; Camargo-Arce, Lorena; Bulnes, Susana

    2016-01-01

    Cerebral syndromes related to high-altitude exposure are becoming more frequent as the number of trips to high altitudes has increased in the last decade. The commonest symptom is headache, followed by acute mountain sickness (AMS) and high-altitude cerebral edema (HACE), which can be fatal. The pathophysiology of these syndromes is not fully understood. The classical "tight-fit hypothesis" posits that there are some anatomical variations that would obstruct the sinovenous outflow and worsen vasogenic edema and intracranial hypertension reactive to hypoxia. This could explain microhemorrhages seen in autopsies. However, recent magnetic resonance imaging studies have demonstrated some components of cytotoxic edema in HACE absent in AMS, suggesting a dysfunction in water balance at the cellular level. Currently, the "red-ox theory" supports trigemino-vascular system activation by free radicals formed after hypoxia and the consequent oxidative stress cascades. Apart from trigemino-vascular system activation, free radicals can also provoke membrane destabilisation mediated by lipid peroxidation, inflammation, and local hypoxia inducible factor-1α and vascular endothelial growth factor activation, resulting in gross blood-brain barrier (BBB) dysfunction. Besides alterations in endothelial cells such as increased pinocytotic vesicles and disassembly of interendothelial tight junction proteins, capillary permeability may also increase with subsequent swelling of astrocyte end-feet. In conclusion, although the pathophysiology of AMS and HACE is not completely understood, recent evidence proposes a multifactorial entity, with brain swelling and compromise of the BBB considered to play an important role. A fuller comprehension of these processes is crucial to reduce and prevent BBB alterations during high-altitude exposure.

  19. Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia.

    Science.gov (United States)

    Jefferson, J Ashley; Escudero, Elizabeth; Hurtado, Maria-Elena; Kelly, Jackeline Pando; Swenson, Erik R; Wener, Mark H; Burnier, Michel; Maillard, Marc; Schreiner, George F; Schoene, Robert B; Hurtado, Abdias; Johnson, Richard J

    2002-06-01

    Chronic exposure to high altitude is associated with the development of erythrocytosis, proteinuria, and, in some cases, hyperuricemia. We examined the relationship between high-altitude polycythemia and proteinuria and hyperuricemia in Cerro de Pasco, Peru (altitude, 4,300 m). We studied 25 adult men with hematocrits less than 65% and 27 subjects with excessive erythrocytosis (EE; hematocrit > 65%) living in Cerro de Pasco, Peru and compared them with 28 control subjects living in Lima, Peru (at sea level) and after 48 hours of exposure to high altitude. Serum urate levels were significantly elevated in patients with EE at altitude, and gout occurred in 4 of 27 of these subjects. Urate level strongly correlated with hematocrit (r = 0.71; P < 0.0001). Urate production (24-hour urine urate excretion and urine urate-creatinine ratio) was increased in this group compared with those at sea level. Fractional urate excretion was not increased, and fractional lithium excretion was reduced, in keeping with increased proximal reabsorption of filtrate. Significantly higher blood pressures and decreased renin levels in the EE group were in keeping with increased proximal sodium reabsorption. Serum urate levels correlated with mean blood pressure (r = 0.50; P < 0.0001). Significant proteinuria was more prevalent in the EE group despite normal renal function. Hyperuricemia is common in subjects living at high altitude and associated with EE, hypertension, and proteinuria. The increase in uric acid levels appears to be caused by increased urate generation secondary to systemic hypoxia, although a relative impairment in renal excretion also may contribute.

  20. The University of Alberta High Altitude Balloon Program

    Science.gov (United States)

    Johnson, W.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Mann, I. R.; Mazzino, L.; Rae, J.; University of Alberta High Altitude Balloon Team

    2011-12-01

    The University of Alberta High Altitude Balloon (UA-HAB) program is a one and half year program sponsored by the Canadian Space Agency (CSA) that offers hands on experience for undergraduate and graduate students in the design, build, test and flight of an experimental payload on a high altitude balloon platform. Utilising low cost weather balloon platforms, and through utilisation of the CSA David Florida Laboratory for thermal-vacuum tests , in advance of the final flight of the payload on a NASA high altitude balloon platform. Collectively the program provided unique opportunities for students to experience mission phases which parallel those of a space satellite mission. The program has facilitated several weather balloon missions, which additionally provide educational opportunities for university students and staff, as well as outreach opportunities among junior and senior high school students. Weather balloon missions provide a cheap and quick alternative to suborbital missions; they can be used to test components for more expensive missions, as well as to host student based projects from different disciplines such as Earth and Atmospheric Sciences (EAS), Physics, and Engineering. In addition to extensive skills development, the program aims to promote recruitment of graduate and undergraduate students into careers in space science and engineering. Results from the UA-HAB program and the flight of the UA-HAB shielded Gieger counter payload for cosmic ray and space radiation studies will be presented. Lessons learned from developing and maintaining a weather balloon program will also be discussed. This project is undertaken in partnership with the High Altitude Student Platform, organized by Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA, with the financial support of the Canadian Space Agency.

  1. Effectiveness of Preacclimatization Strategies for High-Altitude Exposure

    Science.gov (United States)

    2013-01-01

    hypobaric conditions. IAE 15, 15 d of intermittent altitude exposure; IAE 7, 7 d of intermittent altitude expo- sure; NH (Sleep), Ambient normobaric hypoxia ...than those using norm(!)baric hypoxia (breathing, ង.9% ox-ygen). Key Words: hypobaric hypoxia , normobaric hypoxia , staging, acute mountain sickness...large decrements in endurance exercise performance occur when unacclimatized individuals rapidly ascend to high altitudes. Six altitude and hypoxia

  2. The genetic architecture of adaptations to high altitude in Ethiopia.

    Science.gov (United States)

    Alkorta-Aranburu, Gorka; Beall, Cynthia M; Witonsky, David B; Gebremedhin, Amha; Pritchard, Jonathan K; Di Rienzo, Anna

    2012-01-01

    Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  3. Joseph Barcroft's studies of high-altitude physiology.

    Science.gov (United States)

    West, John B

    2013-10-15

    Joseph Barcroft (1872-1947) was an eminent British physiologist who made contributions to many areas. Some of his studies at high altitude and related topics are reviewed here. In a remarkable experiment he spent 6 days in a small sealed room while the oxygen concentration of the air gradually fell, simulating an ascent to an altitude of nearly 5,500 m. The study was prompted by earlier reports by J. S. Haldane that the lung secreted oxygen at high altitude. Barcroft tested this by having blood removed from an exposed radial artery during both rest and exercise. No evidence for oxygen secretion was found, and the combination of 6 days incarceration and the loss of an artery was heroic. To obtain more data, Barcroft organized an expedition to Cerro de Pasco, Peru, altitude 4,300 m, that included investigators from both Cambridge, UK and Harvard. Again oxygen secretion was ruled out. The protocol included neuropsychometric measurements, and Barcroft famously concluded that all dwellers at high altitude are persons of impaired physical and mental powers, an assertion that has been hotly debated. Another colorful experiment in a low-pressure chamber involved reducing the pressure below that at the summit of Mt. Everest but giving the subjects 100% oxygen to breathe while exercising as a climber would on Everest. The conclusion was that it would be possible to reach the summit while breathing 100% oxygen. Barcroft was exceptional for his self-experimentation under hazardous conditions.

  4. HIWRAP Radar Development for High-Altitude Operation on the NASA Global Hawk and ER-2

    Science.gov (United States)

    Li, Lihua; Heymsfield, Gerlad; Careswell, James; Schaubert, Dan; Creticos, Justin

    2011-01-01

    The NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) is a solid-state transmitter-based, dual-frequency (Ka- and Ku-band), dual-beam (30 degree and 40 degree incidence angle), conical scan Doppler radar system, designed for operation on the NASA high-altitude (20 km) aircrafts, such as the Global Hawk Unmanned Aerial System (UAS). Supported by the NASA Instrument Incubator Program (IIP), HIWRAP was developed to provide high spatial and temporal resolution 3D wind and reflectivity data for the research of tropical cyclone and severe storms. With the simultaneous measurements at both Ku- and Ka-band two different incidence angles, HIWRAP is capable of imaging Doppler winds and volume backscattering from clouds and precipitation associated with tropical storms. In addition, HIWRAP is able to obtain ocean surface backscatter measurements for surface wind retrieval using an approach similar to QuikScat. There are three key technology advances for HIWRAP. Firstly, a compact dual-frequency, dual-beam conical scan antenna system was designed to fit the tight size and weight constraints of the aircraft platform. Secondly, The use of solid state transmitters along with a novel transmit waveform and pulse compression scheme has resulted in a system with improved performance to size, weight, and power ratios compared to typical tube based Doppler radars currently in use for clouds and precipitation measurements. Tube based radars require high voltage power supply and pressurization of the transmitter and radar front end that complicates system design and implementation. Solid state technology also significantly improves system reliability. Finally, HIWRAP technology advances also include the development of a high-speed digital receiver and processor to handle the complex receiving pulse sequences and high data rates resulting from multi receiver channels and conical scanning. This paper describes HIWRAP technology development for dual-frequency operation at

  5. HAMP – the microwave package on the High Altitude and LOng range research aircraft (HALO

    Directory of Open Access Journals (Sweden)

    M. Mech

    2014-12-01

    Full Text Available An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO. The HALO Microwave Package, HAMP, consists of two nadir-looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential, synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud-resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a root-mean-square error reduced by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km, which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining a better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  6. HAMP – the microwave package on the High Altitude and LOng range research aircraft HALO

    Directory of Open Access Journals (Sweden)

    M. Mech

    2014-05-01

    Full Text Available An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO. The HALO Microwave Package, HAMP, consists of two nadir looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a reduced root mean square error by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  7. A modelling case study of a large-scale cirrus in the tropical tropopause layer

    Science.gov (United States)

    Podglajen, Aurélien; Plougonven, Riwal; Hertzog, Albert; Legras, Bernard

    2016-03-01

    We use the Weather Research and Forecast (WRF) model to simulate a large-scale tropical tropopause layer (TTL) cirrus in order to understand the formation and life cycle of the cloud. This cirrus event has been previously described through satellite observations by Taylor et al. (2011). Comparisons of the simulated and observed cirrus show a fair agreement and validate the reference simulation regarding cloud extension, location and life time. The validated simulation is used to understand the causes of cloud formation. It is shown that several cirrus clouds successively form in the region due to adiabatic cooling and large-scale uplift rather than from convective anvils. The structure of the uplift is tied to the equatorial response (equatorial wave excitation) to a potential vorticity intrusion from the midlatitudes. Sensitivity tests are then performed to assess the relative importance of the choice of the microphysics parameterization and of the initial and boundary conditions. The initial dynamical conditions (wind and temperature) essentially control the horizontal location and area of the cloud. However, the choice of the microphysics scheme influences the ice water content and the cloud vertical position. Last, the fair agreement with the observations allows to estimate the cloud impact in the TTL in the simulations. The cirrus clouds have a small but not negligible impact on the radiative budget of the local TTL. However, for this particular case, the cloud radiative heating does not significantly influence the simulated dynamics. This result is due to (1) the lifetime of air parcels in the cloud system, which is too short to significantly influence the dynamics, and (2) the fact that induced vertical motions would be comparable to or smaller than the typical mesoscale motions present. Finally, the simulation also provides an estimate of the vertical redistribution of water by the cloud and the results emphasize the importance in our case of both

  8. SPARCL: a high-altitude tethered balloon-based optical space-to-ground communication system

    Science.gov (United States)

    Badesha, Surjit S.

    2002-12-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has conducted a feasibility study to determine if a high altitude (20 km) tethered balloon-based space-to-ground optical communication system is a feasible concept. To support this effort, a detailed concept definition was developed and associated issues were identified and analyzed systematically. Of all the adverse atmospheric phenomena, cloud coverage was identified as the most prohibitive obstacle for a space-to-ground optical communication link. However, by placing a receiver on a balloon at a 20 km altitude, the proposed high altitude system avoids virtually all atmospheric effects. A practical notional scenario was developed (i.e. surveillance and/or reconnaissance of a regional conflict) involving end-to-end optical communication architecture to identify system elements, system level requirements, and to quantify realistic data rate requirements. Analysis of the proposed space-to-ground communication elements indicates that while significant development is required, the system is technically feasible and is a very cost effective 24/7solution.

  9. Development of the NASA High-Altitude Imaging Wind and Rain Airborne Profiler

    Science.gov (United States)

    Li, Lihua; Heymsfield, Gerald; Carswell, James; Schaubert, Dan; McLinden, Matthew; Vega, Manuel; Perrine, Martin

    2011-01-01

    The scope of this paper is the development and recent field deployments of the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), which was funded under the NASA Instrument Incubator Program (IIP) [1]. HIWRAP is a dual-frequency (Ka- and Ku-band), dual-beam (300 and 400 incidence angles), conical scanning, Doppler radar system designed for operation on the NASA high-altitude (65,000 ft) Global Hawk Unmanned Aerial System (UAS). It utilizes solid state transmitters along with a novel pulse compression scheme that results in a system with compact size, light weight, less power consumption, and low cost compared to radars currently in use for precipitation and Doppler wind measurements. By combining measurements at Ku- and Ka-band, HIWRAP is able to image winds through measuring volume backscattering from clouds and precipitation. In addition, HIWRAP is also capable of measuring surface winds in an approach similar to SeaWinds on QuikScat. To this end, HIWRAP hardware and software development has been completed. It was installed on the NASA WB57 for instrument test flights in March, 2010 and then deployed on the NASA Global Hawk for supporting the Genesis and Rapid Intensification Processes (GRIP) field campaign in August-September, 2010. This paper describes the scientific motivations of the development of HIWRAP as well as system hardware, aircraft integration and flight missions. Preliminary data from GRIP science flights is also presented.

  10. 'Ome' on the range: update on high-altitude acclimatization/adaptation and disease.

    Science.gov (United States)

    Luo, Yongjun; Wang, Yuxiao; Lu, Hongxiang; Gao, Yuqi

    2014-11-01

    The main physiological challenge in high-altitude plateau environments is hypoxia. When people living in a plain environment migrate to the plateau, they face the threat of hypoxia. Most people can acclimatize to high altitudes; the acclimatization process mainly consists of short-term hyperventilation and long-term compensation by increased oxygen uptake, transport, and use due to increased red blood cell mass, myoglobin, and mitochondria. If individuals cannot acclimatize to high altitude, they may suffer from a high-altitude disease, such as acute mountain disease (AMS), high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE) or chronic mountain sickness (CMS). Because some individuals are more susceptible to high altitude diseases than others, the incidence of these high-altitude diseases is variable and cannot be predicted. Studying "omes" using genomics, proteomics, metabolomics, transcriptomics, lipidomics, immunomics, glycomics and RNomics can help us understand the factors that mediate susceptibility to high altitude illnesses. Moreover, analysis of the "omes" using a systems biology approach may provide a greater understanding of high-altitude illness pathogenesis and improve the efficiency of the diagnosis and treatment of high-altitude illnesses in the future. Below, we summarize the current literature regarding the role of "omes" in high-altitude acclimatization/adaptation and disease and discuss key research gaps to better understand the contribution of "omes" to high-altitude illness susceptibility.

  11. The genetic architecture of adaptations to high altitude in Ethiopia.

    Directory of Open Access Journals (Sweden)

    Gorka Alkorta-Aranburu

    Full Text Available Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo.

  12. Ergogenic properties of metformin in simulated high altitude.

    Science.gov (United States)

    Scalzo, Rebecca L; Paris, Hunter L; Binns, Scott E; Davis, Janelle L; Beals, Joseph W; Melby, Christopher L; Luckasen, Gary J; Hickey, Matthew S; Miller, Benjamin F; Hamilton, Karyn L; Bell, Christopher

    2017-07-01

    Metformin augments glucose/glycogen regulation and may acutely promote fatigue resistance during high-intensity exercise. In hypobaric environments, such as high altitude, the important contribution of carbohydrates to physiological function is accentuated as glucose/glycogen dependence is increased. Because hypoxia/hypobaria decreases insulin sensitivity, replenishing skeletal muscle glycogen in high altitude becomes challenging and subsequent physical performance may be compromised. We hypothesized that in conditions where glycogen repletion was critical to physical outcomes, metformin would attenuate hypoxia-mediated decrements in exercise performance. On three separate randomly ordered occasions, 13 healthy men performed glycogen-depleting exercise and ingested a low-carbohydrate dinner (1200 kcals, metformin (500 mg BID) was consumed 3 days prior to each hypoxia visit. Subjects completed a 12.5 km cycle ergometer time trial 3.5 hours following breakfast. Hypoxia decreased resting and exercise oxyhemoglobin saturation (Pmetformin affected the glucose response to breakfast (P=.977), however, compared with placebo, metformin lowered insulin concentration in hypoxia 45 minutes after breakfast (64.1±6.6 μU/mL vs 48.5±7.8 μU/mL; mean±SE; Pmetformin (+81%; P=.006), but not in hypoxia with placebo (+27%; P=.167). Hypoxia decreased time trial performance compared with normoxia (Pmetformin (+1.6±0.3 minutes). These results indicate that metformin promotes glycogen synthesis but not endurance exercise performance in healthy men exposed to simulated high altitude. © 2017 John Wiley & Sons Australia, Ltd.

  13. A modelling case study of a large-scale cirrus in the tropical tropopause layer

    Science.gov (United States)

    Podglajen, A.; Plougonven, R.; Hertzog, A.; Legras, B.

    2015-11-01

    We use the Weather Research and Forecast (WRF) model to simulate a large-scale tropical tropopause layer (TTL) cirrus, in order to understand the formation and life cycle of the cloud. This cirrus event has been previously described through satellite observations by Taylor et al. (2011). Comparisons of the simulated and observed cirrus show a fair agreement, and validate the reference simulation regarding cloud extension, location and life time. The validated simulation is used to understand the causes of cloud formation. It is shown that several cirrus clouds successively form in the region due to adiabatic cooling and large-scale uplift rather than from ice lofting from convective anvils. The equatorial response (equatorial wave excitation) to a midlatitude potential vorticity (PV) intrusion structures the uplift. Sensitivity tests are then performed to assess the relative importance of the choice of the microphysics parametrisation and of the initial and boundary conditions. The initial dynamical conditions (wind and temperature) essentially control the horizontal location and area of the cloud. On the other hand, the choice of the microphysics scheme influences the ice water content and the cloud vertical position. Last, the fair agreement with the observations allows to estimate the cloud impact in the TTL in the simulations. The cirrus clouds have a small but not negligible impact on the radiative budget of the local TTL. However, the cloud radiative heating does not significantly influence the simulated dynamics. The simulation also provides an estimate of the vertical redistribution of water by the cloud and the results emphasize the importance in our case of both re and dehydration in the vicinity of the cirrus.

  14. First scientific contributions from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    León Vargas, H.; HAWC Collaboration

    2015-09-01

    The High Altitude Water Cherenkov Observatory (HAWC), located at the slopes of the volcanoes Sierra Negra and Pico de Orizaba in Mexico, was inaugurated on March 20, 2015. However, data taking started in August 2013 with a partially deployed observatory and since then the instrument has collected data as it got closer to its final configuration. HAWC is a ground based TeV gamma-ray observatory with a large field of view that will be used to study the Northern sky with high sensitivity. In this contribution we present some of the results obtained with the partially built instrument and the expected capabilities to detect different phenomena with the complete observatory.

  15. the APL Balloonborne High Altitude Research Platform (HARP)

    Science.gov (United States)

    Adams, D.; Arnold, S.; Bernasconi, P.

    2015-09-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed and demonstrated a multi-purpose stratospheric balloonborne gondola known as the High Altitude Research Platform (HARP). HARP provides the power, mechanical supports, thermal control, and data transmission for multiple forms of high-altitude scientific research equipment. The platform has been used for astronomy, cosmology and heliophysics experiments but can also be applied to atmospheric studies, space weather and other forms of high altitude research. HARP has executed five missions. The first was Flare Genesis from Antarctica in 1993 and the most recent was the Balloon Observation Platform for Planetary Science (BOPPS) from New Mexico in 2014. HARP will next be used to perform again the Stratospheric Terahertz Observatory mission, a mission that it first performed in 2009. The structure, composed of an aluminum framework is designed for easy transport and field assembly while providing ready access to the payload and supporting avionics. A light-weighted structure, capable of supporting Ultra-Long Duration Balloon (ULDB) flights that can last more than 100 days is available. Scientific research payloads as heavy as 600 kg (1322 pounds) and requiring up to 800 Watts electrical power can be supported. The platform comprises all subsystems required to support and operate the science payload, including both line-of-sight (LOS) and over-the-horizon (0TH) telecommunications, the latter provided by Iridium Pilot. Electrical power is produced by solar panels for multi-day missions and batteries for single-day missions. The avionics design is primarily single-string; however, use of ruggedized industrial components provides high reliability. The avionics features a Command and Control (C&C) computer and a Pointing Control System (PCS) computer housed within a common unpressurized unit. The avionics operates from ground pressure to 2 Torr and over a temperature range from —30 C to +85 C

  16. Edema pulmonar de gran altura HIGH ALTITUDE PULMONARY EDEMA

    Directory of Open Access Journals (Sweden)

    FELIPE UNDURRAGA M

    2003-04-01

    Full Text Available Las enfermedades de altura son de causa cerebral y pulmonar. Las primeras se refieren fundamentalmente al mal agudo de montaña y al edema cerebral de altura y las segundas al edema pulmonar agudo de montaña. Actuales evidencias señalan que el edema cerebral sería un fenómeno universal de los que ascienden a altura y que tres de cada cuatro individuos sanos que se expongan a altura desarrollarán un edema pulmonar agudo de montaña subclínico. La hipoxia de altura es la responsable de estos cuadros y los sujetos susceptibles serían aquellos que genéticamente tienen una respuesta ventilatoria reducida a la hipoxia y una exagerada respuesta vasopresora pulmonar al ejercicio.Se presenta un caso de edema pulmonar agudo de montaña en un deportista previamente sano que participó en una expedición al cerro El Plomo (5.280 msnm en la Cordillera de los Andes central. Posteriormente, se comenta la fisiopatología y tratamiento de esta condiciónHigh altitude diseases are originated from brain and lung. The first are Acute Mountain Sickness and Brain edema and the second is High Altitude Pulmonary Edema (HAPE. Current evidence shows that brain edema is an universal event of the people who are exposed to high altitude. By other hand 3 out of 4 healthy subjects exposed to high altitude will present a subclinical HAPE. Hypoxia of altitude is the responsable for this condition. The susceptible subjects would be those who genetically have a low ventilatory response to hypoxia and an exaggerated increase of vascular pulmonary pressure during exercise. A clinical case of acute pulmonary edema in a young sportman who participated in an expedition to Cerro El Plomo (5.280 m in Chilean Central Andes Mountains is presented. Pathophysiology and treatment of these conditions are discussed

  17. Magnetic Monopole Search at high altitude with the SLIM experiment

    CERN Document Server

    Balestra, S; Cozzi, M; Errico, M; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Mandrioli, G; Marcellini, S; Margiotta, A; Medinaceli, E; Patrizii, L; Pinfold, J L; Popa, V; Qureshi, I E; Saavedra, O; Sahnoun, Z; Sirri, G; Spurio, M; Togo, V; Velarde, A; Zanini, A

    2008-01-01

    The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to Intermediate Mass Magnetic Monopoles, with masses 10^5 < M <10^{12} GeV. From the analysis of the full detector exposed for more than 4 years a flux upper limit of 1.3 x 10^{-15} cm^{-2} s^{-1} sr^{-1} for downgoing fast Intermediate Mass Monopoles was established at the 90% C.L.

  18. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2008-06-01

    Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  19. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  20. Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.; Diskin, G. S.; Evans, Stuart; Lawson, Paul; Marchand, Roger

    2014-04-16

    In situ microphysical observations 3 of mid-latitude cirrus collected during the Department of Energy Small Particles in Cirrus (SPAR-TICUS) field campaign are combined with an atmospheric state classification for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to understand statistical relationships between cirrus microphysics and the large-scale meteorology. The atmospheric state classification is informed about the large-scale meteorology and state of cloudiness at the ARM SGP site by combining ECMWF ERA-Interim reanalysis data with 14 years of continuous observations from the millimeter-wavelength cloud radar. Almost half of the cirrus cloud occurrences in the vicinity of the ARM SGP site during SPARTICUS can be explained by three distinct synoptic condi- tions, namely upper-level ridges, mid-latitude cyclones with frontal systems and subtropical flows. Probability density functions (PDFs) of cirrus micro- physical properties such as particle size distributions (PSDs), ice number con- centrations and ice water content (IWC) are examined and exhibit striking differences among the different synoptic regimes. Generally, narrower PSDs with lower IWC but higher ice number concentrations are found in cirrus sam- pled in upper-level ridges whereas cirrus sampled in subtropical flows, fronts and aged anvils show broader PSDs with considerably lower ice number con- centrations but higher IWC. Despite striking contrasts in the cirrus micro- physics for different large-scale environments, the PDFs of vertical velocity are not different, suggesting that vertical velocity PDFs are a poor predic-tor for explaining the microphysical variability in cirrus. Instead, cirrus mi- crophysical contrasts may be driven by differences in ice supersaturations or aerosols.

  1. Sub-Scale Re-entry Capsule Drop via High Altitude Balloons Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-altitude balloon flights are an inexpensive method used to lift payloads to high altitudes. Federal Aviation Administration (FAA) regulations permit payloads...

  2. Contemporary sediment production and transfer in high-altitude glaciers

    Science.gov (United States)

    Owen, Lewis A.; Derbyshire, Edward; Scott, Christine H.

    2003-01-01

    The nature of fine-grained sediment production and transfer in high-altitude debris-covered glaciers was studied by examining the Rakhiot and Chungphar glaciers in the Nanga Parbat Himalaya, Northern Pakistan. Transport pathways, from the source areas to the glacier snout, were mapped and samples collected for particle size analysis and scanning electron microscopy. Positive down-glacier trends in sediment fining and increased weathering showed that debris transport in the supraglacial zone of these Himalayan glaciers is an important contributor to contemporary glacial sediment production, resulting in intense comminution that yields large volumes of fine sediment. These findings cast doubt on the traditional view that the basal traction zone of glaciers is the only major source of fine sediment production in glaciated environments, although that view may hold true for classic alpine glaciers that are at lower altitudes and, as a consequence, generally have less supraglacial debris cover. To test this hypothesis, the Glacier de Cheilon, in the Swiss Alps was also studied. This glacier did not exhibit such striking down-glacier trends in the particle size characteristics measured. It is thus suggested that a thick debris-cover may be an important source of fine-grained sediments on glaciers that occur in high-altitude environments.

  3. Semianalytic Integration of High-Altitude Orbits under Lunisolar Effects

    Directory of Open Access Journals (Sweden)

    Martin Lara

    2012-01-01

    Full Text Available The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double averaging procedure that removes both the mean anomaly of the satellite and that of the moon. Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation of the expansion of the third-body disturbing function up to the second degree. Using canonical perturbation theory, the averaging is carried out up to the order where second-order terms in the Earth oblateness coefficient are apparent. This truncation order forces to take into account up to the fifth degree in the expansion of the lunar disturbing function. The small values of the moon’s orbital eccentricity and inclination with respect to the ecliptic allow for some simplification. Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity, it is not restricted to low-eccentricity orbits.

  4. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    2011-01-01

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in indi

  5. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    Mol, P. De; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2011-01-01

    OBJECTIVE: Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in ind

  6. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    Mol, P. De; Vries, S.T. de; Koning, E.J. de; Gans, R.O.; Tack, C.J.J.; Bilo, H.J.

    2011-01-01

    OBJECTIVE: Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  7. Increased insulin requirements during exercise at very high altitude in type 1 diabetes

    NARCIS (Netherlands)

    de Mol, Pieter; de Vries, Suzanna T.; de Koning, Eelco J. P.; Gans, Rijk O. B.; Tack, Cees J.; Bilo, Henk J. G.

    OBJECTIVE-Safe, very high altitude trekking in subjects with type 1 diabetes requires understanding of glucose regulation at high altitude. We investigated insulin requirements, energy expenditure, and glucose levels at very high altitude in relation to acute mountain sickness (AMS) symptoms in

  8. New near-IR observations of mesospheric CO2 and H2O clouds on Mars

    Science.gov (United States)

    Vincendon, Mathieu; Pilorget, Cedric; Gondet, Brigitte; Murchie, Scott; Bibring, Jean-Pierre

    2011-11-01

    Carbon dioxide clouds, which are speculated by models on solar and extra-solar planets, have been recently observed near the equator of Mars. The most comprehensive identification of Martian CO2 ice clouds has been obtained by the near-IR imaging spectrometer OMEGA. CRISM, a similar instrument with a higher spatial resolution, cannot detect these clouds with the same method due to its shorter wavelength range. Here we present a new method to detect CO2 clouds using near-IR data based on the comparison of H2O and CO2 ice spectral properties. The spatial and seasonal distributions of 54 CRISM observations containing CO2 clouds are reported, in addition to 17 new OMEGA observations. CRISM CO2 clouds are characterized by grain size in the 0.5-2 μm range and optical depths lower than 0.3. The distributions of CO2 clouds inferred from OMEGA and CRISM are consistent with each other and match at first order the distribution of high altitude (>60 km) clouds derived from previous studies. At second order, discrepancies are observed. We report the identification of H2O clouds extending up to 80 km altitude, which could explain part of these discrepancies: both CO2 and H2O clouds can exist at high, mesospheric altitudes. CRISM observations of afternoon CO2 clouds display morphologies resembling terrestrial cirrus, which generalizes a previous result to the whole equatorial clouds season. Finally, we show that morning OMEGA observations have been previously misinterpreted as evidence for cumuliform, and hence potentially convective, CO2 clouds.

  9. Cirrus Parcel Model Comparison Project. Phase 1: The Critical Components to Simulate Cirrus Initiation Explicitly.

    Science.gov (United States)

    Lin, Ruei-Fong; O'C. Starr, David; Demott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Kärcher, Bernd; Liu, Xiaohong

    2002-08-01

    The Cirrus Parcel Model Comparison Project, a project of the GCSS [Global Energy and Water Cycle Experiment (GEWEX) Cloud System Studies] Working Group on Cirrus Cloud Systems, involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. In Phase 1 of the project reported here, simulated cirrus cloud microphysical properties from seven models are compared for `warm' (40°C) and `cold' (60°C) cirrus, each subject to updrafts of 0.04, 0.2, and 1 m s1. The models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins or the evolution of each individual particle is traced. Simulations are made including both homogeneous and heterogeneous ice nucleation mechanisms (all-mode simulations). A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. Heterogeneous nucleation is disabled for a second parallel set of simulations in order to isolate the treatment of the homogeneous freezing (of haze droplets) nucleation process. Analysis of these latter simulations is the primary focus of this paper.Qualitative agreement is found for the homogeneous-nucleation-only simulations; for example, the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, significant quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation rate, haze particle solution concentration, and water vapor uptake rate by ice crystal growth (particularly as controlled by the deposition coefficient) are critical components that lead to differences in the predicted microphysics.Systematic differences exist between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each method is constrained by critical freezing data from

  10. Contrail and Cirrus Observations over Europe from 6 Years of NOAA-AVHRR Data

    OpenAIRE

    R. Meyer; Mannstein, H.; Meerkötter, R.; Wendling, P.

    2002-01-01

    Thin ice cloudscirrus and contrails – are analysed in a long-term 1 km data set from the Advanced Very High Resolution Radiometer (AVHRR). Here twice daily data received at DLR Oberpfaffenhofen covering most of Europe over the full lifetime of the NOAA-14 satellite from January 1995 until October 2001 is taken into account to derive high resolution contrail and cirrus cloud maps. The data presented here is part of the ongoing European Cloud Climatology (ECC). For the detection of thin cirr...

  11. An improved cirrus detection algorithm MeCiDA2 for SEVIRI and its evaluation with MODIS

    Directory of Open Access Journals (Sweden)

    F. Ewald

    2013-02-01

    Full Text Available In this study, a substantially improved version of the Meteosat cirrus detection algorithm (MeCiDA2 will be presented, which now allows application to the full earth disc visible by the Meteosat satellite. As cirrus clouds have an influence on the radiation budget of the earth, their optical properties and their global coverage has to be monitored at the global scale using instruments aboard geostationary satellites. Since MeCiDA was optimised for the area of Europe only, various changes were necessary to handle the variable conditions found over the full Meteosat disc. Required changes include the consideration of the viewing angle dependency and of the sensitivity of the 9.7 μm channel to the ozone column. To this end, a correction is implemented that minimises the influence of the variability of the stratospheric ozone. The evaluation of the proposed improvements is carried out by using MeCiDA applied to MODIS (moderate resolution imaging spectrometer data to address viewing angle-dependent cirrus detection, and by additionally comparing it to the cloud optical properties MOD06 cirrus product. The new MeCiDA version detects less cirrus than the original one for latitudes larger than 40°, but almost the same amount elsewhere. MeCiDA's version for MODIS is more sensitive than that for SEVIRI (spinning enhanced visible and infrared imager with cirrus occurrences higher by 10%, and the new MeCiDA provides almost the same cirrus coverage (±0.1 as given by the cloud phase optical properties from MODIS for latitudes smaller than 50°. Finally, the influence of sub-pixel clouds on the SEVIRI cirrus detection has been examined: more than 60% of the undetected SEVIRI cirrus pixels have a cirrus coverage smaller than 0.5.

  12. High-Altitude Platforms - Present Situation and Technology Trends

    Directory of Open Access Journals (Sweden)

    Flavio Araripe D'Oliveira

    2016-07-01

    Full Text Available High-altitude platforms (HAPs are aircraft, usually unmanned airships or airplanes positioned above 20 km, in the stratosphere, in order to compose a telecommunications network or perform remote sensing. In the 1990 and 2000 decades, several projects were launched, but very few had continued. In 2014, 2 major Internet companies (Google and Facebook announced investments in new HAP projects to provide Internet access in regions without communication infrastructure (terrestrial or satellite, bringing back attention to the development of HAP. This article aims to survey the history of HAPs, the current state-of-the-art (April 2016, technology trends and challenges. The main focus of this review will be on technologies directly related to the aerial platform, inserted in the aeronautical engineering field of knowledge, not detailing aspects of the telecommunications area.

  13. Thermoelectric Energy Conversion Technology for High-Altitude Airships

    Science.gov (United States)

    Choi, Sang H.; Elliott, James R.; King, Glen C.; Park, Yeonjoon; Kim, Jae-Woo; Chu, Sang-Hyon

    2011-01-01

    The High Altitude Airship (HAA) has various application potential and mission scenarios that require onboard energy harvesting and power distribution systems. The power technology for HAA maneuverability and mission-oriented applications must come from its surroundings, e.g. solar power. The energy harvesting system considered for HAA is based on the advanced thermoelectric (ATE) materials being developed at NASA Langley Research Center. The materials selected for ATE are silicon germanium (SiGe) and bismuth telluride (Bi2Te3), in multiple layers. The layered structure of the advanced TE materials is specifically engineered to provide maximum efficiency for the corresponding range of operational temperatures. For three layers of the advanced TE materials that operate at high, medium, and low temperatures, correspondingly in a tandem mode, the cascaded efficiency is estimated to be greater than 60 percent.

  14. Status of the large high altitude air shower observatory project

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Min, E-mail: zham@ihep.ac.cn [Key Laboratory of Astroparticle and Cosmic Ray, Institute of High Energy Physics, YuQuan Road 19 B, 100049 Beijing (China)

    2012-11-11

    The Large High Altitude Air Shower Observatory (LHAASO) project is a multipurpose project. The main scientific tasks can be summarized as follows: (1) searching for galactic cosmic ray origins through gamma ray source detection above 30 TeV; (2) wide field of view survey for gamma ray sources at energies higher than 100 GeV; (3) energy spectrum measurements for individual cosmic ray species from 30 TeV to 10 PeV. To target above tasks, a complex detector array is designed. This paper describes the progress on the research and development of all kind of detectors. Construction and operation of a prototype detector array at Tibet site with 4300 m a.s.l. are also presented.

  15. STEERABLE ANTENNAS MOVEMENT COMPENSATION FOR HIGH ALTITUDE PLATFORM

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenyong; Liu Xiaowei; Li Zhuoshi

    2011-01-01

    High Altitude Platform (HAP) must compensate for relative motion with respect to the ground because of the stratosphere complexity,which is important to guarantee Quality of Service(QoS) in intended coverage area.With analysis on HAP movement models for predicting the geographical coverage in the cases of shift horizontally and vertically,yaw,roll and pitch,the mechanisms of steerable antennas movement compensation are investigated.The mechanism is applied to a scenario of 127 cell architecture,with a cell cluster size of four.By the simulation results of Carrier to Interference Ratio (CIR),the steerable antenna movement compensation mechanism decrease influence of HAP movement and guarantee effective coverage of the service area.

  16. First year results of the High Altitude Water Cherenkov observatory

    CERN Document Server

    Carramiñana, Alberto

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (>95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volc\\'an Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC gamma-ray observatory.

  17. High-altitude wind resources in the Middle East

    KAUST Repository

    Yip, Chak Man Andrew

    2017-08-23

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  18. High-altitude wind resources in the Middle East.

    Science.gov (United States)

    Yip, Chak Man Andrew; Gunturu, Udaya Bhaskar; Stenchikov, Georgiy L

    2017-08-29

    In the Middle East, near-surface wind resources are intermittent. However, high-altitude wind resources are abundant, persistent, and readily available and may provide alternative energy resources in this fossil-fuel-dependent region. Using wind field data from the Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2), this study identifies areas favorable to the deployment of airborne wind energy (AWE) systems in the Middle East and computes the optimal heights at which such systems would best operate. AWE potential is estimated using realistic AWE system specifications and assumptions about deployment scenarios and is compared with the near-surface wind generation potential with respect to diurnal and seasonal variability. The results show the potential utility of AWE in areas in the Middle East where the energy demand is high. In particular, Oman and Saudi Arabia have a high level of the potential power generation with low annual variability.

  19. Radiation Physics for Space and High Altitude Air Travel

    Science.gov (United States)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  20. First year results of the High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Carramiñana, Alberto

    2016-10-01

    The High Altitude Water Cherenkov (HAWC) γ-ray observatory is a wide field of view (1.8 Sr) and high duty cycle (> 95% up-time) detector of unique capabilities for the study of TeV gamma-ray sources. Installed at an altitude of 4100m in the Northern slope of Volcan Sierra Negra, Puebla, by a collaboration of about thirty institutions of Mexico and the United States, HAWC has been in full operations since March 2015, surveying 2/3 of the sky every sidereal day, monitoring active galaxies and mapping sources in the Galactic Plane to a detection level of 1 Crab per day. This contribution summarizes the main results of the first year of observations of the HAWC γ-ray observatory.

  1. The High-Altitude Water Cherenkov Observatory: First Light

    Science.gov (United States)

    Weisgarber, Thomas

    2013-04-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is under construction at Sierra Negra in the state of Puebla in Mexico. Operation began in September 2012, with the first 30 out of the final 300 water Cherenkov detectors deployed and in data acquisition. The HAWC Observatory is designed to record particle air showers from gamma rays and cosmic rays with TeV energies. Though the detector is only 10% complete, HAWC is already the world's largest water Cherenkov detector in the TeV band. In this presentation, I will summarize the performance of the detector to date and discuss preliminary observations of cosmic-ray and gamma-ray sources. I will also describe deployment plans for the remainder of the detector and outline prospects for TeV observations in the coming year.

  2. Cirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes

    Science.gov (United States)

    Immler, F.; Treffeisen, R.; Engelbart, D.; Krüger, K.; Schrems, O.

    2008-03-01

    During the European heat wave summer 2003 with predominant high pressure conditions we performed a detailed study of upper tropospheric humidity and ice particles which yielded striking results concerning the occurrence of ice supersaturated regions (ISSR), cirrus, and contrails. Our study is based on lidar observations and meteorological data obtained at Lindenberg/Germany (52.2° N, 14.1° E) as well as the analysis of the European centre for medium range weather forecast (ECMWF). Cirrus clouds were detected in 55% of the lidar profiles and a large fraction of them were subvisible (optical depth <0.03). Thin ice clouds were particularly ubiquitous in high pressure systems. The radiosonde data showed that the upper troposphere was very often supersaturated with respect to ice. Relating the radiosonde profiles to concurrent lidar observations reveals that the ISSRs almost always contained ice particles. Persistent contrails observed with a camera were frequently embedded in these thin or subvisible cirrus clouds. The ECMWF cloud parametrisation reproduces the observed cirrus clouds consistently and a close correlation between the ice water path in the model and the measured optical depth of cirrus is demonstrated.

  3. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  4. Wilderness medicine at high altitude: recent developments in the field

    Directory of Open Access Journals (Sweden)

    Shah NM

    2015-09-01

    Full Text Available Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly popular. With this comes an increased incidence of high-altitude illness and therefore an increased need to improve our strategies to prevent and accurately diagnose these. In this review, we provide a summary of recent advances of relevance to practitioners who may be advising travelers to altitude. Although the Lake Louise Score is now widely used as a diagnostic tool for acute mountain sickness (AMS, increasing evidence questions the validity of doing so, and of considering AMS as a single condition. Biomarkers, such as brain natriuretic peptide, are likely correlating with pulmonary artery systolic pressure, thus potential markers of the development of altitude illness. Established drug treatments include acetazolamide, nifedipine, and dexamethasone. Drugs with a potential to reduce the risk of developing AMS include nitrate supplements, propagators of nitric oxide, and supplemental iron. The role of exercise in the development of altitude illness remains hotly debated, and it appears that the intensity of exercise is more important than the exercise itself. Finally, despite copious studies demonstrating the value of preacclimatization in reducing the risk of altitude illness and improving performance, an optimal protocol to preacclimatize an individual remains elusive. Keywords: hypoxia, acute mountain sickness, acclimatization, biomarkers, preacclimatization

  5. HAMP - the microwave package on the upcoming High Altitude and LOng range aircraft HALO

    Science.gov (United States)

    Mech, M.; Crewell, S.; Peters, G.; Hirsch, L.

    2009-04-01

    New cloud observation techniques are needed to improve our understanding of the impact of clouds on the earth's water cycle and radiation budget, which represents still one of the largest uncertainties in global and regional climate modeling. An airborne platform for such observation techniques will be provided by the new German research aircraft HALO (High Altitude Long Range) that will be commissioned in 2009. HALO will open a new dimension for climate and atmospheric research. By HALO it will be possible to survey the atmosphere on continental scales but with much finer resolution and with more powerful instrumentation than feasible on space borne platforms. An advanced set of microwave remote cloud sensing instruments (HAMP - HALO Microwave Package) will be operated on board of HALO. It consists of a cloud radar and a suite of passive radiometers in different frequency bands. The radar MIRA-36 operates at 36.5 GHz. Although this is an unusual low frequency, it benefits from the wider range of applications due to less signal attenuation in deep clouds and rain, compared to the 94 GHz radar operated on CloudSat. The frequencies for the passive microwave radiometers were selected in allusion to the AMSU-A and -B sounder. Thereby the 150 GHz channel of AMSU-B has been replaced by frequencies in the 118 GHz oxygen band. In combination with the 60 GHz oxygen complex channels, this frequencies can be used for precipitation retrieval after Bauer and Mugnai (2003). Furthermore by including channels in the water vapor lines at 22.235 GHz and 183.31 GHz and higher microwave channels sensitive to scattering in the ice phase, various precipitation retrieval algorithms can be compared by measurements with HAMP. This presentation introduces the microwave package on HALO. It further shows the potential of the observations by presenting results of a simulation study for the selected microwave frequencies and the cloud radar. The potential of the selected frequencies for

  6. Weather Avoidance Guidelines for NASA Global Hawk High-Altitude Unmanned Aircraft Systems (UAS)

    Science.gov (United States)

    Cecil, Daniel J.; Zipser, Edward J.; Velden, Chris S.; Monette, Sarah A.; Heymsfield, Gerald M.; Braun, Scott A.; Newman, Paul A.; Black, Peter G.; Black, Michael L.; Dunion, Jason P.

    2014-01-01

    The current Global Hawk flight rules would probably not have been effective in the single event of greatest concern (the Emily encounter). The cloud top had not reached 50,000 ft until minutes before the encounter. The TOT and lightning data would not have been available until near the overflight time since this was a rapidly growing cell. This case would have required a last-minute diversion when lightning became frequent. Avoiding such a cell probably requires continual monitoring of the forward camera and storm scope, whether or not cloud tops have been exceeding specific limits. However, the current overflight rules as strictly interpreted would have prohibited significant fractions of the successful Global Hawk overpasses of Karl and Matthew that proved not to be hazardous. Many other high altitude aircraft (ER-2 and Global Hawk) flights in NASA tropical cyclone field programs have successfully overflown deep convective clouds without incident.The convective cell that caused serious concern about the safety of the ER-2 in Emily was especially strong for a tropical cyclone environment, probably as strong or stronger than any that was overflown by the ER-2 in 20 previous flights over tropical cyclones. Specifically, what made that cell a safety concern was the magnitude of the vertical velocity of the updraft, at least 20 m/s (4000 ft/minute) at the time the ER-2 overflew it. Such a strong updraft can generate strong gravity waves at and above the tropopause, posing a potential danger to aircraft far above the maximum altitude of the updraft itself or its associated cloud top. Indeed, the ER-2 was probably at least 9000 ft above that cloud top. Cloud-top height, by itself, is not an especially good indicator of the intensity of convection and the likelihood of turbulence. Nor is overflying high cloud tops (i.e. > 50,000 ft) of particular concern unless there is other evidence of very strong convective updrafts beneath those tops in the path of the aircraft

  7. Tropical tropopause layer cirrus and its relation to tropopause

    Science.gov (United States)

    Tseng, H.-H.; Fu, Q.

    2017-02-01

    This study examines the spatial and temporal patterns of tropical tropopause layer (TTL) cirrus clouds (i.e., clouds with bases higher than 14.5 km) and their relationship to tropical tropopause including both cold point tropopause (CPT) and lapse rate tropopause (LRT). We use eight years (2006-2014) data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements. In addition to the CALIPSO cloud layer product, the clouds included in the current CALIPSO dataset as stratospheric features have been considered by separating clouds from aerosols, which are important in the TTL cloud analysis. It is also shown that the temporal variation of the stratospheric aerosols matches well with the volcanic eruption events. The TTL cloud fraction and the tropical tropopause temperature both have pronounced annual cycles and are strongly negatively correlated both temporally and spatially. The examination of the TTL cloud height relative to tropopause from collocated CALIPSO and COSMIC observations indicates that the tropopause plays a critical role in constraining the TTL cloud top height. We show that the probability density function of TTL cloud top height peaks just below the CPT while the occurrence of TTL clouds with cloud tops above the CPT could be largely explained by observed tropopause height uncertainty associated with the COSMIC vertical resolution.

  8. A tandem approach for collocated measurements of microphysical and radiative cirrus properties

    Science.gov (United States)

    Klingebiel, Marcus; Ehrlich, André; Finger, Fanny; Röschenthaler, Timo; Jakirlić, Suad; Voigt, Matthias; Müller, Stefan; Maser, Rolf; Wendisch, Manfred; Hoor, Peter; Spichtinger, Peter; Borrmann, Stephan

    2017-09-01

    Microphysical and radiation measurements were collected with the novel AIRcraft TOwed Sensor Shuttle (AIRTOSS) - Learjet tandem platform. The platform is a combination of an instrumented Learjet 35A research aircraft and an aerodynamic bird, which is detached from and retracted back to the aircraft during flight via a steel wire with a length of 4000 m. Both platforms are equipped with radiative, cloud microphysical, trace gas, and meteorological instruments. The purpose of the development of this tandem set-up is to study the inhomogeneity of cirrus as well as other stratiform clouds. Sophisticated numerical flow simulations were conducted in order to optimally integrate an axially asymmetric Cloud Combination Probe (CCP) inside AIRTOSS. The tandem platform was applied during measurements at altitudes up to 36 000 ft (10 970 m) in the framework of the AIRTOSS - Inhomogeneous Cirrus Experiment (AIRTOSS-ICE). Ten flights were performed above the North Sea and Baltic Sea to probe frontal and in situ formed cirrus, as well as anvil outflow cirrus. For one flight, cirrus microphysical and radiative properties displayed significant inhomogeneities resolved by both measurement platforms. The CCP data show that the maximum of the observed particle number size distributions shifts with decreasing altitude from 30 to 300 µm, which is typical for frontal, midlatitude cirrus. Theoretical considerations imply that cloud particle aggregation inside the studied cirrus is very unlikely. Consequently, diffusional growth was identified to be the dominant microphysical growth process. Measurements of solar downward and upward irradiances at 670 nm wavelength were conducted above, below, and in the cirrus on both the Learjet and AIRTOSS. The observed variability of the downward irradiance below the cirrus reflects the horizontal heterogeneity of the observed thin cirrus. Vertically resolved solar heating rates were derived by either using single-platform measurements at different

  9. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析∗%Sensitivity analysis of terahertz wave passive remote sensing of cirrus microphysical parameters

    Institute of Scientific and Technical Information of China (English)

    李书磊; 刘磊; 高太长; 黄威; 胡帅

    2016-01-01

    Cirrus clouds play an important role in the energy budget and the hydrological cycle of the atmosphere. It is still one of the largest uncertainties in the global climate change studies. This is mainly attributable to the measurement dis-crepancies of cirrus parameters, especially the microphysical parameters, which are constrained by the existing methods. With THz wavelengths on the order of the size of typical cirrus cloud particles and therefore being sensitive to cirrus clouds, THz region is expected to have a promising prospect concerning measuring cirrus microphysical parameters (ice water path and effective particle size). In order to evaluate the effects of cirrus microphysical parameters on THz trans-mission characteristics and the sensitivity of cirrus in THz region, the THz radiation spectra at the top of atmosphere in the clear sky and the cloudy situations are simulated and calculated based on the atmospheric radiative transfer simulator. The effects of cirrus particle shape, particle size and ice water path on THz transmission characteristics are obtained by analyzing the brightness temperature difference between the two situations, and the sensitivity parameters that quantitatively describ the effects. The results indicate that cirrus particle shape, particle size and ice water path have different effects on the THz wave propagation. The cirrus effect varies also with channel frequency. Overall, in the low frequency channels, cirrus effects are enhanced with the increases of particle size and ice water path;in the high fre-quency channels, cirrus effects are more complicated and vary with particle size and ice water path. The effects are first enhanced and then turned into saturation. The THz wave is sensitive to cirrus cloud ice water path and effective particle size, and THz wave may be the best waveband for remote sensing of cirrus microphysical parameters in theory. For thin clouds, the sensitivity parameters are approximately constant

  10. Ataxia, acute mountain sickness, and high altitude cerebral edema

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Ma Siqing; Bian Huiping; Zhang Minming

    2013-01-01

    Previous investigations suggest that ataxia is common and often one of the most reliable warning signs of high altitude cerebral edema(HACE).The aim of this study was to investigate the diagnostic role of ataxia in acute mountain sickness (AMS) and HACE among mountain rescuers on the quake areas,and in approaching the relation between AMS and HACE.After the earthquake on April 14,2010,approximately 24080 lowland rescuers were rapidly transported from sea level or lowlands to the mountainous rescue sites at 3750 ~ 4568 m,and extremely hardly worked for an emergency treatment after arrival.Assessments of acute altitude illness on the quake areas were using the Lake Louise Scoring System.73 % of the rescuers were found to be developed AMS.The incidence of high altitude pulmonary edema(HAPE) and HACE was 0.73 % and 0.26 %,respectively,on the second to third day at altitude.Ataxia sign was measured by simple tests of coordination including a modified Romberg test.The clinical features of 62 patients with HACE were analyzed.It was found that the most frequent,serious neurological symptoms and signs were altered mental status(50/62,80.6 %)and truncal ataxia (47/62,75.8 %).Mental status change was rated slightly higher than ataxia,but ataxia occurred earlier than mental status change and other symptoms.The earliest sign of ataxia was a vague unsteadiness of gait,which may be present alone in association with or without AMS.Advanced ataxia was correlated with the AMS scores,but mild ataxia did not correlate with AMS scores at altitudes of 3750~4568 m.Of them,14 patients were further examined by computerized tomographic scanning of the brain and cerebral magnetic resonance imagines were examined in another 15 cases.These imaging studies indicated that the presence of the cerebral edema was in 97 % of cases who were clinically diagnosed as HACE (28/29).Ataxia seems to be a reliable sign of advanced AMS or HACE,so does altered mental status.

  11. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds.

    Science.gov (United States)

    Zhou, Taicheng; Shen, Xuejuan; Irwin, David M; Shen, Yongyi; Zhang, Yaping

    2014-09-01

    Galliform birds inhabit very diverse habitats, including plateaus that are above 3000 m in altitude. At high altitude, lower temperature and hypoxia are two important factors influencing survival. Mitochondria, as the ultimate oxygen transductor, play an important role in aerobic respiration through oxidative phosphorylation (OXPHOS). We analyzed the mitochondrial genomes of six high-altitude phasianidae birds and sixteen low-altitude relatives in an attempt to determine the role of mitochondrial genes in high-altitude adaptation. We reconstructed the phylogenetic relationships of these phasianidae birds and relatives and found at least four lineages that independently occupied this high-altitude habitat. Selective analyses revealed significant evidence for positive selection in the genes ND2, ND4, and ATP6 in three of the high-altitude lineages. This result strongly suggests that adaptive evolution of mitochondrial genes played a critical role during the independent acclimatization to high altitude by galliform birds.

  12. Medical continuing education: reform of teaching methods about high altitude disease in China.

    Science.gov (United States)

    Luo, Yongjun; Zhou, Qiquan; Huang, Jianjun; Luo, Rong; Yang, Xiaohong; Gao, Yuqi

    2013-06-01

    The purpose of high altitude continuing medical education is to adapt knowledge and skills for practical application on the plateau. Most trainees have experience with academic education and grassroots work experience on the plateau, so they want knowledge about new advances in the pathogenesis, diagnosis, and treatment of high altitude disease. As such, traditional classroom teaching methods are not useful to them. Training objects, content, and methods should attempt to conduct a variety of teaching practices. Through continuing medical education on high altitude disease, the authors seek to change the traditional teaching model away from a single classroom and traditional written examinations to expand trainees' abilities. These innovative methods of training can improve both the quality of teaching and students' abilities to prevent and treat acute mountain sickness, high altitude pulmonary edema, high altitude cerebral edema, and chronic mountain sickness to increase the quality of high altitude medical care.

  13. Latest news from the High Altitude Water Cherenkov Observatory

    Science.gov (United States)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  14. An automatic parachute release for high altitude scientific balloons

    Science.gov (United States)

    Field, Chris

    NASA's Columbia Scientific Balloon Facility launches high altitude scientific research balloons at many locations around the world. Locations like Antarctica are flat for hundreds of miles and have nothing to snag a parachute consequently causing it to be more important to separate the parachute from the payload than in an area with vegetation and fences. Scientists are now building one of a kind payloads costing millions of dollars, taking five years or more to build, and are requesting multiple flights. In addition to that, the data gathering rate of many science payloads far exceeds the data downlink rate on over-the-horizon flights therefore making a recovery of at least the data hard drives a "minimum success requirement". The older mentality in ballooning; separating the parachute and payload from the balloon and getting it on the ground is more important than separating the parachute after the payload is on the ground has changed. It is now equally as important to separate the parachute from the gondola to prevent damage from dragging. Until now, commands had to be sent to separate the parachute from the gondola at approximately 60K ft, 30K ft, and 10K ft to use the Semi Automatic Parachute Release (SAPR), which is after the sometimes violent parachute opening shock. By using the Gondola controlled Automatic Parachute Release (GAPR) all commanding is done prior to termination, making the parachute release fully autonomous.

  15. 21st Century Lightning Protection for High Altitude Observatories

    Science.gov (United States)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  16. Increased choroidal thickness in patient with high-altitude retinopathy

    Directory of Open Access Journals (Sweden)

    Kyoko Hirukawa-Nakayama

    2014-01-01

    Full Text Available We report a case of high-altitude retinopathy with increased choroidal thickness detected by spectral-domain optical coherence tomography (SD-OCT. A 36-year-old Japanese man developed an acute vision decrease in his left eye after he had trekked at an altitude of 4600 m in Tibet for 1 week. His visual acuity was 20/20 OD and 20/200 OS with refractive errors of − 0.25 diopters (D OD and − 0.50 D OS 3 weeks after the onset of the visual decrease. Funduscopic examinations revealed multiple intraretinal hemorrhages bilaterally and a macular hemorrhage in the left eye. SD-OCT showed that the thickness of choroidal layer at the fovea was 530 μm OD and 490 μm OS which is thicker than that in normal subjects of approximately 300 μm. We suggest that the increase in the retinal blood flow under hypoxic conditions may be associated with an increase in the choroidal blood flow resulting in an increase in choroidal thickness.

  17. Scientific verification of High Altitude Water Cherenkov observatory

    Energy Technology Data Exchange (ETDEWEB)

    Marinelli, Antonio, E-mail: antonio.marinelli@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); Sparks, Kathryne [Department of Physics, Pennsylvania State University, University Park, PA (United States); Alfaro, Ruben [Instituto de Física, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico); González, María Magdalena; Patricelli, Barbara; Fraija, Nissim [Instituto de Astronomia, Universidad Nacional Autónoma de México, Mexico D.F. (Mexico)

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ∼200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m{sup 2}, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  18. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema

    Science.gov (United States)

    Guo, Li; Tan, Guangguo; Liu, Ping; Li, Huijie; Tang, Lulu; Huang, Lan; Ren, Qian

    2015-10-01

    High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.

  19. High altitude headache occurs frequently among construction workers in Yushu

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Li Shuzhi; Jin Xinhui; Zhang Jianqing

    2013-01-01

    The aim was to measure the incidence of high altitude headache (HAH) and to determine clinical features,as well as the relation between acute mountain sickness (AMS) and HAH through a prospective study.We conducted a questionnaire-based study among construction workers in Yushu after a serious earthquake; they were under reconstruction using a structured questionnaire incorporating International Headache Society (IHS) and AMS Lake Louise Scoring System.A total of 608 workers were enrolled after their first ascent to altitudes of 3 750~4528 m.The results showed that 96 % reported at least 1 HAH(median 3.8,range from 1 to 10) in workers at a mean altitude of 4250 m.The magnitude of headache was divided as mild (38 %),moderate (44 %) and severe (18 %).This study indicates that HAH is the most common symptom of acute altitude exposure and closely correlated with altitude (r=0.165,p<0.001).However,52 % of headache was one of the main symptoms of AMS,while the other 48 % was the sole symptom of HAH.On the contrary we found that 2 % of AMS without headache,thus the "painless AMS" actually existed.The clinical features of HAH are presented,and the relationship between AMS and HAH is discussed.

  20. Naturally enhanced ion-acoustic lines at high altitudes

    Directory of Open Access Journals (Sweden)

    Y. Ogawa

    2006-12-01

    Full Text Available Naturally enhanced ion-acoustic lines (NEIALs between 1200 and 1900 km altitude are investigated. The NEIALs were found in the background gates of data from the European Incoherent Scatter (EISCAT Svalbard radar (ESR at 78° N looking field-aligned. Only strongly enhanced lines are detected at such high altitudes. The estimated enhancement above incoherent scattering integrated over the antenna beam and preintegration time of 10 s reaches about 10 000. Both lines are always enhanced above 1000 km altitude, and the downshifted line, corresponding to upward propagating ion-acoustic waves, is always stronger than the upshifted line, for downgoing waves. The ratio of the downshifted and upshifted peaks is often remarkably constant along a profile. Using the line positions as indicators of the ion-acoustic speeds and the bulk drift velocity, we find that the bulk drift does not exceed the ion-acoustic (sound speed, but extrapolation of the profiles suggests that the sound barrier is reached around 2000 km in one event. The highest ion-acoustic speed is seen near 600 km, above the density peak, indicating that electrons are heated not only by ionizing precipitation but significantly also by upgoing waves. Upflow continues to speed up above the estimated temperature maximum. A certain qualitative similarity to the solar corona seems to be the case.

  1. High Altitude Venus Operational Concept (HAVOC): Proofs of Concept

    Science.gov (United States)

    Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.

    2015-01-01

    The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.

  2. Highlights from the High Altitude Water Cherenkov Observatory

    CERN Document Server

    Pretz, John

    2015-01-01

    The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 TeV gamma rays from the hadronic cosmic-ray background. HAWC is uniquely suited to study extremely high energy cosmic-ray sources, search for regions of extended gamma-ray emission, and to identify transient gamma-ray phenomena. HAWC will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies, gamma-ray bursts, supernova remnants and pulsar wind nebulae. Observation of TeV photons also provide unique tests for a number of fundamental physics phenomena including dark matter annihilation and primordial black hole evaporation. Operation began mid-2013 with the partially-completed detector. Multi-TeV emission from the Galactic Plane is clearly seen in the first year of operation, confirming a number of known TeV sources, and a numb...

  3. High altitude hypoxia and blood pressure dysregulation in adult chickens.

    Science.gov (United States)

    Herrera, E A; Salinas, C E; Blanco, C E; Villena, M; Giussani, D A

    2013-02-01

    Although it is accepted that impaired placental perfusion in complicated pregnancy can slow fetal growth and programme an increased risk of cardiovascular dysfunction at adulthood, the relative contribution of reductions in fetal nutrition and in fetal oxygenation as the triggering stimulus remains unclear. By combining high altitude (HA) with the chick embryo model, we have previously isolated the direct effects of HA hypoxia on embryonic growth and cardiovascular development before hatching. This study isolated the effects of developmental hypoxia on cardiovascular function measured in vivo in conscious adult male and female chickens. Chick embryos were incubated, hatched and raised at sea level (SL, nine males and nine females) or incubated, hatched and raised at HA (seven males and seven females). At 6 months of age, vascular catheters were inserted under general anaesthesia. Five days later, basal blood gas status, basal cardiovascular function and cardiac baroreflex responses were investigated. HA chickens had significantly lower basal arterial PO2 and haemoglobin saturation, and significantly higher haematocrit than SL chickens, independent of the sex of the animal. HA chickens had significantly lower arterial blood pressure than SL chickens, independent of the sex of the animal. Although the gain of the arterial baroreflex was decreased in HA relative to SL male chickens, it was increased in HA relative to SL female chickens. We show that development at HA lowers basal arterial blood pressure and alters baroreflex sensitivity in a sex-dependent manner at adulthood.

  4. Scientific verification of High Altitude Water Cherenkov observatory

    Science.gov (United States)

    Marinelli, Antonio; Sparks, Kathryne; Alfaro, Ruben; González, María Magdalena; Patricelli, Barbara; Fraija, Nissim

    2014-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a TeV gamma-ray and cosmic-ray detector currently under construction at an altitude of 4100 m close to volcano Sierra Negra in the state of Puebla, Mexico. The HAWC [1] observatory is an extensive air-shower array composed of 300 optically isolated water Cherenkov detectors (WCDs). Each WCD contains ~200,000 l of filtered water and four upward-facing photomultiplier tubes. In Fall 2014, when the HAWC observatory will reach an area of 22,000 m2, the sensitivity will be 15 times higher than its predecessor Milagro [2]. Since September 2012, more than 30 WCDs have been instrumented and taking data. This first commissioning phase has been crucial for the verification of the data acquisition and event reconstruction algorithms. Moreover, with the increasing number of instrumented WCDs, it is important to verify the data taken with different configuration geometries. In this work we present a comparison between Monte Carlo simulation and data recorded by the experiment during 24 h of live time between 14 and 15 April of 2013 when 29 WCDs were active.

  5. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Directory of Open Access Journals (Sweden)

    Pandey P

    2015-11-01

    Full Text Available Priyanka Pandey,1,2 Ghulam Mohammad,1,3 Yogendra Singh,1,2 MA Qadar Pasha1,2 1Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, Maharashtra, 3Department of Medicine, SNM Hospital, Leh, Ladakh, Jammu and Kashmir, IndiaObjective: To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early, and morbid disorder, high altitude pulmonary edema (HAPE. This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation.Methods: For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225, HAPE controls (n=210, and highlanders (n=259 by Sequenom MS (TOF-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups.Results: A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728 with HAPE (P=0.03 and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336 with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively. ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009. MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006 and lower association with adaptation (P=1E–06, whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001 and higher association with adaptation (P=1E–06. Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working

  6. Properties of small cirrus ice crystals from commercial aircraft measurements and implications for flight operations

    Directory of Open Access Journals (Sweden)

    Karl Beswick

    2015-10-01

    Full Text Available Measurements of cloud ice crystal size distributions have been made by a backscatter cloud probe (BCP mounted on five commercial airliners flying international routes that cross five continents. Bulk cloud parameters were also derived from the size distributions. As of 31 December 2014, a total of 4399 flights had accumulated data from 665 hours in more than 19 000 cirrus clouds larger than 5 km in length. The BCP measures the equivalent optical diameter (EOD of individual crystals in the 5–90 µm range from which size distributions are derived and recorded every 4 seconds. The cirrus cloud property database, an ongoing development stemming from these measurements, registers the total crystal number and mass concentration, effective and median volume diameters and extinction coefficients derived from the size distribution. This information is accompanied by the environmental temperature, pressure, aircraft position, date and time of each sample. The seasonal variations of the cirrus cloud properties measured from 2012 to 2014 are determined for six geographic regions in the tropics and extratropics. Number concentrations range from a few per litre for thin cirrus to several hundreds of thousands for heavy cirrus. Temperatures range from 205 to 250 K and effective radii from 12 to 20 µm. A comparison of the regional and seasonal number and mass size distributions, and the bulk microphysical properties derived from them, demonstrates that cirrus properties cannot be easily parameterised by temperature or by latitude. The seasonal changes in the size distributions from the extratropical Atlantic and Eurasian air routes are distinctly different, showing shifts from mono-modal to bi-modal spectra out of phase with one another. This phase difference may be linked to the timing of deep convection and cold fronts that lead to the cirrus formation. Likewise, the size spectra of cirrus over the tropical Atlantic and Eastern Brazil differ from each

  7. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season.

    Science.gov (United States)

    Prasad, Anup K; El-Askary, Hesham; Kafatos, Menas

    2010-11-01

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe.

  8. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    Science.gov (United States)

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  9. Iridium: Global OTH data communications for high altitude scientific ballooning

    Science.gov (United States)

    Denney, A.

    While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several

  10. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  11. Effect of simulated high-altitude hypoxia on Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Jing-jing HUANG

    2012-04-01

    Full Text Available Objective To investigate the effects of simulated high-altitude hypoxia on the detection rate and endotoxin level of Porphyromonas gingivalis (Pg of subgingival bacterial plagues in rabbit periodontitis models. Methods Forty male rabbits were randomly divided into four groups, namely, normoxia control group (group A1, normoxia experimental group (group A2, hypoxia control group (group B1, and hypoxia experimental group (group B2. Each group included 10 rabbits. Periodontitis models was established in groups A2 and B2 combined by ligating both lower central incisors with steel ligature and feeding periodontitis diets, and then the animals were housed in a hypoxia chamber (simulating 5000m altitude, 23h per day. Groups A1 and A2 were raised normal diet in normoxia environment. After eight weeks, the rabbit periodontitis model was evaluated by observing radiographic features of the X-ray films and histopathologic changes under a light microscope. Subgingival plague sample from periodontal pockets on both lower central incisors were collected for isolation, culture and identification of Pg, and for detection of the endotoxin level. Results The histopathologic observation and X-ray examination results showed that the periodontitis of rabbits in group B2 was significantly more severe than that in group A2. The detection rates of Pg in group A1, A2, B1 and B2 was 0%, 50%, 55% and 95% (P < 0.05. Pg detection rate and endotoxin level were higher in group B2 (95%, 0.46±0.04EU/ml than in group A2 (50%, 0.38±0.02EU/ml, P < 0.05. Conclusions The process speed and damage degree of periodontitis in hypoxic environment is higher than that in normoxic environment. Moreover, the hypoxic environment is more suitable in the colonization of Pg with higher endotoxin level in subgingival plague.

  12. The ISON international campaigns for monitoring of faint high altitude objects

    Science.gov (United States)

    Molotov, Igor; Agapov, Vladimir; Rumyantsev, Vasiliy; Biryukov, Vadim; Schildknecht, Thomas; Bakhtigaraev, Nail; Ibrahimov, Mansur; Papushev, Pavel; Minikulov, Nasredin; Andrievsky, Sergei

    The research of the space debris fragments at high orbits is one of the main directions of the International Scientific Optical Network (ISON) activities. Therefore the dedicated ISON subsystem for high altitude faint space debris observations is arranged with the aim of detection and continuous tracking of as large number of unknown high altitude faint objects as possible. The subsystem includes the number of large telescopes that are able to detect the objects down to 20m-21m and the middle-size telescopes for the observations of the space objects of 15m-18m. The 1-m ZIMLAT in Zimmerwald, Switzerland, 1.5-m AZT-33IK in Mondy, Siberia, 64-cm AT- 64 in Nauchniy, Crimea, 60-cm RK-600 in Mayaki near Odessa, Ukraine, 60-cm Zeiss-600 in Maidanak, Uzbekistan, 70-cm AZT-8 in Gissar, Tajikistan are regularly participating in ISON observing campaigns in collaboration with 1-m Zeiss-1000 ESA space debris telescope in Teide, Canaries islands. 2.6-m ZTSh in Nauchniy, Crimea, 2-m Zeiss-2000 in Terskol, North Caucasus, 1-m Zeiss-1000 in Simeiz, Crimea, 1-m Zeiss-1000 in Arkhyz, North Caucasus are joining during few nights per month. The 60-cm Zeiss-600 in Arkhyz, 70-cm AZT-8 in Evpatoria, Crimea, 60-cm Zeiss-600 in Tarija, Bolivia, 80-cm RK-800 in Mayaki, 80-cm K-800 in Terskol, 50-cm in Ussuriysk, Far East will be added to the subsystem during 2008. The observing campaigns are coordinates by the Center on space debris data collection, processing and analysis of the KIAM RAS in cooperation with the AIUB space debris team. 353 faint objects are discovered in GEO region surveys during the last 3 years (about 100000 measurements were collected for this time), including objects with high AMR. Results are publishing monthly by KIAM in High Geocentric Orbit Space Debris Circular. We will discuss the most interesting of obtained results. Many of discovered fragments are associated with space debris clouds appeared as a result of known or suspected fragmentations occurred in GEO region

  13. Correlation among Cirrus Ice Content, Water Vapor and Temperature in the TTL as Observed by CALIPSO and Aura-MLS

    Science.gov (United States)

    Flury, T.; Wu, D. L.; Read, W. G.

    2012-01-01

    Water vapor in the tropical tropopause layer (TTL) has a local radiative cooling effect. As a source for ice in cirrus clouds, however, it can also indirectly produce infrared heating. Using NASA A-Train satellite measurements of CALIPSO and Aura/MLS we calculated the correlation of water vapor, ice water content and temperature in the TTL. We find that temperature strongly controls water vapor (correlation r =0.94) and cirrus clouds at 100 hPa (r = -0.91). Moreover we observe that the cirrus seasonal cycle is highly (r =-0.9) anticorrelated with the water vapor variation in the TTL, showing higher cloud occurrence during December-January-February. We further investigate the anticorrelation on a regional scale and find that the strong anticorrelation occurs generally in the ITCZ (Intertropical Convergence Zone). The seasonal cycle of the cirrus ice water content is also highly anticorrelated to water vapor (r = -0.91) and our results support the hypothesis that the total water at 100 hPa is roughly constant. Temperature acts as a main regulator for balancing the partition between water vapor and cirrus clouds. Thus, to a large extent, the depleting water vapor in the TTL during DJF is a manifestation of cirrus formation.

  14. Contrail Cirrus Forecasts for the ML-CIRRUS Experiment and Some Comparison Results

    Science.gov (United States)

    Schumann, Ulrich; Graf, Kaspar; Bugliaro, Luca; Dörnbrack, Andreas; Giez, Andreas; Jurkat, Tina; Kaufmann, Stefan; Krämer, Martina; Minikin, Andreas; Schäfler, Andreas; Voigt, Christiane; Wirth, Martin; Zahn, Andreas; Ziereis, Helmut

    2015-04-01

    rerun with improved ECMWF-NWP data (at one-hour time resolution). The model results are included in the HALO mission data bank, and the results are available for comparison to in-situ data. The data are useful for identifying aircraft and other sources for measured air properties. The joint analysis of observations and model result has basically just started. Preliminary results from comparisons with lidar-measured extinction profiles, in-situ measured humidity, nitrogen oxides, and aerosol and ice particle concentrations, and with meteorological observations (wind, temperature etc.) illustrate the expected gain in insight. The contrail forecasts have been checked by comparison to available data including satellite data and HALO observations. During the campaign, it became obvious that predicted contrail cirrus cover compared qualitatively mostly well with what was found when HALO reached predicted cirrus regions. From the analysis of the measured data, some examples of significant correlation between model results and observations have been found. However, the quantitative agreement is not uniform. As expected, nature is far more variable than a model can predict. The observed optical properties of cirrus and contrails vary far more in time and space than predicted. Local values were often far higher or lower than mean values. A one-to-one correlation between local observations and model results is not to be expected. This inhomogeneity may have consequences for the climate impact of aviation induced cloud changes.

  15. On the Development of Above-Anvil Cirrus Plumes in Extratropical Convection

    Science.gov (United States)

    Homeyer, C. R.; McAuliffe, J. D.; Bedka, K. M.

    2016-12-01

    Expansive cirrus clouds present above the anvils of extratropical convection have been observed in satellite and aircraft-based imagery for several decades. Despite knowledge of their occurrence, the precise mechanisms and atmospheric conditions leading to their formation and maintenance are not entirely known. Here, we examine the formation of these cirrus "plumes" using a combination of satellite imagery, three-dimensional ground-based radar observations, assimilated atmospheric states from a state-of-the-art reanalysis, and idealized numerical simulations with explicitly resolved convection. Using data from ten recent cases (2013-Present), we find that all storms with above-anvil cirrus plumes reach altitudes 1 to 6 km above the tropopause. Thus, it is likely that these clouds represent the injection of cloud material into the lower stratosphere. Comparison of above-anvil cirrus plume cases with ten additional cases of observed tropopause-penetrating convection without plumes reveals that these clouds are associated with large vector differences between the motion of a storm and the environmental wind in the upper troposphere and lower stratosphere (UTLS), suggesting that gravity wave breaking and/or stretching of the tropopause-penetrating cloud are/is more prevalent in plume-producing storms. No relationship is found between above-anvil cirrus plume occurrence and the stability of the lower stratosphere (or tropopause structure) or the duration of stratospheric penetration. Idealized model simulations of tropopause-penetrating convection with small and large magnitudes of storm-relative wind in the UTLS are found to reproduce the established observational relationship and show that frequent gravity wave breaking is the primary mechanism responsible for above-anvil cirrus plume formation.

  16. Zooming in on cirrus with the Canadian Regional Climate Model

    Science.gov (United States)

    Stefanof, C.; Stefanof, A.; Beaulne, A.; Munoz Alpizar, R.; Szyrmer, W.; Blanchet, J.

    2004-05-01

    The Canadian Regional Climate Model plus a microphysical scheme: two-moments microphysics with three hydrometeor categories (cloud liquid water, pristine ice crystals and larger precipitation crystals) is used to test the simulation in forecast mode using ECMWF data at 0.4 X 0.4 degree. We are zooming in on cirrus at higher resolutions (9, 1.8, 0.36 km). We are currently using the data set measured in APEX-E3, measurements of radar, lidar, passive instruments and interpreted microphysics for some flights (G-II, C404, B200). The radar and lidar data are available for high level cirrus. The south west of Japon is the flight region. The dates are March 20, March 27 and April 2, 2003. We first focus on the March 27 frontal system. We did a rigorous synoptical analysis for the cases. The cirrus at 360 m resolution are simulated. The cloud structure and some similarities between model simulation and observations will be presented.

  17. The impact of high altitude aircraft on the ozone layer in the stratosphere

    Science.gov (United States)

    Tie, Xue XI; Brasseur, Guy; Lin, Xing; Friedlingstein, P.; Granier, Claire; Rasch, Philip

    1994-01-01

    The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10-20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NOx from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.

  18. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    Directory of Open Access Journals (Sweden)

    C. Ren

    2007-04-01

    Full Text Available We have developed a Lagrangian air-parcel cirrus model (LACM, to diagnose the processes controlling water in the tropical tropopause layer (TTL. LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. These conditions are imposed to confine what processes contribute to rehydration. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripey" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics.

    The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign, have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air

  19. Diagnosis of processes controlling water vapour in the tropical tropopause layer by a Lagrangian cirrus model

    Directory of Open Access Journals (Sweden)

    C. Ren

    2007-10-01

    Full Text Available We have developed a Lagrangian air-parcel cirrus model (LACM, to diagnose the processes controlling water in the tropical tropopause layer (TTL. LACM applies parameterised microphysics to air parcel trajectories. The parameterisation includes the homogeneous freezing of aerosol droplets, the growth/sublimation of ice particles, and sedimentation of ice particles, so capturing the main dehydration mechanism for air in the TTL. Rehydration is also considered by resetting the water vapour mixing ratio in an air parcel to the value at the point in the 4-D analysis/forecast data used to generate the trajectories, but only when certain conditions, indicative of convection, are satisfied. The conditions act to restrict rehydration of the Lagrangian air parcels to regions where convective transport of water vapour from below is significant, at least to the extent that the analysis/forecast captures this process. The inclusion of hydration and dehydration mechanisms in LACM results in total water fields near tropical convection that have more of the "stripy" character of satellite observations of high cloud, than do either the ECMWF analysis or trajectories without microphysics.

    The mixing ratios of total water in the TTL, measured by a high-altitude aircraft over Brazil (during the TROCCINOX campaign, have been reconstructed by LACM using trajectories generated from ECMWF analysis. Two other Lagrangian reconstructions are also tested: linear interpolation of ECMWF analysed specific humidity onto the aircraft flight track, and instantaneous dehydration to the saturation vapour pressure over ice along trajectories. The reconstructed total water mixing ratios along aircraft flight tracks are compared with observations from the FISH total water hygrometer. Process-oriented analysis shows that modelled cirrus cloud events are responsible for dehydrating the air parcels coming from lower levels, resulting in total water mixing ratios as low as 2

  20. Schistosomiasis transmission at high altitude crater lakes in Western Uganda

    Directory of Open Access Journals (Sweden)

    Philbert Clouds

    2008-08-01

    Full Text Available Abstract Background Contrary to previous reports which indicated no transmission of schistosomiasis at altitude >1,400 m above sea level in Uganda, in this study it has been established that schistosomiasis transmission can take place at an altitude range of 1487–1682 m above sea level in western Uganda. Methods An epidemiological survey of intestinal schistosomiasis was carried out in school children staying around 13 high altitude crater lakes in Western Uganda. Stool samples were collected and then processed with the Kato-Katz technique using 42 mg templates. Thereafter schistosome eggs were counted under a microscope and eggs per gram (epg of stool calculated. A semi-structured questionnaire was used to obtain demographic data and information on risk factors. Results 36.7% of the pupils studied used crater lakes as the main source of domestic water and the crater lakes studied were at altitude ranging from 1487–1682 m above sea level. 84.6% of the crater lakes studied were infective with over 50% of the users infected. The overall prevalence of Schistosoma mansoni infection was 27.8% (103/370 with stool egg load ranging from 24–6048 per gram of stool. 84.3%( 312 had light infections (400 egg/gm of stool. Prevalence was highest in the age group 12–14 years (49.5% and geometric mean intensity was highest in the age group 9–11 years (238 epg. The prevalence and geometric mean intensity of infection among girls was lower (26%; 290 epg compared to that of boys (29.6%; 463 epg (t = 4.383, p Conclusion and recommendations The altitudinal threshold for S. mansoni transmission in Uganda has changed and use of crater water at an altitude higher than 1,400 m above sea level poses a risk of acquiring S. mansoni infection in western Uganda. However, further research is required to establish whether the observed altitudinal threshold change is as a result of climate change or other factors. It is also necessary to establish the impact this could

  1. High altitude, a natural research laboratory for the study of cardiovascular physiology and pathophysiology.

    Science.gov (United States)

    Scherrer, Urs; Allemann, Yves; Jayet, Pierre-Yves; Rexhaj, Emrush; Sartori, Claudio

    2010-01-01

    High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema represents a unique model that allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Second, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we will review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.

  2. ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation

    Science.gov (United States)

    Pandey, Priyanka; Mohammad, Ghulam; Singh, Yogendra; Qadar Pasha, MA

    2015-01-01

    Objective To date, a major class of kinases, serine–threonine kinase, has been scantly investigated in stress-induced rare, fatal (if not treated early), and morbid disorder, high altitude pulmonary edema (HAPE). This study examined three major serine–threonine kinases, ROCK2, MYLK, and JNK1, along with six other genes, tyrosine hydroxylase, G-protein subunits GNA11 and GNB3, and alpha1 adrenergic receptor isoforms 1A, 1B, and 1D as candidate gene markers of HAPE and adaptation. Methods For this, 57 variants across these nine genes were genotyped in HAPE patients (n=225), HAPE controls (n=210), and highlanders (n=259) by Sequenom MS (TOF)-based MassARRAY® platform using iPLEX™ Gold technology. In addition, to study the gene expression, quantitative real-time polymerase chain reaction was performed in human peripheral blood mononuclear cells of the three study groups. Results A significant association was observed for C allele (ROCK2 single-nucleotide polymorphism, rs10929728) with HAPE (P=0.03) and C, T, and A alleles (MYLK single-nucleotide polymorphisms, rs11717814, rs40305, and rs820336) with both HAPE and adaptation (P=0.001, P=0.006, and P=0.02, respectively). ROCK2 88 kb GGGTTGGT haplotype was associated with lower risk of HAPE (P=0.0009). MYLK 7 kb haplotype CTA, composed of variant alleles, was associated with higher risk of HAPE (P=0.0006) and lower association with adaptation (P=1E–06), whereas haplotype GCG, composed of wild-type alleles, was associated with lower risk of HAPE (P=0.001) and higher association with adaptation (P=1E–06). Haplotype–haplotype and gene–gene interactions demonstrated a correlation in working of ROCK2 and MYLK. Conclusion The data suggest the association of ROCK2 with HAPE and MYLK with HAPE and adaptation in Indian population. The outcome has provided new insights into the physiology of HAPE and adaptation. PMID:26586960

  3. Centurion solar-powered high-altitude aircraft in flight

    Science.gov (United States)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  4. Estimation of the Vertical Velocity Leading to the Formation of Cirrus Using Ultra-High Resolution Global Simulations

    Science.gov (United States)

    Barahona, D.; Molod, A.; Putman, W.; Suarez, M.

    2014-12-01

    Cirrus clouds significantly impact the radiative and transport processes of the upper troposphere and the lower stratosphere. State-of-the-art global models parameterize the formation of cirrus explicitly linking ice nucleation events to the aerosol properties and the cloud-scale dynamics. However most GCMs cannot resolve the scale at which cloud formation occurs. Thus subgrid scale dynamics is typically parameterized by relating the vertical velocity variance, σw, to grid-scale fields. These parameterizations are typically validated against field campaign data for specific locations. However an assessment of the global spatial distribution of σw is lacking, limiting the ability of GCMs to describe cirrus formation. Here the non-hydrostatic version of the NASA Goddard Earth Observing System model (GEOS-5) is used to estimate the variance of vertical velocity in GCMs. GEOS-5 was run at cloud-resolving resolutions (~7 km), allowing the explicit calculation of σw. Our results indicate that σw is determined by orographic drag and local convection, and higher over the continents than over the ocean. A recently developed parameterization of σw is also evaluated. Compared to the model results the parameterization is able to reproduce the global distribution of σw for warm cirrus clouds but tends to overestimate σw near the tropopause. Our work provides for the first time an assessment of the global variability in the subgrid scale dynamics leading to the formation of cirrus.

  5. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels

    Directory of Open Access Journals (Sweden)

    Chun Guo

    2015-12-01

    Full Text Available The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO2. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  6. Identification of novel serum peptide biomarkers for high-altitude adaptation: a comparative approach

    Science.gov (United States)

    Yang, Juan; Li, Wenhua; Liu, Siyuan; Yuan, Dongya; Guo, Yijiao; Jia, Cheng; Song, Tusheng; Huang, Chen

    2016-05-01

    We aimed to identify serum biomarkers for screening individuals who could adapt to high-altitude hypoxia at sea level. HHA (high-altitude hypoxia acclimated; n = 48) and HHI (high-altitude hypoxia illness; n = 48) groups were distinguished at high altitude, routine blood tests were performed for both groups at high altitude and at sea level. Serum biomarkers were identified by comparing serum peptidome profiling between HHI and HHA groups collected at sea level. Routine blood tests revealed the concentration of hemoglobin and red blood cells were significantly higher in HHI than in HHA at high altitude. Serum peptidome profiling showed that ten significantly differentially expressed peaks between HHA and HHI at sea level. Three potential serum peptide peaks (m/z values: 1061.91, 1088.33, 4057.63) were further sequence identified as regions of the inter-α trypsin inhibitor heavy chain H4 fragment (ITIH4 347-356), regions of the inter-α trypsin inhibitor heavy chain H1 fragment (ITIH1 205-214), and isoform 1 of fibrinogen α chain precursor (FGA 588-624). Expression of their full proteins was also tested by ELISA in HHA and HHI samples collected at sea level. Our study provided a novel approach for identifying potential biomarkers for screening people at sea level who can adapt to high altitudes.

  7. A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets

    Science.gov (United States)

    Schwartz, M. Christian

    2017-08-01

    This paper addresses two straightforward questions. First, how similar are the statistics of cirrus particle size distribution (PSD) datasets collected using the Two-Dimensional Stereo (2D-S) probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS) 2-D Cloud (2DC) and 2-D Precipitation (2DP) probes? Second, how similar are the datasets when shatter-correcting post-processing is applied to the 2DC datasets? To answer these questions, a database of measured and parameterized cirrus PSDs - constructed from measurements taken during the Small Particles in Cirrus (SPARTICUS); Mid-latitude Airborne Cirrus Properties Experiment (MACPEX); and Tropical Composition, Cloud, and Climate Coupling (TC4) flight campaigns - is used.Bulk cloud quantities are computed from the 2D-S database in three ways: first, directly from the 2D-S data; second, by applying the 2D-S data to ice PSD parameterizations developed using sets of cirrus measurements collected using the older PMS probes; and third, by applying the 2D-S data to a similar parameterization developed using the 2D-S data themselves. This is done so that measurements of the same cloud volumes by parameterized versions of the 2DC and 2D-S can be compared with one another. It is thereby seen - given the same cloud field and given the same assumptions concerning ice crystal cross-sectional area, density, and radar cross section - that the parameterized 2D-S and the parameterized 2DC predict similar distributions of inferred shortwave extinction coefficient, ice water content, and 94 GHz radar reflectivity. However, the parameterization of the 2DC based on uncorrected data predicts a statistically significantly higher number of total ice crystals and a larger ratio of small ice crystals to large ice crystals than does the parameterized 2D-S. The 2DC parameterization based on shatter-corrected data also predicts statistically different numbers of ice crystals than does the parameterized 2D-S, but the

  8. Ground Based Retrievals of Small Ice Crystals and Water Phase in Arctic Cirrus

    Science.gov (United States)

    Mishra, Subhashree; Mitchell, David L.; DeSlover, Daniel

    2009-03-01

    The microphysical properties of cirrus clouds are uncertain due to the problem of ice particles shattering at the probe inlet upon sampling. To facilitate better estimation of small ice crystal concentrations in cirrus clouds, a new ground-based remote sensing technique has been used in combination with in situ aircraft measurements. Data from the Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted at the north slope of Alaska (winter 2004), have been used to test a new method for retrieving the liquid water path (LWP) and ice water path (IWP) in mixed phase clouds. The framework of the retrieval algorithm consists of the modified anomalous diffraction approximation or MADA (for mixed phase cloud optical properties), a radar reflectivity-ice microphysics relationship and a temperature-dependent ice particle size distribution (PSD) scheme. Cloud thermal emission measurements made by the ground-based Atmospheric Emitted Radiance Interferometer (AERI) yield information on the total water path (TWP) while reflectivity measurements from the Millimeter Cloud Radar (MMCR) are used to derive the IWP. The AERI is also used to indicate the concentration of small ice crystals (DBeer's law absorption. While this is still a work in progress, the anticipated products from this AERI-radar retrieval scheme are the IWP, LWP, small-to-large ice crystal number concentration ratio and effective diameter for cirrus, as well as the ice particle number concentration for a given ice water content (IWC).

  9. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  10. Outdoor Activity and High Altitude Exposure During Pregnancy: A Survey of 459 Pregnancies.

    Science.gov (United States)

    Keyes, Linda E; Hackett, Peter H; Luks, Andrew M

    2016-06-01

    To evaluate whether women engage in outdoor activities and high altitude travel during pregnancy; the health care advice received regarding high altitude during pregnancy; and the association between high altitude exposure and self-reported pregnancy complications. An online survey of women with at least 1 pregnancy distributed on websites and e-mail lists targeting mothers and/or mountain activities. Outcome measures were outdoor activities during pregnancy, high altitude (>2440 m) exposure during pregnancy, and pregnancy and perinatal complications. Hiking, running, and swimming were the most common activities performed during pregnancy. Women traveled to high altitude in over half of the pregnancies (244/459), and most did not receive counseling regarding altitude (355, 77%), although a small proportion (14, 3%) were told not to go above 2440 m. Rates of miscarriage and most other complications were similar between pregnancies with and without travel above 2440 m. Pregnancies with high altitude exposure were more likely to have preterm labor (odds ratio [OR] 2.3; 95% CI 0.97-5.4; P = .05). Babies born to women who went to high altitude during pregnancy were more likely to need oxygen at birth (OR 2.34; 95% CI 1.04-5.26; P < .05) but had similar rates of neonatal intensive care unit admission (P = not significant). Our results suggest pregnant women who are active in outdoor sports and travel to high altitude have a low rate of complications. Given the limitations of our data, further research is necessary on the risks associated with high altitude travel and physical activity and how these apply to the general population. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  11. Missing correlation of retinal vessel diameter with high-altitude headache

    Science.gov (United States)

    Willmann, Gabriel; Fischer, M Dominik; Schommer, Kai; Bärtsch, Peter; Gekeler, Florian; Schatz, Andreas

    2014-01-01

    The most common altitude-related symptom, high-altitude headache (HAH), has recently been suggested to originate from restricted cerebral venous drainage in the presence of increased inflow caused by hypoxia. In support of this novel hypothesis, retinal venous distension was shown to correlate with the degree of HAH. We quantified for the first time retinal vessel diameter changes at 4559 m using infrared fundus images obtained from a state of the art Spectralis™ HRA+OCT with a semiautomatic VesselMap 1® software. High-altitude exposure resulted in altered arterial and venous diameter changes at high altitude, however, independent of headache burden. PMID:25356382

  12. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    ) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite......Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen...

  13. High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition

    Directory of Open Access Journals (Sweden)

    Kenneth S. Whitlow,

    2014-11-01

    Full Text Available High altitude pulmonary edema (HAPE is a form of high altitude illness characterized by cough, dyspnea upon exertion progressing to dyspnea at rest and eventual death, seen in patients who ascend over 2,500 meters, particularly if that ascent is rapid. This case describes a patient with no prior history of HAPE and extensive experience hiking above 2,500 meters who developed progressive dyspnea and cough while ascending to 3,200 meters. His risk factors included rapid ascent, high altitude, male sex, and a possible genetic predisposition for HAPE. [West J Emerg Med. 2014;15(7:–0.

  14. High Altitude Pulmonary Edema in an Experienced Mountaineer. Possible Genetic Predisposition

    Science.gov (United States)

    Whitlow, Kenneth S.; Davis, Babette W.

    2014-01-01

    High altitude pulmonary edema (HAPE) is a form of high altitude illness characterized by cough, dyspnea upon exertion progressing to dyspnea at rest and eventual death, seen in patients who ascend over 2,500 meters, particularly if that ascent is rapid. This case describes a patient with no prior history of HAPE and extensive experience hiking above 2,500 meters who developed progressive dyspnea and cough while ascending to 3,200 meters. His risk factors included rapid ascent, high altitude, male sex, and a possible genetic predisposition for HAPE. PMID:25493133

  15. To what extent can cirrus seeding counteract global warming?

    Science.gov (United States)

    Gasparini, Blaz; Lohmann, Ulrike

    2017-04-01

    The idea of modifying cirrus clouds to directly counteract greenhouse gas warming has gained a lot of momentum in recent years, despite large disputes over its physical feasibility. We use the ECHAM-HAM general circulation model to evaluate the temperature and precipitation responses to cirrus thinning by seeding with efficient ice nucleating particles and increasing ice crystal sedimentation velocities in a 1.5xCO2 world. The seeding scenario can counteract about 40% of the warming and precipitation increase induced by 1.5 x CO2 concentrations with respect to present day values. The idealized ice crystal sedimentation velocity increase scenario on the other hand fully restores the global annual temperature but counteracts only half of the precipitation increase. Moreover, we define a climate damage function, quadratic in temperature and precipitation anomalies to calculate the damage of the different scenarios in 21 selected land regions. Seeding can decrease about 55% of the CO2 induced damage, while the sedimentation velocity increase can counteract about 95% of the damage. A regional analysis shows the negative responses of seeding are minimal both in terms of precipitation and temperature, which makes cirrus seeding an attractive geoengineering method.

  16. Superpressure Tow Balloon for Extending Durations and Modifying Trajectories of High Altitude Balloon Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation involves the concept of using a Superpressure Tow Balloon (STB) with existing NASA high altitude balloon designs to form a tandem balloon...

  17. Scientific Approach for Optimising Performance, Health and Safety in High-Altitude Observatories

    Science.gov (United States)

    Böcker, Michael; Vogy, Joachim; Nolle-Gösser, Tanja

    2008-09-01

    The ESO coordinated study “Optimising Performance, Health and Safety in High-Altitude Observatories” is based on a psychological approach using a questionnaire for data collection and assessment of high-altitude effects. During 2007 and 2008, data from 28 staff and visitors involved in APEX and ALMA were collected and analysed and the first results of the study are summarised. While there is a lot of information about biomedical changes at high altitude, relatively few studies have focussed on psychological changes, for example with respect to performance of mental tasks, safety consciousness and emotions. Both, biomedical and psychological changes are relevant factors in occupational safety and health. The results of the questionnaire on safety, health and performance issues demonstrate that the working conditions at high altitude are less detrimental than expected.

  18. Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space...

  19. Is Pulse Oximetry Useful for Screening Neonates for Critical Congenital Heart Disease at High Altitudes?

    Science.gov (United States)

    Hoffman, Julien I E

    2016-06-01

    Now that pulse oximetry is used widely to screen for critical congenital heart disease, it is time to consider whether this screening method is applicable to those who live at high altitudes. Consideration of basic physical principles and reports from the literature indicate that not only is the 95 % cutoff point for arterial oxygen saturation incorrect at high altitudes, but the lower saturations are accompanied by greater variability and therefore there is the possibility of a greater percentage of false-positive screening tests at high altitudes. Because of ethnic differences in response to high altitudes, normative data will have to be collected separately in different countries and perhaps for different ethnic groups.

  20. QT interval changes in term pregnant women living at moderately high altitude.

    Science.gov (United States)

    Batmaz, G; Aksoy, A N; Aydın, S; Ay, N K; Dane, B

    2016-01-01

    This study aimed to compare the QT interval changes in women with term pregnancy living at moderately high altitude (1890 m in Erzurum, Turkey) with those of women living at sea level (31 m in İstanbul, Turkey). One-hundred ten women (n = 55, for each group) with full-term and single child pregnancies. Two different locations in that state were selected: İstanbul, Turkey, which is at 31 m above sea level (Group 1) and Erzurum, Turkey, at 1890 m above sea level (Group 2). Physicians from the two locations participated in the study. We estimated QTc, QTc Max, QTc Min, QT, and QTcd intervals. Moderately high altitude group had significantly longer QT parameters (QTc, QTc Max, QTc Min, QT, and QTcd intervals) compared with sea level group (P anges occur in term pregnant women living moderately high altitude. These changes may be associated with pregnancy-related cardiovascular complications in moderately high altitude.

  1. Subclinical high altitude pulmonary edema:A clinical observation of 12 cases in Yushu

    Institute of Scientific and Technical Information of China (English)

    Li Shuzhi; Zheng Bihai; Wu Tianyi; Chen Huixing; Zhang Ming

    2013-01-01

    During the Yushu Earthquake on April 14,2010,a high incidence of acute high altitude illness was observed in the mountain rescuers,and 0.73 % of these patients suffered from high altitude pulmonary edema,of which 12 patients developed subclinical pulmonary edema and concomitantly contracted acute mountain sickness.Symptoms and signs were atypically high heart rate with high respiratory rate,striking cyanosis,and significantly low oxygen saturation,whereas no moist rates were heard on auscultation,and Chest X-ray showed peripheral with a patchy distribution of mottled infiltrations in one or both lung fields.We believe that subclinical high altitude pulmonary edema is an earliest stage of pulmonary edema at high altitude.The possible pathogenesis and the diagnosis were discussed.

  2. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  3. A new Differential Optical Absorption Spectroscopy instrument to study atmospheric chemistry from a high-altitude unmanned aircraft

    Science.gov (United States)

    Stutz, Jochen; Werner, Bodo; Spolaor, Max; Scalone, Lisa; Festa, James; Tsai, Catalina; Cheung, Ross; Colosimo, Santo F.; Tricoli, Ugo; Raecke, Rasmus; Hossaini, Ryan; Chipperfield, Martyn P.; Feng, Wuhu; Gao, Ru-Shan; Hintsa, Eric J.; Elkins, James W.; Moore, Fred L.; Daube, Bruce; Pittman, Jasna; Wofsy, Steven; Pfeilsticker, Klaus

    2017-03-01

    Observations of atmospheric trace gases in the tropical upper troposphere (UT), tropical tropopause layer (TTL), and lower stratosphere (LS) require dedicated measurement platforms and instrumentation. Here we present a new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument developed for NASA's Global Hawk (GH) unmanned aerial system and deployed during the Airborne Tropical TRopopause EXperiment (ATTREX). The mini-DOAS system is designed for automatic operation under unpressurized and unheated conditions at 14-18 km altitude, collecting scattered sunlight in three wavelength windows: UV (301-387 nm), visible (410-525 nm), and near infrared (900-1700 nm). A telescope scanning unit allows selection of a viewing angle around the limb, as well as real-time correction of the aircraft pitch. Due to the high altitude, solar reference spectra are measured using diffusors and direct sunlight. The DOAS approach allows retrieval of slant column densities (SCDs) of O3, O4, NO2, and BrO with relative errors similar to other aircraft DOAS systems. Radiative transfer considerations show that the retrieval of trace gas mixing ratios from the observed SCD based on O4 observations, the most common approach for DOAS measurements, is inadequate for high-altitude observations. This is due to the frequent presence of low-altitude clouds, which shift the sensitivity of the O4 SCD into the lower atmosphere and make it highly dependent on cloud coverage. A newly developed technique that constrains the radiative transfer by comparing in situ and DOAS O3 observations overcomes this issue. Extensive sensitivity calculations show that the novel O3-scaling technique allows the retrieval of BrO and NO2 mixing ratios at high accuracies of 0.5 and 15 ppt, respectively. The BrO and NO2 mixing ratios and vertical profiles observed during ATTREX thus provide new insights into ozone and halogen chemistry in the UT, TTL, and LS.

  4. Atmospheric sub-3 nm particles at high altitudes

    Directory of Open Access Journals (Sweden)

    S. Mirme

    2010-01-01

    Full Text Available Formation of new atmospheric aerosol particles is known to occur almost all over the world and the importance of these particles to climate and air quality has been recognized. Recently, it was found that atmospheric aerosol particle formation begins at the diameter of around 1.5–2.0 nm and a pool of sub-3 nm atmospheric particles – consisting of both charged and uncharged ones – was observed at the ground level. Here, we report on the first airborne observations of the pool of sub-3 nm neutral atmospheric particles. Between 2 and 3 nm, their concentration is roughly two orders of magnitude larger than that of the ion clusters, depending slightly on the altitude. Our findings indicate that new particle formation takes place throughout the tropospheric column up to the tropopause. Particles were found to be formed via neutral pathways in the boundary layer, and there was no sign of an increasing role by ion-induced nucleation toward the upper troposphere. Clouds, while acting as a source of sub-10 nm ions, did not perturb the overall budget of atmospheric clusters or particles.

  5. Atmospheric sub-3 nm particles at high altitudes

    Directory of Open Access Journals (Sweden)

    S. Mirme

    2009-09-01

    Full Text Available Formation of new atmospheric aerosol particles is known to occur almost all over the world and the importance of these particles to climate and air quality has been recognized. Recently, it was found that atmospheric aerosol formation begins at particle diameter of around 1.5–2.0 nm and a pool of sub-3 nm atmospheric particles – consisting of both charged and uncharged ones – was observed at the ground level. Here, we report on the first airborne observations of the pool of sub-3 nm neutral atmospheric particles. Between 2 and 3 nm, their concentration is roughly two orders of magnitude larger than that of the ion clusters, depending slightly on the altitude. Our findings indicate that new particle formation takes place actively throughout the tropospheric column up to the tropopause. Particles were found to be formed via neutral pathways in the boundary layer, and there was no sign of an increasing role by ion-induced nucleation toward the upper troposphere. Clouds, while acting as a source of sub-10 nm ions, did not perturb the overall budget of atmospheric clusters or particles.

  6. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial.......059) to limit mass-specific maximal oxidative phosphorylation capacity. These data suggest that 9-11 days of exposure to high altitude do not markedly modify integrated measures of mitochondrial functional capacity in skeletal muscle despite significant decrements in the concentrations of enzymes involved...

  7. Analysis of mitochondrial DNA in Tibetan gastric cancer patients at high altitude

    OpenAIRE

    Jiang, Jun; Zhao, Jun-Hui; Wang, Xue-Lian; DI, JI; Liu, Zhi-Bo; Li, Guo-Yuan; WANG, MIAO-ZHOU; Li, Yan; Chen, Rong; Ge, Ri-Li

    2015-01-01

    The highest risk areas of gastric cancer are currently Japan, Korea and China; Qinghai, a high-altitude area, has one of the highest gastric cancer rates in China. The incidence of gastric cancer is higher in the Tibetan ethnic group compared to that in the Han ethnic group in Qinghai. This study was conducted to determine the clinical characteristics of mitochondrial DNA (mtDNA) mutations and copy numbers among Tibetans with gastric cancer residing at high altitudes and investigate the assoc...

  8. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  9. ROCK2 and MYLK variants and high-altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2016-08-01

    Full Text Available Gaurav Sikri, Srinivasa Bhattachar Department of Physiology, Armed Forces Medical College, Pune, Maharashtra, IndiaWe have read the article titled “ROCK2 and MYLK variants under hypobaric hypoxic environment of high altitude associate with high altitude pulmonary edema and adaptation” by Pandey et al1 with profound interest. View the original paper by Pandey and colleagues.

  10. A test of cirrus ice crystal scattering phase functions

    Science.gov (United States)

    Field, P. R.; Baran, A. J.; Kaye, P. H.; Hirst, E.; Greenaway, R.

    2003-07-01

    In-situ ice crystal scattering has been measured in cirrus cloud with the Small Ice Detector laser scattering probe. Using light scattered from single particles (maximum dimension ~<100 μm) at 4-10° and 20-40° we have tested ice crystal scattering phase functions for spheres, hexagonal columns, hexagonal plates, polycrystals an aggregate of columns and an analytic function. We find that phase functions that lack a pronounced 22° halo are the best representatives for the example data presented here. Spherical ice particle phase functions do not satisfy the measurements.

  11. The sleep of elite athletes at sea level and high altitude: a comparison of sea-level natives and high-altitude natives (ISA3600)

    Science.gov (United States)

    Roach, Gregory D; Schmidt, Walter F; Aughey, Robert J; Bourdon, Pitre C; Soria, Rudy; Claros, Jesus C Jimenez; Garvican-Lewis, Laura A; Buchheit, Martin; Simpson, Ben M; Hammond, Kristal; Kley, Marlen; Wachsmuth, Nadine; Gore, Christopher J; Sargent, Charli

    2013-01-01

    Background Altitude exposure causes acute sleep disruption in non-athletes, but little is known about its effects in elite athletes. The aim of this study was to examine the effects of altitude on two groups of elite athletes, that is, sea-level natives and high-altitude natives. Methods Sea-level natives were members of the Australian under-17 soccer team (n=14). High-altitude natives were members of a Bolivian under-20 club team (n=12). Teams participated in an 18-day (19 nights) training camp in Bolivia, with 6 nights at near sea level in Santa Cruz (430 m) and 13 nights at high altitude in La Paz (3600 m). Sleep was assessed on every day/night using activity monitors. Results The Australians’ sleep was shorter, and of poorer quality, on the first night at altitude compared with sea level. Sleep quality returned to normal by the end of the first week at altitude, but sleep quantity had still not stabilised at its normal level after 2 weeks. The quantity and quality of sleep obtained by the Bolivians was similar, or greater, on all nights at altitude compared with sea level. The Australians tended to obtain more sleep than the Bolivians at sea level and altitude, but the quality of the Bolivians’ sleep tended to be better than that of the Australians at altitude. Conclusions Exposure to high altitude causes acute and chronic disruption to the sleep of elite athletes who are sea-level natives, but it does not affect the sleep of elite athletes who are high-altitude natives. PMID:24282197

  12. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein.

    Directory of Open Access Journals (Sweden)

    Sheng Li Hu

    Full Text Available Hypersensitive C-reaction protein (hsCRP may be a risk factor for cognitive impairment resulting from Alzheimer's disease (AD, stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200 detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6, and homocysteine was estimated at 500 m altitude, 3650 m altitude, 3 day, 1, and 3 month post arriving at the base camp (4400 m, and 1 month after coming back to the 500 m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400 m. P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction.

  13. Cognitive Changes during Prolonged Stay at High Altitude and Its Correlation with C-Reactive Protein

    Science.gov (United States)

    Hu, Sheng Li; Xiong, Wei; Dai, Zhi Qiang; Zhao, Heng Li; Feng, Hua

    2016-01-01

    Hypersensitive C-reaction protein (hsCRP) may be a risk factor for cognitive impairment resulting from Alzheimer’s disease (AD), stroke, and vascular dementia. This study explored the correlation of peripheral blood hsCRP level with cognitive decline due to high altitude exposure. The study was conducted on 100 male military participants who had never been to high altitude. Cerebral oxygen saturation monitoring, event related potentials (P300, N200) detection, and neurocognitive assessment was performed and total hsCRP, interleukin-6 (IL-6), and homocysteine was estimated at 500m altitude, 3650m altitude, 3day, 1, and 3 month post arriving at the base camp (4400m), and 1 month after coming back to the 500m altitude. High altitude increased brain oxygen saturation, prolonged P300 and N200 latencies, injured cognitive functions, and raised plasma hsCRP levels. But they all recovered in varying degrees at 1 and 3 month post arriving at the base camp (4400m). P300 latencies and hsCRP levels were strongly correlated to cognitive performances. These results suggested that cognitive deterioration occurred during the acute period of exposure to high altitude and may recover probably owning to acclimatization after extended stay at high altitude. Plasma hsCRP is inversely correlated to neurological cognition and it may be a potential biomarker for the prediction of high altitude induced cognitive dysfunction. PMID:26731740

  14. Novel drugs in the management of acute mountain sickness and high altitude pulmonary edema

    Directory of Open Access Journals (Sweden)

    Sikri G

    2015-12-01

    Full Text Available Gaurav Sikri, Anirban Bhattacharya Department of Physiology, Armed Forces Medical College, Wanowarie, Pune, IndiaWe read with great interest the review article titled “Wilderness medicine at high altitude: recent developments in the field” by Shah et al.1 The authors have comprehensively summarized the recent advances in the field of high altitude medicine relevant to sports and travel medicine. However, Shah et al have described potential drugs for management of high-altitude illnesses, such as acute mountain sickness (AMS, high altitude cerebral edema, and high altitude pulmonary edema (HAPE as one group under the section “Novel drug treatment for AMS”. The pathophysiologies of these two sets of diseases (AMS/high altitude cerebral edema as one and HAPE as another set are different2 and hence it would have been nice to have had the novel drugs described separately to elucidate the therapeutic approach for the two different classes of diseases.View original paper by Shah et al.

  15. Barcroft's bold assertion: All dwellers at high altitudes are persons of impaired physical and mental powers.

    Science.gov (United States)

    West, John B

    2016-03-01

    Barcroft's bold assertion that everyone at high altitude has physical and mental impairment compared with sea level was very provocative. It was a result of the expedition that he led to Cerro de Pasco in Peru, altitude 4300 m. Although it is clear that newcomers to high altitude have reduced physical powers, some people believe that this does not apply to permanent residents who have been at high altitude for generations. The best evidence supports Barcroft's contention, although permanent residents often perform better than acclimatized lowlanders. Turning to neuropsychological function, newcomers to high altitude certainly have some impairment, and there is evidence that the same applies to highlanders. However the notion that permanent residents are impaired is anathema to many people. For example the eminent Peruvian physician Carlos Monge took great exception to Barcroft's remark and even attributed it to the fact that Barcroft was suffering from acute mountain sickness when he made it! Monge referred to 'climatic aggression', by which he meant the negative consequences of the inevitable hypoxia of high altitude. Recent technological advances such as oxygen enrichment of room air can overcome this 'aggression'. This might be useful in some settings at high altitude such as a nursery where newborn babies are cared for, and possibly operating rooms where the surgeon's dexterity may be enhanced. Other situations might be dormitories, conference rooms, and perhaps some school rooms. These constitute possible ways by which the effects of Barcroft's assertion might be countered.

  16. Effect of high altitude exposure on spermatogenesis and epididymal sperm count in male rats.

    Science.gov (United States)

    Gasco, M; Rubio, J; Chung, A; Villegas, L; Gonzales, G F

    2003-12-01

    The present study was designed to determine the effect of exposure to high altitude on spermatogenesis using transillumination technique and sperm count in male rats. In addition, the effect of oral intubation for intragastric administration of vehicle on testicular parameters in adult male rats in a schedule of 42 days was assessed. Male rats were exposed to Cerro de Pasco (Peru) at 4340 m for 3, 7, 14, 21, 28, 35 and 42 days resulting in a modification of the pattern of the seminiferous tubule stages. At day 3, stages I, IV-V, VI, VII and IX-XI were relatively shorter at high altitude than at sea level. At day 7, stages VIII, IX-XI, XII and XIII-XIV were reduced. At day 14, stages VII, VIII and IX-XI were reduced. At day 21 and 28, stages VIII, XII and XIII-XIV were significantly increased at high altitude. At day 35 an increase in stage XIII-XIV was observed. At day 42, stages II-III, IX-XI and XII were significantly increased at high altitude. Epididymal sperm count was significantly reduced at day 7 of exposure to high altitude and maintained low levels with respect to sea level up to 42 days. In conclusion, high altitude exposure affects spermatogenesis, particularly onset of mitosis and spermiation. This in turn affects epididymal sperm count.

  17. The Airborne Cloud-Aerosol Transport System. Part I; Overview and Description of the Instrument and Retrival Algorithms

    Science.gov (United States)

    Yorks, John E.; Mcgill, Matthew J.; Scott, V. Stanley; Kupchock, Andrew; Wake, Shane; Hlavka, Dennis; Hart, William; Selmer, Patrick

    2014-01-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a multi-channel Doppler lidar system recently developed at NASA Goddard Space Flight Center (GSFC). A unique aspect of the multi-channel Doppler lidar concept such as ACATS is that it is also, by its very nature, a high spectral resolution lidar (HSRL). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particulate extinction. ACATS is therefore capable of simultaneously resolving the backscatterextinction properties and motion of a particle from a high altitude aircraft. ACATS has flown on the NASA ER-2 during test flights over California in June 2012 and science flights during the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This paper provides an overview of the ACATS method and instrument design, describes the ACATS retrieval algorithms for cloud and aerosol properties, and demonstrates the data products that will be derived from the ACATS data using initial results from the WAVE project. The HSRL retrieval algorithms developed for ACATS have direct application to future spaceborne missions such as the Cloud-Aerosol Transport System (CATS) to be installed on the International Space Station (ISS). Furthermore, the direct extinction and particle wind velocity retrieved from the ACATS data can be used for science applications such 27 as dust or smoke transport and convective outflow in anvil cirrus clouds.

  18. On the importance of small ice crystals in tropical anvil cirrus

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2009-08-01

    Full Text Available In situ measurements of ice crystal concentrations and sizes made with aircraft instrumentation over the past two decades have often indicated the presence of numerous relatively small (< 50 μm diameter crystals in cirrus clouds. Further, these measurements frequently indicate that small crystals account for a large fraction of the extinction in cirrus clouds. The fact that the instruments used to make these measurements, such as the Forward Scattering Spectrometer Probe (FSSP and the Cloud Aerosol Spectrometer (CAS, ingest ice crystals into the sample volume through inlets has led to suspicion that the indications of numerous small-crystals could be artifacts of large-crystal shattering on the instrument inlets. We present new aircraft measurements in anvil cirrus sampled during the Tropical Composition, Cloud, and Climate Coupling (TC4 campaign with the 2-Dimensional Stereo (2D-S probe, which detects particles as small as 10 μm. The 2D-S has detector "arms" instead of an inlet tube. Since the 2D-S probe surfaces are much further from the sample volume than is the case for the instruments with inlets, it is expected that 2D-S will be less susceptible to shattering artifacts. In addition, particle inter-arrival times are used to identify and remove shattering artifacts that occur even with the 2D-S probe. The number of shattering artifacts identified by the 2D-S interarrival time analysis ranges from a negligible contribution to an order of magnitude or more enhancement in apparent ice concentration over the natural ice concentration, depending on the abundance of large crystals and the natural small-crystal concentration. The 2D-S measurements in tropical anvil cirrus suggest that natural small-crystal concentrations are typically one to two orders of magnitude lower than those inferred from CAS. The strong correlation between the CAS/2D-S ratio of small-crystal concentrations and large-crystal concentration suggests that the discrepancy is

  19. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension.

    Science.gov (United States)

    Berger, Marc M; Dehnert, Christoph; Bailey, Damian M; Luks, Andrew M; Menold, Elmar; Castell, Christian; Schendler, Guido; Faoro, Vitalie; Mairbäurl, Heimo; Bärtsch, Peter; Swenson, Erik R

    2009-01-01

    Berger, Marc M., Christoph Dehnert, Damian M. Bailey, Andrew M. Luks, Elmar Menold, Christian Castell, Guido Schendler, Vitalie Faoro, Heimo Mairbäurl, Peter Bärtsch, and Eric R. Swenson. Transpulmonary plasma ET-1 and nitrite differences in high altitude pulmonary hypertension. High Alt. Med. Biol. 10:17-24, 2009.- Thirty-four mountaineers were studied at low (110 m) and high altitude (4559 m) to evaluate if increased pulmonary artery systolic pressure (PASP) at high altitude is associated with increased pulmonary endothelin-1 (ET-1) availability and alterations in nitrite metabolism across the lung. Blood samples were obtained using central venous and radial artery catheters for plasma ET-1 and nitrite. Pulmonary blood flow was measured by inert gas rebreathing to calculate transpulmonary exchange of plasma ET-1 and nitrite, and PASP was assessed by transthoracic Doppler echocardiography. After ascent to high altitude, PASP increased from 23 +/- 4 to 39 +/- 10 mmHg. Arterial and central venous plasma ET-1 increased, while plasma nitrite did not change significantly. At low altitude there was a transpulmonary loss of plasma ET-1, but a transpulmonary gain at high altitude. In contrast was a transpulmonary gain of plasma nitrite at low altitude and a transpulmonary loss at high altitude. PASP positively correlated with a transpulmonary gain of plasma ET-1 and negatively correlated with a transpulmonary loss of plasma nitrite. These results suggest that a transpulmonary gain of plasma ET- 1 is associated with higher PASP at high altitude. Transpulmonary loss of plasma nitrite indicates either less pulmonary nitric oxide (NO) production, which contributes to higher PASP, or increased NO bioavailability arising from nitrite reduction, which may oppose ET-1-mediated vasoconstriction.

  20. Difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite

    Directory of Open Access Journals (Sweden)

    Ming-ke JIAO

    2017-02-01

    Full Text Available Objective To determine the difference in blood microcirculation recovery between normal frostbite and high-altitude frostbite during the wound healing. Methods Twenty four male rats were randomly divided into control group (n=8, normal frostbite group (n=8, and high-altitude group (n=8. The normal frostbite group rats were frozen to produce mid-degree frostbite models by controlling the freezing time with liquid nitrogen penetration equipment. The high-altitude frostbite group rats were acclimated to a hypoxic and low-pressure environment for 1 week, and then the high-altitude frostbite models were constructed by the same way with liquid nitrogen penetration apparatus. On days 3, 7, 11, 15, 19, and 23 after modeling, the recovery situation of blood circulation of each group was observed with contrast ultrasonography by injecting SonoVue micro-bubble into rats' tail. Finally, the micro-bubble concentration (MC was calculated to confirm the blood circulation recovery with software Image Pro. Results At different time points, the wound area of the high-altitude frostbite group was bigger than that of the normal frostbite group, and the MC of control group was always about (27±0.2×109/ml. On day 3, 7, 11, 15, 19, and 23, the MC was significantly lower in the high-altitude frostbite group than in the control group and normal frostbite group (P<0.05. The MC of normal frostbite group was significantly lower than that of the control group on day 3, 7, 11, 15 and 19 (P<0.05. In addition, no obvious difference in MC was found between normal group and control group on the 23th day (P<0.05. Conclusion The blood microcirculation recovery after high-altitude frostbite is significantly slower than the normal frostbite. DOI: 10.11855/j.issn.0577-7402.2017.01.13

  1. Control of breathing and the circulation in high-altitude mammals and birds.

    Science.gov (United States)

    Ivy, Catherine M; Scott, Graham R

    2015-08-01

    Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.

  2. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff

    Science.gov (United States)

    Immerzeel, Walter; Wanders, Niko; Lutz, Arthur; Shea, Joseph; Bierkens, Marc

    2016-04-01

    Mountain ranges in Asia are important water suppliers, especially if downstream climates are arid, water demands are high and glaciers are abundant. In such basins, the hydrological cycle depends heavily on high-altitude precipitation. Yet direct observations of high-altitude precipitation are lacking and satellite derived products are of insufficient resolution and quality to capture spatial variation and magnitude of mountain precipitation. Here we use glacier mass balances to inversely infer the high-altitude precipitation in the upper Indus basin and show that the amount of precipitation required to sustain the observed mass balances of large glacier systems is far beyond what is observed at valley stations or estimated by gridded precipitation products. An independent validation with observed river flow confirms that the water balance can indeed only be closed when the high altitude precipitation on average is more than twice as high and in extreme cases up to a factor of 10 higher than previously thought. We conclude that these findings alter the present understanding of high-altitude hydrology and will have an important bearing on climate change impact studies, planning and design of hydropower plants and irrigation reservoirs as well as the regional geopolitical situation in general.

  3. Chronic intermittent high altitude exposure, occupation, and body mass index in workers of mining industry.

    Science.gov (United States)

    Esenamanova, Marina K; Kochkorova, Firuza A; Tsivinskaya, Tatyana A; Vinnikov, Denis; Aikimbaev, Kairgeldy

    2014-09-01

    The obesity and overweight rates in population exposed to chronic intermittent exposure to high altitudes are not well studied. The aim of the retrospective study was to evaluate whether there are differences in body mass index in different occupation groups working in intermittent shifts at mining industry at high altitude: 3800-4500 meters above sea level. Our study demonstrated that obesity and overweight are common in workers of high altitude mining industry exposed to chronic intermittent hypoxia. The obesity rate was lowest among miners as compared to blue- and white-collar employees (9.5% vs. 15.6% and 14.7%, p=0.013). Obesity and overweight were associated with older age, higher rates of increased blood pressure (8.79% and 5.72% vs. 1.92%), cholesterol (45.8% and 45.6% vs. 32.8%) and glucose (4.3% and 1.26% vs. 0.57%) levels as compared to normal body mass index category (pmining industry exposed to intermittent high-altitude hypoxia. Therefore, assessment and monitoring of body mass index seems to be essential in those who live and work at high altitudes to supply the correct nutrition, modify risk factors, and prevent related disorders.

  4. Considerations for modeling thin cirrus effects via brightness temperature differences

    Science.gov (United States)

    Schmidt, E. O.; Arduini, R. F.; Wielicki, B. A.; Stone, R. S.; Tsay, S.-C.

    1995-01-01

    Brightness temperature difference (BTD) values are calculated for selected Geostationary Operational Environmental Satellite (GOES-6) channels (3.9, 12.7 micrometer) and Advanced Very High Resolution Radiometer channels (3.7, 12.0 micrometer). Daytime and nighttime discrimination of particle size information is possible given the infrared cloud extinction optical depth and the BTD value. BTD values are presented and compared for cirrus clouds composed of equivalent ice spheres (volume, surface area) versus randomly oriented hexagonal ice crystals. The effect of the hexagonal ice crystals is to increase the magnitude of the BTD values calculated relative to equivalent ice sphere (volume, surface area) BTDs. Equivalent spheres (volume or surface area) do not do a very good job of modeling hexagonal ice crystal effects on BTDs; however, the use of composite spheres improves the simulation and offers interesting prospects. Careful consideration of the number of Legendre polynomial coefficients used to fit the scattering phase functions is crucial to realistic modeling of cirrus BTDs. Surface and view-angle effects are incorporated to provide more realistic simulation.

  5. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  6. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    Science.gov (United States)

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity.

  7. Circulatory adaptation to long-term high altitude exposure in Aymaras and Caucasians.

    Science.gov (United States)

    Stuber, Thomas; Scherrer, Urs

    2010-01-01

    About 30 million people live above 2500 m in the Andean Mountains of South America. Among them are 5.5 million Aymaras, an ethnic group with its own language, living on the altiplano of Bolivia, Peru, and northern Chile at altitudes of up to 4400 m. In this high altitude region traces of human population go back for more than 2000 years with constant evolutionary pressure on its residents for genetic adaptation to high altitude. Aymaras as the assumed direct descendents of the ancient cultures living in this region were the focus of much research interest during the last decades and several distinctive adaptation patterns to life at high altitude have been described in this ethnic group. The aim of this article was to review the physiology and pathophysiology of circulatory adaptation and maladaptation to longtime altitude exposure in Aymaras and Caucasians.

  8. Fatalities in high altitude mountaineering: a review of quantitative risk estimates.

    Science.gov (United States)

    Weinbruch, Stephan; Nordby, Karl-Christian

    2013-12-01

    Quantitative estimates for mortality in high altitude mountaineering are reviewed. Special emphasis is placed on the heterogeneity of the risk estimates and on confounding. Crude estimates for mortality are on the order of 1/1000 to 40/1000 persons above base camp, for both expedition members and high altitude porters. High altitude porters have mostly a lower risk than expedition members (risk ratio for all Nepalese peaks requiring an expedition permit: 0.73; 95 % confidence interval 0.59-0.89). The summit bid is generally the most dangerous part of an expedition for members, whereas most high altitude porters die during route preparation. On 8000 m peaks, the mortality during descent from summit varies between 4/1000 and 134/1000 summiteers (members plus porters). The risk estimates are confounded by human and environmental factors. Information on confounding by gender and age is contradictory and requires further work. There are indications for safety segregation of men and women, with women being more risk averse than men. Citizenship appears to be a significant confounder. Prior high altitude mountaineering experience in Nepal has no protective effect. Commercial expeditions in the Nepalese Himalayas have a lower mortality than traditional expeditions, though after controlling for confounding, the difference is not statistically significant. The overall mortality is increasing with increasing peak altitude for expedition members but not for high altitude porters. In the Nepalese Himalayas and in Alaska, a significant decrease of mortality with calendar year was observed. A few suggestions for further work are made at the end of the article.

  9. High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle

    Science.gov (United States)

    Brown, Shannon T.; Lim, Boon H.; Tanner, Alan B.; Tanabe, Jordan M.; Kangaslahti, Pekka P.; Gaier, Todd C.; Soria, Mary M.; Lambrigtsen, Bjorn H.; Denning, Richard F.; Stachnik, Robert A.

    2012-01-01

    Microwave imaging radiometers operating in the 50-183 GHz range for retrieving atmospheric temperature and water vapor profiles from airborne platforms have been limited in the spatial scales of atmospheric structures that are resolved not because of antenna aperture size, but because of high receiver noise masking the small variations that occur on small spatial scales. Atmospheric variability on short spatial and temporal scales (second/ km scale) is completely unresolved by existing microwave profilers. The solution was to integrate JPL-designed, high-frequency, low-noise-amplifier (LNA) technology into the High-Altitude MMIC Sounding Radiometer (HAMSR), which is an airborne microwave sounding radiometer, to lower the system noise by an order of magnitude to enable the instrument to resolve atmospheric variability on small spatial and temporal scales. HAMSR has eight sounding channels near the 60-GHz oxygen line complex, ten channels near the 118.75-GHz oxygen line, and seven channels near the 183.31-GHz water vapor line. The HAMSR receiver system consists of three heterodyne spectrometers covering the three bands. The antenna system consists of two back-to-back reflectors that rotate together at a programmable scan rate via a stepper motor. A single full rotation includes the swath below the aircraft followed by observations of ambient (roughly 0 C in flight) and heated (70 C) blackbody calibration targets located at the top of the rotation. A field-programmable gate array (FPGA) is used to read the digitized radiometer counts and receive the reflector position from the scan motor encoder, which are then sent to a microprocessor and packed into data files. The microprocessor additionally reads telemetry data from 40 onboard housekeeping channels (containing instrument temperatures), and receives packets from an onboard navigation unit, which provides GPS time and position as well as independent attitude information (e.g., heading, roll, pitch, and yaw). The raw

  10. Chemical characterization of atmospheric ions at the high altitude research station Jungfraujoch (Switzerland)

    Science.gov (United States)

    Frege, Carla; Bianchi, Federico; Molteni, Ugo; Tröstl, Jasmin; Junninen, Heikki; Henne, Stephan; Sipilä, Mikko; Herrmann, Erik; Rossi, Michel J.; Kulmala, Markku; Hoyle, Christopher R.; Baltensperger, Urs; Dommen, Josef

    2017-02-01

    The ion composition at high altitude (3454 m a.s.l.) was measured with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF) during a period of 9 months, from August 2013 to April 2014. The negative mass spectra were dominated by the ions of sulfuric, nitric, malonic, and methanesulfonic acid (MSA) as well as SO5-. The most prominent positive ion peaks were from amines. The other cations were mainly organic compounds clustered with a nitrogen-containing ion, which could be either NH4+ or an aminium. Occasionally the positive spectra were characterized by groups of compounds each differing by a methylene group. In the negative spectrum, sulfuric acid was always observed during clear sky conditions following the diurnal cycle of solar irradiation. On many occasions we also saw a high signal of sulfuric acid during nighttime when clusters up to the tetramer were observed. A plausible reason for these events could be evaporation from particles at low relative humidity. A remarkably strong correlation between the signals of SO5- and CH3SO3- was observed for the full measurement period. The presence of these two ions during both the day and the night suggests a non-photochemical channel of formation which is possibly linked to halogen chemistry. Halogenated species, especially Br- and IO3-, were frequently observed in air masses that originated mainly from the Atlantic Ocean and occasionally from continental areas based on back trajectory analyses. We found I2O5 clustered with an ion, a species that was proposed from laboratory and modeling studies. All halogenated ions exhibited an unexpected diurnal behavior with low values during daytime. New particle formation (NPF) events were observed and characterized by (1) highly oxygenated molecules (HOMs) and low sulfuric acid or (2) ammonia-sulfuric acid clusters. We present characteristic spectra for each of these two event types based on 26 nucleation episodes. The mass spectrum of the ammonia

  11. High altitude and hemoglobin function in the vultures Gyps rueppelli and Aegypius monachus

    DEFF Research Database (Denmark)

    Weber, Roy E.; Hiebl, Inge; Braunitzer, Gerhard

    1988-01-01

    structures of the constituent polypeptide chains to trace molecular adaptations to high-altitude respiration, and to physiological factors (pulmonary hypoxia and hypocapnia, body temperature shifts, and lung and nasal gas and heat exchange) to discern their possible survival value at altitudes of 11300 m.......Functional characteristics of the stripped composite hemoglobins (Hbs) of lhevultures Gyps rueppellii and Aegypills monachus that can fly at extremely high altitudes, and of component Hbs of G. rueppellii are reported, in relation to influences of pH, temperalure and inositol hexaphosphate. G...

  12. Out of air: Is going to high altitude safe for your patient?

    Science.gov (United States)

    Mendenhall, Ann M; Forest, Christopher P

    2017-08-01

    As more people travel to high altitudes for recreation or work, more travelers with underlying medical conditions will need advice before traveling or treatment for altitude illness. This article focuses on the two main issues for travelers: whether travel to a high altitude will have a negative effect on their underlying medical condition and whether the medical condition increases the patient's risk of developing altitude illness. Although patients with severe pulmonary or cardiac conditions are most at risk in the hypoxic environment, other conditions such as diabetes and pregnancy warrant attention as well.

  13. Cloud Microphysics in Hurricane Outflows: Observations in 'Bonnie' (1998) at 12 km Altitude

    Science.gov (United States)

    Pueschel, Rudolf F.; Hallett, J.; Strawa, A. W.; Ferry, G. V.; Bui, T. P.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    The water balance of a hurricane is controlled by boundary layer inflow, near vertical motion in the eyewall causing coalescence precipitation at above and residual ice precipitation at below freezing temperatures, and cirrus outflow at below -40 C aloft. In this paper we address the question of efficiency of water removal by this cirrus outflow which is important for the release of latent heat at high altitudes and its role in the dynamic flow at that level. During NASA's 1998 Convection and Moisture Experiment campaign we acquired microphysical outflow data in order to (1) determine the release and redistribution of latent heat near the top of hurricanes, (2) aid in TRMM algorithm development for remote sensing of precipitation, and (3) determine the optical/radiative characteristics of hurricane outflow. The data were acquired with Particle Measuring Systems two dimensional imaging spectrometers. On 23 August and again during the hurricane's landfall on 26 August, 1998, the NASA DC-8 aircraft penetrated hurricane 'Bonnie' four times each near 200 hPa pressure altitude. The eye crossing times were determined by (1) zero counts of cloud particles, (2) approximately 5 C increases in static and potential temperatures, and (3) minima in speeds and changes of direction of horizontal winds. The vertical winds showed shear between -6 m per second and +4 m per second and tangential winds approached 30 m per second in the eyewall. The particle volumes in the eyewall (determined by the pixels the particles shadowed in the direction of flight [x-direction] and normally to it by the number of diodes that they shadowed [y-direction]) ranged between 0.5 and 5.0 cubic centimeters per cubic meter. With a particle density near 0.2 g per cubic centimeter (determined from in situ melting and evaporation on a surface collector), the 1.0 g per meter corresponding mass of cloud ice ranged between 0.27 and 2.7 g per kilograms yielding horizontal fluxes between 8.1 and 81 g per square

  14. Incidence of high altitude pulmonary edema in low-landers during re-exposure to high altitude after a sojourn in the plains

    Science.gov (United States)

    Apte, C.V.; Tomar, R.K.S.; Sharma, D.

    2015-01-01

    Background There is uncertainty whether acclimatized low-landers who return to high altitude after a sojourn at low altitude have a higher incidence of pulmonary edema than during the first exposure to high altitude. Methods This was a prospective cohort study consisting of men ascending to 3400 m by road (N = 1003) or by air (N = 4178). The study compared the incidence of high altitude pulmonary edema during first exposure vs the incidence during re-exposure in each of these cohorts. Results Pulmonary edema occurred in 13 of the 4178 entries by air (Incidence: 0.31%, 95% CI: 0.18%–0.53%). The incidence during first exposure was 0.18% (0.05%–0.66%) and 0.36% (0.2%–0.64%) during re-exposure (Fisher Exact Test for differences in the incidence (two-tailed) p = 0.534). The relative risk for the re-exposure cohort was 1.95 (95% CI, 0.43%–8.80%). Pulmonary edema occurred in 3 of the 1003 road entrants (Incidence: 0.30%, 95% CI: 0.08%–0.95%). All three cases occurred in the re-exposure cohort. Conclusion The large overlap of confidence intervals between incidence during first exposure and re-exposure; the nature of the confidence interval of the relative risk; and the result of the Fisher exact test, all suggest that this difference in incidence could have occurred purely by chance. We did not find evidence for a significantly higher incidence of HAPE during re-entry to HA after a sojourn in the plains. PMID:26288488

  15. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    Science.gov (United States)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  16. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  17. Study of high-altitude radar altimeter model accuracy and SITAN performance using HAAFT data

    Energy Technology Data Exchange (ETDEWEB)

    Shieves, T.C.; Callahan, M.W.

    1979-07-01

    Radar altimetry data, inertial navigation data, and scoring data were collected under the HAAFT program by Martin Marietta Corporation for the United States Air Force over several areas in the western United States at altitudes ranging from 3 to 20 km. The study reported here uses the HAAFT data in conjunction with Defense Mapping Agency (DMA) topographic data to evaluate the accuracy of a high-altitude pulsed-radar altimeter model and the resulting performance of the terrain-aided guidance concept SITAN. Previous SITAN flight tests at low altitudes (less than 1500 m AGL) have demonstrated 6-20 m CEP. The high-altitude flight test data analyzed herein show a SITAN CEP of 120 m. The radar altimeter model was required to achieve this performance includes the effects of the internal track loop, AGC loop, antenna beamwidth, and the terrain radar cross section and provided a factor of 6 improvement over simple nadir ground clearance for rough terrain. It is postulated that high-altitude CEP could be reduced to 50 m or less if an altimeter were designed specifically for high-altitude terrain sensing.

  18. Persistence of chironomids in metal polluted Andean high altitude streams: does melanin play a role?

    NARCIS (Netherlands)

    Loayza Muro, R.A.; Marticorena-Ruíz, J.K.; Palomino, E.J.; Merritt, C.; de Baat, M.L.; van Gemert, M.; Verweij, R.A.; Kraak, M.H.S.; Admiraal, W.

    2013-01-01

    In high altitude Andean streams an intense solar radiation and coinciding metal pollution allow the persistence of only a few specialized taxa, including chironomids. The aim of the present study was therefore to determine the mechanisms underlying the persistence of chironomids under these multiple

  19. Update on high altitude cerebral edema including recent work on the eye.

    Science.gov (United States)

    Willmann, Gabriel; Gekeler, Florian; Schommer, Kai; Bärtsch, Peter

    2014-06-01

    This review summarizes recent research on high altitude cerebral edema (HACE) and on the eye with focus on the retina and optic nerve as visible brain tissue at high altitude. Hemosiderin deposits in the corpus callosum have been characterized as rather specific long-lasting footprints of HACE, indicating a leak of the blood-brain barrier (BBB) and resulting in microhemorrhages. These are compatible with the concept of increased capillary pressure due to venous outflow limitation as suggested by Wilson et al. There are no human data on the role of vascular permeability in HACE, while animal models of uncertain relevance for human HACE suggest that an impaired integrity of the BBB through VEGF and ROS is more important than hemodynamic changes. Examinations by ultrasound show an inconsistent increase of the optic nerve sheath diameter, whereas unequivocal optic disc swelling (ODS), increased retinal vessel diameter, as well as retinal vessel leakage occur at high altitude. However, whether these morphological changes correlate with symptoms of AMS as a possible precursor of HACE or high altitude headache supporting the concept of venous outflow limitation remains questionable and is discussed in detail in this article.

  20. A comparative high-altitude meteorological analysis from three catchments in the Nepalese Himalaya

    NARCIS (Netherlands)

    Shea, J. M.; Wagnon, P.; Immerzeel, W. W.; Biron, R.; Brun, F.; Pellicciotti, F.

    2015-01-01

    Meteorological studies in high-mountain environments form the basis of our understanding of catchment hydrology and glacier accumulation and melt processes, yet high-altitude (>4000 m above sea level, asl) observatories are rare. This research presents meteorological data recorded between December 2